WO2023085369A1 - 角膜内皮細胞の凍結保存製剤およびその製造法 - Google Patents

角膜内皮細胞の凍結保存製剤およびその製造法 Download PDF

Info

Publication number
WO2023085369A1
WO2023085369A1 PCT/JP2022/041960 JP2022041960W WO2023085369A1 WO 2023085369 A1 WO2023085369 A1 WO 2023085369A1 JP 2022041960 W JP2022041960 W JP 2022041960W WO 2023085369 A1 WO2023085369 A1 WO 2023085369A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
corneal endothelial
temperature
frozen
formulation
Prior art date
Application number
PCT/JP2022/041960
Other languages
English (en)
French (fr)
Inventor
範子 小泉
直毅 奥村
靖史 松岡
Original Assignee
学校法人同志社
アクチュアライズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, アクチュアライズ株式会社 filed Critical 学校法人同志社
Priority to AU2022385051A priority Critical patent/AU2022385051A1/en
Priority to CA3238227A priority patent/CA3238227A1/en
Priority to JP2023559903A priority patent/JPWO2023085369A1/ja
Publication of WO2023085369A1 publication Critical patent/WO2023085369A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present disclosure relates to cryopreserved preparations of corneal endothelial cells, techniques for manufacturing the same, and applied techniques such as treatment using the same.
  • corneal endothelial cells When the corneal endothelial cells are damaged, the cornea becomes opaque, causing severe visual impairment due to bullous keratopathy.
  • the only treatment for bullous keratopathy is corneal transplantation, but there are problems such as lack of donors and rejection, and the development of new regenerative medicine treatments is desired.
  • corneal endothelial cells separated from the donor cornea are proliferated in the presence of a Rho-associated coiled-coil forming kinase: Rho-associated kinase (ROCK) inhibitor, and the cells are injected into many patients to develop corneal tissue.
  • Rho-associated kinase (ROCK) inhibitor Rho-associated kinase
  • DMSO dimethyl sulfoxide
  • frozen cell preparations used in regenerative medicine contain at least 7% DMSO, and when administered to patients, they are diluted with physiological saline immediately before administration due to concerns about the toxicity of DMSO to patients, Administration of DMSO at a high concentration to the patient is avoided by extremely slowing the administration rate during administration such as intravenous drip infusion.
  • the present inventors have studied in detail the temperature conditions during cryopreservation, etc., and have reduced the DMSO concentration (e.g., less than 7%) by lowering the temperature at a slow temperature slower than -1 ° C./min. We found that the survival rate of corneal endothelial cells was kept high in a cryopreservation solution that did not contain The inventors have further found that cell viability increases when the temperature is first lowered at a slow rate and then frozen with a faster cooling rate. Therefore, the present disclosure provides a method for freezing corneal endothelial cells in a cryopreservation solution with a reduced DMSO concentration or no DMSO, and a method for producing a frozen cell preparation that can be directly administered to a patient.
  • the DMSO concentration e.g., less than 7%
  • the present invention provides, for example, the following items.
  • (Item 1) A method for preserving corneal endothelial cells and/or corneal endothelial-like cells, comprising: A step of freezing the corneal endothelial cells and/or corneal endothelial-like cells in an unfrozen state, wherein the temperature is lowered at a rate of less than 1°C per minute when the temperature is changed from the non-freezing temperature to the freezing target temperature. and optionally maintaining said corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • (Item 2) The method according to the preceding items, comprising the step of maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • (Item 3) A method according to any one of the preceding items, wherein the step of maintaining in a frozen state comprises maintaining at a frozen maintenance temperature.
  • (Item 4) A method according to any one of the preceding items, wherein the cryopreservation temperature is a temperature within the range of about -80°C to about -10°C.
  • (Item 5) A method according to any one of the preceding items, wherein the cryopreservation temperature is a temperature within the range of about -196°C to about -10°C.
  • the cryopreservation temperature is a temperature of about -30°C or less.
  • the corneal endothelial cells and/or corneal endothelial-like cells are lowered in temperature from a non-freezing temperature at a rate of about 0.1°C to about 0.9°C per minute.
  • Method. (Item 8) 3. Any one of the preceding items, wherein the corneal endothelial cells and/or corneal endothelial-like cells are lowered in temperature from a non-freezing temperature at a rate of about 0.2°C to about 0.8°C per minute.
  • the non-freezing temperature is a temperature within the range of about 0°C to about 37°C.
  • the non-freezing temperature is a temperature within the range of about 4°C to about 23°C.
  • the freezing step comprises at least one step of decreasing the temperature at a rate of less than 1°C per minute in at least a portion of the temperature range of about -20°C ⁇ 10°C. the method of.
  • (Item 15) A method according to any one of the preceding items, wherein the freezing step comprises at least one step of maintaining the temperature range of about ⁇ 20° C. ⁇ 10° C. for a period of time or longer.
  • the freezing step comprises at least one step of maintaining the temperature range of about ⁇ 20° C. ⁇ 10° C. for a period of time or longer.
  • the corneal endothelial cells and/or corneal endothelial-like cells are preserved in a preservation solution comprising less than about 7% DMSO.
  • (Item 17) The method of any one of the preceding items, wherein the corneal endothelial cells and/or corneal endothelial-like cells are preserved in a preservation solution containing about 5% or less DMSO.
  • (Item 18) The method of any one of the preceding items, wherein the corneal endothelial cells and/or corneal endothelial-like cells are preserved in a preservation solution containing about 2% or less DMSO.
  • (Item 19) The method according to any one of the preceding items, wherein the corneal endothelial cells and/or corneal endothelial-like cells are preserved in a DMSO-free preservation solution.
  • the freezing step comprises freezing the corneal endothelial cells and/or corneal endothelial-like cells in the presence of a ROCK inhibitor.
  • said freezing step comprising decreasing the temperature at a first rate to a first target temperature and decreasing the temperature from the first target temperature to a second target temperature at a second rate; A method according to any one of the preceding items, wherein one rate is less than 1°C per minute and is slower than the second rate.
  • the step of freezing further comprises reducing the temperature to the first target temperature and then maintaining at the first target temperature.
  • the first target temperature is a temperature within the range of about -20°C to about -5°C.
  • a method for producing a frozen preparation of corneal endothelial cells and/or corneal endothelial-like cells comprising: A step of mixing the non-frozen corneal endothelial cells and/or corneal endothelial-like cells with a pharmaceutically acceptable ingredient, if necessary, and freezing to produce a frozen formulation, wherein the freezing target is changed from the non-freezing temperature a freezing step comprising at least one step of decreasing the temperature at a rate of less than 1°C per minute when changing temperature to temperature; A method comprising maintaining the frozen formulation in a frozen state.
  • the method of any one of the preceding items further comprising one or more features described in the method of any or more of items 2-30.
  • (Item 33) A frozen preparation of corneal endothelial cells and/or corneal endothelial-like cells produced by the method according to any one of the above items.
  • (Item 34) A frozen formulation according to any one of the preceding items, comprising about 1 ⁇ 10 5 to about 3 ⁇ 10 6 corneal endothelial cells and/or corneal endothelial-like cells.
  • (Item 35) The frozen formulation of any one of the preceding items, wherein the volume of the frozen formulation is from about 50 ⁇ L to about 600 ⁇ L.
  • (Item 36) The frozen formulation according to any one of the above items, wherein the frozen formulation is administered in a dose of about 50 ⁇ L to about 350 ⁇ L.
  • a device for preserving corneal endothelial cells and/or corneal endothelial-like cells comprising a storage/storage unit that houses a container that stores the corneal endothelial cells and/or corneal endothelial-like cells; a temperature control section for commanding to control the temperature of the corneal endothelial cells and/or corneal endothelial-like cells in the container accommodated in the storage/storage section; a temperature control unit capable of temperature control based on The temperature control unit may instruct temperature control to include at least one step of changing the temperature at a rate of less than 1°C per minute when the temperature is lowered from the non-freezing temperature to the freezing target temperature.
  • a program encoding a computer-implemented method for storing corneal endothelial cells and/or corneal endothelial-like cells in a device, said device containing said corneal endothelial cells and/or corneal endothelial-like cells.
  • a storage/storage unit that stores the container; a temperature control unit that commands to control the temperature of the corneal endothelial cells and/or corneal endothelial-like cells in the container stored in the storage/storage unit; a temperature adjustment unit that can adjust the temperature in based on the command of the temperature control unit,
  • the program controls the temperature control unit to include at least one step of changing the temperature at a rate of less than 1°C per minute when the temperature is lowered from the non-freezing temperature to the freezing target temperature. and optionally maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • a recording medium storing a program encoding a computer-implemented method for storing corneal endothelial cells and/or corneal endothelial-like cells in a device, wherein the device stores the corneal endothelial cells and/or corneal endothelium.
  • a storage/storage unit that stores a container that stores corneal-like cells; a temperature control unit that commands to control the temperature of the corneal endothelial cells and/or corneal endothelial-like cells in the container stored in the storage/storage unit; a temperature control unit that can control the temperature in the storage/storage unit based on a command from the temperature control unit;
  • the program controls the temperature control unit to include at least one step of changing the temperature at a rate of less than 1°C per minute when the temperature is lowered from the non-freezing temperature to the freezing target temperature. and optionally maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • (Item 40) A frozen formulation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells.
  • (Item 41) A frozen formulation that can be administered directly to the eye after thawing, comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells.
  • (Item 42) A frozen formulation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells frozen in a slow freeze state.
  • (Item 43) A frozen formulation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells and saline components in a frozen state.
  • (Item 44) A frozen preparation containing less than 7% DMSO, corneal endothelial cells and/or corneal endothelial-like cells, and medium components in a frozen state.
  • (Item 45) A post-thaw long-term stable frozen cell preparation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells.
  • (Item 46) A frozen formulation according to any one of the preceding items comprising no more than about 5% DMSO.
  • (Item 47) A frozen formulation according to any one of the preceding items comprising no more than about 2% DMSO.
  • (Item 48) A frozen formulation according to any one of the preceding items, which does not contain DMSO.
  • (Item 49) A frozen formulation according to any one of the preceding items, further comprising a ROCK inhibitor.
  • (Item 51) A frozen preparation containing a ROCK inhibitor and corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • (Item 52) A frozen preparation containing a ROCK inhibitor, corneal endothelial cells and/or corneal endothelial-like cells, and a physiological saline component in a frozen state.
  • (Item 53) A frozen preparation containing a ROCK inhibitor, corneal endothelial cells and/or corneal endothelial-like cells, and medium components in a frozen state.
  • (Item 54) A post-thaw long-term stable frozen cell formulation, said formulation comprising corneal endothelial cells and/or corneal endothelial-like cells and a ROCK inhibitor.
  • (Item 55) A formulation according to any one of the preceding items, wherein the viability of said corneal endothelial cells and/or corneal endothelial-like cells is at least 80% viability at room temperature for at least 6 hours after thawing.
  • (Item 56) A frozen preparation that does not inhibit engraftment and in vivo survival of corneal endothelial cells and/or corneal endothelial-like cells administered after thawing, said preparation containing corneal endothelial cells and/or corneal endothelial-like cells and a ROCK inhibitor. and frozen in a slow-freezing state.
  • (Item 57) A frozen formulation comprising less than 7% DMSO, a ROCK inhibitor, and corneal endothelial cells and/or corneal endothelial-like cells frozen in a slow freezing state.
  • (Item 58) A formulation according to any one of the preceding items, wherein the ROCK inhibitor is Y-27632.
  • (Item 60) A formulation according to any one of the preceding items comprising no more than about 5% DMSO.
  • (Item 62) A formulation according to any one of the preceding items, which does not contain DMSO.
  • (Item 64) A formulation according to any one of the preceding items, wherein the formulation has been frozen by decreasing the temperature from the non-freezing temperature at a rate of less than 1°C per minute.
  • (Item 65) A formulation according to any one of the above items, characterized in that the corneal endothelial cells and/or corneal endothelial-like cells are used for cell injection therapy.
  • (Item 66) Formulation according to any one of the preceding items, characterized in that the frozen formulation is administered without further processing or culturing after thawing.
  • (Item 67) The formulation according to any one of the preceding items, comprising about 1 ⁇ 10 5 to about 3 ⁇ 10 6 corneal endothelial cells and/or corneal endothelial-like cells.
  • (Item 69) The formulation according to any one of the preceding items, wherein the formulation is administered from about 50 ⁇ L to about 350 ⁇ L per administration.
  • (Item 70) A frozen formulation kit comprising: a container containing a frozen formulation containing corneal endothelial cells and/or corneal endothelial-like cells in a frozen state; and a container containing the container while maintaining the frozen state.
  • (Item 71) The frozen formulation kit according to item 70, wherein the frozen formulation is the formulation according to any one of the above items.
  • (Item 72) A frozen formulation kit comprising the formulation according to any one of the above items, a container for containing the formulation, and a container for containing the container while maintaining the formulation in a frozen state.
  • a frozen formulation kit comprising a container and a container that houses the container, A kit, wherein the container is used to contain the formulation according to any one of the above items, and the container is used to keep the formulation in a frozen state.
  • a frozen formulation kit comprising: a container containing a frozen formulation containing a ROCK inhibitor and corneal endothelial cells and/or corneal endothelial-like cells in a frozen state; and a container containing the container while maintaining the frozen state.
  • (Item 75) Use of a kit comprising a container and a receptacle containing the container, Use wherein the container is used to contain the formulation according to any one of the preceding items, and the container is used to keep the formulation in a frozen state.
  • (Item 76) A method of transporting and/or storing a formulation according to any one of the above items, placing the formulation in a container of a kit comprising a container and a receptacle housing the container; maintaining the formulation in the kit in a frozen state; method including.
  • a method for performing corneal endothelial cell injection therapy comprising: providing corneal endothelial cells and/or corneal endothelial-like cells suitable for said cell injection therapy; a freezing step comprising at least one step of lowering the temperature of said corneal endothelial cells and/or corneal endothelial-like cells from a non-freezing temperature at a rate of less than 1°C per minute; maintaining said corneal endothelial cells and/or corneal endothelial-like cells in a frozen state and optionally transporting them to said infusion therapy; A method comprising the steps of thawing said corneal endothelial cells and/or corneal endothelial-like cells and administering said corneal endothelial cells and/or corneal endothelial-like cells to a subject.
  • (Item 1A) A method of preserving corneal endothelial cells and/or corneal endothelial-like cells, the method comprising: freezing the corneal endothelial cells and/or corneal endothelial-like cells in an unfrozen state, comprising decreasing the temperature at a first rate to a first target temperature; freezing, comprising decreasing the temperature at a second rate to a target temperature; and optionally maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state, wherein the first The method, wherein the rate is less than 1°C per minute and is slower than the second rate. (Item 2A) 3.
  • the step of freezing further comprises reducing the temperature to the first target temperature and then maintaining at the first target temperature.
  • the first target temperature is a temperature within the range of about -20°C to about -5°C.
  • the first target temperature is a temperature within the range of about -15°C to about -10°C.
  • the second target temperature is a temperature of about -20°C or less.
  • the present disclosure provides a corneal cell frozen preparation that can be directly administered to the eye after thawing.
  • corneal endothelial cells can be provided all over Japan and overseas.
  • FIG. 1 shows an outline of Example 1.
  • FIG. 2 shows a photograph of the culture form of cells used in Example 1.
  • FIG. 3 shows a graph comparing the viability of cells after thawing in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% glycerin are used as base components.
  • FIG. 4 shows a graph comparing the viability of cells after thawing in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% polyethylene glycol are used as base components.
  • FIG. 5 presents data comparing post-thaw viability of cells frozen from 23° C. at cooling rates of ⁇ 1° C./min, ⁇ 0.7° C./min or ⁇ 0.5° C./min.
  • FIG. 6 shows data comparing the cell densities after freezing and storing at a cooling rate of 4° C. to -1° C./min or -0.5° C./min and 7 days after seeding after storage.
  • FIG. 7 shows an outline of the second embodiment.
  • FIG. 8 shows phase-contrast microscopic images of cells cultured in media supplemented with 10% or 5% DMSO.
  • FIG. 9 shows phase-contrast microscopic images of cells cultured in media containing 2% DMSO and without DMSO.
  • FIG. 10 is a graph showing the results of recovering cells after reseeding and examining viability.
  • FIG. 11 shows an outline of the third embodiment.
  • Figure 12 shows that cells frozen in Cryostor CS10 containing 10% DMSO were left at room temperature for 0 hour, 30 minutes, 1 hour, 3 hours, 6 hours, or 24 hours, and then replated in T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown.
  • Figure 13 shows cells frozen in Cryostor CS5 containing 5% DMSO, left at room temperature for 0, 30, 1, 3, 6, or 24 hours and then replated into T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown.
  • FIG. 14 shows cells frozen in Cryostor CS2 containing 2% DMSO were left at room temperature for 0, 30, 1, 3, 6, or 24 hours and then replated into T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown.
  • FIG. 15 shows a graph showing the results of recovering cells after reseeding and examining viability. CS10, CS5, and CS2 are shown from the left of each group.
  • FIG. 17 shows photomicrographs of cells cultured for 2 days after storage in a cold box.
  • FIG. 18 shows a photograph of a cell-injected rabbit eye after storage in a cold box.
  • FIG. 19 shows photographs of CD166 immunohistochemical staining of corneal endothelium one day after cell injection.
  • FIG. 20 shows photographs of immunohistochemical staining of ZO-1 and Na/K ATPase one day after cell injection.
  • FIG. 21 shows photographs of immunohistochemical staining of CD166, ZO-1 and Na/K ATPase in the corneal endothelium 5 days after cell injection.
  • FIG. 22 shows an overview of cryopreservation in the cryopreservation solution of known components of Example 6. Fig.
  • FIG. 23 shows -1°C/min, -0.7°C/min, and -0.5°C/min in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% glycerol are used as base components. , or frozen at a cooling rate of ⁇ 0.2° C. and a graph comparing cell viability after thawing.
  • 24 shows an overview of cryopreservation in the commercially available cryopreservation solution of Example 6.
  • FIG. FIG. 25 shows post-thaw viability and recovery of cells frozen at a cooling rate of 4° C. to ⁇ 0.7° C./min in a commercial cryopreservation medium.
  • FIG. 26 shows data comparing post-thaw viability of cells frozen from 4° C.
  • FIG. 27 shows data comparing post-thaw viability of cells frozen from 4° C. at cooling rates of ⁇ 0.5° C./min or ⁇ 0.2° C./min in commercial cryopreservation media.
  • 28 shows cell viability of cells preserved in Example 7.
  • FIG. 29 shows the change in temperature when cooled to -80°C at -0.5°C/min.
  • FIG. 30 shows the change in temperature when cooled to -10°C at -0.5°C/min, maintained at -10°C for 110 minutes, and then cooled to -80°C at -1.0°C/min. .
  • FIG. 31 shows the change in temperature when cooled to -10° C. at -0.1° C./min and then cooled to -80° C. at -1.0° C./min.
  • cornea endothelial cells is used in the usual sense used in the art.
  • the cornea is one of the layered tissues that make up the eye, is transparent, and is positioned closest to the outside world. In humans, the cornea is said to consist of five layers in order from the outside (body surface), consisting of the corneal epithelium, Bowman's membrane, lamina intestinal, Descemet's membrane (corneal endothelial basement membrane), and corneal endothelium from the outside. Unless otherwise specified, portions other than the epithelium and endothelium may be collectively referred to as the "stroma” and are so referred to herein.
  • HCEC human corneal endothelial cells
  • HCEC human corneal endothelial cells
  • corneal endothelial-like cells refer to cells differentiated from stem cells, such as cells differentiated from iPS cells and the like, and have substantially the same functions as corneal endothelial cells.
  • Methods for differentiating stem cells, such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), etc., into corneal endothelial-like cells are well known in the art (McCabe et al., PLoS One. 2015 Dec 21; 10(12): e0145266; Ali et al., Invest Ophthalmol Vis Sci. 2018 May 1; 59(6): 2437-2444).
  • iPS cells are seeded onto 35 mm Matrigel-coated plates (Corning) at a 1:12 dilution using Cell Dissociation Buffer (Life Technologies) on day 0 (80% confluent plates are Divide into 12 plates). iPS cells are grown in medium (mTeSR1; STEMCELL Technologies Inc.) for 4 days.
  • the mTeSR1 medium was supplemented with 80% DMEM-F12 (Life Technologies), 20% KSR (Life Technologies), 1% non-essential amino acids (Life Technologies), 1 mM L-glutamine (STEMCELL Technologies, Inc.), 0 500 ng/mL human recombinant Noggin (R&D Systems, Minneapolis, Minn., USA) and 10 ⁇ M SB431542 (MilliporeSigma) in basal medium of 1 mM ⁇ -mercaptoethanol (MilliporeSigma), and 8 ng/mL ⁇ FGF (MilliporeSigma) Replace with Smad inhibitor medium.
  • the Smad inhibitor medium was supplemented with 80% DMEM-F12 (Life Technologies), 20% KSR (Life Technologies), 1% non-essential amino acids (Life Technologies), 1 mM L-glutamine (STEMCELL Technologies, Inc.). , 0.1 mM ⁇ -mercaptoethanol (MilliporeSigma), and 8 ng/mL ⁇ FGF (MilliporeSigma) in basal medium with 0.1 ⁇ B27 supplement (Life Technologies), 10 ng/mL recombinant human platelet-derived growth factor-BB ( Replace with corneal medium containing PDGF-BB; PeproTech, Rocky Hill, NJ, USA) and 10 ng/mL recombinant human Dickkopf-related protein-2 (DKK-2; R&D Systems).
  • differentiating CECs are transferred to new Matrigel-coated plates (35 mm) and grown in corneal medium for an additional 13 days. Differentiated CECs are harvested on day 20.
  • the above example is a typical example, and those skilled in the art may apply other methods known in the art (Fukuta et al., PLoS One. 2014 Dec 2; 9(12): e112291; Hayashi et al., Nature. 2016 Mar. 17;531(7594):376-80) may also be used.
  • a person skilled in the art can prepare corneal endothelial-like cells by appropriately adjusting the conditions of methods well known in the art.
  • Corneal endothelial cells and “corneal endothelial-like cells” may contain a magnetic material (for example, iron).
  • a magnetic material for example, iron
  • corneal endothelial cells containing a magnetic substance when they are injected into the anterior chamber, they can be attracted to the inner side of the cornea (for example, Descemet's membrane) by magnetic force to promote adhesion (Patel et al., Invest Ophthalmol Vis Sci. 2009 May; 50(5): 2123-31; Mimura et al., Exp Eye Res. 2003 Jun; 76(6): 745-51; and Mimura et al., Exp Eye Res. 2005 Feb; 80(2) : 149-57).
  • Magnetic substance refers to a substance that is magnetized by a magnetic field, and includes, for example, iron, cobalt, nickel, and ferrite.
  • “storage” of cells means storage for a period of time in a container for any purpose (e.g., cell infusion therapy, or transportation for that purpose), without allowing the cells to proliferate, It refers to keeping cells in a container while maintaining their function. Preservation differs from “culturing” which is intended to grow cells. In addition, storage does not mean transferring cells to a container such as a syringe just before administration, nor does it mean temporarily holding cells in a container for preparation prior to administration. “Cryopreservation” means preservation in a frozen state.
  • non-freezing temperature refers to a temperature at which freezing does not occur even when maintained at that temperature
  • target freezing temperature refers to corneal endothelial cells and/or It refers to the target temperature for freezing corneal endothelial-like cells.
  • a “freezing temperature” refers to a temperature for maintaining frozen corneal endothelial cells and/or corneal endothelial-like cells in a frozen state for a certain period of time. The cryopreservation temperature may vary as long as the object such as the target cell can be maintained in a frozen state.
  • slow frozen state refers to a state frozen by a freezing process including at least one step of lowering the temperature at a rate of less than 1°C per minute.
  • post-thaw long-term stability refers to maintaining at least 80% cell viability for at least 6 hours when frozen cells are maintained at room temperature after thawing.
  • freeze formulation refers to a formulation that is stored in a frozen state and is in a form suitable for use after thawing, or in a form that can be prepared just before use.
  • Reconstituted refers to preparing a formulation suitable for use by adding an agent or diluting with a solvent just prior to administration.
  • processing refers to a change in some state or property of the cell or cell population by a specific operation when referring to a cell or cell population.
  • the property of the cell population is changed. It means an operation such as adding a drug, treating with a drug, or isolating a specific cell, or an operation such as diluting or concentrating with a solvent to change the cell density.
  • constant temperature refers to being within ⁇ 1°C of the set temperature.
  • symptom, disorder or disease of the corneal endothelium refers to any symptom, disorder or disease occurring in the corneal endothelium.
  • conditions, disorders or diseases of the corneal endothelium include Fuchs corneal endothelial dystrophy, post-corneal transplant injury, corneal endothelial inflammation, trauma, post-ophthalmic surgery injury, post-ophthalmic laser surgery injury, aging, posterior polymorphic cornea.
  • Dystrophy posterior polymorphous dystrophy
  • congenital hereditary corneal endothelial dystrophy CHED: congenital hereditary endothelial dystrophy
  • idiopathic corneal endothelial disorder etc., but not limited thereto.
  • the term "subject” refers to a subject to whom the formulation of the present disclosure is administered, and subjects include mammals (e.g., humans, mice, rats, hamsters, rabbits, cats, dogs, cows, horses, sheep , monkeys, etc.), but primates are preferred, and humans are particularly preferred.
  • mammals e.g., humans, mice, rats, hamsters, rabbits, cats, dogs, cows, horses, sheep , monkeys, etc.
  • primates are preferred, and humans are particularly preferred.
  • kits generally refers to parts to be provided divided into two or more compartments (e.g., test agents, diagnostic agents, therapeutic agents, antibodies, labels, instructions, etc.) are provided. say the unit.
  • This kit form is preferred when the purpose is to provide a composition that should not be provided in a mixed form for reasons such as stability, and is preferably used in a mixed form immediately before use.
  • a kit form is preferable when providing a compound that is unstable in a solution state and needs to be reconstituted immediately before use by dissolving a lyophilized powder in a suitable solvent.
  • Such kits preferably include instructions or instructions describing how to use the provided parts (e.g., test agents, diagnostic agents, therapeutic agents) or how the reagents should be handled. It is advantageous to have the
  • program is used in the usual sense used in the relevant field, and is a description of processing to be performed by a computer in order, and is treated as a "product” under the Patent Law in Japan. is. All computers operate according to programs. In modern computers, programs are expressed as data in a broad sense and stored in recording media or storage devices.
  • a "recording medium” is a recording medium storing a program for executing the method of the present disclosure, and any recording medium can be used as long as the program can be recorded.
  • it may be an external storage device such as an internally stored ROM, HDD, magnetic disk, or flash memory such as a USB memory, but is not limited to these.
  • system refers to a configuration for executing the method or program of the present disclosure, and originally refers to a system or organization for achieving a purpose, in which multiple elements are systematically configured. , affect each other, and in the field of computers, it refers to the overall configuration of hardware, software, OS, network, and the like.
  • machine learning refers to technology that gives computers the ability to learn without explicit programming. It is the process by which a functional unit acquires new knowledge/skills or reconfigures existing knowledge/skills to improve its own performance. Programming computers to learn from experience reduces much of the effort required to program the details, and the field of machine learning discusses how to build computer programs that can automatically improve from experience. are doing.
  • the role of data analysis and machine learning, along with the field of algorithms, is an elemental technology that forms the basis of intelligent processing, and is usually used in conjunction with other technologies. knowledge; eg medical field) is required.
  • the scope of its application includes prediction (collecting data and predicting what will happen in the future), search (finding some conspicuous features from the collected data), testing/description (relationships between various elements in the data). ) and other roles.
  • Machine learning is based on real-world goal achievement metrics, and machine learning users must know their real-world goals. And we need to formulate indicators that will get better when the objective is achieved.
  • Machine learning is an inverse problem, an ill-posed problem for which it is unclear whether the solution has been solved.
  • the behavior of learned rules is probabilistic rather than deterministic. Operational ingenuity is required on the premise that some uncontrollable part remains, and the tailor-made method of the present invention can be said to be a solution to this problem. It is also useful for machine learning users to sequentially select data and information according to real-world goals while looking at performance indicators during training and operation.
  • linear regression, logistic regression, support vector machine, etc. can be used, and cross validation (also called cross validation, cross validation; Cross Validation; CV) is performed to calculate the discrimination accuracy of each model. be able to.
  • machine learning linear regression, logistic regression, support vector machine, etc.
  • cross-validation cross-validation
  • the discrimination accuracy of each model can be calculated.
  • the model with the highest accuracy can be selected.
  • arbitrary machine learning can be used, and linear, logistic, support vector machine (SVM), etc. can be used as supervised machine learning.
  • the corneal endothelial cells can be preserved while maintaining a high survival rate by freezing them in a preservation solution containing 10% DMSO that suppresses damage during freezing.
  • a preservation solution containing 10% DMSO that suppresses damage during freezing.
  • the present inventors investigated storage conditions that can maintain a high survival rate in a storage solution with reduced DMSO.
  • Low DMSO concentrations (e.g., less than 7%) or DMSO-free cryopreservation have been shown to maintain high corneal endothelial cell viability by slow temperature drops, slower than 1°C/min. Found it.
  • cooling rate is too slow, the extracellular water freezes first, removing the extracellular water and causing the water to flow out of the cells. Elevated concentrations of solutes within cells adversely affect cell viability. If the cooling rate is too fast, the outflow of water from the cell is suppressed, but surface crystal damage occurs in the cell, which has a detrimental effect on survival. The cooling rate in cryopreservation of cells has a great effect on cell damage. An optimal cooling rate can minimize its effects, and a cooling rate of ⁇ 1° C./min is recommended.
  • a slow temperature drop slower than ⁇ 1° C./min reduced the DMSO concentration (eg, less than 7%), or reduced corneal endothelial cell viability in a DMSO-free cryopreservation medium. It was unexpected that it was kept high.
  • the present disclosure provides a method of preserving corneal endothelial cells and/or corneal endothelial-like cells, comprising freezing the corneal endothelial cells and/or corneal endothelial-like cells in a non-frozen state, A freezing step comprising at least one step of decreasing the temperature at a rate of less than 1°C per minute (cooling rate slower than -1°C/min) when changing the temperature from the freezing temperature to the freezing target temperature.
  • a method comprising:
  • the present disclosure provides a method of producing a frozen preparation of corneal endothelial cells and/or corneal endothelial-like cells, wherein the non-frozen corneal endothelial cells and/or corneal endothelial-like cells are optionally treated with a pharmaceutical agent.
  • a method may be provided comprising a freezing step comprising at least one step of allowing.
  • the cooling rate of less than -1°C/min is from about 0.1°C to about 0.9°C per minute, preferably from about 0.2°C to about 0.8°C per minute. , more preferably within the range of about 0.2° C. to about 0.7° C. per minute.
  • the cooling rate slower than -1°C/min is -0.9°C/min, -0.8°C/min, -0.7°C/min, -0.6°C/min, It can be -0.5°C/min, -0.4°C/min, -0.3°C/min, -0.2°C/min, or -0.1°C/min.
  • the cooling rate to the freezing target temperature may or may not be constant.
  • the method of the present disclosure includes at least the step of lowering the temperature at a cooling rate slower than ⁇ 1° C./min in a specific temperature range, and in the process of lowering the temperature to the freezing target temperature , may include increasing the temperature, may include decreasing the temperature at a cooling rate greater than ⁇ 1° C./min, and may include maintaining a constant temperature.
  • the target freezing temperature is set appropriately, and can be, for example, a temperature within the range of about -20°C to -196°C, such as about -20°C, about -30°C, about -40°C, about -50°C, It can be about -60°C, about -70°C, about -80°C, about -90°C, about -100°C, about -150°C, about -190°C, or about -196°C.
  • the method of the present disclosure may include increasing the temperature if the temperature is decreasing at an average cooling rate of less than -1°C/min in the specified temperature range. /min, or may include maintaining a constant temperature.
  • the method of the present disclosure reduces the temperature at a rate faster than ⁇ 1° C./min in a particular temperature range, then maintains the constant temperature, and then increases the temperature again at a rate faster than ⁇ 1° C./min. (which may be repeated) may achieve an average cooling rate of less than -1°C/min.
  • the method of the present disclosure reduces the temperature at a rate faster than ⁇ 1° C./min in a particular temperature range, then increases the temperature and then maintains the constant temperature to return to ⁇ 1° C./min.
  • An average cooling rate of less than -1°C/min may be achieved by decreasing the temperature at a rate greater than 0°C/min (which may be repeated).
  • the method of the present disclosure reduces the temperature at a rate faster than ⁇ 1° C./min in a specific temperature range, then increases the temperature, and then increases the temperature again at a rate faster than ⁇ 1° C./min. may be reduced (which may be repeated) to achieve an average cooling rate of less than -1°C/min.
  • the specific temperature range in which the temperature is lowered at a cooling rate slower than -1°C/min can be a temperature range that includes at least the temperature at which the non-freezing state transitions to the freezing state.
  • the temperature ranges are from about -80°C to about 0°C, from about -70°C to about 0°C, from about -60°C to about 0°C, from about -50°C to about 0°C, from about -40°C.
  • ° C to about 0 ° C about -30 ° C to about 0 ° C, about -20 ° C to about 0 ° C, about -10 ° C to about 0 ° C, about -80 ° C to about -10 ° C, about -70 ° C to about - 10°C, about -60°C to about -10°C, about -50°C to about -10°C, about -40°C to about -10°C, about -30°C to about -10°C, or about -20°C to about It can be -10°C.
  • the method of the present disclosure may further comprise maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • the freeze maintenance temperature is about -196°C to about -4°C, about -196°C to about -10°C, about -196°C to about -20°C, about -196°C to about -30°C.
  • cryopreservation temperature may comprise maintaining at about -80°C.
  • the freezing step of the disclosed method is in the range of about 0°C to about 42°C, about 0°C to about 37°C, about 4°C to about 23°C, about 4°C to about 10°C. can start from a non-freezing temperature of .
  • the freezing step may start from a non-freezing temperature of 4°C.
  • the methods of the present disclosure may further comprise incubating the corneal endothelial cells and/or corneal endothelial-like cells at said non-freezing temperature prior to the freezing step.
  • the freezing step of the method of the present disclosure reduces the temperature at a rate of less than 1°C per minute in at least a portion or the entire temperature range of about -20°C ⁇ 10°C, or at least one step of maintaining for a period of time.
  • the freezing step of the method of the present disclosure is carried out to a temperature range of about ⁇ 20° C. ⁇ 10° C. for a period of time or longer, such as 20 minutes or longer, 30 minutes or longer, 40 minutes or longer, 50 minutes or longer, 1 hour or longer. , 1 hour 30 minutes or longer, or 2 hours or longer continuously.
  • the temperature range may be -20°C ⁇ 5°C.
  • Non-uniform and misaligned ice crystal formation during the freezing process can lead to greater cell damage and reduced viability.
  • the freezing step involves slowly lowering the temperature around the eutectic point (eg, -20°C ⁇ 10°C) of the ice crystals and the solute (eg, NaCl) in the storage solution. , or by maintaining the temperature near the eutectic point for a certain period of time, the crystals can be uniformly aligned and the damage to the cells can be reduced.
  • the temperature may change at any rate.
  • the present disclosure provides a method of preserving corneal endothelial cells and/or corneal endothelial-like cells, comprising freezing the corneal endothelial cells and/or corneal endothelial-like cells in an unfrozen state, comprising: a freezing step comprising at least one step of maintaining a temperature range of ⁇ 20° C. ⁇ 10° C. for a certain period of time or longer, and optionally a step of maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state; Provide a method, including: The temperature may be changed at any rate outside the temperature range of -20°C ⁇ 10°C.
  • the temperature is lowered below ⁇ 30° C., then the temperature is increased to a temperature range around the eutectic point ( ⁇ 20° C. ⁇ 10° C.), and the temperature is slowly decreased or constant.
  • the temperature may be maintained for hours.
  • those skilled in the art can appropriately adjust the time to maintain the temperature below -30°C as long as the effect of the present disclosure is achieved. minutes or less, or 20 minutes or less.
  • corneal endothelial cells and/or corneal endothelial-like cells can be preserved in a preservation solution containing less than about 7%, about 5% or less, or about 2% or less DMSO. Since DMSO contained in the preservation solution may adversely affect cells, it is preferably about 5% or less, more preferably about 2% or less, and most preferably the preservation solution does not contain DMSO. . In certain embodiments, the DMSO included in the preservation solution can be about 5%. In certain embodiments, the DMSO included in the preservation solution can be about 2%.
  • corneal endothelial cells and/or corneal endothelial-like cells can be frozen in the presence of a ROCK inhibitor.
  • ROCK inhibitors include the following documents: U.S. Pat. No. 4,678,783, U.S. Pat. WO 2002/083175, WO 02/100833, WO 03/059913, WO 03/062227, WO 2004/009555, WO 2004/022541, WO 2004/108724, WO 2005/003101, Publication 2005/039564, WO 2005/034866, WO 2005/037197, WO 2005/037198, WO 2005/035501, WO 2005/035503, WO 2005/035506, WO 2005/080394, WO 2005 /103050, WO2006/057270, WO2007/026664, WO2014/113620, WO2019/089868, WO2014/055996, WO2019/014300, WO2019/014304, WO2018/138293 , International Publication 2018/115383, International Publication 2018/118109, International Publication 2018/102325, International Publication 2018/009622,
  • Such compounds can be prepared by methods described in the respective disclosed literature.
  • Specific examples include 1-(5-isoquinolinesulfonyl)homopiperazine or a salt thereof (eg, Fasudil (1-(5-isoquinolinesulfonyl)homopiperazine)), (+)-trans-4-(1-aminoethyl)- 1-(4-pyridylcarbamoyl)cyclohexane ((R)-(+)-trans-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide) or a salt thereof (for example, Y-27632 ((R )-(+)-trans-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide dihydrochloride monohydrate), etc.), and these compounds are commercially available products (Fujifilm Wako Pure Chemical Industries, Ltd., Asahi
  • ROCK inhibitors that may be used include Y-27632 ((+)-trans-4-(1-aminoethyl)-1-(4-pyridylcarbamoyl)cyclohexane), Ripasudil (4- fluoro-5- ⁇ [(2S)-2-methyl-1,4-diazepan-1-yl]sulfonyl ⁇ isoquinoline), fasudil (1-(5-isoquinolinesulfonyl)homopiperazine), verosudil (N-(1, 2-dihydro-1-oxo-6-isoquinolinyl)- ⁇ -(dimethylamino)-3-thiopheneacetamide), vermosdil (2-[3-[4-[(1H-indazol-5-yl)amino]quinazoline- 2-yl]phenoxy]-N-isopropylacetamide) and pharmaceutically acceptable salts thereof.
  • the structure of vermosdil is
  • the ROCK inhibitor is Ripasudil, Y-27632, Fasudil, Netarsudil, Verosudil, Vermosudil or a pharmaceutically acceptable salt thereof, more preferably Ripasudil, Y-27632 or a pharmaceutically acceptable salt thereof. acceptable salts.
  • the present disclosure provides corneal endothelium produced by the above method of preserving corneal endothelial cells and/or corneal endothelial-like cells or producing a frozen preparation of corneal endothelial cells and/or corneal endothelial-like cells.
  • a frozen formulation of cells and/or corneal endothelial-like cells may be provided.
  • the present disclosure can provide a frozen formulation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells.
  • the present disclosure can provide a frozen formulation comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells frozen in a slow freezing state.
  • the present disclosure can provide a frozen formulation comprising less than 7% DMSO, corneal endothelial cells and/or corneal endothelial-like cells, and saline components in a frozen state.
  • the present disclosure can provide a frozen formulation comprising less than 7% DMSO, corneal endothelial cells and/or corneal endothelial-like cells, and medium components in a frozen state.
  • Cell-freezing preparations used in regenerative medicine contain at least 7% DMSO. It was necessary to avoid administration of high concentrations of DMSO to patients by extremely slowing the administration rate during administration such as injection.
  • the methods of the present disclosure maintained high viability when stored in stock solutions with reduced DMSO concentrations of less than 7%.
  • the present disclosure has achieved frozen formulations containing previously unattainable low concentrations of DMSO of less than 7%.
  • the present disclosure is a post-thaw long-term stable frozen cell formulation, wherein the formulation may be formulated comprising less than 7% DMSO and corneal endothelial cells and/or corneal endothelial-like cells.
  • the present disclosure can provide a frozen formulation containing a ROCK inhibitor and corneal endothelial cells and/or corneal endothelial-like cells in a frozen state.
  • the present disclosure can provide a frozen formulation comprising a ROCK inhibitor, corneal endothelial cells and/or corneal endothelial-like cells, and a saline component (eg, NaCl) in a frozen state.
  • a saline component eg, NaCl
  • the present disclosure can provide a frozen formulation comprising a ROCK inhibitor, corneal endothelial cells and/or corneal endothelial-like cells, and medium components in a frozen state.
  • medium components include, but are not limited to, carbon sources such as glucose, amino acids, vitamins, electrolytes, phosphates, buffers, growth factors, serum, and serum albumin.
  • Amino acids contained in the basal medium components are not particularly limited, and examples include L-arginine, L-cystine, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, and L-methionine.
  • Vitamins contained in the basal medium components are not particularly limited, and examples include calcium D-pantothenate, choline chloride, folic acid, i-inositol, niacinamide, riboflavin, thiamine, pyridoxine, biotin, lipoic acid, vitamin B12. , adenine, thymidine and the like.
  • Electrolytes contained in the medium components are not particularly limited, and examples include CaCl 2 , KCl, MgSO 4 , NaCl, NaH 2 PO 4 , NaHCO 3 , Fe(NO 3 ) 3 , FeSO 4 , CuSO 4 , MnSO 4 , Na2SiO3 , ( NH4 ) 6Mo7O24 , NaVO3 , NiCl2 , ZnSO4 and the like .
  • the medium is preferably substantially free of xenogenic serum components.
  • heterologous serum component herein is meant a serum component derived from an organism of a different species than the recipient. For example, when the recipient is human, sera derived from bovines and horses, such as fetal bovine serum (FBS, FCS), calf serum (CS), horse serum (HS), and the like, correspond to xenogenic serum components.
  • the present disclosure provides a frozen cell formulation with long-term stability after thawing, the formulation comprising corneal endothelial cells and/or corneal endothelial-like cells and a ROCK inhibitor frozen in a slow freeze state. , can provide the formulation.
  • the present disclosure is a frozen preparation that does not inhibit engraftment and in vivo survival of corneal endothelial cells and/or corneal endothelial-like cells administered after thawing, wherein the preparation contains corneal endothelial cells and/or A frozen formulation containing corneal endothelial-like cells and a ROCK inhibitor frozen in a slow freezing state can be provided.
  • formulations of the present disclosure may be directly administrable to the eye after thawing.
  • the number of corneal endothelial cells and/or corneal endothelial-like cells contained in the preparation can be about 1 ⁇ 10 5 to about 3 ⁇ 10 6 cells, preferably about 5 ⁇ 10 5 to about It can be 1 ⁇ 10 6 cells.
  • the number of corneal endothelial cells and/or corneal endothelial-like cells contained in the formulation is, for example, about 1 ⁇ 10 5 cells, about 2 ⁇ 10 5 cells, about 3 ⁇ 10 5 cells, about 4 ⁇ 10 5 cells, about 5 ⁇ 10 5 cells, about 6 ⁇ 10 5 cells, about 7 ⁇ 10 5 cells, about 8 ⁇ 10 5 cells, about 9 ⁇ 10 5 cells , about 1 ⁇ 10 6 cells, about 2 ⁇ It can be 10 6 cells, about 3 ⁇ 10 6 cells, about 4 ⁇ 10 6 cells, or about 5 ⁇ 10 6 cells.
  • the liquid volume of the formulation is about 50 ⁇ l to about 2000 ⁇ l, about 50 ⁇ l to about 1000 ⁇ l, about 50 ⁇ l to about 800 ⁇ l, about 50 ⁇ l to about 600 ⁇ l, about 50 ⁇ l to about 300 ⁇ l, about 100 ⁇ l to about 2000 ⁇ l, preferably about It may be 100 ⁇ l to about 1000 ⁇ l, more preferably about 200 ⁇ l to about 800 ⁇ l, most preferably about 300 ⁇ l to about 600 ⁇ l, but can be changed as appropriate depending on the purpose.
  • Product specifications may be, for example, ⁇ about 5%, ⁇ about 10%, ⁇ about 15%, ⁇ about 20%, ⁇ about 25%, ⁇ about 50%, etc.
  • the liquid volume of the formulation is at least about 50 ⁇ l, e.g. It can be about 4 ml, about 5 ml, about 6 ml, about 7 ml, about 8 ml, about 9 ml, or about 10 ml.
  • the product specification when intended for injection into both eyes in cell injection therapy, the product specification may be double, triple, or quadruple the dose. Even if injection into both eyes is not intended, the product specification may be 2, 3 or 4 times the dose in case of administration failure.
  • the range of the liquid amount can be appropriately combined with the above numerical values.
  • the formulations of the present disclosure may be administered at about 50 ⁇ L to about 350 ⁇ L, about 250 ⁇ L to about 350 ⁇ L, about 300 ⁇ L to about 350 ⁇ L, or about 300 ⁇ L per dose.
  • Formulations of the present disclosure may be administered intracamerally.
  • Cell densities of formulations of the present disclosure are typically about 2 ⁇ 10 4 cells/ml or greater. While not wishing to be bound by theory, when used for cell infusion, too little cell density results in no therapeutic effect, and too high a cell density results in increased cell overlap, thereby reducing cell storage. Death may be accelerated.
  • the cell density can be appropriately determined within the range of about 2 ⁇ 10 4 cells/ml to about 8 ⁇ 10 7 cells/ml, preferably about 2 ⁇ 10 4 cells/ml to about 8 ⁇ 10 7 /ml, more preferably about 2 ⁇ 10 5 to about 8 ⁇ 10 6 /ml, more preferably about 1 ⁇ 10 6 / ml to about 8 ⁇ 10 6 /ml, Most preferably from about 2 ⁇ 10 6 cells/ml to about 4 ⁇ 10 6 cells/ml.
  • a person skilled in the art can determine an appropriate cell density depending on the application.
  • the volume of the suspension to be stored, the optimal dosage, the optional additional ROCK inhibitor, and administration may be determined in consideration of the volume of the suspension to be stored, etc., so as to reduce the operation of adjusting the density after storage.
  • the optimum dosage can be from about 1 ⁇ 10 5 to about 3 ⁇ 10 6 cells, preferably from about 5 ⁇ 10 5 to about 1 ⁇ 10 6 cells.
  • a person skilled in the art can appropriately determine the number of cells contained in the preparation, the liquid volume, and the cell density so as to achieve the optimum dosage.
  • corneal endothelial cells and/or corneal endothelial-like cells can be housed in a container.
  • any container may be used, including plates (12, 24, 48 or 96 well plates), tubes, vials (glass vials), syringes, and dishes. but not limited to these.
  • the methods of the present disclosure can preserve cells with high cell viability regardless of container type.
  • the formulation may contain less than about 7%, no more than about 5%, or no more than about 2% DMSO.
  • the formulation contains no more than about 5% DMSO, more preferably no more than about 2%, and most preferably no DMSO.
  • the DMSO included in the formulation may be about 5%. In certain embodiments, the DMSO included in the formulation may be about 2%.
  • the formulation may contain a ROCK inhibitor.
  • ROCK inhibitors are described above. Since the ROCK inhibitor promotes cell adhesion, if the ROCK inhibitor is included in the formulation in advance from the time of storage, the adhesion will be promoted and storage will be adversely affected. Agents are added to the formulation immediately prior to administration. However, unexpectedly, when a ROCK inhibitor was included in the formulation in advance from the time of storage, the survival rate of the cells after storage was high, and the corneal endothelial cells and/or corneal endothelial-like cells injected into the anterior chamber engrafted to the corneal endothelium and functioned normally (Example 5).
  • the corneal endothelial cell and/or corneal endothelial-like cell viability can be at least 80%, or at least 90% viability for at least 6 hours at room temperature after thawing. In some embodiments, corneal endothelial cell and/or corneal endothelial-like cell viability can be at least 90% viability for at least 3 hours at room temperature after thawing.
  • the present disclosure provides a method of preserving corneal endothelial cells and/or corneal endothelial-like cells, the method comprising freezing the corneal endothelial cells and/or corneal endothelial-like cells in an unfrozen state.
  • a freezing step comprising decreasing the temperature at a first rate to a first target temperature and decreasing the temperature from the first target temperature to a second target temperature at a second rate; and optionally maintaining said corneal endothelial cells and/or corneal endothelial-like cells in a frozen state, wherein the first rate is less than 1°C per minute and is faster than the second rate Late, offer a way.
  • First target temperature refers to the temperature at which the supercooled state is maintained.
  • the first target temperature may preferably be the temperature at which freezing starts when cooling at a faster rate than the cooling rate to the first target temperature.
  • the second target temperature refers to the final target temperature obtained by further lowering the temperature from the first target temperature. We slowly reduce the temperature at a first rate under supercooling to a first target temperature, change to a second rate to initiate freezing, and reduce the temperature to a second target temperature. It was found that the cell viability was further improved by allowing The method may have one or more embodiments described in this disclosure.
  • the freezing step comprises decreasing the temperature at a first rate to a first target temperature and decreasing the temperature from the first target temperature to a second target temperature at a second rate.
  • the first rate can be a rate of less than 1° C. per minute and a slower rate than the second rate.
  • the method may have one or more embodiments described in this disclosure.
  • the freezing step may further include reducing the temperature to the first target temperature and then maintaining at the first target temperature.
  • the time to maintain the first target temperature may be set as appropriate as long as the supercooled state is maintained. 40 minutes or more, about 50 minutes or more, about 60 minutes or more, about 70 minutes or more, about 80 minutes or more, about 90 minutes or more, about 100 minutes or more, about 110 minutes or more, about 120 minutes or more, about 150 minutes or more, about It can be 180 minutes or more, and can be up to about 240 minutes.
  • the first target temperature may be any temperature at which the supercooled state is maintained, for example, a temperature of about -20°C to about -5°C, preferably a temperature of about -15°C to about -10°C, and more Preferably, it may be at a temperature of -13°C to -10°C.
  • the second target temperature is a temperature lower than the first target temperature and can be set as appropriate.
  • the first speed may be set appropriately as long as it is a slow speed, for example, a speed of about 0.9° C. or less per minute, preferably about 0.5° C. to about 0.05° C. per minute. , more preferably at a rate of about 0.3° C. to about 0.1° C. per minute.
  • the second speed is faster than the first speed, and may be set as appropriate as long as the temperature is such that freezing starts when changing from the first speed to the second speed. It can be at a rate of 0.5 to about 5°C, preferably at a rate of about 1 to about 3°C per minute.
  • corneal endothelial cells and/or corneal endothelial-like cells can be used for cell injection therapy.
  • the formulation can be administered without further processing or culturing after thawing.
  • the present disclosure provides a device for storing corneal endothelial cells and/or corneal endothelial-like cells, the device containing and storing a container containing the corneal endothelial cells and/or corneal endothelial-like cells.
  • a temperature control unit for controlling the temperature of the corneal endothelial cells and/or corneal endothelial-like cells in the container stored in the storage/storage unit; a temperature control unit capable of adjusting the temperature based on a command of the unit, the temperature control unit increasing the temperature at a rate of less than 1°C per minute in decreasing the temperature from the non-freezing temperature to the freezing target temperature.
  • temperature control can be commanded to include at least one step of altering, and optionally the corneal endothelial cells and/or corneal endothelial-like cells can be commanded to be maintained in a frozen state; equipment can be provided.
  • the temperature control portion of the apparatus of the present disclosure when decreasing the temperature from the non-freezing temperature to the freezing target temperature, decreases the temperature to a first target temperature at a first rate and then to the first target temperature. A second rate decrease in temperature from the temperature to a second target temperature may be commanded.
  • the device may have one or more embodiments described in this disclosure.
  • the present disclosure is a program encoding a computer implemented method capable of preserving corneal endothelial cells and/or corneal endothelial-like cells in a device, wherein the device stores the corneal endothelial cells and/or corneal endothelial-like cells.
  • a storage/storage unit that stores a container that stores the corneal endothelial-like cells, and a temperature control that instructs to control the temperature of the corneal endothelial cells and/or the corneal endothelial-like cells in the container stored in the storage/storage unit.
  • the temperature control unit capable of adjusting the temperature in the storage/storage unit based on a command of the temperature control unit, the program instructing the temperature control unit to change the temperature from a non-freezing temperature to a freezing temperature.
  • the temperature is controlled to include at least one step of changing the temperature at a rate of less than 1° C. per minute in lowering the temperature to the target temperature, and optionally the corneal endothelial cells and/or corneal endothelial-like
  • a program may be provided that causes the cells to be maintained in a frozen state.
  • the program of the present disclosure when decreasing the temperature from a non-freezing temperature to a freezing target temperature, decreases the temperature to a first target temperature at a first rate, and then from the first target temperature to a second target temperature. may be commanded to decrease the temperature at a second rate to a target temperature of .
  • the program may have one or more embodiments described in this disclosure.
  • the present disclosure is a recording medium storing a program encoding a computer-implemented method for preserving corneal endothelial cells and/or corneal endothelial-like cells in an apparatus, the apparatus comprising: a storage/storage unit that stores a container that stores corneal endothelial cells and/or corneal endothelial-like cells; and a temperature control unit capable of adjusting the temperature in the storage/storage unit based on the command of the temperature control unit, wherein the program instructs the temperature control unit to When the temperature is lowered from the non-freezing temperature to the target freezing temperature, the temperature is controlled so as to include at least one step of changing the temperature at a rate of less than 1 ° C. per minute, and if necessary, the corneal endothelial cells and /or a recording medium may be provided that maintains the corneal endothelial-like cells in a frozen state.
  • the program stored in the recording medium of the present disclosure when lowering the temperature from the non-freezing temperature to the freezing target temperature, lowers the temperature to a first target temperature at a first rate, and then lowers the temperature to the first target temperature. from the target temperature to a second target temperature at a second rate.
  • the program may have one or more embodiments described in this disclosure.
  • Various functions realized by the device or program of the present disclosure may be partially or wholly realized or optimized by artificial intelligence (AI) or machine learning.
  • AI artificial intelligence
  • the program according to the present disclosure may be stored in a computer-readable recording medium, or may be configured as a program product.
  • this "recording medium” means memory card, USB memory, SD card, flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, and Blu-ray (registered trademark) Any “portable physical medium” such as Disc is included.
  • a "program” is a data processing method written in any language or writing method, regardless of the format such as source code or binary code.
  • the "program” is not necessarily limited to a single structure, but a distributed structure consisting of multiple modules or libraries, or a separate program typified by an OS (Operating System) that cooperates with Also includes those that achieve a function.
  • OS Operating System
  • well-known configurations and procedures can be used for the specific configuration for reading the recording medium, the reading procedure, the installation procedure after reading, and the like in each device shown in the embodiments.
  • RAM random access memory
  • ROM read-only memory
  • hard disks fixed disk devices
  • storage means such as flexible disks and optical disks
  • programs, tables, databases, and web pages used for various processing and website provision.
  • the specific form of distribution/integration of the devices is not limited to the one shown in the figure, and all or part of them can be functionally or physically arranged in arbitrary units according to various additions or functional loads. It can be configured by distributing and integrating In other words, the embodiments described above may be arbitrarily combined and implemented, or the embodiments may be selectively implemented.
  • kits In a further aspect, the present disclosure provides a container containing a frozen preparation containing a ROCK inhibitor and corneal endothelial cells and/or corneal endothelial-like cells in a frozen state, and a container containing the container while maintaining the frozen state.
  • a frozen formulation kit may be provided comprising:
  • the present disclosure includes a container containing a frozen preparation containing corneal endothelial cells and/or corneal endothelial-like cells in a frozen state, and a container containing the container while maintaining the frozen state.
  • Formulation kits may be provided.
  • the present disclosure can provide a frozen formulation kit comprising a formulation of the present disclosure, a container containing the formulation, and a container containing the container while maintaining the formulation in a frozen state.
  • the present disclosure is a frozen formulation kit comprising a container and a receptacle containing the container, the container being used to contain a formulation of the present disclosure, the receptacle comprising:
  • a kit may be provided that is used to maintain the formulation in a frozen state.
  • the present disclosure is the use of a kit comprising a container and a receptacle containing the container, the container being used to contain a formulation of the present disclosure, the receptacle containing the formulation. can be provided for use in maintaining a frozen state.
  • the container can maintain the containing container at a temperature within the range of about -80°C to about -20°C. In some embodiments, the container can maintain the containing container at about -80°C.
  • the present disclosure provides a method of transporting and/or storing a formulation of the present disclosure, comprising placing the formulation in a container of a kit comprising a container and a receptacle containing the container; maintaining the formulation in the kit in a frozen state.
  • a method of performing corneal endothelial cell injection therapy comprising the steps of: providing corneal endothelial cells and/or corneal endothelial-like cells suitable for said cell injection therapy; a freezing step comprising at least one step of lowering the temperature from a non-freezing temperature at a rate of less than 1°C per minute; maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state; thawing the corneal endothelial cells and/or corneal endothelial-like cells; and administering the corneal endothelial cells and/or corneal endothelial-like cells to a subject.
  • a freezing step comprising at least one step of lowering the temperature from a non-freezing temperature at a rate of less than 1°C per minute
  • maintaining the corneal endothelial cells and/or corneal endothelial-like cells in a frozen state thawing the corneal endothelial cells and/
  • the method of the present disclosure includes decreasing the temperature at a first rate to a first target temperature and decreasing the temperature from the first target temperature to a first target temperature when decreasing the temperature from the non-freezing temperature to the freezing target temperature. Lowering the temperature at a second rate to a target temperature of 2 may be included.
  • the method may have one or more embodiments described in this disclosure.
  • transportation may be performed while maintaining a temperature within the range of about -80°C to about -20°C, preferably -80°C.
  • Administration to a subject is preferably carried out within 6 hours after thawing. It can be done within minutes, or within 10 minutes. Administration to a subject can occur in the anterior chamber of the eye.
  • Example 1 Freezing in cryopreservation solution of known components
  • Glycerin and polyethylene glycol are components well known as cell cryopreservation agents, but since these components alone have low preservation effects, addition of protein components such as albumin and addition of 10% DMSO are generally performed.
  • This example confirms whether HCEC can be preserved under such general conditions, and furthermore, when the cooling rate is slower than the commonly known ⁇ 1° C./min, the concentration of DMSO is low. However, the purpose is to confirm whether it can be cryopreserved.
  • the temperature dropped to -80°C When the temperature dropped to -80°C, it was transferred to a bicelle processing container previously chilled at -80°C, and frozen and stored in a freezer at -80°C for 3 days. 14. After cryopreservation for 3 days, the cryotube containing the cells was thawed in a 37°C water bath for 1-2 minutes. 15. Cells were recovered in a medium that had been warmed to 37°C in advance, and the number of recovered cells and cell viability were counted by trypan blue staining.
  • Example 1 An overview of Example 1 is shown in FIG. 1
  • FIG. 2 shows a photograph of the cultured form of the cells used in this example. It was confirmed that the lot had no morphological abnormalities.
  • Fig. 3 shows a graph comparing the viability of cells after thawing in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% glycerin are used as base components.
  • DMSO content was 5% or more, a high viability was maintained regardless of the cooling rate. More than 90% viability was maintained at minutes.
  • BiCell is a container for storing tubes of cells to be frozen, and when placed in a deep freezer at -80°C, the temperature inside decreases at a rate of around -1°C/min. be. BiCell storage resulted in lower viability than storage at ⁇ 1° C./min in a programmed freezer.
  • Fig. 4 shows a graph comparing the viability of cells after thawing, preserved in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% polyethylene glycol are used as base components. Unlike the results for the cryopreservation medium containing glycerin, the effect of the cooling rate on the cell viability was also observed for the cryopreservation medium containing 5% DMSO. Compositions of 2% DMSO and below exhibited approximately 80% viability when frozen at a cooling rate of ⁇ 0.5° C./min, much higher than when frozen at a cooling rate of ⁇ 1° C./min. . These results indicate that slowing the cooling rate improves survival.
  • Example 2 Examination of cryopreservation agent and freezing rate
  • material ⁇ Human corneal endothelial cells after passage 4 ⁇ OptiMEM TM -I (Invitrogen 21585-070) - Triple TM Select Enzyme (10x) (Thermo Fisher Scientific A12177-01) ⁇ Red Cross Albumin 25% intravenous injection 12.5g/50mL (Japan Blood Products Organization) ⁇ 2.0ml Cryogenic Vials (Corning 430488) ⁇ Program freezer (NEPAGE PF-NP-200) ⁇ Bissel (Nippon Freezer Co., Ltd.) ⁇ iMatrix-511 (nippi 892012) ⁇ Bambanker hRM (Nippon Genetics CS-11-001) ⁇ Cryostor CS10 preformulated with 10% DMSO (Hemacare 210102) ⁇ Cryostor CS5 preformulated with 5% DMSO (Hemacare 205102) ⁇ Cryostor CS2 preformulated
  • 1.2 ⁇ 10 6 cells were dispensed into 15 ml Stemfull for each cryopreservation reagent to be examined.
  • cryotubes 1.2 ⁇ 10 6 cells/450 ⁇ l. 14. Freeze in a program freezer from 4°C to -80°C at -1°C/min or -0.5°C/min or -0.2°C/min. 15. When the temperature dropped to -80°C, it was transferred to a bicelle processing container previously chilled at -80°C and cryopreserved in a -80°C freezer for 3 days. 16. After cryopreservation for 3 days, the cryotube containing the cells was thawed in a 37°C water bath for 1-2 minutes. 17.
  • Cells were recovered in a medium that had been warmed to 37°C in advance, and the number of recovered cells and cell viability were counted by trypan blue staining. 18. The collected cells were re-seeded in a 12-well plate at a cell density of 1000 cells/mm 2 . 19. Cultured for 2 weeks while changing the medium every 2 days. 20. On the 7th day of culture, 5 fields of view of the cells were photographed under a phase-contrast microscope (200x), and the cell density was calculated.
  • phase-contrast microscope 200x
  • FIG. 5 presents data comparing post-thaw viability of cells frozen from 4° C. at cooling rates of ⁇ 1° C./min, ⁇ 0.5° C./min or ⁇ 0.2° C./min.
  • a cryopreservation agent containing DMSO achieved a high survival rate under all conditions of ⁇ 1° C./min, ⁇ 0.5° C./min and ⁇ 0.2° C./min.
  • the DMSO-free cryopreservation improved the cell viability in inverse proportion to the cooling rate, indicating that slowing the cooling rate has the effect of increasing the cell viability.
  • Fig. 6 shows the data comparing the cell densities after storage by freezing at a cooling rate of -1°C/min or -0.5°C/min from 4°C and 7 days after seeding after storage.
  • Cell density was low when freezing at -1°C/min in CS2 containing 2% DMSO, Bambanker DMSO Free without DMSO, and cryoscarless DMSO Free, but at a cooling rate of -0.5°C/min High cell densities were observed when frozen. This indicated that the cooling rate also affected the cell density in culture after storage.
  • Example 3 Examination of DMSO-added culture
  • Method 1 Cells are collected in the same manner as in Example 2 (1-10) and stored in cryotubes using Cryostor CS2. 2. Freeze in a program freezer from 4°C to -80°C at -0.5°C/min. 3. When the temperature drops to -80°C, it is transferred to a bicelle processing container previously chilled at -80°C and frozen for 3 days in a -80°C freezer. 4. After 3 days of cryopreservation, thaw the cryotube containing the cells in a 37°C water bath for 1-2 minutes. 5.
  • Cells are collected in a medium that has been warmed to 37°C in advance, and the number of collected cells and cell viability are counted by trypan blue staining. 6.
  • the recovered cells are divided into four 15 ml Stemful tubes and centrifuged at 300 G ⁇ 5 min. 7. After centrifugation, the supernatant is removed, the cell density is adjusted to 1000 cells/mm 2 using media containing 10%, 5%, 2% and 0% DMSO, and the cells are reseeded on a 12-well plate. 8. Photographs of the cells are taken with a phase-contrast microscope 1 h, 3 h, 6 h, and 24 h after seeding. 9. After photographing the cells at each time, all the cells in the container including the floating cells are collected, and the cell viability is measured by trypan blue staining.
  • FIG. 8 shows phase-contrast microscopic images of cells cultured in media supplemented with 10% or 5% DMSO.
  • the number of cells cultured in a medium containing 10% or 5% DMSO was significantly lower than that of cells cultured in a medium without DMSO. It was shown that there were many adherent cells. Cells cultured in media without DMSO had most cells attached even 1 hour after inoculation, and all cells had attached at 3 hours, whereas DMSO 10% showed no cell attachment until 24 hours. was not accepted. Even with 5% DMSO, almost no adherent cells were observed after 1 hour, and less than half of the adherent cells were observed after 3 and 6 hours, but almost no adherent cells were observed after 24 hours. In the microscopic image of FIG. 8, white-appearing cells indicate non-adherent cells, and dark-appearing non-circular cells indicate adherent cells.
  • Fig. 9 shows phase-contrast microscopic images of cells cultured in media containing 2% DMSO or not containing DMSO.
  • the adhesion rate of cells cultured in medium containing 2% DMSO was not different from that of cells cultured in medium without DMSO.
  • Fig. 10 is a graph showing the results of collecting cells after reseeding and examining the viability. Even the cells cultured in the medium containing 10% DMSO, which were hardly adhered in the micrograph (Fig. 8), showed no decrease in viability after 1 hour. However, since the viability decreased after that, the cells cultured in the medium containing 10% DMSO did not show a decrease in viability at 1 hour, but they were already severely damaged and therefore adhered. It is assumed that it was not possible.
  • DMSO contained in the cell preparation injected into the anterior chamber is preferably 5% or less, and most preferably 2% or less or not included.
  • Example 4 Examination of stability after freezing and thawing
  • Method 1.
  • Cells are collected in the same manner as in Example 2 (1-10) and stored in cryotubes using Cryostor CS10, CS5 and CS2, 6 cells per storage solution.
  • Freeze in a program freezer from 4°C to -80°C at -0.5°C/min.
  • the temperature drops to -80°C, it is transferred to a bicelle processing container previously chilled at -80°C and frozen for 3 days in a -80°C freezer.
  • After 3 days of cryopreservation thaw the cryotube containing the cells in a 37°C water bath for 1-2 minutes. 5.
  • Cells are immediately harvested in medium prewarmed to 37° C. for each stock solution, and cell viability is determined by trypan blue staining (0 h). The remaining 5 tubes are left at room temperature for 30 min, 1 h, 3 h, 6 h, and 24 h, then the cells are recovered in the same manner, and the cell viability is measured by trypan blue staining. 6. Cells harvested at each time are replated in a 12-well plate at a cell density of 1000 cells/mm 2 . 7. After culturing for 24 hours from the time of each reseeding, cell photographs are taken with a phase-contrast microscope.
  • FIG. 12 shows cells frozen in Cryostor CS10 containing 10% DMSO were left at room temperature for 0, 30, 1, 3, 6, or 24 hours and then replated into T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown. When left at room temperature for 6 hours or longer, cell proliferation and adhesion ability were decreased.
  • Figure 13 shows cells frozen in Cryostor CS5 containing 5% DMSO, left at room temperature for 0, 30, 1, 3, 6, or 24 hours and then replated into T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown. Cells left at room temperature for 6 hours showed some decrease in cell proliferation and adhesiveness, but the extent was lower compared to CS5.
  • FIG. 14 shows cells frozen in Cryostor CS2 containing 2% DMSO were left at room temperature for 0, 30, 1, 3, 6, or 24 hours and then replated into T25 culture flasks. A phase-contrast microscope image of the cultured state of cells taken after a period of time is shown. No change is observed in cells left at room temperature for 6 hours.
  • FIG. 15 is a graph showing the results of collecting cells after reseeding and examining the viability.
  • Example 5 Cryopreservation and post-preservation corneal endothelial cell injection in VIXELL TM VIXELL TM can maintain ⁇ 75° C. ⁇ 15° C. for 18 days when filled with dry ice.
  • VIXELL TM is used to store and transport corneal endothelial cells, followed by injection of corneal endothelial cells.
  • Method (Method) (Cryopreservation) 1.
  • the cultured corneal endothelial cells were collected and suspended in CryoStor® CS2 supplemented with 100 ⁇ M Y27632 at a cell density of 1.2 ⁇ 10 6 cells/450 ⁇ l.
  • the vials were frozen from 4°C down to -80°C at a rate of -0.5°C/min.
  • Stored vials were placed in BICELL TM and stored once in a deep freezer at -80°C. 4.
  • Stored vials were removed and stored in VIXELL TM with dry ice for 5 days.
  • the anterior segment of the eye was observed with a slit-lamp microscope at 1, 2, 3, and 5 days to confirm the presence or absence of inflammation and infection.
  • 5 mg/mL of Prograf injection was diluted with 100 mL of physiological saline, and the total volume of 6 mL was injected into the posterior auricular vein. Euthanasia was performed 1 and 5 days after the operation, and immunostaining was performed.
  • FIG. 16 shows the survival rate and cell recovery rate when cells stored in a cold box for 5 days were thawed.
  • the survival rate was calculated as the number of viable cells/total number of cells at 5 days.
  • the cell recovery rate was defined as the recovery rate when the theoretical cell number (filled cell number) was taken as 100%.
  • FIG. 17 shows photomicrographs of cells cultured for 2 days after storage in a cold box. Since the cells adhered to the bottom surface of the incubator with the same shape as the non-frozen cells, it was confirmed that normal traits were maintained.
  • Fig. 18 shows a photograph of a cell-injected rabbit eye after storage in a cooling box.
  • the corneal transparency was maintained by engraftment of corneal endothelial cells.
  • FIG. 19 shows photographs of CD166 immunohistochemical staining of the corneal endothelium one day after cell injection.
  • the tissue of corneal endothelium was fixed, an antibody against CD166, which is one of the expression markers of corneal endothelial cells, was conjugated as a primary antibody, and then a fluorescence-labeled secondary antibody was conjugated to perform immunohistochemical staining. It was confirmed that the injected cells were cleanly engrafted on the monolayer, and that CD166 was strongly expressed.
  • the upper row shows the central cornea, and the lower row shows the peripheral part. Since staining was performed with an antibody that binds only to human CD166, the rabbit corneal endothelium was not stained and a clear border was confirmed.
  • FIG. 20 shows photographs of immunohistochemical staining of ZO-1 and Na/K ATPase one day after cell injection.
  • ZO-1 and Na/K ATPase are expressed as functional molecules in corneal endothelial cells.
  • FIG. 21 shows photographs of immunohistochemical staining of CD166, ZO-1 and Na/K ATPase in the corneal endothelium 5 days after cell injection.
  • Example 6 Freezing at a cooling rate of -0.7 ° C. / min
  • the corneal endothelium when frozen at a cooling rate of 4° C. to -0.7° C./min in a cryopreservation solution of known components similar to that in Example 1 and a commercially available preservation solution similar to that in Example 2
  • the purpose is to confirm cell viability.
  • FIGS 22 and 24 show an overview of this embodiment.
  • FIG. 23 shows -1°C/min, -0.7°C/min, and -0.5°C/min in cryopreservation solutions with different DMSO concentrations when 4% human serum albumin and 10% glycerol are used as base components. , or frozen at a cooling rate of ⁇ 0.2° C. and a graph comparing cell viability after thawing. Cryopreservation solutions containing 10% DMSO tended to improve viability when frozen at cooling rates of -0.5°C/min and -0.2°C.
  • FIG. 25 shows the survival rate and recovery rate after thawing of cells frozen at a cooling rate of 4°C to -0.7°C/min in a commercially available cryopreservation solution. Viability was calculated as the number of viable cells/total number of cells. The cell recovery rate was defined as the recovery rate when the theoretical cell number (filled cell number) was taken as 100%.
  • FIG. 26 shows data comparing post-thaw viability of cells frozen from 4° C. at cooling rates of ⁇ 1° C./min or ⁇ 0.7° C./min in commercial cryopreservation media.
  • FIG. 27 shows data comparing post-thaw viability of cells frozen from 4° C.
  • cell viability is improved by freezing and preserving at a cooling rate of -0.7°C/min or lower.
  • a cryopreservation solution containing DMSO as low as 2% and a cryopreservation solution containing no DMSO significantly improved the survival rate. Therefore, the method of the present disclosure can reduce DMSO during cryopreservation. be possible.
  • Example 7 Cryopreservation in glass vial formulation
  • cryopreservation was performed in glass vials. As shown below, high viability can be preserved by freezing at a slow cooling rate regardless of the container.
  • Figures 29-31 show the transition of temperature.
  • the rapid temperature rise of the sample is due to the latent heat seen during cooling. It was shown to be preserved with a high survival rate of over 85% when cooled to -80°C at -0.5°C/min and frozen. In addition, when HSA was added and stored under the same cooling conditions, the survival rate was further increased, exceeding 90%.
  • the control group was also cooled at a slow rate to -10°C (then the temperature may be maintained at -10°C for a certain period of time) and then cooled at a rate of -1.0°C/min for storage. showed a survival rate of over 90% (Fig. 28). No abnormalities in cell shape were observed in any of the preservation groups.
  • a method for freezing corneal endothelial cells in a cryopreservation solution with a reduced DMSO concentration or no DMSO and a method for producing a frozen cell preparation that can be directly administered to a patient. Since the formulation can be used for cell transplantation and the like in this way, it can be used in fields such as pharmaceuticals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本開示は、角膜内皮細胞および/または角膜内皮様細胞を凍結保存する方法および角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を提供する。本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程、および必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程を含む、方法を提供する。

Description

角膜内皮細胞の凍結保存製剤およびその製造法
 本開示は、角膜内皮細胞の凍結保存製剤およびその製造法の技術ならびにそれを用いた治療などの応用技術に関する。
 角膜内皮細胞が障害されると角膜が混濁し、水疱性角膜症による重症の視力障害をきたす。水疱性角膜症に対する唯一の治療法は角膜移植であるが、ドナー不足や拒絶反応などの問題があり、新しい再生医学的治療の開発が望まれている。同志社大学では、ドナー角膜より分雛した角膜内皮細胞をRho-associated coiled-coil forming kinase:Rho結合キナーゼ(ROCK)阻害剤の存在下で増殖させ、多くの患者にその細胞を注入することで角膜内皮を再生する治療法を確立した。しかしながら、細胞の品質を保ったまま保存できる時間は限られていることから、日本全国や世界に細胞を供給する上で大きな問題があった。一般に細胞は10%ジメチルスルホキシド(DMSO)を含む保存液で凍結保存しうるが、再生医療の場合にはDMSOの細胞に対する毒性や眼に投与した際の刺激性の懸念があったため、DMSOの濃度を低減化して凍結することが望まれていた。
 また、再生医療に使用される細胞凍結製剤はDMSOを少なくとも7%以上含んでおり、患者に投与する際には患者へのDMSOの毒性を懸念して生理食塩液で投与直前に希釈したり、点滴静注などの投与の際の投与速度を極めて遅くすることで高濃度のDMSOが患者に投与されることを回避している。
 角膜内皮細胞注入療法では、患者の眼の前房部に400μL以下の少ない用量で高濃度の細胞懸濁液を投与する必要があることから、投与前に希釈することができず、DMSOの濃度を低減化した、あるいは含まない細胞凍結保存製剤が必要であった。
 本発明者らは、凍結保存時の温度条件などを詳細に検討し、-1℃/分よりも遅い低速での温度降下により、DMSO濃度を低減化した(例えば、7%未満)、あるいはDMSOを含まない凍結保存液で角膜内皮細胞の生存率が高く保たれることを見出した。本発明者らは、さらに、最初に緩慢な速度で温度を低下させた後に、冷却速度を速めて凍結させた場合、細胞生存率が上昇することを見出した。したがって、本開示は、DMSO濃度を低減化した、あるいはDMSOを含まない凍結保存液での角膜内皮細胞の凍結方法および患者にそのまま投与可能な細胞凍結製剤の製造方法を提供する。
 本願発明は、例えば、以下の項目を提供する。
(項目1)
 角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、
 非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程、および
 必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程
を含む、方法。
(項目2)
 角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程を含む、上記項目に記載の方法。
(項目3)
 前記凍結状態で維持する工程は、凍結維持温度で維持することを含む、上記項目のいずれか一項に記載の方法。
(項目4)
 前記凍結維持温度が、約-80℃~約-10℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目5)
 前記凍結維持温度が、約-196℃~約-10℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目6)
 前記凍結維持温度が、約-30℃以下の温度である、上記項目のいずれか一項に記載の方法。
(項目7)
 前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.1℃~約0.9℃の速度で温度を低下される、上記項目のいずれか一項に記載の方法。
(項目8)
 前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.2℃~約0.8℃の速度で温度を低下される、上記項目のいずれか一項に記載の方法。
(項目9)
 前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.7℃以下の速度で温度を低下される、上記項目のいずれか一項に記載の方法。
(項目10)
 前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.2℃~約0.7℃の速度で温度を低下される、上記項目のいずれか一項に記載の方法。
(項目11)
 前記非凍結温度が、約0℃~約42℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目12)
 前記非凍結温度が、約0℃~約37℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目13)
 前記非凍結温度が、約4℃~約23℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目14)
 前記凍結工程は、約-20℃±10℃の少なくとも一部の温度範囲において、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、上記項目のいずれか一項に記載の方法。
(項目15)
 前記凍結工程は、約-20℃±10℃の温度範囲に一定時間以上維持する段階を少なくとも1つ含む、上記項目のいずれか一項に記載の方法。
(項目16)
 前記角膜内皮細胞および/または角膜内皮様細胞が、約7%未満のDMSOを含む保存液中で保存される、上記項目のいずれか一項に記載の方法。
(項目17)
 前記角膜内皮細胞および/または角膜内皮様細胞が、約5%以下のDMSOを含む保存液中で保存される、上記項目のいずれか一項に記載の方法。
(項目18)
 前記角膜内皮細胞および/または角膜内皮様細胞が、約2%以下のDMSOを含む保存液中で保存される、上記項目のいずれか一項に記載の方法。
(項目19)
 前記角膜内皮細胞および/または角膜内皮様細胞が、DMSOを含まない保存液中で保存される、上記項目のいずれか一項に記載の方法。
(項目20)
 前記凍結工程は、角膜内皮細胞および/または角膜内皮様細胞がROCK阻害剤の存在下で凍結されていることを含む、上記項目のいずれか一項に記載の方法。
(項目21)
 前記凍結工程が、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含み、該第1の速度が、1分あたり1℃未満の速度であり、該第2の速度よりも遅い、上記項目のいずれか一項に記載の方法。
(項目22)
 前記凍結工程が、前記第1の目標温度まで温度を低下させた後、前記第1の目標温度で維持することをさらに含む、上記項目のいずれか一項に記載の方法。
(項目23)
 前記第1の目標温度が、約-20℃~約-5℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目24)
 前記第1の目標温度が、約-15℃~約-10℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目25)
 前記第2の目標温度が、約-20℃以下の温度である、上記項目のいずれか一項に記載の方法。
(項目26)
 前記第2の目標温度が、約-196℃~約-80℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目27)
 前記第1の速度が、1分あたり約0.5℃~約0.05℃の速度である、上記項目のいずれか一項に記載の方法。
(項目28)
 前記第1の速度が、1分あたり約0.3℃~約0.1℃の速度である、上記項目のいずれか一項に記載の方法。
(項目29)
 前記第2の速度が、1分あたり約0.5~約5℃の速度である、上記項目のいずれか一項に記載の方法。
(項目30)
 前記第2の速度が、1分あたり約1~約3℃の速度である、上記項目のいずれか一項に記載の方法。
(項目31)
 角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を生産する方法であって、
 非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を必要に応じて薬学的に受容可能な成分と混合し、凍結して凍結製剤を生産する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程、および
 必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞の該凍結製剤を凍結状態で維持する工程
を含む、方法。
(項目32)
 項目2~30のいずれかまたは複数の項に記載の方法に記載される1または複数の特徴をさらに含む、上記項目のいずれか一項に記載の方法。
(項目33)
 上記項目のいずれか一項に記載の方法によって製造される角膜内皮細胞および/または角膜内皮様細胞の凍結製剤。
(項目34)
 前記角膜内皮細胞および/または角膜内皮様細胞を約1×10~約3×10個を含む、上記項目のいずれか一項に記載の凍結製剤。
(項目35)
 前記凍結製剤の体積は、約50μL~約600μLである、上記項目のいずれか一項に記載の凍結製剤。
(項目36)
 前記凍結製剤は、1回あたり約50μL~約350μL投与されることを特徴とする、上記項目のいずれか一項に記載の凍結製剤。
(項目37)
 角膜内皮細胞および/または角膜内皮様細胞を保存する装置であって、該装置は
 該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、
 収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と
 該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部と
を含み、
 該温度制御部は、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御するよう指令することができ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持するように指令することができる、装置。
(項目38)
 装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムであって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、
 該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、プログラム。
(項目39)
 装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムを格納した記録媒体であって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、
 該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、記録媒体。
(項目40)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、凍結製剤。
(項目41)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、解凍後眼に直接投与可能な凍結製剤。
(項目42)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
(項目43)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分とを凍結状態で含む凍結製剤。
(項目44)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤。
(項目45)
 7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む解凍後長期安定性凍結細胞製剤。
(項目46)
 約5%以下のDMSOを含む、上記項目のいずれか一項に記載の凍結製剤。
(項目47)
 約2%以下のDMSOを含む、上記項目のいずれか一項に記載の凍結製剤。
(項目48)
 DMSOを含まない、上記項目のいずれか一項に記載の凍結製剤。
(項目49)
 ROCK阻害剤をさらに含む、上記項目のいずれか一項に記載の凍結製剤。
(項目50)
 前記ROCK阻害剤が、Y-27632である、上記項目のいずれか一項に記載の凍結製剤。
(項目51)
 ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤。
(項目52)
 ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分とを凍結状態で含む凍結製剤。
(項目53)
 ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤。
(項目54)
 解凍後長期安定性凍結細胞製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを含む、製剤。
(項目55)
 前記角膜内皮細胞および/または角膜内皮様細胞の生存率が、解凍後、室温で少なくとも6時間少なくとも80%の生存率である、上記項目のいずれか一項に記載の製剤。
(項目56)
 解凍後投与された角膜内皮細胞および/または角膜内皮様細胞の生着および生体内における生存が阻害されない凍結製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
(項目57)
 7%未満のDMSOとROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
(項目58)
 前記ROCK阻害剤が、Y-27632である、上記項目のいずれか一項に記載の製剤。
(項目59)
 約7%未満のDMSOを含む、上記項目のいずれか一項に記載の製剤。
(項目60)
 約5%以下のDMSOを含む、上記項目のいずれか一項に記載の製剤。
(項目61)
 約2%以下のDMSOを含む、上記項目のいずれか一項に記載の製剤。
(項目62)
 DMSOを含まない、上記項目のいずれか一項に記載の製剤。
(項目63)
前記製剤は、緩慢凍結状態で凍結された状態で前記細胞を含む、上記項目のいずれか一項に記載の製剤。
(項目64)
 前記製剤が、非凍結温度から1分あたり1℃未満の速度で温度を低下させて凍結されたものである、上記項目のいずれか一項に記載の製剤。
(項目65)
 前記角膜内皮細胞および/または角膜内皮様細胞が、細胞注入療法に使用されることを特徴とする、上記項目のいずれか一項に記載の製剤。
(項目66)
 前記凍結製剤が、解凍後、さらなる加工も培養もすることなく投与されることを特徴とする、上記項目のいずれか一項に記載の製剤。
(項目67)
 前記角膜内皮細胞および/または角膜内皮様細胞を約1×10~約3×10個を含む、上記項目のいずれか一項に記載の製剤。
(項目68)
 前記凍結製剤の体積は、約50μL~約600μLである、項目40~67のいずれか一項に記載の製剤。
(項目69)
 前記製剤は、1回あたり約50μL~約350μL投与されることを特徴とする、上記項目のいずれか一項に記載の製剤。
(項目70)
 角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キット。
(項目71)
 前記凍結製剤は、上記項目のいずれか一項に記載の製剤である、項目70に記載の凍結製剤キット。
(項目72)
 上記項目のいずれか一項に記載の製剤と、該製剤を収容する容器と、該製剤を凍結状態で維持しつつ該容器を収容する収容器とを含む、凍結製剤キット。
(項目73)
 容器と、該容器を収容する収容器とを含む、凍結製剤キットであって、
 該容器は、上記項目のいずれか一項に記載の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、キット。
(項目74)
 ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キット。
(項目75)
 容器と該容器を収容する収容器とを含むキットの使用であって、
 該容器は、上記項目のいずれか一項に記載の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、使用。
(項目76)
 上記項目のいずれか一項に記載の製剤の運搬および/または保存方法であって、
 該製剤を、容器と該容器を収容する収容器とを含むキットの容器中に配置する工程と、
 該キット中の製剤を凍結状態で維持する工程と、
を含む方法。
(項目77)
 角膜内皮細胞注入療法を行う方法であって、
 該細胞注入療法に適切な角膜内皮細胞および/または角膜内皮様細胞を提供する工程、
 該角膜内皮細胞および/または角膜内皮様細胞を、非凍結温度から1分あたり1℃未満の速度で温度を低下する段階を少なくとも一つ含む、凍結工程、
 該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持し、必要に応じて該注入療法へと運搬する工程、
 該角膜内皮細胞および/または角膜内皮様細胞を解凍する工程、ならびに
 該角膜内皮細胞および/または角膜内皮様細胞を被験体に投与する工程
を含む、方法。
(項目1A)
 角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、該方法が、
 非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含む、凍結工程、および
 必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程
を含み、該第1の速度が、1分あたり1℃未満の速度であり、該第2の速度よりも遅い、方法。
(項目2A)
 前記凍結工程が、前記第1の目標温度まで温度を低下させた後、前記第1の目標温度で維持することをさらに含む、上記項目のいずれか一項に記載の方法。
(項目3A)
 前記第1の目標温度が、約-20℃~約-5℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目4A)
 前記第1の目標温度が、約-15℃~約-10℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目5A)
 前記第2の目標温度が、約-20℃以下の温度である、上記項目のいずれか一項に記載の方法。
(項目6A)
 前記第2の目標温度が、約-196℃~約-80℃の範囲内の温度である、上記項目のいずれか一項に記載の方法。
(項目7A)
 前記第1の速度が、1分あたり約0.5℃~約0.05℃の速度である、上記項目のいずれか一項に記載の方法。
(項目8A)
 前記第1の速度が、1分あたり約0.3℃~約0.1℃の速度である、上記項目のいずれか一項に記載の方法。
(項目9A)
 前記第2の速度が、1分あたり約0.5~約5℃の速度である、上記項目のいずれか一項に記載の方法。
(項目10A)
 前記第2の速度が、1分あたり約1~約3℃の速度である、上記項目のいずれか一項に記載の方法。
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本開示により、融解後にそのまま眼に投与可能な角膜細胞凍結製剤を提供される。本発明により、角膜内皮細胞を日本全国および海外にも提供することができる。
図1は、実施例1の概要を示す。 図2は、実施例1で使用する細胞の培養形態の写真を示す。 図3は、4%ヒト血清アルブミンと10%グリセリンをベース成分とした時のDMSO濃度を変えた凍結保存液で保存し、融解後の細胞の生存率を比較したグラフを示す。 図4は、4%ヒト血清アルブミンと10%ポリエチレングリコールをベース成分とした時のDMSO濃度を変えた凍結保存液で保存し、融解後の細胞の生存率を比較したグラフを示す。 図5は、23℃から-1℃/分、-0.7℃/分または-0.5℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。エラーバーは平均±SDを示す。統計学的有意差はDunnett-t検定(vs未凍結)に基づく(n=3,**p<0.05)。 図6は、4℃から-1℃/分または-0.5℃/分の冷却速度で凍結して保存し、保存後播種7日目の細胞密度を比較したデータを示す。 図7は、実施例2の概要を示す。 図8は、DMSOを10%もしくは5%添加した培地で培養した細胞の位相差顕微鏡像を示す。 図9は、DMSO 2%を含む、またはDMSOを含まない培地で培養した細胞の位相差顕微鏡像を示す。 図10は、再播種後の細胞を回収し、生存率を調べた結果を示すグラフである。各群の左から、DMSO10%、5%、2%および0%を示す。 図11は、実施例3の概要を示す。 図12は、DMSOを10%含むCryostor CS10中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。 図13は、DMSOを5%含むCryostor CS5中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。 図14は、DMSOを2%含むCryostor CS2中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。 図15は、再播種後の細胞を回収し、生存率を調べた結果を示すグラフを示す。各群の左から、CS10、CS5、およびCS2を示す。 図16は、保冷ボックスで5日間保存した細胞を融解した時の生存率と細胞回収率を示す。エラーバーは平均±SDを示す。統計学的有意差はStudent’s T検定に基づく(n=3)。 図17は、保冷ボックスで保存した後、2日間培養した細胞の顕微鏡写真を示す。 図18は、保冷ボックスでの保存後の細胞を注入したウサギの眼の写真を示す。 図19は、細胞注入後1日目の角膜内皮のCD166の免疫組織染色の写真を示す。 図20は、細胞注入後1日目のZO-1およびNa/K ATPaseの免疫組織染色の写真を示す。 図21は、細胞注入後5日目の角膜内皮のCD166、ZO-1およびNa/K ATPaseの免疫組織染色の写真を示す。 図22は、実施例6の既知成分の凍結保存液における凍結保存の概要を示す。 図23は、4%ヒト血清アルブミンと10%グリセリンをベース成分とした時のDMSO濃度を変えた凍結保存液で-1℃/分、-0.7℃/分、-0.5℃/分、または-0.2℃の冷却速度で凍結し、融解後の細胞の生存率を比較したグラフを示す。 図24は、実施例6の市販の凍結保存液における凍結保存の概要を示す。 図25は、市販の凍結保存液において、4℃から-0.7℃/分の冷却速度で凍結した細胞の融解後の生存率および回収率を示す。 図26は、市販の凍結保存液において、4℃から-1℃/分または-0.7℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。 図27は、市販の凍結保存液において、4℃から-0.5℃/分または-0.2℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。 図28は、実施例7において保存した細胞の細胞生存率を示す。 図29は、-0.5℃/minで-80℃まで冷却した場合の温度の推移を示す。 図30は、-0.5℃/minで-10℃まで冷却し、110分-10℃で維持し、その後-1.0℃/minで-80℃まで冷却した場合の温度の推移を示す。 図31は、-0.1℃/minで-10℃まで冷却し、その後-1.0℃/minで-80℃まで冷却した場合の温度の推移を示す。
 以下、本開示を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本明細書において、「約」とは、後に続く値の±10%を意味する。組成を表す「%」は、特に指示しない限り、DMSOおよびヒト血清アルブミン(HSA)を指す場合はw/w%、グリセリンおよびポリエチレングリコールを指す場合はv/v%を意味する。
 (定義)
 本明細書において、「角膜内皮細胞」とは当該分野で用いられる通常の意味で用いられる。角膜とは、眼を構成する層状の組織の一つであり透明であり、最も外界に近い部分に位置する。角膜は、ヒトでは外側(体表面)から順に5層でできているとされ、外側から角膜上皮、ボーマン膜、固有層、デスメ膜(角膜内皮基底膜)、および角膜内皮で構成される。特に、特定しない限り、上皮および内皮以外の部分は「角膜実質」とまとめて称することがあり、本明細書でもそのように称する。本明細書において「HCEC」(human corneal endothelial cells)とは、ヒト角膜内皮細胞の略称である。
 本明細書において、「角膜内皮様細胞」とは、幹細胞から分化した細胞、例えばiPS細胞等から分化した細胞であって、角膜内皮細胞と実質的な同一の機能を有する細胞を指す。幹細胞、例えば、胚性幹細胞(ES細胞)、誘導性多能性幹細胞(iPS細胞)等から角膜内皮様細胞へと分化させる方法は、当該分野で周知である(McCabe et al., PLoS One. 2015 Dec 21;10(12):e0145266; Ali et al., Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2437-2444)。典型的な例において、簡潔には、細胞解離バッファー(Life Technologies)を使用して、0日目に1:12希釈でiPS細胞を35mmマトリゲルコーティングプレート(Corning)に播種する(80%コンフルエントプレートを12個のプレートに分ける)。iPS細胞を4日間培地(mTeSR1;STEMCELL Technologies Inc.)中で増殖させる。4日目に、mTeSR1培地を、80%DMEM-F12(Life Technologies)、20%KSR(Life Technologies)、1%非必須アミノ酸(Life Technologies)、1mM L-グルタミン(STEMCELL Technologies,inc.)、0.1mM β-メルカプトエタノール(MilliporeSigma)、および8ng/mL βFGF(MilliporeSigma)の基本培地中に、500ng/mLヒト組換えNoggin(R&D Systems、Minneapolis、MN、USA)および10μMのSB431542(MilliporeSigma)を含むSmad阻害剤培地で置換する。6日目に、Smad阻害剤培地を、80%DMEM-F12(Life Technologies)、20%KSR(Life Technologies)、1%非必須アミノ酸(Life Technologies)、1mM L-グルタミン(STEMCELL Technologies,inc.)、0.1mM β-メルカプトエタノール(MilliporeSigma)、および8ng/mL βFGF(MilliporeSigma)の基本培地中に、0.1× B27サプリメント(Life Technologies)、10ng/mL組換えヒト血小板由来増殖因子-BB(PDGF-BB;PeproTech,Rocky Hill,NJ,USA)および10ng/mL組換えヒトDickkopf関連タンパク質-2(DKK-2;R&D Systems)を含む角膜培地で置換する。7日目に、分化中のCECを、新しいマトリゲールコーティングプレート(35mm)に移し、さらに13日間角膜培地中で増殖させる。分化したCECを20日目に回収する。上記例は典型的な例であって、当業者は、当該分野で周知の他の方法(Fukuta et al., PLoS One. 2014 Dec 2;9(12):e112291; Hayashi et al., Nature. 2016 Mar 17;531(7594):376-80)も使用し得る。また、当業者であれば、当該分野で周知の方法の条件を適宜調節して、角膜内皮様細胞を作製することができる。
 「角膜内皮細胞」および「角膜内皮様細胞」は、磁性体(例えば、鉄)を含んでいてもよい。例えば、磁性物質を含む角膜内皮細胞を前房内に注入した場合、磁力により角膜の内側(例えば、デスメ膜)に引き付け接着を促すことが可能である(Patel et al., Invest Ophthalmol Vis Sci. 2009 May;50(5):2123-31;Mimura et al., Exp Eye Res. 2003 Jun;76(6):745-51;およびMimura et al., Exp Eye Res. 2005 Feb;80(2):149-57)。「磁性体」とは、磁場により磁化される物質を指し、例えば、鉄、コバルト、ニッケル、フェライトなどが挙げられる。
 本明細書において、細胞の「保存」とは、任意の目的(例えば、細胞注入療法、またはそのための輸送)のために容器中に一定期間保管することを意味し、細胞を増殖させることなく、細胞の機能を維持しつつ容器中に維持することを指す。保存は、細胞を増殖させることを目的とする「培養」とは異なる。また、保存は、投与直前に細胞をシリンジ等の容器に移し入れることも、投与前に用時調製するために容器内に一時的に保持することも意味しない。「凍結保存」は、凍結状態で保存することを意味する。
 本明細書において、「非凍結温度」とは、その温度で維持しても凍結が生じない温度を指し、「凍結目標温度」とは、本開示の方法の凍結工程における角膜内皮細胞および/または角膜内皮様細胞を凍結させる際の目標となる温度を指す。「凍結維持温度」とは、凍結した角膜内皮細胞および/または角膜内皮様細胞を一定期間凍結状態で維持するための温度を指す。凍結維持温度は、目的となる細胞等の対象が凍結状態を維持することができれば、変動しても良い。
 本明細書において、「緩慢凍結状態」とは、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む凍結工程により凍結された状態を指す。
 本明細書において、「解凍後長期安定性」とは、凍結された細胞を解凍後室温で維持した場合、少なくとも6時間細胞少なくとも80%の生存率を維持することを指す。
 本明細書において、「凍結製剤」とは、凍結状態で保存される製剤であって、解凍後、使用に適した形態、または用時調製の形態の製剤を指す。「用時調製」とは、投与する直前に、薬剤を追加することにより、または溶媒で希釈することによって使用に適した製剤を調製することをいう。
 本明細書において、「加工」とは、細胞または細胞集団についていうとき、その特定の操作によって、その細胞または細胞集団の何らかの状態または性質が変化することをいい、好ましくは細胞集団の性質を変化させる、薬剤追加、薬剤処理、または特定細胞の単離などの操作、あるいは細胞密度を変更する、溶媒による希釈または濃縮などの操作を意味する。
 本明細書において、「一定温度」とは、設定温度の±1℃の範囲にあることを指す。
 本明細書において、「角膜内皮の症状、障害または疾患」とは、角膜内皮において生じる任意の症状、障害または疾患をいう。例えば、角膜内皮の症状、障害または疾患としては、フックス角膜内皮ジストロフィ、角膜移植後障害、角膜内皮炎、外傷、眼科手術後の障害、眼科レーザー手術後の障害、加齢、後部多形性角膜ジストロフィ(PPD:posterior polymorphous dystrophy)、先天性遺伝性角膜内皮ジストロフィ(CHED:congenital hereditary endothelial dystrophy)、および特発性角膜内皮障害等が挙げられるがそれらに限定されない。
 本明細書において「被験体」とは、本開示の製剤の投与対象を指し、被験体としては、哺乳動物(例えば、ヒト、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ウマ、ヒツジ、サル等)があげられるが、霊長類が好ましく、特にヒトが好ましい。
 本明細書において、「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、検査薬、診断薬、治療薬、抗体、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。あるいは、溶液状態では不安定な化合物を提供する際、使用直前に凍結乾燥した粉末を適切な溶媒で溶解して用時調製する必要がある場合に、キットの形態が好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬)をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。
 本明細書において「プログラム」は、当該分野で使用される通常の意味で用いられ、コンピュータが行うべき処理を順序立てて記述したものであり、日本国では特許法上「物」として扱われるものである。すべてのコンピュータはプログラムに従って動作している。現代のコンピュータではプログラムは広義のデータとして表現され、記録媒体または記憶装置に格納される。
 本明細書において「記録媒体」は、本開示の方法を実行させるプログラムを格納した記録媒体であり、記録媒体は、プログラムを記録できる限り、どのようなものであってもよい。例えば、内部に格納され得るROMやHDD、磁気ディスク、USBメモリ等のフラッシュメモリなどの外部記憶装置でありうるがこれらに限定されない。
 本明細書において「システム」とは、本開示の方法またはプログラムを実行する構成をいい、本来的には、目的を遂行するための体系や組織を意味し、複数の要素が体系的に構成され、相互に影響するものであり、コンピュータの分野では、ハードウェア、ソフトウェア、OS、ネットワークなどの、全体の構成をいう。
 本明細書において「機械学習」とは、明示的にプログラミングすることなく、コンピュータに学ぶ能力を与える技術をいう。機能単位が新しい知識・技能を獲得すること、又は既存の知識・技能を再構成することによって、自身の性能を向上させる過程である。経験から学ぶように計算機をプログラミングすることで、細部をプログラミングするのに必要になる手間の多くは減らせ、機械学習分野では、経験から自動的に改善を図れるようなコンピュータプログラムを構築する方法について議論している。データ分析・機械学習の役割としては、アルゴリズム分野と並んで知的処理の基盤になる要素技術であり、通常他の技術と連携して利用され、連携する分野の知識(ドメインスペシフィック(領域特有)知識;例えば、医学分野)が必要である。その応用範囲としては、予測(データを集め、これから起こることを予測する)、探索(集めたデータの中から、何か目立つ特徴を見つける)、検定・記述(データの中のいろいろな要素の関係を調べる)などの役割がある。機械学習は、実世界の目標の達成度を示す指標に基づくものであり、機械学習の利用者が、実世界での目標を把握していなければならない。そして、目的が達成されたときに、良くなるような指標を定式化する必要がある。機械学習は逆問題で、解が解けたかどうかが不明確な不良設定問題である。学習したルールの挙動は確定的ではなく確率(蓋然)的である。何らかの制御できない部分が残ることを前提とした運用上の工夫が必要であり、本発明のテイラーメイド法はこの解決手段ともいいうるものである。訓練時と運用時の性能指標をみながら、機械学習の利用者が、データや情報を実世界の目標に合わせて逐次的に取捨選択することも有用である。
 機械学習としては、線形回帰、ロジスティック回帰、サポートベクターマシンなどが用いられ得、および交差検証(交差検定、交差確認ともいう。Cross Validation;CV)を行うことで、各モデルの判別精度を算出することができる。ランキングした後、1つずつ特徴量を増やして機械学習(線形回帰、ロジスティック回帰、サポートベクターマシンなど)と交差検証を行い、各モデルの判別精度を算出することができる。それにより、最も高い精度のモデルを選択することができる。本発明において、機械学習は、任意のものを使用することができ、教師付き機械学習として、線形、ロジスティック、サポートベクターマシン(SVM)などを利用することができる。
 (好ましい実施形態)
 以下に好ましい実施形態の説明を記載するが、この実施形態は本開示の例示であり、本開示の範囲はそのような好ましい実施形態に限定されないことが理解されるべきである。当業者はまた、以下のような好ましい実施例を参考にして、本開示の範囲内にある改変、変更などを容易に行うことができることが理解されるべきである。これらの実施形態について、当業者は適宜、任意の実施形態を組み合わせ得る。
 (保存方法)
 角膜内皮細胞に凍結保存において、凍結時の損傷を抑えるDMSOを10%含む保存液で凍結することにより、角膜内皮細胞を高い生存率を維持しながら保存し得る。しかしながら、DMSOの細胞に対する毒性や眼に投与した際の刺激性の懸念があったため、本発明者らは、DMSOを低減した保存液で、高い生存率を維持できる保存条件を検討したところ、-1℃/分よりも遅い低速での温度降下により、DMSO濃度を低減化した(例えば、7%未満)、あるいはDMSOを含まない凍結保存液で角膜内皮細胞の生存率が高く保たれることを見出した。
 冷却速度が遅すぎる場合には、細胞外の水分が先に凍結することで、細胞外の水分が除去され、細胞内から水分が流出する。細胞内の溶質濃度の上昇により細胞の生存に有害な影響を与える。冷却速度が速すぎる場合は、細胞内からの水分の流出は抑えられるが、細胞内に表結晶による損傷が生じ、生存に有害な影響を与える。細胞の凍結保存における冷却速度は、細胞損傷に大きな影響を与える。最適な冷却速度によりその影響を最小限に抑えることが可能であり、-1℃/分の冷却速度が推奨されている。角膜内皮細胞において、-1℃/分よりも遅い低速での温度降下により、DMSO濃度を低減化した(例えば、7%未満)、あるいはDMSOを含まない凍結保存液で角膜内皮細胞の生存率が高く保たれたことは予想外であった。
 一態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で(-1℃/分よりも遅い冷却速度で)温度を低下させる段階を少なくとも1つ含む、凍結工程を含む方法を提供し得る。
 一態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を生産する方法であって、非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を必要に応じて薬学的に受容可能な成分と混合し、凍結して凍結製剤を生産する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程を含む方法を提供し得る。
 一部の実施形態において、-1℃/分よりも遅い冷却速度は、1分あたり約0.1℃~約0.9℃、好ましくは1分あたり約0.2℃~約0.8℃、より好ましくは1分あたり約0.2℃~約0.7℃の範囲内の温度であり得る。特定の実施形態において、-1℃/分よりも遅い冷却速度は、-0.9℃/分、-0.8℃/分、-0.7℃/分、-0.6℃/分、-0.5℃/分、-0.4℃/分、-0.3℃/分、-0.2℃/分、または-0.1℃/分であり得る。
 一実施形態において、凍結目標温度(例えば、-80℃)までの冷却速度は一定であってもよく、一定でなくてもよい。一部の実施形態において、本開示の方法は、特定の温度域で、-1℃/分よりも遅い冷却速度で温度を低下させる段階を少なくとも含み、凍結目標温度までに温度を低下させる過程において、温度を上昇する段階を含んでもよく、-1℃/分よりも速い冷却速度で温度を低下させる段階を含んでもよく、一定温度で維持する段階を含んでもよい。
 凍結目標温度は、適宜設定され、例えば、約-20℃~-196℃の範囲内の温度であり得、例えば、約-20℃、約-30℃、約-40℃、約-50℃、約-60℃、約-70℃、約-80℃、約-90℃、約-100℃、約-150℃、約-190℃、または約-196℃であり得る。
 一実施形態において、本開示の方法は、特定の温度域において、-1℃/分よりも遅い平均冷却速度で温度が低下していれば、温度を上昇する段階を含んでもよく、-1℃/分よりも速い冷却速度で温度を低下させる段階を含んでもよく、一定温度で維持する段階を含んでもよい。
 一実施形態において、本開示の方法は、特定の温度域において、-1℃/分より早い速度で温度を低下させた後、一定温度で維持して、再び、-1℃/分より早い速度で温度を低下させることで(これを繰り返してもよい)、-1℃/分よりも遅い平均冷却速度を達成してもよい。
 一実施形態において、本開示の方法は、特定の温度域において、-1℃/分より早い速度で温度を低下させた後、温度を上昇させ、次いで一定温度で維持して、再び、-1℃/分より早い速度で温度を低下させることで(これを繰り返してもよい)、-1℃/分よりも遅い平均冷却速度を達成してもよい。
 一実施形態において、本開示の方法は、特定の温度域において、-1℃/分より早い速度で温度を低下させた後、温度を上昇させ、再び、-1℃/分より早い速度で温度を低下させることで(これを繰り返してもよい)、-1℃/分よりも遅い平均冷却速度を達成してもよい。
 一実施形態において、-1℃/分よりも遅い冷却速度で温度を低下させる特定の温度域は、少なくとも非凍結状態から凍結状態へと移行する温度を少なくとも含む温度範囲であり得る。特定の実施形態において、上記温度域は、約-80℃~約0℃、約-70℃~約0℃、約-60℃~約0℃、約-50℃~約0℃、約-40℃~約0℃、約-30℃~約0℃、約-20℃~約0℃、約-10℃~約0℃、約-80℃~約-10℃、約-70℃~約-10℃、約-60℃~約-10℃、約-50℃~約-10℃、約-40℃~約-10℃、約-30℃~約-10℃、または約-20℃~約-10℃であり得る。
 一実施形態において、本開示の方法は、角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程をさらに含んでもよい。いくつかの実施形態において、凍結維持温度は、約-196℃~約-4℃、約-196℃~約-10℃、約-196℃~約-20℃、約-196℃~約-30℃、約-196℃~約-40℃、約-196℃~約-50℃、約-196℃~約-60℃、約-196℃~約-70℃、約-196℃~約-80℃、約-80℃~約-4℃、約-80℃~約-10℃、約-80℃~約-20℃、約-80℃~約-30℃、約-80℃~約-40℃、約-80℃~約-50℃、約-80℃~約-60℃、または約-80℃~約-70℃の範囲内の温度であり得る。好ましい実施形態において、凍結維持温度は、約-80℃で維持することを含み得る。
 いくつかの実施形態において、本開示の方法の凍結工程は、約0℃~約42℃、約0℃~約37℃、約4℃~約23℃、約4℃~約10℃の範囲内の非凍結温度から開始し得る。好ましい実施形態において、特にDMSOの存在下で凍結する場合は、凍結する工程は、4℃の非凍結温度から開始し得る。特定の実施形態において、本開示の方法は、凍結工程の前に、上記非凍結温度で角膜内皮細胞および/または角膜内皮様細胞をインキュベートする工程をさらに含んでもよい。
 一実施形態において、本開示の方法の凍結工程は、約-20℃±10℃の少なくとも一部の温度範囲または全範囲において、1分あたり1℃未満の速度で温度を低下させる、または一定温度で一定時間維持する段階を少なくとも1つ含み得る。一実施形態において、本開示の方法の凍結工程は、約-20℃±10℃の温度範囲に一定時間以上、例えば、20分以上、30分以上、40分以上、50分以上、1時間以上、1時間30分以上、または2時間以上連続して維持する段階を少なくとも1つ含み得る。上記温度範囲は、-20℃±5℃であってもよい。凍結工程において、不均一で整列されていない状態で氷結晶が形成されると細胞へのダメージが大きくなり、生存率が低下し得る。理論に束縛されることを望まないが、凍結工程において、氷結晶と保存液中の溶質(例えば、NaCl)の共晶点付近(例えば、-20℃±10℃)で緩慢に温度を低下させる、または共晶点付近で一定時間温度を維持することで、結晶が均一に整列し、細胞へのダメージが軽減され得る。
 -20℃±10℃の温度範囲において、1分あたり1℃未満の速度で温度を低下させる、または一定温度で一定時間維持する段階を少なくとも含んでいれば、-20℃±10℃の温度の温度範囲外は、どのような速度で温度を変化させてもよい。
 さらなる態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、約-20℃±10℃の温度範囲に一定時間以上維持する段階を少なくとも1つ含む、凍結工程、および要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程を含む、方法を提供する。-20℃±10℃の温度の温度範囲外は、どのような速度で温度を変化させてもよい。
 一部の実施形態においては、-30℃より温度を下げてから、温度を上昇させて、共晶点付近(-20℃±10℃)の温度範囲で、緩慢に温度を低下させる、または一定時間温度を維持してもよい。当業者は、本明細書の開示に鑑み、本開示の効果を奏する限り、-30℃より低い温度で維持する時間について適宜調整することができるが、例えば、2時間以下、1時間以下、30分以下、または20分以下であり得る。
 一実施形態において、角膜内皮細胞および/または角膜内皮様細胞が、約7%未満、約5%以下、または約2%以下のDMSOを含む保存液中で保存され得る。保存液中に含まれるDMSOは、細胞に悪影響を与え得るため、約5%以下であることが好ましく、より好ましくは、約2%以下であり、最も好ましくは保存液中にDMSOは含まれない。特定の実施形態において、保存液中に含まれるDMSOは約5%であり得る。特定の実施形態において、保存液中に含まれるDMSOは約2%であり得る。
 一実施形態において、角膜内皮細胞および/または角膜内皮様細胞は、ROCK阻害剤の存在下で凍結され得る。
 ROCK阻害剤としては、下記文献:米国特許4678783号、特許第3421217号、国際公開第95/28387、国際公開99/20620、国際公開99/61403、国際公開02/076976、国際公開02/076977、国際公開第2002/083175、国際公開02/100833、国際公開03/059913、国際公開03/062227、国際公開2004/009555、国際公開2004/022541、国際公開2004/108724、国際公開2005/003101、国際公開2005/039564、国際公開2005/034866、国際公開2005/037197、国際公開2005/037198、国際公開2005/035501、国際公開2005/035503、国際公開2005/035506、国際公開2005/080394、国際公開2005/103050、国際公開2006/057270、国際公開2007/026664、国際公開2014/113620、国際公開2019/089868、国際公開2014/055996、国際公開2019/014300、国際公開2019/014304、国際公開2018/138293、国際公開2018/115383、国際公開2018/118109、国際公開2018/102325、国際公開2018/009622、国際公開2018/009625、国際公開2018/009627、国際公開2017/205709、国際公開2017/123860、国際公開2016/112236、国際公開2016/028971、国際公開2015/165341、国際公開2015/054317、国際公開2015/002926、国際公開2015/002915、国際公開2014/068035、国際公開2014/055996、国際公開2013/030366、国際公開2012/146724、国際公開2011/107608、国際公開2010/104851、国際公開2008/077550、国際公開2008/036540、国際公開2005/097790などに開示された化合物があげられる。かかる化合物は、それぞれ開示された文献に記載の方法により製造することができる。具体例として、1-(5-イソキノリンスルホニル)ホモピペラジンまたはその塩(たとえば、ファスジル(1-(5-イソキノリンスルホニル)ホモピペラジン))、(+)-トランス-4-(1-アミノエチル)-1-(4-ピリジルカルバモイル)シクロヘキサン((R)-(+)-トランス-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド)またはその塩(たとえば、Y-27632((R)-(+)-トランス-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド2塩酸塩1水和物)など)などがあげられ、これらの化合物は、市販品(富士フイルム和光純薬株式会社、旭化成ファーマ等)を好適に用いることもできる。
 いくつかの実施形態において、使用され得るROCK阻害剤としては、Y-27632((+)-トランス-4-(1-アミノエチル)-1-(4-ピリジルカルバモイル)シクロヘキサン)、リパスジル(4-フルオロ-5-{[(2S)-2-メチル-1,4-ジアゼパン-1-イル]スルホニル}イソキノリン)、ファスジル(1-(5-イソキノリンスルホニル)ホモピペラジン)、ベロスジル(N-(1,2-ジヒドロ-1-オキソ-6-イソキノリニル)-α-(ジメチルアミノ)-3-チオフェンアセトアミド)、ベルモスジル(2-[3-[4-[(1H-インダゾール-5-イル)アミノ]キナゾリン-2-イル]フェノキシ]-N-イソプロピルアセタミド)およびその薬学的に許容される塩が挙げられる。ベルモスジルの構造は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000001
 いくつかの実施形態において、ROCK阻害剤は、リパスジル、Y-27632、ファスジル、ネタルスジル、ベロスジル、ベルモスジルまたはその薬学的に許容される塩であり、より好ましくは、リパスジル、Y-27632またはその薬学的に許容される塩であり得る。
 (製剤)
 別の態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する上記方法、または角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を生産する上記方法によって製造される角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を提供し得る。
 一態様において、本開示は、7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、凍結製剤を提供し得る。
 一態様において、本開示は、7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを緩慢凍結状態で凍結された状態で含む、凍結製剤を提供し得る。
 一態様において、本開示は、7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分とを凍結状態で含む凍結製剤を提供し得る。
 一態様において、本開示は、7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤を提供し得る。
 再生医療に使用される細胞凍結製剤はDMSOを少なくとも7%以上含んでおり、患者に投与する際には患者へのDMSOの毒性を懸念して生理食塩液で投与直前に希釈したり、点滴静注などの投与の際の投与速度を極めて遅くすることで高濃度のDMSOが患者に投与されることを回避する必要があった。本開示の方法により、7%未満の低減化されたDMSO濃度の保存液において保存しても高い生存率が維持された。本開示は、7%未満というこれまで実現できなかった低濃度のDMSOを含む凍結製剤を達成した。
 一態様において、本開示は、解凍後長期安定性凍結細胞製剤であって、該製剤は、7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、製剤し得る。
 一態様において、本開示は、ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を提供し得る。
 一態様において、本開示は、ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分(例えば、NaCl)とを凍結状態で含む凍結製剤を提供し得る。
 一態様において、本開示は、ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤を提供し得る。当業者であれば、培地成分は、適宜選択することができる。培地成分としては、例えば、グルコース等の炭素源、アミノ酸、ビタミン、電解質、リン酸塩、緩衝剤、成長因子、血清、血清アルブミンなどが挙げられるが、これらに限定されない。基礎培地成分に含まれるアミノ酸としては、特に限定されず、例えば、L-アルギニン、L-シスチン、L-グルタミン、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリンなどが挙げられる。基礎培地成分に含まれるビタミン類としては、特に限定されず、例えば、D-パントテン酸カルシウム、塩化コリン、葉酸、i-イノシトール、ナイアシンアミド、リボフラビン、チアミン、ピリドキシン、ビオチン、リポ酸、ビタミンB12、アデニン、チミジンなどが挙げられる。培地成分に含まれる電解質としては、特に限定されず、例えば、CaCl、KCl、MgSO、NaCl、NaHPO、NaHCO、Fe(NO、FeSO、CuSO、MnSO、NaSiO、(NH)6Mo24、NaVO、NiCl、ZnSOなどが挙げられる。細胞注入療法に使用される場合においては、培地は、異種血清成分を実質的に含まないことが好ましい。ここで「異種血清成分」は、レシピエントとは異なる種の生物に由来する血清成分を意味する。例えば、レシピエントがヒトである場合、ウシやウマに由来する血清、例えば、ウシ胎児血清(FBS、FCS)、仔ウシ血清(CS)、ウマ血清(HS)などが異種血清成分に該当する。
 一態様において、本開示は、解凍後長期安定性凍結細胞製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを緩慢凍結状態で凍結された状態で含む、製剤を提供し得る。
 一態様において、本開示は、解凍後投与された角膜内皮細胞および/または角膜内皮様細胞の生着および生体内における生存が阻害されない凍結製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを緩慢凍結状態で凍結された状態で含む、凍結製剤を提供し得る。
 本開示の製剤は、解凍後眼に直接投与可能であり得る。
 一実施形態において、製剤に含まれる角膜内皮細胞および/または角膜内皮様細胞の細胞数は、約1×10~約3×10細胞であり得、好ましくは、約5×10~約1×10細胞であり得る。特定の実施形態において、製剤に含まれる角膜内皮細胞および/または角膜内皮様細胞の細胞数は、例えば、約1×10細胞、約2×10細胞、約3×10細胞、約4×10細胞、約5×10細胞、約6×10細胞、約7×10細胞、約8×10細胞、約9×10細胞、約1×10細胞、約2×10細胞、約3×10細胞、約4×10細胞、または約5×10細胞であり得る。
 一実施形態では、製剤の液量は、約50μl~約2000μl、約50μl~約1000μl、約50μl~約800μl、約50μl~約600μl、約50μl~約300μl、約100μl~約2000μl、好ましくは約100μl~約1000μl、より好ましくは約200μl~約800μl、最も好ましくは約300μl~約600μlであり得るが、目的に応じて適宜変更可能である。製品規格としては、例えば、基準量(例えば、300μl)の±約5%、±約10%、±約15%、±約20%、±約25%、±約50%などであり得る。例えば、製剤の液量は、少なくとも約50μl、例えば、約100μl、約200μl、約300μl、約400μl、約500μl、約600μl、約700μl、約800μl、約900μl、約1ml、約2ml、約3ml、約4ml、約5ml、約6ml、約7ml、約8ml、約9ml、または約10mlであり得る。いくつかの実施形態において、細胞注入療法において、両眼への注入を企図する場合は、製品規格として投与量の2倍量、3倍量、または4倍量であってもよい。両眼への注入を企図しない場合であっても、投与に失敗したときに備えて、製品規格として投与量の2倍量、3倍量、または4倍量であってもよい。液量の範囲は、上記数値を適宜組み合わせることができる。
 一実施形態において、本開示の製剤は、1回当たり約50μL~約350μL、約250μL~約350μL、約300μL~約350μL、または約300μL投与され得る。本開示の製剤は、前房内に投与され得る。
 本開示の製剤の細胞密度は、約2×10個/ml以上であることが通常である。理論に束縛されるのは望まないが、細胞注入用として用いられる場合、細胞密度が少なすぎると治療効果が期待できず、細胞密度が高すぎると細胞の重なりが増えることによって、保存中の細胞死が促進される可能性がある。したがって、典型的には細胞密度は、約2×10個/ml~約8×10個/mlの範囲内で適宜決定することができ、好ましくは約2×10個/ml~約8×10個/ml、より好ましくは約2×10個/ml~約8×10個/ml、さらに好ましくは約1×10個/ml~約8×10個/ml、最も好ましくは約2×10個/ml~約4×10個/mlで得あり得る。当業者であれば、適切な細胞密度を用途に応じて適宜決定することが可能である。例えば、保存された角膜内皮細胞および/または角膜内皮様細胞が、細胞注入療法に使用される場合、保存する懸濁液の体積、至適投与量、任意で追加されるROCK阻害剤、および投与される懸濁液の体積等を考慮して、保存後に密度を調節する操作を軽減されるように、保存される細胞密度が決定されてもよい。典型的には、至適投与量は約1×10~約3×10細胞であり得、好ましくは、約5×10~約1×10細胞であり得る。当業者であれば、至適投与量を達成するように、製剤に含まれる細胞数、液量、および細胞密度を適宜決定することができる。
 一実施形態において、角膜内皮細胞および/または角膜内皮様細胞は、容器に収容され得る。いくつかの実施形態において、容器としては、任意のものを使用してよく、例えば、プレート(12、24、48または96ウェルプレート)、チューブ、バイアル瓶(ガラスバイアル)、シリンジ、およびディッシュが挙げられるがこれらに限定されない。本開示の方法は、容器の種類にかかわらず、高い細胞生存率で細胞を保存することができる。
 一実施形態において、製剤は、約7%未満、約5%以下、または約2%以下のDMSOを含み得る。製剤は、約5%以下のDMSOを含むことが好ましく、より好ましくは、約2%以下を含み、最も好ましくはDMSOを含まない。特定の実施形態において、製剤中に含まれるDMSOは約5%であり得る。特定の実施形態において、製剤中に含まれるDMSOは約2%であり得る。
 一実施形態において、製剤はROCK阻害剤を含み得る。ROCK阻害剤については、上記のとおりである。ROCK阻害剤は細胞接着を促進するため、保存時から製剤中に予めROCK阻害剤を含めてしまうと、接着が促進されてしまい、保存に悪影響が出ると思われるため、典型的にはROCK阻害剤は、投与の直前に製剤に添加される。しかしながら、予想外にも、ROCK阻害剤を保存の際から予め製剤中に含めた場合、保存後の細胞の生存率は高く、前房内に注入された角膜内皮細胞および/または角膜内皮様細胞は、角膜内皮に生着し、正常に機能していた(実施例5)。
 いくつかの実施形態において、角膜内皮細胞および/または角膜内皮様細胞の生存率は、解凍後、室温で少なくとも6時間少なくとも80%、または少なくとも90%の生存率であり得る。いくつかの実施形態において、角膜内皮細胞および/または角膜内皮様細胞の生存率は、解凍後、室温で少なくとも3時間少なくとも90%の生存率であり得る。
 別の態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、該方法が、非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含む、凍結工程、および必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程を含み、第1の速度が、1分あたり1℃未満の速度であり、第2の速度よりも遅い、方法を提供する。「第1の目標温度」とは、過冷却状態が維持される温度を指す。第1の目標温度は、好ましくは、第1の目標温度までの冷却速度よりも速い速度で冷却した場合に、凍結が開始する際の温度であり得る。第2の目標温度は、第1の目標温度からさらに温度を低下させて、最終的に目標とする温度を指す。本発明者らは、第1の目標温度まで過冷却状態で第1の速度で緩慢に温度を低下させ、第2の速度に変化させて凍結を開始させ、第2の目標温度まで温度を低下させることにより、細胞生存率がさらに改善されることを見出した。前記方法は、本開示に記載の1つまたは複数の実施形態を有してもよい。
 別の態様において、凍結工程は、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含み得る。第1の速度は、1分あたり1℃未満の速度であり、第2の速度よりも遅い速度であり得る。前記方法は、本開示に記載の1つまたは複数の実施形態を有してもよい。
 いくつかの実施形態において、凍結工程は、第1の目標温度まで温度を低下させた後、第1の目標温度で維持することをさらに含んでもよい。第1の目標温度で維持する時間は、過冷却状態が維持されていれば適宜設定してもよく、例えば、約5分以上、約10分以上、約20分以上、約30分以上、約40分以上、約50分以上、約60分以上、約70分以上、約80分以上、約90分以上、約100分以上、約110分以上、約120分以上、約150分以上、約180分以上であり得、最大で約240分であり得る。
 第1の目標温度は、過冷却状態が維持される温度であればよく、例えば、約-20℃~約-5℃の温度、好ましくは、約-15℃~約-10℃の温度、より好ましくは、-13℃~-10℃の温度であり得る。
 第2の目標温度は、第1の目標温度よりも低い温度であり、適宜設定でき、例えば、約-20℃以下の温度、好ましくは、約-196℃~約-80℃の温度、より好ましくは、約-196℃または約-80℃であり得る。
 第1の速度は、緩慢な速度であれば適宜設定してもよく、例えば、1分当たり約0.9℃以下の速度、好ましくは、1分あたり約0.5℃~約0.05℃、より好ましくは、1分あたり約0.3℃~約0.1℃の速度であり得る。
 第2の速度は、第1の速度より速く、第1の速度から第2の速度に変化させた際に凍結が開始するような温度であれば適宜設定してよく、例えば、1分あたり約0.5~約5℃の速度、好ましくは、1分あたり約1~約3℃の速度であり得る。
 一実施形態において、角膜内皮細胞および/または角膜内皮様細胞は、細胞注入療法に使用され得る。一実施形態において、製剤が、解凍後、さらなる加工も培養もすることなく投与され得る。
 (保存装置)
 さらなる態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞を保存する装置であって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、該温度制御部は、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御するよう指令することができ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持するように指令することができる、装置を提供し得る。
 別の態様において、本開示の装置の温度制御部は、非凍結温度から凍結目標温度に温度を低下させる際、第1の目標温度まで第1の速度で温度を低下させ、その後第1の目標温度から第2の目標温度まで第2の速度で温度を低下させるよう指令してもよい。前記装置は、本開示に記載の1つまたは複数の実施形態を有してもよい。
 さらなる態様において、本開示は、装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムであって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、プログラムを提供し得る。
 別の態様において、本開示のプログラムは、非凍結温度から凍結目標温度に温度を低下させる際、第1の目標温度まで第1の速度で温度を低下させ、その後第1の目標温度から第2の目標温度まで第2の速度で温度を低下させるよう指令してもよい。前記プログラムは、本開示に記載の1つまたは複数の実施形態を有してもよい。
 さらなる態様において、本開示は、装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムを格納した記録媒体であって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、記録媒体を提供し得る。
 別の態様において、本開示の記録媒体に格納されたプログラムは、非凍結温度から凍結目標温度に温度を低下させる際、第1の目標温度まで第1の速度で温度を低下させ、その後第1の目標温度から第2の目標温度まで第2の速度で温度を低下させるよう指令してもよい。前記プログラムは、本開示に記載の1つまたは複数の実施形態を有してもよい。
 本開示の装置またはプログラムで実現される各種機能は、その一部または全部が手動で実現されてもよい。
 本開示の装置またはプログラムで実現される各種機能は、その一部または全部が人工知能(AI)または機械学習によって実現または最適化されてもよい。
 本開示に係るプログラムを、コンピュータにて読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。ここで、この「記録媒体」とは、メモリーカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD、および、Blu-ray(登録商標) Disc等の任意の「可搬用の物理媒体」を含むものとする。
 また、「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものも含む。なお、実施の形態に示した各装置において記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 各種のデータベース等は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、光ディスク等のストレージ手段であり、各種処理やウェブサイト提供に用いる各種のプログラムやテーブルやデータベースやウェブページ用ファイル等を格納する。
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じて、または、機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。すなわち、上述した実施形態を任意に組み合わせて実施してもよく、実施形態を選択的に実施してもよい。
 (キット)
 さらなる態様において、本開示は、ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キットを提供し得る。
 一態様において、本開示は、角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キットを提供し得る。
 一態様において、本開示は、本開示の製剤と、該製剤を収容する容器と、該製剤を凍結状態で維持しつつ該容器を収容する収容器とを含む、凍結製剤キットを提供し得る。
 一態様において、本開示は、容器と、該容器を収容する収容器とを含む、凍結製剤キットであって、該容器は、本開示の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、キットを提供し得る。
 一態様において、本開示は、容器と該容器を収容する収容器とを含むキットの使用であって、該容器は、本開示の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、使用を提供し得る。
 一実施形態において、収容器は、収容する容器を約-80℃~約-20℃の範囲内の温度で維持し得る。一部の実施形態において、収容器は、収容する容器を約-80℃で維持し得る。
 (保存、運搬および治療)
 さらなる態様において、本開示は、本開示の製剤の運搬および/または保存方法であって、該製剤を、容器と該容器を収容する収容器とを含むキットの容器中に配置する工程と、該キット中の製剤を凍結状態で維持する工程と、を含む方法を提供し得る。
 さらなる態様において、角膜内皮細胞注入療法を行う方法であって、該細胞注入療法に適切な角膜内皮細胞および/または角膜内皮様細胞を提供する工程、該角膜内皮細胞および/または角膜内皮様細胞を、非凍結温度から1分あたり1℃未満の速度で温度を低下する段階を少なくとも一つ含む、凍結工程、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持し、必要に応じて該注入療法へと運搬する工程、該角膜内皮細胞および/または角膜内皮様細胞を解凍する工程、ならびに該角膜内皮細胞および/または角膜内皮様細胞を被験体に投与する工程を含む、方法を提供し得る。
 別の態様において、本開示の方法は、非凍結温度から凍結目標温度に温度を低下させる際、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含み得る。前記方法は、本開示に記載の1つまたは複数の実施形態を有してもよい。
 一実施形態において、運搬は、約-80℃~約-20℃の範囲内の温度、好ましくは-80℃で維持しながら行われ得る。
 被験体への投与は、解凍後6時間以内に行われることが好ましく、例えば、6時間以内、5時間以内、4時間以内、3時間以内、2時間以内、1時間以内、30分以内、20分以内、または10分以内に行われ得る。被験体への投与は、眼の前房内に行われ得る。
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 以下、実施例に基づいて本開示をより具体的に説明する。本実施例において用いられる各種試薬は、具体的に示したもののほか、Sigma-Aldrich、BASFジャパン株式会社などから入手されるものも用いることができることが理解される。
 (実施例1:既知成分の凍結保存液における凍結)
 グリセリンおよびポリエチレングリコールは細胞凍結保存剤としてよく知られている成分であるが、これらの成分だけでは保存効果が低いことからアルブミンなどのタンパク質成分の添加や、10%DMSOの添加が一般に行われる。本実施例は、このような一般的条件でHCECが保存されるかどうかを確認し、さらに冷却速度を一般的に知られている-1℃/分より遅くした時に、DMSOの濃度が低い場合でも凍結保存できるのかどうかを確認することを目的とする。
 (材料)
・4代継代後のヒト角膜内皮細胞
・OptiMEMTM-I (Invitrogen 21585-070)
・TrypleTMSelect Enzyme (10×) (Thermo Fisher Scientific A12177-01)
・赤十字アルブミン25%静注12.5g/50mL (日本血液製剤機構)
・2.0ml Cryogenic Vials (Corning 430488)
・プログラムフリーザー (NEPAGENE PF-NP-200)
・バイセル (日本フリーザー株式会社)
・iMatrix-511 (nippi 892012)
・Bambanker hRM (日本ジェネティクス CS-11-001)
・Cryostor CS10 prefomulated with 10% DMSO (Hemacare 210102)
・Cryostor CS5 prefomulated with 5% DMSO (Hemacare 205102)
・Cryostor CS2 prefomulated with 2% DMSO (Hemacare 202102)
・CP-1 high grade (極東製薬 27207)
・Bambanker DMSO Free (日本ジェネティクス CS-09-001)
・クライオスカーレス DMSO Free (バイオベルデ CPL-A1)
・12well plate (costar 3513) 
・プロテオセーブSS 遠沈管50mL (住友ベークライト MS-52550)
・ステムフル 遠沈管15mL (住友ベークライト MS-90150)
 4%HSAと、10%グリセリンまたは10%ポリエチレングリコールと、10%、5%、2%または0%DMSOとを含有するOptiMEMを保存液として使用した。
 (方法)
1.4代継代後のヒト角膜内皮細胞を使用した。培養中の培養皿から培地を除去し、OptiMEMを添加し、洗浄した。この作業を2回繰り返した。
2.OptiMEM除去後、TrypleTMSelect Enzyme(10×)を添加し、37℃(5%CO)で20minインキュベートした。
3.20分後培地で懸濁し、50mlステムフルに回収した。
4.300G×5min遠心した。
5.上清を除去し、OptiMEM(2%HSA)で懸濁した。
6.300G×5min遠心した。
7.5-6を再び繰り返した。
8.上清を除去し、OptiMEM(2%HSA)で懸濁し、細胞数をトリパンブルー染色によりカウントした。
9.検討する凍結保存試薬の分だけ、1.2×10個ずつ15mlステムフルに分注した。また、未凍結群(Control)として12well plateに1000cells/mmの細胞密度で播種し、2日おきに培地交換しながら2週間培養した。
10.15mlステムフルを300G×5min遠心した。
11.回収した細胞を、凍結保存液を用いてクライオチューブに保存した。
12.プログラムフリーザーで4℃から-80℃まで、-0.5℃/minで凍結した。13.-80℃まで下がったら事前に-80℃で冷やしておいたバイセル処理容器に移動し、-80℃のフリーザー内で3日間凍結保存した。
14.3日間凍結保存後、細胞を保存したクライオチューブを37℃の水浴中で1-2分間溶かした。
15.事前に37℃に温めておいた培地で細胞を回収し、トリパンブルー染色により回収細胞数と細胞生存率を計測した。
 実施例1の概要を図1に示す。
 (結果)
 図2は、本実施例で使用する細胞の培養形態の写真を示す。形態的な異常が無いロットであることが確認された。
 図3は、4%ヒト血清アルブミンと10%グリセリンをベース成分とした時のDMSO濃度を変えた凍結保存液で保存し、融解後の細胞の生存率を比較したグラフを示す。DMSOが5%以上含まれているときには冷却速度に関わりなく高い生存率が維持されているが、2%あるいは0%では冷却速度が細胞の生存率に大きな影響を及ぼし、-0.5℃/分で90%以上の生存率が維持された。BiCellは、凍結される細胞のチューブを格納する容器であり、-80℃のディープフリーザーに入れた場合には内部の温度が-1℃/分前後の速度で低下するようになっている容器である。BiCellで保存した場合では、プログラムフリーザーで-1℃/分で保存した場合より生存率が低かった。
 図4は、4%ヒト血清アルブミンと10%ポリエチレングリコールをベース成分とした時のDMSO濃度を変えた凍結保存液で保存し、融解後の細胞の生存率を比較したグラフを示す。グリセリンを含む凍結保存液における結果と異なり、5%DMSOを含む凍結保存液においても冷却速度の影響が細胞生存率に表れた。2%DMSO以下の組成では、-0.5℃/分の冷却速度で凍結した場合に約80%の生存率を示し、-1℃/分の冷却速度で凍結した場合よりもはるかに高かった。これらの結果は、冷却速度を遅くすることで生存率を改善することを示している。
 (実施例2:凍結保存剤と凍結速度の検討)
 (材料)
・4代継代後のヒト角膜内皮細胞
・OptiMEMTM-I (Invitrogen 21585-070)
・TrypleTMSelect Enzyme (10×) (Thermo Fisher Scientific A12177-01)
・赤十字アルブミン25%静注12.5g/50mL (日本血液製剤機構)
・2.0ml Cryogenic Vials (Corning 430488)
・プログラムフリーザー (NEPAGENE PF-NP-200)
・バイセル (日本フリーザー株式会社)
・iMatrix-511 (nippi 892012)
・Bambanker hRM (日本ジェネティクス CS-11-001)
・Cryostor CS10 prefomulated with 10% DMSO (Hemacare 210102)
・Cryostor CS5 prefomulated with 5% DMSO (Hemacare 205102)
・Cryostor CS2 prefomulated with 2% DMSO (Hemacare 202102)
・CP-1 high grade (極東製薬 27207)(10%DMSO含有)・Bambanker DMSO Free (日本ジェネティクス CS-09-001)
・クライオスカーレス DMSO Free (バイオベルデ CPL-A1)
・12well plate (costar 3513) 
・プロテオセーブSS 遠沈管50mL (住友ベークライト MS-52550)
・ステムフル 遠沈管15mL (住友ベークライト MS-90150)
 (方法)
1.4代継代後のヒト角膜内皮細胞を使用した。培養中の培養皿から培地を除去し、OptiMEMを添加し、洗浄した。この作業を2回繰り返した。
2.OptiMEM除去後、TrypleTMSelect Enzyme(10×)を添加し、37℃(5%CO)で20minインキュベートした。
3.20分後培地で懸濁し、50mlステムフルに回収した。
4.300G×5min遠心した。
5.上清を除去し、OptiMEM(2%HSA)で懸濁した。
6.300G×5min遠心した。
7.5-6を再び繰り返した。
8.上清を除去し、OptiMEM(2%HSA)で懸濁し、細胞数をトリパンブルー染色によりカウントした。
9.検討する凍結保存試薬の分だけ、1.2×10個ずつ15mlステムフルに分注した。また、未凍結群(Control)として12well plateに1000cells/mmの細胞密度で播種し、2日おきに培地交換しながら2週間培養した。
10.15mlステムフルを300G×5min遠心した。
11.各種の凍結保存試薬350μlで懸濁した。
12.各種の凍結保存試薬に終濃度100μMになるように調整したY-27632(100μl)を、11の15mlステムフルに添加して、全量450μlにした。
13.クライオチューブに450μlずつ分注した(1.2×10個/450μl)。14.プログラムフリーザーで、4℃から-80℃まで、-1℃/minもしくは-0.5℃/minもしくは-0.2℃/minで凍結させた。
15.-80℃まで下がったら事前に-80℃で冷やしておいたバイセル処理容器に移動し、-80℃フリーザー内で3日間凍結保存した。
16.3日間凍結保存後、細胞を保存したクライオチューブを37℃の水浴中で1~2分間溶した。
17.事前に37℃に温めておいた培地で細胞を回収し、トリパンブルー染色により回収細胞数と細胞生存率を計測した。
18.回収した細胞は12well plateに1000cells/mmの細胞密度で再播種した。
19.2日おきに培地交換をしながら、2週間培養した。
20.培養7日目に位相差顕微鏡(200倍)で5視野、細胞写真を撮影し、細胞密度を算出した。
 (結果)
 図5は、4℃から-1℃/分、-0.5℃/分または-0.2℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。DMSOを含む凍結保存剤では-1℃/分、-0.5℃/分および-0.2℃/分のいずれの条件においても高い生存率が達成された。DMSOを含まない凍結保存剤では冷却速度と反比例する形で細胞生存率が向上していることから、冷却速度を遅くすることは細胞の生存率を上げる効果があることが示された。また、-1℃/分の冷却速度で凍結した細胞を融解して、培養器に播種すると底面に接着しない細胞が多く認められ、角膜内皮細胞の機能が低下していることが示唆される。これらのことから、-1℃/分よりも遅い冷却速度で凍結することが、角膜内皮細胞の生存率の改善および機能の維持する上で重要であることが示唆された。
 図6は、4℃から-1℃/分または-0.5℃/分の冷却速度で凍結して保存し、保存後播種7日目の細胞密度を比較したデータを示す。2%DMSOを含むCS2、DMSOを含まないBambanker DMSO Free、クライオスカーレス DMSO Freeにおいて-1℃/分で凍結した場合は、細胞密度が低かったが、-0.5℃/分の冷却速度で凍結した場合は、高い細胞密度を示した。このことから、冷却速度は、保存後の培養における細胞密度にも影響を与えることが示された。
 (実施例3:DMSO添加培養検討)
 (方法)
1.実施例2(1-10)と同様の方法で細胞を回収し、Cryostor CS2を用いて細胞をクライオチューブに保存する。
2.プログラムフリーザーで4℃から-80℃まで、-0.5℃/minで凍結させる。3.-80℃まで下がったら事前に-80℃で冷やしておいたバイセル処理容器に移動し、-80℃フリーザー内で3日間凍結保存する。
4.3日間凍結保存後、細胞を保存したクライオチューブを37℃の水浴中で1-2分間溶かす。
5.事前に37℃に温めておいた培地で細胞を回収し、トリパンブルー染色により回収細胞数と細胞生存率を計測する。
6.回収した細胞を、15mlステムフル4本に分注し、300G×5min遠心する。7.遠心後、上清を除去し、DMSO10%,5%,2%,0%含んだ培地を用いて1000cells/mmの細胞密度に調整し、12well plateに再播種する。8.播種後1h,3h,6h,24hに位相差顕微鏡により細胞の写真を撮影する。
9.各時間において細胞写真を撮影後、浮いている細胞も含めて容器中の全ての細胞を回収し、トリパンブルー染色により細胞生存率を測定する。
 実施例3の概要を図7に示す。
 (結果)
 図8は、DMSOを10%もしくは5%添加した培地で培養した細胞の位相差顕微鏡像を示す。DMSOを10%もしくは5%添加した培地で培養した細胞は、DMSOを添加しない培地で培養した細胞に比較して顕著に細胞数が低下しており、培養器の底(ラミニンコート済み)に非接着の細胞が多いことが示された。DMSOを含まない培地で培養した細胞は、接種後1時間でも大部分の細胞が接着し、3時間ではすべての細胞が接着しているのに対し、DMSO 10%では24時間まで全く細胞の接着は認められなかった。DMSO 5%でも1時間後はほとんど接着細胞が認められず、3時間後、6時間後では半数以下の細胞の接着は認められるものの、24時間後では逆に接着細胞がほとんどなくなった。図8の顕微鏡像において、白く見える細胞は非接着細胞を示し、黒く見えて非円形の細胞が接着細胞を示す。
 図9は、DMSO 2%を含む、またはDMSOを含まない培地で培養した細胞の位相差顕微鏡像を示す。DMSO 2%を含む培地で培養した細胞の接着率は、DMSOを含まない培地で培養した細胞の接着率と変わらなかった。
 眼の前房内の環境においては、前房液は徐々には置き換わるものの、DMSOを含む組成で細胞を注入した場合には相当時間高濃度のDMSOにさらされると考えられることから、10%などの高濃度のDMSOを含む凍結保存剤のままで細胞を前房内に注入すると角膜内皮細胞の生存率や接着に大きな障害を与えることが予想される。
 図10は、再播種後の細胞を回収し、生存率を調べた結果を示すグラフである。顕微鏡写真(図8)ではほとんど接着していなかったDMSO 10%を含む培地で培養した細胞も生存率は1時間の時点では低下していなかった。しかし、その後に生存率が低下することから、DMSOを10%含む培地で培養した細胞は1時間の時点では生存率の低下は認められないものの、重大なダメージをすでに受けており、そのために接着できなかったことが推定される。
 これらの結果を踏まえれば、前房内に注入される細胞製剤に含まれるDMSOは5%以下が好ましく、2%以下または含まないことが最も好ましい。
 (実施例4:凍結融解後の安定性の検討)
 (方法)
1.実施例2(1-10)と同様の方法で細胞を回収し、Cryostor CS10,CS5,CS2を用いてクライオチューブに各保存液あたり6本ずつ保存する。
2.プログラムフリーザーで4℃から-80℃まで、-0.5℃/minで凍結させる。3.-80℃まで下がったら事前に-80℃で冷やしておいたバイセル処理容器に移動し、-80℃フリーザー内で3日間凍結保存する。
4.3日間凍結保存後、細胞を保存したクライオチューブを37℃の水浴中で1~2分間溶かす。
5.各保存液あたり1本ずつはすぐに事前に37℃に温めておいた培地で細胞を回収し、トリパンブルー染色により細胞生存率を測定する (0h)。残りの5本ずつは、室温で30min,1h,3h,6h,24h放置させた後に同様の方法で細胞を回収し、トリパンブルー染色により細胞生存率を測定する。
6.それぞれの時間で回収した細胞は、12well plateに1000cells/mmの細胞密度で再播種する。
7.それぞれ再播種した時間から24h培養後、位相差顕微鏡により細胞写真を撮影する。
 実施例4の概要を図11に示す。
 (結果)
 図12は、DMSOを10%含むCryostor CS10中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。室温で6時間以上放置した場合、細胞増殖や接着能の低下が認められた。
 図13は、DMSOを5%含むCryostor CS5中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。室温で6時間置いた細胞で若干の細胞増殖および接着能の低下が認められるものの、CS5と比較してその程度は低かった。
 図14は、DMSOを2%含むCryostor CS2中で凍結した細胞を0時間、30分、1時間、3時間、6時間、または24時間室温で放置した後、T25培養フラスコに再播種し、24時間後に細胞の培養状態を撮影した位相差顕微鏡像を示す。室温で6時間置いた細胞でも変化は認められない。
 図15は、再播種後の細胞を回収し、生存率を調べた結果を示すグラフである。これらの結果から、DMSOを5%以下、好ましくは2%以下で含む凍結保存剤で凍結した細胞製剤は融解後も安定な製剤であり、臨床使用上の利便性が大きいと考えられた。
 (実施例5:VIXELLTMにおける凍結保存および保存後の角膜内皮細胞の注入)
 VIXELLTMは、ドライアイスを充填することで-75℃±15℃を18日間維持できる。本実施例では、VIXELLTMを用いて角膜内皮細胞を保存・運搬を行い、その後角膜内皮細胞の注入を行う。
 (方法)
 (凍結保存)
1.培養した角膜内皮細胞を回収し、100μMのY27632を添加したCryoStor(登録商標) CS2で1.2×10細胞/450μlの細胞密度で懸濁した。
2.プログラムフリーザーを使用して、バイアルを4℃から-0.5℃/分の速度で-80℃まで温度を低下させて凍結した。
3.保存したバイアルをBICELLTMに入れ、-80℃でディープフリーザーに一旦保存した。
4.保存されたバイアルを取り出し、ドライアイスを含むVIXELLTMに収めて5日間保存された。
 (細胞注入)
 直径8mmの角膜内皮細胞を剥離したモデルに対してCryostor CS2で凍結保存した培養ヒト角膜内皮細胞を医療品輸送向け保冷ボックス(VIXELLTM)で5日間保存後、前房水を灌流することなく注入することにより生体内での角膜内皮再生の動態を観察した。
Figure JPOXMLDOC01-appb-T000002
 3時間の俯き姿勢終了後、1、2、3、5日経過時に細隙灯顕微鏡による前眼部観察を行い、炎症や感染の有無を確認した。手術の前日、当日、術後2、4日にプログラフ注射液5mg/mLを生理食塩水100mLを加え希釈し、全量6mlを後耳介静脈に注射した。術後1,5日に安楽死を行い、免疫染色を行った。
 (結果)
 図16は、保冷ボックスで5日間保存した細胞を融解した時の生存率と細胞回収率を示す。生存率は5日時点の生細胞数/総細胞数で算出した。細胞回収率は、理論上の細胞数(充填した細胞数)を100%とした時の回収率とした。
 保冷ボックスで保存された細胞が正常な形質を保っているかどうかを確認するため、融解後の細胞を遠心分離で凍結保存剤を除去し、通常の8%FBSを含むOPTI-MEM培地(Y27632も含む)に再懸濁した上でT25培養フラスコに播種して2日間培養した。図17は、保冷ボックスで保存した後、2日間培養した細胞の顕微鏡写真を示す。非凍結細胞と同じ形状で培養器の底面に接着していることから、正常な形質が保たれていることが確認された。
 図18は、保冷ボックスでの保存後の細胞を注入したウサギの眼の写真を示す。角膜内皮細胞が生着したことにより角膜の透明性が維持された。
 図19は、細胞注入後1日目の角膜内皮のCD166の免疫組織染色の写真を示す。角膜内皮の組織を固定し、角膜内皮細胞の発現マーカーの一つであるCD166に対する抗体を1次抗体として結合させた後に蛍光標識した2次抗体を結合させて免疫組織染色した。注入した細胞がきれいにモノレイヤーに生着しており、CD166が強く発現していることが確認された。上段は角膜中央部、下段は周辺部を示す。ヒトのCD166のみに結合する抗体で染色しているため、ウサギの角膜内皮は染色されず、明確な境界が確認された。
 図20は、細胞注入後1日目のZO-1およびNa/K ATPaseの免疫組織染色の写真を示す。ZO-1およびNa/K ATPaseは、角膜内皮細胞の機能分子として発現している。図21は、細胞注入後5日目の角膜内皮のCD166、ZO-1およびNa/K ATPaseの免疫組織染色の写真を示す。
 これらの結果は、注入された角膜内皮細胞が、角膜内皮に生着し、正常に機能していることを示している。
 (実施例6:-0.7℃/分の冷却速度での凍結)
 本実施例は、実施例1と同様の既知成分の凍結保存液および実施例2と同様の市販の保存液において、4℃から-0.7℃/分の冷却速度で凍結した場合の角膜内皮細胞の生存率を確認することを目的とする。
 図22および図24に、本実施例の概要を示す。
 (結果)
 図23は、4%ヒト血清アルブミンと10%グリセリンをベース成分とした時のDMSO濃度を変えた凍結保存液で-1℃/分、-0.7℃/分、-0.5℃/分、または-0.2℃の冷却速度で凍結し、融解後の細胞の生存率を比較したグラフを示す。10%のDMSOを含む凍結保存液では、-0.5℃/分および-0.2℃の冷却速度で凍結した場合に生存率の改善傾向が認められた。また、5%のDMSOを含む凍結保存液では、-0.7℃/分、-0.5℃/分、および-0.2℃の冷却速度で凍結した場合に生存率の改善傾向が認められた。2%のDMSOを含む凍結保存液およびDMSOを含まない凍結保存液では、-0.7℃/分、-0.5℃/分、および-0.2℃の冷却速度で凍結した場合に顕著な生存率の改善が認められた。
 図25は、市販の凍結保存液において、4℃から-0.7℃/分の冷却速度で凍結した細胞の融解後の生存率および回収率を示す。生存率は生細胞数/総細胞数で算出した。細胞回収率は、理論上の細胞数(充填した細胞数)を100%とした時の回収率とした。図26は、市販の凍結保存液において、4℃から-1℃/分または-0.7℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。図27は、市販の凍結保存液において、4℃から-0.5℃/分または-0.2℃/分の冷却速度で凍結した細胞の融解後の生存率を比較したデータを示す。DMSOを含まない凍結保存液では、-0.7℃/分、-0.5℃/分および-0.2℃/分の冷却速度で凍結した場合に-1℃/分の冷却速度で凍結した場合と比べて生存率の顕著な改善が認められた。
 実施例1および2の結果と本実施例の結果を踏まえれば、細胞生存率は、-0.7℃/分およびこれより遅い冷却速度で凍結して保存することで改善される。特に、2%と低いDMSOを含む凍結保存液およびDMSOを含まない凍結保存液において、顕著な生存率の改善が認められたため、本開示の方法により、凍結保存時のDMSOを低減化することが可能になる。
 (実施例7:ガラスバイアル製剤での凍結保存)
 本実施例では、ガラスバイアルでの凍結保存を行った。以下に示すように、容器に関係なく、緩慢な冷却速度で凍結することにより高い生存率で保存することができる。
 (材料および方法)
 実施例2(1-10)と同様の方法で細胞を回収し、以下の保存溶液および冷却速度で細胞をガラスバイアルに保存した。
・コントロール群:保存溶液:CS2+Y-27632(100μM)、凍結速度:-0.5℃/min(~-80℃)
・HSA添加群:保存溶液:CS2+Y-27632(100μM)+4%HSA、凍結速度:-0.5℃/min(~-80℃)
・速度(1)群:保存溶液:CS2+Y-27632(100μM)、凍結速度:-0.5℃/min(~-10℃),110min hold(-10℃),-1.0℃/min(~-80℃)
・速度(2)群:保存溶液:CS2+Y-27632(100μM)、凍結速度:-0.1℃/min(~-10℃),-1.0℃/min(~-80℃)
 (結果)
 図29~31は、温度の推移を示す。サンプルの急激な温度上昇は、冷却時に見られる潜熱によるものである。-0.5℃/minで-80℃まで冷却して凍結した場合、85%を超える高い生存率で保存されることを示した。また、HSAを添加して、同じ冷却条件で保存した場合、さらに生存率が上昇し、90%を超える生存率を示した。また、緩慢な速度で-10℃まで冷却し(その後-10℃で一定時間維持してもよい)、その後-1.0℃/minの速度で冷却して保存した場合も同様に、コントロール群と比較して生存率が上昇し、90%を超える生存率を示した(図28)。すべての保存群において、細胞の形状に異常は認められなかった。
 このように、容器にかかわらず、緩慢な冷却速度で凍結して保存することによって高い生存率で細胞を保存することができることを示した。また、緩慢な速度で特定の温度まで冷却し(その後一定時間温度を維持してもよい)、その後速度を速めて冷却して保存することにより、さらに細胞生存率を改善することを示した。
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は、2021年11月11日に出願された日本国特許出願第2021-184246号の優先権の利益を請求し、その内容は参照によって本明細書に組み込まれる。
 DMSO濃度を低減化した、あるいはDMSOを含まない凍結保存液での角膜内皮細胞の凍結方法および患者にそのまま投与可能な細胞凍結製剤の製造方法が提供される。このように製剤は細胞移植等に用いられ得るため、製薬等の分野において利用可能である。

Claims (77)

  1.  角膜内皮細胞および/または角膜内皮様細胞を保存する方法であって、
     非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を凍結する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程、および
     必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程
    を含む、方法。
  2.  角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持する工程を含む、請求項1に記載の方法。
  3.  前記凍結状態で維持する工程は、凍結維持温度で維持することを含む、請求項1または2に記載の方法。
  4.  前記凍結維持温度が、約-80℃~約-10℃の範囲内の温度である、請求項3に記載の方法。
  5.  前記凍結維持温度が、約-196℃~約-10℃の範囲内の温度である、請求項3に記載の方法。
  6.  前記凍結維持温度が、約-30℃以下の温度である、請求項3に記載の方法。
  7.  前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.1℃~約0.9℃の速度で温度を低下される、請求項1~6のいずれか一項に記載の方法。
  8.  前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.2℃~約0.8℃の速度で温度を低下される、請求項1~6のいずれか一項に記載の方法。
  9.  前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.7℃以下の速度で温度を低下される、請求項1~6のいずれか一項に記載の方法。
  10.  前記角膜内皮細胞および/または角膜内皮様細胞が、非凍結温度から1分あたり約0.2℃~約0.7℃の速度で温度を低下される、請求項1~6のいずれか一項に記載の方法。
  11.  前記非凍結温度が、約0℃~約42℃の範囲内の温度である、請求項1~10のいずれか一項に記載の方法。
  12.  前記非凍結温度が、約0℃~約37℃の範囲内の温度である、請求項1~10のいずれか一項に記載の方法。
  13.  前記非凍結温度が、約4℃~約23℃の範囲内の温度である、請求項1~10のいずれか一項に記載の方法。
  14.  前記凍結工程は、約-20℃±10℃の少なくとも一部の温度範囲において、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、請求項1~13のいずれか一項に記載の方法。
  15.  前記凍結工程は、約-20℃±10℃の温度範囲に一定時間以上維持する段階を少なくとも1つ含む、請求項1~13のいずれか一項に記載の方法。
  16.  前記角膜内皮細胞および/または角膜内皮様細胞が、約7%未満のDMSOを含む保存液中で保存される、請求項1~15のいずれか一項に記載の方法。
  17.  前記角膜内皮細胞および/または角膜内皮様細胞が、約5%以下のDMSOを含む保存液中で保存される、請求項1~15のいずれか一項に記載の方法。
  18.  前記角膜内皮細胞および/または角膜内皮様細胞が、約2%以下のDMSOを含む保存液中で保存される、請求項1~15のいずれか一項に記載の方法。
  19.  前記角膜内皮細胞および/または角膜内皮様細胞が、DMSOを含まない保存液中で保存される、請求項1~15のいずれか一項に記載の方法。
  20.  前記凍結工程は、角膜内皮細胞および/または角膜内皮様細胞がROCK阻害剤の存在下で凍結されていることを含む、請求項1~19のいずれか一項に記載の方法。
  21.  前記凍結工程が、第1の目標温度まで第1の速度で温度を低下させること、および第1の目標温度から第2の目標温度まで第2の速度で温度を低下させることを含み、該第1の速度が、1分あたり1℃未満の速度であり、該第2の速度よりも遅い、請求項1に記載の方法。
  22.  前記凍結工程が、前記第1の目標温度まで温度を低下させた後、前記第1の目標温度で維持することをさらに含む、請求項21に記載の方法。
  23.  前記第1の目標温度が、約-20℃~約-5℃の範囲内の温度である、請求項21または22に記載の方法。
  24.  前記第1の目標温度が、約-15℃~約-10℃の範囲内の温度である、請求項21または22に記載の方法。
  25.  前記第2の目標温度が、約-20℃以下の温度である、請求項21~24のいずれか一項に記載の方法。
  26.  前記第2の目標温度が、約-196℃~約-80℃の範囲内の温度である、請求項21~24のいずれか一項に記載の方法。
  27.  前記第1の速度が、1分あたり約0.5℃~約0.05℃の速度である、請求項21~26のいずれか一項に記載の方法。
  28.  前記第1の速度が、1分あたり約0.3℃~約0.1℃の速度である、請求項21~26のいずれか一項に記載の方法。
  29.  前記第2の速度が、1分あたり約0.5~約5℃の速度である、請求項21~28のいずれか一項に記載の方法。
  30.  前記第2の速度が、1分あたり約1~約3℃の速度である、請求項21~28のいずれか一項に記載の方法。
  31.  角膜内皮細胞および/または角膜内皮様細胞の凍結製剤を生産する方法であって、
     非凍結状態の該角膜内皮細胞および/または角膜内皮様細胞を必要に応じて薬学的に受容可能な成分と混合し、凍結して凍結製剤を生産する工程であって、非凍結温度から凍結目標温度に温度を変更する際に、1分あたり1℃未満の速度で温度を低下させる段階を少なくとも1つ含む、凍結工程、および
     必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞の該凍結製剤を凍結状態で維持する工程
    を含む、方法。
  32.  請求項2~30のいずれかまたは複数の項に記載の方法に記載される1または複数の特徴をさらに含む、請求項31に記載の方法。
  33.  請求項1~32のいずれか一項に記載の方法によって製造される角膜内皮細胞および/または角膜内皮様細胞の凍結製剤。
  34.  前記角膜内皮細胞および/または角膜内皮様細胞を約1×10~約3×10個を含む、請求項33に記載の凍結製剤。
  35.  前記凍結製剤の体積は、約50μL~約600μLである、請求項33または34に記載の凍結製剤。
  36.  前記凍結製剤は、1回あたり約50μL~約350μL投与されることを特徴とする、請求項33~35のいずれか一項に記載の凍結製剤。
  37.  角膜内皮細胞および/または角膜内皮様細胞を保存する装置であって、該装置は
     該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、
     収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と
     該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部と
    を含み、
     該温度制御部は、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御するよう指令することができ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持するように指令することができる、装置。
  38.  装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムであって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、
     該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、プログラム。
  39.  装置において角膜内皮細胞および/または角膜内皮様細胞を保存することができるようにコンピュータに実装させる方法をコードするプログラムを格納した記録媒体であって、該装置は該角膜内皮細胞および/または角膜内皮様細胞を収容する容器を収容する収容・保存部と、収容・保存部において収容された容器内の角膜内皮細胞および/または角膜内皮様細胞の温度を制御するように指令する温度制御部と、該収容・保存部における温度を、該温度制御部の指令に基づいて温度調節し得る、温度調節部とを含み、
     該プログラムは、該温度制御部に対して、非凍結温度から凍結目標温度に温度を低下させる際に、1分あたり1℃未満の速度で温度を変更する段階を少なくとも1つ含むように温度制御させ、必要に応じて、該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持させる、記録媒体。
  40.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、凍結製剤。
  41.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む、解凍後眼に直接投与可能な凍結製剤。
  42.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
  43.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分とを凍結状態で含む凍結製剤。
  44.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤。
  45.  7%未満のDMSOと角膜内皮細胞および/または角膜内皮様細胞とを含む解凍後長期安定性凍結細胞製剤。
  46.  約5%以下のDMSOを含む、請求項40~45のいずれか一項に記載の凍結製剤。
  47.  約2%以下のDMSOを含む、請求項40~45のいずれか一項に記載の凍結製剤。
  48.  DMSOを含まない、請求項40~45のいずれか一項に記載の凍結製剤。
  49.  ROCK阻害剤をさらに含む、請求項40~48のいずれか一項に記載の凍結製剤。
  50.  前記ROCK阻害剤が、Y-27632である、請求項49に記載の凍結製剤。
  51.  ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤。
  52.  ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と生理食塩水の成分とを凍結状態で含む凍結製剤。
  53.  ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞と培地成分とを凍結状態で含む凍結製剤。
  54.  解凍後長期安定性凍結細胞製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを含む、製剤。
  55.  前記角膜内皮細胞および/または角膜内皮様細胞の生存率が、解凍後、室温で少なくとも6時間少なくとも80%の生存率である、請求項54に記載の製剤。
  56.  解凍後投与された角膜内皮細胞および/または角膜内皮様細胞の生着および生体内における生存が阻害されない凍結製剤であって、該製剤は、角膜内皮細胞および/または角膜内皮様細胞とROCK阻害剤とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
  57.  7%未満のDMSOとROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを緩慢凍結状態で凍結された状態で含む、凍結製剤。
  58.  前記ROCK阻害剤が、Y-27632である、請求項50~57のいずれか一項に記載の製剤。
  59.  約7%未満のDMSOを含む、請求項50~56のいずれか一項に記載の製剤。
  60.  約5%以下のDMSOを含む、請求項50~56のいずれか一項に記載の製剤。
  61.  約2%以下のDMSOを含む、請求項50~56のいずれか一項に記載の製剤。
  62.  DMSOを含まない、請求項50~56のいずれか一項に記載の製剤。
  63. 前記製剤は、緩慢凍結状態で凍結された状態で前記細胞を含む、請求項30~52のいずれか一項に記載の製剤。
  64.  前記製剤が、非凍結温度から1分あたり1℃未満の速度で温度を低下させて凍結されたものである、請求項30~53のいずれか一項に記載の製剤。
  65.  前記角膜内皮細胞および/または角膜内皮様細胞が、細胞注入療法に使用されることを特徴とする、請求項40~64のいずれか一項に記載の製剤。
  66.  前記凍結製剤が、解凍後、さらなる加工も培養もすることなく投与されることを特徴とする、請求項40~65のいずれか一項に記載の製剤。
  67.  前記角膜内皮細胞および/または角膜内皮様細胞を約1×10~約3×10個を含む、請求項40~66のいずれか一項に記載の製剤。
  68.  前記凍結製剤の体積は、約50μL~約600μLである、請求項40~67のいずれか一項に記載の製剤。
  69.  前記製剤は、1回あたり約50μL~約350μL投与されることを特徴とする、請求項40~68のいずれか一項に記載の製剤。
  70.  角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キット。
  71.  前記凍結製剤は、請求項30~59のいずれか一項に記載の製剤である、請求項70に記載の凍結製剤キット。
  72.  請求項40~69のいずれか一項に記載の製剤と、該製剤を収容する容器と、該製剤を凍結状態で維持しつつ該容器を収容する収容器とを含む、凍結製剤キット。
  73.  容器と、該容器を収容する収容器とを含む、凍結製剤キットであって、
     該容器は、請求項40~69のいずれか一項に記載の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、キット。
  74.  ROCK阻害剤と角膜内皮細胞および/または角膜内皮様細胞とを凍結状態で含む凍結製剤を収容する容器と、該容器を凍結状態を維持しつつ収容する収容器とを含む、凍結製剤キット。
  75.  容器と該容器を収容する収容器とを含むキットの使用であって、
     該容器は、請求項40~69のいずれか一項に記載の製剤を収容するように用いられ、該収容器は、該製剤を凍結状態で維持するように用いられる、使用。
  76.  請求項40~69のいずれか一項に記載の製剤の運搬および/または保存方法であって、
     該製剤を、容器と該容器を収容する収容器とを含むキットの容器中に配置する工程と、
     該キット中の製剤を凍結状態で維持する工程と、
    を含む方法。
  77.  角膜内皮細胞注入療法を行う方法であって、
     該細胞注入療法に適切な角膜内皮細胞および/または角膜内皮様細胞を提供する工程、
     該角膜内皮細胞および/または角膜内皮様細胞を、非凍結温度から1分あたり1℃未満の速度で温度を低下する段階を少なくとも一つ含む、凍結工程、
     該角膜内皮細胞および/または角膜内皮様細胞を凍結状態で維持し、必要に応じて該注入療法へと運搬する工程、
     該角膜内皮細胞および/または角膜内皮様細胞を解凍する工程、ならびに
     該角膜内皮細胞および/または角膜内皮様細胞を被験体に投与する工程
    を含む、方法。
PCT/JP2022/041960 2021-11-11 2022-11-10 角膜内皮細胞の凍結保存製剤およびその製造法 WO2023085369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2022385051A AU2022385051A1 (en) 2021-11-11 2022-11-10 Cryopreservation preparation for corneal endothelial cells and method for producing said cryopreservation preparation
CA3238227A CA3238227A1 (en) 2021-11-11 2022-11-10 Cryopreservation preparation for corneal endothelial cells and method for producing said cryopreservation preparation
JP2023559903A JPWO2023085369A1 (ja) 2021-11-11 2022-11-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-184246 2021-11-11
JP2021184246 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023085369A1 true WO2023085369A1 (ja) 2023-05-19

Family

ID=86335877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041960 WO2023085369A1 (ja) 2021-11-11 2022-11-10 角膜内皮細胞の凍結保存製剤およびその製造法

Country Status (4)

Country Link
JP (1) JPWO2023085369A1 (ja)
AU (1) AU2022385051A1 (ja)
CA (1) CA3238227A1 (ja)
WO (1) WO2023085369A1 (ja)

Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678783A (en) 1983-11-04 1987-07-07 Asahi Kasei Kogyo Kabushiki Kaisha Substituted isoquinolinesulfonyl compounds
WO1995028387A1 (fr) 1994-04-18 1995-10-26 Yoshitomi Pharmaceutical Industries, Ltd. Compose benzamide et utilisation medicale dudit compose
WO1999020620A1 (fr) 1997-10-22 1999-04-29 Nippon Shinyaku Co Ltd Derive d'isoquinoleine et medicament
WO1999061403A1 (fr) 1998-05-25 1999-12-02 Santen Pharmaceutical Co., Ltd. Nouveaux derives vinylbenzene
WO2002076977A2 (en) 2001-03-23 2002-10-03 Bayer Corporation Rho-kinase inhibitors
WO2002076976A2 (en) 2001-03-23 2002-10-03 Bayer Corporation Rho-kinase inhibitors
WO2002083175A1 (fr) 2001-04-11 2002-10-24 Senju Pharmaceutical Co., Ltd. Agents ameliorant la fonction visuelle
WO2002100833A1 (fr) 2001-06-12 2002-12-19 Sumitomo Pharmaceuticals Company, Limited Inhibiteurs de rho kinase
JP3421217B2 (ja) 1995-11-20 2003-06-30 麒麟麦酒株式会社 Rho標的タンパク質Rhoキナーゼ
WO2003059913A1 (en) 2002-01-10 2003-07-24 Bayer Healthcare Ag Roh-kinase inhibitors
WO2003062227A1 (en) 2002-01-23 2003-07-31 Bayer Pharmaceuticals Corporation Rho-kinase inhibitors
WO2004009555A1 (ja) 2002-07-22 2004-01-29 Asahi Kasei Pharma Corporation 5−置換イソキノリン誘導体
WO2004022541A1 (en) 2002-09-03 2004-03-18 Universite De Montreal 1,4-substituted cyclohexane derivatives
WO2004108724A1 (ja) 2003-06-06 2004-12-16 Asahi Kasei Pharma Corporation 3環系化合物
WO2005003101A2 (en) 2003-07-02 2005-01-13 Biofocus Discovery Limited Pyrazine and pyridine derivatives as rho kinase inhibitors
WO2005034866A2 (en) 2003-10-06 2005-04-21 Glaxo Group Limited Preparation of 1, 6, 7- trisubstituted azabenzimidazoles as kinase inhibitors
WO2005035501A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規オレフィン誘導体
WO2005035503A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規イソキノリン誘導体
WO2005035506A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規インダゾール誘導体
WO2005037198A2 (en) 2003-10-06 2005-04-28 Glaxo Group Limited Preparation of 1,7-disubstituted azabenzimidazoles as kinase inhibitors
WO2005037197A2 (en) 2003-10-06 2005-04-28 Glaxo Group Limited Preperation of 1,6-disubstituted azabenzimidazoles as kinase inhibitors
WO2005039564A1 (en) 2003-10-02 2005-05-06 Vertex Pharmaceuticals Incorporated Phthalimide compounds useful as protein kinase inhibitors
WO2005080394A1 (en) 2004-02-24 2005-09-01 Bioaxone Therapeutique Inc. 4-substituted piperidine derivatives
WO2005097790A1 (de) 2004-04-08 2005-10-20 Bayer Healthcare Ag Hetaryloxy-substituierte phenylaminopyrimidine als rho-kinasehemmer
WO2005103050A2 (en) 2004-04-02 2005-11-03 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of rock and other protein kinases
WO2006057270A1 (ja) 2004-11-26 2006-06-01 Asahi Kasei Pharma Corporation 含窒素3環化合物
WO2007026664A1 (ja) 2005-08-30 2007-03-08 Asahi Kasei Pharma Corporation スルホンアミド化合物
WO2008036540A2 (en) 2006-09-20 2008-03-27 Boehringer Ingelheim International Gmbh Rho kinase inhibitors
WO2008077550A1 (en) 2006-12-27 2008-07-03 Sanofi-Aventis Substituted isoquinoline and isoquinolinone derivatives as inhibitors of rho-kinase
WO2010104851A1 (en) 2009-03-09 2010-09-16 Surface Logix, Inc. Rho kinase inhibitors
WO2011107608A1 (en) 2010-03-02 2011-09-09 Amakem Nv Heterocyclic amides as rock inhibitors
WO2012146724A2 (en) 2011-04-29 2012-11-01 Amakem Nv Novel rock inhibitors
WO2013030366A1 (en) 2011-08-31 2013-03-07 Amakem Nv Novel soft rock inhibitors
WO2014055996A2 (en) 2012-10-05 2014-04-10 Kadmon Corporation, Llc Rho kinase inhibitors
WO2014068035A1 (en) 2012-10-31 2014-05-08 Amakem Nv Novel rock inhibitors
WO2014113620A2 (en) 2013-01-18 2014-07-24 Bristol-Myers Squibb Company Phthalazinones and isoquinolinones as rock inhibitors
WO2014142038A1 (ja) * 2013-03-11 2014-09-18 Jcrファーマ株式会社 ヒト角膜上皮シートの製造法
WO2015002926A1 (en) 2013-07-02 2015-01-08 Bristol-Myers Squibb Company Tricyclic pyrido-carboxamide derivatives as rock inhibitors
WO2015002915A1 (en) 2013-07-02 2015-01-08 Bristol-Myers Squibb Company Tricyclic pyri do-carboxam i d e derivatives as rock inhibitors
WO2015054317A1 (en) 2013-10-07 2015-04-16 Kadmon Corporation, Llc Rho kinase inhibitors
WO2015165341A1 (zh) 2014-04-28 2015-11-05 南京明德新药研发股份有限公司 作为rho激酶抑制剂的异喹啉磺酰衍生物
WO2016028971A1 (en) 2014-08-21 2016-02-25 Bristol-Myers Squibb Company Tied-back benzamide derivatives as potent rock inhibitors
WO2016112236A1 (en) 2015-01-09 2016-07-14 Bristol-Myers Squibb Company Cyclic ureas as inhibitors of rock
WO2017123860A1 (en) 2016-01-13 2017-07-20 Bristol-Myers Squibb Company Spiroheptane salicylamides and related compounds as inhibitors of rock
WO2017205709A1 (en) 2016-05-27 2017-11-30 Bristol-Myers Squibb Company Triazolones and tetrazolones as inhibitors of rock
WO2018009625A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Spirolactams as inhibitors of rock
WO2018009622A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Lactam, cyclic urea and carbamate, and triazolone derivatives as potent and selective rock inhibitors
WO2018009627A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Spiro-fused cyclic ureas as inhibitors of rock
WO2018102325A1 (en) 2016-11-30 2018-06-07 Bristol-Myers Squibb Company Tricyclic rho kinase inhibitors
WO2018118109A1 (en) 2016-12-21 2018-06-28 BioAxone BioSciences, Inc. Rho kinase inhibitor ba-1049 (r) and active metabolites thereof
WO2018115383A1 (en) 2016-12-21 2018-06-28 Chiesi Farmaceutici S.P.A. Bicyclic dihydropyrimidine-carboxamide derivatives as rho-kinase inhibitors
WO2018138293A1 (en) 2017-01-30 2018-08-02 Chiesi Farmaceutici S.P.A. Tyrosine amide derivatives as rho- kinase inhibitors
JP2018533377A (ja) * 2015-11-16 2018-11-15 アクロン・バイオテクノロジー・リミテッド・ライアビリティ・カンパニーAkron Biotechnology, LLC 凍結保存組成物およびその使用方法
WO2019014300A1 (en) 2017-07-12 2019-01-17 Bristol-Myers Squibb Company PHENYLACETAMIDES AS ROCK INHIBITORS
WO2019014304A1 (en) 2017-07-12 2019-01-17 Bristol-Myers Squibb Company SPIROHEPTANYL HYDANTOIDS AS ROCK INHIBITORS
JP2019024325A (ja) * 2017-07-25 2019-02-21 国立大学法人京都大学 ヒト多能性幹細胞由来心筋細胞の凍結方法
WO2019089868A1 (en) 2017-11-03 2019-05-09 Bristol-Myers Squibb Company Diazaspiro rock inhibitors
WO2020045642A1 (ja) * 2018-08-31 2020-03-05 学校法人同志社 眼細胞を保存または培養するための組成物および方法
WO2020166711A1 (ja) * 2019-02-15 2020-08-20 イビデン株式会社 凍結保存液
JP2020162533A (ja) * 2019-03-29 2020-10-08 群栄化学工業株式会社 細胞凍結保存方法、細胞凍結保存用組成物、および細胞凍結保存用培地
JP2020202772A (ja) * 2019-06-17 2020-12-24 三菱製紙株式会社 凍結保存用治具
JP2021184246A (ja) 2020-05-22 2021-12-02 富士通株式会社 命令変換支援プログラム、命令変換支援方法および情報処理装置

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678783A (en) 1983-11-04 1987-07-07 Asahi Kasei Kogyo Kabushiki Kaisha Substituted isoquinolinesulfonyl compounds
US4678783B1 (en) 1983-11-04 1995-04-04 Asahi Chemical Ind Substituted isoquinolinesulfonyl compounds
WO1995028387A1 (fr) 1994-04-18 1995-10-26 Yoshitomi Pharmaceutical Industries, Ltd. Compose benzamide et utilisation medicale dudit compose
JP3421217B2 (ja) 1995-11-20 2003-06-30 麒麟麦酒株式会社 Rho標的タンパク質Rhoキナーゼ
WO1999020620A1 (fr) 1997-10-22 1999-04-29 Nippon Shinyaku Co Ltd Derive d'isoquinoleine et medicament
WO1999061403A1 (fr) 1998-05-25 1999-12-02 Santen Pharmaceutical Co., Ltd. Nouveaux derives vinylbenzene
WO2002076977A2 (en) 2001-03-23 2002-10-03 Bayer Corporation Rho-kinase inhibitors
WO2002076976A2 (en) 2001-03-23 2002-10-03 Bayer Corporation Rho-kinase inhibitors
WO2002083175A1 (fr) 2001-04-11 2002-10-24 Senju Pharmaceutical Co., Ltd. Agents ameliorant la fonction visuelle
WO2002100833A1 (fr) 2001-06-12 2002-12-19 Sumitomo Pharmaceuticals Company, Limited Inhibiteurs de rho kinase
WO2003059913A1 (en) 2002-01-10 2003-07-24 Bayer Healthcare Ag Roh-kinase inhibitors
WO2003062227A1 (en) 2002-01-23 2003-07-31 Bayer Pharmaceuticals Corporation Rho-kinase inhibitors
WO2004009555A1 (ja) 2002-07-22 2004-01-29 Asahi Kasei Pharma Corporation 5−置換イソキノリン誘導体
WO2004022541A1 (en) 2002-09-03 2004-03-18 Universite De Montreal 1,4-substituted cyclohexane derivatives
WO2004108724A1 (ja) 2003-06-06 2004-12-16 Asahi Kasei Pharma Corporation 3環系化合物
WO2005003101A2 (en) 2003-07-02 2005-01-13 Biofocus Discovery Limited Pyrazine and pyridine derivatives as rho kinase inhibitors
WO2005039564A1 (en) 2003-10-02 2005-05-06 Vertex Pharmaceuticals Incorporated Phthalimide compounds useful as protein kinase inhibitors
WO2005034866A2 (en) 2003-10-06 2005-04-21 Glaxo Group Limited Preparation of 1, 6, 7- trisubstituted azabenzimidazoles as kinase inhibitors
WO2005037198A2 (en) 2003-10-06 2005-04-28 Glaxo Group Limited Preparation of 1,7-disubstituted azabenzimidazoles as kinase inhibitors
WO2005037197A2 (en) 2003-10-06 2005-04-28 Glaxo Group Limited Preperation of 1,6-disubstituted azabenzimidazoles as kinase inhibitors
WO2005035501A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規オレフィン誘導体
WO2005035503A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規イソキノリン誘導体
WO2005035506A1 (ja) 2003-10-15 2005-04-21 Ube Industries, Ltd. 新規インダゾール誘導体
WO2005080394A1 (en) 2004-02-24 2005-09-01 Bioaxone Therapeutique Inc. 4-substituted piperidine derivatives
WO2005103050A2 (en) 2004-04-02 2005-11-03 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of rock and other protein kinases
WO2005097790A1 (de) 2004-04-08 2005-10-20 Bayer Healthcare Ag Hetaryloxy-substituierte phenylaminopyrimidine als rho-kinasehemmer
WO2006057270A1 (ja) 2004-11-26 2006-06-01 Asahi Kasei Pharma Corporation 含窒素3環化合物
WO2007026664A1 (ja) 2005-08-30 2007-03-08 Asahi Kasei Pharma Corporation スルホンアミド化合物
WO2008036540A2 (en) 2006-09-20 2008-03-27 Boehringer Ingelheim International Gmbh Rho kinase inhibitors
WO2008077550A1 (en) 2006-12-27 2008-07-03 Sanofi-Aventis Substituted isoquinoline and isoquinolinone derivatives as inhibitors of rho-kinase
WO2010104851A1 (en) 2009-03-09 2010-09-16 Surface Logix, Inc. Rho kinase inhibitors
WO2011107608A1 (en) 2010-03-02 2011-09-09 Amakem Nv Heterocyclic amides as rock inhibitors
WO2012146724A2 (en) 2011-04-29 2012-11-01 Amakem Nv Novel rock inhibitors
WO2013030366A1 (en) 2011-08-31 2013-03-07 Amakem Nv Novel soft rock inhibitors
WO2014055996A2 (en) 2012-10-05 2014-04-10 Kadmon Corporation, Llc Rho kinase inhibitors
WO2014068035A1 (en) 2012-10-31 2014-05-08 Amakem Nv Novel rock inhibitors
WO2014113620A2 (en) 2013-01-18 2014-07-24 Bristol-Myers Squibb Company Phthalazinones and isoquinolinones as rock inhibitors
WO2014142038A1 (ja) * 2013-03-11 2014-09-18 Jcrファーマ株式会社 ヒト角膜上皮シートの製造法
WO2015002915A1 (en) 2013-07-02 2015-01-08 Bristol-Myers Squibb Company Tricyclic pyri do-carboxam i d e derivatives as rock inhibitors
WO2015002926A1 (en) 2013-07-02 2015-01-08 Bristol-Myers Squibb Company Tricyclic pyrido-carboxamide derivatives as rock inhibitors
WO2015054317A1 (en) 2013-10-07 2015-04-16 Kadmon Corporation, Llc Rho kinase inhibitors
WO2015165341A1 (zh) 2014-04-28 2015-11-05 南京明德新药研发股份有限公司 作为rho激酶抑制剂的异喹啉磺酰衍生物
WO2016028971A1 (en) 2014-08-21 2016-02-25 Bristol-Myers Squibb Company Tied-back benzamide derivatives as potent rock inhibitors
WO2016112236A1 (en) 2015-01-09 2016-07-14 Bristol-Myers Squibb Company Cyclic ureas as inhibitors of rock
JP2018533377A (ja) * 2015-11-16 2018-11-15 アクロン・バイオテクノロジー・リミテッド・ライアビリティ・カンパニーAkron Biotechnology, LLC 凍結保存組成物およびその使用方法
WO2017123860A1 (en) 2016-01-13 2017-07-20 Bristol-Myers Squibb Company Spiroheptane salicylamides and related compounds as inhibitors of rock
WO2017205709A1 (en) 2016-05-27 2017-11-30 Bristol-Myers Squibb Company Triazolones and tetrazolones as inhibitors of rock
WO2018009622A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Lactam, cyclic urea and carbamate, and triazolone derivatives as potent and selective rock inhibitors
WO2018009627A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Spiro-fused cyclic ureas as inhibitors of rock
WO2018009625A1 (en) 2016-07-07 2018-01-11 Bristol-Myers Squibb Company Spirolactams as inhibitors of rock
WO2018102325A1 (en) 2016-11-30 2018-06-07 Bristol-Myers Squibb Company Tricyclic rho kinase inhibitors
WO2018118109A1 (en) 2016-12-21 2018-06-28 BioAxone BioSciences, Inc. Rho kinase inhibitor ba-1049 (r) and active metabolites thereof
WO2018115383A1 (en) 2016-12-21 2018-06-28 Chiesi Farmaceutici S.P.A. Bicyclic dihydropyrimidine-carboxamide derivatives as rho-kinase inhibitors
WO2018138293A1 (en) 2017-01-30 2018-08-02 Chiesi Farmaceutici S.P.A. Tyrosine amide derivatives as rho- kinase inhibitors
WO2019014300A1 (en) 2017-07-12 2019-01-17 Bristol-Myers Squibb Company PHENYLACETAMIDES AS ROCK INHIBITORS
WO2019014304A1 (en) 2017-07-12 2019-01-17 Bristol-Myers Squibb Company SPIROHEPTANYL HYDANTOIDS AS ROCK INHIBITORS
JP2019024325A (ja) * 2017-07-25 2019-02-21 国立大学法人京都大学 ヒト多能性幹細胞由来心筋細胞の凍結方法
WO2019089868A1 (en) 2017-11-03 2019-05-09 Bristol-Myers Squibb Company Diazaspiro rock inhibitors
WO2020045642A1 (ja) * 2018-08-31 2020-03-05 学校法人同志社 眼細胞を保存または培養するための組成物および方法
WO2020166711A1 (ja) * 2019-02-15 2020-08-20 イビデン株式会社 凍結保存液
JP2020162533A (ja) * 2019-03-29 2020-10-08 群栄化学工業株式会社 細胞凍結保存方法、細胞凍結保存用組成物、および細胞凍結保存用培地
JP2020202772A (ja) * 2019-06-17 2020-12-24 三菱製紙株式会社 凍結保存用治具
JP2021184246A (ja) 2020-05-22 2021-12-02 富士通株式会社 命令変換支援プログラム、命令変換支援方法および情報処理装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALI ET AL., INVEST OPHTHALMOL VIS SCI., vol. 59, no. 6, 1 May 2018 (2018-05-01), pages 2437 - 2444
FUKUTA ET AL., PLOS ONE., vol. 9, no. 12, 2 December 2014 (2014-12-02), pages e112291
HAYASHI ET AL., NATURE, vol. 531, no. 7594, 17 March 2016 (2016-03-17), pages 376 - 80
MCCABE ET AL., PLOS ONE., vol. 10, no. 12, 21 December 2015 (2015-12-21), pages e0145266
MIMURA ET AL., EXP EYE RES, vol. 76, no. 6, June 2003 (2003-06-01), pages 745 - 51
MIMURA ET AL., EXP EYE RES, vol. 80, no. 2, February 2005 (2005-02-01), pages 149 - 57
OKUMURA NAOKI, KAGAMI TAKATO, WATANABE KYOKO, KADOYA SAORI, SATO MASAKAZU, KOIZUMI NORIKO: "Feasibility of a cryopreservation of cultured human corneal endothelial cells", PLOS ONE, vol. 14, no. 6, 21 June 2019 (2019-06-21), pages e0218431, XP093066079, DOI: 10.1371/journal.pone.0218431 *
PATEL ET AL., INVEST OPHTHALMOL VIS SCI., vol. 50, no. 5, May 2009 (2009-05-01), pages 2123 - 31

Also Published As

Publication number Publication date
AU2022385051A1 (en) 2024-06-20
CA3238227A1 (en) 2023-05-19
JPWO2023085369A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
Vogel et al. The 24‐hour normothermic machine perfusion of discarded human liver grafts
JP6336392B2 (ja) 移植のための臓器又は組織の長期維持方法
Gurruchaga et al. Advances in the slow freezing cryopreservation of microencapsulated cells
US11246308B2 (en) Ice-free preservation of large volume tissue samples for viable, functional tissue banking
JP2000344602A (ja) 動物の細胞または臓器の保存剤およびその保存方法。
CN108207930A (zh) 一种鸡尾酒式冷冻保护剂及其应用
JP5796290B2 (ja) 膵島組織保存溶液及びそれを用いる方法
KR101407355B1 (ko) 식물 유래의 재조합 인간 혈청 알부민, 지질 및 식물 단백질 가수분해물을 유효성분으로 포함하는 줄기세포 또는 일차배양세포의 동결보존용 조성물
Stoll et al. Membrane stability during biopreservation of blood cells
Bonaccorsi-Riani et al. Machine perfusion: cold versus warm, versus neither. update on clinical trials
US20190275088A1 (en) Preservative solution for live cells or composition containing live cells
US20220354108A1 (en) Preservation methods using trehalose with other cryoprotectants being absent from the cryopreservation protocol
JP2021509121A (ja) 凍結保存用組成物およびその使用方法
WO2020045642A1 (ja) 眼細胞を保存または培養するための組成物および方法
JP2003267801A (ja) 保存剤用組成物及び該組成物を含有する動物の細胞または臓器の保存剤
JP2009219376A (ja) 医療用細胞の保護用液
WO2023085369A1 (ja) 角膜内皮細胞の凍結保存製剤およびその製造法
CA3161472A1 (en) Ice-free vitrification and nano-warming of large tissue samples
JP6329468B2 (ja) 線維芽細胞のガラス化凍結保存方法
KR20240110954A (ko) 각막 내피 세포의 냉동보존 제제 및 상기 냉동보존 제제를 생산하기 위한 방법
CN118434843A (zh) 角膜内皮细胞的冷冻保存制剂及其制造方法
WO2015026307A1 (en) Boron added cell cryopreservation medium
Magalhaes et al. The use of vitrification to preserve primary rat hepatocyte monolayer on collagen-coated poly (ethylene-terephthalate) surfaces for a hybrid liver support system
RU2777097C1 (ru) Способ рекондиционирования донорского сердца
WO2022025240A1 (ja) 角膜内皮細胞を保存するための方法および容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559903

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3238227

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022385051

Country of ref document: AU

Ref document number: AU2022385051

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020247019137

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022892867

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022385051

Country of ref document: AU

Date of ref document: 20221110

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022892867

Country of ref document: EP

Effective date: 20240611