WO2020166711A1 - 凍結保存液 - Google Patents
凍結保存液 Download PDFInfo
- Publication number
- WO2020166711A1 WO2020166711A1 PCT/JP2020/005869 JP2020005869W WO2020166711A1 WO 2020166711 A1 WO2020166711 A1 WO 2020166711A1 JP 2020005869 W JP2020005869 W JP 2020005869W WO 2020166711 A1 WO2020166711 A1 WO 2020166711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biological sample
- cryopreservation
- polymer
- molecular weight
- salt
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/02—Preservation of living parts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/04—Preserving or maintaining viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
Definitions
- the present invention relates to a cryopreservation liquid.
- the present invention also relates to a method for cryopreserving a biological sample using a cryopreservation solution, a method for preserving a biological sample, and a cryopreservation agent for a biological sample.
- regenerative medicine such as cell therapy is being actively performed not only in humans but also in the veterinary field.
- the bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells collected from the living body are used in the above-mentioned regenerative medicine and regenerative medicine research after being collected in large quantities.
- the surplus cells are cryopreserved and used appropriately.
- the demand for stable supply of such cells is also increasing.
- DMSO dimethylsulfoxide
- glycerin glycerin
- propylene glycol permeated into cells by cryopreservation. It is used by adding it to a buffer such as a culture medium as a cryoprotective reagent of the type (Patent Document 1). Of these, DMSO is most often used and has a good effect of protecting cells and organelles.
- Non-Patent Document 1 Non-Patent Document 1
- cryoprotectants instead of chemical substances, attempts are being made to use natural cryoprotectants as cryoprotective reagents.
- a disaccharide, an oligosaccharide, or a high molecular polysaccharide is added to a buffer solution such as a culture medium as a non-penetrating cryoprotective reagent.
- a method of retaining biological components in a crosslinked body that forms a hydrogel is under consideration.
- a living body made of modified hyaluronic acid in which a side chain having a substituent that reacts with a hydroxyl group to form a crosslinked structure has been introduced into hyaluronic acid as a raw material having a weight average molecular weight of 5000 to 4,000,000 is used as a raw material.
- Preservatives for the ingredients are described.
- the modified hyaluronic acid reacts with the hydroxyl groups of a compound having a plurality of hydroxyl groups such as polyvinyl alcohol to form a crosslinked product of the modified hyaluronic acid, and by embedding a biological component in the agar-like hydrogel, a preservative Is used as.
- the molecular weight of the hydrogel described in Patent Document 2 as an actual preservative is estimated to be several million or more.
- biological components are stored in a refrigerator at about 4° C., and the storage period is about several days.
- Patent Document 3 a cryopreservation composition containing a carboxylated polyamino acid in which an amino group of the polyamino acid is blocked by being carboxylated (or acetylated) with a carboxylic acid anhydride and an organic amphoteric agent is disclosed. Have been described.
- JP-A-63-216476 International Publication No. 2016/076317 Japanese Patent Publication No. 2018-533377
- ⁇ Intracellular penetration type cryoprotectants slow the formation rate of ice crystals formed in cells by promoting dehydration of cells and inhibit ice crystal formation.
- DMSO easily penetrates into cells and is therefore effective for cryopreservation of cells having a complicated structure such as mammalian cells.
- DMSO Various chemicals have cytotoxicity. It is considered that when the cryoprotective substance penetrates into cells and the intracellular concentration increases, the effect of toxicity also increases.
- DMSO induces differentiation of HL-60 cells and P19CL6 cells (derived from mouse embryocarcinoma cells) (PNAS March 27, 2001 2001 98(7)3826-3831. and Biochem Biophys ResCommunity. 2004; Sep 24;322(3):759-65.), and it is also reported to affect the differentiation of ES cells (Cryobiology.2006 Oct;53(2):194-205.). Therefore, it is considered that the use of DMSO as a cryoprotective reagent is not suitable for cell preservation when it is necessary to maintain undifferentiated state or functionality in stem cells.
- DMSO when a sample is stored for a long time using DMSO, it is indispensable to store the sample in liquid nitrogen or in an atmosphere that requires handling and management, which is considered to be an issue for the spread of regenerative medicine and regenerative medicine research.
- cryoprotectants such as sugars are cell-friendly, but have a large molecular size and are difficult to be taken into cells. Therefore, it is considered that intracellular freezing cannot be sufficiently suppressed only by adding from outside the cells.
- the tested preservation period is only a few days, and a better cryopreservation technique is required for preservation in units of several months. It is believed that there is.
- a modifying group into hyaluronic acid, and in order to dissolve the gel for recovery of biological components after storage from the hydrogel.
- the use of additives is also required. However, when such an additive is introduced into the cryopreservation method, it can be used for research tests, but it is difficult to use it for actual medical use due to the risk of contamination with impurities.
- Patent Document 3 discloses a cryopreservation composition containing a carboxylated polyamino acid in which the amino group of the polyamino acid is modified with a carboxylic acid, an organic amphoteric agent, and optionally a polysaccharide, but the cells are cryopreserved. The survival rate was not sufficient when they were allowed to do so.
- a method using a non-penetrating cryoprotective reagent is also known, but such a preservative reagent alone does not have a sufficient effect on the cells, although the effect on cells is low. Therefore, a combination of an intracellular permeation type compound such as DMSO, glycerin and propylene glycol with an intracellular permeation type compound and a non-permeation type substance, in which the amount of the compound is reduced or replaced, is commercially available.
- an intracellular permeation type compound such as DMSO, glycerin and propylene glycol
- a non-permeation type substance in which the amount of the compound is reduced or replaced
- the present invention has been made in view of the above problems, and provides a polymer aqueous solution for cryopreservation for appropriately preserving a biological sample.
- biological samples can be prepared without using chemical substances such as dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), and basically without adding serum or serum-derived protein.
- DMSO dimethyl sulfoxide
- PG propylene glycol
- EG ethylene glycol
- An object is to provide a polymer aqueous solution for cryopreservation, which enables stable long-term storage at a temperature of ⁇ 27° C. or lower, a cryopreservative for biological samples, and a method for stably cryopreserving biological samples. ..
- the present invention is a polymer having a viscosity average molecular weight of more than 3000 and 500000 or less in a solvent, wherein the polymer or the salt thereof contains a monomer having a hydrophilic group as a repeating unit, and a viscosity average of 3000 or less.
- the present invention relates to a cryopreservation liquid for a biological sample containing a saccharide having a molecular weight or a salt thereof.
- the polymer or saccharide salt is preferably a metal salt, a halogen salt or a sulfate salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- As the halogen chlorine, bromine or the like can be used.
- a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000, which contains a monomer having a hydrophilic group as a repeating unit, or a salt thereof has a viscosity of 3000 or less as a main component. It is desirable that a saccharide or its salt having an average molecular weight is contained as a subcomponent.
- the main component means a component having the highest weight ratio among the components dissolved in the solvent.
- the constituent components other than the main component are subcomponents.
- the polymer containing a monomer having a hydrophilic group as a repeating unit used in the present invention is such that the hydrophilic group is not modified, or even if it is modified, it is 50% or less of the total number of the hydrophilic group. Is desirable. It is presumed that the hydrophilic group in the polymer is involved in protection of the biological sample, vitrification of the solvent, and substitution of sugar having a molecular weight of 3000 or less with water around the biological sample, and the hydrophilic group is modified. Thus, if it is made hydrophobic, the cryopreservation effect of cells is reduced. Therefore, it is desirable to exclude hydrophobic polymers such as carboxypolyamino acid as the main component.
- cryopreservation liquid of the biological sample of the present invention does not contain dimethyl sulfoxide, which is an intracellular permeation type cryoprotectant.
- the cryopreservation liquid of the biological sample of the present invention preferably does not contain a cytotoxic cryoprotective agent such as ethylene glycol. These are harmful to the cells after thawing.
- the viscosity average molecular weight of the polymer or its salt is preferably 400000 or less, particularly 200000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- a cryopreservation liquid for a biological sample is preferred, in which the monomer having a hydrophilic group is a monomer having a hydrophilic group which is at least one selected from the group consisting of a hydroxyl group and a carboxylic acid group and a salt thereof.
- a preferable cryopreservation liquid for biological samples in which the polymer is an alternating copolymer of the monomer having the hydrophilic group and the nitrogen-containing monomer.
- a cryopreservation liquid for a biological sample in which the monomer having a hydrophilic group is a monomer having a hydroxyl group substituted at the equatorial position is preferable.
- a cryopreservation liquid for biological samples containing a polymer having a viscosity average molecular weight of 10,000 or more or a salt thereof is preferable.
- a cryopreservation liquid for biological samples in which the polymer is a polymer containing multiple sugar residues, is preferable.
- a cryopreservation liquid for biological samples in which the saccharide is a monosaccharide, disaccharide, or oligosaccharide is preferable.
- Sugars are glucose, fructose, galactose, or uronic acids in which the alcohol groups are oxidized, or amino sugars in which the alcohol groups are replaced with amino groups, sucrose, cleavage products of glycosaminoglycans, constituent monosaccharides of glycosaminoglycans , Or a cryopreservation liquid for a biological sample, which is a polymer or a combination thereof.
- a cryopreservation liquid for a biological sample in which the saccharide is glucuronic acid or N-acetylglucosamine is preferable.
- a cryopreservation solution for biological samples in which the concentration of sugars or salts thereof in the cryopreservation solution is 1 w/v% or more and 10 w/v% or less is preferable.
- a cryopreservation solution for biological samples which is an intracellular non-penetrating cryopreservation solution, is preferable.
- a cryopreservation liquid for a biological sample in which the biological sample is a tissue such as a cell, a tissue, or a membrane or an aggregate is preferable.
- a preferred cryopreservation solution for a biological sample wherein the biological sample is mesenchymal stem cells, blood cells, endothelial cells, or a tissue for transplantation.
- the present invention also provides a method for freezing a biological sample, wherein the cryopreservation solution of the present invention cools and freezes by a slow freezing method at a cooling rate of preferably 10°C/min or less, preferably a cooling rate of 1°C/min or less.
- the present invention also provides a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000 in a solvent, the polymer comprising a monomer having a hydrophilic group as a repeating unit, or a salt thereof and 3000 or less.
- a step of incorporating a biological sample in a cryopreservation solution containing a saccharide or a salt thereof having a viscosity average molecular weight a step of subjecting the cryopreservation solution containing the biological sample to freezing; And a step of storing the cryopreservation solution containing the sample by holding the cryopreservation solution.
- the metal salt, halogen salt or sulfate salt is preferable as the polymer or saccharide salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the cryopreservation liquid does not contain a cell-penetrating and cytotoxic compound such as dimethyl sulfoxide or ethylene glycol. This is because these are toxic to cells after thawing.
- the viscosity average molecular weight of the polymer or its salt used in the method for cryopreserving a biological sample of the present invention is preferably 400,000 or less, particularly 200,000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the range of the cryopreservation temperature in the method for cryopreserving a biological sample of the present invention is not limited as long as it is -27°C or lower, but the upper limit is desirably -70°C or lower, preferably -80°C. It is below °C.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- a method of cryopreserving a biological sample, which protects the biological sample during storage, is preferable.
- a method of cryopreserving a biological sample in which the step of including the biological sample in the cryopreservation solution is performed before cooling the biological sample is preferable.
- the method of cryopreserving a biological sample in which the biological sample is cells, tissues, or a tissue-like substance that is a membrane or an aggregate is preferable.
- the method for cryopreserving a biological sample in which the biological sample is a sperm, an egg, or a fertilized egg is preferable.
- the present invention also provides a method for storing a biological sample, wherein the biological sample is a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000, and including a monomer having a hydrophilic group as a repeating unit.
- the biological sample is stored in the presence of a polymer or a salt thereof and a saccharide or a salt thereof having a viscosity average molecular weight of 3000 or less, and at -27° C. or less, wherein the biological sample is stored as the polymer or a salt thereof.
- the storage shows a decrease in survival rate of less than 5% based on the survival rate of the biological sample immediately before storage. And on how to.
- the metal salt, halogen salt or sulfate salt is preferable as the polymer or saccharide salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the cryopreservation liquid does not contain a cell-penetrating and cytotoxic compound such as dimethyl sulfoxide or ethylene glycol. This is because these are toxic to cells after thawing.
- the viscosity average molecular weight of the polymer or its salt used in the method for storing a biological sample of the present invention is preferably 400000 or less, particularly 200000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the range of the cryopreservation temperature in the method of preserving the biological sample of the present invention is not limited as long as it is -27°C or lower, but the upper limit is desirably -70°C or lower, preferably -80°C. It is below °C.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- the storage is based on the survival rate of the biological sample immediately before storage when the biological sample is stored in the presence of the polymer or a salt thereof and the saccharide or a salt thereof for a period of at least 6 months.
- a method of preserving a biological sample characterized in that it is a preservation exhibiting a decrease in viability of less than %, is preferred.
- a method for storing a biological sample characterized by the following is preferable.
- the method in which the biological sample is a cell is preferably stored.
- the method in which the biological sample is a mammalian cell is preferably stored.
- the preferred method is to store the biological sample in which the biological sample is mammalian mesenchymal stem cells, mammalian blood cells, or mammalian endothelial cells.
- the present invention also relates to the storage of biological samples, preferably in vitro, at temperatures below -27°C, preferably above -150°C, below -70°C, preferably above -150°C and below -80°C.
- the use of mixtures with its salts are examples of mixtures with its salts.
- the metal salt, halogen salt or sulfate salt is preferable as the polymer or saccharide salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the cryopreservation liquid does not contain a cell-penetrating and cytotoxic compound such as dimethyl sulfoxide or ethylene glycol. This is because these are toxic to cells after thawing.
- the present invention relates to a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000 for cryopreserving a biological sample, the polymer comprising a monomer having a hydrophilic group as a repeating unit or a salt thereof and 3000. It relates to the use of mixtures with sugars or salts thereof having the following viscosity average molecular weights.
- the metal salt, halogen salt or sulfate salt is preferable as the polymer or saccharide salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the viscosity average molecular weight of the polymer or its salt used in the present invention is preferably 400,000 or less, and particularly preferably 200,000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the range of the cryopreservation temperature is not limited as long as it is ⁇ 27° C. or lower, but the upper limit is desirably ⁇ 70° C. or lower, preferably ⁇ 80° C. or lower.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- the present invention is a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000, having a viscosity average molecular weight of 3000 or less with a polymer containing a monomer having a hydrophilic group as a repeating unit or a salt thereof.
- the present invention relates to a cryopreservative for biological samples, which is composed of a mixture with saccharides or salts thereof.
- the metal salt, halogen salt or sulfate salt is preferable as the polymer or saccharide salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the viscosity average molecular weight of the polymer or its salt used in the present invention is preferably 400,000 or less, and particularly preferably 200,000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the range of the cryopreservation temperature is not limited as long as it is ⁇ 27° C. or lower, but the upper limit is desirably ⁇ 70° C. or lower, preferably ⁇ 80° C. or lower.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- the polymer contains pentose, hexose, uronic acid, or a combination thereof as a repeating unit.
- the polymer further contains an amino sugar as a repeating unit.
- the hydrophilic group of the polymer or its salt is preferably unmodified.
- the polymer is hyaluronic acid, dextran, pullulan, or chondroitin sulfate.
- carboxylated polyamino acids are preferably excluded.
- the saccharide is preferably a monosaccharide, a disaccharide, or an oligosaccharide.
- Sugars are glucose, fructose, galactose or uronic acids in which the alcohol groups are oxidized, or amino sugars in which the alcohol group is substituted with an amino group, sucrose, cleavage products of glycosaminoglycans, and constituent monosaccharides of glycosaminoglycans. , Or a polymer or combination thereof.
- the present invention also provides a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000, wherein the polymer has a monomer having a hydrophilic group as a repeating unit or a salt thereof and a viscosity average molecular weight of 3000 or less.
- a method for producing a cryopreservation solution for a biological sample containing a saccharide or a salt thereof which comprises dissolving a polysaccharide or a salt thereof having a molecular weight of more than 500,000 in water and then performing extraction treatment under subcritical conditions of water.
- the present invention relates to a method for producing a cryopreservation liquid for biological samples, which comprises performing
- a metal salt, a halogen salt or a sulfate salt is desirable.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used.
- the viscosity average molecular weight of the polymer or its salt used in the present invention is preferably 400,000 or less, and particularly preferably 200,000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the “viscosity average molecular weight” of the polymer or saccharide used in the present invention is determined by the following method and calculation formula.
- Intrinsic viscosity measurement (1) A predetermined amount of NaCl is dissolved in ion-exchanged water at 30° C. to prepare a 0.2 M NaCl solution (standard solution). (2) Dissolve a polymer or saccharide sample in a standard solution at 30°C to prepare a stock solution. The viscosities of the standard solution and the stock solution are measured, and the relative viscosity of the stock solution with respect to the standard solution is adjusted to be 2.0 to 2.4. (3) The stock solution at 30° C. is diluted to 5/4, 5/3, 5/2 times with the standard solution at 30° C., respectively. (4) Measure the viscosities of the standard solution, stock solution and diluted solution at 30°C.
- the relative viscosity ( ⁇ r ) is obtained by dividing the viscosities of the stock solution and the diluted solution by the viscosity of the standard solution, and the reduced viscosity is derived based on the following formula.
- ⁇ sp is the reduced viscosity [mL/g] of the polymer or saccharide
- ⁇ r is the relative viscosity [ ⁇ ] of the polymer or saccharide
- C is the concentration [g/mL] of the polymer or saccharide.
- Plot the relationship between the concentration of the polymer or saccharide and the reduced viscosity of the polymer or saccharide, and draw an approximate straight line. The value of the intercept of the approximate straight line (polymer or sugar concentration 0) is taken as the intrinsic viscosity.
- Viscosity average molecular weight The viscosity average molecular weight is calculated from the intrinsic viscosity.
- the viscosity average molecular weight M is obtained from the above-mentioned Mark Hoing Sakurada's formula by the intrinsic viscosity derived from the measurement and the values of K and ⁇ disclosed in the literature.
- K and ⁇ are numerical values that vary depending on the type of polymer, and the values of K and ⁇ are disclosed and published in many published documents such as “Handbook of Polymer Materials” (edited by The Society of Polymer Science, Japan).
- the viscosity average molecular weight can be calculated by using the existing value.
- the molecular weight specified from the structural formula is treated as a viscosity average molecular weight in a pseudo manner.
- an aqueous solvent such as water
- an isotonic solution in which salt concentration, sugar concentration and the like are adjusted by sodium ion, potassium ion, calcium ion and the like so as to be almost the same as the osmotic pressure of body fluid and cell fluid is preferable.
- physiological saline phosphate buffered saline (PBS) which is a physiological saline having a buffering effect
- Dulbecco's phosphate buffered saline Tris buffered saline ( Buffered Saline (TBS), HEPES buffered saline
- balanced salt solution such as Hanks balanced salt solution, Ringer's solution, Ringer's lactate, Ringer's acetate, Ringer's bicarbonate, or D-MEM, E-MEM, ⁇ MEM, RPMI- 1640 medium
- basal medium for animal cell culture such as Ham's F-12, Ham's F-10, M-199, and other commercially available medium can be mentioned.
- the polymer aqueous solution for cryopreservation of the biological sample of the present invention has a viscosity-average molecular weight of more than 3000 and not more than 500000 to prevent the formation of ice crystals in the solvent portion and vitrify to produce ice.
- cryopreservation liquid of the biological sample of the present invention shows a high cryopreservation effect that could not be obtained by the conventional technique despite being an intracellular non-penetrating cryopreservation liquid. It is possible to remarkably reduce damage to the body and changes in the properties of the biological sample.
- the aqueous polymer solution for cryopreservation of the biological sample of the present invention does not contain intracellular permeation type chemical substances such as DMSO and ethylene glycol, it has cytotoxicity and cell properties as reported for DMSO. Can be reduced. Therefore, the properties of the biological sample in the biological sample during and after cryopreservation can be maintained. It should be noted that it is possible to add a chemical substance having cytotoxicity such as DMSO or ethylene glycol at a low concentration that does not impair the function of cells.
- the viscosity average molecular weight of the polymer or its salt is preferably 400000 or less, particularly 200000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the method for cryopreserving the biological sample of the present invention and the method of preserving the biological sample may be different.
- frozen biological samples can be stably stored for long periods at temperatures below -27°C, that is, in deep freezers, without using cytotoxic chemicals such as DMSO or ethylene glycol, or proteins such as serum. can do. It is possible to add a protein that is not contaminated with bacteria or viruses. It is also possible to add a cytotoxic chemical substance such as DMSO or ethylene glycol at a low concentration that does not impair the cell function.
- cryopreservation temperature is not limited as long as it is ⁇ 27° C. or lower, but the upper limit is desirably ⁇ 70° C. or lower, preferably ⁇ 80° C. or lower.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- FIG. 1 It is a figure which shows the cell viability of the primary human mesenchymal stem cell in the cryopreservation using the cryopreservation liquid for a test of this invention. It is a figure which shows the analysis result of the cryopreservation liquid by a differential scanning calorimetry. It is an enlarged view showing the analysis result of the cryopreservation liquid by differential scanning calorimetry. It is a figure which shows the analysis result of the cryopreservation liquid containing ultrapure water by a differential scanning calorimetry. It is a figure which shows the analysis result of the cryopreservation liquid which contains DMSO as a cryoprotectant by a differential scanning calorimetry.
- FIG. 1 It is a figure which shows the analysis result of the cryopreservation liquid containing the test sample of Example 1 by a differential scanning calorimetry. It is a figure which shows the long-term preservation effect of the primary human mesenchymal stem cell in the cryopreservation using the cryopreservation liquid for a test of this invention. It is a figure which shows the long-term storage effect of the primary human mesenchymal stem cell in refrigeration storage using the cryopreservation liquid for a test of this invention. It is a figure which shows the production amount of HGF in the primary human mesenchymal stem cell after the cryopreservation using the cryopreservation liquid for a test of this invention.
- FIG. 1 shows the analysis result of the cryopreservation liquid containing the test sample of Example 1 by a differential scanning calorimetry. It is a figure which shows the long-term preservation effect of the primary human mesenchymal stem cell in the cryopreservation using the cryopreservation liquid for a test
- FIG. 3 is a graph showing the amount of IL-10 produced in primary human mesenchymal stem cells after cryopreservation using the test cryopreservation solution of the present invention. It is a figure which shows the expression level of the undifferentiated biomarker in the primary human mesenchymal stem cell after the cryopreservation using the cryopreservation liquid for a test of this invention.
- FIG. 3 is a diagram showing the preservation effect of a cryopreservation solution containing various polymers of the present invention on primary dog mesenchymal stem cells. It is a figure which shows the cell protection effect of the saccharide of this invention. It is a figure which shows the intracellular vitrification state after freezing in a control test.
- FIG. 3 is a graph showing the amount of IL-10 produced in primary human mesenchymal stem cells after cryopreservation using the test cryopreservation solution of the present invention. It is a figure which shows the expression level of the undifferentiated biomarker in the primary human mesen
- FIG. 6 is a diagram showing a state of intracellular vitrification after freezing using the test cryopreservation liquid of Comparative Example 1.
- FIG. 3 is a view showing the intracellular vitrification state using the test cryopreservation liquid of Example 1. It is a figure which shows the brightness difference of an intracellular vitrification state.
- FIG. 3 is a diagram in which the difference in brightness between intracellular vitrification states was quantified according to the Munsell brightness (0 to 10), and the difference in brightness between the solvent and the cells was determined. It is a figure which shows the cell area in the cryopreservation liquid of the frozen primary dog mesenchymal stem cell. It is a figure which shows the cryoprotective effect with respect to various cells in the cryopreservation using the cryopreservation liquid for a test of this invention.
- FIG. 3 is a diagram showing cell viability when carboxylated polylysine and that obtained by adding hyaluronic acid having a viscosity average molecular weight of 1000 to carboxylated polylysine are each used as a cryopreservative in a cryopreservation solution for cells.
- An aqueous solution of a polymer or a salt thereof for cryopreservation of a biological sample of the present invention (hereinafter, also referred to as a polymer aqueous solution of the present invention) is a polymer or a salt thereof having a viscosity average molecular weight of more than 3,000 and 500,000 or less.
- the polymer of the present invention is a polymer containing a monomer having a hydrophilic group as a repeating unit.
- the cryopreservation liquid of the biological sample of the present invention contains a monomer having a hydrophilic group as a repeating unit, a polymer having a viscosity average molecular weight of more than 3000 and 500000 or less, and a salt thereof and a viscosity of 3000 or less.
- a cryopreservative containing a mixture of a saccharide having an average molecular weight or a salt thereof is dissolved in a solvent.
- the viscosity average molecular weight of the polymer or its salt used in the present invention is preferably 400,000 or less, and particularly preferably 200,000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the “viscosity average molecular weight” of the polymer or saccharide used in the present invention means a value calculated from the following method and calculation formula.
- Intrinsic viscosity measurement (1) A predetermined amount of NaCl is dissolved in ion-exchanged water at 30° C. to prepare a 0.2 M NaCl solution (standard solution). (2) Dissolve a polymer or saccharide sample in a standard solution at 30°C to prepare a stock solution. When a polymer or saccharide sample is obtained as a solution, the solid content obtained by removing the solvent from the solution is used as the polymer or saccharide sample.
- mixed samples containing multiple polymers or mixed samples containing multiple saccharides after separating and fractionating each substance, removing the solvent from each substance Use as a sugar sample.
- the substance is identified for the polymer and/or saccharide by HPLC, LC-MS, LC-IR or the like.
- HPLC high-density polyethylene glycol
- LC-MS low-density polymer
- LC-IR low-density polymer
- the viscosity average molecular weight is calculated as follows.
- the mixture is used as a sample of the polymer or saccharide.
- an impurity that affects the calculation of the viscosity average molecular weight is contained, the impurity is removed or the polymer or saccharide is fractionated before measurement.
- the viscosities of the standard solution and the stock solution are measured, and the relative viscosity of the stock solution with respect to the standard solution is adjusted to be 2.0 to 2.4.
- the stock solution at 30° C. is diluted to 5/4, 5/3, 5/2 times with the standard solution at 30° C., respectively.
- ⁇ sp is the reduced viscosity [mL/g] of the polymer or saccharide
- ⁇ r is the relative viscosity [ ⁇ ] of the polymer or saccharide
- C is the concentration [g/mL] of the polymer or saccharide.
- Viscosity average molecular weight The viscosity average molecular weight is calculated from the intrinsic viscosity.
- the viscosity average molecular weight M is obtained from the above-mentioned Mark Hoing Sakurada's formula by the intrinsic viscosity derived from the measurement and the values of K and ⁇ disclosed in the literature.
- K and ⁇ are numerical values that vary depending on the type of polymer, and the values of K and ⁇ are disclosed and published in many published documents such as “Handbook of Polymer Materials” (edited by The Society of Polymer Science, Japan). The viscosity average molecular weight is calculated using the value.
- the molecular weight calculated by this method is taken as the viscosity average molecular weight.
- the molecular weight is clearly specified from the structural formula, so the molecular weight specified from the structural formula is simulated as the viscosity average molecular weight. And treat.
- the cryopreservation liquid of the present invention is a preservation liquid for appropriately preserving a biological sample when the biological sample is cryopreserved.
- the polymer aqueous solution of the present invention can trap solvent molecules in the matrix formed by polymer chains during the cooling process. .. Since the polymer chain contains a hydrophilic group, the action of this polymer chain restricts the molecular motion of the water of the solvent during cooling, and solidifies and/or solidifies in the vitrified state without crystallizing water. Or it can be frozen.
- the freezing method called the vitrification method increases the salt concentration in the residual solution by removing the solute (cryoprotectant to prevent frost damage) from the crystals when the solution freezes, and It is a method of dehydrating the inside of the cell and vitrifying the inside of the cell by generating an osmotic pressure difference, and is applied to cells having a particularly low survival rate after thawing.
- the concentration of the solute (cryoprotectant) is increased and the cooling rate is increased in order to make the water more vitrified.
- the osmotic pressure difference damage to cells also increases, and that recrystallization during lysis causes cells to be damaged.
- cryopreservation liquid containing the polymer of the present invention intracellular dehydration is caused by the action of the polymer chain to vitrify, so that formation of ice crystals in the cell is suppressed, and further, conventional vitrification
- the osmotic shock in cells upon freezing which is a problem with the method, can be attenuated. Therefore, it is not necessary to contain a chemical substance such as dimethyl sulfoxide (DMSO) or ethylene glycol having cytotoxicity, and the cryopreservation liquid containing the polymer of the present invention does not contain DMSO and/or ethylene glycol.
- DMSO dimethyl sulfoxide
- the viscosity average molecular weight of the polymer of the present invention is more than 3000 and not more than 500000, when the cryopreservation liquid of the present invention is cooled, the glass state which is amorphous in the frozen state is stabilized. .. Therefore, the cells are not easily damaged by cooling and freezing, and the cells can be stably and efficiently cryopreserved. Therefore, the viability of cells in the biological sample after thawing the biological sample after cryopreservation is high. If the viscosity average molecular weight of the polymer is 3,000 or less, vitrification may not easily occur satisfactorily.
- the viscosity average molecular weight of the polymer is larger than 500000, the viscosity may be significantly increased, the solubility may be lowered, or the prepared solution may be foamed to deteriorate the handling property.
- the viscosity average molecular weight is preferably 10,000 or more, for example.
- the polymer used in the present invention is a polymer containing a monomer having a hydrophilic group as a repeating unit. Hydrophilic groups are, for example, hydroxyl groups and carboxylic acid groups and salts thereof. Further, the polymer of the present invention may contain a nitrogen-containing monomer having an optionally substituted amino group or an optionally substituted amide group as a repeating unit. Further, the polymer of the present invention preferably has a hydroxyl group at the equatorial position in its structure. Therefore, it is considered that the solvent water can be trapped better in the matrix formed of polymer chains during freezing.
- the monomer having a hydrophilic group is, for example, a sugar residue.
- the polymer of the present invention may be a polymer containing a sugar residue linked by a glycosidic bond as a repeating unit and a derivative thereof.
- the sugar residue may be a monosaccharide or a monosaccharide in which a hydroxyl group and/or a hydroxymethyl group of the monosaccharide is substituted, for example, a hydroxyl group and/or a hydroxymethyl group may be a carboxyl group, an amino group or an N-acetyl group. Examples thereof include, but are not limited to, monosaccharides substituted with at least one substituent selected from the group consisting of an amino group, a sulfooxy group, a methoxycarbonyl group and a carboxymethyl group.
- Examples of monosaccharides include triose, tetrose, pentose, hexose and heptose.
- Examples of pentoses include ribose, arabinose, xylose, lyxose, xylulose, ribulose, deoxyribose and the like.
- Examples of the hexose include glucose, mannose, galactose, fructose, sorbose, tagatose, fucose, fuculose and rhamnose.
- Urine may be uronic acid as a monosaccharide substituted with a carboxyl group.
- uronic acid include glucuronic acid, iduronic acid, mannuronic acid and galacturonic acid.
- monosaccharides substituted with an amino group include amino sugars.
- amino sugars include glucosamine, galactosamine, mannosamine and muramic acid.
- monosaccharide substituted with an N-acetylamino group include N-acetylglucosamine, N-acetylmannosamine, N-acetylgalactosamine and N-acetylmuramic acid.
- Examples of the monosaccharide substituted with a sulfoxy group include galactose-3-sulfate.
- Examples of monosaccharides having a plurality of substituents include N-acetylglucosamine-4-sulfate, iduronic acid-2-sulfate, glucuronic acid-2-sulfate, N-acetylgalactosamine-4-sulfate, neuraminic acid and N. -Acetylneuraminic acid and the like.
- the polymer used in the present invention is a polymer containing the above-described monosaccharide as a repeating unit.
- the polymer of the present invention may be a polymer containing an optionally substituted pentose, hexose or uronic acid or a combination thereof as a repeating unit.
- the polymer of the present invention may be an alternating copolymer of a monomer having a hydrophilic group and a nitrogen-containing monomer.
- the nitrogen-containing monomer may be, for example, an amino sugar.
- the macromolecule of the present invention may be glycosaminoglycan.
- polymer of the present invention may also be a sulfated polysaccharide in which one or more hydroxyl groups have been replaced by sulfoxy groups.
- examples of the polymer of the present invention include hyaluronic acid, dextran, pullulan, chondroitin sulfate, and the like.
- the polymer used in the present invention may be naturally derived or may be chemically synthesized.
- a commercially available polymer may be used as it is.
- a naturally occurring polymer compound with a higher molecular weight or a commercially available polymer compound is used to obtain a cleavage product by subjecting it to hydrolysis, enzyme treatment, subcritical treatment, etc., and adjusting the molecular weight to obtain the product. It may be the polymer of the invention.
- each monomer may be a naturally-occurring monomer, a naturally-occurring monomer may be modified or substituted for use, or a chemically synthesized monomer may be used.
- the monomer contained in the polymer of the present invention is a biological constituent. It is considered that the cryopreservation liquid containing the polymer has low cytotoxicity.
- the hydrophilic group of the polymer used in the present invention is not modified, or 50% or less of the total number of hydrophilic groups even if modified, that is, whether or not a substituent is introduced into the polymer chain, Even if introduced, it is preferably 50% or less of the total number of hydrophilic groups. It is presumed that the hydrophilic groups of the polymer, particularly OH group, NH 2 group, and COOH group, contribute to protection of the biological sample, vitrification of the solvent, and substitution of sugar with water around the cell. This is because the unmodified functional group is more advantageous for improving the survival rate of the biological sample. Furthermore, the reagents used for modifying the hydrophilic group of the polymer may adversely affect the cryoprotective effect of the polymer or may render it unusable for cryopreservation of biological samples for regenerative medicine purposes. ..
- the hydrophilic group of the polymer is considered to be able to retain low molecular weight saccharides by hydrogen bonds, and the presence of the polymer retaining the low molecular weight saccharides around biological samples such as cells causes It is presumed that the replacement of water molecules with sugars can be promoted. Therefore, if the hydrophilic group is modified, the effect of retaining low-molecular-weight saccharides on the hydrophilic group is reduced, and even if low-molecular-weight saccharides coexist, it is sufficient for improving the survival rate of biological samples. Does not contribute. For example, it is not preferable to modify the OH group or NH 2 group with a carboxylic acid or the like.
- the polymer or saccharide salt used in the present invention may be a metal salt of a polysaccharide, a halogen salt or a sulfate salt.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used. It is considered that the salts lower the freezing point of the solvent, thereby contributing to the vitrification of the solvent.
- the cryopreservation liquid and cryopreservation agent of the present invention contain a saccharide or a salt thereof having a viscosity average molecular weight of 3000 or less.
- cryopreservatives and cryopreservatives contain macromolecules and saccharides with such a small molecular weight, water molecules near the cell membrane are replaced by saccharides, and ice crystal formation and growth near the cell membrane are suppressed. As a result, cell membrane damage can be significantly suppressed. That is, the saccharide or its salt used in the present invention can function as a component for cell protection.
- the saccharide of the present invention can be, for example, a monosaccharide, a disaccharide, an oligosaccharide or the like having a molecular weight of 3000 or less, preferably 2000 or less, more preferably 1000 or less.
- the saccharide may be, for example, the monosaccharide described above as a monomer constituting the polymer.
- the saccharide is glucose, fructose, galactose or an uronic acid in which an alcohol group thereof is oxidized, or an amino sugar in which an alcohol group is substituted with an amino group, sucrose, trehalose, or a polymer or a combination thereof.
- the saccharide may be, for example, a polymer used in the present invention, for example, a fragment of hyaluronic acid, dextran, pullulan, or chondroitin sulfate.
- the saccharides are not particularly limited as long as they do not impair the effects of the present invention, and examples of the saccharides include, for example, a cleavage product (fragment) of glycosaminoglycan, that is, a monosaccharide constituting the glycosaminoglycan, a disaccharide thereof, or an oligosaccharide thereof.
- a cleavage product (fragment) of glycosaminoglycan that is, a monosaccharide constituting the glycosaminoglycan, a disaccharide thereof, or an oligosaccharide thereof.
- the saccharide is a cleavage product of hyaluronic acid. Therefore, preferably, the saccharide used in the present invention is glucuronic acid or N-acetylglucosamine, or a disaccharide or oligosaccharide composed thereof. Preferably, the saccharide may be glucuronic acid or a modified compound thereof, or a disaccharide or oligosaccharide thereof.
- the "cleavage product" used in the present invention has a smaller molecular weight than the original polymer, which is considered to be obtained when the polymer is subjected to hydrolysis, enzyme treatment, subcritical treatment, or the like.
- the polymer used in the present invention may be a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000 obtained by treating a larger polymer compound as described above.
- the saccharide used may be a saccharide having a viscosity average molecular weight of 3000 or less, which is obtained by treating a polymer.
- the viscosity average molecular weight of the polymer or salt thereof used in the present invention is preferably 400000 or less, particularly 200000 or less.
- the cleavage products can be monomers that are constituents of the original macromolecule and/or polymers of varying degrees of polymerization of the monomers and/or mixtures thereof.
- “Subcritical treatment” means contacting a subcritical fluid as an extraction solvent in a subcritical state under a predetermined temperature and a predetermined pressure with a raw material to be extracted.
- a subcritical fluid for example, water exhibits a state of being neither liquid nor gas when the pressure is raised to 22.12 MPa or higher and the temperature is raised to 374.15° C. or higher. This point is called the critical point of water, and hot water having a temperature and pressure near the critical point is called subcritical water.
- the conditions for subcritical treatment in the present invention are, for example, a temperature of 150° C. or higher and 350° C.
- the subcritical treatment pressure can be a saturated vapor pressure of each temperature or higher. It can be set to 5 MPa or more and 25 MPa or less.
- the hydrolysis or enzyme treatment is not particularly limited, and reagents and treatment methods that are commonly used can be used without problems.
- the polymer having a predetermined molecular weight and the saccharide in the present invention may be simultaneously obtained by a single subcritical treatment. That is, the polymer and the saccharide in the present invention have a first molecular weight distribution in a molecular weight range of 3000 or more and 500000 or less as a viscosity average molecular weight, and a second molecular weight in a molecular weight range of 3000 or less as a viscosity average molecular weight. It may be a subcritically processed polymer compound having a distribution.
- a polymer which is a polysaccharide having a viscosity-average molecular weight of more than 500000, is dissolved in water and then, under subcritical conditions of water. It may include a step of obtaining a polymer and a saccharide in the present invention by performing an extraction treatment.
- the polymer and saccharide in the present invention may be used in combination in which they are treated in different treatment steps and/or separated based on the molecular weight.
- the polymer or salt thereof contained in the cryopreservation liquid of the present invention preferably has a viscosity average molecular weight of 400000 or less, particularly 200000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the cryopreservation liquid containing a polymer and a saccharide according to the present invention the cytotoxicity is low, and further, since it is not necessary to increase the concentration of the solute in order to limit the molecular movement of water, the damage to the cells is low. Conceivable. Further, unlike the conventional vitrification method, the cryopreservation liquid of the present invention does not require a high cooling rate for reducing osmotic shock at the time of cooling. Therefore, according to the cryopreservation liquid of the present invention, a biological sample can be efficiently cryopreserved by a simple method with reduced toxicity.
- the cryopreservation liquid of the present invention has a glass transition temperature around -23°C ⁇ 4°C. Furthermore, the cryopreservation liquid of the present invention can suppress not only ice crystal formation in the cooling process but also recrystallization of water in the subsequent temperature rising process, that is, at the time of melting. That is, it is considered that the frozen glass state of the biological sample is stabilized by the cryopreservation using the polymer and the saccharide in the present invention.
- the cryopreservation liquid of the present invention does not require addition of human or bovine-derived serum or protein components such as serum-derived components (eg, albumin) and has high cell protection. Show the effect. Therefore, it is considered that there is no concern about infectious diseases, and there is no effect of lot-to-lot differences due to biologics. Since the cytotoxicity is also low, the cells thawed after cryopreservation using the cryopreservation solution of the present invention show a high survival rate. It should be noted that it is possible to add a protein that does not cause a fear of infection.
- serum-derived components eg, albumin
- cryopreservation liquid of the present invention is cooled to a glass transition temperature of -27°C or lower, for example, the cryopreservation liquid of the present invention containing a biological sample is put in a freezing treatment container etc. and left alone in a deep freezer at -80°C.
- a low temperature such as ⁇ 150° C.
- cryopreservation solution of the present invention recrystallization of water at the time of thawing can also be suppressed. Therefore, by using the cryopreservation solution of the present invention, a series of steps of freezing, storing, and thawing a biological sample can be performed. , Can be easily and efficiently performed without requiring special procedures. Of course, it is also possible to cryopreserve a biological sample using liquid nitrogen using the cryopreservation liquid of the present invention.
- cryopreservation liquid of the present invention is a non-penetrating cryoprotective reagent, it is considered to have low cytotoxicity. Further, in the cryopreservation liquid of the present invention, saccharides may further function for cell protection, and therefore it is considered that the properties of cells are not changed during cryopreservation. Therefore, it is considered that the biological sample can be cryopreserved while maintaining the characteristics of the cells.
- the cryopreservation liquid of the present invention contains a polymer or a salt thereof at a concentration of about 1 w/v% or more and 50 w/v% or less. If the concentration is lower than 5 w/v%, the solvent portion may not be vitrified well. Further, at a concentration higher than 20 w/v%, the viscosity becomes too high, which may deteriorate the handling property.
- the concentration of the polymer or its salt is preferably 5 w/v% or more, particularly preferably 10 w/v% or more.
- the concentration of the polymer or its salt is preferably 50 w/v% or less, particularly preferably 20 w/v% or less.
- the concentration of the polymer or its salt is 5 w/v% or more and 20 w/v% or less.
- the concentration of the sugar or its salt in the present invention in the cryopreservation liquid is about 1 w/v% or more and 10 w/v amount% or less. That is, it is preferable that the ratio of the polymer to the saccharide in the present invention is about 10:1. If the concentration of the sugar or its salt is less than 1 w/v%, the effect of the present invention may not be sufficiently obtained. Further, even if saccharides are added so as to have a concentration of 10 w/v% or more, it is difficult to obtain a further effect as a cell protective component.
- the cryopreservation solution of the present invention is a non-penetrating cryoprotective reagent
- the biological sample to be cryopreserved using the cryopreservation solution of the present invention is not particularly limited. It can be used for cryopreservation of various types of cells. Further, the origin of cells is not particularly limited. Since the cryopreservation liquid of the present invention can effectively suppress the formation and recrystallization of ice crystals during freezing and thawing, it can be favorably used for mammalian cells having a complicated structure. Therefore, it can be applied to the cryopreservation of cells of various kinds of animal species, such as mouse, dog and human.
- the cryopreservation solution of the present invention is known to have a large obstacle during freezing as compared with general culture cells, and it is inevitable that the so-called conventional slow freezing method causes a remarkable decrease in survival rate. It can be particularly preferably used for cryopreservation of various stem cells, germ cells such as early embryos, eggs, sperms, and fertilized eggs. Further, since the cryopreservation liquid of the present invention does not contain a chemical substance such as DMSO or ethylene glycol that can function as a differentiation factor, it can be used for the preservation of cells that need to be maintained undifferentiated. Stem cells can also be cryopreserved without the risk of differentiation. It should be noted that it is possible to add a chemical substance such as DMSO or ethylene glycol at a low concentration so that the above risk does not pose a problem.
- cryopreservation liquid of the present invention is excellent in the effect of stabilizing the glass state in a frozen state, and thus it is known that storage is difficult. It can also be used for cryopreservation of organized cell structures, tissues and tissue-like substances, such as tissues obtained by regenerative medicine.
- the cryopreservation liquid of the present invention can be used for a biological sample selected from cells, tissues, or tissue-like substances such as membranes or aggregates, and can achieve high survival rate.
- the cryopreservation solution of the present invention regardless of primary cells or established cells, mesenchymal stem cells; hematopoietic stem cells; neural stem cells; somatic stem cells such as bone marrow stem cells and reproductive stem cells; blood cells; endothelial cells; And the like, particularly, the cryopreservation of primate stem cells, which are considered to be less freeze-tolerant than mice, the cryopreservation of tissues for transplantation, and the cryopreservation of germ cells in reproductive medicine.
- the polymer which is a constituent of a living body
- the polymer it is possible to thaw a frozen and preserved biological sample and use it as a cell administration solution as it is.
- the preferred macromolecule for the cryopreservation solution of the present invention is hyaluronic acid.
- hyaluronic acid having a viscosity average molecular weight of more than 3000, more preferably more than 5000, and 60,000 or less, more preferably 20,000 or less.
- the cryopreservation liquid of the present invention is a cryopreservation liquid for the slow freezing method. That is, in the freezing method using the cryopreservation liquid of the present invention, the cooling rate is preferably 10° C./min or less, more preferably 1° C./min or less. If the cooling rate is within this range, it is considered that intracellular dehydration is moderately carried out, vitrification of intracellular fluid is favorably carried out, and a high cell cryoprotective effect is obtained.
- the cryopreservation method of the present invention comprises a polymer having a viscosity average molecular weight of more than 3000 and not more than 500000 in a solvent, the polymer having a monomer having a hydrophilic group as a repeating unit or a salt thereof, and 3000 or less.
- a cryopreservation solution containing a saccharide or a salt thereof having a viscosity-average molecular weight of 1. providing the cryopreservation solution containing the biological sample for freezing, and subjecting the biological sample to a temperature of ⁇ 27° C. or lower. The preservation is performed by holding the cryopreservation solution containing the same.
- the viscosity average molecular weight of the polymer or its salt used in the cryopreservation method of the present invention is preferably 400000 or less, particularly 200000 or less. This is because the viscosity can be adjusted to a low level and it is easy to handle as a cryopreservation liquid.
- the salts of polymers and sugars may be metal salts of polysaccharides, halogen salts or sulfates.
- the metal salt is preferably an alkali metal salt or an alkaline earth metal salt.
- the alkali metal or alkaline earth metal sodium, potassium, calcium or the like is selected.
- the halogen chlorine, bromine or the like can be used. Since the cryopreservation liquid containing a biological sample is frozen at a cooling rate of 10°C/min or less, preferably at a cooling rate of 1°C/min or less in a deep freezer at -80°C, and frozen storage can be performed as it is, The rapid operation required for the rapid cooling required in the conventional vitrification method is not required. Therefore, it is considered that the operability is improved and at the same time, a stable storage effect can be obtained.
- cryopreservation temperature is not limited as long as it is ⁇ 27° C. or lower, but the upper limit is desirably ⁇ 70° C. or lower, preferably ⁇ 80° C. or lower.
- the lower limit is preferably ⁇ 196° C. or higher, preferably ⁇ 150° C. or higher.
- an aqueous solvent such as water
- an isotonic solution in which salt concentration, sugar concentration and the like are adjusted by sodium ion, potassium ion, calcium ion and the like so as to be almost the same as the osmotic pressure of body fluid and cell fluid is preferable.
- physiological saline phosphate buffered saline (PBS) which is a physiological saline having a buffering effect
- Dulbecco's phosphate buffered saline Tris buffered saline
- examples include, but are not limited to, balanced salt solutions such as Tris Buffered Saline (TBS), HEPES buffered saline, and Hanks balanced salt solution, Ringer's solution, Ringer's lactate, Ringer's acetate, and Ringer's bicarbonate.
- the solvent may contain other optional components such as an isotonicity agent, a chelating agent, and a solubilizing agent, as long as the effects of the present invention are not impaired.
- the term “optional component” means a component that may or may not be included.
- the solvent may be a 5% glucose aqueous solution or the like.
- a medium for cell culture may be used as a solvent for the cryopreservation liquid of the present invention.
- the culture medium is not particularly limited and includes, for example, commercially available medium, D-MEM, E-MEM, ⁇ MEM, RPMI-1640 medium, Ham's F-12, Ham's F-10, M-199, etc.
- the basal medium for animal cell culture, and general culture medium for various cells or tissues can be exemplified. Therefore, the cryopreservation solution of the present invention may be added to the culture solution or cell suspension after cell culture so that the cryopreservation agent has a desired concentration.
- the pH of the cryopreservation liquid of the present invention can be adjusted, if necessary.
- a cryopreservation solution containing a polymer obtained by polymerizing such a monomer may exhibit acidity.
- the saccharide has a carboxylic acid group or the like
- the cryopreservation liquid may be acidic due to such saccharide.
- the salt used for pH adjustment is not limited, and those commonly used for pH adjustment of aqueous solutions can be used.
- long-term stable storage refers to, for example, the survival rate of a biological sample such as cells after thawing when the cryopreservation solution of the present invention is used, based on the survival rate of cells immediately before storage, After 5 months, less than 10%, preferably less than 5%, or after 6 months, less than 20%, preferably less than 10%, or after 12 months, less than 15% It means that the degree of reduction is preferably only about 30% or less.
- long term stable storage means, for example, when cells are frozen and stored at ⁇ 80° C. for a long period of time and then thawed, and subsequently when the cells are stored at 4° C., after thawed. It means that even after 24 hours, the viability was reduced by less than 5% based on the cell viability immediately after thawing.
- the cryopreservation solution of the present invention is considered to be capable of cryopreserving cells under conditions with less stress than the DMSO solution. Therefore, the cryopreservation solution of the present invention can obtain a very high cell viability after thawing, as compared with the cryopreservation using a conventional cryopreservation solution such as a 10% DMSO solution.
- cryopreservation liquid of the present invention cells can be stably cryopreserved for a long period of time without changing the properties of the cells.
- the present invention will be specifically described based on examples, but the present invention is not limited to these.
- the hyaluronic acid manufactured by lifecore biomedical is sodium hyaluronate, but is referred to as “hyaluronic acid” for simplification.
- the viscosity average molecular weight when the hyaluronic acid decomposition product obtained by subcritical treatment obtained in Example 1 was confirmed by HPLC (FIG. 18), it was considered to be a mixture of high molecular weight hyaluronic acid and low molecular weight hyaluronic acid. Therefore, the high molecular weight hyaluronic acid was precipitated in ethanol, the low molecular weight hyaluronic acid was fractionated to the supernatant side, and the fractionated supernatant was re-analyzed by HPLC. As a result, the HPLC peak of hyaluronic acid in Production Example 1 described later ( 17A), the viscosity average molecular weight of the low molecular weight hyaluronic acid component obtained in Example 1 was estimated to be 1000.
- the intrinsic viscosity of high molecular weight hyaluronic acid was 0.49 dL/g, and the viscosity average molecular weight was 10,000.
- the test cryopreservation solution of Example 1 was obtained by dissolving 1 g of this test cryopreservation agent in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) as a solvent (ie, , The concentration of the hyaluronic acid sample in the cryopreservation solution for testing is 10 w/v %).
- ⁇ MEM medium is used as a solvent in Examples
- ultrapure water may be used as a solvent instead of the ⁇ MEM medium.
- the solvent is ultrapure water instead of ⁇ MEM.
- Each test sample obtained by the following examples was prepared as a cryopreservative of a cryopreservation solution in a test for each evaluation described below so as to have a predetermined concentration by using an appropriate solvent. Was used.
- Example 1 The same operation as in Example 1 was performed except that the subcritical treatment was performed for a treatment time of 7 minutes to obtain a test sample which was a hyaluronic acid fragment having a viscosity average molecular weight of 1000.
- the intrinsic viscosity was 0.08 dL/g.
- Example 2 The same operation as in Example 1 was carried out except that the subcritical treatment was carried out for 5 minutes to obtain a test sample which was a hyaluronic acid fragment having a viscosity average molecular weight of 2000.
- the intrinsic viscosity was 0.14 dL/g.
- Example 3 The same operation as in Example 1 was performed except that the subcritical treatment was performed for a treatment time of 4 minutes to obtain a test sample which was a hyaluronic acid fragment having a viscosity average molecular weight of 3000.
- the intrinsic viscosity was 0.19 dL/g.
- DMSO manufactured by Nacalai Tesque, Inc., cell culture grade
- a test sample (1 mL) was dissolved in a solvent ( ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water)) (10 mL) to obtain a test cryopreservation liquid of Comparative Example 1 (that is, for test).
- DMSO concentration of the test sample in the cryopreservation solution is 10 w/v %).
- ⁇ MEM medium used as a solvent (manufactured by Gibco, product number C1257-1500BT, the solvent is water) was used as a test sample.
- ⁇ Comparative Example 4 Comparative Example 4 was prepared by dissolving 1 g of high-molecular-weight hyaluronic acid having a viscosity average molecular weight of 1,000,000 (manufactured by Changhai Easy Industrial Development Co., Ltd.) in 100 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent was water).
- the test cryopreservation solution was obtained (that is, the hyaluronic acid concentration of the test sample in the test cryopreservation solution was 1 w/v %).
- the intrinsic viscosity was 17.2 dL/g.
- Hyaluronic acid having a viscosity average molecular weight of 15,000 (manufactured by lifecore biomedical; powder) was used as a test sample as a cryopreservative.
- This test sample (1 g) was dissolved in 10 mL of an ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) as a solvent to obtain a cryopreservation liquid for a test of Comparative Example 5 (that is, for the test).
- Hyaluronic acid concentration of the test sample in the cryopreservation solution is 10 w/v %).
- the intrinsic viscosity was 0.65 dL/g.
- Hyaluronic acid having a viscosity average molecular weight of 50,000 (manufactured by lifecore biomedical; powder) was used as a test sample. 1 g of this test sample was dissolved in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) as a solvent to obtain a cryopreservation liquid for test of Comparative Example 6 (that is, for test). Hyaluronic acid concentration of the test sample in the cryopreservation solution is 10 w/v %). The intrinsic viscosity was 1.67 dL/g.
- Hyaluronic acid having a viscosity average molecular weight of 125,000 (manufactured by lifecore biomedical; powder) was used as a test sample. 1 g of this test sample was dissolved in 10 mL of a solvent ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) to obtain a cryopreservation liquid for test of Comparative Example 7 (that is, for test). Hyaluronic acid concentration of the test sample in the cryopreservation solution is 10 w/v %). The intrinsic viscosity was 3.4 dL/g.
- Comparative Example 8 Pullulan (produced by Tokyo Chemical Industry Co., Ltd.) having a viscosity average molecular weight of 373,000 was used as a test sample.
- a test cryopreservation liquid of Comparative Example 8 was obtained by dissolving 1 g of this test sample in 10 mL of a solvent ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) (that is, freezing for test).
- Hyaluronic acid concentration of the test sample in the storage solution is 10 w/v %).
- the intrinsic viscosity was 0.55 dL/g.
- Hyaluronic acid concentration of 10 w/v% obtained by dissolving 1 g of the test sample of Comparative Example 5 (hyaluronic acid having a viscosity average molecular weight of 15,000) in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water) which is a solvent.
- the test sample solution of Production Example 1 (a hyaluronic acid fragment sample having a viscosity average molecular weight of 1000) was added to the test sample solution of Example 1 at a final concentration of 1 w/v% to give the test cryopreservation solution of Example 2. Obtained.
- Example 3 The pH of the test cryopreservation solution of Example 2 (including hyaluronic acid having a viscosity average molecular weight of 15,000 and the test sample of Production Example 1) was adjusted to neutral with 10 mM Tris-HCl to prepare the solution of Example 3. It was used as a cryopreservation liquid for testing.
- Example 4 A test with a pullulan concentration of 10 w/v%, in which 1 g of the test sample of Comparative Example 8 (pullulan having a viscosity average molecular weight of 373,000) was dissolved in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, the solvent is water) as a solvent.
- the test sample of Production Example 1 hyaluronic acid fragment sample having a viscosity average molecular weight of 1000 was added to the test sample solution at a final concentration of 1 w/v% to obtain a test cryopreservation liquid of Example 4. .
- Example 5 The test of Example 5 was carried out by adjusting the pH of the test cryopreservation solution of Example 4 (including pullulan having a viscosity average molecular weight of 373,000 and the test sample of Production Example 1) to neutral with 10 mM Tris-HCl. It was used as a cryopreservation solution.
- Example 6 A test with a pullulan concentration of 10 w/v%, in which 1 g of the test sample of Comparative Example 8 (pullulan having a viscosity average molecular weight of 373,000) was dissolved in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, the solvent is water) as a solvent.
- the test sample of Production Example 1 (a hyaluronic acid fragment sample having a viscosity average molecular weight of 1000) was added to the test sample solution at a final concentration of 5 w/v% to obtain a test cryopreservation liquid of Example 6. ..
- Example 7 The test of Example 7 was carried out by adjusting the pH of the test cryopreservation solution of Example 6 (including pullulan having a viscosity average molecular weight of 373000 and the test sample of Production Example 1) to neutral with 10 mM Tris-HCl. It was used as a cryopreservation solution.
- Example 8 1 g of the test sample (sodium chondroitin sulfate having a viscosity average molecular weight of 23000) of Comparative Example 9 was dissolved in 10 mL of ⁇ MEM medium (manufactured by Gibco, product number C1257-1500BT, solvent is water), which was a solvent, and a concentration of sodium chondroitin sulfate was 10 w. /V% test sample solution, the test sample of Production Example 1 (a hyaluronic acid fragment sample having a viscosity average molecular weight of 1000) was added at a final concentration of 1 w/v% to freeze the test sample of Example 8. A stock solution was obtained.
- ⁇ MEM medium manufactured by Gibco, product number C1257-1500BT, solvent is water
- % Test sample solution sucrose (manufactured by Nacalai Tesque, Inc., molecular weight (same value as viscosity average molecular weight 342)) was added at a final concentration of 1 w/v%, and cryopreserved for test in Example 9. A liquid was obtained.
- ⁇ Comparative Example 11 A test sample of Production Example 1 (a hyaluronic acid fragment sample having a viscosity average molecular weight of 1000) was added to a carboxypolylysine in which an amino group was carboxylated by 60% (viscosity average molecular weight 13400: manufactured by Bio Verde, Inc., CryoScarless DMSO free). It was added in an amount of 1 w/v% to prepare a cryopreservation liquid for testing.
- Example 1 Cryopreservation of primary human mesenchymal stem cells using a cryopreservation solution for testing and evaluation of its preservation effect> Cultured primary human mesenchymal stem cells (Lonza PT2501) at a concentration of 1 ⁇ 10 6 cells/mL were used as a cryopreservation solution (serum-free) for testing in Example 1 and Comparative Examples 1, 2, 4 and 5. Suspended.
- the cell suspension containing the cryopreservation solution for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing each test sample frozen for 7 days was stored at -80°C and then rapidly thawed in a 37°C warm bath.
- the cell suspension containing the frozen stock solution for each test after thawing was evaluated for cell viability by trypan blue staining immediately after thawing. The results are shown in Figure 1.
- FIG. 1 shows cells cryopreserved in a medium to which a cryopreservation solution has not been added, that is, in a cryopreservation solution for test of Comparative Example 2 or in a cryopreservation solution for test of Example 1 and Comparative Examples 1, 4 and 5. Shows the cell viability after thawing.
- Example 1 that is, obtained by subcritical treatment of hyaluronic acid, the viscosity average molecular weight is about 10,000, and further, the viscosity average molecular weight is 1000, that is, less than 10,000.
- cryopreservation liquid of the present invention is an excellent cryopreservation liquid with low cytotoxicity.
- Comparative Example 4 containing high molecular weight hyaluronic acid having a large molecular weight of 1,000,000 as a test sample, almost no cytoprotective effect was observed.
- Comparative Example 2 containing no cryopreservative, the cell survival rate was almost 0%.
- Comparative Example 5 in which the test sample of hyaluronic acid having a viscosity average molecular weight of 15,000 was a cryopreservative, the cell protective effect as in Example 1 was not observed. Therefore, it is confirmed that the cryopreservation liquid containing a cryopreservation agent comprising a polymer and a saccharide having a smaller molecular weight is effective for improving the cytoprotective effect of the cryopreservation liquid.
- cryopreservative of the present invention shows a high cell preservation effect even when prepared as a cryopreservative using a culture medium such as ⁇ MEM medium as a solvent. After suspending the cells in addition to the culture medium, they can be frozen and stored. It is believed that higher cell viability and maintenance of cell properties is possible without the need to centrifuge the stored cells.
- Example 2 Evaluation of analysis of frozen storage solution by differential scanning calorimetry>
- the test samples of Example 1 and Comparative Examples 2 and 5 were prepared to a final concentration of 10% by using ultrapure water instead of the ⁇ MEM medium, and used as samples for differential scanning calorimetry.
- Each sample was scanned with a differential scanning calorimeter (DSC) as shown below. (1) After holding at 20°C for 1 minute, the temperature was lowered to -80°C at a speed free. (2) After holding at -80°C for 1 minute, the temperature was raised to 20°C at a temperature rising rate of 10°C/min.
- DSC differential scanning calorimeter
- Example 1 containing a cleavage product of hyaluronic acid (low molecular weight hyaluronic acid having a viscosity average molecular weight of 1000) in addition to hyaluronic acid having a viscosity average molecular weight of about 10,000, the test sample of Example 1 had a temperature of ⁇ 23° C. ⁇ 4° C. Only the glass transition was confirmed in the vicinity (FIG. 2B), and the peak of ice crystal melting was extremely small and almost not observed.
- hyaluronic acid low molecular weight hyaluronic acid having a viscosity average molecular weight of 1000
- the cryopreservation liquid contains a cryopreservation agent composed of a polymer and a saccharide having a smaller molecular weight, it has a remarkably advantageous effect of suppressing recrystallization of water upon thawing. I understand.
- Example 1 and Comparative Examples 1 and 2 were adjusted to a final concentration of 10% by using ultrapure water in place of the ⁇ MEM medium, and used as samples for differential scanning calorimetry.
- Each sample was scanned with a differential scanning calorimeter (DSC) as shown below.
- DSC differential scanning calorimeter
- FIG. 3A Comparative Example 2
- FIG. 3B Comparative Example 1
- FIG. 3C Example 1
- Comparative Example 2 in which the test sample was ultrapure water, as shown in FIG. 3A, a very large exothermic peak due to ice crystal formation was observed in the temperature decreasing process. A large amount of heat of melting associated with melting of ice crystals was also observed in the temperature rising process.
- Comparative Example 1 in which the test sample was DMSO, as shown in FIG. 3B, only peaks associated with small ice crystal formation were observed, and almost no peaks associated with ice crystal melting were observed. This indicates that the cryopreservation liquid containing the test sample (DMSO) of Comparative Example 1 is close to the vitrified state in the frozen state.
- cryopreservation liquid containing the test sample of Example 1 (hyaluronic acid having a viscosity average molecular weight of 10,000 containing a cleavage product of hyaluronic acid) as a cryopreservative, almost no melting peak was observed as shown in FIG. 3C. Also, the peak associated with the formation of ice crystals was much smaller than the peak observed in Comparative Example 1. Therefore, in the cryopreservation liquid containing the test sample of Example 1, almost no ice crystals were formed, which is considered to be in an extremely good vitrification state.
- Example 3 Evaluation of long-term preservation effect in cryopreservation using a cryopreservation solution for test of primary human mesenchymal stem cells>
- the cultured primary human mesenchymal stem cells (Lonza PT2501) were suspended in the test cryopreservation solution (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL. Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing each test cryopreservation solution was taken out for a predetermined storage period. It was thawed rapidly in a warm bath at °C. The cell viability of the cell suspension containing the cryopreservation solution for each test after thawing was evaluated by trypan blue staining immediately after thawing. The results are shown in Figure 4A. Further, the cell suspension frozen and stored at ⁇ 80° C. for 3 months was thawed and then stored at 4° C. for one day or one week. The cell viability of the cell suspension after storage at 4°C was evaluated by trypan blue staining. The cell viability after storage at 4° C. was calculated assuming that the cell viability immediately after thawing (that is, immediately before storage) is 100%. The results are shown in Figure 4B.
- the cryopreservation solution of the present invention shows a high cell viability of 95% or more, which is almost unchanged even after storage for 5 months.
- the cryopreservation liquid containing the test sample (DMSO) of Comparative Example 1 a decrease in cell viability was already observed after 2 months of cryopreservation.
- the cell survival rate in cryopreservation in Comparative Example 1 is less than 50%. This result was in contrast to the cryopreservation solution of the present invention in which the high cell viability was still maintained after 3 months.
- the cryopreservation solution of the present invention showed a decrease in viability of less than 10%, while the cryopreservation solution of Comparative Example 1 showed a decrease in cell viability of about 25%. It was Furthermore, in the cryopreservation with the cryopreservation solution of the present invention, the high cell viability was still maintained even after 12 months of cryopreservation, and the decrease in cell viability was less than 15%.
- cryopreservation liquid of the present invention it can be seen that cells can be cryopreserved stably for a long period of time with a high cell viability.
- the cryopreservation solution of the present invention shows that the cell viability after storage at 4° C. for 1 day is Of about 100%, while in Comparative Example 1, it decreased to about 60%. Even after storage for one week at 4° C., cell viability of 40% or more was still observed with the cryopreservation solution of the present invention. This means that, in the cryopreservation solution of the present invention, the cells that survived after thawing were cells that normally proceeded to normal growth, and that the cryopreservation solution did not damage the cells during storage. This shows that the cryopreservation solution of the present invention has a very excellent cell preservation effect.
- Example 4 Evaluation of properties of primary human mesenchymal stem cells after cryopreservation using a test sample>
- the cultured primary human mesenchymal stem cells (Lonza PT2501) were suspended in the test cryopreservation solution (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL.
- the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing the frozen cryopreservation solution for each test was cryopreserved at ⁇ 80° C. for 6 months.
- HGF and IL-10 concentrations in the culture medium were quantified.
- a dedicated kit Quantikine (registered trademark) ELISA Human HGF, catalog number DHG00, manufactured by R&D
- Quantikine registered trademark
- ELISA Human IL-10 catalog number D100B, R&D
- HGF production in the cells after thawing was high in the cryopreservation in the presence of the cryopreservation liquid of Comparative Example 1 containing DMSO as the cryopreservative.
- the amount of HGF produced in the cells after thawing was low, and Comparative Example 1 was 1/3 or less.
- the results in the presence of DMSO indicate that the cells were in a stressed state during storage in the presence of DMSO. Since such high HGF production is not observed in the cell preservation in the presence of the cryopreservative of the present invention, it is understood that the cells are stably protected in the cryopreservation solution of the present invention.
- the amount of IL-10 produced was high in the cells cryopreserved using the cryopreservation solution of Example 1, and was extremely high in the cells cryopreserved using the cryopreservation solution of Comparative Example 1. It was very low. From this result, it is understood that the cryopreservation liquid of the present invention can favorably cryopreserve cells while maintaining the function of cells.
- the cryopreservation liquid of the present invention does not contain a compound having cytotoxicity such as DMSO and ethylene glycol, the cryopreservation liquid of the present invention is different from the conventional cryopreservation liquid without exposing the biological sample to a stress state. It has a remarkable effect that it can be cryopreserved while maintaining its properties.
- Example 5 Evaluation of properties of human primary mesenchymal stem cells after cryopreservation (undifferentiated) using a test sample>
- the cultured primary human mesenchymal stem cells (Lonza PT2501) were suspended in the test cryopreservation solution (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL.
- the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing the frozen cryopreservation solution for each test was cryopreserved at ⁇ 80° C. for 6 months.
- CD90, CD44, and CD105 are typical surface proteins expressed on undifferentiated mesenchymal stem cells, and are used as undifferentiated markers for mesenchymal stem cells.
- expression of all undifferentiated biomarkers of CD90, CD44 and CD105 was cryopreserved in the cryopreservation solution of Comparative Example 1 in the cells cryopreserved in the cryopreservation solution of Example 1. It was higher than the cells. Therefore, it can be seen that the cells cryopreserved with the cryopreservation solution of Example 1 maintain the expression of the undifferentiated marker. That is, the cells cryopreserved with the cryopreservation solution of Example 1 can maintain the undifferentiated state. It can be seen that the cryopreservation of the present invention can reduce the influence on the differentiation state, which is observed when the cryopreservation solution of Comparative Example 1 is used for preservation.
- cryopreservation method using the cryopreservation solution of the present invention can be suitably applied to the cryopreservation of stem cells, which is important to cryopreserve in an undifferentiated state.
- cryopreservation liquid containing various polysaccharides Cultured primary canine mesenchymal stem cells (cyagen C160) were used as a cryopreservation solution (serum-free) for testing in Examples 1 to 8 and Comparative Examples 5, 8 and 9 at a concentration of 1 ⁇ 10 6 cells/mL. It was suspended (however, the concentration of the hyaluronic acid sample in the cryopreservation solution for test of Example 1 was 20 w/v%). Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing the cryopreservation solution for each test was taken out and rapidly thawed in a 37°C warm bath.
- the cell viability of the cell suspension containing the cryopreservation solution for each test after thawing was evaluated by trypan blue staining. The results are shown in Fig. 7.
- a polymer having a predetermined molecular weight regardless of its type and containing a monomer having a hydrophilic group as a repeating unit is The cryopreservation solution showed a good cytoprotective effect when used as a cryopreservation agent in combination with a saccharide having a smaller molecular weight than the molecule or a salt thereof.
- the cryopreservation solution prepared by adding a saccharide or a salt thereof is acidic, a higher cytoprotective effect was obtained by making the cryopreservation solution neutral by adjusting the pH. It is considered that the pH adjustment made the conditions more appropriate for cell survival.
- the saccharide or salt thereof in the cryopreservation liquid is a polymer. It was necessary to add 1-5 w/v% to the test sample. On the other hand, even if the amount of saccharides or salts thereof added to the test sample is set to be more than 10% by mass to further increase the content in the cryopreservation solution, further improvement in the cell viability improvement effect is not observed. I could't.
- cryopreservation solution of the present invention shows a good cryoprotective effect not only on humans but also on dog mesenchymal stem cells.
- ⁇ Test Example 7 Evaluation of a saccharide having a viscosity average molecular weight of 3000 or less as a cell protective component>
- the cultured primary canine mesenchymal stem cells (cyagen C160) were suspended in the test cryopreservation solution (serum-free) of Examples 9, 10 and 2 at a concentration of 1 ⁇ 10 6 cells/mL. Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing the cryopreservation solution for each test was taken out and rapidly thawed in a 37°C warm bath.
- the cell viability of the cell suspension containing the cryopreservation solution for each test after thawing was evaluated by trypan blue staining immediately after thawing. The results are shown in Fig. 8.
- the salt was used as a cryopreservative in combination with hyaluronic acid having a viscosity average molecular weight of 15,000, the cytoprotective effect was improved.
- Example 9 When sucrose, which is sometimes added to the conventional cryopreservation solution from the viewpoint of water retention, was added to the polymer cryopreservation agent (Example 9), the cell protective effect was also improved, but glucuronic acid (implementation was performed).
- Example 10 a test sample which is a hyaluronic acid fragment of Production Example 1 (Example 2) having a viscosity average molecular weight of 1000, which contains a fragment obtained by subcritical treatment, is used as a cytoprotective component, that is, It can be seen that a significantly higher cytoprotective effect can be obtained when added to a polymer as the saccharide or its salt having a viscosity average molecular weight of 3000 or less of the present invention.
- a glycosaminoglycan cleavage product and/or a saccharide that is a constituent monosaccharide of glycosaminoglycan particularly, a saccharide that is a cleavage product of hyaluronic acid or a composition of hyaluronic acid It has been found that the monosaccharide glucuronic acid is particularly preferred.
- ⁇ Test Example 8 Evaluation of cells in frozen cryopreservation liquid (evaluation of intracellular vitrification state)>
- the cultured primary dog mesenchymal stem cells (cyagen C160) were suspended in the test cryopreservation liquid (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL.
- a control suspension was prepared in the same manner, in which cells were suspended in the test sample solution of Comparative Example 2 consisting of an ⁇ MEM medium containing no cryopreservative.
- FIG. 9A shows the results of the control suspension, and it can be seen that in the medium alone, the cells are darkened because ice crystals are generated in the cells and light is diffusely reflected.
- FIG. 9B shows the results of Comparative Example 1 in which DMSO is the test sample. Also in FIG. 9B, it can be seen that the cells are dark and micro ice crystals are formed.
- FIG. 9C is the result of the cryopreservation liquid containing the test sample of Example 1. It can be seen that the cells are turning bright and the inside of the cells vitrifies into an amorphous state.
- the cryopreservation solution of the present invention freezes the cells in a vitrified state. It was also found that the glass state is formed more stably by including the saccharide that is a cleavage product of hyaluronic acid. It is considered that vitrification occurred stably and efficiently by suppressing the formation of ice crystals around the cells by the saccharide having a viscosity average molecular weight of 3000 or less.
- Example 9 Evaluation of intracellular vitrification state using difference in brightness>
- the cultured primary dog mesenchymal stem cells (cyagen C160) were suspended in the test cryopreservation liquid (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL.
- a control suspension was prepared in the same manner, in which cells were suspended in the test sample solution of Comparative Example 2 consisting of an ⁇ MEM medium containing no cryopreservative. Thereafter, 5 ⁇ L of the cell suspension containing each cryopreservation solution for each test and the control suspension were added to a hard glass sample plate (16 ⁇ 0.12 mm), and a hard glass cover glass (12 ⁇ 0.12 mm) was added.
- the difference (absolute value) between the intracellular and extracellular brightness of the observed image shown in FIG. 10A was analyzed using the image analysis software ImageJ (https://imagej.nih.gov/ij/).
- ImageJ https://imagej.nih.gov/ij/.
- the lightness of the solvent region and the lightness inside the cell and the Munsell lightness were read under the same conditions, and the read data of the lightness of the solvent region and the lightness inside the cell were compared with the read data of each Munsell lightness.
- the Munsell lightness of the closest read data was adopted as the lightness of the solvent region and the lightness inside the cell to quantify the lightness of the solvent and the lightness inside the cell (Munsell value conversion).
- the read value of the brightness of the intracellular region or the solvent region read by the image analysis software is a darker value than the read value of the darkest Munsell value of 0, the Munsell of the intracellular region or the solvent region will be used for convenience. If the value is set to 0 and the lightness reading value of the intracellular region or solvent region read by the image analysis software is a brighter value than the brightest value 10 of the Munsell lightness value, the intracellular region or the solvent is conveniently used. The Munsell lightness value of the area is set to 10.
- the Munsell brightness of the solvent region was 5
- the Munsell brightness of the intracellular region was 0, and the difference between the Munsell brightness of the solvent region and the Munsell brightness of the intracellular region was 5.
- the lightness of the solvent region was 4, the Munsell lightness of the intracellular region was 0, and the Munsell lightness difference was 4.
- the Munsell brightness of the solvent region was 4, the Munsell value of the intracellular region was 2, and the Munsell brightness difference was 2 (FIG. 10B).
- Example 1 the lightness of the intracellular region and the lightness of the solvent region are close to each other. This result indicates that in the cryopreservation solution containing the test sample of Example 1, the frozen cells were lightened, that is, the inside of the cells was vitrified.
- the difference in brightness between the intracellular region and the solvent region is preferably 3 or less. Further, it is desirable that the lightness value of the solvent region is greater than or equal to the lightness value of the intracellular region.
- ⁇ Test Example 10 Evaluation of cell area in frozen cryopreservation liquid>
- the cultured primary dog mesenchymal stem cells (cyagen C160) were suspended in the test cryopreservation liquid (serum-free) of Example 1 and Comparative Example 1 at a concentration of 1 ⁇ 10 6 cells/mL.
- a control suspension was prepared in the same manner by suspending cells in a medium (that is, only the medium) to which the test sample solution of Comparative Example 2 containing an ⁇ MEM medium containing no cryopreservative was added. Thereafter, the cell suspension containing the cryopreservation solution for each test and the control suspension were cooled to ⁇ 80° C.
- the area of cells was increased after freezing, while freezing was performed using the cryopreservation solution of the present invention. After that, the cells had shrunk to about 1/3. It was confirmed that the cells were dehydrated well when frozen.
- the cells are preferably reduced to less than 1/1 and 1/3.5 or more of the orthogonal projection area in the medium.
- ⁇ Test Example 11 Evaluation of cryoprotection for various cells>
- Each of the cultured mouse-derived macrophage-like cell line (RAW264), human colon cancer-derived cells (Caco-2) and primary human lung microvascular endothelial cells (HMVEC) was administered at a concentration of 1 ⁇ 10 6 cells/mL. It was suspended in the test cryopreservation liquid (serum-free) of Example 1 and Comparative Example 1. Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- cryopreservation solution of the present invention shows high cell viability in all cells, which is almost equal to or higher than Comparative Example 1 which is a test sample. Was obtained. From these results, it was confirmed that the cryopreservation solution of the present invention can cryopreserve various types of cells with high cell viability regardless of primary cells or established cells and regardless of the cell origin. Was done.
- Example 12 Evaluation of effect of saccharide of the present invention on cell viability> Cultured primary canine mesenchymal stem cells (cyagen C160) were suspended in the following cryopreservation liquids (without serum) for each test at a concentration of 1 ⁇ 10 6 cells/mL. Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty). After cryopreservation for 7 days, the cell suspension containing the cryopreservation solution for each test was taken out and rapidly thawed in a 37°C warm bath. The cell viability of the cell suspension containing the cryopreservation solution for each test after thawing was evaluated by trypan blue staining. The results are shown in FIGS.
- FIG. 13 shows the effect of adding a test sample, which is a hyaluronic acid fragment of Production Example 1 having a viscosity average molecular weight of 1000 containing fragments obtained by subcritical treatment, to polymers having different molecular weights.
- the test cryopreservation solutions used were the test cryopreservation solution of Example 1, the test cryopreservation solution of Comparative Example 6, the test cryopreservation solution of Comparative Example 6, and the test sample of Production Example 1, respectively. It was a cryopreservation liquid for a test to which (a hyaluronic acid fragment sample having a viscosity average molecular weight of 1000) was added in an amount of 1 w/v %.
- the cryopreservation solution for test had a high viscosity and there was some difficulty in handling such as foaming during preparation of the cell suspension. It was possible to adjust the concentration of the cryopreservation liquid in the cell suspension to 10 w/v%.
- Example 1 having the highest survival rate was the acid, and the saccharide having a viscosity average molecular weight of 3000 or less or the salt thereof was the saccharide that is a cleavage product of hyaluronic acid. Also in Comparative Example 6 in which the viscosity average molecular weight of the polymer was 50,000, the cell viability was improved by adding Production Example 1 which was a saccharide containing a cleavage product of hyaluronic acid and having a viscosity average molecular weight of 1000.
- FIG. 14 shows that the cell suspension was frozen under the condition that the content of the cryopreservation liquid in the cell suspension was reduced to lower the content of the polymer as the cryopreservation agent, and the cell viability after thawing was examined.
- the results are shown below.
- Cell suspensions having a low polymer content as a cryopreservation agent were a test cryopreservation solution containing 1 w/v% of the test cryopreservation solution of Comparative Example 6 and a test cryopreservation of Comparative Example 6, respectively.
- Test cryopreservation solution prepared by adding Production Example 1 in an amount of 1 w/v% to the test cryopreservation solution containing 1 w/v% of the solution, and the test cryopreservation solution of Comparative Example 7 containing 1 w/v% Cells were suspended in a cryopreservation solution for test, which is a test cryopreservation solution containing 1 w/v% of the test cryopreservation solution of Comparative Example 7 in an amount of 1 w/v% of Production Example 1. It was turbid.
- FIG. 15 shows the results of examining the effect of the molecular weight of a saccharide or a salt thereof having a viscosity average molecular weight of 3000 or less in a cryopreservation solution on the cell viability.
- the test was carried out by using the test sample solution of Comparative Example 5 containing the test sample having a viscosity average molecular weight of 15000 and the test sample of Comparative Example 5 in an amount of 1% by mass each of Production Examples 1 to 3 (that is, the viscosity average molecular weight is A test cryopreservation solution containing 1 w/v% as a test sample was used to which 1000, 2000, and 3000 hyaluronic acid fragment test samples) were added, respectively.
- FIG. 16 shows cells after thawing when cryopreserved using a test sample solution having a concentration of 10 w/v% dissolved in ultrapure water, using only a saccharide or a salt thereof having a smaller molecular weight than a polymer as a test sample. It shows the survival rate.
- the test samples having the viscosity average molecular weights of Production Examples 1 to 3 of 1,000, 2000 and 3000 were used.
- a cell survival effect cannot be obtained only with a saccharide having a smaller molecular weight than a polymer or a salt thereof.
- a cell viability of about 10% was observed, which is presumed to be due to hyaluronic acid having a higher molecular weight than 3000 that may be contained in the test sample of Production Example 3.
- ⁇ Test Example 13 HPLC analysis of subcritically processed hyaluronic acid sample> 1 wt% aqueous solutions of the test samples of Production Examples 1 to 3 were prepared and filtered with a 0.45 ⁇ m membrane filter (manufactured by Millipore), and then the components of each test sample were analyzed by HPLC.
- a solution 16 mM NaH 2 PO 4 aqueous solution
- B solution 800 mM NaH 2 with PO 4 aqueous solution
- ZORBAX NH 2 (Agilent Technologies Co., column size ⁇ 4.6 ⁇ 250mm, particle size 5 [mu] m)
- the components were separated at a flow rate of 1.0 mL/min, a column temperature of 40° C., and a detection wavelength of 210 nm.
- Gradient conditions were: mobile phase B concentration 0% (0 minutes) ⁇ mobile phase B concentration 100% (60 minutes). The results are shown in Figures 17A-C.
- disaccharide HA02, tetrasaccharide HA04, hexasaccharide HA06, octasaccharide HA08, and decasaccharide HA10 (all manufactured by Idron) at a concentration of 0.2 wt% were prepared.
- An aqueous solution containing each oligosaccharide of hyaluronic acid was prepared and subjected to HPLC analysis in the same manner. The results are shown in Figure 17D.
- FIG. 17A shows the analysis results of a test sample containing a cleavage product of hyaluronic acid of Production Example 1 having a viscosity average molecular weight of 1000, which shows a peak corresponding to a monosaccharide near a retention time of 3.5 minutes. , A peak corresponding to a disaccharide having a retention time of about 9 minutes is observed. That is, it is considered that the test sample of Production Example 1 contains such monosaccharide and disaccharide components and contributes to the effect of improving the cell viability.
- Example 14 HPLC analysis of test sample of Example 1>
- test sample of Example 1 a hyaluronic acid sample having a viscosity average molecular weight of about 10,000 obtained by subcritical treatment
- Example 1 peaks corresponding to monosaccharides and disaccharides are observed in the test sample of Example 1 near retention times of 3.5 minutes and 9 minutes, respectively. That is, the test sample of Example 1 also contains such monosaccharide and disaccharide components, and it is considered that a high cell viability effect is obtained by this.
- ⁇ Test Example 15 Evaluation of cell viability by a test sample having no polysaccharide structure> The cell viability after cryopreservation was evaluated using the test cryopreservation solution containing gelatin of Comparative Example 3.
- the cultured primary canine mesenchymal stem cells (cyagen C160) were suspended in the cryopreservation solution for test (serum-free) of Comparative Examples 1 and 3 at a concentration of 1 ⁇ 10 6 cells/mL. Then, the cell suspension containing the cryopreservation liquid for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing the cryopreservation solution for each test was taken out and rapidly thawed in a 37°C warm bath.
- the cell viability of the cell suspension containing the cryopreservation solution for each test after thawing was evaluated by trypan blue staining. The results are shown in Fig. 19.
- cryopreservation liquid of the present invention can be obtained by containing a saccharide or a salt thereof having a smaller molecular weight than the polymer in the cryopreservation liquid, in addition to the polymer.
- ⁇ Test Example 16 Evaluation of cell viability by carboxylated polylysine>
- the cultured primary human mesenchymal stem cells (Lonza PT2501) were suspended in the test cryopreservation liquids of Comparative Example 10 and Comparative Example 11 at a concentration of 1 ⁇ 10 6 cells/mL.
- the cell suspension containing the cryopreservation solution for each test was frozen in a ⁇ 80° C. freezer in a slow cell freezer (Nalgene (registered trademark) Mr. Frosty).
- the cell suspension containing each test sample frozen for 7 days was stored at -80°C and then rapidly thawed in a 37°C warm bath.
- the cell suspension containing the frozen stock solution for each test after thawing was evaluated for cell viability by trypan blue staining immediately after thawing. The results are shown in Fig. 20.
- Comparative Example 10 the cell survival rate was 65%.
- Comparative Example 11 which is a mixture of carboxypolylysine and Production Example 1, the survival rate was 60%.
- carboxypolylysine addition of low molecular weight hyaluronic acid had no effect.
- carboxypolylysine the amino group of polylysine is modified with carboxylic acid to make it hydrophobic, and it is presumed that water around the cells will be less likely to be replaced by low molecular weight hyaluronic acid.
- the cryopreservation solution for a biological sample containing a polymer and a saccharide in the present invention is a cell-permeable and cytotoxic compound such as DMSO or ethylene glycol by stably vitrifying the inside of cells. , And/or it has a remarkable effect that a biological sample can be cryopreserved with a high cell viability without basically requiring the addition of serum or a protein derived from serum. ..
- the cells are well protected and their properties are maintained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
細胞生存率の高い生体試料用の凍結保存液、生体試料の凍結保存方法、および生体試料を長期間安定的に保存する方法を提供することを目的とする。3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩とを含む生体試料用の凍結保存液およびその製造方法、ならびに、凍結保存液を生体試料に加える工程を含む凍結保存方法および生体試料を長期間安定的に保存する方法。
Description
本発明は、凍結保存液に関する。また、本発明は、凍結保存液を用いた生体試料の凍結保存方法、生体試料を保存する方法および生体試料の凍結保存剤に関する。
近年の再生医療研究の飛躍的な発展に伴い、ヒトにのみならず獣医分野においても細胞治療などの再生医療が積極的に行われている。生体から採取した骨髄由来間葉系幹細胞や脂肪由来間葉系幹細胞は、採取の後に大量に増やし、上記のような再生医療や再生医療研究に用いられる。この際、余剰に増やした細胞を凍結保存し、適宜使用することが一般的である。また、このような細胞の安定供給に対する需要も高まっている。
細胞の凍結保存メカニズムにおいて、凍結および/または解凍の過程で細胞内に氷結晶が成長すると、細胞膜や細胞内構造が損傷を受けたり、細胞のタンパク質が変性したりして細胞が致命的なダメージを受けてしまうことが知られている。したがって、細胞を凍結保存する際には、細胞内凍結を防ぐことが重要であり、通常、細胞の凍結保存には、ジメチルスルホキシド(DMSO)、グリセリン、プロピレングリコールなどの低分子化合物が細胞内浸透型の凍結保護試薬として、培養培地などの緩衝液に加えることにより用いられている(特許文献1)。このうち、DMSOが最もよく用いられており、細胞や細胞小器官を保護する効果は良好である。しかしながら、細胞内浸透型の凍結保存液では、細胞内に凍結保護試薬である低分子化合物が浸透するため、凍結保護試薬の細胞への影響が懸念されている(非特許文献1)。
そこで、化学物質の代わりに、凍結保護試薬として天然の凍結保護剤を利用する試みも行われている。例えば、二糖、オリゴ糖、または高分子多糖が非浸透型の凍結保護試薬として、培養培地などの緩衝液に加えることが知られている。
また、ハイドロゲルを形成する架橋体内に生体成分を保持させる方法も検討されている。特許文献2には、重量平均分子量が5000~400万である原料のヒアルロン酸に、水酸基と反応して架橋構造を形成する置換基を有する側鎖が導入された修飾ヒアルロン酸を原料とした生体成分用保存剤が記載されている。修飾ヒアルロン酸は、ポリビニルアルコールなどの複数の水酸基を有する化合物の水酸基と反応して修飾ヒアルロン酸を架橋した架橋物となり、この寒天状のハイドロゲル中に生体成分が包埋されることにより保存剤として使用されている。特許文献2に記載のハイドロゲルの実際の保存剤としての分子量は数百万以上であると推測される。特許文献2においては、生体成分の保存は約4℃の冷蔵で実施されており保存期間は数日程度である。
また、特許文献3では、ポリアミノ酸のアミノ基が、カルボン酸無水物でカルボキシル化(またはアセチル化)されることによりブロックされているカルボキシル化ポリアミノ酸と有機両性剤とを含む凍結保存組成物が記載されている。
REJUVENATION RESEARCH Volume 18 Number 5 (2015): 422-436, Mary Ann Liebert, Inc.
細胞内浸透型の凍結保護物質は、細胞の脱水を促進させることにより、細胞内に形成される氷晶の形成速度を遅らせ、氷晶形成を阻害する。特にDMSOは細胞内に浸透しやすく、したがって、哺乳動物細胞などの複雑な構造をもつ細胞の凍結保存に有効であるが、上述の非特許文献1にも記載されているように、DMSOのような化学物質は細胞毒性を有している。凍結保護物質の細胞内への浸透が進み細胞内濃度が上昇すると毒性の影響も高まると考えられる。
さらに、DMSOは、HL-60細胞やP19CL6細胞(マウス胎生期癌(embryonal carcinoma)細胞由来)などの分化を誘導すること(PNAS March 27, 2001 98 (7) 3826-3831.およびBiochem Biophys Res Commun. 2004 Sep 24;322(3):759-65.)、また、ES細胞の分化に影響を及ぼすことが報告されている(Cryobiology. 2006 Oct;53(2):194-205.)。したがって、凍結保護試薬としてのDMSOの使用は、幹細胞における未分化性や機能性の維持が必要である場合の細胞保存には適さないことが考えられる。また、DMSOを用いて試料を長期保存する場合、取扱い管理が必要となる液体窒素中または雰囲気下での試料の保存が必要不可欠であり、再生医療や再生医療研究の普及への課題となると考えられる。
一方、糖などの天然凍結保護物質は、細胞に親和的であるが、分子サイズが大きく、細胞内に取り込まれにくい。したがって、細胞外から添加するだけでは細胞内凍結を十分に抑制できないと考えられる。
特許文献2に記載の生体成分用保存剤では、前述のように、試験された保存期間は数日にすぎず、数か月単位の保存をするためにはより優れた凍結保存技術が必要であると考えられる。また、特許文献2に記載のハイドロゲルを製造するためにはヒアルロン酸への修飾基の導入が必要であり、さらに保存後の生体成分のハイドロゲルからの回収のためにゲルを溶解するための添加物の使用も必要となる。しかしながら、このような添加物を凍結保存方法に導入すると研究試験用としては使用できるものの、不純物の混入リスク等から、実際の医療用には使用しづらい。
特許文献3には、ポリアミノ酸のアミノ基がカルボン酸で修飾されたカルボキシル化ポリアミノ酸と有機両性剤と必要に応じて多糖を含む、凍結保存組成物が開示されているが、細胞を凍結保存させた場合の生存率は十分なものではなかった。
非浸透型の凍結保護試薬を使用する方法も知られているが、このような保存試薬のみでは、細胞への影響は低いものの、十分な保存効果を得ることができない。そこで、細胞内浸透型のDMSO、グリセリン、プロピレングリコールなどの細胞内浸透型の化合物と非浸透型の物質とを組み合わせて、化合物量の低減や置換が行われたものが市販されている。しかしながら、生体構成成分などの天然成分のみで良好な凍結保存効果を示し、かつ実用的であるような凍結保護物質は未だ報告されていない。
本発明は、前記問題点に鑑みてなされたもので、生体試料を適切に保存するための凍結保存用の高分子水溶液を提供する。特には、ジメチルスルホキシド(DMSO)、プロピレングリコール(PG)、エチレングリコール(EG)等の化学物質を基本的に使用せず、また、血清や血清由来タンパク質を基本的に添加せずとも生体試料を-27℃以下の温度で安定的に長期間保存可能とする凍結保存用の高分子水溶液、生体試料の凍結保存剤、および生体試料を安定的に凍結保存する方法を提供することを目的とする。
本発明は、溶媒中に、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む生体試料用の凍結保存液に関する。高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。
本発明においては、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩は、主成分として、3000以下の粘度平均分子量を有する糖類またはその塩は、副成分として含まれていることが望ましい。本明細書において、主成分とは、溶媒中に溶解している成分の中で、重量比の最も高い成分をいう。主成分以外の構成成分は副成分である。
本発明において使用される親水性基を有するモノマーを繰り返し単位として含む高分子は、その親水性基が修飾されていないか、修飾されていてもその親水性基の全数の50%以下であることが望ましい。高分子中の親水性基が、生体試料の保護および溶媒のガラス化、分子量3000以下の糖と生体試料周辺の水との置換に関与していると推定され、親水性基が修飾されることで、疎水化されてしまうと、細胞の凍結保存効果が低下するからである。従って、主成分としてカルボキシポリアミノ酸のような疎水化した高分子は除かれることが望ましい。
本発明の生体試料の凍結保存液は、細胞内浸透型の凍結保護物質であるジメチルスルホキシドを含まないことが望ましい。また、本発明の生体試料の凍結保存液は、エチレングリコールなどの細胞毒性のある凍結保護剤は含まない方が望ましい。これらは、解凍後の細胞にとって有害だからである。
本発明においては、高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
親水性基を有するモノマーが、ヒドロキシル基ならびにカルボン酸基およびその塩からなる群より選択される少なくとも一つである親水性基を有するモノマーである生体試料用の凍結保存液が好ましい。
高分子がさらに、置換されていてもよいアミノ基または置換されていてもよいアミド基を有する窒素含有モノマーを繰り返し単位として含む生体試料用の凍結保存液が好ましい。
高分子が、前記親水性基を有するモノマーと前記窒素含有モノマーとの交互共重合体である生体試料用の凍結保存液が好ましい。
親水性基を有するモノマーが、エクアトリアル位に置換したヒドロキシル基を有するモノマーである生体試料用の凍結保存液が好ましい。
10000以上の粘度平均分子量を有する高分子またはその塩を含む生体試料用の凍結保存液が好ましい。
高分子が、複数の糖残基を含む高分子である生体試料用の凍結保存液が好ましい。
糖類が、単糖類、二糖類、またはオリゴ糖である生体試料用の凍結保存液が好ましい。
糖類が、グルコース、フルクトース、ガラクトースまたはそれらのアルコール基が酸化したウロン酸もしくはアルコール基がアミノ基で置換されたアミノ糖、スクロース、グリコサミノグリカンの切断生成物、グリコサミノグリカンの構成単糖、または、それらの重合体もしくは組み合わせである生体試料用の凍結保存液が好ましい。
糖類が、グルクロン酸またはN-アセチルグルコサミンである生体試料用の凍結保存液が好ましい。
凍結保存液中の高分子またはその塩の濃度が、5w/v%以上、20w/v%以下である生体試料用の凍結保存液が好ましい。
凍結保存液中の糖類またはその塩の濃度が、1w/v%以上、10w/v%以下である生体試料用の凍結保存液が好ましい。
細胞内非浸透型の凍結保存液である生体試料用の凍結保存液が好ましい。
前記生体試料が、細胞、組織、または、膜もしくは凝集体である組織様物である生体試料用の凍結保存液が好ましい。
前記生体試料が、間葉系幹細胞、血球細胞、内皮細胞、または移植用組織である生体試料用の凍結保存液が好ましい。
前記生体試料が、精子、卵子、または受精卵である生体試料用の凍結保存液が好ましい。
本発明は、また、本発明の凍結保存液により、望ましくは冷却速度10℃/min以下、好ましくは、冷却速度1℃/min以下の緩慢凍結法で冷却および凍結を行う、生体試料の凍結方法に関する。
本発明は、また、溶媒中に、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む凍結保存液中に生体試料を含ませる工程と、前記生体試料を含む前記凍結保存液を凍結に供する工程と、-27℃以下の温度に前記生体試料を含む前記凍結保存液を保持することで保存を行う工程とを含む生体試料の凍結保存方法に関する。
高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。また、凍結保存液中にはジメチルスルホキシドやエチレングリコールなどの細胞浸透性で細胞毒性を有する化合物を含まない方が望ましい。これらは解凍後に細胞に対して毒性を有しているからである。
本発明の生体試料の凍結保存方法で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
また、本発明の生体試料の凍結保存方法における凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
前記生体試料の保護が保存中におこる生体試料の凍結保存方法が好ましい。
前記凍結保存液の前記生体試料を含ませる工程が、前記生体試料を冷却する前に行われる生体試料の凍結保存方法が好ましい。
前記生体試料が、細胞、組織、または、膜もしくは凝集体である組織様物である生体試料の凍結保存方法が好ましい。
前記生体試料が、精子、卵子、または受精卵である生体試料の凍結保存方法が好ましい。
本発明は、また、生体試料を保存する方法であって、前記生体試料が3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩との存在下で、かつ、-27℃以下で保存され、前記保存が、前記生体試料が前記高分子またはその塩と前記糖類またはその塩との存在下で少なくとも5か月の期間保存された場合に、保存直前の前記生体試料の生存率を基準として5%未満の生存率の低下を示す保存であることを特徴とする方法に関する。
高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。また、凍結保存液中にはジメチルスルホキシドやエチレングリコールなどの細胞浸透性で細胞毒性を有する化合物を含まない方が望ましい。これらは解凍後に細胞に対して毒性を有しているからである。
本発明の生体試料を保存する方法で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
また、本発明の生体試料を保存する方法における凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
前記保存が、前記生体試料が前記高分子またはその塩と前記糖類またはその塩との存在下で少なくとも6か月の期間保存された場合に、保存直前の前記生体試料の生存率を基準として10%未満の生存率の低下を示す保存であることを特徴とする生体試料を保存する方法が好ましい。
前記保存が、-27℃以下での凍結保存後に解凍された生体試料を4℃で1日間保存した場合に、解凍直後の前記生体試料の生存率を基準として5%未満の生存率の低下を示すことを特徴とする生体試料を保存する方法が好ましい。
前記生体試料が、細胞である生体試料を保存する方法が好ましい。
前記生体試料が、哺乳動物細胞である生体試料を保存する方法が好ましい。
前記生体試料が、哺乳動物間葉系幹細胞、哺乳動物血球細胞、または哺乳動物内皮細胞である生体試料を保存する方法が好ましい。
本発明は、また、-27℃以下、望ましくは-150℃を超え、-70℃以下、好ましくは-150℃を超え、-80℃以下の温度で、生体試料を、望ましくはインビトロで、保存するための、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩との混合物の使用に関する。
高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。また、凍結保存液中にはジメチルスルホキシドやエチレングリコールなどの細胞浸透性で細胞毒性を有する化合物を含まない方が望ましい。これらは解凍後に細胞に対して毒性を有しているからである。
本発明は、生体試料を凍結保存するための、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との混合物の使用に関する。
高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。
本発明で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
また、凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
また、本発明は、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との混合物からなる、生体試料の凍結保存剤に関する。
高分子または糖類の塩は、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。
本発明で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
また、凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
高分子が、ペントース、ヘキソースもしくはウロン酸またはそれらの組合せを繰り返し単位として含むことが好ましい。
高分子が、繰り返し単位としてアミノ糖をさらに含むことが好ましい。
高分子またはその塩の親水性基は、修飾されていないことが好ましい。
高分子が、ヒアルロン酸、デキストラン、プルラン、またはコンドロイチン硫酸であることが好ましい。
高分子として、カルボキシル化ポリアミノ酸は除かれることが好ましい。
高分子として、カルボキシル化ポリアミノ酸は除かれることが好ましい。
糖類が、単糖類、二糖類、またはオリゴ糖であることが好ましい。
糖類が、グルコース、フルクトース、ガラクトースまたはそれらのアルコール基が酸化したウロン酸もしくはアルコール基がアミノ基で置換されたアミノ糖、スクロース、グリコサミノグリカンの切断生成物、グリコサミノグリカンの構成単糖、または、それらの重合体もしくは組み合わせであることが好ましい。
本発明は、また、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む生体試料用の凍結保存液の製造方法であって、500000を超える分子量を有する多糖類またはその塩を水に溶解させた後、水の亜臨界条件下で抽出処理を行うことを含む、生体試料用の凍結保存液の製造方法に関する。
本発明で使用される高分子および/または糖類の塩としては、金属塩、ハロゲン塩もしくは硫酸塩が望ましい。金属塩としては、アルカリ金属もしくはアルカリ土類金属の塩が望ましい。アルカリ金属もしくはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。
本発明で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
前記水の亜臨界条件が、温度150~350℃、圧力0.5~25MPaである生体試料用の凍結保存液の製造方法が好ましい。
本発明によれば、細胞内浸透型の凍結保護物質であるDMSOやエチレングリコールなどの細胞浸透性で毒性を有する化合物を用いなくても、細胞や組織などの生体試料を適切に保存することができる。さらに、本発明の凍結保存液は細胞内非浸透型であるため、高い凍結保存効果を示すにも関わらず、細胞に対して低毒性である。
また、血清、血清由来タンパク質を含まないため、細菌やウィルスに汚染されることもない。なお、細菌やウィルスに汚染されていないようなタンパク質を添加することは可能である。また、細胞毒性を有する化学物質を細胞の機能を損なわない低濃度で加えることは可能である。
なお、本発明において使用される高分子または糖類の「粘度平均分子量」とは、以下のような方法と計算式とによって求められる。
極限粘度測定:
(1)所定量のNaClを30℃のイオン交換水に溶解させ、0.2MのNaCl溶液(標準液)を調製する。
(2)高分子または糖類の試料を30℃の標準液に溶解させ、原液を調製する。標準液および原液それぞれの粘度を測定し、標準液に対する原液の相対粘度が2.0~2.4となるように調整する。
(3)30℃の原液を、30℃の標準液を用いて5/4、5/3、5/2倍となるようにそれぞれ希釈する。
(4)30℃の標準液、原液および希釈液の粘度をそれぞれ測定する。粘度測定には、E型粘度計を用いる。
(5)原液および希釈液それぞれの粘度を標準液の粘度で割ったものを相対粘度(ηr)とし、下式に基づき還元粘度を導出する。
ここで、ηsp:高分子または糖類の還元粘度[mL/g]、ηr:高分子または糖類の相対粘度[-]、C:高分子または糖類の濃度[g/mL]である。
(6)高分子または糖類の濃度と、高分子または糖類の還元粘度との関係をそれぞれプロットし、近似直線を引く。近似直線の切片(高分子または糖類濃度=0)の値を極限粘度とする。
(1)所定量のNaClを30℃のイオン交換水に溶解させ、0.2MのNaCl溶液(標準液)を調製する。
(2)高分子または糖類の試料を30℃の標準液に溶解させ、原液を調製する。標準液および原液それぞれの粘度を測定し、標準液に対する原液の相対粘度が2.0~2.4となるように調整する。
(3)30℃の原液を、30℃の標準液を用いて5/4、5/3、5/2倍となるようにそれぞれ希釈する。
(4)30℃の標準液、原液および希釈液の粘度をそれぞれ測定する。粘度測定には、E型粘度計を用いる。
(5)原液および希釈液それぞれの粘度を標準液の粘度で割ったものを相対粘度(ηr)とし、下式に基づき還元粘度を導出する。
ここで、ηsp:高分子または糖類の還元粘度[mL/g]、ηr:高分子または糖類の相対粘度[-]、C:高分子または糖類の濃度[g/mL]である。
(6)高分子または糖類の濃度と、高分子または糖類の還元粘度との関係をそれぞれプロットし、近似直線を引く。近似直線の切片(高分子または糖類濃度=0)の値を極限粘度とする。
Kおよびαは高分子の種類によって変動する数値であり、例えば「高分子材料便覧」(社団法人高分子学会編)など多数の公開文献にKとαの値が開示されており、公表されている値を用いて粘度平均分子量の計算を行うことができる。
例えば、ヒアルロン酸の場合、K=3.6×10-4およびα=0.78、プルランおよびゼラチンの場合、文献値よりK=9×10-4、α=0.5である。例えばデキストランの場合、K=6.3×10-8、α=1.4、コンドロイチン硫酸の場合、K=5.8×10-4、α=0.74を用いることができる。
単糖や二糖、単分子と考えられる化合物の場合は、構造式から分子量が明確に特定されるため、本発明においては、構造式から特定される分子量を粘度平均分子量として擬制して扱う。
また、本発明の凍結保存液を調製するために使用される溶媒としては、水のような水性溶媒を用いることが望ましい。特に体液や細胞液の浸透圧とほぼ同じになるようにナトリウムイオン、カリウムイオン、カルシウムイオン等によって塩濃度や糖濃度等を調整した等張液であることが好ましい。具体的には、例えば、水、生理食塩水、緩衝効果のある生理食塩水であるリン酸緩衝生理食塩水(phosphate buffered saline;PBS)、ダルベッコリン酸緩衝生理食塩水、トリス緩衝生理食塩水(Tris Buffered Saline;TBS)、HEPES緩衝生理食塩水等、ハンクス平衡塩溶液などの平衡塩溶液、リンゲル液、乳酸リンゲル液、酢酸リンゲル液、重炭酸リンゲル液、または、D-MEM、E-MEM、αMEM、RPMI-1640培地、Ham’s F-12、Ham’s F-10、M-199などの動物細胞培養用基礎培地、他の市販の培地などを挙げることができる。
本発明の生体試料の凍結保存用の高分子水溶液は、粘度平均分子量3000を超え、500000以下の高分子成分により、溶媒部分に氷晶が生成することを防止してガラス化することにより、氷晶形成による細胞などの生体試料の破裂を抑制し、細胞膜などの生体試料の、溶媒との境界組織近傍の水分子を粘度平均分子量3000以下の低分子量の糖類により置換することで、細胞膜付近の氷晶形成および成長を阻害させ、細胞膜障害を抑制することができる。また、本発明の生体試料の凍結保存液は、細胞内非浸透型の凍結保存液であるにも関わらず従来技術では得ることのできなかった高い凍結保存効果を示すものであるため、生体試料へのダメージおよび生体試料の性質変化を顕著に軽減することができる。
また、本発明の生体試料の凍結保存用の高分子水溶液は、DMSOやエチレングリコールなどの細胞内浸透型の化学物質を含まないため、細胞毒性や、DMSOに関して報告されているような細胞の性状への影響を軽減することができる。したがって、凍結保存中および凍結保存後の生体試料における生体試料の性状を維持することができる。なお、DMSOやエチレングリコールなどの細胞毒性を有する化学物質を細胞の機能を損なわない低濃度で加えることは可能である。
本発明においては、高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
また、血清および/または血清由来タンパク質を含まないため、細菌やウィルスに汚染されることもない。なお、細菌やウィルスに汚染されていないようなタンパク質を添加することは可能である。
また、本発明の生体試料の凍結保存用の高分子水溶液は、-23℃±4℃付近でガラス転移点を有するため、本発明の生体試料の凍結保存方法および生体試料を保存する方法によれば、凍結した生体試料を、DMSOやエチレングリコールなどの細胞毒性を有する化学物質や血清などのタンパク質を用いることなしに、-27℃以下の温度で、すなわちディープフリーザー中などで長期間安定に保存することができる。なお、細菌やウィルスに汚染されていないようなタンパク質を添加することは可能である。また、DMSOやエチレングリコールなどの細胞毒性を有する化学物質を細胞の機能を損なわない低濃度で加えることは可能である。
凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
本発明の生体試料の凍結保存用の高分子またはその塩の水溶液(以下、本発明の高分子水溶液ともいう)は、3000より大きく、500000以下である粘度平均分子量を有する高分子またはその塩と、3000以下である粘度平均分子量を有する糖類またはその塩とを含む凍結保存液である。そして、本発明の高分子は親水性基を有するモノマーを繰り返し単位として含む高分子である。すなわち、本発明の生体試料の凍結保存液は、親水性基を有するモノマーを繰り返し単位として含み、3000より大きく、500000以下である粘度平均分子量を有する高分子またはその塩と、3000以下である粘度平均分子量を有する糖類またはその塩との混合物を含む凍結保存剤を溶媒に溶解させたものである。
本発明で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
なお、本発明において使用される高分子または糖類の「粘度平均分子量」とは、以下のような方法と計算式とから算出される値を意味する。
以下に極限粘度の測定方法および極限粘度を用いた粘度平均分子量の計算方法を記載する。
極限粘度測定:
(1)所定量のNaClを30℃のイオン交換水に溶解させ、0.2MのNaCl溶液(標準液)を調製する。
(2)高分子または糖類の試料を30℃の標準液に溶解させ、原液を調製する。高分子または糖類の試料が溶液で入手される場合は、溶液から溶媒を除去した固形分を高分子または糖類の試料とする。高分子および糖類の混合試料、複数の高分子を含む混合試料または複数の糖類を含む混合試料の場合は、各物質を分離、分画した後、各物質から溶媒を除去したものを高分子または糖類の試料とする。また、高分子および/または糖類が未知の場合は、高分子および/または糖類についてHPLC、LC-MSやLC-IR等で物質を同定する。未知の高分子および/または糖類を複数含む場合は、各成分を分離、分画し、それぞれの高分子および/または糖類についてHPLC、LC-MSやLC-IR等で物質を同定し、後述するように粘度平均分子量を計算する。なお、高分子や糖類に不純物が混じった混合物であっても、粘度に影響がなければ(例えば、金属塩のような不純物)、混合物を高分子または糖類の試料とする。また、粘度平均分子量の計算に影響がある不純物を含む場合は、不純物を除去するか、高分子や糖類を分画した後測定する。標準液および原液それぞれの粘度を測定し、標準液に対する原液の相対粘度が2.0~2.4となるように調整する。
(3)30℃の原液を、30℃の標準液を用いて5/4、5/3、5/2倍となるようにそれぞれ希釈する。
(4)30℃の標準液、原液および希釈液の粘度をそれぞれ測定する。粘度測定には、E型粘度計を用いる。
(5)原液および希釈液それぞれの粘度を標準液の粘度で割ったものを相対粘度(ηr)とし、下式に基づき還元粘度を導出する。
ここで、ηsp:高分子または糖類の還元粘度[mL/g]、ηr:高分子または糖類の相対粘度[-]、C:高分子または糖類の濃度[g/mL]である。
(6)高分子または糖類の濃度と、高分子または糖類の還元粘度との関係をそれぞれプロットし、近似直線を引く。近似直線の切片(高分子または糖類濃度=0)の値を極限粘度とする。
粘度平均分子量:
粘度平均分子量は、極限粘度から算出する。
上記のマークホーイング桜田の式に、測定で導出した極限粘度と、文献等で公開されているKとαの値から粘度平均分子量Mを求める。ヒアルロン酸の場合は、K=3.6×10-4およびα=0.78を代入して、粘度平均分子量Mを求める。実施例で用いられているプルランおよびゼラチンには、文献値よりK=9×10-4、α=0.5を、また、デキストランには、K=6.3×10-8、α=1.4を、コンドロイチン硫酸には、K=5.8×10-4、α=0.74、カルボキシポリリジンについては、K=2.78×10-5、α=0.87を用いる。
極限粘度測定:
(1)所定量のNaClを30℃のイオン交換水に溶解させ、0.2MのNaCl溶液(標準液)を調製する。
(2)高分子または糖類の試料を30℃の標準液に溶解させ、原液を調製する。高分子または糖類の試料が溶液で入手される場合は、溶液から溶媒を除去した固形分を高分子または糖類の試料とする。高分子および糖類の混合試料、複数の高分子を含む混合試料または複数の糖類を含む混合試料の場合は、各物質を分離、分画した後、各物質から溶媒を除去したものを高分子または糖類の試料とする。また、高分子および/または糖類が未知の場合は、高分子および/または糖類についてHPLC、LC-MSやLC-IR等で物質を同定する。未知の高分子および/または糖類を複数含む場合は、各成分を分離、分画し、それぞれの高分子および/または糖類についてHPLC、LC-MSやLC-IR等で物質を同定し、後述するように粘度平均分子量を計算する。なお、高分子や糖類に不純物が混じった混合物であっても、粘度に影響がなければ(例えば、金属塩のような不純物)、混合物を高分子または糖類の試料とする。また、粘度平均分子量の計算に影響がある不純物を含む場合は、不純物を除去するか、高分子や糖類を分画した後測定する。標準液および原液それぞれの粘度を測定し、標準液に対する原液の相対粘度が2.0~2.4となるように調整する。
(3)30℃の原液を、30℃の標準液を用いて5/4、5/3、5/2倍となるようにそれぞれ希釈する。
(4)30℃の標準液、原液および希釈液の粘度をそれぞれ測定する。粘度測定には、E型粘度計を用いる。
(5)原液および希釈液それぞれの粘度を標準液の粘度で割ったものを相対粘度(ηr)とし、下式に基づき還元粘度を導出する。
ここで、ηsp:高分子または糖類の還元粘度[mL/g]、ηr:高分子または糖類の相対粘度[-]、C:高分子または糖類の濃度[g/mL]である。
(6)高分子または糖類の濃度と、高分子または糖類の還元粘度との関係をそれぞれプロットし、近似直線を引く。近似直線の切片(高分子または糖類濃度=0)の値を極限粘度とする。
粘度平均分子量:
粘度平均分子量は、極限粘度から算出する。
上記のマークホーイング桜田の式に、測定で導出した極限粘度と、文献等で公開されているKとαの値から粘度平均分子量Mを求める。ヒアルロン酸の場合は、K=3.6×10-4およびα=0.78を代入して、粘度平均分子量Mを求める。実施例で用いられているプルランおよびゼラチンには、文献値よりK=9×10-4、α=0.5を、また、デキストランには、K=6.3×10-8、α=1.4を、コンドロイチン硫酸には、K=5.8×10-4、α=0.74、カルボキシポリリジンについては、K=2.78×10-5、α=0.87を用いる。
Kおよびαは高分子の種類によって変動する数値であり、例えば「高分子材料便覧」(社団法人高分子学会編)など多数の公開文献にKとαの値が開示されており、公表されている値を用いて粘度平均分子量の計算を行う。
本発明では、この方法で算定された分子量を粘度平均分子量とする。なお、スクロースやグルクロン酸のような単糖や二糖、単分子と考えられる化合物の場合は、構造式から分子量が明確に特定されるため、構造式から特定される分子量を粘度平均分子量として擬制して扱う。
本発明の凍結保存液は、生体試料が凍結保存される際に生体試料を適切に保存するための保存液である。所定の分子量を有し、かつ親水性基を多数もつ高分子を含むことにより、本発明の高分子水溶液は、冷却過程で高分子鎖により形成されるマトリックス内に溶媒分子をトラップすることができる。高分子鎖には親水性基が含まれているため、この高分子鎖の作用により、冷却時に溶媒の水の分子運動を制限して、水を結晶化せずにガラス化状態で固化および/または凍結することができる。通常、ガラス化法と呼ばれる凍結方法は、溶液が凍結する際に溶質(凍害を防止するための凍結保護剤)が結晶から排除されることにより残存溶液中の塩濃度が上昇し、細胞内外で浸透圧差が生じることにより細胞内を脱水し細胞内部をガラス化するという方法であり、解凍後の生存率が特に低い細胞に適用される。このような方法では、水をよりガラス化しやすくするために、溶質(凍結保護剤)の濃度を高めることや、冷却速度を大きくすることが行われる。しかしながら、浸透圧差を大きくすると細胞へのダメージも大きくなってしまう問題や、溶解時に再結晶化が起こり細胞がダメージを受けてしまうという問題が知られてきた。また、手技的にも困難が伴う。
本発明の高分子を含む凍結保存液によれば、高分子鎖の作用により細胞内が脱水されてガラス化されるので、細胞内での氷晶の形成が抑制され、さらに、従来のガラス化法での問題である凍結時の細胞における浸透圧ショックを弱めることができる。したがって、細胞毒性を有するジメチルスルホキシド(DMSO)やエチレングリコールなどの化学物質を含有させる必要がなく、本発明の高分子を含む凍結保存液は、DMSOおよび/またはエチレングリコールを含まない。本発明の高分子の粘度平均分子量が、3000を超え、500000以下であることにより、本発明の凍結保存液が冷却された場合、凍結状態での非晶質であるガラス状態が安定化される。このため、冷却および凍結によっても細胞がダメージを受けにくく、細胞が安定に効率よく凍結保存され得る。したがって、凍結保存後の生体試料を解凍した後の、生体試料における細胞の生存率が高い。高分子の粘度平均分子量が3000以下であると、ガラス化が良好に起こりにくい場合がある。また、高分子の粘度平均分子量が500000より大きいと、粘度が著しく上昇し、また、溶解度が低下したり、調製した溶液が泡立ってハンドリング性が悪化するという問題が生じ得る。粘度平均分子量は例えば、10000以上が好ましい。また、400000以下、さらには200000以下の粘度平均分子量である高分子が好ましく、150000以下が特に好ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
本発明において使用される高分子は、親水基を有するモノマーを繰り返し単位として含む重合体である。親水性基は、例えば、ヒドロキシル基ならびにカルボン酸基およびその塩である。また、本発明の高分子は、置換されていてもよいアミノ基または置換されていてもよいアミド基を有する窒素含有モノマーを繰り返し単位として含んでいてもよい。さらに、本発明の高分子は、その構造内にエクアトリアル位のヒドロキシル基を有していることが好ましい。これにより、溶媒の水を凍結時により良好に高分子鎖で形成されるマトリックス内にトラップすることができると考えられる。
親水基を有するモノマーは例えば、糖残基である。この場合、本発明の高分子は、糖残基が繰り返し単位としてグリコシド結合により結合したものおよびこれらの誘導体を含む高分子であり得る。糖残基としては、単糖、または、単糖のヒドロキシル基および/またはヒドロキシメチル基が置換された単糖、例えば、ヒドロキシル基および/またはヒドロキシメチル基が、カルボキシル基、アミノ基、N-アセチルアミノ基、スルホオキシ基、メトキシカルボニル基およびカルボキシメチル基からなる群より選ばれる少なくとも1種の置換基で置換された単糖などが例示されるがこれらに限定はされない。
単糖としては、トリオース、テトロース、ペントース、ヘキソースおよびヘプトース等が挙げられる。例えば、ペントースとしては、リボース、アラビノース、キシロース、リキソース、キシルロース、リブロース、デオキシリボースなどが挙げられる。ヘキソースとしては、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、タガトース、フコース、フクロース、ラムノースなどが挙げられる。
例えば、カルボキシル基で置換された単糖としては、ウロン酸などが挙げられる。ウロン酸としては、例えば、グルクロン酸、イズロン酸、マンヌロン酸およびガラクツロン酸などが挙げられる。アミノ基で置換された単糖としては、アミノ糖などが挙げられる。アミノ糖としては、例えば、グルコサミン、ガラクトサミン、マンノサミンおよびムラミン酸などが挙げられる。N-アセチルアミノ基で置換された単糖としては、例えば、N-アセチルグルコサミン、N-アセチルマンノサミン、N-アセチルガラクトサミンおよびN-アセチルムラミン酸などが挙げられる。スルホオキシ基で置換された単糖としては、ガラクトース-3-硫酸などが挙げられる。また複数の置換基をもつ単糖としては、例えば、N-アセチルグルコサミン-4-硫酸、イズロン酸-2-硫酸、グルクロン酸-2-硫酸、N-アセチルガラクトサミン-4-硫酸、ノイラミン酸およびN-アセチルノイラミン酸などが挙げられる。
例えば、本発明において使用される高分子は、上述したような単糖類を繰り返し単位として含む高分子である。例えば、本発明の高分子は、置換されていてもよいペントース、ヘキソースもしくはウロン酸またはそれらの組合せを繰り返し単位として含む高分子であり得る。また、本発明の高分子は、親水性基を有するモノマーと窒素含有モノマーとの交互共重合体であってもよい。窒素含有モノマーは例えばアミノ糖であってもよい。この場合、例えば、本発明の高分子は、グリコサミノグリカンであり得る。また、1つ以上のヒドロキシル基がスルホオキシ基で置換された、硫酸化多糖類であってもよい。これらに限定されるわけではないが、本発明の高分子としては、例えば、ヒアルロン酸、デキストラン、プルラン、またはコンドロイチン硫酸などが挙げられる。
本発明において使用される高分子は、天然由来のものであってもよく、また、化学的に合成したものを用いてもよい。市販の高分子をそのまま使用してもよい。分子量がより大きな天然由来の高分子化合物や市販の高分子化合物を用いて、加水分解や酵素処理、亜臨界処理等の処理に付してその切断生成物を得、分子量の調整をして本発明の高分子としてもよい。また、各モノマーも、天然由来のものであってもよく、天然由来のモノマーを修飾・置換して用いてもよく、また、化学合成されたものでもよい。例えば、好ましくは、本発明の高分子に含まれるモノマーは生体構成成分である。高分子を含む凍結保存液の細胞毒性が低いと考えられる。
本発明において使用される高分子の親水性基は、修飾されていないか、修飾されていても親水性基の全数の50%以下、すなわち、高分子鎖に置換基が導入されていないか、導入されていても親水性基の全数の50%以下であることが望ましい。高分子の親水性基、特にOH基、NH2基、COOH基が生体試料の保護および溶媒のガラス化、糖と細胞周辺の水との置換に寄与していると推定されるため、これらの官能基が修飾されていない方が生体試料の生存率向上に有利だからである。さらに、高分子の親水性基を修飾する際に使用される試薬などにより、高分子の凍結保護効果に悪影響を与えたり、再生医療目的の生体試料の凍結保存に使用できなくなったりする恐れがある。
また、高分子の親水性基は、低分子量の糖類を水素結合により保持できると考えられ、低分子量の糖類が保持された高分子が細胞などの生体試料の周りに存在することで、細胞膜近傍の水分子と糖類の置換が促進できると推定される。このため、親水性基が修飾されていると、親水性基の低分子量の糖類の保持効果が低下してしまい、低分子量の糖類が共存していても、生体試料の生存率向上には十分寄与しない。例えば、OH基やNH2基をカルボン酸などで修飾することは好ましくない。
本発明において使用される高分子または糖類の塩は、多糖類の金属塩、ハロゲン塩または硫酸塩であってもよい。金属塩としては、アルカリ金属またはアルカリ土類金属の塩が望ましい。アルカリ金属またはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。塩類は、溶媒の凝固点を降下させ、これにより溶媒のガラス化に寄与するものと考えられる。
本発明の凍結保存液および凍結保存剤は、3000以下の粘度平均分子量を有する糖類またはその塩を含む。凍結保存液および凍結保存剤に、高分子と共にこのような小さな分子量を有する糖類が含まれていると、細胞膜付近の水分子が糖類によって置換されて、細胞膜付近の氷晶形成および成長が抑制され、その結果、細胞膜障害が顕著に抑制され得る。すなわち、本発明において使用される糖類またはその塩は、細胞保護のための成分として機能し得る。本発明の糖類は例えば、分子量が3000以下、好ましくは2000以下、さらに好ましくは1000以下である、単糖類、二糖類、またはオリゴ糖などであり得る。
糖類は、例えば、高分子を構成するモノマーとして上述された単糖類であってもよい。例えば、糖類は、グルコース、フルクトース、ガラクトースまたはそれらのアルコール基が酸化したウロン酸もしくはアルコール基がアミノ基で置換されたアミノ糖、スクロース、トレハロース、または、それらの重合体または組み合わせである。また、糖類は、例えば、本発明において使用される高分子、例えばヒアルロン酸、デキストラン、プルラン、またはコンドロイチン硫酸などの断片であってもよい。本発明の効果を損なわない限り特に限定されないが、糖類は、例えば、グリコサミノグリカンの切断生成物(断片)すなわちグリコサミノグリカンを構成している単糖、その二糖、またはそのオリゴ糖であり得る。
好ましくは、糖類は、ヒアルロン酸の切断生成物である。したがって、好ましくは、本発明において使用される糖類は、グルクロン酸もしくはN-アセチルグルコサミン、または、それらからなる二糖もしくはオリゴ糖である。好ましくは、糖類は、グルクロン酸もしくはその修飾化合物、またはその二糖もしくはオリゴ糖であり得る。
本発明において用いられる「切断生成物」とは、高分子に対して加水分解や酵素処理、亜臨界処理等の処理を行った際に得られると考えられる、元の高分子より小さな分子量をもつ化合物を意味する。本発明において使用される高分子は、上述のように、より大きな高分子化合物の処理により得られる、3000より大きく、500000以下である粘度平均分子量を有する高分子であってもよく、本発明において使用される糖類は、高分子の処理により得られる、3000以下の粘度平均分子量を有する糖類であってもよい。本発明で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。切断生成物は、元の高分子の構成成分であるモノマーおよび/またはモノマーの種々の重合度の重合体および/またはそれらの混合物であり得る。
「亜臨界処理」とは、所定の温度および所定の圧力の条件下で亜臨界状態にした抽出溶媒としての亜臨界流体と、抽出対象の原料とを接触させることを意味する。例えば、水は、圧力22.12MPa以上および温度374.15℃以上まで上げると液体でも気体でもない状態を示す。この点を水の臨界点といい、臨界点より低い近傍の温度および圧力の熱水を亜臨界水という。この亜臨界水の加水分解作用を用いて、抽出対象の原料から所望の成分を得ることができる。本発明において亜臨界処理する場合の条件としては、例えば、150℃以上、350℃以下の温度であり、亜臨界処理圧力は、各温度の飽和蒸気圧以上とすることができるが例えば、0.5MPa以上、25MPa以下とすることができる。亜臨界処理後、所定の分子量以下である成分が分離回収され、本発明における切断生成物として使用され得る。また、加水分解や酵素処理としても、特に限定されず、通常用いられるような試薬および処理方法が問題なく用いられ得る。
本発明における所定の分子量を有する高分子および糖類は、一度の亜臨界処理によって同時に得られるものであってもよい。すなわち、本発明における高分子および糖類は、粘度平均分子量として3000より大きく、500000以下である分子量範囲に第1の分子量分布を有し、粘度平均分子量として3000以下の分子量の範囲に第2の分子量分布を有するような、高分子化合物の亜臨界処理物であってもよい。したがって、例えば、本発明の生体試料用の凍結保存液の製造方法は、粘度平均分子量として500000を超える分子量を有する多糖類である高分子を水に溶解させた後、水の亜臨界条件下で抽出処理を行うことによって、本発明における高分子および糖類を得る工程を含んでいてもよい。しかしながら、もちろん、本発明における高分子および糖類は、別々の処理工程で処理および/または分子量に基づいて分離されたものを組み合わせて用いてもよい。本発明の凍結保存液に含まれる高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
本発明における高分子と糖類とを含む凍結保存液によれば、細胞毒性が低く、さらに、水の分子運動を制限するために溶質の濃度を高める必要がないので、細胞へのダメージが低いと考えられる。また、本発明の凍結保存液は、従来のガラス化法と異なり、浸透圧ショックを軽減するための大きな冷却速度も冷却時に必要としない。したがって、本発明の凍結保存液によれば、生体試料を毒性が軽減された簡便な方法で効率よく凍結保存することができる。
示差走査熱量分析(DSC)による本発明の凍結保存液の熱分析の結果によれば、本発明の凍結保存液は、-23℃±4℃近辺にガラス転移温度をもつ。さらに、本発明の凍結保存液では、冷却過程において氷晶形成が抑制されるだけでなく、その後の昇温過程での、すなわち融解時の水の再結晶化も抑制することができる。すなわち、本発明における高分子と糖類とを用いることによる凍結保存では、生体試料の凍結状態でのガラス状態が安定化されていると考えられる。このようにガラス状態がより安定化されるため、本発明の凍結保存液は、ヒト、ウシ由来の血清や血清由来成分(例えばアルブミンなど)のタンパク質成分の添加を必要とせずに、高い細胞保護効果を示す。したがって、感染症などの心配がなく、また、生物製剤によるロット間格差などの影響も受けないと考えられる。細胞毒性も低いため、本発明の凍結保存液を用いた凍結保存後、解凍された細胞は高い生存率を示す。なお、感染症の心配の無いようなタンパク質を添加することは可能である。
本発明の凍結保存液を用いた凍結保存方法では、上述のように、冷却時に細胞保護のための大きな冷却速度を必要としないため、生体試料に本発明の凍結保存液を添加した後、本発明の凍結保存液のガラス転移点温度である-27℃以下に冷却する、例えば生体試料を含む本発明の凍結保存液を凍結処理容器等に入れて-80℃のディープフリーザー中に放置するだけで、保存に付される細胞や組織などを安定的に凍結、そして保存することができる。通常の細胞などの凍結保存時に必要とされる-150℃といった低温度は必ずしも必要でないため、液体窒素凍結保存のための特別な容器や液体窒素の準備などを不要とすることができる。このため、生体試料の凍結保存に関わる操作が顕著に簡便化され得る。また、本発明の凍結保存液では、融解時の水の再結晶化も抑制することができるので、本発明の凍結保存液を用いれば、生体試料の凍結、保存、および解凍の一連の工程が、特別な手技を必要とすることなく、容易に効率よく行うことができる。勿論、本発明の凍結保存液を用い、液体窒素を用いて生体試料を凍結保存することも可能である。
さらに、本発明の凍結保存液は、非浸透型の凍結保護試薬であるため、細胞毒性は低いと考えられる。また、本発明の凍結保存液では、さらに糖類が細胞保護のために機能し得るため、凍結保存中に細胞の性状を変化させないと考えられる。したがって、細胞の特性を維持しつつ生体試料を凍結保存できると考えられる。
本発明の凍結保存液は、高分子またはその塩を1w/v%以上、50w/v%以下程度の濃度で含む。5w/v%よりも低い濃度であると、溶媒部分を良好にガラス化することができない場合がある。また、20w/v%より高い濃度では、粘度が高くなりすぎて、ハンドリング性が悪化するおそれがある。例えば、高分子またはその塩の濃度は、5w/v%以上が好ましく、10w/v%以上が特に好ましい。また、高分子またはその塩の濃度は、50w/v%以下であることが好ましく、20w/v%以下が特に好ましい。好ましくは、高分子またはその塩の濃度は、5w/v%以上、20w/v%以下である。
本発明における糖類またはその塩の凍結保存液中の濃度は、1w/v%以上、10w/v量%以下程度である。すなわち、本発明における高分子と糖類との割合が約10:1程度であることが好ましい。糖類またはその塩の濃度が1w/v%未満であると本発明の効果が十分得られない場合がある。また、糖類を10w/v%以上の濃度となるように添加しても、細胞保護成分としてのさらなる効果は得られにくい。
本発明の凍結保存液は、非浸透型の凍結保護試薬であるため、本発明の凍結保存液を用いて凍結保存に付される生体試料は特に限定されない。種々の種類の細胞の凍結保存に使用することができる。また、細胞の由来種も特に問わない。本発明の凍結保存液は、凍結および融解時の氷晶形成および再結晶を効果的に抑制することができるため、複雑な構造をもつ哺乳動物細胞等にも良好に使用され得る。したがって様々な種類の動物種、マウス、イヌ、ヒトなどの種の細胞の凍結保存に適用できる。さらに、本発明の凍結保存液は、一般の培養用細胞と比較して凍結時の障害が大きいことが知られており、いわゆる従来の緩慢凍結法では生存率の顕著な低下が避けられないような幹細胞、初期胚や卵子、精子、受精卵等の生殖細胞の凍結保存に特に好適に使用できる。また、本発明の凍結保存液は、分化因子として働き得るDMSOやエチレングリコールのような化学物質を含まないため、未分化維持が必要な細胞の保存に使用することができ、例えば、再生医療用途の幹細胞も、分化のリスクを伴うことなしに凍結保存できる。なお、DMSOやエチレングリコールのような化学物質を上記リスクが問題とならない低濃度で加えることは可能である。
また、血清や血清由来タンパク質を添加しないため、細菌やウィルスによる汚染もない。なお、感染症の心配の無いようなタンパク質を添加することは可能である。
また、本発明の凍結保存液は、凍結状態でのガラス状態を安定化する効果に優れているため、保存が困難であることが知られている細胞のサイズが大きな卵子等の細胞や受精卵、および、組織化された細胞構造体、組織や組織様物、例えば再生医療で得られた組織などの凍結保存にも使用することができる。
すなわち、本発明の凍結保存液は、細胞、組織、または、膜もしくは凝集体である組織様物などから選択される生体試料に使用されて、高い生存率を実現することができる。特には、本発明の凍結保存液は、初代細胞あるいは樹立細胞に関係なく、間葉系幹細胞;造血系幹細胞;神経系幹細胞;骨髄幹細胞、生殖幹細胞等の体性幹細胞;血球細胞;内皮細胞;等の凍結保存、とりわけ、マウスよりも凍結耐性が低いとされている霊長類の幹細胞の凍結保存、移植用組織の凍結保存、および、生殖医療における生殖細胞の凍結保存において有利に使用され得る。
また、本発明においては、高分子として、例えば、生体構成成分である高分子を使用すれば、凍結保存された生体試料を融解して、そのまま細胞投与用溶液として用いることも可能である。さらに、組織または組織様物の場合には、組織化の段階で本発明のこのような高分子溶液を添加しておき、そのまま凍結保存することも可能である。これにより、移植後の問題が軽減すると考えられる。このような場合、本発明の凍結保存液のための好ましい高分子は、ヒアルロン酸である。特に、粘度平均分子量が3000より大きく、より望ましくは5000より大きく、そして、60000以下、より望ましくは20000以下であるヒアルロン酸である。
本発明の凍結保存液は、緩慢凍結法用の凍結保存液である。すなわち、本発明の凍結保存液を用いた凍結方法では、冷却速度が10℃/min以下であることが好ましく、さらに好ましくは、冷却速度は、1℃/min以下程度である。この程度の冷却速度であれば、細胞内が適度に脱水されていって細胞内液のガラス化が良好に起こり、そして高い細胞凍結保護効果が得られると考えられる。
本発明の凍結保存方法は、溶媒中に、3000より大きく、500000以下で粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む凍結保存液中に生体試料を含ませることと、生体試料を含む凍結保存液を凍結に供することと、-27℃以下の温度に生体試料を含む凍結保存液を保持することで保存を行うこととを含んでいる。
本発明の凍結保存方法で使用される高分子またはその塩の粘度平均分子量は、400000以下、特に200000以下であることが望ましい。粘度を低く調整でき、凍結保存液として取扱いやすいからである。
高分子および糖類の塩は、多糖類の金属塩、ハロゲン塩または硫酸塩であってもよい。金属塩としては、アルカリ金属またはアルカリ土類金属の塩が望ましい。アルカリ金属またはアルカリ土類金属としてはナトリウム、カリウム、カルシウムなどが選択される。ハロゲンとしては、塩素、臭素などを使用できる。-80℃のディープフリーザー中で、生体試料を含む凍結保存液を冷却速度10℃/min以下、好ましくは、冷却速度1℃/min以下程度で凍結しそのまま保存することにより凍結保存が行えるため、従来のガラス化法で求められる急速冷却のための迅速な操作が求められることはない。したがって、操作性が向上すると同時に、安定した保存効果を得ることができると考えられる。
凍結保存温度の範囲としては、-27℃以下であれば限定されるものではないが、上限として、望ましくは、-70℃以下、好ましくは-80℃以下である。また下限として、望ましくは、-196℃以上、好ましくは-150℃以上である。
本発明の凍結保存液のための溶媒としては、水のような水性溶媒を用いることが望ましい。特に体液や細胞液の浸透圧とほぼ同じになるようにナトリウムイオン、カリウムイオン、カルシウムイオン等によって塩濃度や糖濃度等を調整した等張液であることが好ましい。具体的には、例えば、水、生理食塩水、緩衝効果のある生理食塩水であるリン酸緩衝生理食塩水(phosphate buffered saline;PBS)、ダルベッコリン酸緩衝生理食塩水、トリス緩衝生理食塩水(Tris Buffered Saline;TBS)、HEPES緩衝生理食塩水等、ハンクス平衡塩溶液などの平衡塩溶液、リンゲル液、乳酸リンゲル液、酢酸リンゲル液、重炭酸リンゲル液などが例示されるがこれらに限定される訳ではない。また、本発明の効果を損なわない限り溶媒は、例えば等張剤やキレート剤、溶解補助剤などの他の任意成分を含んでいてもよい。本明細書において、「任意成分」とは、含んでもよいし含まなくてもよい成分のことを意味している。例えば溶媒は、5%グルコース水溶液などであってもよい。また、本発明の凍結保存液のための溶媒として、細胞培養用の培地が用いられてもよい。培養培地としては特に限定される訳ではなく、例えば市販の培地やD-MEM、E-MEM、αMEM、RPMI-1640培地、Ham’s F-12、Ham’s F-10、M-199などの動物細胞培養用基礎培地、各種の細胞または組織用の一般的な培養液が例示され得る。したがって、本発明の凍結保存液は、細胞培養後の培養液または細胞懸濁液に、凍結保存剤が所望の濃度となるように添加されてもよい。
また、本発明の凍結保存液は、必要に応じて、pH調整され得る。例えば、親水性基を有するモノマーの親水性基がカルボン酸基などである場合、このようなモノマーが重合された高分子を含む凍結保存液は酸性を呈することがある。また、糖類がカルボン酸基などを有している場合、このような糖類により凍結保存液は酸性を呈し得る。このような場合、pH調整を行うことによって凍結保存液を中性溶液とすることで、凍結保存される細胞の生存により適した溶液となり得、細胞の生存率が向上すると考えられる。pH調整のために用いられる塩としては限定されず、水溶液のpH調整に通常使用されるものを使用することができる。
本発明の凍結保存液を用いた生体試料の凍結保存方法では、ガラス化状態が安定化されており、毒性も低いため、生体試料を長期間安定的に保存することができる。本明細書において、長期間安定的な保存とは、例えば、本発明の凍結保存液を用いた場合の解凍後の生体試料例えば細胞の生存率が、保存直前の細胞の生存率を基準として、5か月後に、10%未満程度、好ましくは5%未満程度の低下、または、6か月後に、20%未満程度、好ましくは10%未満程度の低下、または、12か月後に、15%未満程度、好ましくは30%未満程度の低下しかみられないことを意味する。また、本明細書において、長期間安定的な保存とは、例えば、細胞を凍結して-80℃で長期間保存した後、解凍し、続いて4℃で細胞を保存した場合に、解凍後の24時間後でも、解凍直後の細胞生存率を基準として5%未満の生存率の低下しかみられないことを意味する。本発明の凍結保存液では、DMSO溶液と比べ、細胞をストレスの少ない条件で凍結保存することができると考えられる。したがって、本発明の凍結保存液では、10%のDMSO溶液などの従来の凍結保存液を用いた凍結保存と比較して、解凍後の非常に高い細胞生存率を得ることができる。さらに、解凍直後のみならず、解凍後に冷蔵保存された細胞も高い細胞生存率を示し得る。本発明の凍結保存液によれば、細胞の性状を変化させることなしに、安定的に長期間、細胞を凍結保存できる。
本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。また、以下において、lifecore biomedical社製のヒアルロン酸は、ヒアルロン酸ナトリウムであるが、簡単化のため、「ヒアルロン酸」と記載している。
凍結保存剤および凍結保存液
<試験用試料および試料溶液の調製>
・実施例1
容積2Lの耐圧容器に平均分子量100万である高分子ヒアルロン酸(Shanghai Easier Industrial Development社製)と水とを20:100で混合し、処理温度175℃、処理圧力0.89MPa、および処理時間3分で亜臨界処理を行った。その後、亜臨界処理物を凍結乾燥またはスプレードライ法で乾燥した。これにより、粘度平均分子量が約1万の高分子ヒアルロン酸と粘度平均分子量1000のヒアルロン酸との混合物、すなわち本発明の凍結保存剤を得た。
<試験用試料および試料溶液の調製>
・実施例1
容積2Lの耐圧容器に平均分子量100万である高分子ヒアルロン酸(Shanghai Easier Industrial Development社製)と水とを20:100で混合し、処理温度175℃、処理圧力0.89MPa、および処理時間3分で亜臨界処理を行った。その後、亜臨界処理物を凍結乾燥またはスプレードライ法で乾燥した。これにより、粘度平均分子量が約1万の高分子ヒアルロン酸と粘度平均分子量1000のヒアルロン酸との混合物、すなわち本発明の凍結保存剤を得た。
粘度平均分子量については、本実施例1によって得られた亜臨界処理によるヒアルロン酸分解物をHPLCで確認したところ(図18)、高分子量ヒアルロン酸と低分子量のヒアルロン酸の混合物であると考えられたため、エタノール中で高分子量ヒアルロン酸を沈殿させ、低分子量ヒアルロン酸を上澄み側に分画し、この分画した上澄みをHPLCで再分析したところ、後述する製造例1のヒアルロン酸のHPLCピーク(図17A)と概ね一致したため、本実施例1によって得られた低分子量ヒアルロン酸成分の粘度平均分子量は1000と見積もられた。
高分子量ヒアルロン酸の極限粘度は、0.49dL/gであり、粘度平均分子量は10000であった。
この試験用凍結保存剤1gを、溶媒として10mLのαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)に溶解させることにより、実施例1の試験用凍結保存液を得た(すなわち、試験用凍結保存液中のヒアルロン酸試料の濃度が10w/v%)。なおこの実施例1を含めて、本発明の実施例、製造例および比較例では、αMEM培地を溶媒としているが、αMEM培地に代えて、超純水を溶媒として用いてもよい。また、後述するDSCの測定では、溶媒をαMEMに代えて超純水としている。なお、以下の例により得られる各試験用試料は、凍結保存液の凍結保存剤として、後述の各評価のための試験において、それぞれ適切な溶媒を用いて所定の濃度となるように調製されて使用された。
・製造例1
処理時間7分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が1000のヒアルロン酸断片である試験用試料を得た。極限粘度0.08dL/gであった。
処理時間7分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が1000のヒアルロン酸断片である試験用試料を得た。極限粘度0.08dL/gであった。
・製造例2
処理時間5分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が2000のヒアルロン酸断片である試験用試料を得た。極限粘度は、0.14dL/gであった。
処理時間5分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が2000のヒアルロン酸断片である試験用試料を得た。極限粘度は、0.14dL/gであった。
・製造例3
処理時間4分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が3000のヒアルロン酸断片である試験用試料を得た。極限粘度は、0.19dL/gであった。
処理時間4分で亜臨界処理を行った以外は、実施例1と同様な操作を行い、粘度平均分子量が3000のヒアルロン酸断片である試験用試料を得た。極限粘度は、0.19dL/gであった。
・比較例1
DMSO(ナカライテスク(株)製、細胞培養グレード)を試験用試料とした。この試験用試料1mLを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例1の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のDMSO濃度が10w/v%)。
DMSO(ナカライテスク(株)製、細胞培養グレード)を試験用試料とした。この試験用試料1mLを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例1の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のDMSO濃度が10w/v%)。
・比較例2
溶媒として使用したαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)を試験用試料とした。
溶媒として使用したαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)を試験用試料とした。
・比較例3
ゼラチン(粘度平均分子量315000 新田ゼラチン(株)製)1gを溶媒としてのαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例3の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のゼラチン濃度が10w/v%)。極限粘度は0.50dL/gであった。
ゼラチン(粘度平均分子量315000 新田ゼラチン(株)製)1gを溶媒としてのαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例3の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のゼラチン濃度が10w/v%)。極限粘度は0.50dL/gであった。
・比較例4
粘度平均分子量1000000である高分子量ヒアルロン酸(Shanghai Easier Industrial Development社製)1gを溶媒としてのαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)100mLに溶解させることにより、比較例4の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が1w/v%)。極限粘度は、17.2dL/gであった。
粘度平均分子量1000000である高分子量ヒアルロン酸(Shanghai Easier Industrial Development社製)1gを溶媒としてのαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)100mLに溶解させることにより、比較例4の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が1w/v%)。極限粘度は、17.2dL/gであった。
・比較例5
粘度平均分子量15000であるヒアルロン酸(lifecore biomedical社製;粉末)を凍結保存剤としての試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例5の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が、10w/v%)。極限粘度は、0.65dL/gであった。
粘度平均分子量15000であるヒアルロン酸(lifecore biomedical社製;粉末)を凍結保存剤としての試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例5の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が、10w/v%)。極限粘度は、0.65dL/gであった。
・比較例6
粘度平均分子量50000であるヒアルロン酸(lifecore biomedical社製;粉末)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例6の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、1.67dL/gであった。
粘度平均分子量50000であるヒアルロン酸(lifecore biomedical社製;粉末)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例6の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、1.67dL/gであった。
・比較例7
粘度平均分子量125000であるヒアルロン酸(lifecore biomedical社製;粉末)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例7の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、3.4dL/gであった。
粘度平均分子量125000であるヒアルロン酸(lifecore biomedical社製;粉末)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例7の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、3.4dL/gであった。
・比較例8
粘度平均分子量373000であるプルラン(東京化成工業(株)製)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより比較例8の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、0.55dL/gであった。
粘度平均分子量373000であるプルラン(東京化成工業(株)製)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより比較例8の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のヒアルロン酸濃度が10w/v%)。極限粘度は、0.55dL/gであった。
・比較例9
粘度平均分子量23000であるコンドロイチン硫酸ナトリウム塩A(sigma社製)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例9の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のコンドロイチン硫酸濃度が10w/v%)。極限粘度は、0.97dL/gであった。
粘度平均分子量23000であるコンドロイチン硫酸ナトリウム塩A(sigma社製)を試験用試料とした。この試験用試料1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させることにより、比較例9の試験用凍結保存液を得た(すなわち、試験用凍結保存液中の試験用試料のコンドロイチン硫酸濃度が10w/v%)。極限粘度は、0.97dL/gであった。
・実施例2
比較例5の試験用試料(粘度平均分子量15000のヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例2の試験用凍結保存液を得た。
比較例5の試験用試料(粘度平均分子量15000のヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例2の試験用凍結保存液を得た。
・実施例3
実施例2の試験用凍結保存液(粘度平均分子量15000のヒアルロン酸および製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例3の試験用凍結保存液とした。
実施例2の試験用凍結保存液(粘度平均分子量15000のヒアルロン酸および製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例3の試験用凍結保存液とした。
・実施例4
比較例8の試験用試料(粘度平均分子量373000のプルラン)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたプルラン濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例4の試験用凍結保存液を得た。
比較例8の試験用試料(粘度平均分子量373000のプルラン)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたプルラン濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例4の試験用凍結保存液を得た。
・実施例5
実施例4の試験用凍結保存液(粘度平均分子量373000のプルランおよび製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例5の試験用凍結保存液とした。
実施例4の試験用凍結保存液(粘度平均分子量373000のプルランおよび製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例5の試験用凍結保存液とした。
・実施例6
比較例8の試験用試料(粘度平均分子量373000のプルラン)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたプルラン濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度5w/v%の量で添加して、実施例6の試験用凍結保存液を得た。
比較例8の試験用試料(粘度平均分子量373000のプルラン)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたプルラン濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度5w/v%の量で添加して、実施例6の試験用凍結保存液を得た。
・実施例7
実施例6の試験用凍結保存液(粘度平均分子量373000のプルランおよび製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例7の試験用凍結保存液とした。
実施例6の試験用凍結保存液(粘度平均分子量373000のプルランおよび製造例1の試験用試料を含む)のpHを10mM Tris-HClを用いて中性に調整することにより、実施例7の試験用凍結保存液とした。
・実施例8
比較例9の試験用試料(粘度平均分子量23000のコンドロイチン硫酸ナトリウム塩)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたコンドロイチン硫酸ナトリウム濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例8の試験用凍結保存液を得た。
比較例9の試験用試料(粘度平均分子量23000のコンドロイチン硫酸ナトリウム塩)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたコンドロイチン硫酸ナトリウム濃度10w/v%の試験用試料溶液に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を終濃度1w/v%の量で添加して、実施例8の試験用凍結保存液を得た。
・実施例9
比較例5の試験用試料(粘度平均分子量15000であるヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、スクロース(ナカライテスク(株)製、分子量(粘度平均分子量と同値)は342)を終濃度1w/v%の量で添加して、実施例9の試験用凍結保存液を得た。
比較例5の試験用試料(粘度平均分子量15000であるヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、スクロース(ナカライテスク(株)製、分子量(粘度平均分子量と同値)は342)を終濃度1w/v%の量で添加して、実施例9の試験用凍結保存液を得た。
・実施例10
比較例5の試験用試料(粘度平均分子量15000であるヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、グルクロン酸(富士フイルム和光純薬(株)製、分子量(粘度平均分子量と擬制)194)を終濃度1w/v%の量で添加して、実施例10の試験用凍結保存液を得た。
比較例5の試験用試料(粘度平均分子量15000であるヒアルロン酸)1gを溶媒であるαMEM培地(Gibco製、品番C1257-1500BT、溶媒は水である)10mLに溶解させたヒアルロン酸濃度10w/v%の試験用試料溶液に、グルクロン酸(富士フイルム和光純薬(株)製、分子量(粘度平均分子量と擬制)194)を終濃度1w/v%の量で添加して、実施例10の試験用凍結保存液を得た。
・比較例10
アミノ基が60%カルボキシル化されたカルボキシポリリジン(粘度平均分子量13400:(株)バイオベルデ製、CryoScarless DMSO free)を細胞保存液として使用した。
アミノ基が60%カルボキシル化されたカルボキシポリリジン(粘度平均分子量13400:(株)バイオベルデ製、CryoScarless DMSO free)を細胞保存液として使用した。
・比較例11
アミノ基が60%カルボキシル化されたカルボキシポリリジン(粘度平均分子量13400:(株)バイオベルデ製、CryoScarless DMSO free)に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を1w/v%の量で添加して試験用凍結保存液とした。
アミノ基が60%カルボキシル化されたカルボキシポリリジン(粘度平均分子量13400:(株)バイオベルデ製、CryoScarless DMSO free)に、製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を1w/v%の量で添加して試験用凍結保存液とした。
<試験例1:初代ヒト間葉系幹細胞の試験用凍結保存液を用いた凍結保存およびその保存効果の評価>
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1ならびに比較例1、2、4および5の試験用凍結保存液(血清非含有)に懸濁した。
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1ならびに比較例1、2、4および5の試験用凍結保存液(血清非含有)に懸濁した。
その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間、凍結した各試験用試料を含む細胞懸濁液を-80℃で保存した後、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液は、解凍直後に細胞生存率をトリパンブルー染色により評価した。結果を図1に示す。
図1は、凍結保存液未添加の培地中、すなわち比較例2の試験用凍結保存液中、または、実施例1ならびに比較例1、4および5の試験用凍結保存液中で凍結保存した細胞の、解凍後の細胞生存率を示している。図1に示されるように、実施例1において、すなわち、ヒアルロン酸の亜臨界処理により得られた、粘度平均分子量が約1万であって、さらに、粘度平均分子量1000であるすなわち1万より小さな分子量を有するヒアルロン酸の切断生成物を含んでいるヒアルロン酸試料が凍結保存液中の凍結保存剤である実施例1の試験用凍結保存液を含んでいる場合に、90%を超える顕著に高い保存効果が得られた。ここの保存効果は一般的によく用いられている凍結保存剤であるDMSOを凍結保存剤として含む比較例1よりも、さらに高い効果であった。本発明の凍結保存液が細胞毒性の低い優れた凍結保存液であることがわかる。分子量が1000000と大きい高分子量ヒアルロン酸を試験用試料として含む比較例4では、細胞保護効果はほとんど認められなかった。なお、凍結保存剤を含まない比較例2では、細胞生存率はほぼ0%であった。また、粘度平均分子量15000のヒアルロン酸である試験用試料が凍結保存剤である比較例5では、実施例1ほどの細胞保護効果は見られなかった。したがって、高分子とそれより小さな分子量を有する糖類とからなる凍結保存剤が凍結保存液に含まれていることが、凍結保存液の細胞保護効果を向上させるために効果的であることが確認された。また、本発明の凍結保存剤は、溶媒としてαMEM培地などの培養液を使用して凍結保存液として調製しても、高い細胞保存効果を示すことから、本発明の凍結保存剤をそのまま細胞の培養液に加えて細胞を懸濁後、凍結させて保存することができる。保存する細胞を遠心分離する必要もなく、より高い細胞生存率および細胞の性状の維持が可能であると考えられる。
<試験例2:示差走査熱量分析による凍結保存液の分析の評価>
実施例1ならびに比較例2および5の試験用試料をαMEM培地に代えて超純水を用いて終濃度10%に調製し、示差走査熱量分析用のサンプルとした。各サンプルを、次に示すように示差走査熱量分析装置(DSC)で走査した。
(1)20℃で1分間保持後、速度フリーで-80℃まで降温。
(2)-80℃で1分間保持後、10℃/minの昇温速度で20℃まで昇温。
実施例1ならびに比較例2および5の試験用試料をαMEM培地に代えて超純水を用いて終濃度10%に調製し、示差走査熱量分析用のサンプルとした。各サンプルを、次に示すように示差走査熱量分析装置(DSC)で走査した。
(1)20℃で1分間保持後、速度フリーで-80℃まで降温。
(2)-80℃で1分間保持後、10℃/minの昇温速度で20℃まで昇温。
結果を図2Aおよび2Bに示す。試験用試料が超純水である比較例2(すなわち超純水であるサンプル)では、図2Aに示されるように自由水の氷晶融解ピークのみが観察された。試験用試料が粘度平均分子量15000のヒアルロン酸である比較例5では、比較例2と比較して氷晶融解ピークのシフトおよび凝固点降下が見られ、また、-20℃付近にガラス転移が確認された(図2B)。一方、粘度平均分子量が約1万のヒアルロン酸に加えてヒアルロン酸の切断生成物(粘度平均分子量1000である低分子ヒアルロン酸)を含む実施例1の試験用試料では、-23℃±4℃付近にガラス転移のみが確認され(図2B)、氷晶融解のピークは極めて小さく、ほぼ認められなかった。したがって、凍結保存液が、高分子とそれより小さい分子量を有する糖類とからなる凍結保存剤を含んでいると、融解時の水の再結晶化が抑制されるという顕著に有利な効果をもつことがわかる。
次いで、実施例1ならびに比較例1および2の試験用試料をαMEM培地に代えて超純水を用いて終濃度10%に調製し、示差走査熱量分析用のサンプルとした。各サンプルを、次に示すように示差走査熱量分析装置(DSC)で走査した。
(1)20℃で1分間保持後、5℃/minの降温速度で-80℃まで降温。
(2)-80℃で1分間保持後、10℃/minの昇温速度で20℃まで昇温。
(1)20℃で1分間保持後、5℃/minの降温速度で-80℃まで降温。
(2)-80℃で1分間保持後、10℃/minの昇温速度で20℃まで昇温。
結果を図3A(比較例2)、図3B(比較例1)、図3C(実施例1)にそれぞれ示す。
試験用試料が超純水である比較例2では、図3Aに示されるように、降温過程において、氷晶形成に伴う非常に大きな発熱ピークが見られた。また、昇温過程においても、氷晶融解に伴う大きな融解熱量が観察された。試験用試料がDMSOである比較例1では、図3Bに示されるように、小さな氷晶形成に伴うピークしか見られず、氷晶融解に伴うピークはほとんど見られなかった。これは、比較例1の試験用試料(DMSO)を含む凍結保存液は凍結状態においてガラス化状態に近いことを示している。実施例1の試験用試料(ヒアルロン酸の切断生成物を含む粘度平均分子量10000のヒアルロン酸)を凍結保存剤として含む凍結保存液では、図3Cに示されるように、融解ピークはほとんど見られず、また、氷晶形成に伴うピークも比較例1で観察されたピークよりもはるかに小さいものであった。したがって、実施例1の試験用試料を含む凍結保存液では、氷晶はほぼ形成されず、極めて良好なガラス化状態にあると考えられる。
<試験例3:初代ヒト間葉系幹細胞の試験用凍結保存液を用いた凍結保存における長期保存効果の評価>
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で最長12か月まで保存した後、所定の保管期間で、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率を解凍直後にトリパンブルー染色により評価した。結果を図4Aに示す。また、3か月間-80℃で凍結保存した細胞懸濁液を解凍し、続いて4℃で、一日あるいは1週間保存した。4℃で保存後の細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。なお、4℃での保存後の細胞生存率は、解凍直後(すなわち保存直前)の細胞生存率を100%として算出した。結果を図4Bに示す。
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で最長12か月まで保存した後、所定の保管期間で、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率を解凍直後にトリパンブルー染色により評価した。結果を図4Aに示す。また、3か月間-80℃で凍結保存した細胞懸濁液を解凍し、続いて4℃で、一日あるいは1週間保存した。4℃で保存後の細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。なお、4℃での保存後の細胞生存率は、解凍直後(すなわち保存直前)の細胞生存率を100%として算出した。結果を図4Bに示す。
図4Aに示されている結果から、本発明の凍結保存液は、5か月の保存後でもほぼ変わらない、95%以上の高い細胞生存率を示していることがわかる。一方、比較例1の試験用試料(DMSO)を含む凍結保存液では、凍結保存2か月後に既に細胞生存率の低下が見られた。そして、3か月後には、比較例1での凍結保存における細胞生存率は50%をきっていることが分かる。この結果は、3か月後でも依然として高い細胞生存率が維持されている本発明の凍結保存液とは対照的であった。凍結保存6か月後においては、本発明の凍結保存液では10%未満の生存率の低下しかみられない一方、比較例1の凍結保存液では、細胞生存率は25%ほどに低下していた。さらに、本発明の凍結保存液での凍結保存では、凍結保存12か月後においても、依然として高い細胞生存率が維持されており、細胞生存率の低下は15%未満にすぎなかった。
したがって、本発明の凍結保存液によれば、細胞を長期間安定に、高い細胞生存率で凍結保存することができることがわかる。
また、-80℃で長期間保存した細胞を解凍後にそのまま4℃で保存した場合において、本発明の凍結保存液では、4℃で1日保存した後の細胞生存率が保存直前の細胞生存率のほぼ100%に近かった一方、比較例1では60%程度に低下していた。一週間の4℃での保存後でさえも、本発明の凍結保存液では未だ40%以上の細胞生存率が見られた。これは、本発明の凍結保存液において、解凍後に生存していた細胞が、実質正常に増殖に向かう細胞であったこと、および、保存中に凍結保存液が細胞にダメージを与えていないことを示しており、これにより、本発明の凍結保存液が非常に優れた細胞保存効果を有していることが確認された。
<試験例4:初代ヒト間葉系幹細胞の試験用試料を用いた凍結保存後の性状の評価>
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で6か月間、凍結保存した。6か月後に、各試験用凍結保存液を含む細胞懸濁液を37℃の温浴中で急速解凍し、αMEMで洗浄したのち、6ウェルプレートに2.5×104個ずつ播種し、4日後、培養培地中のHGFおよびIL-10濃度を定量した。HGFおよびIL-10の定量には、それぞれ、専用のキット(Quantikine(登録商標) ELISA Human HGF、カタログ番号DHG00、R&D社製)、Quantikine(登録商標) ELISA Human IL-10、カタログ番号D100B、R&D社製)を用い、キット添付の手順書の順序に準じて行った。結果を図5Aおよび5Bに示す。
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で6か月間、凍結保存した。6か月後に、各試験用凍結保存液を含む細胞懸濁液を37℃の温浴中で急速解凍し、αMEMで洗浄したのち、6ウェルプレートに2.5×104個ずつ播種し、4日後、培養培地中のHGFおよびIL-10濃度を定量した。HGFおよびIL-10の定量には、それぞれ、専用のキット(Quantikine(登録商標) ELISA Human HGF、カタログ番号DHG00、R&D社製)、Quantikine(登録商標) ELISA Human IL-10、カタログ番号D100B、R&D社製)を用い、キット添付の手順書の順序に準じて行った。結果を図5Aおよび5Bに示す。
図5Aに示されるように、凍結保存剤としてのDMSOを含む比較例1の凍結保存液の存在下の凍結保存では、解凍後の細胞におけるHGF産生が高かった。一方、ヒアルロン酸の切断生成物を含む粘度平均分子量10000のヒアルロン酸を凍結保存剤として含む本発明の凍結保存液を用いた凍結保存では、解凍後の細胞におけるHGF産生量は低く、比較例1の1/3以下であった。DMSO存在下での結果は、DMSO存在下での保存では細胞がストレス状態にあったことを示している。本発明の凍結保存剤存在下での細胞保存ではこのような高いHGF産生は観察されないことから、本発明の凍結保存液では細胞は安定に保護されていることがわかる。
図5Bに示されるように、IL-10産生量は、実施例1の凍結保存液を用いて凍結保存された細胞で高く、比較例1の凍結保存液を用いて凍結保存された細胞では非常に低かった。この結果から、本発明の凍結保存液は、細胞の機能を維持しつつ良好に細胞を凍結保存できることがわかる。
本発明の凍結保存液はDMSOおよびエチレングリコールなどの細胞毒性を有する化合物を含まないので、本発明の凍結保存液は、従来の凍結保存液とは異なり、生体試料をストレス状態にさらすことなく、その性状を維持したままで凍結保存することが可能であるという顕著な効果を有する。
また、血清や血清由来タンパク質を添加しないため、細菌やウィルスによる汚染もない。なお、細胞の機能を損なわない低濃度で細胞毒性を有する化合物を加えることは可能である。また、感染症の心配の無いようなタンパク質を添加することも可能である。
<試験例5:初代ヒト間葉系幹細胞の試験用試料を用いた凍結保存後の性状(未分化性)の評価>
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で6か月間、凍結保存した。6か月後に、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液において、CD90、CD44およびCD105の発現強度をフローサイトメトリーにより解析した。結果を図6に示す。
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。凍結した各試験用凍結保存液を含む細胞懸濁液を-80℃で6か月間、凍結保存した。6か月後に、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液において、CD90、CD44およびCD105の発現強度をフローサイトメトリーにより解析した。結果を図6に示す。
CD90、CD44およびCD105は、未分化状態の間葉系幹細胞に発現する代表的な表面タンパク質であり、間葉系幹細胞の未分化性マーカーとして用いられるものである。図6に示されるように、CD90、CD44およびCD105の、全ての未分化性バイオマーカーの発現は、実施例1の凍結保存液で凍結保存した細胞において比較例1の凍結保存液で凍結保存した細胞よりも高かった。したがって、実施例1の凍結保存液で凍結保存した細胞が未分化マーカーの発現を維持していることがわかる。すなわち、実施例1の凍結保存液で凍結保存した細胞は未分化状態を保持することができる。本発明の凍結保存によれば、比較例1の凍結保存液で保存した場合に見られるような分化状態への影響を低減することができることがわかる。
この結果より、本発明の凍結保存液を用いた凍結保存方法が、未分化状態で凍結保存することが重要である幹細胞の凍結保存にも好適に適用可能であることがわかる。
<試験例6:各種多糖類を含む凍結保存液の評価>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1~8および比較例5、8および9の試験用凍結保存液(血清非含有)に懸濁した(ただし、実施例1の試験用凍結保存液中のヒアルロン酸試料の濃度は20w/v%とした)。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図7に示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1~8および比較例5、8および9の試験用凍結保存液(血清非含有)に懸濁した(ただし、実施例1の試験用凍結保存液中のヒアルロン酸試料の濃度は20w/v%とした)。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図7に示す。
図7に示されるように、ヒアルロン酸に限定されず他の高分子であってもその種類に関わらず所定の分子量を有し、親水性基を有するモノマーを繰り返し単位として含む高分子を、高分子よりも分子量の小さい糖類またはその塩と組み合わせて凍結保存剤として使用することにより、凍結保存液は良好な細胞保護効果を示した。糖類またはその塩を添加することによって、調製された凍結保存液が酸性を呈している場合には、pH調整により凍結保存液を中性にすることで、より高い細胞保護効果が得られた。pH調整により細胞の生存に、より適切な条件となったと考えられる。また、添加される糖類またはその塩が細胞保護成分として作用して凍結乾燥後の細胞の細胞生存率がさらに向上されるためには、凍結保存液中に糖類またはその塩が、高分子である試験用試料に対して1~5w/v%の量で添加されていることが必要であった。一方、添加する糖類またはその塩の量を試験用試料に対して10質量%より多くして、凍結保存液中の含有量をより増大させても、細胞生存率の向上効果にさらなる影響は見られなかった。
また、図7に示されている結果より、本発明の凍結保存液が、ヒトだけでなく、イヌ間葉系幹細胞に対しても、良好な凍結保護効果を示すことがわかった。
<試験例7:3000以下の粘度平均分子量を有する糖類の細胞保護成分としての評価>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例9、10および2の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率を解凍直後にトリパンブルー染色により評価した。結果を図8に示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例9、10および2の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率を解凍直後にトリパンブルー染色により評価した。結果を図8に示す。
図8に示されるように、粘度平均分子量15000であるヒアルロン酸のみを凍結保存剤として含む比較例5(図1)と比較して、粘度平均分子量15000であるヒアルロン酸よりも分子量の小さい糖類またはその塩が粘度平均分子量15000であるヒアルロン酸と組み合わされて凍結保存剤として用いられた場合、細胞保護効果が向上した。保水性の観点から従来の凍結保存液に添加されることもあるスクロースが高分子凍結保存剤に添加された場合(実施例9)も細胞保護効果の向上は見られたが、グルクロン酸(実施例10)、および/または、亜臨界処理によって得られた断片を含む粘度平均分子量が1000である製造例1のヒアルロン酸断片(実施例2)である試験用試料が、細胞保護成分として、すなわち本発明の3000以下の粘度平均分子量を有する糖類またはその塩として、高分子に添加された場合に顕著により高い細胞保護効果が得られ得ることがわかる。この結果から、細胞保護成分としては、グリコサミノグリカンの切断生成物および/またはグリコサミノグリカンの構成単糖である糖類、特には、ヒアルロン酸の切断生成物である糖類やヒアルロン酸の構成単糖であるグルクロン酸が特に好ましいことが判明した。
<試験例8:凍結された凍結保存液中の細胞の評価(細胞内ガラス化状態の評価)>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、硬質硝子製試料置板(16φ×0.12mm)に5μL添加し、硬質硝子製カバーガラス(12φ×0.12mm)でカバーし、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温し、透過光顕微鏡(Olympus BX53)で-80℃にて画像を撮影した。結果を図9A~Cに示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、硬質硝子製試料置板(16φ×0.12mm)に5μL添加し、硬質硝子製カバーガラス(12φ×0.12mm)でカバーし、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温し、透過光顕微鏡(Olympus BX53)で-80℃にて画像を撮影した。結果を図9A~Cに示す。
図9Aは、対照懸濁液の結果を示しており、培地のみでは、細胞内に氷晶が発生して光が乱反射するために細胞が暗転していることがわかる。図9Bは、DMSOが試験用試料である比較例1の結果を示している。図9Bにおいても、細胞は暗転しており、微小氷晶が形成されていることがわかる。図9Cは、実施例1の試験用試料を含む凍結保存液の結果である。細胞が明転しており、細胞内が非晶状態にガラス化していることがわかる。
この結果から、本発明の凍結保存液が細胞内をガラス化状態にして凍結させていることがわかる。そして、ヒアルロン酸の切断生成物である糖類を含むことにより、ガラス状態がより安定的に形成されることがわかった。3000以下の粘度平均分子量を有する糖類によって細胞周辺の氷晶形成が抑制されることにより、ガラス化が安定的に効率よく起こったと考えられる。
<試験例9:明度差を用いた細胞内ガラス化状態の評価>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、硬質硝子製試料置板(16φ×0.12mm)に5μL添加し、硬質硝子製カバーガラス(12φ×0.12mm)でカバーし、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温し、透過光顕微鏡(Olympus BX53)で-80℃にて画像を撮影した。結果を図10Aおよび10Bに示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、硬質硝子製試料置板(16φ×0.12mm)に5μL添加し、硬質硝子製カバーガラス(12φ×0.12mm)でカバーし、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温し、透過光顕微鏡(Olympus BX53)で-80℃にて画像を撮影した。結果を図10Aおよび10Bに示す。
図10Aに示されている観察像の細胞内と細胞外の明暗の差(絶対値)を画像解析ソフトImageJ(https://imagej.nih.gov/ij/)を用いて解析した。それぞれの画像において、溶媒領域の明度および細胞内部の明度と、マンセル明度とを同条件で読み込み、溶媒領域の明度および細胞内部の明度のそれぞれの読み込みデータと各マンセル明度の読み込みデータとを比較して、最も近い読み込みデータのマンセル明度を、溶媒領域の明度および細胞内部の明度として採用して、溶媒の明度および細胞内部の明度を数値化(マンセル値化)した。なお、画像解析ソフトで読み込んだ細胞内領域または溶媒領域の明度の読み込み値が、マンセル明度の最も暗い値0の読み込み値よりもさらに暗い値である場合は、便宜上細胞内領域または溶媒領域のマンセル値を0とし、画像解析ソフトで読み込んだ細胞内領域または溶媒領域の明度の読み込み値が、マンセル明度の最も明るい値10の読み込み値よりもさらに明るい値である場合は、便宜上細胞内領域または溶媒領域のマンセル明度の値を10とする。
測定の結果、対照懸濁液(比較例2)では、溶媒領域のマンセル明度は5、細胞内領域のマンセル明度は0であり、溶媒領域と細胞内部領域のマンセル明度の差は5であった。比較例1では溶媒領域の明度は4、細胞内領域のマンセル明度は0、マンセル明度差は4であった。これに対し、実施例1では、溶媒領域のマンセル明度が4、細胞内領域のマンセル値が2で、マンセル明度差は2であった(図10B)。
すなわち、実施例1では、細胞内領域の明度と溶媒領域の明度とが近い。この結果は、実施例1の試験用試料を含む凍結保存液では、凍結した細胞が明転しており、すなわち細胞内がガラス化されていることを示している。細胞内領域と溶媒領域の明度差は3以下であることが望ましい。また、細胞内領域の明度の値に比べて、溶媒領域の明度の値の方が大きいか同じであることが望ましい。
<試験例10:凍結された凍結保存液中の細胞面積の評価>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液を添加した培地(すなわち培地のみ)に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温した後、-50℃/minで急速融解させた。冷却前および融解後に、視野中に存在する細胞10個の面積を画像解析ソフトImageJで算出した。結果を図11に示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。対照として、凍結保存剤を含まないαMEM培地からなる比較例2の試験用試料溶液を添加した培地(すなわち培地のみ)に細胞を懸濁させた対照懸濁液を同様に調製した。その後、各試験用凍結保存液を含む細胞懸濁液および対照懸濁液を、linKam社製顕微鏡用冷却ステージ(THMS600)で、5℃/minで-80℃まで降温した後、-50℃/minで急速融解させた。冷却前および融解後に、視野中に存在する細胞10個の面積を画像解析ソフトImageJで算出した。結果を図11に示す。
図11に示されるように、培地のみである比較例2およびDMSOが試験用試料である比較例1では、凍結後に細胞の面積が増大していた一方、本発明の凍結保存液を用いて凍結した後では、細胞は約1/3に縮小していた。凍結時に細胞内が良好に脱水されていることが確認された。細胞は、培地中の正射影面積の1/1未満、1/3.5以上に縮小していることが望ましい。
<試験例11:種々の細胞に対する凍結保護の評価>
培養したマウス由来マクロファージ様細胞株(RAW264)、ヒト結腸癌由来細胞(Caco-2)および初代ヒト肺微小血管内皮細胞(HMVEC)のそれぞれを、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図12に示す。
培養したマウス由来マクロファージ様細胞株(RAW264)、ヒト結腸癌由来細胞(Caco-2)および初代ヒト肺微小血管内皮細胞(HMVEC)のそれぞれを、1×106個/mLの濃度で、実施例1および比較例1の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図12に示す。
図12に示されるように、本発明の凍結保存液を用いて凍結保存した場合、全ての細胞において、DMSOが試験用試料である比較例1とほぼ同等、またはそれ以上の高い細胞生存率が得られた。この結果から、本発明の凍結保存液が、初代細胞あるいは樹立細胞に関係なく、また、細胞の由来種も問わず、様々な種類の細胞を高い細胞生存率で凍結保存することができることが確認された。
<試験例12:本発明の糖類の細胞生存率に及ぼす効果の評価>
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、以下の各試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図13~16に示す。
培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、以下の各試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図13~16に示す。
図13は、分子量の異なる高分子に、亜臨界処理によって得られた断片を含む粘度平均分子量が1000である製造例1のヒアルロン酸断片である試験用試料を添加した場合の効果を示したものである。用いられた各試験用凍結保存液は、それぞれ、実施例1の試験用凍結保存液、比較例6の試験用凍結保存液、比較例6の試験用凍結保存液に製造例1の試験用試料(粘度平均分子量が1000のヒアルロン酸断片試料)を1w/v%の量で添加した試験用凍結保存液であった。
ヒアルロン酸の粘度平均分子量が50000である比較例6を使用した実験では、試験用凍結保存液の粘性が高く、細胞懸濁液の調製時に泡立ちが生じるなどのハンドリング性にやや困難があったが、細胞懸濁液中の凍結保存液の濃度を10w/v%に調製することは可能であった。図13に示されるように、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩が粘度平均分子量10000のヒアルロン酸であり、3000以下の粘度平均分子量を有する糖類またはその塩がヒアルロン酸の切断生成物である糖類である、実施例1の凍結保存液が最も生存率が高かった。高分子の粘度平均分子量が50000である比較例6でも、ヒアルロン酸の切断生成物を含む粘度平均分子量が1000の糖類である製造例1を添加することによって、細胞生存率が向上した。
図14は、細胞懸濁液中の凍結保存液の含有量を低下させて凍結保存剤としての高分子の含有量が低い条件で細胞懸濁液を凍結し、解凍後の細胞生存率を調べた結果を示したものである。凍結保存剤としての高分子の含有量が低い細胞懸濁液は、それぞれ、比較例6の試験用凍結保存液を1w/v%含有する試験用凍結保存液、比較例6の試験用凍結保存液を1w/v%含有する試験用凍結保存液に製造例1を1w/v%の量で添加した試験用凍結保存液、比較例7の試験用凍結保存液を1w/v%含有する試験用凍結保存液、比較例7の試験用凍結保存液を1w/v%含有する試験用凍結保存液に製造例1を1w/v%の量で添加した試験用凍結保存液、に細胞を懸濁させたものであった。
図14の結果から、高分子の濃度が1w/v%程度では、糖類(ヒアルロン酸の切断生成物を含む粘度平均分子量が1000である製造例1)を加えても、本発明の効果は得られないことがわかる。
図15は、凍結保存液中の3000以下の粘度平均分子量を有する糖類またはその塩としての成分の分子量の、細胞生存率に及ぼす影響を調べた結果を示したものである。試験は、粘度平均分子量15000である試験用試料を含む比較例5の試験用試料溶液、比較例5の試験用試料にそれぞれ1質量%の量で製造例1~3(すなわち、粘度平均分子量がそれぞれ1000、2000、および3000のヒアルロン酸断片である試験用試料)を添加したものを試験用試料として1w/v%で含む試験用凍結保存液とを用いた。
図15の結果より、高分子より分子量の小さい糖類またはその塩を凍結保存剤に加えて凍結保存液に添加することにより、より向上した細胞生存効果を得ることができるが、糖類の分子量が大きくなるにつれて、その効果は徐々に低下することがわかる。
図16は、高分子より分子量の小さい糖類またはその塩のみを試験用試料として、超純水に溶解させた濃度10w/v%の試験用試料溶液を用いて凍結保存した場合の解凍後の細胞生存率を示したものである。試験用試料としては、製造例1~3の粘度平均分子量がそれぞれ1000、2000、および3000である試験用試料を使用した。
図16に示されるように、高分子より分子量の小さい糖類またはその塩だけでは、細胞生存効果を得ることはできない。製造例3では、約10%の細胞生存率が観察されたが、これは、製造例3の試験用試料中に含まれ得る3000より分子量の大きなヒアルロン酸によるものであると推測される。
<試験例13:亜臨界処理ヒアルロン酸試料のHPLC分析>
製造例1~3の試験用試料の1wt%水溶液を作製し、0.45μmのメンブレンフィルター(ミリポア社製)でフィルターろ過した後、各試験用試料の成分をHPLCにより分析した。移動相として、A液:16mM NaH2PO4水溶液、B液:800mM NaH2PO4水溶液を用い、ZORBAX NH2(アジレント・テクノロジー(株)製、カラムサイズφ4.6×250mm、粒子径5μm)順相HPLCカラムを用いて、流速1.0mL/min、カラム温度40℃、検出波長210nmで、成分を分離した。グラジエント条件は、移動相B濃度0%(0分)→移動相B濃度100%(60分)とした。結果を図17A~Cに示す。また、標品として、0.2wt%の濃度で、二糖であるHA02、四糖であるHA04、六糖であるHA06、八糖であるHA08および十糖であるHA10(全てイズロン社製)のヒアルロン酸のオリゴ糖をそれぞれ含む水溶液を調製し同様にHPLC分析を行った。この結果が図17Dに示されている。
製造例1~3の試験用試料の1wt%水溶液を作製し、0.45μmのメンブレンフィルター(ミリポア社製)でフィルターろ過した後、各試験用試料の成分をHPLCにより分析した。移動相として、A液:16mM NaH2PO4水溶液、B液:800mM NaH2PO4水溶液を用い、ZORBAX NH2(アジレント・テクノロジー(株)製、カラムサイズφ4.6×250mm、粒子径5μm)順相HPLCカラムを用いて、流速1.0mL/min、カラム温度40℃、検出波長210nmで、成分を分離した。グラジエント条件は、移動相B濃度0%(0分)→移動相B濃度100%(60分)とした。結果を図17A~Cに示す。また、標品として、0.2wt%の濃度で、二糖であるHA02、四糖であるHA04、六糖であるHA06、八糖であるHA08および十糖であるHA10(全てイズロン社製)のヒアルロン酸のオリゴ糖をそれぞれ含む水溶液を調製し同様にHPLC分析を行った。この結果が図17Dに示されている。
本HPLC分析条件では、単糖は保持時間3.5分、また、図17Dに示されているように、二糖は保持時間9分付近に確認される。図17Aは、製造例1のヒアルロン酸の切断生成物を含む粘度平均分子量が1000である試験用試料の分析結果を示すものであるが、保持時間3.5分付近に単糖に対応するピーク、保持時間9分付近の二糖に対応するピークが観察される。すなわち、製造例1の試験用試料には、このような単糖や二糖の成分が含まれており、細胞生存率の向上効果に寄与していると考えられる。
<試験例14:実施例1の試験用試料のHPLC分析>
実施例1の試験用試料(亜臨界処理により得られた粘度平均分子量が約1万のヒアルロン酸試料)について、上述の製造例1~3の試験用試料のHPLC分析と同じ条件を用いて、HPLC分析した。結果を図18に示す。
実施例1の試験用試料(亜臨界処理により得られた粘度平均分子量が約1万のヒアルロン酸試料)について、上述の製造例1~3の試験用試料のHPLC分析と同じ条件を用いて、HPLC分析した。結果を図18に示す。
同様に図17Dと比較すると、実施例1の試験用試料にも、保持時間3.5分付近および9分付近にそれぞれ単糖や二糖に対応するピークが観察されることがわかる。すなわち、実施例1の試験用試料にも、このような単糖や二糖の成分が含まれており、これにより、高い細胞生存率効果が得られていると考えられる。
<試験例15:多糖類構造をもたない試験用試料による細胞生存率の評価>
比較例3のゼラチンを含む試験用凍結保存液を用いて凍結保存後の細胞生存率を評価した。培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、比較例1および3の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図19に示す。
比較例3のゼラチンを含む試験用凍結保存液を用いて凍結保存後の細胞生存率を評価した。培養した初代イヌ間葉系幹細胞(cyagen C160)を、1×106個/mLの濃度で、比較例1および3の試験用凍結保存液(血清非含有)に懸濁した。その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。1日間の凍結保存後、各試験用凍結保存液を含む細胞懸濁液を取り出し、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液の細胞生存率をトリパンブルー染色により評価した。結果を図19に示す。
図19に示されるように、凍結保存剤としてゼラチンを用いた場合は、DMSOが凍結保存剤である比較例1と比較して、低い細胞生存率しか得られなかった。したがって、本発明の凍結保存液のもつ高い細胞生存率効果は、凍結保存液中に、高分子に加え、高分子よりも分子量の小さい糖類またはその塩を含むことにより得られることがわかる。
<試験例16:カルボキシル化ポリリジンによる細胞生存率の評価>
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、比較例10および比較例11の試験用凍結保存液中に懸濁した。
培養した初代ヒト間葉系幹細胞(Lonza PT2501)を、1×106個/mLの濃度で、比較例10および比較例11の試験用凍結保存液中に懸濁した。
その後、各試験用凍結保存液を含む細胞懸濁液を、緩慢細胞凍結器(Nalgene(登録商標)ミスターフロスティー)中で、-80℃冷凍庫内で凍結した。7日間、凍結した各試験用試料を含む細胞懸濁液を-80℃で保存した後、37℃の温浴中で急速解凍した。解凍後の各試験用凍結保存液を含む細胞懸濁液は、解凍直後に細胞生存率をトリパンブルー染色により評価した。結果を図20に示す。
比較例10では、細胞の生存率は65%であった。カルボキシポリリジンと製造例1との混合物である比較例11では、生存率は60%であった。カルボキシポリリジンの場合、低分子量のヒアルロン酸を添加しても効果が見られなかった。
カルボキシポリリジンでは、ポリリジンのアミノ基が、カルボン酸で修飾されて疎水化しているため、細胞周辺の水が低分子量のヒアルロン酸で置換されにくくなるものと推定される。
上記の結果より、本発明における高分子と糖類とを含む生体試料用の凍結保存液は、細胞内を安定にガラス化することにより、DMSOやエチレングリコールなどの細胞浸透性で細胞毒性のある化合物、および/または、血清や血清由来のタンパク質等の添加を基本的に必要とすることなく、高い細胞生存率で生体試料を凍結保存することができるという顕著な効果を有していることがわかる。細胞は良好に保護され、その性状も維持される。
Claims (39)
- 溶媒中に、
3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、
3000以下の粘度平均分子量を有する糖類またはその塩と
を含む生体試料用の凍結保存液。 - 前記親水性基を有するモノマーの親水性基が、ヒドロキシル基ならびにカルボン酸基およびその塩からなる群より選択される少なくとも一つである請求項1記載の凍結保存液。
- 前記高分子がさらに、置換されていてもよいアミノ基または置換されていてもよいアミド基を有する窒素含有モノマーを繰り返し単位として含む請求項1または2記載の凍結保存液。
- 前記高分子が、前記親水性基を有するモノマーと前記窒素含有モノマーとの交互共重合体である請求項3記載の凍結保存液。
- 前記親水性基を有するモノマーが、エクアトリアル位に置換したヒドロキシル基を有する請求項1~4のいずれか1項に記載の凍結保存液。
- 前記高分子が、10000以上の粘度平均分子量を有する請求項1~5のいずれか1項に記載の凍結保存液。
- 前記高分子が、複数の糖残基を含む請求項1~6のいずれか1項に記載の凍結保存液。
- 前記糖類が、単糖類、二糖類、またはオリゴ糖である請求項1~7のいずれか1項に記載の凍結保存液。
- 前記糖類が、グルコース、フルクトース、ガラクトースまたはそれらのアルコール基が酸化したウロン酸もしくはアルコール基がアミノ基で置換されたアミノ糖、スクロース、グリコサミノグリカンの切断生成物、グリコサミノグリカンの構成単糖、または、それらの重合体もしくは組み合わせである請求項8記載の凍結保存液。
- 前記糖類が、グルクロン酸またはN-アセチルグルコサミンである請求項9に記載の凍結保存液。
- 凍結保存液中の前記高分子の濃度が、5w/v%以上、20w/v%以下である請求項1~10のいずれか1項に記載の凍結保存液。
- 凍結保存液中の前記糖類の濃度が、1w/v%以上、10w/v%以下である請求項1~11のいずれか1項に記載の凍結保存液。
- 細胞内非浸透型の凍結保存液である請求項1~12のいずれか1項に記載の凍結保存液。
- 前記生体試料が、細胞、組織、または、膜もしくは凝集体である組織様物である請求項1~13のいずれか1項に記載の凍結保存液。
- 前記生体試料が、間葉系幹細胞、血球細胞、内皮細胞、または移植用組織である請求項14記載の凍結保存液。
- 前記生体試料が、精子、卵子、または受精卵である請求項15記載の凍結保存液。
- 請求項1~16のいずれか1項に記載の凍結保存液により、冷却速度10℃/min以下の緩慢凍結法で冷却および凍結を行う、生体試料の凍結方法。
- 溶媒中に、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む凍結保存液中に生体試料を含ませる工程と、
前記生体試料を含む前記凍結保存液を凍結に供する工程と、
-27℃以下の温度に前記生体試料を含む前記凍結保存液を保持することで保存を行う工程と
を含む生体試料の凍結保存方法。 - 前記生体試料の保護が保存中におこる請求項18記載の生体試料の凍結保存方法。
- 前記凍結保存液中に前記生体試料を含ませる工程が、前記生体試料を冷却する前に行われる、請求項18または19記載の生体試料の凍結保存方法。
- 前記生体試料が、細胞、組織、または、膜もしくは凝集体である組織様物である請求項18~20のいずれか1項に記載の生体試料の凍結保存方法。
- 前記生体試料が、精子、卵子、または受精卵である請求項21記載の生体試料の凍結保存方法。
- 生体試料を保存する方法であって、
3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との存在下で、かつ、-27℃以下で保存され、
前記保存が、前記生体試料が前記高分子またはその塩と前記糖類またはその塩との存在下で少なくとも5か月の期間保存された場合に、保存直前の前記生体試料の生存率を基準として5%未満の生存率の低下を示す保存であることを特徴とする生体試料を保存する方法。 - 前記保存が、前記生体試料が前記高分子またはその塩と前記糖類またはその塩との存在下で少なくとも6か月の期間保存された場合に、保存直前の前記生体試料の生存率を基準として10%未満の生存率の低下を示す保存であることを特徴とする請求項23記載の生体試料を保存する方法。
- 前記保存が、-27℃以下での凍結保存後に解凍された生体試料を4℃で1日間保存した場合に、解凍直後の前記生体試料の生存率を基準として5%未満の生存率の低下を示すことを特徴とする請求項23記載の生体試料を保存する方法。
- 前記生体試料が、細胞である請求項23~25のいずれか1項に記載の生体試料を保存する方法。
- 前記生体試料が、哺乳動物細胞である請求項26記載の生体試料を保存する方法。
- 前記生体試料が、哺乳動物間葉系幹細胞、哺乳動物血球細胞、または哺乳動物内皮細胞である請求項27記載の生体試料を保存する方法。
- -27℃以下の温度で、生体試料を保存するための、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との混合物の使用。
- 生体試料を凍結保存するための、3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との混合物の使用。
- 3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と3000以下の粘度平均分子量を有する糖類またはその塩との混合物からなる、生体試料の凍結保存剤。
- 前記高分子が、ペントース、ヘキソースもしくはウロン酸またはそれらの組合せを繰り返し単位として含む請求項31記載の生体試料の凍結保存剤。
- 前記高分子が、繰り返し単位としてアミノ糖をさらに含む請求項31または32記載の生体試料の凍結保存剤。
- 前記高分子の前記親水性基は、修飾されていない請求項31~33のいずれか1項に記載の生体試料の凍結保存剤。
- 前記高分子が、ヒアルロン酸、デキストラン、プルラン、またはコンドロイチン硫酸である請求項31~34のいずれか1項に記載の生体試料の凍結保存剤。
- 前記糖類が、単糖類、二糖類、またはオリゴ糖である請求項31~35のいずれか1項に記載の生体試料の凍結保存剤。
- 前記糖類が、グルコース、フルクトース、ガラクトースまたはそれらのアルコール基が酸化したウロン酸もしくはアルコール基がアミノ基で置換されたアミノ糖、スクロース、グリコサミノグリカンの切断生成物、グリコサミノグリカンの構成単糖、または、それらの重合体もしくは組み合わせである請求項31~36のいずれか1項に記載の生体試料の凍結保存剤。
- 3000より大きく、500000以下である粘度平均分子量を有する高分子であって、親水性基を有するモノマーを繰り返し単位として含む高分子またはその塩と、3000以下の粘度平均分子量を有する糖類またはその塩とを含む生体試料用の凍結保存液の製造方法であって、
500000を超える分子量を有する多糖類またはその塩を水に溶解させた後、水の亜臨界条件下で抽出処理を行うことを含む、生体試料用の凍結保存液の製造方法。 - 前記水の亜臨界条件は、温度150~350℃、圧力0.5~25MPaである請求項38記載の生体試料用の凍結保存液の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020572346A JP7445611B2 (ja) | 2019-02-15 | 2020-02-14 | 凍結保存液 |
JP2023174569A JP2024001207A (ja) | 2019-02-15 | 2023-10-06 | 凍結保存液 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026089 | 2019-02-15 | ||
JP2019-080542 | 2019-04-19 | ||
JP2019080542 | 2019-04-19 | ||
JP2019-026089 | 2019-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166711A1 true WO2020166711A1 (ja) | 2020-08-20 |
Family
ID=72044069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005869 WO2020166711A1 (ja) | 2019-02-15 | 2020-02-14 | 凍結保存液 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7445611B2 (ja) |
WO (1) | WO2020166711A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085369A1 (ja) * | 2021-11-11 | 2023-05-19 | 学校法人同志社 | 角膜内皮細胞の凍結保存製剤およびその製造法 |
CZ309774B6 (cs) * | 2022-04-08 | 2023-09-27 | Contipro A.S | Kryoprezervační médium obsahující kyselinu hyaluronovou, jeho použití a způsob kryoprezervace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021234A1 (en) * | 1991-06-03 | 1992-12-10 | Vetrepharm, Inc. | Composition and method for culturing and freezing cells and tissues |
JPH09110601A (ja) * | 1996-09-05 | 1997-04-28 | Biosurface Technol Inc | 培養上皮細胞シートの凍結保存 |
JP2009521949A (ja) * | 2006-01-04 | 2009-06-11 | ドゥ−コープ テクノロジーズ リミテッド | 凍結保護組成物およびその使用方法 |
JP2017048306A (ja) * | 2015-09-01 | 2017-03-09 | イビデン株式会社 | ヒアルロン酸及び/又はその塩の粉末 |
WO2018084228A1 (ja) * | 2016-11-04 | 2018-05-11 | 国立大学法人東京大学 | 動物細胞又は動物組織の凍結保存用溶液、凍結物、及び凍結保存方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3694730B2 (ja) * | 2000-03-02 | 2005-09-14 | 国立大学法人京都大学 | 組織の冷却保存液 |
-
2020
- 2020-02-14 WO PCT/JP2020/005869 patent/WO2020166711A1/ja active Application Filing
- 2020-02-14 JP JP2020572346A patent/JP7445611B2/ja active Active
-
2023
- 2023-10-06 JP JP2023174569A patent/JP2024001207A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021234A1 (en) * | 1991-06-03 | 1992-12-10 | Vetrepharm, Inc. | Composition and method for culturing and freezing cells and tissues |
JPH09110601A (ja) * | 1996-09-05 | 1997-04-28 | Biosurface Technol Inc | 培養上皮細胞シートの凍結保存 |
JP2009521949A (ja) * | 2006-01-04 | 2009-06-11 | ドゥ−コープ テクノロジーズ リミテッド | 凍結保護組成物およびその使用方法 |
JP2017048306A (ja) * | 2015-09-01 | 2017-03-09 | イビデン株式会社 | ヒアルロン酸及び/又はその塩の粉末 |
WO2018084228A1 (ja) * | 2016-11-04 | 2018-05-11 | 国立大学法人東京大学 | 動物細胞又は動物組織の凍結保存用溶液、凍結物、及び凍結保存方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085369A1 (ja) * | 2021-11-11 | 2023-05-19 | 学校法人同志社 | 角膜内皮細胞の凍結保存製剤およびその製造法 |
CZ309774B6 (cs) * | 2022-04-08 | 2023-09-27 | Contipro A.S | Kryoprezervační médium obsahující kyselinu hyaluronovou, jeho použití a způsob kryoprezervace |
Also Published As
Publication number | Publication date |
---|---|
JP2024001207A (ja) | 2024-01-09 |
JPWO2020166711A1 (ja) | 2021-12-16 |
JP7445611B2 (ja) | 2024-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024001207A (ja) | 凍結保存液 | |
Franks et al. | Polymeric cryoproteetants in the preservation of biological ultrastructure: I. Low temperature states of aqueous solutions of hydrophilic polymers | |
EP2934109B1 (en) | Cryoprotecting agent, cryoprotecting and cryopreserved compositions, uses thereof, and methods of cryopreservation | |
Chaytor et al. | Inhibiting ice recrystallization and optimization of cell viability after cryopreservation | |
DK2804475T3 (en) | Cryopreservation of Cells, Tissues and Organs | |
US20190059360A1 (en) | Cryopreservation of cells in absence of vitrification inducing agents | |
CA3036391A1 (en) | Compositions and methods for cell cryopreservation | |
KR20200035915A (ko) | 동결보호제 및/또는 동결보존제 조성물, 방법 및 그의 용도 | |
JP2023153389A (ja) | 凍結保存液 | |
JP2024001153A (ja) | 凍結保存用高分子水溶液および生体試料を含む固化体 | |
JP2023165770A (ja) | 生体試料を含む固化体 | |
JP5867912B2 (ja) | 細胞の凍結保存液および凍結保存方法 | |
KR101816802B1 (ko) | Pseudoalteromonas sp. Strain CY01 균주 유래 세포외다당을 함유하는 동결보호제 | |
Khudyakov et al. | Effect of pectins on water crystallization pattern and integrity of cells during freezing | |
Polezhaeva et al. | Use of pectic polysaccharides for cryopreservation of biological objects | |
JP7391528B2 (ja) | 凍結保存用高分子水溶液 | |
Fan et al. | Cryoprotectants for the vitrification of corneal endothelial cells | |
JP7280623B2 (ja) | 細胞凍結保存液、及び細胞凍結方法 | |
JP2022104329A (ja) | 凍結保存液 | |
JP7520398B2 (ja) | 細胞凍結保存液、及び細胞凍結方法 | |
JP2022104327A (ja) | 血小板の活性化剤 | |
JPWO2020149394A1 (ja) | 細胞凍結保存液 | |
JP7318983B2 (ja) | 細胞凍結保存液、及び細胞凍結方法 | |
RU2779448C2 (ru) | Криозащитный агент, содержащий экзополисахарид из pseudoalteromonas sp. сy01 | |
JP2022020549A (ja) | 細胞製剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20755055 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020572346 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20755055 Country of ref document: EP Kind code of ref document: A1 |