WO2023083018A1 - 反相细乳液修饰膜表面的方法 - Google Patents

反相细乳液修饰膜表面的方法 Download PDF

Info

Publication number
WO2023083018A1
WO2023083018A1 PCT/CN2022/128095 CN2022128095W WO2023083018A1 WO 2023083018 A1 WO2023083018 A1 WO 2023083018A1 CN 2022128095 W CN2022128095 W CN 2022128095W WO 2023083018 A1 WO2023083018 A1 WO 2023083018A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
miniemulsion
precursor
modifying
solvent
Prior art date
Application number
PCT/CN2022/128095
Other languages
English (en)
French (fr)
Inventor
张震乾
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023083018A1 publication Critical patent/WO2023083018A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the invention relates to the fields of aqueous inverse colloid, solvent heat treatment, modification and functional materials, and in particular to a method for modifying the surface of a membrane with inverse miniemulsion particles by a solvent method and realizing the modification of oxide nanocrystals on the surface of the membrane.
  • Functional thin film is a thin film material that has electricity, magnetism, light, heat or exhibits special functions under its action.
  • Functional thin films are often used in the manufacture of core components with unique functions in various equipment, and play a very important role in automatic control, electronics, communications, energy, transportation, metallurgy, chemical industry, precision machinery, instrumentation, aerospace, defense and other components have important uses.
  • Thin film surface modification is a method of processing the original basic film to produce new physical and chemical properties and the required functions; the surface modification method can be through chemical and physical surface modification, deposition technology, plasma technology, Laser surface treatment and the like complete the surface modification of the film.
  • Inverse miniemulsions are a type of O/W (oil-in-water) type miniemulsions.
  • O/W oil-in-water
  • the properties of the polymers change when the pH value is changed, and the conditions during the solvothermal treatment process are controlled to complete the crystallization and deposition of oxide nanodots It is of practical significance to realize the modification of the film surface through the thin film process.
  • the purpose of the present invention is to use the inverse miniemulsion to preload the oxide nanocrystal precursor pH-responsive polymer colloid, control the migration speed of the precursor to the film surface by solvent heat treatment, and complete the oxide nanocrystal modification method on the film surface .
  • a quantitative pH-responsive polymer and a water-soluble metal salt that can form a precursor are dissolved in deionized water to control the pH value to form an aqueous solution; weigh the quantitative aqueous solution and mix it with a specific solvent, and quickly transfer to the preset It was crushed for a certain period of time in an ultrasonic bio-pulverizer at a constant temperature to form an inverse miniemulsion loaded with precursors.
  • the pH-responsive polymer in the aqueous solution in step (1) is poly-4-vinylpyridine, polydimethylaminoethyl methacrylate or polyallylammonium hydrochloride, etc., and the relative molecular weight of the polymer is 1000-5000.
  • the water-soluble metal salt that can form the precursor can be sulfate, nitrate or chloride of one or more metals such as iron, copper, chromium, gold or cadmium, and the pH value of the aqueous solution of the soluble salt is controlled at 7-8.
  • a specific solvent is a C4 solvent. After mixing the aqueous solution and a specific solvent, it was pulverized by an ultrasonic biological pulverizer with a high power of 500W at 90% power for 15 minutes at a temperature of 10°C.
  • Step (1) The mass ratio of the pH-responsive polymer, the precursor-forming water-soluble metal salt and deionized water in the aqueous solution is 2:1-5:100; the mass ratio of the aqueous solution and the specific solvent is 15-25:100.
  • Span80 is dissolved in a specific solvent, and mixed with a certain amount of alkaline solution to form a mixture.
  • the mixture is pulverized for a certain period of time by being transferred to an ultrasonic biological pulverizer with a preset temperature to form a fine emulsion containing alkali solution.
  • the specific solvent described in step (2) is a C4 solvent; the mass concentration of the alkali solution is 1-3%, which can be an aqueous solution of alkalis such as sodium hydroxide, potassium hydroxide or ammoniacal liquor, and the mass ratio of the alkali solution and Span80 to the specific solvent is 10- 15:3-5:100.
  • the mixture was pulverized with an ultrasonic biological pulverizer at a high power of 500W at 90% power for 5 minutes at a temperature of 5°C.
  • the step (1) of mixing in a certain proportion is added to prepare the inverse miniemulsion containing the precursor and the miniemulsion containing the alkali solution prepared in step (2); Predetermined time is kept in an oven with a set temperature, and the solvothermal completes the deposition on the surface of the precursor migration film and forms oxide nanocrystals. After the heat treatment, the thin film is taken out, washed repeatedly, and dried at room temperature to obtain a thin film with oxide nanocrystal surface modification.
  • the film in step (3) is a polymer film; the mass mixing ratio of the inverse miniemulsion containing the precursor in step (1) and the miniemulsion containing alkali solution prepared in step (2) is 20:1-2.
  • the ratio of the volume of the mixed colloid to the volume of the autoclave is 25:100; the autoclave is a synthetic kettle with an inner sleeve of polytetrafluoroethylene and a outer sleeve of stainless steel.
  • the set temperature of the oven is 60-120°C, and the predetermined holding time is 24-48 hours. .
  • the film is taken out, and the modified film is washed with a mixed solvent of acetone, deionized water and ethanol, and the mass ratio of the mixed solvent is 1:1:1.
  • the invention uses the pH-responsive polymer to change the properties of the polymer when the pH value is changed, and drives the oxide nanocrystal precursor pre-loaded in the inverse miniemulsion to migrate to the surface of the film during solvent heat treatment to complete the formation of the film surface Oxide nanocrystal modification method.
  • the functional thin film material modified by this method has potential application prospects in the fields of semiconductor, photosensitive and photoluminescent.
  • the advantages of the present invention are: using the pH-responsive polymer to increase the pH value to generate hydrophobic properties, promote the migration of the oxide nanocrystal precursor to the surface of the film, and complete the crystallization of the oxide nano-dots under solvothermal conditions, and finally prepare the oxide Functional thin films with nanocrystal-modified surfaces.
  • the size of oxide nanocrystals modified on the surface of the film is 3-5 nanometers, and the surface nanocrystals are evenly distributed;
  • pH-responsive polymers can control the migration speed of oxide nanocrystal precursors to the film surface during solvothermal treatment, and control the size of nanocrystals;
  • the solvothermal method reduces the temperature at which oxide nanocrystals are formed, and this method can form a variety of functional films on the surface modified by oxide nanocrystals at one time.
  • Fig. 1 is the scanning electron micrograph of the thin film that embodiment 1 prepares.
  • Span80 were dissolved in 100 grams of C4 solvent, and mixed with 10 grams of 1% sodium hydroxide solution to form a mixture.
  • the mixture was pulverized with an ultrasonic biological pulverizer at a high power of 500W at 90% power for 5 minutes at a temperature of 5°C. A miniemulsion of alkaline solution is formed.
  • the precursor-containing inverse miniemulsion prepared in step (1) After stretching and fixing the prepared 1 ⁇ 1 cm polyvinylidene fluoride film in a 100 ml autoclave, add 20 grams of the precursor-containing inverse miniemulsion prepared in step (1) and 1 gram of the precursor-containing inverse miniemulsion prepared in step (2). A fine emulsion of alkaline solution; then placed in an oven at 60°C for 24 hours, and solvothermally completes the deposition of the precursor migration film on the surface and forms oxide nanocrystals. After the heat treatment, the thin film was taken out, and the modified thin film was repeatedly washed with a mixed solvent of acetone, deionized water and ethanol, and the mixing mass ratio of the mixed solvent was 1:1:1. After drying at normal temperature, the film with oxide nanocrystal surface modification can be obtained. The size of the nanocrystals is approximately 3 nanometers and the distribution is uniform according to the observation by the scanning electron microscope.
  • Span80 was dissolved in 100 g of C4 solvent, and mixed with 15 g of 3% mass concentration sodium hydroxide solution to form a mixture.
  • the mixture was pulverized with an ultrasonic biological pulverizer at a high power of 500W at 90% power for 5 minutes at a temperature of 5°C. A miniemulsion of alkaline solution is formed.
  • the prepared 1 ⁇ 1 cm polycarbonate film is stretched and fixed in a 100 ml autoclave, add 20 grams of the step (1) to prepare the inverse miniemulsion containing the precursor and 2.0 grams of the alkali-containing emulsion prepared in the step (2).
  • a fine emulsion of the solution then placed in an oven at 120° C. for 48 hours, and solvothermally completes the deposition on the surface of the precursor migration film and forms oxide nanocrystals.
  • the thin film was taken out, and the modified thin film was repeatedly washed with a mixed solvent of acetone, deionized water and ethanol, and the mixing mass ratio of the mixed solvent was 1:1:1.
  • the film with oxide nanocrystal surface modification can be obtained.
  • the size of the nanocrystals is approximately 5 nanometers, and the distribution is uniform, as observed by the scanning electron microscope.
  • Span80 was dissolved in 100 grams of C4 solvent, and mixed with 12 grams of 2% mass concentration of ammonia water to form a mixture.
  • the mixture was pulverized with an ultrasonic biological pulverizer at a high power of 500W at 90% power for 5 minutes at a temperature of 5°C. A miniemulsion of alkaline solution is formed.
  • step (1) After the prepared 1 ⁇ 1 cm polyethylene terephthalate film is stretched and fixed in a 100 milliliter autoclave, add 20 grams of step (1) to prepare the inverse miniemulsion containing the precursor and 1.6 grams of the step ( 2) The prepared miniemulsion containing alkali solution; then placed in an oven at 100° C. for 36 hours, and solvothermally completed the deposition on the surface of the precursor migration film and formed oxide nanocrystals. After the heat treatment, the thin film was taken out, and the modified thin film was repeatedly washed with a mixed solvent of acetone, deionized water and ethanol, and the mixing mass ratio of the mixed solvent was 1:1:1. After drying at normal temperature, the film with oxide nanocrystal surface modification can be obtained.
  • the size of the nanocrystals is about 4 nanometers and evenly distributed through the scanning electron microscope; the elemental analysis of the electron microscope shows that the percentage of the number of copper and iron elements is 2:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明涉及水性反相胶体、溶剂热处理、修饰和功能材料等领域,特别涉及通过溶剂法以反相细乳液颗粒修饰膜表面,在膜表面实现氧化物纳米晶修饰的方法。先制备装载前驱体的反相细乳液,再制备含碱性细乳液,最后溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶。本发明通过利用pH响应性聚合物在改变pH值情况下聚合物性质发生改变,驱使反相细乳液预装载的氧化物纳米晶前驱体在溶剂热处理中向薄膜表面迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。此方法修饰的功能薄膜材料在半导体、光敏和光致发光等领域有着潜在应用前景。

Description

反相细乳液修饰膜表面的方法 技术领域
本发明涉及水性反相胶体、溶剂热处理、修饰和功能材料等领域,特别涉及通过溶剂法以反相细乳液颗粒修饰膜表面,在膜表面实现氧化物纳米晶修饰的方法。
背景技术
功能薄膜是具有电、磁、光、热或在其作用下表现出特殊功能的薄膜材料。功能薄膜常用于制造各种装备中具有独特功能的核心部件,起着十分重要的作用,其在自动控制,电子、通讯、能源、交通、冶金、化工、精密机械、仪器仪表、航空航天、国防等部件均有重要用途。
薄膜表面修饰是在原有基础薄膜上对其进行加工处理使其产生新的物理化学特性及其所需要的功能的方法;表面修饰方法又可以通过化学物理表面改性、沉积技术、等离子体技术、激光表面处理等完成薄膜的表面修饰。
反相细乳液是一类O/W(水包油)型细乳液。通过预装载氧化物纳米晶前驱体和pH响应性聚合物的反相细乳液,在改变pH值情况下聚合物性质发生改变,调控溶剂热处理过程中的条件完成氧化物纳米点晶化和沉积薄膜过程,实现对薄膜表面的修饰具有现实意义。
发明内容
本发明的目的是采用反相细乳液预装载氧化物纳米晶前驱体pH响应性聚合物胶体,以溶剂热处理方式控制前驱体向薄膜表面的迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。
溶剂热法以反相细乳液修饰表面膜的方法,按照下述步骤进行:
(1)装载前驱体反相细乳液的制备:
室温下,将定量的pH响应性聚合物和可形成前驱体的水溶性金属盐溶解在去离子水中,控制pH值,形成水溶液;称取定量的水溶液和特定溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机中粉碎一定时间,形成装载前驱体的反相细乳液。
步骤(1)水溶液中的pH响应性聚合物为聚4-乙烯基吡啶、聚二甲胺乙基甲基丙烯酸酯或聚烯丙基铵盐酸酯等,聚合物相对分子量1000-5000。可形成前驱体的水溶性金属盐可以为一种或一种以上铁、铜、铬、金或镉等金属的硫酸盐、硝酸盐或氯化物,可溶性盐的水溶液pH值控制在7-8。特定溶剂为C4溶剂。水溶液和特定溶剂混合后通过超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。
步骤(1)水溶液中pH响应性聚合物、可形成前驱体水溶性金属盐和去离子水的质量比为2:1-5:100;水溶液和特定溶剂的质量比为15-25:100。
(2)含碱性细乳液的配制:
室温下,将定量Span80溶解在特定溶剂中,并和定量的碱溶液混合形成混合物。混合物通过转入预先设定温度的超声波生物粉碎机中粉碎一定时间,形成含碱溶液的细乳液。
步骤(2)所述特定溶剂为C4溶剂;碱溶液质量浓度为1-3%,可以为氢氧化钠、氢氧化钾或氨水等碱的水溶液,碱溶液和Span80和特定溶剂质量比为10-15:3-5:100。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的一定尺寸薄膜在高压反应釜伸展固定后,加入一定比例混合的 步骤(1)制备含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液;然后置于设定温度的烘箱中保温预定时间,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复清洗,常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。
步骤(3)所述薄膜为聚合物材质薄膜;步骤(1)含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液的质量混合比例为20:1-2。混合胶体体积和高压反应釜体积比为25:100;高压反应釜为内套聚四氟乙烯、外套为不锈钢的合成釜,烘箱设定温度为60-120℃,预定保温时间为24-48小时。结束热处理后取出薄膜,清洗是以丙酮、去离子水和乙醇的混合溶剂洗涤修饰后的薄膜,混合溶剂混合质量配比为1:1:1。
本发明通过利用pH响应性聚合物在改变pH值情况下聚合物性质发生改变,驱使反相细乳液预装载的氧化物纳米晶前驱体在溶剂热处理中向薄膜表面迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。此方法修饰的功能薄膜材料在半导体、光敏和光致发光等领域有着潜在应用前景。
本发明的优点在于:利用pH响应性聚合物具有pH值提高产生疏水性能,促使氧化物纳米晶前驱体向薄膜表面迁移,并在溶剂热条件下完成氧化物纳米点晶化,最终制备了氧化物纳米晶修饰表面的功能薄膜。具有以下优点:
1、薄膜表面修饰的氧化物纳米晶尺寸为3-5纳米,表面纳米晶分布均匀;
2、利用pH响应性聚合物可以控制氧化物纳米晶前驱体在溶剂热处理中向薄膜表面的迁移速度,并控制纳米晶尺寸;
3、溶剂热法降低了氧化物纳米晶形成的温度,通过此种方法可以一次形成多种氧化物纳米晶修饰表面的功能薄膜。
附图说明
图1为实施例1制备的薄膜的电子扫描电镜图。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明。
实施例1
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为1000的聚4-乙烯基吡啶和1.0克硫酸铁溶解在100克去离子水中,pH值为7,形成水溶液;称取15克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将3克Span80溶解在100克C4溶剂中,并和10克1%质量浓度的氢氧化钠溶液混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚偏氟乙烯薄膜在100毫升高压反应釜伸展固定后,加入20克步骤(1)制备的含前驱体的反相细乳液和1克步骤(2)制备的含碱溶液的细乳液;然后置于60℃烘箱中保温24小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致3纳米,分布均匀。
实施例2
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为5000的聚二甲胺乙基甲基丙烯酸酯和5.0克硝酸铜溶解在100克去离子水中,pH值为8,形成水溶液;称取25克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将5克Span80溶解在100克C4溶剂中,并和15克3%质量浓度的氢氧化钠溶液混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚碳酸酯薄膜在100毫升高压反应釜伸展固定后,加入20克的步骤(1)制备含前驱体的反相细乳液和2.0克步骤(2)制备的含碱溶液的细乳液;然后置于120℃烘箱中保温48小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致5纳米,分布均匀。
实施例3
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为3000的聚烯丙基铵盐酸酯pH响应性聚合物和2.5克硝酸铜和1.5克硫酸铁溶解在100克去离子水中,pH值为7.5,形成水溶液;称取20克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将4克Span80溶解在100克C4溶剂中,并和12克2%质量浓度的氨水混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚对苯二甲酸乙二醇酯薄膜在100毫升高压反应釜伸展固定后,加入20克的步骤(1)制备含前驱体的反相细乳液和1.6克步骤(2)制备的含碱溶液的细乳液;然后置于100℃烘箱中保温36小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致4纳米,分布均匀;电镜元素分析可知,铜元素和铁元素个数百分比为2:1。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的修改都应该在本发明的保护范围之内。

Claims (9)

  1. 一种反相细乳液修饰膜表面的方法,其特征在于:所述方法步骤如下:
    (1)装载前驱体反相细乳液的制备:
    室温下,将pH响应性聚合物和可形成前驱体的水溶性金属盐溶解在去离子水中,控制pH值,形成水溶液;称取水溶液和特定溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机中粉碎,形成装载前驱体的反相细乳液;
    (2)含碱性细乳液的配制:
    室温下,将Span80溶解在特定溶剂中,并和碱溶液混合形成混合物,混合物通过转入预先设定温度的超声波生物粉碎机中粉碎,形成含碱溶液的细乳液;
    (3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
    将准备好的薄膜在高压反应釜伸展固定后,加入步骤(1)制备的含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液;然后置于设定温度的烘箱中保温,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶,结束热处理后取出薄膜,反复清洗,常温干燥后即可获得氧化物纳米晶表面修饰的薄膜。
  2. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述pH响应性聚合物为聚4-乙烯基吡啶、聚二甲胺乙基甲基丙烯酸酯或聚烯丙基铵盐酸酯,聚合物相对分子量1000-5000。
  3. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述可形成前驱体的水溶性金属盐选自一种或一种以上铁、铜、铬、金或镉金属的硫酸盐、硝酸盐或氯化物,水溶液pH值控制在7-8。
  4. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述特定溶剂为C4溶剂,水溶液和特定溶剂混合后通过超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。
  5. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤 (1)所述水溶液中pH响应性聚合物、克形成前驱体的水溶性金属盐和去离子水的质量比为2:1-5:100;水溶液和特定溶剂的质量比为15-25:100。
  6. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(2)所述特定溶剂为C4溶剂;碱溶液为质量浓度为1-3%的氢氧化钠、氢氧化钾或氨水的水溶液,碱溶液、Span80和特定溶剂质量比为10-15:3-5:100;混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。
  7. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述薄膜为聚合物材质薄膜。
  8. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述步骤(1)含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液质量混合比例为20:1-2;混合胶体体积和高压反应釜高压釜体积比为25:100;高压反应釜为内套聚四氟乙烯、外套为不锈钢的合成釜。
  9. 如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述烘箱设定温度为60-120℃,预定保温时间为24-48小时;结束热处理后取出薄膜,以丙酮、去离子水和乙醇的混合溶剂洗涤修饰后的薄膜,混合溶剂混合质量配比为1:1:1。
PCT/CN2022/128095 2021-11-09 2022-10-28 反相细乳液修饰膜表面的方法 WO2023083018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111317511.2A CN114015102B (zh) 2021-11-09 2021-11-09 反相细乳液修饰膜表面的方法
CN202111317511.2 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023083018A1 true WO2023083018A1 (zh) 2023-05-19

Family

ID=80062670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128095 WO2023083018A1 (zh) 2021-11-09 2022-10-28 反相细乳液修饰膜表面的方法

Country Status (2)

Country Link
CN (1) CN114015102B (zh)
WO (1) WO2023083018A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015102B (zh) * 2021-11-09 2023-01-17 常州大学 反相细乳液修饰膜表面的方法
CN114957902B (zh) * 2022-06-22 2023-09-26 常州大学 反相细乳液自组装功能薄膜的方法
CN115044077B (zh) * 2022-06-22 2023-09-22 常州大学 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167147A1 (en) * 2005-01-24 2006-07-27 Blue Membranes Gmbh Metal-containing composite materials
US8092595B1 (en) * 2003-10-10 2012-01-10 Sandia Corporation Self-assembly of water-soluble nanocrystals
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
CN114015102A (zh) * 2021-11-09 2022-02-08 常州大学 反相细乳液修饰膜表面的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107117644B (zh) * 2017-06-16 2018-12-28 常州大学 细乳液胶体内硫化镉纳米线的制备方法
CN110964225B (zh) * 2019-12-16 2020-12-22 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092595B1 (en) * 2003-10-10 2012-01-10 Sandia Corporation Self-assembly of water-soluble nanocrystals
US20060167147A1 (en) * 2005-01-24 2006-07-27 Blue Membranes Gmbh Metal-containing composite materials
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
CN114015102A (zh) * 2021-11-09 2022-02-08 常州大学 反相细乳液修饰膜表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZHENQIAN.ET AL.: "Preparation and photocatalytic performance of CdS@Bi2WO6 hybrid nanocrystals", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 889, 21 August 2021 (2021-08-21), XP086842610, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2021.161668 *

Also Published As

Publication number Publication date
CN114015102A (zh) 2022-02-08
CN114015102B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2023083018A1 (zh) 反相细乳液修饰膜表面的方法
CN101819871B (zh) 聚乙烯亚胺包覆的四氧化三铁磁性纳米颗粒及其合成方法
WO2017190712A9 (zh) 一种利用微纳米气泡作为晶种诱导生产银粉的制备方法
CN104091678B (zh) 一种油酸包覆纳米Fe3O4分散于煤油基的磁性液体的制备方法
CN105906760A (zh) 一种新型温敏纳米凝胶微球的制备方法
CN108611088A (zh) 一种超声化学法制备ZnO量子点的方法
CN102699343A (zh) 一种制备金纳米颗粒的方法
CN105036178B (zh) 一种改性纳米氧化锌的制备方法
CN101297978A (zh) 一种羟基磷灰石纳米杆的制备方法
Ramezani et al. Silver tungstate nanostructures: electrochemical synthesis and its statistical optimization
CN116239737A (zh) 一种亚胺键纳米级共价有机骨架及其制备方法
CN104211100A (zh) 一种非晶态结构BaF2的制备方法
Jiao et al. Controllable Synthesis of Upconversion Nanophosphors toward Scale‐Up Productions
CN104692454A (zh) 回流沉淀制备硫化铅纳米粒子的方法
CN105080444B (zh) 一种制备单分散磁性蜜胺树脂微球的方法
CN110015679A (zh) 一种纳米硫化铜的制备方法
Chang et al. Investigate the reacting flux of chemical bath deposition by a continuous flow microreactor
CN107383725A (zh) 一种钆金属有机框架/聚乙烯醇纳米复合膜的制备方法
CN104591262A (zh) 滴加回流制备硫化汞纳米粒子的方法
CN114716687A (zh) 一种具有室温铁磁性的二维金属有机框架半导体材料及其制备方法
CN108946828A (zh) 一种NiO/In2O3多级结构的合成方法及其产品
JPH02294416A (ja) 白金粉末の製造方法
Won et al. Heatless polyol synthesis of disk-shaped silver particles and the enhanced shape control using tellurium
US3251714A (en) Method of preparing a cadmium oxide photoconductor
CN107639238B (zh) 一种单分散银粉的可控制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891814

Country of ref document: EP

Kind code of ref document: A1