CN114015102B - 反相细乳液修饰膜表面的方法 - Google Patents

反相细乳液修饰膜表面的方法 Download PDF

Info

Publication number
CN114015102B
CN114015102B CN202111317511.2A CN202111317511A CN114015102B CN 114015102 B CN114015102 B CN 114015102B CN 202111317511 A CN202111317511 A CN 202111317511A CN 114015102 B CN114015102 B CN 114015102B
Authority
CN
China
Prior art keywords
miniemulsion
film
precursor
solvent
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111317511.2A
Other languages
English (en)
Other versions
CN114015102A (zh
Inventor
张震乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202111317511.2A priority Critical patent/CN114015102B/zh
Publication of CN114015102A publication Critical patent/CN114015102A/zh
Priority to PCT/CN2022/128095 priority patent/WO2023083018A1/zh
Application granted granted Critical
Publication of CN114015102B publication Critical patent/CN114015102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明涉及水性反相胶体、溶剂热处理、修饰和功能材料等领域,特别涉及通过溶剂法以反相细乳液颗粒修饰膜表面,在膜表面实现氧化物纳米晶修饰的方法。先制备装载前驱体的反相细乳液,再制备含碱性细乳液,最后溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶。本发明通过利用pH响应性聚合物在改变pH值情况下聚合物性质发生改变,驱使反相细乳液预装载的氧化物纳米晶前驱体在溶剂热处理中向薄膜表面迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。此方法修饰的功能薄膜材料在半导体、光敏和光致发光等领域有着潜在应用前景。

Description

反相细乳液修饰膜表面的方法
技术领域
本发明涉及水性反相胶体、溶剂热处理、修饰和功能材料等领域,特别涉及通过溶剂法以反相细乳液颗粒修饰膜表面,在膜表面实现氧化物纳米晶修饰的方法。
背景技术
功能薄膜是具有电、磁、光、热或在其作用下表现出特殊功能的薄膜材料。功能薄膜常用于制造各种装备中具有独特功能的核心部件,起着十分重要的作用,其在自动控制,电子、通讯、能源、交通、冶金、化工、精密机械、仪器仪表、航空航天、国防等部件均有重要用途。
薄膜表面修饰是在原有基础薄膜上对其进行加工处理使其产生新的物理化学特性及其所需要的功能的方法;表面修饰方法又可以通过化学物理表面改性、沉积技术、等离子体技术、激光表面处理等完成薄膜的表面修饰。
反相细乳液是一类O/W(水包油)型细乳液。通过预装载氧化物纳米晶前驱体和pH响应性聚合物的反相细乳液,在改变pH值情况下聚合物性质发生改变,调控溶剂热处理过程中的条件完成氧化物纳米点晶化和沉积薄膜过程,实现对薄膜表面的修饰具有现实意义。
发明内容
本发明的目的是采用反相细乳液预装载氧化物纳米晶前驱体pH响应性聚合物胶体,以溶剂热处理方式控制前驱体向薄膜表面的迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。
溶剂热法以反相细乳液修饰表面膜的方法,按照下述步骤进行:
(1)装载前驱体反相细乳液的制备:
室温下,将定量的pH响应性聚合物和可形成前驱体的水溶性金属盐溶解在去离子水中,控制pH值,形成水溶液;称取定量的水溶液和特定溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机中粉碎一定时间,形成装载前驱体的反相细乳液。
步骤(1)水溶液中的pH响应性聚合物为聚4-乙烯基吡啶、聚二甲胺乙基甲基丙烯酸酯或聚烯丙基铵盐酸酯等,聚合物相对分子量1000-5000。可形成前驱体的水溶性金属盐可以为一种或一种以上铁、铜、铬、金或镉等金属的硫酸盐、硝酸盐或氯化物,可溶性盐的水溶液pH值控制在7-8。特定溶剂为C4溶剂。水溶液和特定溶剂混合后通过超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。
步骤(1)水溶液中pH响应性聚合物、可形成前驱体水溶性金属盐和去离子水的质量比为2:1-5:100;水溶液和特定溶剂的质量比为15-25:100。
(2)含碱性细乳液的配制:
室温下,将定量Span80溶解在特定溶剂中,并和定量的碱溶液混合形成混合物。混合物通过转入预先设定温度的超声波生物粉碎机中粉碎一定时间,形成含碱溶液的细乳液。
步骤(2)所述特定溶剂为C4溶剂;碱溶液质量浓度为1-3%,可以为氢氧化钠、氢氧化钾或氨水等碱的水溶液,碱溶液和Span80和特定溶剂质量比为10-15:3-5:100。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的一定尺寸薄膜在高压反应釜伸展固定后,加入一定比例混合的步骤(1)制备含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液;然后置于设定温度的烘箱中保温预定时间,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复清洗,常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。
步骤(3)所述薄膜为聚合物材质薄膜;步骤(1)含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液的质量混合比例为20:1-2。混合胶体体积和高压反应釜体积比为25:100;高压反应釜为内套聚四氟乙烯、外套为不锈钢的合成釜,烘箱设定温度为60-120℃,预定保温时间为24-48小时。结束热处理后取出薄膜,清洗是以丙酮、去离子水和乙醇的混合溶剂洗涤修饰后的薄膜,混合溶剂混合质量配比为1:1:1。
本发明通过利用pH响应性聚合物在改变pH值情况下聚合物性质发生改变,驱使反相细乳液预装载的氧化物纳米晶前驱体在溶剂热处理中向薄膜表面迁移速度,完成薄膜表面形成氧化物纳米晶修饰方法。此方法修饰的功能薄膜材料在半导体、光敏和光致发光等领域有着潜在应用前景。
本发明的优点在于:利用pH响应性聚合物具有pH值提高产生疏水性能,促使氧化物纳米晶前驱体向薄膜表面迁移,并在溶剂热条件下完成氧化物纳米点晶化,最终制备了氧化物纳米晶修饰表面的功能薄膜。具有以下优点:
1、薄膜表面修饰的氧化物纳米晶尺寸为3-5纳米,表面纳米晶分布均匀;
2、利用pH响应性聚合物可以控制氧化物纳米晶前驱体在溶剂热处理中向薄膜表面的迁移速度,并控制纳米晶尺寸;
3、溶剂热法降低了氧化物纳米晶形成的温度,通过此种方法可以一次形成多种氧化物纳米晶修饰表面的功能薄膜。
附图说明
图1为实施例1制备的薄膜的电子扫描电镜图。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明。
实施例1
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为1000的聚4-乙烯基吡啶和1.0克硫酸铁溶解在100克去离子水中,pH值为7,形成水溶液;称取15克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将3克Span80溶解在100克C4溶剂中,并和10克1%质量浓度的氢氧化钠溶液混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚偏氟乙烯薄膜在100毫升高压反应釜伸展固定后,加入20克步骤(1)制备的含前驱体的反相细乳液和1克步骤(2)制备的含碱溶液的细乳液;然后置于60℃烘箱中保温24小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致3纳米,分布均匀。
实施例2
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为5000的聚二甲胺乙基甲基丙烯酸酯和5.0克硝酸铜溶解在100克去离子水中,pH值为8,形成水溶液;称取25克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将5克Span80溶解在100克C4溶剂中,并和15克3%质量浓度的氢氧化钠溶液混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚碳酸酯薄膜在100毫升高压反应釜伸展固定后,加入20克的步骤(1)制备含前驱体的反相细乳液和2.0克步骤(2)制备的含碱溶液的细乳液;然后置于120℃烘箱中保温48小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致5纳米,分布均匀。
实施例3
(1)装载前驱体反相细乳液的制备:
室温下,将2克相对分子量为3000的聚烯丙基铵盐酸酯pH响应性聚合物和2.5克硝酸铜和1.5克硫酸铁溶解在100克去离子水中,pH值为7.5,形成水溶液;称取20克水溶液和100克C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。形成含前驱体的反相细乳液。
(2)含碱性细乳液的配制:
室温下,将4克Span80溶解在100克C4溶剂中,并和12克2%质量浓度的氨水混合形成混合物。混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。形成含碱溶液的细乳液。
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的1×1厘米聚对苯二甲酸乙二醇酯薄膜在100毫升高压反应釜伸展固定后,加入20克的步骤(1)制备含前驱体的反相细乳液和1.6克步骤(2)制备的含碱溶液的细乳液;然后置于100℃烘箱中保温36小时,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶。结束热处理后取出薄膜,反复以丙酮、去离子水和乙醇的混合溶剂清洗修饰后的薄膜,混合溶剂混合质量配比为1:1:1。常温干燥后即可获得氧化物纳米晶表面修饰后的薄膜。经电子扫描电镜观测纳米晶尺寸大致4纳米,分布均匀;电镜元素分析可知,铜元素和铁元素个数百分比为2:1。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的修改都应该在本发明的保护范围之内。

Claims (9)

1.一种反相细乳液修饰膜表面的方法,其特征在于:所述方法步骤如下:
(1)装载前驱体反相细乳液的制备:
室温下,将pH响应性聚合物和可形成前驱体的水溶性金属盐溶解在去离子水中,控制pH值7-8,形成水溶液;称取水溶液和C4溶剂混合后,迅速转入预先设定温度的超声波生物粉碎机中粉碎,形成装载前驱体的反相细乳液;
(2)含碱性细乳液的配制:
室温下,将Span80溶解在C4溶剂中,并和碱溶液混合形成混合物,混合物通过转入预先设定温度的超声波生物粉碎机中粉碎,形成含碱溶液的细乳液;
(3)溶剂热完成氧化物前驱体迁移薄膜表面沉积并形成纳米晶:
将准备好的薄膜在高压反应釜伸展固定后,加入步骤(1)制备的含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液;然后置于设定温度的烘箱中保温,溶剂热完成前驱体迁移薄膜表面沉积并形成氧化物纳米晶,结束热处理后取出薄膜,反复清洗,常温干燥后即可获得氧化物纳米晶表面修饰的薄膜。
2.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述pH响应性聚合物为聚4-乙烯基吡啶、聚二甲胺乙基甲基丙烯酸酯或聚烯丙基铵盐酸酯,聚合物相对分子量1000-5000。
3.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述可形成前驱体的水溶性金属盐选自一种或一种以上铁、铜、铬、金或镉金属的硫酸盐、硝酸盐或氯化物。
4.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述水溶液和C4溶剂混合后通过超声波生物粉碎机高功率500W以90%功率状态粉碎15分钟,温度10℃。
5.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(1)所述水溶液中pH响应性聚合物、可形成前驱体的水溶性金属盐和去离子水的质量比为2:1-5:100;水溶液和C4溶剂的质量比为15-25:100。
6.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(2)所述碱溶液为质量浓度为1-3%的氢氧化钠、氢氧化钾或氨水的水溶液,碱溶液、Span80和C4溶剂质量比为10-15:3-5:100;混合物以超声波生物粉碎机高功率500W以90%功率状态粉碎5分钟,温度5℃。
7.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述薄膜为聚合物材质薄膜。
8.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述步骤(1)含前驱体的反相细乳液和步骤(2)制备的含碱溶液的细乳液质量混合比例为20:1-2;混合胶体体积和高压反应釜高压釜体积比为25:100;高压反应釜为内套聚四氟乙烯、外套为不锈钢的合成釜。
9.如权利要求1所述的反相细乳液修饰膜表面的方法,其特征在于:步骤(3)所述烘箱设定温度为60-120℃,预定保温时间为24-48小时;结束热处理后取出薄膜,以丙酮、去离子水和乙醇的混合溶剂洗涤修饰后的薄膜,混合溶剂混合质量配比为1:1:1。
CN202111317511.2A 2021-11-09 2021-11-09 反相细乳液修饰膜表面的方法 Active CN114015102B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111317511.2A CN114015102B (zh) 2021-11-09 2021-11-09 反相细乳液修饰膜表面的方法
PCT/CN2022/128095 WO2023083018A1 (zh) 2021-11-09 2022-10-28 反相细乳液修饰膜表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111317511.2A CN114015102B (zh) 2021-11-09 2021-11-09 反相细乳液修饰膜表面的方法

Publications (2)

Publication Number Publication Date
CN114015102A CN114015102A (zh) 2022-02-08
CN114015102B true CN114015102B (zh) 2023-01-17

Family

ID=80062670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111317511.2A Active CN114015102B (zh) 2021-11-09 2021-11-09 反相细乳液修饰膜表面的方法

Country Status (2)

Country Link
CN (1) CN114015102B (zh)
WO (1) WO2023083018A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015102B (zh) * 2021-11-09 2023-01-17 常州大学 反相细乳液修饰膜表面的方法
CN114957902B (zh) * 2022-06-22 2023-09-26 常州大学 反相细乳液自组装功能薄膜的方法
CN115044077B (zh) * 2022-06-22 2023-09-22 常州大学 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092595B1 (en) * 2003-10-10 2012-01-10 Sandia Corporation Self-assembly of water-soluble nanocrystals
CN107117644A (zh) * 2017-06-16 2017-09-01 常州大学 细乳液胶体内硫化镉纳米线的制备方法
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
WO2021121102A1 (zh) * 2019-12-16 2021-06-24 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0606486A2 (pt) * 2005-01-24 2009-06-30 Cinv Ag materiais compósitos contendo metal
CN114015102B (zh) * 2021-11-09 2023-01-17 常州大学 反相细乳液修饰膜表面的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092595B1 (en) * 2003-10-10 2012-01-10 Sandia Corporation Self-assembly of water-soluble nanocrystals
CN107117644A (zh) * 2017-06-16 2017-09-01 常州大学 细乳液胶体内硫化镉纳米线的制备方法
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
WO2021121102A1 (zh) * 2019-12-16 2021-06-24 江南大学 一种磁性分子印迹光子晶体传感器及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preparation and photocatalytic performance of CdS@Bi2WO6 hybrid nanocrystals";Zhenqian Zhang et al.;《Journal of Alloys and Compounds》;20210821;第889卷;第161668(1-11)页 *

Also Published As

Publication number Publication date
WO2023083018A1 (zh) 2023-05-19
CN114015102A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN114015102B (zh) 反相细乳液修饰膜表面的方法
Xiong et al. Polymerization initiated by inherent free radicals on nanoparticle surfaces: a simple method of obtaining ultrastable (ZnO) polymer core–shell nanoparticles with strong blue fluorescence
Yen et al. A continuous‐flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals
CN102140691A (zh) 一种采用水热法合成钒酸锌微/纳米线材料的方法
CN101972855B (zh) 一种高温烧结银浆用银微粉制备方法
Deki et al. NH2-terminated poly (ethylene oxide) containing nanosized NiO particles: synthesis, characterization, and structural considerations
CN110817964B (zh) 管状纳米钨酸铋及其制备方法
CN107866577B (zh) 一种瞬动微流管反应器制备单分散银粉的方法
CN116239737A (zh) 一种亚胺键纳米级共价有机骨架及其制备方法
CN113788900B (zh) 具有高热稳定性的改性纤维素纳米晶及其制备方法
Chang et al. Investigate the reacting flux of chemical bath deposition by a continuous flow microreactor
CN100515953C (zh) 氧化锌薄膜制备方法
CN110181074A (zh) 一种复合软模板法绿色制备高长径比银纳米线的方法
CN106513706B (zh) 一种用于球形银粉生产工艺中纳米银晶核的制备方法
Self et al. Surface charge driven growth of eight-branched Cu2O crystals
CN102990077B (zh) 一种在氧化物基底上原位生长铋纳米粒子的方法
Zhu et al. Facile crystallization control of LaF 3/LaPO 4: Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation
CN100398453C (zh) 硬脂酸凝胶燃烧法制备钙钛矿型纳米LaCoO3
CN113956519B (zh) 一种温敏性细乳液涂膜表面丰度金属元素的方法
CN101844751B (zh) 一种硒化铅纳米晶体的制备方法
Fu et al. Single-crystal ZnO cup based on hydrothermal decomposition route
CN102863005B (zh) 一种多壳层核壳微纳结构Cu2O的制备方法
Ma et al. Oxidation anisotropy and size-dependent reaction kinetics of zinc nanocrystals
CN104876280A (zh) 一种两相溶剂热法制备四氧化三铁微米球的方法
CN104993016B (zh) 一种贵金属纳米晶负载铜锌锡硫薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant