CN115044077B - Pickering反相细乳液制备硫化锌低维纳米薄膜的方法 - Google Patents

Pickering反相细乳液制备硫化锌低维纳米薄膜的方法 Download PDF

Info

Publication number
CN115044077B
CN115044077B CN202210710474.XA CN202210710474A CN115044077B CN 115044077 B CN115044077 B CN 115044077B CN 202210710474 A CN202210710474 A CN 202210710474A CN 115044077 B CN115044077 B CN 115044077B
Authority
CN
China
Prior art keywords
temperature
pickering
film
zinc sulfide
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210710474.XA
Other languages
English (en)
Other versions
CN115044077A (zh
Inventor
张震乾
方必军
李坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202210710474.XA priority Critical patent/CN115044077B/zh
Publication of CN115044077A publication Critical patent/CN115044077A/zh
Application granted granted Critical
Publication of CN115044077B publication Critical patent/CN115044077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明涉及Pickering反相胶体、热处理和纳米结构材料设计等领域,特别涉及一种Pickering反相细乳液制备硫化锌低维纳米薄膜的方法,首先利用温度差异分离获得特定温敏共聚物;然后利用再分散方法形成硫化锌为纳米固体稳定剂的pickering反相细乳液;最后利用温敏共聚物不同温度水溶性差异,促进了硫化锌晶体多次有序沉积,并通过水热处理完善了硫化锌薄膜复层低维纳米排布,制得复层低维纳米排布硫化锌薄膜,通过调整Pickering反相细乳液稳定性调控纳米材料结构设计,最终实现硫化锌低维纳米薄膜的制备。

Description

Pickering反相细乳液制备硫化锌低维纳米薄膜的方法
技术领域
本发明涉及Pickering反相胶体、热处理和纳米结构材料设计等领域,特别涉及一种Pickering反相细乳液制备硫化锌低维纳米薄膜的方法。
背景技术
纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100纳米)或由它们作为基本单元构成的材料,大约相当于10-1000个原子紧密排列在一起的尺度。
纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系和薄膜嵌镶体系等。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二维体系上。纳米进展中,低维纳米排布结构(纳米线、纳米管、纳米柱或纳米环等)材料显示了优异光电性能,低维纳米材料可应用于太阳能薄膜电池,但常用的制备方法在控制纳米尺度和设计维度上存在不足。
发明内容
本发明的目的是预制备装载功能的金属盐Pickering细乳液,随后涂膜并热处理形成复层低维纳米排布结构,实现薄膜材料功能化。
超细的固体颗粒可用作水包油或油包水型乳化剂,这类乳状液有时被称为Pickering乳状液;Pickering反相细乳液是一类以油相润湿固体颗粒形成O/W(水包油)细乳液,其结合了细乳液和反相Pickering乳液的特征。通过系列预装载水溶性锌盐和热敏性共聚物,硫化形成硫化锌固体乳化剂Pickering细乳液;初始涂膜后,经调控热处理条件形成复层低维纳米排布结构材料,实现硫化锌功能薄膜的制备。
Pickering反相细乳液制备低维纳米薄膜的方法,按照下述步骤进行:
(1)特定温敏共聚物的制备
常温下,将定量温敏单体、油溶性单体溶解在特定溶剂中,形成溶液。将溶液移至通氮、带回流冷凝管和预定反应温度的聚合釜中,称取定量引发剂加入聚合釜;聚合反应固定时间后,迅速将聚合反应清液慢速滴加至聚合反应同等温度的去离子水中,过滤除去初次沉淀物;后升高混合液温度至指定温度,过滤收集二次沉淀物,用指定温度热水洗涤后干燥得到特定温敏共聚物,备用。
其中,温敏单体指N-异丙基丙烯酰胺或2-甲基-2-丙烯酸-2-(2-甲氧基/乙氧基)乙酯等;
油溶性单体指苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸、乙基丙烯酸或丙烯酸等单体中的一种或几种;
特定溶剂指丙酮、丁酮、氯仿、四氢呋喃、苯或甲苯等一种或几种;
引发剂为偶氮二异丁腈或偶氮二异庚腈等。
引发剂、温敏单体、油溶性单体、特定溶剂和去离子水的质量比为0.3:5-10:10:100:500。
聚合反应时间60-90分钟,温度为50℃。指定温度热水为60℃热水。
(2)硫化锌为纳米固体稳定剂的Pickering反相细乳液的制备
室温下,称取定量锌盐水溶液、步骤(1)制备的特定温敏共聚物和油性溶剂混合后,迅速转入预先设定温度超声波生物粉碎机中粉碎一定时间,以固定速度滴加一定浓度硫化物水溶液,继续粉碎,形成硫化锌为纳米固体稳定剂的Pickering反相细乳液。
其中,水溶性锌盐为氯化锌、硝酸锌或硫酸锌等中的一种或多种。
水溶性硫化物为硫化钠、硫化钾或硫化铵等中的一种或多种。
油性溶剂为正庚烷。
锌盐水溶液的质量浓度2-5%;硫化物水溶液的质量浓度为3-5%;
锌盐水溶液、步骤(1)制备的特定温敏共聚物、油性溶剂和硫化物水溶液质量比为10:0.2-0.3:100:10-20;
硫化物水溶液滴加速度5-10单位质量每小时。
水溶液和特定溶剂混合后通过超声波生物粉碎机高功率500W以90%功率状态粉碎10分钟,温度20℃。滴加硫化物水溶液后,继续粉碎时间为10分钟。
(3)硫化锌薄膜预制备
室温条件下,将步骤(2)制备的含硫化锌Pickering反相细乳液采用旋涂法涂覆在净化处理后的石英玻璃上成膜,反复清洗后干燥,预制备硫化锌薄膜。
步骤(3)所述方法中膜旋涂厚度控制在1-3微米。
(4)复层低维纳米排布硫化锌薄膜的制备
室温下,将步骤(3)制备的附有硫化锌薄膜石英玻璃置于高压水热釜中,加入步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液;然后水热釜放置在预定温度的烘箱中保温设定时间,然后移出烘箱降温至室温;反复保温降温过程若干次后,最后在常温下取出附有硫化锌薄膜石英玻璃,洗涤后干燥获得复层低维纳米排布硫化锌薄膜。
其中,步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液和高压反应釜高压釜体积比为30-50:100;
设定保温温度为60-80℃,预定单次保温时间为2-4小时;
降温至室温保持时间单次4-5小时,反复保温降温次数3-5次。
最后一次保温降温处理后附有硫化锌薄膜石英玻璃以体积比1:1去离子水和乙醇溶液洗涤,干燥温度50-60℃。
本发明通过特定温敏共聚物制备形成硫化锌为纳米固体稳定剂Pickering反相细乳液,并初步旋涂成硫化锌薄膜;最后利用温敏聚合物受热疏水性能,通过热处理反复沉积得到在旋涂硫化锌薄膜表面复层低维纳米排布硫化锌薄膜。此方法制备薄膜在半导体和光伏等有潜在应用前景。
本发明具有以下优点:
1、利用温度差异分离获得特定温敏共聚物;
2、利用再分散方法形成硫化锌为纳米固体稳定剂Pickering反相细乳液;
3、利用温敏共聚物不同温度水溶性差异,促进了硫化锌晶体多次有序沉积,并通过水热处理完善了硫化锌薄膜复层低维纳米排布。
附图说明:
图1为实施例1复层低维纳米排布硫化锌薄膜表面(尺度单位50纳米)的扫描电镜图。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明。
实施例1
(1)特定温敏共聚物的制备
常温下,将5克温敏单体N-异丙基丙烯酰胺、10克油溶性单体苯乙烯溶解在100克溶剂丙酮中,形成溶液。将溶液移至预定反应温度50℃的通氮、带回流冷凝管的聚合釜中,称取0.3克引发剂偶氮二异丁腈加入聚合釜;聚合反应60分钟后,迅速将聚合反应清液慢速滴加至50℃的500克去离子水中,过滤除去初次沉淀物;后升高混合液温度至60℃,过滤收集二次沉淀物,用60℃热水洗涤后干燥得到特定温敏共聚物,备用。
(2)硫化锌为纳米固体稳定剂Pickering反相细乳液制备
室温下,称取10克2%质量浓度氯化锌水溶液、0.2克步骤(1)制备的温敏共聚物和100克油性溶剂正庚烷混合后,迅速转入预先设定温度超声波生物粉碎机中高功率500W以90%功率状态粉碎10分钟,温度20℃。以5克每小时速度滴加10克3%质量浓度硫化钠水溶液,继续粉碎10分钟,形成硫化锌为纳米固体稳定剂的Pickering反相细乳液。
(3)硫化锌薄膜预制备
室温条件下将步骤(2)含硫化锌Pickering反相细乳液采用旋涂成膜方式涂覆在净化处理后的石英玻璃上,反复清洗干净后干燥,预制备硫化锌薄膜,厚度控制在1微米。
(4)复层低维纳米排布硫化锌薄膜的制备
室温下,将步骤(3)制备的附有硫化锌薄膜石英玻璃置于高压水热釜中,加入步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液(反相细乳液和高压反应釜体积比为30毫升:100毫升);然后水热釜放置在预定60℃的烘箱中保温4小时;然后移出烘箱降温至室温,保持时间5小时。反复升温降温过程5次后,最后在常温下取出附有硫化锌薄膜石英玻璃,体积比1:1去离子水和乙醇溶液洗涤后50℃干燥,获得复层低维纳米排布硫化锌薄膜。
由图1复层低维纳米排布硫化锌薄膜表面可知:硫化锌多层立方结构,高度100纳米。
实施例2
(1)特定温敏共聚物的制备
常温下,将10克温敏单体2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯、10克油溶性单体(苯乙烯和甲基丙烯酸各5克)溶解在100克溶剂(10克四氢呋喃和90克丁酮)中,形成溶液。将溶液移至预定反应温度50℃的通氮、带回流冷凝管的聚合釜中,称取0.3克引发剂偶氮二异庚腈加入聚合釜;聚合反应90分钟后,迅速将聚合反应清液慢速滴加至50℃的500克去离子水中,过滤除去初次沉淀物;后升高混合液温度至60℃,过滤收集二次沉淀物,用60℃热水洗涤后干燥得到特定温敏共聚物,备用。
(2)硫化锌为纳米固体稳定剂Pickering反相细乳液的制备
室温下,称取10克5%质量浓度硫酸锌水溶液、0.3克步骤(1)制备的特定温敏共聚物和100克油性溶剂正庚烷混合后,迅速转入预先设定温度超声波生物粉碎机中高功率500W以90%功率状态粉碎10分钟,温度20℃。以10克每小时速度滴加20克5%质量浓度硫化钾水溶液,继续粉碎10分钟,形成硫化锌为纳米固体稳定剂的Pickering反相细乳液。
(3)硫化锌薄膜预制备
室温条件下将步骤(2)含硫化锌Pickering反相细乳液采用旋涂成膜方式涂覆在净化处理后的石英玻璃上,反复清洗干净后干燥,预制备硫化锌薄膜,厚度控制在3微米。
(4)复层低维纳米排布硫化锌薄膜的制备
室温下,将步骤(3)制备的附有硫化锌薄膜石英玻璃置于高压水热釜中,加入步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液(反相细乳液和高压反应釜体积比为50毫升:100毫升);然后水热釜放置在预定80℃的烘箱中保温2小时;然后移出烘箱降温至室温,保持4小时。反复升温降温过程3次后,最后在常温下取出附有硫化锌薄膜石英玻璃,体积比1:1去离子水和乙醇溶液洗涤后60℃干燥,获得复层低维纳米排布硫化锌薄膜(硫化锌多层立方结构,高度150纳米)。
实施例3
(1)特定温敏共聚物的制备
常温下,将7克温敏单体2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯、10克油溶性单体(5克苯乙烯和5克甲基丙烯酸甲酯)溶解在100克特定溶剂氯仿中,形成溶液。将溶液移至预定反应温度50℃的通氮、带回流冷凝管的聚合釜中,称取0.3克引发剂偶氮二异丁腈加入聚合釜;聚合反应70分钟后,迅速将聚合反应清液慢速滴加至50℃的500克去离子水中,过滤除去初次沉淀物;后升高混合液温度至60℃,过滤收集二次沉淀物,用60℃热水洗涤后干燥得到特定温敏共聚物,备用。
(2)硫化锌为纳米固体稳定剂Pickering反相细乳液的制备
室温下,称取10克质量浓度4%硝酸锌水溶液、0.25克步骤(1)制备的特定温敏共聚物和100克油性溶剂正庚烷混合后,迅速转入预先设定温度超声波生物粉碎机中高功率500W以90%功率状态粉碎10分钟,温度20℃。以8克每小时速度滴加15克4%质量浓度硫化钾水溶液,继续粉碎10分钟,形成硫化锌为纳米固体稳定剂的Pickering反相细乳液。
(3)硫化锌薄膜预制备
室温条件下将步骤(2)含硫化锌Pickering反相细乳液采用旋涂成膜方式涂覆在净化处理后的石英玻璃上,反复清洗干净后干燥,预制备硫化锌薄膜,厚度控制在2微米。
(4)复层低维纳米排布硫化锌薄膜的制备
室温下,将步骤(3)制备的附有硫化锌薄膜石英玻璃置于高压水热釜中,加入步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液(反相细乳液和高压反应釜体积比为40毫升:100毫升);然后水热釜放置在预定70℃的烘箱中保温3小时;然后移出烘箱降温至室温,保持4.5小时。反复保温降温过程4次后,最后在常温下取出附有硫化锌薄膜石英玻璃,体积比1:1去离子水和乙醇溶液洗涤后55℃干燥,获得复层低维纳米排布硫化锌薄膜(硫化锌多层立方结构,高度120纳米)。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的修改都应该在本发明的保护范围之内。

Claims (8)

1.一种Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,所述方法步骤如下:
(1)温敏共聚物的制备
常温下,将温敏单体、油溶性单体溶解在特定溶剂中,形成溶液,将溶液移至通氮、带回流冷凝管和预定反应温度的聚合釜中,称取引发剂加入聚合釜;聚合反应后,迅速将聚合反应清液滴加至与聚合反应同等温度的去离子水中,过滤除去初次沉淀物;后升高混合液温度至指定温度,过滤收集二次沉淀物,用热水多次洗涤后干燥得到特定温敏共聚物,备用;
所述温敏单体为N-异丙基丙烯酰胺或2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯;油溶性单体为苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸、乙基丙烯酸或丙烯酸中的一种或几种;特定溶剂为丙酮、丁酮、氯仿、四氢呋喃、苯或甲苯中的一种或几种;
引发剂、温敏单体、油溶性单体、特定溶剂和去离子水的质量比为0.3:5-10:10:100:500;
(2)硫化锌为纳米固体稳定剂Pickering反相细乳液制备
室温下,称取锌盐水溶液、步骤(1)制备的温敏共聚物和油性溶剂混合后,迅速转入预先设定温度20℃的超声波生物粉碎机中粉碎,以固定速度滴加硫化物水溶液,继续粉碎,形成硫化锌为纳米固体稳定剂的Pickering反相细乳液;
所述锌盐为氯化锌、硝酸锌或硫酸锌中的一种或多种;硫化物为硫化钠、硫化钾或硫化铵中的一种或多种;油性溶剂为正庚烷;
所述锌盐水溶液的质量浓度2-5%;硫化物水溶液的质量浓度为3-5%;锌盐水溶液、步骤(1)制备的温敏共聚物、油性溶剂和硫化物水溶液的质量比为10:0.2-0.3:100:10-20;
(3)硫化锌薄膜预制备
室温条件下将步骤(2)制备的含硫化锌Pickering反相细乳液采用旋涂法涂覆在净化处理后的石英玻璃上成膜,反复清洗后干燥,预制备硫化锌薄膜;
(4)复层低维纳米排布硫化锌薄膜的制备
室温下,将步骤(3)制备的附有硫化锌薄膜的石英玻璃置于高压水热釜中,加入步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液;然后水热釜放置在预定温度60-80℃的烘箱中保温,然后移出烘箱降温至室温;反复保温降温过程,最后在常温下取出附有硫化锌薄膜石英玻璃,洗涤后干燥获得复层低维纳米排布硫化锌薄膜。
2.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(1)引发剂为偶氮二异丁腈或偶氮二异庚腈。
3.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(1)所述聚合反应时间60-90分钟,温度为50℃;热水温度为60℃。
4.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(2)所述硫化物水溶液滴加速度5-10单位质量每小时。
5.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(2)所述超声波生物粉碎机功率500W,所述粉碎指以90%功率状态粉碎10分钟。
6.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(3)所述膜旋涂厚度控制在1-3微米。
7.根据权利要求1所述的Pickering反相细乳液制备低维纳米薄膜的方法,其特征在于,步骤(4)所述步骤(2)硫化锌为纳米固体稳定剂Pickering反相细乳液和高压反应釜体积比为30-50:100;单次保温时间为2-4小时,降温至室温保持时间单次4-5小时,反复保温降温次数3-5次,最后一次保温降温处理后附有硫化锌薄膜的石英玻璃以体积比1:1去离子水和乙醇溶液洗涤,干燥温度50-60℃。
8.一种根据权利要求1-7任一项所述方法制备的低维纳米薄膜。
CN202210710474.XA 2022-06-22 2022-06-22 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法 Active CN115044077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210710474.XA CN115044077B (zh) 2022-06-22 2022-06-22 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210710474.XA CN115044077B (zh) 2022-06-22 2022-06-22 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法

Publications (2)

Publication Number Publication Date
CN115044077A CN115044077A (zh) 2022-09-13
CN115044077B true CN115044077B (zh) 2023-09-22

Family

ID=83162801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210710474.XA Active CN115044077B (zh) 2022-06-22 2022-06-22 Pickering反相细乳液制备硫化锌低维纳米薄膜的方法

Country Status (1)

Country Link
CN (1) CN115044077B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569323A (zh) * 2004-04-29 2005-01-26 西安科技大学 一种复合空心纳米结构的制备方法
CN105732905A (zh) * 2016-04-12 2016-07-06 华南理工大学 一种树莓状有机/有机复合乳胶粒子及其制备方法
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
CN109877339A (zh) * 2019-04-04 2019-06-14 常州大学 骨架结构晶化纳米金的制备方法
CN114015102A (zh) * 2021-11-09 2022-02-08 常州大学 反相细乳液修饰膜表面的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569323A (zh) * 2004-04-29 2005-01-26 西安科技大学 一种复合空心纳米结构的制备方法
CN105732905A (zh) * 2016-04-12 2016-07-06 华南理工大学 一种树莓状有机/有机复合乳胶粒子及其制备方法
CN108948246A (zh) * 2018-06-12 2018-12-07 常州大学 固体颗粒改性转相并稳定Pickering反相细乳液的方法
CN109877339A (zh) * 2019-04-04 2019-06-14 常州大学 骨架结构晶化纳米金的制备方法
CN114015102A (zh) * 2021-11-09 2022-02-08 常州大学 反相细乳液修饰膜表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘芳等."纳米氧化锌为固体稳定剂的Pickering 反相细乳液聚合".《高校化学工程学报》.2019,第33卷(第5期),1180-1185. *

Also Published As

Publication number Publication date
CN115044077A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Yabu Fabrication of honeycomb films by the breath figure technique and their applications
Liu et al. Tuning the porosity of supraparticles
DE69817896T2 (de) Fällungspolymerisationsverfahren zur Herstellung eines zum Einschluß von Festpartikeln und Flüssigkeiten geeigneten öladsorbierenden Polymers und durch dieses Verfahren hergestellte Produkte
Dziomkina et al. Colloidal crystal assembly on topologically patterned templates
Zhang et al. Attachment-driven morphology evolvement of rectangular ZnO nanowires
Marzbanrad et al. Room temperature nanojoining of triangular and hexagonal silver nanodisks
Yabu Creation of functional and structured polymer particles by self-organized precipitation (SORP)
EP2024069B1 (de) Herstellung von mikro- und nanoporen-massenanordnungen durch selbstorganisation von nanopartikeln und sublimationstechnik
Zeng et al. Synthesis and characterization of PbS nanocrystallites in random copolymer ionomers
Wang et al. Controllable synthesis of PbSe nanostructures and growth mechanisms
Ballard et al. Hybrid biological spores wrapped in a mesh composed of interpenetrating polymer nanoparticles as “patchy” Pickering stabilizers
Zhai et al. An efficient strategy for preparation of polymeric Janus particles with controllable morphologies and emulsifiabilities
CN115044077B (zh) Pickering反相细乳液制备硫化锌低维纳米薄膜的方法
Green et al. Growth mechanism of dendritic hematite via hydrolysis of ferricyanide
CN111171218B (zh) 一种具有多稳态力学和形状记忆性质的多相凝胶及其制备方法
Zhang et al. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization
Bakeshlou et al. Thermoregulating papers containing fabricated microencapsulated phase change materials through Pickering emulsion templating
Singh et al. Liquid-phase synthesis of nickel nanoparticles stabilized by PVP and study of their structural and magnetic properties
Elbert et al. Evaporation-Driven Coassembly of Hierarchical, Multicomponent Networks
CN111087513A (zh) 一种双亲性表面活性剂的制备方法及两性离子纳米中空胶囊的可控制备方法
Shi et al. Zn (II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method
Rusen et al. Obtaining of monodisperse particles through soap-free polymerization in the presence of C60
US6869983B2 (en) Spatially controlled, in situ synthesis of polymers
Rusen et al. Obtaining complex structures starting from monodisperse poly (styrene-co-2-hydroxyethylmethacrylate) spheres
CN1289176C (zh) 形态可控的有序多孔薄膜材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant