WO2023082777A1 - 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池 - Google Patents

一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池 Download PDF

Info

Publication number
WO2023082777A1
WO2023082777A1 PCT/CN2022/115348 CN2022115348W WO2023082777A1 WO 2023082777 A1 WO2023082777 A1 WO 2023082777A1 CN 2022115348 W CN2022115348 W CN 2022115348W WO 2023082777 A1 WO2023082777 A1 WO 2023082777A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
air
chromium
based positive
Prior art date
Application number
PCT/CN2022/115348
Other languages
English (en)
French (fr)
Inventor
奚凯颖
曾子涵
张胜辉
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22798230.3A priority Critical patent/EP4207420A1/en
Publication of WO2023082777A1 publication Critical patent/WO2023082777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of sodium-ion batteries, and relates to a chromium-based positive electrode material, in particular to an air-stable layered chromium-based positive electrode material, a preparation method thereof, and a sodium-ion battery.
  • Li-ion batteries have covered all aspects of people's lives, but problems such as the shortage of lithium resources and the increase in cost still plague researchers. Therefore, Na-ion batteries can be a favorable alternative to Li-ion batteries for large-scale energy storage applications.
  • transition metal layered structure oxide Na x TMO 2 (TM is a transition metal element) has become a popular research object for scientists due to its advantages of high energy density and simple preparation.
  • TM is a transition metal element
  • O3 phase layered oxide cathode materials are unstable in the air, easy to absorb water or chemically react with water, oxygen, and carbon dioxide. Preservation in the storage environment requires high storage environment, which poses a severe challenge for the popularization and application of sodium-ion batteries.
  • CN 111244415A discloses an air-stable layered transition metal oxide positive electrode material and its sodium ion battery.
  • the layered transition metal oxide positive electrode material is a P2/O3 common phase structure, and its chemical formula is Na 1-x Li x (Mn 0.67 Ni 0.33-y Fe y ) 1-x O 2 , where 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2.
  • the invention can stabilize the structure of the layered oxide cathode material by using metal elements for substitution or doping.
  • the layered oxide positive electrode material is soaked in water for 12 hours, and the structure of the material remains unchanged after drying.
  • the P2 phase structure mainly plays a role in stabilizing the structure, so the invention does not use the O3 phase material to improve air stability. innovative inventions.
  • CN 111186861A discloses a layered chromium-based positive electrode material for a sodium ion battery and a preparation method thereof.
  • the invention uses sodium salts, chromium compounds, and tin compounds as precursors to synthesize a novel chromium-based layered oxide positive electrode material.
  • the above positive electrode materials have good stability in air.
  • the discharge specific capacity of the positive electrode material at 1C rate is only 70mAh/g, which cannot meet the energy density requirements of sodium-ion batteries in the actual application process.
  • CN 112838206A discloses a class of layered oxide cathode materials with excellent air stability and a method for improving air stability by adjusting the sodium content.
  • the layered oxide cathode materials are O3 phases, and the chemical formula is Na x MeO 2 , where Me Contain at least one or several elements of Li, Ni, Fe, Co, Mn, 0.93 ⁇ x ⁇ 0.95.
  • the layered oxide cathode material was exposed to the air for 2 days, and it was found that reducing the Na content between the layers can effectively inhibit the generation of new phases after air exposure.
  • the positive electrode material in the said invention is only exposed to the air for 2 days, which is too short, and the air stability improvement effect is not significant.
  • the purpose of this application is to provide an air-stable layered chromium-based positive electrode material and its preparation method and a sodium-ion battery.
  • the positive-electrode material has good air stability and meets the energy density requirements of the sodium-ion battery, and the preparation The method simplifies the technological process and reduces the production cost.
  • the present application provides an air-stable layered chromium-based positive electrode material
  • the air-stable layered chromium-based positive electrode material is an O3 phase
  • the chemical formula is Na y Cr 1-x M x O 2 , wherein, M It is a metal ion that is not electrochemically active and has an ionic radius larger than Cr ion, and 0.1 ⁇ x ⁇ 0.3, 0.7 ⁇ y ⁇ 0.9.
  • metal ions that are not electrochemically active and have an ionic radius larger than Cr ions are introduced into the transition metal layer in situ to form an O3 phase positive electrode material, which exerts the synergistic effect of various transition metal cations in the layered structure and effectively improves the layer structure. Due to the structural stability of the oxide-like cathode material, the structure will not be deformed after being exposed to the atmospheric environment for up to one month, thereby improving the electrochemical performance of the battery.
  • the positive electrode material can maintain excellent structural stability in the air environment, laying a good foundation for the subsequent realization of low-cost, environmentally friendly room temperature sodium-ion energy storage batteries.
  • the M includes any one or a combination of at least two of Ru, Nb or Zr, typical but non-limiting combinations include a combination of Ru and Nb, a combination of Nb and Zr, a combination of Ru and Zr , or a combination of Ru, Nb and Zr, more preferably Ru.
  • the air-stable layered chromium-based positive electrode material has a hexagonal crystal structure and is granular, with an average particle size of 0.5-10 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m , 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the present application provides a method for preparing an air-stable layered chromium-based positive electrode material as described in the first aspect, the preparation method comprising the following steps:
  • step (2) Roasting the intermediate material obtained in step (1) to obtain an air-stable layered chromium-based positive electrode material.
  • This application adopts the solid phase sintering method to form a layered oxide by controlling the reaction conditions, and no structural phase change will occur in the air environment.
  • the precursor substances of the sample diffuse at high temperature, so that the microscopic discrete particles gradually form continuous solid-state layered structure, resulting in a stable sodium-containing hexagonal system Space group structured layered oxide materials.
  • the preparation method has a simple process flow and reduces production costs.
  • the sodium salt in step (1) includes any one or a combination of at least two of Na 2 CO 3 , NaHCO 3 or NaCl, and a typical but non-limiting combination includes Na 2 CO 3 and NaHCO 3 A combination, a combination of NaHCO 3 and NaCl, a combination of Na 2 CO 3 and NaCl, or a combination of Na 2 CO 3 , NaHCO 3 and NaCl.
  • the chromium oxide in step (1) includes Cr 2 O 3 and/or CrO 2 .
  • the doped metal oxide in step (1) includes any one or a combination of at least two of RuO 2 , Nb 2 O 4 or ZrO 2 , typical but non-limiting combinations include RuO 2 and Nb A combination of 2 O 4 , a combination of Nb 2 O 4 and ZrO 2 , a combination of RuO 2 and ZrO 2 , or a combination of RuO 2 , Nb 2 O 4 and ZrO 2 .
  • the grinding method in step (1) is ball milling.
  • the total mass of the grinding balls used in the ball mill is 3-5 times the total mass of the mixed material, such as 3 times, 3.2 times, 3.4 times, 3.6 times, 3.8 times, 4 times, 4.2 times, 4.4 times , 4.6 times, 4.8 times or 5 times, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the speed of the ball mill is 100-300rpm, such as 100rpm, 120rpm, 140rpm, 160rpm, 180rpm, 200rpm, 220rpm, 240rpm, 260rpm, 280rpm or 300rpm, but not limited to the listed values, the values Other unrecited values within the range also apply.
  • the ball milling time is 5-10h, such as 5h, 5.5h, 6h, 6.5h, 7h, 7.5h, 8h, 8.5h, 9h, 9.5h or 10h, but not limited to the listed
  • the numerical value of , other unlisted numerical values in this numerical range are also applicable.
  • the pressure applied to the tablet in step (1) is 5-10MPa, such as 5MPa, 5.5MPa, 6MPa, 6.5MPa, 7MPa, 7.5MPa, 8MPa, 8.5MPa, 9MPa, 9.5MPa or 10MPa, However, it is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the roasting temperature in step (2) is 700-1000°C, such as 700°C, 750°C, 800°C, 850°C, 900°C, 950°C or 1000°C, but not limited to the listed Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the heating rate of the roasting in step (2) is 1-10°C/min, such as 1°C/min, 2°C/min, 3°C/min, 4°C/min, 5°C/min, 6°C/min, 7°C/min, 8°C/min, 9°C/min or 10°C/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the roasting time in step (2) is 7-15h, such as 7h, 8h, 9h, 10h, 11h, 12h, 13h, 14h or 15h, but not limited to the listed values, the values Other unrecited values within the range also apply.
  • the calcination in step (2) is carried out in an atmosphere of argon, nitrogen or helium.
  • the calcination in step (2) is repeated 2-3 times, and after each calcination, it is cooled with the furnace and re-grinded and pressed into tablets.
  • the preparation method includes the following steps:
  • the sodium salt includes any of Na 2 CO 3 , NaHCO 3 or NaCl
  • the chromium oxide includes Cr 2 O 3 and/or CrO 2
  • the doped metal oxide includes any one of RuO 2 , Nb 2 O 4 or ZrO 2 or at least The combination of the two; the total mass of the grinding balls used in the ball mill is 3-5 times the total mass of the mixed material, and the speed of the ball mill is 100-300rpm, and the time is 5-10h; the applied pressure of the tablet is 5-5 10MPa;
  • step (2) Roast the intermediate material obtained in step (1) for 7-15 hours at 700-1000°C at a heating rate of 1-10°C/min in an atmosphere of argon, nitrogen or helium to obtain an air-stable layered chromium base Positive electrode material: the calcination is repeated 2-3 times, and after each calcination, it is cooled with the furnace and ball milled and pressed again.
  • the present application provides a sodium-ion battery, the cathode material of the sodium-ion battery adopts the air-stable layered chromium-based cathode material as described in the first aspect.
  • the sodium-ion battery provided by this application adopts a specific air-stable layered chromium-based positive electrode material, and the charging and discharging process is highly reversible, and has the characteristics of high specific capacity, strong symmetry, and excellent battery performance.
  • the sodium ion battery exhibits high energy density, and the specific discharge capacity of the first cycle is as high as 156mAh/g at a rate of 50mA/g and a voltage of 1.5-3.8V.
  • the sodium-ion battery was charged and discharged three times, and the charge-discharge curves basically overlapped, showing strong symmetry, indicating that the method of doping inert transition metal ions has a good application in optimizing the performance of sodium-ion battery energy storage devices prospect.
  • the present application introduces metal ions that are not electrochemically active and have an ionic radius larger than Cr ions in the transition metal layer in situ to form O3 phase positive electrode materials, which has brought into play the synergistic effect of various transition metal cations in the layered structure, effectively
  • the structural stability of the layered oxide cathode material is improved, and the structure will not be distorted when exposed to the atmosphere for up to one month, thereby improving the electrochemical performance of the battery; the cathode material can maintain excellent performance in the air environment
  • the structural stability has laid a good foundation for the subsequent realization of low-cost, environmentally friendly room temperature sodium-ion energy storage batteries;
  • This application adopts the solid phase sintering method to form a layered oxide by controlling the reaction conditions, and no structural phase change will occur in the air environment.
  • the precursor substances of the sample diffuse at high temperature, so that the microscopic discrete particles Gradually form a continuous solid-state layered structure, resulting in a stable sodium-containing hexagonal system A layered oxide material with a space group structure; in addition, the preparation method has a simple process flow and reduces production costs;
  • the sodium-ion battery provided by the application has the characteristics of high specific capacity, strong symmetry, and excellent battery performance because it uses a specific air-stable layered chromium-based positive electrode material, and the charge-discharge process is highly reversible;
  • the ion battery exhibits high energy density, and the specific capacity of the first cycle discharge under the condition of 50mA/g rate and 1.5-3.8V voltage is as high as 156mAh/g; the sodium ion battery is charged and discharged three times, and its charge and discharge curve is basically The coincidence shows a strong symmetry, indicating that the method of doping inert transition metal ions has a good application prospect in optimizing the performance of sodium-ion battery energy storage devices.
  • Fig. 1 is the X-ray powder diffraction spectrogram of embodiment 1 gained cathode material
  • Fig. 2 is the scanning electron micrograph of embodiment 1 gained cathode material
  • Fig. 3 is the transmission electron microscope figure of positive electrode material gained in embodiment 1;
  • Fig. 4 is the electron energy loss spectrum element distribution diagram of the positive electrode material obtained in embodiment 1;
  • Fig. 5 is the charge-discharge curve diagram of the sodium-ion battery gained in embodiment 1;
  • Fig. 6 is a comparison chart of X-ray powder diffraction spectra before and after the positive electrode material obtained in Example 1 is exposed to the air for one month.
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof, the preparation method comprising the following steps:
  • step (3) Place the flake sample obtained in step (2) in a tube furnace, heat up to 750°C at a rate of 2°C/min under an argon atmosphere, bake for 2 hours, cool to room temperature with the furnace, and grind the disc into The powder is then pressed into tablets under a pressure of 10MPa, heated to 900°C at a rate of 7°C/min under an argon atmosphere, and fired for 3 hours; repeating the above processing steps, and finally heated to a temperature of 7°C/min under an argon atmosphere. Calcined at 1000°C for 2 hours, then cooled to room temperature with the furnace to obtain an air-stable layered chromium-based cathode material with the chemical formula Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • Figure 1 is the X-ray powder diffraction spectrum of the obtained positive electrode material.
  • the diffraction peaks are obvious and the intensity is high, indicating that the sample has good crystallinity and has a hexagonal crystal system.
  • the characteristic peaks of the space group indicate that the sample is a layered structure.
  • FIG. 2 is a scanning electron microscope image of the obtained positive electrode material, which shows that the material has a layered particle structure, and the average particle size of the particles is 0.8 ⁇ m.
  • Figure 3 is a transmission electron microscope image of the obtained positive electrode material, showing that the material has very clear lattice fringes, corresponding to the (003) crystal plane.
  • Figure 4 is the electron energy loss spectrum element distribution diagram of the obtained cathode material, showing that the four elements Na, Cr, Ru, and O are evenly distributed in the material.
  • step (B) With the electrode sheet obtained in step (A) as the positive pole, with metal sodium as the negative pole, with glass fiber filter paper as the separator, with 1M NaPF 6 (dissolved in the PC mixed solution that added 5wt% FEC) solution as the electrolyte , assembled into a button battery in a glove box filled with argon, and then used a Land BT 2001A battery test system to conduct charge and discharge tests in the voltage range of 1.5-3.8V, and the charge and discharge curves are shown in Figure 5.
  • a Land BT 2001A battery test system to conduct charge and discharge tests in the voltage range of 1.5-3.8V, and the charge and discharge curves are shown in Figure 5.
  • the sodium ion battery made of the positive electrode material obtained in this example exhibits a high energy density, and at a rate of 50mA/g, the first cycle discharge specific capacity under the voltage condition of 1.5-3.8V is as high as 156mAh/g.
  • the sodium-ion battery was subjected to three charge-discharge tests, and the charge-discharge curves basically overlapped, showing strong symmetry, that is, the charge-discharge process of the obtained sodium-ion battery was highly reversible.
  • FIG. 6 is the XRD comparison diagram of the positive electrode material obtained in this embodiment before and after being exposed to the air for one month. It can be seen from Figure 6 that the two curves have no The obvious change shows that the phase of the positive electrode material obtained in this example has not changed after being exposed to the air for two weeks, which further illustrates that the obtained positive electrode material has good stability in the air environment. A good foundation has been laid.
  • This example provides an air-stable layered chromium-based positive electrode material and its preparation method.
  • the preparation method except for step (1), the corresponding masses of Na 2 CO 3 , Cr 2 O 3 and RuO 2 , and the rest of the steps and conditions are the same as in Example 1, so details are not repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.8 Cr 0.8 Ru 0.2 O 2 .
  • This example provides an air-stable layered chromium-based positive electrode material and its preparation method.
  • the preparation method except for step (1), the corresponding masses of Na 2 CO 3 , Cr 2 O 3 and RuO 2 , and the rest of the steps and conditions are the same as in Example 1, so details are not repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.85 Cr 0.85 Ru 0.15 O 2 .
  • This example provides an air-stable layered chromium-based positive electrode material and its preparation method.
  • the preparation method except for step (1), the corresponding masses of Na 2 CO 3 , Cr 2 O 3 and RuO 2 , and the rest of the steps and conditions are the same as in Example 1, so details are not repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.7 Cr 0.7 Ru 0.3 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof.
  • the preparation method except that the RuO 2 in step (1) is replaced by an equimolar amount of ZrO 2 , the remaining steps and conditions are the same as those in the implementation Example 1 is the same, so it will not be repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Zr 0.1 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof.
  • the preparation method except that the RuO 2 in step (1) is replaced by an equimolar amount of NbO 2 , the remaining steps and conditions are the same as those in the implementation Example 1 is the same, so it will not be repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Nb 0.1 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof .
  • the preparation method except that the Na2CO3 in step (1) is replaced by 2 times the molar amount of NaCl, the remaining steps and conditions are the same It is the same as Embodiment 1, so it will not be repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • This example provides an air-stable layered chromium-based positive electrode material and its preparation method.
  • the preparation method except for replacing the Na 2 CO 3 in step (1) with NaHCO 3 of twice the molar amount, the remaining steps and conditions All are the same as in Embodiment 1, so details are not repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof.
  • the preparation method except for replacing the Cr 2 O 3 in step (1) with CrO 2 of twice the molar amount, the remaining steps and conditions All are the same as in Embodiment 1, so details are not repeated here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof.
  • the preparation method except that the argon atmosphere in step (3) is changed to a nitrogen atmosphere, the remaining steps and conditions are the same as those in Example 1. , so it will not be described here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • This embodiment provides an air-stable layered chromium-based positive electrode material and a preparation method thereof.
  • the preparation method except that the argon atmosphere in step (3) is changed to a helium atmosphere, the remaining steps and conditions are the same as in Example 1. are the same, so I won’t repeat them here.
  • the chemical formula of the cathode material obtained in this example is Na 0.9 Cr 0.9 Ru 0.1 O 2 .
  • This comparative example provides a chromium-based positive electrode material and a preparation method thereof.
  • the preparation method removes the original RuO 2 in step (1) and divides its molar weight equally into Na 2 CO 3 and Cr 2 O 3 , The rest of the steps and conditions are the same as in Example 1, so they will not be repeated here.
  • the chemical formula of the cathode material obtained in this comparative example is Na 0.95 Cr 0.95 O 2 .
  • this comparative example is not doped with inert transition metal ions, resulting in the structural stability of the obtained positive electrode material is not as good as that of Example 1, and structural distortion occurs after being exposed to the atmosphere for as long as one month, thereby reducing the battery life. electrochemical performance.
  • the present application introduces metal ions that are not electrochemically active and have an ionic radius larger than Cr ions in situ in the transition metal layer to form an O3 phase positive electrode material, and play a synergistic role in the layered structure of various transition metal cations.
  • the structural stability of the layered oxide cathode material is effectively improved, and the structure will not be distorted when exposed to the atmosphere for up to one month, thereby improving the electrochemical performance of the battery; the cathode material can maintain excellent performance in the air environment
  • the structural stability of the structure has laid a good foundation for the subsequent realization of low-cost, environmentally friendly room temperature sodium-ion energy storage batteries; this application adopts the solid-phase sintering method to form layered oxides by controlling the reaction conditions, and will not Structural phase transition occurs, and the precursor substances of the sample diffuse at high temperature during the calcination process, so that the microscopic discrete particles gradually form a continuous solid-state layered structure, thereby obtaining a stable sodium-containing hexagonal crystal system
  • a layered oxide material with a space group structure in addition, the preparation method has a simple process flow and reduces production costs; the sodium-ion battery provided by the application uses a specific air-stable layered chromium-based positive electrode material, which is easy to charge and discharge

Abstract

本申请提供一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池,所述空气稳定型层状铬基正极材料为O3相,化学式为Na yCr 1-xM xO 2,其中,M为非电化学活性且离子半径大于Cr离子的金属离子,且0.1≤x≤0.3,0.7≤y≤0.9;所述制备方法包括以下步骤:(1)按照化学计量比称量并混合钠盐、铬氧化物和掺杂金属氧化物,研磨并压片,得到中间材料;(2)焙烧步骤(1)所得中间材料,得到空气稳定型层状铬基正极材料。本申请提供的正极材料空气稳定性良好,满足了钠离子电池对能量密度的要求,且所述制备方法简化了工艺流程,降低了生产成本。

Description

一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池 技术领域
本申请属于钠离子电池技术领域,涉及一种铬基正极材料,尤其涉及一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池。
背景技术
随着能源的不断开发,能源短缺和环境污染已成为全球性问题,促使各国科学家聚焦开发清洁可持续能源。作为一种便捷有效的现代能源存储设备,锂离子电池已经覆盖于人们生活中的方方面面,但是锂资源短缺和成本增加等问题依旧困扰着研究人员。因此,钠离子电池在大规模储能应用方面可成为锂离子电池的有利替代。
目前,在钠离子电池正极材料中,过渡金属层状结构氧化物Na xTMO 2(TM为过渡金属元素)由于能量密度高,制备简单等优势,成为了科学家的热门研究对象。但是层状氧化物正极材料也存在一些问题,绝大多数O3相层状氧化物正极材料在空气中不稳定,易吸水或与水、氧气、二氧化碳发生化学反应,在制备完成后需要在惰性气体中进行保存,对储存环境要求高,这为实现钠离子电池推广应用提出了严峻的挑战。
CN 111244415A公开了一种空气稳定的层状过渡金属氧化物正极材料及其钠离子电池,所述层状过渡金属氧化物正极材料为P2/O3的共相结构,化学式为Na 1-xLi x(Mn 0.67Ni 0.33-yFe y) 1-xO 2,其中,0<x≤0.2,0≤y≤0.2。所述发明通过利用金属元素进行替代或掺杂,可以稳定层状氧化物正极材料的结构。将所述层状氧化物正极材料浸泡在水中12h,烘干后材料的结构保持不变,然而发挥结构稳定作用的主要是P2相结构,故所述发明并非利用O3相材料以提高空气稳 定性的创新性发明。
CN 111186861A公开了一种钠离子电池层状铬基正极材料及其制备方法,所述发明将钠盐、铬化合物、锡化合物作为前驱体,合成了一种新型铬基层状氧化物正极材料,所述正极材料在空气中具有良好的稳定性。然而所述正极材料在1C倍率下的放电比容量仅为70mAh/g,在实际应用过程中无法满足钠离子电池对能量密度的要求。
CN 112838206A公开了一类空气稳定性优异的层状氧化物正极材料以及通过调节钠含量改善空气稳定性的方法,所述层状氧化物正极材料为O3相,化学式为Na xMeO 2,其中Me至少含有Li、Ni、Fe、Co、Mn中的一种或几种元素,0.93≤x≤0.95。将所述层状氧化物正极材料暴露在空气中2天,发现降低层间的Na含量,可以有效抑制其在空气暴露后新相的产生。然而所述发明中的正极材料在空气中仅暴露2天,时间过短,空气稳定性改善效果并不显著。
由此可见,如何提供一种O3相层状铬基正极材料及其制备方法,提升空气稳定性,满足钠离子电池对能量密度的要求,简化工艺流程,降低生产成本,成为了目前本领域技术人员迫切需要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池,所述正极材料空气稳定性良好,满足了钠离子电池对能量密度的要求,且所述制备方法简化了工艺流程,降低了生产成本。
为达到此目的,本申请采用以下技术方案:
第一方面,本申请提供一种空气稳定型层状铬基正极材料,所述空气稳定 型层状铬基正极材料为O3相,化学式为Na yCr 1-xM xO 2,其中,M为非电化学活性且离子半径大于Cr离子的金属离子,且0.1≤x≤0.3,0.7≤y≤0.9。
本申请中,0.1≤x≤0.3,例如可以是x=0.1、0.12、0.14、0.16、0.18、0.2、0.22、0.24、0.26、0.28或0.3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,0.7≤y≤0.9,例如可以是y=0.7、0.72、0.74、0.76、0.78、0.8、0.82、0.84、0.86、0.88或0.9,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请通过在过渡金属层原位引入非电化学活性且离子半径大于Cr离子的金属离子以形成O3相正极材料,发挥了多种过渡金属阳离子在层状结构中的协同作用,有效提升了层状氧化物正极材料的结构稳定性,暴露在大气环境中长达一个月不会发生结构的畸变,从而改善了电池的电化学性能。所述正极材料在空气环境中能够保持卓越的结构稳定性,为后续实现低成本、环境友好的室温钠离子储能电池奠定了良好基础。
可选地,所述M包括Ru、Nb或Zr中的任意一种或至少两种的组合,典型但非限制性的组合包括Ru与Nb的组合,Nb与Zr的组合,Ru与Zr的组合,或Ru、Nb与Zr的组合,进一步优选为Ru。
可选地,所述空气稳定型层状铬基正极材料的化学式为Na yCr 1-xRu xO 2,其中,0.1≤x≤0.2,例如可以是x=0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19或0.2,0.8≤y≤0.9,例如可以是y=0.8、0.81、0.82、0.83、0.84、0.85、0.86、0.87、0.88、0.89或0.9,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为Na 0.9Cr 0.9Ru 0.1O 2
可选地,所述空气稳定型层状铬基正极材料具有六方晶体结构,且呈现颗 粒状,平均粒径为0.5-10μm,例如可以是0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二方面,本申请提供一种如第一方面所述空气稳定型层状铬基正极材料的制备方法,所述制备方法包括以下步骤:
(1)按照化学计量比称量并混合钠盐、铬氧化物和掺杂金属氧化物,研磨并压片,得到中间材料;
(2)焙烧步骤(1)所得中间材料,得到空气稳定型层状铬基正极材料。
本申请采用固相烧结法,通过控制反应条件形成层状氧化物,且在空气环境中不会发生结构相变,焙烧过程中样品在高温下前驱体物质相互扩散,使得微观离散颗粒逐渐形成连续的固态层状结构,从而得到稳定的含钠六方晶系
Figure PCTCN2022115348-appb-000001
空间群结构的层状氧化物材料。此外,所述制备方法工艺流程简单,降低了生产成本。
可选地,步骤(1)所述钠盐包括Na 2CO 3、NaHCO 3或NaCl中的任意一种或至少两种的组合,典型但非限制性的组合包括Na 2CO 3与NaHCO 3的组合,NaHCO 3与NaCl的组合,Na 2CO 3与NaCl的组合,或Na 2CO 3、NaHCO 3与NaCl的组合。
可选地,步骤(1)所述铬氧化物包括Cr 2O 3和/或CrO 2
可选地,步骤(1)所述掺杂金属氧化物包括RuO 2、Nb 2O 4或ZrO 2中的任意一种或至少两种的组合,典型但非限制性的组合包括RuO 2与Nb 2O 4的组合,Nb 2O 4与ZrO 2的组合,RuO 2与ZrO 2的组合,或RuO 2、Nb 2O 4与ZrO 2的组合。
可选地,步骤(1)所述研磨的方式为球磨。
可选地,所述球磨采用的研磨球总质量为混合物料总质量的3-5倍,例如可 以是3倍、3.2倍、3.4倍、3.6倍、3.8倍、4倍、4.2倍、4.4倍、4.6倍、4.8倍或5倍,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述球磨的速度为100-300rpm,例如可以是100rpm、120rpm、140rpm、160rpm、180rpm、200rpm、220rpm、240rpm、260rpm、280rpm或300rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述球磨的时间为5-10h,例如可以是5h、5.5h、6h、6.5h、7h、7.5h、8h、8.5h、9h、9.5h或10h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述压片的施加压力为5-10MPa,例如可以是5MPa、5.5MPa、6MPa、6.5MPa、7MPa、7.5MPa、8MPa、8.5MPa、9MPa、9.5MPa或10MPa,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述焙烧的温度为700-1000℃,例如可以是700℃、750℃、800℃、850℃、900℃、950℃或1000℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述焙烧的升温速率为1-10℃/min,例如可以是1℃/min、2℃/min、3℃/min、4℃/min、5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述焙烧的时间为7-15h,例如可以是7h、8h、9h、10h、11h、12h、13h、14h或15h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述焙烧在氩气、氮气或氦气的气氛中进行。
可选地,步骤(2)所述焙烧重复2-3次,且每次焙烧结束后随炉冷却并重新研磨和压片。
作为本申请第二方面优选的技术方案,所述制备方法包括以下步骤:
(1)按照化学计量比称量并混合钠盐、铬氧化物和掺杂金属氧化物,球磨并压片,得到中间材料;所述钠盐包括Na 2CO 3、NaHCO 3或NaCl中的任意一种或至少两种的组合,所述铬氧化物包括Cr 2O 3和/或CrO 2,所述掺杂金属氧化物包括RuO 2、Nb 2O 4或ZrO 2中的任意一种或至少两种的组合;所述球磨采用的研磨球总质量为混合物料总质量的3-5倍,且球磨的速度为100-300rpm,时间为5-10h;所述压片的施加压力为5-10MPa;
(2)以1-10℃/min的升温速率在700-1000℃下,氩气、氮气或氦气的气氛中焙烧7-15h步骤(1)所得中间材料,得到空气稳定型层状铬基正极材料;所述焙烧重复2-3次,且每次焙烧结束后随炉冷却并重新球磨和压片。
第三方面,本申请提供一种钠离子电池,所述钠离子电池的正极材料采用如第一方面所述的空气稳定型层状铬基正极材料。
本申请提供的钠离子电池因其采用了特定的空气稳定型层状铬基正极材料,充放电过程高度可逆,具有高比容量、强对称性、电池性能优异的特点。所述钠离子电池表现出高能量密度,在50mA/g倍率,1.5-3.8V电压条件下的首圈放电比容量高达156mAh/g。对所述钠离子电池作3次充放电测试,其充放电曲线基本重合,展现出强对称性,表明了掺杂惰性过渡金属离子的方法在优化钠离子电池储能器件性能上具有良好的应用前景。
相对于现有技术,本申请具有以下有益效果:
(1)本申请通过在过渡金属层原位引入非电化学活性且离子半径大于Cr离子的金属离子以形成O3相正极材料,发挥了多种过渡金属阳离子在层状结构 中的协同作用,有效提升了层状氧化物正极材料的结构稳定性,暴露在大气环境中长达一个月不会发生结构的畸变,从而改善了电池的电化学性能;所述正极材料在空气环境中能够保持卓越的结构稳定性,为后续实现低成本、环境友好的室温钠离子储能电池奠定了良好基础;
(2)本申请采用固相烧结法,通过控制反应条件形成层状氧化物,且在空气环境中不会发生结构相变,焙烧过程中样品在高温下前驱体物质相互扩散,使得微观离散颗粒逐渐形成连续的固态层状结构,从而得到稳定的含钠六方晶系
Figure PCTCN2022115348-appb-000002
空间群结构的层状氧化物材料;此外,所述制备方法工艺流程简单,降低了生产成本;
(3)本申请提供的钠离子电池因其采用了特定的空气稳定型层状铬基正极材料,充放电过程高度可逆,具有高比容量、强对称性、电池性能优异的特点;所述钠离子电池表现出高能量密度,在50mA/g倍率,1.5-3.8V电压条件下的首圈放电比容量高达156mAh/g;对所述钠离子电池作3次充放电测试,其充放电曲线基本重合,展现出强对称性,表明了掺杂惰性过渡金属离子的方法在优化钠离子电池储能器件性能上具有良好的应用前景。
在阅读并理解了详细描述后,可以明白其他方面。
附图说明
图1是实施例1所得正极材料的X射线粉末衍射谱图;
图2是实施例1所得正极材料的扫描电镜图;
图3是实施例1所得正极材料的透射电镜图;
图4是实施例1所得正极材料的电子能量损失谱元素分布图;
图5是实施例1所得钠离子电池的充放电曲线图;
图6是实施例1所得正极材料暴露于空气中一个月前后的X射线粉末衍射 谱对比图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法包括以下步骤:
(1)按照摩尔比为9:9:2称取相应质量的Na 2CO 3、Cr 2O 3和RuO 2,加入玛瑙球磨罐中,再向其中加入总质量为混合物料总质量4倍的研磨球,在300rpm速度下球磨5h,将上述前驱体物料混合均匀;
(2)将球磨后的混合物料在10MPa压力下压制成直径为16mm的圆片;
(3)将步骤(2)所得片状样品放置于管式炉内,在氩气气氛下以2℃/min的速率升温至750℃,焙烧2h,随炉冷却至室温,将圆片研磨成粉末,再在10MPa压力下压片,在氩气气氛下以7℃/min的速率升温至900℃,焙烧3h;重复以上处理步骤,最后在氩气气氛下以7℃/min的速率升温至1000℃,焙烧2h,随炉冷却至室温,得到空气稳定型层状铬基正极材料,其化学式为Na 0.9Cr 0.9Ru 0.1O 2
将本实施例所得正极材料进行一系列表征测试:
图1为所得正极材料的X射线粉末衍射谱图,衍射峰明显且强度较高,表明样品的结晶性良好,具有六方晶系
Figure PCTCN2022115348-appb-000003
空间群的特征峰,说明样品为层状结构。
图2为所得正极材料的扫描电镜图,显示材料为层状颗粒结构,且颗粒的平均粒径为0.8μm。
图3为所得正极材料的透射电镜图,显示材料具有非常清晰的晶格条纹,对应于(003)晶面。
图4为所得正极材料的电子能量损失谱元素分布图,显示Na、Cr、Ru、O四种元素在材料中分布均匀。
本实施例所得正极材料的电化学性能测试方法分为以下步骤:
(A)按照质量比为7:2:1混合正极材料、乙炔黑和聚偏二氟乙烯,并加入溶剂N-甲基吡咯烷酮,均匀涂覆在铝箔上,经制浆、涂片、干燥等工艺流程即得到复合物正极,用压片机刻成直径为12mm的圆片;
(B)以步骤(A)所得电极片作为正极,以金属钠作为负极,以玻璃纤维滤纸作为隔离膜,以1M的NaPF 6(溶解于加入了5wt%FEC的PC混合溶液)溶液作为电解液,在充满氩气的手套箱内组装成扣式电池,之后用Land BT 2001A型号电池测试系统在1.5-3.8V电压范围内进行充放电测试,得到充放电曲线见图5。
由图5可知:采用本实施例所得正极材料制成的钠离子电池表现出高能量密度,在50mA/g倍率,1.5-3.8V电压条件下的首圈放电比容量高达156mAh/g,对所得钠离子电池作3次充放电测试,其充放电曲线基本重合,展现出强对称性,即所得钠离子电池的充放电过程高度可逆。
将本实施所得正极材料暴露于空气中一个月,再对其进行XRD测试,图6为本实施例所得正极材料暴露于空气中一个月前后的XRD对比图,由图6可知:两条曲线没有明显的变化,表明本实施例所得正极材料在空气中暴露两周后材料的物相没有发生变化,进一步说明所得正极材料在空气环境中具有很好的稳定性,为实现钠离子电池投入实际应用奠定了良好的基础。
实施例2
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了步骤(1)按照摩尔比为8:8:4称取相应质量的Na 2CO 3、Cr 2O 3和RuO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.8Cr 0.8Ru 0.2O 2
实施例3
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了步骤(1)按照摩尔比为8.5:8.5:3称取相应质量的Na 2CO 3、Cr 2O 3和RuO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.85Cr 0.85Ru 0.15O 2
实施例4
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了步骤(1)按照摩尔比为7:7:6称取相应质量的Na 2CO 3、Cr 2O 3和RuO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.7Cr 0.7Ru 0.3O 2
实施例5
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(1)的RuO 2替换为等摩尔量的ZrO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Zr 0.1O 2
实施例6
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(1)的RuO 2替换为等摩尔量的NbO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Nb 0.1O 2
实施例7
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(1)的Na 2CO 3替换为2倍摩尔量的NaCl,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Ru 0.1O 2
实施例8
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(1)的Na 2CO 3替换为2倍摩尔量的NaHCO 3,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Ru 0.1O 2
实施例9
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(1)的Cr 2O 3替换为2倍摩尔量的CrO 2,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Ru 0.1O 2
实施例10
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备 方法中除了将步骤(3)的氩气气氛改为氮气气氛,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Ru 0.1O 2
实施例11
本实施例提供一种空气稳定型层状铬基正极材料及其制备方法,所述制备方法中除了将步骤(3)的氩气气氛改为氦气气氛,其余步骤及条件均与实施例1相同,故在此不做赘述。
本实施例所得正极材料的化学式为Na 0.9Cr 0.9Ru 0.1O 2
实施例2-11所得正极材料的表征测试结果与实施例1相似,并无明显差别,故在此不做赘述。
对比例1
本对比例提供一种铬基正极材料及其制备方法,所述制备方法除了将步骤(1)中原本的RuO 2去除,并将其摩尔量等分至Na 2CO 3和Cr 2O 3,其余步骤及条件均与实施例1相同,故在此不做赘述。
本对比例所得正极材料的化学式为Na 0.95Cr 0.95O 2
相较于实施例1,本对比例并未掺杂惰性过渡金属离子,导致所得正极材料的结构稳定性不及实施例1,暴露在大气环境中长达一个月后发生结构畸变,从而降低了电池的电化学性能。
由此可见,本申请通过在过渡金属层原位引入非电化学活性且离子半径大于Cr离子的金属离子以形成O3相正极材料,发挥了多种过渡金属阳离子在层状结构中的协同作用,有效提升了层状氧化物正极材料的结构稳定性,暴露在大气环境中长达一个月不会发生结构的畸变,从而改善了电池的电化学性能; 所述正极材料在空气环境中能够保持卓越的结构稳定性,为后续实现低成本、环境友好的室温钠离子储能电池奠定了良好基础;本申请采用固相烧结法,通过控制反应条件形成层状氧化物,且在空气环境中不会发生结构相变,焙烧过程中样品在高温下前驱体物质相互扩散,使得微观离散颗粒逐渐形成连续的固态层状结构,从而得到稳定的含钠六方晶系
Figure PCTCN2022115348-appb-000004
空间群结构的层状氧化物材料;此外,所述制备方法工艺流程简单,降低了生产成本;本申请提供的钠离子电池因其采用了特定的空气稳定型层状铬基正极材料,充放电过程高度可逆,具有高比容量、强对称性、电池性能优异的特点;所述钠离子电池表现出高能量密度,在50mA/g倍率,1.5-3.8V电压条件下的首圈放电比容量高达156mAh/g;对所述钠离子电池作3次充放电测试,其充放电曲线基本重合,展现出强对称性,表明了掺杂惰性过渡金属离子的方法在优化钠离子电池储能器件性能上具有良好的应用前景。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种空气稳定型层状铬基正极材料,其中,所述空气稳定型层状铬基正极材料为O3相,化学式为Na yCr 1-xM xO 2,其中,M为非电化学活性且离子半径大于Cr离子的金属离子,且0.1≤x≤0.3,0.7≤y≤0.9。
  2. 根据权利要求1所述的空气稳定型层状铬基正极材料,其中,所述M包括Ru、Nb或Zr中的任意一种或至少两种的组合,进一步优选为Ru。
  3. 根据权利要求1或2所述的空气稳定型层状铬基正极材料,其中,所述空气稳定型层状铬基正极材料的化学式为Na yCr 1-xRu xO 2,其中,0.1≤x≤0.2,0.8≤y≤0.9,进一步优选为Na 0.9Cr 0.9Ru 0.1O 2
  4. 根据权利要求1-3任一项所述的空气稳定型层状铬基正极材料,其中,所述空气稳定型层状铬基正极材料具有六方晶体结构,且呈现颗粒状,平均粒径为0.5-10μm。
  5. 一种如权利要求1-4任一项所述空气稳定型层状铬基正极材料的制备方法,其中,所述制备方法包括以下步骤:
    (1)按照化学计量比称量并混合钠盐、铬氧化物和掺杂金属氧化物,研磨并压片,得到中间材料;
    (2)焙烧步骤(1)所得中间材料,得到空气稳定型层状铬基正极材料。
  6. 根据权利要求5所述的制备方法,其中,步骤(1)所述钠盐包括Na 2CO 3、NaHCO 3或NaCl中的任意一种或至少两种的组合;
    可选地,步骤(1)所述铬氧化物包括Cr 2O 3和/或CrO 2
    可选地,步骤(1)所述掺杂金属氧化物包括RuO 2、Nb 2O 4或ZrO 2中的任意一种或至少两种的组合。
  7. 根据权利要求5或6所述的制备方法,其中,步骤(1)所述研磨的方式为球磨;
    可选地,所述球磨采用的研磨球总质量为混合物料总质量的3-5倍;
    可选地,所述球磨的速度为100-300rpm;
    可选地,所述球磨的时间为5-10h;
    可选地,步骤(1)所述压片的施加压力为5-10MPa。
  8. 根据权利要求5-7任一项所述的制备方法,其中,步骤(2)所述焙烧的温度为700-1000℃;
    可选地,步骤(2)所述焙烧的升温速率为1-10℃/min;
    可选地,步骤(2)所述焙烧的时间为7-15h;
    可选地,步骤(2)所述焙烧在氩气、氮气或氦气的气氛中进行;
    可选地,步骤(2)所述焙烧重复2-3次,且每次焙烧结束后随炉冷却并重新研磨和压片。
  9. 根据权利要求5-8任一项所述的制备方法,其中,所述制备方法包括以下步骤:
    (1)按照化学计量比称量并混合钠盐、铬氧化物和掺杂金属氧化物,球磨并压片,得到中间材料;所述钠盐包括Na 2CO 3、NaHCO 3或NaCl中的任意一种或至少两种的组合,所述铬氧化物包括Cr 2O 3和/或CrO 2,所述掺杂金属氧化物包括RuO 2、Nb 2O 4或ZrO 2中的任意一种或至少两种的组合;所述球磨采用的研磨球总质量为混合物料总质量的3-5倍,且球磨的速度为100-300rpm,时间为5-10h;所述压片的施加压力为5-10MPa;
    (2)以1-10℃/min的升温速率在700-1000℃下,氩气、氮气或氦气的气氛中焙烧7-15h步骤(1)所得中间材料,得到空气稳定型层状铬基正极材料;所述焙烧重复2-3次,且每次焙烧结束后随炉冷却并重新球磨和压片。
  10. 一种钠离子电池,其中,所述钠离子电池的正极材料采用如权利要求 1-4任一项所述的空气稳定型层状铬基正极材料。
PCT/CN2022/115348 2021-11-11 2022-08-29 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池 WO2023082777A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22798230.3A EP4207420A1 (en) 2021-11-11 2022-08-29 Air-stable layered chromium-based positive electrode material, preparation method therefor, and sodium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111333125.2A CN114050310A (zh) 2021-11-11 2021-11-11 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池
CN202111333125.2 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023082777A1 true WO2023082777A1 (zh) 2023-05-19

Family

ID=80208472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115348 WO2023082777A1 (zh) 2021-11-11 2022-08-29 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池

Country Status (3)

Country Link
EP (1) EP4207420A1 (zh)
CN (1) CN114050310A (zh)
WO (1) WO2023082777A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050310A (zh) * 2021-11-11 2022-02-15 横店集团东磁股份有限公司 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池
CN115188959A (zh) * 2022-07-26 2022-10-14 南开大学 一种具备空气稳定性的氟离子掺杂锰基层状氧化物正极材料与制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672622A1 (en) * 1994-03-07 1995-09-20 TDK Corporation Layer structure oxide
CN105103348A (zh) * 2013-04-04 2015-11-25 3M创新有限公司 用于钠离子蓄电池的阴极组合物及其制备方法
CN111186861A (zh) 2020-01-09 2020-05-22 南京大学 钠离子电池层状铬基正极材料及其制备方法
CN111244415A (zh) 2020-01-16 2020-06-05 桂林电子科技大学 空气稳定的层状过渡金属氧化物正极材料及其钠离子电池
CN112310390A (zh) * 2020-10-29 2021-02-02 福建师范大学 O3型钠离子电池层状正极材料以及通过元素掺杂提升材料纯度的方法
CN112838206A (zh) 2020-12-31 2021-05-25 福建师范大学 一类空气稳定性优异的层状氧化物正极材料以及通过调节钠含量改善空气稳定性的方法
CN113644268A (zh) * 2021-08-09 2021-11-12 北京理工大学 钠离子电池层状正极材料及其制备
CN114050310A (zh) * 2021-11-11 2022-02-15 横店集团东磁股份有限公司 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672622A1 (en) * 1994-03-07 1995-09-20 TDK Corporation Layer structure oxide
CN105103348A (zh) * 2013-04-04 2015-11-25 3M创新有限公司 用于钠离子蓄电池的阴极组合物及其制备方法
CN111186861A (zh) 2020-01-09 2020-05-22 南京大学 钠离子电池层状铬基正极材料及其制备方法
CN111244415A (zh) 2020-01-16 2020-06-05 桂林电子科技大学 空气稳定的层状过渡金属氧化物正极材料及其钠离子电池
CN112310390A (zh) * 2020-10-29 2021-02-02 福建师范大学 O3型钠离子电池层状正极材料以及通过元素掺杂提升材料纯度的方法
CN112838206A (zh) 2020-12-31 2021-05-25 福建师范大学 一类空气稳定性优异的层状氧化物正极材料以及通过调节钠含量改善空气稳定性的方法
CN113644268A (zh) * 2021-08-09 2021-11-12 北京理工大学 钠离子电池层状正极材料及其制备
CN114050310A (zh) * 2021-11-11 2022-02-15 横店集团东磁股份有限公司 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XI KAIYING, CHU SHUFEN, ZHANG XIAOYU, ZHANG XUEPING, ZHANG HAOYANG, XU HANG, BIAN JINGJING, FANG TIANCHENG, GUO SHAOHUA, LIU PAN, : "A high-performance layered Cr-Based cathode for sodium-ion batteries", NANO ENERGY, ELSEVIER, NL, vol. 67, 1 January 2020 (2020-01-01), NL , pages 104215, XP093010891, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2019.104215 *

Also Published As

Publication number Publication date
EP4207420A1 (en) 2023-07-05
CN114050310A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN108923042B (zh) 钠离子电池层状锰基正极材料及其制备方法
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
WO2023082777A1 (zh) 一种空气稳定型层状铬基正极材料及其制备方法与钠离子电池
EP2630686B1 (en) Cathode material and lithium ion battery therefrom
CN110931784B (zh) 铁基钠离子电池正极材料及其制备方法
CN113471431B (zh) 一种NaMn0.5Ni0.5BxO2材料及其制备和在钠离子电池中的应用
Liu et al. High performance mesoporous C@ Se composite cathodes derived from Ni-based MOFs for Li–Se batteries
WO2023082505A1 (zh) 原位包覆硼酸盐的氧化物复合正极材料、制备方法和用途
CN113903884B (zh) 正极活性材料及其制备方法、正极、锂离子电池
CN111816864B (zh) 一种富锂层状氧化物复合正极材料及其制备方法和应用
CN111048775A (zh) 一种提升三元正极材料储锂性能的原位掺钠的改性方法
JP7127631B2 (ja) 正極活物質の製造方法、及びリチウムイオン電池の製造方法
CN112771693B (zh) 三维复合金属锂负极和金属锂电池与装置
CN111063871B (zh) 一种钠离子全电池及其制备方法
Zhang et al. Acacia gum-assisted co-precipitating synthesis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material for lithium ion batteries
CN111186861A (zh) 钠离子电池层状铬基正极材料及其制备方法
CN107516729B (zh) 一种用于对称型二次电池的过渡金属层含锂层状电极材料及其制备方法和应用
CN114906882A (zh) 一种铌基双金属氧化物负极材料的制备方法及其应用
Li et al. Improved electrochemical performance of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries
JP7435394B2 (ja) 負極活物質、負極活物質の製造方法およびリチウムイオン電池
CN115650313B (zh) 一种高电压高比容量钴酸锂正极材料及其制备方法
WO2024093126A1 (zh) 一种层状钠电正极材料及其制备方法和应用
CN112768645B (zh) 正极活性物质的制造方法和锂离子电池的制造方法
CN113488694B (zh) 一种改善复合电解质中超离子导体与聚合物界面的方法
CN113224290A (zh) 一种钛掺杂/取代富锂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022798230

Country of ref document: EP

Effective date: 20221111