CN113224290A - 一种钛掺杂/取代富锂正极材料及其制备方法和应用 - Google Patents
一种钛掺杂/取代富锂正极材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN113224290A CN113224290A CN202110475440.2A CN202110475440A CN113224290A CN 113224290 A CN113224290 A CN 113224290A CN 202110475440 A CN202110475440 A CN 202110475440A CN 113224290 A CN113224290 A CN 113224290A
- Authority
- CN
- China
- Prior art keywords
- lithium
- rich
- titanium
- doped
- cathode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 69
- 239000010406 cathode material Substances 0.000 title claims abstract description 23
- 150000002641 lithium Chemical class 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 73
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000000498 ball milling Methods 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000002243 precursor Substances 0.000 claims abstract description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 5
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 5
- 239000007790 solid phase Substances 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000007774 positive electrode material Substances 0.000 claims description 36
- 229910052723 transition metal Inorganic materials 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 150000003624 transition metals Chemical class 0.000 claims description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 2
- 238000009837 dry grinding Methods 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims 1
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 20
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 16
- 239000010405 anode material Substances 0.000 abstract description 15
- 230000014759 maintenance of location Effects 0.000 abstract description 8
- 238000006467 substitution reaction Methods 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 28
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 9
- 229910008522 Li1.2Mn0.54Co0.13Ni0.13O2 Inorganic materials 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 229910002983 Li2MnO3 Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 101100289061 Drosophila melanogaster lili gene Proteins 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000005536 Jahn Teller effect Effects 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/125—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
- C01G45/1257—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种钛掺杂/取代富锂正极材料及其制备方法和应用,所述材料的结构通式为Liz(Li° xTM1‑x‑yTiy)O2,通过将Mn1‑a‑bNiaCob(OH)2前驱体或MnO2与锂盐和TiO2按照一定比例球磨混合,压片,高温固相烧结得到,所述钛掺杂/取代富锂正极材料用于二次锂电池。可以使电池的富锂正极材料维持更高的电位,提高材料的容量保持率和比能量,本发明通过对现有的锂离子电池富锂材料进行掺杂改性处理,得到的钛掺杂/取代富锂正极材料,改变了材料的局域电荷分布状态,提高了材料的稳定性,改善电池的充放电性能,应用在二次锂电池上使其具有更高的充放电容量和较好的循环性能及安全性能。
Description
技术领域
本发明属于能源材料研究领域,具体涉及一种钛掺杂/取代富锂正极材料及其制备方法和应用。
背景技术
能源危机和环境污染是当前人类必须面临的两个严峻挑战,世界各国争相寻找的绿色可替代能源以及新型能量转换与储存体系。在众多的储能技术中,锂离子二次电池由于具有高能量密度、高功率密度、长循环寿命等优点已经全面应用于便携电子设备和新能源电动汽车市场。新能源电动汽车的兴起极大地减少了化石燃料对全球环境的污染,但由于锂离子电池能量密度有限以及高昂的价格,目前并不能完全取代化石燃料汽车或其他大型供电设备,因此这就要求我们开发更高能量密度并且价格低廉的锂离子电池。锂离子电池的能量密度取决于它的比容量和工作电压。目前应用于锂离子电池的商业化石墨负极材料比容量为372mAh/g,工作电压低于0.2V vs.Li+/Li,新型的硅负极材料理论容量达到4200mAh/g并且具有更低的工作电压平台。现有的锂离子电池负极材料已经基本满足当前锂离子电池的需要,因此正极材料的选择在很大程度上决定了锂离子电池的能量密度。
然而大多数商业化正极材料,如LiMn2O4、LiFePO4和LiCoO2,只能提供约150mAh/g的容量密度,工作电位仅在3-4V(vs Li+/Li)范围内,这严重限制了锂离子电池的能量密度。相比之下,富锂层状氧化物在室温下能表现出超过250mAh/g的超高可逆容量,同时由于存在晶格氧O2-/O-的可逆氧化还原过程,使其兼具4.5V vs Li+/Li以上的高电压平台,可以进一步实现超高能量密度锂离子电池的目标。富锂材料通常被描述为xLi2MnO3(1-x)LiTMO2(TM是过渡金属,主要是Mn、Ni和Co)的纳米复合物。与传统层状氧化物相比,富锂材料的额外容量来源于Li2MnO3组分中TM层内的二次Li+离子的“活化”,并伴随O2-/O-离子的氧化还原反应。当充电电压高于4.5V时,活化过程在动力学上是不利的,并且富锂材料在高压状态下经历了复杂的结构演变和严重的电极/电解液界面副反应,导致富锂正极材料在容量和电压方面都会迅速衰减。目前人们认为主要有两个原因影响其稳定性:第一,Mn的迁移和溶解以及Jahn-Teller效应引起的结构变化;第二,4.6V以上高压状态下晶格氧的流失使得高压状态下的容量并不可逆。
为了解决富锂材料中Li2MnO3组分缓慢的活化过程动力学以及复杂相变过程导致的性能衰减问题,目前,人们普遍通过表面包覆的手段对富锂材料进行改性,使富锂材料的稳定性显著提高,鲜有通过离子掺杂或替换的手段稳定富锂材料的晶格。迄今为止,科研工作者围绕层状氧化物正极材料LiTMO2做了大量关于离子掺杂(Mg2+、Cu2+、Al3+、Ti4+、Sb5+等)的研究。通过离子掺杂,可以抑制层状正极材料在充放电过程中发生的不可逆相变,起到稳定晶格的作用,从而达到提高其电化学稳定性的目的。在众多的掺杂离子之中,Ti4+离子在高电压下为电化学惰性(Li2TiO3通常被应用于高压正极材料的保护层),而且与Mn4+在物理化学性质上相近。本专利通过Ti4+离子掺杂/替换的手段稳定富锂正极材料的晶格结构,从而提高材料的电化学性能,实现高性能富锂正极材料的开发。
发明内容
针对现有技术存在的富锂正极材料容量保持率低,且电压损失严重的问题,本发明拟提供一种Ti4+掺杂/取代富锂正极材料及其制备方法和应用,该富锂正极材料循环性能电压保持率得到大大提高;制备方法操作简单,成本低廉;可应用于二次锂电池上作为正极材料使用。
本发明为解决现有技术中存在的问题采用的技术方案如下:
一种钛掺杂/取代富锂正极材料,其特征在于:所述材料的结构通式为Liz(Li° xTM1-x-yTiy)O2,Liz(Li° xTM1-x-yTiy)O2为层状结构,其中TM为处于过渡金属层层内的过渡金属元素。
所述TM为处于过渡金属层层内的过渡金属元素,为Mn、Ni和Co中的一种或多种组合。
Ti处于过渡金属层层内,其含量0<y<0.5;
Li为处于过渡金属层层间的锂,其含量0.5<z<1;
Li°为处于过渡金属层层内的锂,其含量0<x<0.33。
一种钛掺杂/取代富锂正极材料的制备方法,其特征在于,将Mn1-a-bNiaCob(OH)2前驱体或MnO2与锂盐和TiO2按照一定比例通过球磨混合后,压制成片,进行高温固相烧结,其中0≤a≤1,0≤b≤1。
所述Mn1-a-bNiaCob(OH)2前驱体通过共沉淀法制备。
所述锂盐为Li2CO3、Li2O、LiOH等。
所述球磨混合过程中加入少量无水乙醇,加入少量异丙醇,进行干磨。
所述高温固相烧结的温度区间为800-1000℃之间。
一种钛掺杂/取代富锂正极材料在初级或次级电化学发电器(电池)、高能发电器和在电化学发光调制系统中的应用,优选为在制备二次锂电池中的应用,所述二次锂电池包括:正极、负极和电解液;所述正极包括集流体和负载在集流体上的正极材料,所述集流体采用本领域已知的常见正极集流体,所述正极材料含有钛掺杂/取代富锂正极材料。
本发明具有如下优点:
本发明通过对现有的锂离子电池富锂材料进行掺杂改性处理,得到的Ti4+掺杂/取代富锂正极材料,改变了材料的局域电荷分布状态,从而改变了材料的物理和化学特性,提高了材料的稳定性,可以使电池的富锂正极材料维持更高的电位,提高材料的容量保持率和比能量,改善电池的充放电性能,得到一种具有更高的充放电容量和较好的循环性能及安全性能的二次锂电池。
附图说明
图1是本发明实施例1、实施例2和实施例3制得的LiLi1/3Mn2/3O2(Li2MnO3)、Li0.9Li0.3Mn0.6Ti0.1O2(Li1.8Mn0.9Ti0.15O3)和Li0.69Li0.23Mn0.47Ti0.3O2(Li1.4Mn0.7Ti0.45O3)等富锂材料的X射线衍射(XRD)图;
图2是本发明实施例1制得的Li2MnO3富锂材料的扫描电子显微镜(SEM)图;
图3是本发明实施例1制得的Li2MnO3富锂材料(010)晶面的球差校正高分辨透射电子显微镜图(明场像);
图4是本发明实施例2制得的Li1.8Mn0.9Ti0.15O3富锂材料的扫描电子显微镜(SEM)图;
图5是本发明实施例3制得的Li1.4Mn0.7Ti0.45O3富锂材料的扫描电子显微镜(SEM)图;
图6是本发明实施例1、实施例2和实施例3制得的Li2MnO3、Li1.8Mn0.9Ti0.15O3和Li1.4Mn0.7Ti0.45O3等富锂材料的循环性能与容量对比图;
图7是本发明实施例4和实施例5制得的Li1.2Mn0.54Co0.12Ni0.12O2和Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2等富锂材料的X射线衍射(XRD)图;
图8是本发明实施例4制得的Li1.2Mn0.54Co0.12Ni0.12O2富锂材料的扫描电子显微镜(SEM)图;
图9是本发明实施例4制得的Li1.2Mn0.54Co0.12Ni0.12O2富锂材料的充放电曲线图;
图10是本发明实施例5制得的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2富锂材料的扫描电子显微镜(SEM)图;
图11是本发明实施例5制得的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2富锂材料的充放电曲线图;
图12是本发明实施例4和实施例5制得的Li1.2Mn0.54Co0.12Ni0.12O2和Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2等富锂材料的循环性能与容量对比图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1:Li2MnO3正极材料及其作为正极的锂离子电池
首先将MnO2和Li2CO3按照1:1的摩尔比球磨混合,球磨过程中加入少量无水乙醇,混合均匀后置于70℃烘箱中干燥,将粉末通过磨具压制成片,经马弗炉900℃高温煅烧,得到富锂Li2MnO3正极材料。
对本实施例的Li2MnO3正极材料进行XRD测试,测试结果如图1所示。
经图1可知,本实施例的Li2MnO3正极材料衍射峰与Li2MnO3标准衍射峰完全吻合,不含杂质。
对本实施例的Li2MnO3正极材料进行SEM测试,测试结果如图2所示。
经图2可知,本实施例的Li2MnO3正极材料颗粒尺寸为2-4μm。
对本实施例的Li2MnO3正极材料进行球差校正高分辨透射电镜测试,测试结果如图3所示。
经图3可知,本实施例的Li2MnO3正极材料为标准的富锂相结构材料,在过渡金属层层内的原子占比为Li:Mn=1:2。
按照富锂Li2MnO3正极材料、乙炔黑和聚偏氟乙烯(PVDF)各占80wt%、10wt%和10wt%的配比制备成电极,作为半电池的一个电极,对电极采用金属Li,用1mol/L的LiPF6/乙烯碳酸酯(EC)-二乙烯碳酸酯(DEC)作为电解液,其中EC和DEC的体积比为1:1,在手套箱中组装成电池并对其进行充放电性能测试,电压范围为1.5-4.8V,测试结果见图6,说明未进行Ti4+掺杂/取代的富锂Li2MnO3材料,其循环性能较差,50mA/g电流密度下的首圈可逆容量仅为167mAh/g,循环100周后容量保持率仅为34%。
实施例2:Ti4+掺杂/取代的富锂Li1.8Mn0.9Ti0.15O3正极材料及以Li1.8Mn0.9Ti0.15O3为正极的锂离子电池
首先将MnO2,TiO2和Li2CO3按照3:5:3的摩尔比球磨混合,球磨过程中加入少量异丙醇,混合均匀后置于70℃烘箱中干燥,将粉末通过磨具压制成片,经马弗炉900℃高温煅烧,得到富锂Li1.8Mn0.9Ti0.15O3正极材料。
对本实施例的Li1.8Mn0.9Ti0.15O3正极材料进行XRD测试,测试结果如图1所示。
经图1可知,本实施例的Li1.8Mn0.9Ti0.15O3正极材料衍射峰与Li2MnO3标准衍射峰基本吻合,说明Ti4+掺杂/取代后晶相结构未发生改变;衍射峰略微向低角度偏移,是由于Ti4+离子的掺杂/取代使其层间距变大。
对本实施例的Li1.8Mn0.9Ti0.15O3正极材料进行SEM测试,测试结果如图4所示。
经图4可知,本实施例的Li1.8Mn0.9Ti0.15O3正极材料颗粒尺寸为2-4μm。
仿照实施例1,制备Li1.8Mn0.9Ti0.15O3电池,电池在1.5-4.8V循环,电池测试结果图见图6,说明进行Ti4+掺杂/取代有利于提高富锂Li2MnO3材料的循环性能,50mA/g电流密度下的首圈可逆容量为143mAh/g,循环100周后可逆容量仅为82mAh/g,,容量保持率为57%。
实施例3:Ti4+掺杂/取代的富锂Li1.4Mn0.7Ti0.45O3正极材料及以Li1.4Mn0.7Ti0.45O3为正极的锂离子电池
首先将MnO2,TiO2和Li2CO3按照1:0.64:1的摩尔比球磨混合,球磨过程中加入少量异丙醇,混合均匀后置于70℃烘箱中干燥,将粉末通过磨具压制成片,经马弗炉900℃高温煅烧,得到富锂Li1.4Mn0.7Ti0.45O3正极材料。
对本实施例的Li1.4Mn0.7Ti0.45O3正极材料进行XRD测试,测试结果如图1所示。
经图1可知,本实施例的Li1.4Mn0.7Ti0.45O3正极材料衍射峰与Li2MnO3标准衍射峰基本吻合,随着Ti4+掺杂/取代量增多,衍射峰继续向低角度偏移,并且20-25°的超晶格衍射峰变弱,说明Ti4+掺杂/取代会一定程度上破坏富锂材料中的超晶格结构。
对本实施例的Li1.4Mn0.7Ti0.45O3正极材料进行SEM测试,测试结果如图5所示。
经图5可知,本实施例的Li1.4Mn0.7Ti0.45O3正极材料颗粒尺寸为2-4μm。
仿照实施例1,制备Li1.4Mn0.7Ti0.45O3电池,电池在1.5-4.8V循环,电池测试结果图见图6,说明进行Ti4+掺杂/取代量提高,有利于进一步提高富锂材料的循环性能,50mA/g电流密度下的首圈可逆容量为242mAh/g,循环100周后可逆容量仅为158mAh/g,,容量保持率为65%。
实施例4:富锂Li1.2Mn0.54Co0.13Ni0.13O2正极材料及其为Li1.2Mn0.54Co0.13Ni0.13O2正极的锂离子电池
首先将Mn0.66Co0.17Ni0.17(OH)2前驱体和LiOH按照2:3的摩尔比球磨混合,球磨混合均匀后将粉末通过磨具压制成片,经马弗炉900℃高温煅烧,得到富锂Li1.2Mn0.54Co0.13Ni0.13O2正极材料。
对本实施例的Li1.2Mn0.54Co0.13Ni0.13O2正极材料进行XRD测试,测试结果如图7所示。
经图7可知,本实施例的Li1.2Mn0.54Co0.13Ni0.13O2正极材料在20-25°内出现层状富锂结构超晶格的衍射峰,说明Li1.2Mn0.54Co0.13Ni0.13O2为层状富锂结构。
对本实施例的Li1.2Mn0.54Co0.13Ni0.13O2正极材料进行SEM测试,测试结果如图8所示。
经图8可知,本实施例的Li1.2Mn0.54Co0.13Ni0.13O2正极材料颗粒尺寸为0.5-1.5μm。
仿照实施例1,制备Li1.2Mn0.54Co0.13Ni0.13O2电池,电池在2-4.8V循环,电池充放电曲线图见图9,未进行Ti4+掺杂/取代的富锂Li1.2Mn0.54Co0.13Ni0.13O2材料首圈充电容量为277mAh/g,库伦效率为79.4%,放电中压为3.44V。电池循环测试结果图见图12,结果显示,100周后容量衰减为173mAh/g,容量保持率为78.6%。
实施例5:富锂Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料电池以及以Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2为正极的锂离子电池
首先将Mn0.66Co0.17Ni0.17(OH)2前驱体、LiOH和TiO2按照分子式(Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2)的化学计量比球磨混合,球磨混合均匀后将粉末通过磨具压制成片,经马弗炉900℃高温煅烧,得到富锂Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料。
对本实施例的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料进行XRD测试,测试结果如图7所示。
经图7可知,对Li1.2Mn0.54Co0.13Ni0.13O2进行Ti4+掺杂/取代后,层状富锂结构并没有发生改变。
对本实施例的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料进行SEM测试,测试结果如图10所示。
经图10可知,本实施例的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料颗粒尺寸为0.5-1.5μm。
仿照实施例1,制备Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2电池,电池在2-4.8V循环,电池充放电曲线图见图11,进行Ti4+掺杂/取代的富锂Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2材料首圈充电容量为268mAh/g,库伦效率为82.5%,放电中压为3.52V,高于未进行Ti4+掺杂/取代的富锂Li1.2Mn0.54Co0.13Ni0.13O2正极材料,且第二圈与第三圈的充放电曲线完全重合。电池循环测试结果图见图12,结果显示,掺Ti后的Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2正极材料的循环稳定性明显提高,100周后容量衰减为215mAh/g,容量保持率为96.7%,远高于Li1.2Mn0.54Co0.13Ni0.13O2。另外,除第一周外,Li1.2Mn0.51Co0.12Ni0.12Ti0.05O2和Li1.2Mn0.54Co0.13Ni0.13O2的库伦效率都接近100%,使得它们的充电容量折线和放电容量折线在图12中相重合。
本发明的保护范围并不限于上述的实施例,显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明的意图也包含这些改动和变形在内。
Claims (10)
1.一种钛掺杂/取代富锂正极材料,其特征在于:所述材料的结构通式为Liz(Lio xTM1-x- yTiy)O2,Liz(Lio xTM1-x-yTiy)O2为层状结构,其中TM为处于过渡金属层层内的过渡金属元素。
2.如权利要求1所述的一种钛掺杂/取代富锂正极材料,其特征在于:所述TM为处于过渡金属层层内的过渡金属元素,为Mn、Ni和Co中的一种或多种组合。
3.如权利要求1所述的一种钛掺杂/取代富锂正极材料,其特征在于:Ti处于过渡金属层层内,其含量0<y<0.5。
4.如权利要求1所述的一种钛掺杂/取代富锂正极材料,其特征在于:Li为处于过渡金属层层间的锂,其含量0.5<z<1。
5.如权利要求1所述的一种钛掺杂/取代富锂正极材料,其特征在于:Lio为处于过渡金属层层内的锂,其含量0<x<0.33。
6.如权利要求1所述的一种钛掺杂/取代富锂正极材料的制备方法,其特征在于,将Mn1-a-bNiaCob(OH)2前驱体或MnO2与锂盐和TiO2按照一定比例通过球磨混合后,压制成片,进行高温固相烧结,其中0≤a≤1,0≤b≤1。
7.如权利要求6所述的一种钛掺杂/取代富锂正极材料的制备方法,其特征在于:所述锂盐为Li2CO3、Li2O或LiOH。
8.如权利要求6所述的一种钛掺杂/取代富锂正极材料的制备方法,其特征在于:所述球磨混合过程中加入少量无水乙醇或少量异丙醇,进行干磨。
9.如权利要求6所述的一种钛掺杂/取代富锂正极材料的制备方法,其特征在于:所述高温固相烧结的温度区间为800-1000℃之间。
10.如权利要求1-5任一项所述的一种钛掺杂/取代富锂正极材料,其特征在于:所述钛掺杂/取代富锂正极材料用于初级或次级电化学发电器(电池)、高能发电器和在电化学发光调制系统中;进一步的,所述钛掺杂/取代富锂正极材料用于二次锂电池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110475440.2A CN113224290A (zh) | 2021-04-29 | 2021-04-29 | 一种钛掺杂/取代富锂正极材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110475440.2A CN113224290A (zh) | 2021-04-29 | 2021-04-29 | 一种钛掺杂/取代富锂正极材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113224290A true CN113224290A (zh) | 2021-08-06 |
Family
ID=77090401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110475440.2A Pending CN113224290A (zh) | 2021-04-29 | 2021-04-29 | 一种钛掺杂/取代富锂正极材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113224290A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101728532A (zh) * | 2008-10-31 | 2010-06-09 | 三洋电机株式会社 | 锂二次电池用正极活性物质及其制造方法 |
CN103474639A (zh) * | 2013-09-08 | 2013-12-25 | 江西江特锂电池材料有限公司 | 富锂锰基正极材料及其制备方法 |
CN103904321A (zh) * | 2014-03-31 | 2014-07-02 | 华南理工大学 | 锂离子电池负极材料锰酸锂的高温固相制备方法 |
CN107732229A (zh) * | 2017-07-24 | 2018-02-23 | 江苏大学 | 一种钛掺杂的富锂锰基锂离子电池正极材料及其制备方法 |
-
2021
- 2021-04-29 CN CN202110475440.2A patent/CN113224290A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101728532A (zh) * | 2008-10-31 | 2010-06-09 | 三洋电机株式会社 | 锂二次电池用正极活性物质及其制造方法 |
CN103474639A (zh) * | 2013-09-08 | 2013-12-25 | 江西江特锂电池材料有限公司 | 富锂锰基正极材料及其制备方法 |
CN103904321A (zh) * | 2014-03-31 | 2014-07-02 | 华南理工大学 | 锂离子电池负极材料锰酸锂的高温固相制备方法 |
CN107732229A (zh) * | 2017-07-24 | 2018-02-23 | 江苏大学 | 一种钛掺杂的富锂锰基锂离子电池正极材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
张志强: "富锂锰基层状固溶体正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2的改性研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技II辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114790013B (zh) | 自补钠的钠离子电池正极活性材料及其制备方法和应用 | |
Ding et al. | A short review on layered LiNi0. 8Co0. 1Mn0. 1O2 positive electrode material for lithium-ion batteries | |
KR101746187B1 (ko) | 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지 | |
WO2017025007A1 (zh) | 锂离子二次电池的正极活性材料及其制备方法和应用 | |
Zhu et al. | Increased cycling stability of Li4Ti5O12-coated LiMn1. 5Ni0. 5O4 as cathode material for lithium-ion batteries | |
CN113690414B (zh) | 一种混合型富锂正极材料及其制备方法和应用 | |
CN107428559B (zh) | 正极材料、以及将其用于正极的锂二次电池 | |
CN103140962A (zh) | 锂离子电池组正电极材料上的金属卤化物涂层和相应的电池组 | |
CN102484249A (zh) | 具有高比容量和优异循环的层层富含锂的复合金属氧化物 | |
CN116119730A (zh) | 原位包覆硼酸盐的氧化物复合正极材料、制备方法和用途 | |
CN110459764B (zh) | 一种锂离子电池正极材料及其制备方法与应用 | |
CN113675394B (zh) | 一种钾离子电池正极材料、制备方法以及钾离子电池 | |
CN115207340A (zh) | 一种钠离子电池层状氧化物正极材料及其制备方法和应用 | |
KR20200086111A (ko) | 이산화티타늄이 코팅된 양극활물질의 제조방법 | |
CN110611091A (zh) | 一种改善富锂锰基正极材料电化学性能的方法 | |
Zhang et al. | Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries | |
CN114229921B (zh) | Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法 | |
CN111525120B (zh) | 一种含有Mg、Cu、Mn的氧化物材料及其制备方法和应用 | |
CN113582253B (zh) | 一种四元正极材料及其制备方法和应用 | |
CN104425810A (zh) | 一种改性的锂镍锰氧材料及其制备方法、锂离子电池 | |
JP2004175609A (ja) | リチウムイオン電池の正極に用いるコバルト酸リチウム、その製造方法およびリチウムイオン電池 | |
CN117154046A (zh) | 一种富钠的隧道型过渡金属氧化物正极材料及其制备方法和应用 | |
Li et al. | Synthesis and electrochemical properties of LiNi 0.85− x Co x Mn 0.15 O 2 as cathode materials for lithium-ion batteries | |
CN115148970A (zh) | 一种橄榄石NaMPO4包覆高镍三元或富锂锰基正极材料及其制备方法 | |
CN107516729B (zh) | 一种用于对称型二次电池的过渡金属层含锂层状电极材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210806 |
|
RJ01 | Rejection of invention patent application after publication |