WO2023078358A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2023078358A1
WO2023078358A1 PCT/CN2022/129598 CN2022129598W WO2023078358A1 WO 2023078358 A1 WO2023078358 A1 WO 2023078358A1 CN 2022129598 W CN2022129598 W CN 2022129598W WO 2023078358 A1 WO2023078358 A1 WO 2023078358A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain sequence
time domain
frequency
modulation symbols
Prior art date
Application number
PCT/CN2022/129598
Other languages
English (en)
French (fr)
Inventor
曲韦霖
吴毅凌
金哲
陈俊
罗之虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078358A1 publication Critical patent/WO2023078358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • MTC machine-type communication
  • IoT Internet of Things
  • NR new radio
  • Orthogonal frequency division multiplexing is widely used in long term evolution (LTE) systems and NR.
  • LTE long term evolution
  • NR NR
  • terminal equipment with energy saving requirements will apply amplitude shift keying modulation and envelope detection receiver to receive signals.
  • how to increase the rate of data transmission becomes an urgent problem to be solved.
  • the present application provides a communication method, which can increase the rate of data transmission.
  • a communication method is provided, and the communication method may be executed by a sender device, or may also be executed by a chip or a circuit provided in the sender device, which is not limited in this application.
  • the execution by the sending end device is taken as an example for description below.
  • the communication method includes: the sending end device generates a first OFDM time-domain signal, the first OFDM time-domain signal includes N first modulation symbols arranged in the time domain, and the first modulation symbols are Amplitude shift keying modulation symbol.
  • the sending end device sends the first OFDM time domain signal to the receiving end device.
  • N is an integer greater than or equal to 2.
  • An OFDM time-domain signal includes multiple amplitude shift keying modulation symbols, which can increase the rate of data transmission, thereby improving communication efficiency.
  • the above-mentioned N ASK modulation symbols included in the first OFDM time domain signal do not overlap any two in the time domain, which can improve the performance of the receiver in detecting ASK modulation symbols.
  • the generating the first OFDM time-domain signal by the transmitting-end device includes: generating the first frequency-domain sequence by the transmitting-end device.
  • the sending end device generates the first OFDM time domain signal according to the first frequency domain sequence.
  • the first frequency domain sequence has a mapping relationship with the N first modulation symbols.
  • the N first modulation symbols are generated by generating the first frequency domain sequence mapping.
  • the time mapped by the method provided by this application In the frequency domain, the domain signal maintains the orthogonality with the frequency domain of the existing OFDM system, which can avoid spectrum leakage, has less interference with the transmission frequency domain of the existing OFDM system, and reduces the impact on the performance of the existing OFDM system.
  • Existing OFDM can be LTE, NR and other systems.
  • the generating the first frequency-domain sequence by the sending-end device includes: generating the first frequency-domain sequence by the sending-end device according to the second frequency-domain sequence, and the first frequency-domain sequence
  • the time-domain signal mapped by the domain sequence includes part or all of the time-domain signal mapped by the second frequency-domain sequence.
  • the time-domain signal mapped by the second frequency-domain sequence includes N second modulation symbols.
  • the N second modulation symbols include at least one ASK modulation symbol 1 and one ASK modulation symbol 0.
  • the second modulation symbol is an amplitude shift keying modulation symbol.
  • the above-mentioned second frequency domain sequence only needs to include at least one ASK modulation symbol 1 and one ASK modulation symbol 0, and the specific form is not limited.
  • the receiver will appear time-domain signal boundary confusion, seriously affecting the amplitude shift keying
  • the performance of the modulation symbol detection so the original information bits are usually modulated by line coding, so that the system will not appear in the situation where the amplitude shift keying modulation symbols are all 1 in continuous transmission.
  • the generating the first frequency domain sequence by the transmitting end device according to the second frequency domain sequence includes: generating the M th frequency domain sequence by the transmitting end device according to the second frequency domain sequence Three-frequency domain sequence.
  • the sending end device generates the first frequency domain sequence according to the M third frequency domain sequences.
  • the second frequency domain sequence has a cyclic shift relationship with each of the M third frequency domain sequences in the time domain.
  • the second frequency domain sequence and a certain third frequency domain sequence have a cyclic shift relationship in the time domain, which can be understood as: the time domain signal mapped by the third frequency domain sequence can be cyclically shifted by the time domain signal mapped by the second frequency domain sequence bits get.
  • the second frequency domain sequence is mapped to the subcarrier, and the OOK modulation symbol obtained by performing IFFT transformation to the time domain is ⁇ 10000000 ⁇ (or the OOK modulation symbol is ⁇ ON,OFF,OFF,OFF,OFF,OFF,OFF ⁇ ), one of the M third frequency domain sequences is mapped to a subcarrier, and the OOK modulation symbol obtained by performing IFFT transformation to the time domain is ⁇ 00010000 ⁇ (or the OOK modulation symbol is ⁇ OFF, OFF,OFF,ON,OFF,OFF,OFF,OFF ⁇ ), the OOK modulation symbol ⁇ 00010000 ⁇ can be obtained by cyclically shifting the OOK modulation symbol ⁇ 10000000 ⁇ by 3 in the time domain, and the cyclic shift value is 3.
  • the generating the first frequency domain sequence by the transmitting end device according to the second frequency domain sequence includes: generating the M th frequency domain sequence by the transmitting end device according to the second frequency domain sequence Three-frequency domain sequence.
  • the sending end device generates the first frequency domain sequence according to the M third frequency domain sequences.
  • the L first elements included in the second frequency domain sequence are the same as the L second elements included in a third frequency domain sequence in the M third frequency domain sequences, and the L first elements and the L The order in which the second elements are mapped to the frequency domain is different, and L is a positive integer.
  • the order in which the L first elements are mapped to the frequency domain can be understood as the mapping of the first elements (eg, ⁇ a 0 , a 1 ,...,a L-1 ⁇ ) to the subcarriers e 0 , e 1 ,. .., e order on L-1 ;
  • the order in which L second elements are mapped to the frequency domain can be understood as the second element (eg, ⁇ a L-1 ,..,a 1 ,a 0 ⁇ ) is mapped to sub Sequence on carriers e 0 , e 1 , . . . , e L-1 .
  • a frequency-domain sequence corresponding to one value of the N amplitude-shift keying modulation symbols refers to a frequency-domain sequence obtained by time-frequency transforming the time-domain signals of the N amplitude-shift keying modulation symbols.
  • the time-frequency transform may be a Fourier transform. For example, the time domain signals of the N ASK modulation symbols are sampled in the time domain, and then transformed into the frequency domain by FFT to obtain the frequency domain sequence.
  • the storage capacity of the sending end device and the complexity of the sending end device will be increased.
  • generating the first frequency domain sequence based on the second frequency domain does not need to store frequency domain sequences corresponding to each value of the N amplitude shift keying modulation symbols, thereby reducing the storage capacity and complexity of the transmitting end device.
  • the sending end device generates the first frequency domain sequence according to the M third frequency domain sequences, including: the sending end device adds the M third frequency domain sequences domain sequence to obtain the first frequency domain sequence.
  • the sending end device generates M third frequency domain sequences according to the second frequency domain sequence, including: the sending end device generates M third frequency domain sequences according to the second frequency domain sequence and M phase factors to generate the M third frequency domain sequences.
  • the i-th frequency-domain sequence in the M third frequency-domain sequences is composed of the second frequency-domain sequence and the i-th phase factor in the M phase factors Generate, the time-domain signal mapped by the second frequency-domain sequence is cyclically shifted in the time domain by T i amplitude shift keying modulation symbol length is the time-domain signal mapped by the ith frequency-domain sequence, the and T i satisfy the following formula:
  • the sending end device generates different frequency domain sequences according to the above-mentioned different phase factors, which can satisfy the effect of cyclic shift in the time domain, and then obtain the combination of the N amplitude shift keying modulation symbols sent.
  • the Q is a positive integer
  • the k is a positive integer less than or equal to L
  • the L is the length of the third frequency domain sequence.
  • the order in which the L first elements and the L second elements are mapped to the frequency domain is reversed.
  • Different combinations of the N first modulation symbols on the OFDM time domain signal are obtained by using the sequence elements mapped to the subcarriers in the frequency domain.
  • the elements of the sequence stored by the sending end device remain unchanged, but the mapping order is different, which effectively reduces the The storage capacity of the device and the complexity of the device.
  • P>1 P is the factor of line code encoding. That is, one original information bit is encoded into P bits by line code.
  • the N first modulation symbols carry N bits
  • the N bits include any of the following: the N bits are information to be sent or, the N bits are the bits after the to-be-sent information bits are line-coded, where the line-coding factor is the P.
  • the method further includes: the sending end device sends indication information to the receiving end device.
  • the indication information is used to indicate at least one of the following: the N, the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal, or the first OFDM The subcarrier spacing corresponding to the duration of the time domain signal.
  • the N the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal and the subcarrier interval corresponding to the duration of the first OFDM time domain signal At least one of the is predefined.
  • the receiving end device effectively obtains the symbol time information of the first modulation symbol, and can effectively realize the detection of the first modulation symbol by the receiving end device.
  • the first OFDM time domain signal is used to indicate one of the following identifiers: an identifier of a terminal device, an identifier of a terminal device group to which the terminal device belongs, an identifier of the terminal device Part of the ID of the device or part of the ID of the terminal device group to which the terminal device belongs.
  • the terminal device can be woken up in time in a dormant state, thereby improving the energy saving effect of the terminal device.
  • a communication method is provided, and the communication method may be executed by a receiving device, or may also be executed by a chip or a circuit provided in the receiving device, which is not limited in the present application.
  • the implementation by the receiver device is taken as an example below for description.
  • the communication method includes: the receiving end device receives the first Orthogonal Frequency Division Multiplexing OFDM time domain signal from the sending end device.
  • the receiving end device determines that the first OFDM time domain signal includes N first modulation symbols arranged in the time domain.
  • the first modulation symbol is an amplitude shift keying modulation symbol, where N is an integer greater than or equal to 2.
  • the OFDM time-domain signal received by the receiving end device includes multiple amplitude shift keying modulation symbols, which can increase the data transmission rate and further improve communication efficiency.
  • the method further includes: the receiving end device receives indication information from the sending end device, where the indication information is used to indicate at least one of the following: the N, the N The relationship between the duration of each first modulation symbol in the first modulation symbol and the duration of the first OFDM time domain signal, or the subcarrier interval corresponding to the duration of the first OFDM time domain signal.
  • the N the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal and the subcarrier interval corresponding to the duration of the first OFDM time domain signal At least one of the is predefined.
  • the receiving end device effectively obtains the symbol time information of the first modulation symbol, and can effectively realize the detection of the first modulation symbol by the receiving end device.
  • the first OFDM time-domain signal is used to indicate one of the following identifiers: the identifier of the terminal device, the identifier of the terminal device group to which the terminal device belongs, the terminal Part of the ID of the device or part of the ID of the terminal device group to which the terminal device belongs.
  • the terminal device can wake up instantaneously or communicate effectively in a dormant state, thereby improving the energy saving effect of the terminal device.
  • a communication device in a third aspect, includes a processor configured to implement the function of the sending end device in the method described in the first aspect above.
  • the communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the sending end device in the method described in the first aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the function of the sending end device in the method described in the first aspect above.
  • the communication device may further include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the communication device includes: a processor and a communication interface
  • the processor is configured to run a computer program, so that the communication device implements any one of the methods described in the first aspect above;
  • the processor communicates with the outside through the communication interface.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, pins or related circuits on the chip or the chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a communication device configured to implement the function of the receiver device in the method described in the second aspect above.
  • the communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the receiver device in the method described in the second aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory, so as to implement the functions of the receiver device in the method described in the second aspect above.
  • the communication device may further include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the communication device includes: a processor and a communication interface
  • the processor is configured to run a computer program, so that the communication device implements any one of the methods described in the second aspect above;
  • the processor communicates with the outside through the communication interface.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, pins or related circuits on the chip or the chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, it causes the computer to execute the methods described in the above aspects.
  • the present application provides a computer program product containing instructions, which, when run on a computer, causes the computer to execute the methods described in the above aspects.
  • a communication system including the communication device described in the third aspect and the communication device described in the fourth aspect.
  • a chip device including a processing circuit, the processing circuit is used to call and run a program from a memory, so that a communication device installed with the chip device can perform any one of the possibilities in the first and second aspects above. method in the implementation.
  • FIG. 1 is a schematic diagram of a communication system to which the present application applies.
  • Fig. 2 is a schematic diagram of a signal processing method in 802.11ba.
  • Fig. 3 is a schematic diagram of a waveform.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 are schematic diagrams of the relationship between the first OFDM time domain signal and the N first modulation symbols.
  • Fig. 6 is a schematic diagram of generating a first OFDM time-domain signal provided by an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of generating a first frequency domain sequence provided by an embodiment of the present application.
  • Fig. 8 is a time domain signal pattern mapped on the time domain by the second frequency domain sequence.
  • FIG. 9 is a time domain signal pattern mapped on the time domain by the third frequency domain sequence.
  • Fig. 10 is a time domain signal pattern in which the first frequency domain sequence is mapped on the time domain.
  • FIG. 11 is another time-domain signal pattern in which the first frequency-domain sequence is mapped on the time domain.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus 1300 provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5th generation, 5G) system, NR or future network, etc.
  • the 5G mobile communication system described in this application includes non- An independent network (non-standalone, NSA) 5G mobile communication system or an independent network (standalone, SA) 5G mobile communication system.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an IoT communication system or other communication systems.
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment (user equipment, UE), terminal (terminal), wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of public land mobile network (PLMN) Devices or terminal devices in the future Internet of Vehicles are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in the IoT system, for example, the terminal device may also be a tag, for example, an active tag, a passive tag, and the like.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the terminal equipment may also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves , to transmit uplink data to the network device.
  • sensors such as smart printers, train detectors, and gas stations
  • its main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves , to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be any communication device with a wireless transceiver function for communicating with a terminal device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • the network device in this embodiment of the present application may refer to a central unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the network device includes a CU and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this framework, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the CU can also be divided into a central unit-control plane (CU-CP) on the control plane and a central unit-user plane (CU-UP) on the user plane.
  • CU-CP central unit-control plane
  • CU-UP central unit-user plane
  • the CU-CP and CU-UP can also be deployed on different physical devices, and the CU-CP is responsible for the control plane function, mainly including the RRC layer and the PDCP-C layer.
  • the PDCP-C layer is mainly responsible for encryption and decryption of data on the control plane, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP layer and PDCP-U layer.
  • the SDAP layer is mainly responsible for processing core network data and mapping flows to bearers.
  • the PDCP-U layer is mainly responsible for at least one function such as encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • the CU-CP and the CU-UP are connected through a communication interface (for example, an E1 interface).
  • the CU-CP represents that the network device is connected to the core network device through a communication interface (for example, an Ng interface), and is connected to a DU through a communication interface (for example, an F1-C (control plane) interface).
  • CU-UP is connected to DU through a communication interface (for example, F1-U (User Plane) interface).
  • the PDCP-C layer is also included in the CU-UP.
  • the network device mentioned in the embodiment of this application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (CU-CP node) and a user plane CU node (CU-UP node) and DU Node's device.
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, or magnetic tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or magnetic tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the communication system shown in Fig. 1 is taken as an example to describe in detail the communication system applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal devices 102 to 107 shown in FIG. 1 .
  • the terminal devices 102 to 107 may be mobile or fixed.
  • One or more of the network device 101 and the terminal devices 102 to 107 may communicate via a wireless link.
  • Each network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • terminal devices can communicate directly with each other.
  • a device to device (device to device, D2D) technology may be used to realize direct communication between terminal devices.
  • D2D device to device
  • FIG. 1 between terminal devices 105 and 106 , and between terminal devices 105 and 107 , direct communication can be made using the D2D technology.
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • Terminals 105 to 107 can also each communicate with network device 101 .
  • it can directly communicate with the network device 101, as shown in the figure, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as shown in the figure, the terminal device 107 communicates with the network device via the terminal device 105 101 communications.
  • Each communication device may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100 can communicate through the multi-antenna technology.
  • the terminal equipment involved in the embodiment of the present application has a low-power receiving circuit with envelope detection, and the receiving circuit is used to receive information.
  • the receiving circuit is used to receive information.
  • it includes at least one A terminal device of a low-power receiving circuit (for example, one or more of the terminal device 102 to the terminal device 107 has a low-power receiving circuit with envelope detection).
  • the terminal equipment with envelope detection and low-power receiving circuit involved in the embodiment of the present application can be understood as an entity on the user side for receiving or transmitting signals, such as industrial network sensors, video surveillance cameras, Wearable devices (such as smart watches), water meters, electricity meters and other terminal devices with auxiliary circuits.
  • signals such as industrial network sensors, video surveillance cameras, Wearable devices (such as smart watches), water meters, electricity meters and other terminal devices with auxiliary circuits.
  • the low-power receiving circuit for envelope detection in a terminal device having a low-power receiving circuit for envelope detection may be: a wake-up signal for receiving a wake-up signal (WUS) Radio (wake-up radio, WUR) transceiver.
  • WUS wake-up signal
  • WUR wake-up radio
  • the specific implementation manner of the auxiliary circuit in the terminal device with the auxiliary circuit is not limited, and may be any functional entity capable of receiving the WUS. Wherein, the functional entity may be co-established with the terminal equipment.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the relevant solutions in the current traditional 802.11 protocol focus on optimizing the sleep strategy of the device.
  • another way to reduce equipment energy waste is to use low-power WUR.
  • the equipment also includes a WUR transceiver. When the main transceiver enters deep sleep, the low-power WUR The WUR transceiver wakes up and starts working.
  • wake-up signal WUS
  • WUP wake-up packet
  • WUR technology uses a low-power WUR transceiver to replace the main transceiver to listen to the channel when the medium is idle, which can effectively reduce the energy waste of the device.
  • the modulated signal is said to be a binary digitally modulated signal. Keying with binary information symbols is called binary amplitude keying, represented by ASK.
  • ASK is a relatively simple modulation method, which is equivalent to the amplitude modulation in analog signals, except that what is multiplied by the carrier frequency signal is a binary number.
  • the amplitude shift is to take the frequency and phase as constants, and the amplitude as a variable, and the information bits are transmitted through the amplitude of the carrier.
  • OOK modulation is binary amplitude keying.
  • OOK is a special case of ASK modulation.
  • a high amplitude (or envelope, level, or energy, etc.) (for example, higher than a certain threshold, or non-zero) is called OOK modulation symbol 1, or called OOK modulation symbol ON (ON), or called The OOK modulation symbol is on; the amplitude (or envelope, level or energy, etc.) is low (for example, below a certain threshold, or 0) is called OOK modulation symbol 0, or called OOK modulation symbol OFF (OFF) , or called OOK modulation symbol break.
  • the height of the amplitude is defined relative to the amplitude demodulation threshold of the receiver. If it is greater than the demodulation threshold, it is called high amplitude, and if it is lower than the demodulation threshold, it is called low amplitude.
  • Phase shift keying (phase shift keying, PSK).
  • a modulation technique in which the phase of a carrier wave represents information about an incoming signal Taking binary phase modulation as an example, when the symbol is "1", the modulated carrier is in phase with the unmodulated carrier; when the symbol is "0”, the modulated carrier is in reverse phase with the unmodulated carrier; "1" and "0” ”
  • the carrier phase difference after modulation is 180°.
  • Quadrature amplitude modulation QAM
  • QAM is the combination of quadrature carrier modulation technology and multi-level amplitude keying.
  • Quadrature Amplitude Keying is a method of combining two amplitude modulated signals (ASK and PSK) into one channel.
  • a quadrature AM signal has two carriers of the same frequency, but 90 degrees out of phase.
  • One signal is an I-channel signal, and the other signal is a Q-channel signal.
  • the two modulated carriers are mixed at the time of transmission. After reaching the destination, the carrier is separated, the data is extracted separately and mixed with the original modulation information.
  • QAM is to use two independent baseband signals to suppress carrier double sideband amplitude modulation on two mutually orthogonal carriers of the same frequency, and use the orthogonality of the frequency spectrum of the modulated signal in the same bandwidth to realize two parallel digital information transmission.
  • Common QAM modulations include binary phase shift keying (binary phase shift keying, BPSK), quadrature phase shift keying (quadrature phase shift keying, QPSK), 16QAM, 64QAM, etc.
  • the coordinates of one modulation symbol of one modulation mode in the coordinate system are expressed as constellation points.
  • One coordinate axis of the coordinate system is the I road, indicating the coordinates of the I-channel signal; the other coordinate axis of the coordinate system is the Q road, indicating the coordinates of the Q-channel signal.
  • QSPK modulation 4 modulation symbols are point by constellation
  • Q road coordinate is the coordinates of the I road.
  • Coherent demodulation is also called synchronous detection, which is suitable for the demodulation of all linear modulation signals.
  • the key to realizing coherent demodulation is to recover a coherent carrier that is strictly synchronized with the modulated carrier at the receiving end.
  • Coherent demodulation refers to the use of a multiplier to input a reference signal that is coherent with the carrier frequency (same frequency and phase) and multiplied by the carrier frequency.
  • the non-coherent demodulation method used refers to a demodulation method that does not need to extract carrier information.
  • the non-coherent demodulation method has a simple circuit and is easy to implement, but compared with the coherent demodulation method, its performance is slightly lost.
  • Envelope detection is a signal detection method in which the high-frequency signal is used as the input signal and the envelope or amplitude line of the low-frequency original signal is obtained through a half-wave or full-wave rectification circuit. According to the envelope of the original signal obtained, the receiver compares the envelope of the original signal with the amplitude or energy threshold set by the receiver after digital sampling, and judges whether the transmitted signal is 1 or 0, that is, whether the signal is on or off (ON/OFF).
  • 5G networks mainly use two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz-6GHz, also known as the frequency band below 6GHz (sub 6GHz); the frequency range of the FR2 frequency band is 24.25GHz-52.6GHz, commonly known as millimeter wave (mmWave).
  • mmWave millimeter wave
  • Euclidean metric is a commonly used distance definition, which refers to the real distance between two points in the m-dimensional space, or the natural length of the vector (that is, the distance from the point to the origin) .
  • the Euclidean distance in 2D and 3D space is the actual distance between two points.
  • IEEE 802.11ba The Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard organization began to discuss the relevant content of WUR in 2017, and determined that the IEEE WUR standard is IEEE 802.11ba, which enables a receiver to receive signals with low power consumption ( For example, power consumption ⁇ 1mW), the terminal device has two receiver links (for example, a primary receiver and a secondary receiver), where the primary receiver is similar to the receiver of a traditional cellular terminal device, without significant changes; As for the auxiliary receiver, it is necessary to design a WUR receiver with low power consumption (for example, power consumption ⁇ 1mW).
  • the network device sends an ASK or OOK modulated signal that presents an ON/OFF waveform in the time domain to the WUR receiver.
  • the WUR receiver After receiving the modulated signal, the WUR receiver does not use the signal generated by the high-frequency local oscillator to perform coherent demodulation like the traditional cellular OFDM signal receiver, but uses the envelope detector to perform signal amplitude envelope (Envelope Detector) ) for non-coherent demodulation. Because the WUR receiver does not need to generate high-frequency local oscillator signals, the power consumption of the WUR receiver is greatly reduced, which is only on the order of tens of microwatts, which is much smaller than that on the order of tens or hundreds of milliwatts. After the WUR receiver successfully demodulates the data information through envelope detection, the WUR receiver wakes up the main receiver, and the main receiver needs to wake up at this time for information transmission.
  • sequence length referred to in this application can be understood as the number of elements included in the sequence.
  • the length of the frequency domain sequence is 12.
  • the maximum frequency domain bandwidth allocated to the transmission signal (for example, WUR transmission wake-up signal) in the network device, and the actual bandwidth occupied by signal transmission is within the allocated frequency domain bandwidth range.
  • the IEEE 802.11ba WUR protocol currently supports working at 2.4GHz or 5GHz frequency points
  • 802.11ba supports subcarrier spacing of 312.5kHz
  • OFDM time domain signal time is 4 ⁇ s symbols (which can be called high data rate, HDR)) and 2 ⁇ s symbols (which can be called low data rate (LDR)).
  • FIG. 2 A schematic diagram of a signal processing method of 802.11ba is shown in FIG. 2 .
  • the WUR signal occupies the central 13 subcarriers of 20MHz in the system, and occupies a bandwidth of about 4.06MHz.
  • a sequence is mapped on the 12 subcarriers of the 13 subcarriers except the central subcarrier (subcarrier #0).
  • the elements of the sequence can be shifted from Keying (e.g., binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK)) and/or quadrature amplitude (e.g., 16QAM, 64QAM, or 256QAM) modulation Constellation point selection.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • amplitude e.g., 16QAM, 64QAM, or 256QAM
  • inverse fast Fourier transform inverse fast Fourier transform, IFFT
  • cyclic prefix cyclic prefix, CP
  • the 4 ⁇ s symbol generated at the time is used as the ON symbol, that is, the WUR receiver determines that this symbol is the transmitted OOK modulation symbol ⁇ 1 ⁇ through envelope detection; if no information is sent in the 13 subcarriers, after the IFFT and CP operations of the OFDM transmitter,
  • the generated OFDM time-domain signal is also a signal without energy.
  • this symbol is regarded as an OFF symbol, that is, the WUR receiver determines that this symbol is an OOK modulation symbol ⁇ 0 ⁇ through envelope detection.
  • Figure 3 is a schematic diagram of a waveform.
  • the OFDM time domain signal time is much longer than the OFDM time domain signal time of IEEE WUR. If one ON/OFF OFDM time domain signal still carries 1 bit For 1/0 information, the transmission information rate is much lower than the information rate of WUR. For example, when the subcarrier spacing is 15kHz, the data rate is much lower than IEEE WUR, which makes the information transmission efficiency of WUR in NR too low, and the wake-up efficiency of terminal equipment is also greatly reduced.
  • the present application provides a communication method, so that multiple ON/OFF information waveforms can be carried in one OFDM time domain signal, and the data transmission rate is increased.
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • the first, second and various numbers are only for convenience of description, for distinguishing objects, and are not used to limit The scope of the application examples. For example, distinguishing between different messages, etc. It is not intended to describe a particular order or sequence. It is to be understood that the terms so described are interchangeable under appropriate circumstances in order to enable descriptions other than the embodiments of the application.
  • preset may include pre-definition, for example, protocol definition.
  • predefinition for example, protocol definition.
  • “predefine” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the receiving end device or the sending end device). No limit.
  • the "storage" mentioned in the embodiment of the present application may refer to storage in one or more memories.
  • the one or more memories may be provided independently, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • a part of the one or more memories may also be provided separately, and a part may be integrated in a decoder, a processor, or a communication device.
  • the type of the storage may be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in the embodiment of this application may refer to a standard protocol in the communication field, for example, it may include 5G protocol, new radio (new radio, NR) protocol and related protocols applied in future communication systems. Applications are not limited to this.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the transmitting end device generates a first OFDM time domain signal.
  • the first OFDM time-domain signal may also be referred to as a first OFDM time-domain symbol, or may also be understood as a first OFDM time-domain waveform.
  • the sending end device may be a network device (eg, an access network device).
  • the sending end device may also be other devices that send OFDM time domain signals.
  • the first OFDM time domain signal includes: N first modulation symbols arranged in the time domain, where the first modulation symbols are amplitude shift keying modulation symbols.
  • the amplitude shift keying modulation symbol can be the ASK modulation symbol involved in the basic concept above, or the OOK modulation symbol (the OOK modulation symbol can also be called 2ASK modulation symbol), or it can also be other symbols that can present amplitude or energy in the time domain for a period of time
  • a high or low signal is used as an ON/OFF modulation symbol, where the ON/OFF modulation symbol means that the signal amplitude is low for a period of time in the time domain (for example, the average energy or average amplitude of the signal during a period of time is lower than a certain set Threshold, or the signal amplitude value is 0), and the average energy or average amplitude of the signal within a period of time is high (for example, the average energy or average amplitude of the signal within a period of time is higher than a certain set threshold).
  • the N first modulation symbols carry N bits
  • These 8 modulation symbols each carry one bit.
  • the modulation mode is OOK
  • the OOK modulation symbol ⁇ 1 ⁇ represents a bit "1”
  • the OOK modulation symbol ⁇ 0 ⁇ represents a bit "0”.
  • modulation symbol ⁇ 0 ⁇ of OOK represents bit "1”
  • modulation symbol ⁇ 1 ⁇ of OOK represents bit "0".
  • the N bits may be the 8 bits of the original information, or the bits encoded by the line code Manchester.
  • the Manchester encoding factor is 2, the original information bit is "1100”, the original information bit “1” is encoded as 10, the original information bit “0” is encoded as 01, and the encoded bit is "10100101”; also for example, the Manchester encoding factor is 4.
  • the original information bit is "10”
  • the original information bit "1” is encoded as "1010”
  • the original information bit "0” is encoded as "0101”
  • the encoded bit is "10100101”.
  • the line encoding may be Pulse Interval Encoding (PIE), or other line encoding formats in which the last bit after the line encoding is 0.
  • PIE Pulse Interval Encoding
  • the specific type of the first modulation symbol included in the first OFDM time-domain signal there is no limitation on the specific type of the first modulation symbol included in the first OFDM time-domain signal, and it only needs to present a signal with high or low amplitude or energy in the time domain for a period of time.
  • the above-mentioned first OFDM time-domain signal includes N first modulation symbols arranged in the time domain. It can be understood that the first OFDM time-domain signal carries N first modulation symbols, for example, the first OFDM time-domain signal is in the time domain Carrying a first modulation symbol for a period of time; or it can also be understood that the first OFDM time domain signal is represented by N first modulation symbols; or it can also be understood that the first OFDM time domain signal includes N first modulation symbols corresponding signal.
  • the N first modulation symbols arranged in the time domain may be understood as: the N first modulation symbols are arranged continuously in the time domain; or may be understood as: the N first modulation symbols are arranged sequentially in the time domain.
  • the N first modulation symbols are the first first modulation symbol, the second first modulation symbol, ..., the Nth first modulation symbol, two consecutive first modulation symbols in the time domain (such as The first first modulation symbol and the second first modulation symbol) are arranged adjacently, and there may be a gap between two consecutive first modulation symbols (for example, the N first modulation symbols are equally spaced in the time domain arrangement), or there may be no gap (for example, the duration of each first modulation symbol in the time domain is 1/N of the duration of the first OFDM time domain signal), which is not limited in this application.
  • first OFDM time domain signal For ease of understanding, the relationship between the first OFDM time domain signal and the N first modulation symbols is described in conjunction with (a) to (c) in FIG. 5 .
  • first modulation symbol is an OOK modulation symbol for description.
  • the first OFDM time-domain signal includes N OOK modulation symbols arranged consecutively in the time domain, and the sum of the lengths of the N OOK modulation symbols is the length of the first OFDM time-domain signal length;
  • the first OFDM time-domain signal includes N OOK modulation symbols arranged continuously in the time domain, and the sum of the lengths of the N OOK modulation symbols is less than that of the first OFDM time-domain signal length;
  • the first OFDM time-domain signal includes N OOKs arranged at intervals in the time domain, and two consecutive first modulation symbols in the N first modulation symbols in the time domain There is a gap (gap) between them, and the sum of the lengths of the N OOK modulation symbols is less than the length of the first OFDM time domain signal.
  • two of the N first modulation symbols do not overlap in the time domain.
  • the above-mentioned N ASK modulation symbols included in the first OFDM time domain signal do not overlap any two in the time domain, which can improve the performance of the receiver in detecting ASK modulation symbols.
  • the non-overlapping of any two of the N first modulation symbols in the time domain may be understood as: there is no overlap between any two first modulation symbols in the N first modulation symbols in the time domain.
  • the end point of the previous first modulation symbol in the time domain among the two adjacent first modulation symbols is the start point of the next first modulation symbol in the time domain.
  • the end point of the previous first modulation symbol in the time domain among the two adjacent first modulation symbols is earlier than the start point of the second first modulation symbol in the time domain.
  • the sending end device After the sending end device generates the first OFDM time domain signal, the first OFDM time domain signal can be sent to the receiving end device, and the method flow shown in Figure 4 also includes:
  • the sending end device sends the first OFDM time domain signal to the receiving end device, or the receiving end device receives the first OFDM time domain signal from the sending end device.
  • the sending-end device After generating the first OFDM time-domain signal, the sending-end device adds the CP corresponding to the subcarrier interval corresponding to the first OFDM time-domain signal, and then sends the first OFDM time-domain signal and the CP.
  • the sending end device may send the first OFDM time domain signal in a unicast manner, or may send the first OFDM time domain signal in a broadcast manner.
  • the receiver device may be a terminal device, or other devices that perform envelope detection.
  • the receiver device can know the first OFDM time-domain signal according to the way indicated by the indication information or the predefined way, including arranging N first modulation symbols in the time domain, which can effectively realize the first modulation by the receiver device. Symbol detection.
  • the receiving end device may know, according to the indication information sent by the sending end device, that the first OFDM time domain signal includes arranging N first modulation symbols in the time domain.
  • the receiving end device receives indication information from the sending end device, where the indication information is used to indicate at least one of the following:
  • the indication information is used to indicate the relationship between the duration of each OOK modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal (for example, the indication information indicates that the duration of each first modulation symbol occupies 1/N of the time of the first OFDM time-domain signal); or,
  • the indication information is used to indicate the subcarrier interval corresponding to the duration of the first OFDM time domain signal.
  • the receiving end obtains the first modulation symbol after receiving the indication information duration.
  • duration time can also be understood as “occupied time”.
  • the receiving end device may learn that the first OFDM time-domain signal includes arranging N first modulation symbols in the time domain according to a predefined (eg, predefined in a protocol).
  • a predefined eg, predefined in a protocol
  • the number of the first OFDM time-domain signal including the first modulation symbols arranged in the time domain is predefined; or,
  • the relationship between the duration of each OOK modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal is predefined; or,
  • the subcarrier interval corresponding to the duration of the first OFDM time domain signal is predefined.
  • the receiving end device is the terminal device with the low power consumption receiving circuit of envelope detection described above, and the low power consumption receiving circuit of envelope detection may be: a WUR transceiver for receiving WUS, in which The WUS sent and received by the WUR transceiver in the terminal equipment of the envelope detection low-power receiving circuit is an OFDM time-domain signal with ON/OFF waveform in the time domain, and one OFDM time-domain signal includes multiple modulation symbols, Effectively improve the downlink data transmission rate of NR WUR.
  • a WUR transceiver for receiving WUS in which The WUS sent and received by the WUR transceiver in the terminal equipment of the envelope detection low-power receiving circuit is an OFDM time-domain signal with ON/OFF waveform in the time domain, and one OFDM time-domain signal includes multiple modulation symbols, Effectively improve the downlink data transmission rate of NR WUR.
  • the receiving end device obtains the time length of the CP corresponding to the first OFDM time domain signal according to the subcarrier spacing indicated by the indication information or the predefined subcarrier spacing.
  • the receiver device removes the CP at the receiver, and performs envelope detection to detect the first OFDM time domain signal.
  • the receiving end device detects the N first modulation symbols included in the first OFDM time domain signal according to the indication information or the predefined first modulation symbol duration.
  • the first OFDM time domain signal may also be used to indicate one of the following identifiers:
  • the identifier of the terminal device By indicating the identifier or a part of the identifier of the terminal device, the terminal device can wake up instantaneously or communicate effectively in a dormant state, thereby improving the energy saving effect of the terminal device.
  • the identification (UE ID) of the terminal equipment is represented by 40 bits, and the first OFDM time domain signal may indicate the first few bits of the UE ID.
  • the first OFDM time domain signal carries 8 OOK modulation symbols, and 8 OOK modulation symbols carry 8 bits of information, so that the first OFDM time domain signal can indicate 8 bits; similarly, the first OFDM time domain signal can indicate 16 bits etc.
  • the first OFDM time domain signal may also indicate all bits of the UE ID (for example, indicate 40 bits).
  • the identifier (UE groupID) of the terminal equipment group where the terminal equipment is located is represented by 40 bits
  • the first OFDM time domain signal may indicate the first few digits of the UE groupID (such as indicating 8 bits, or indicating 16 bits, etc.), or All bits of the UE groupID can be indicated (for example, 40 bits).
  • the receiver device based on the first OFDM time domain signal after receiving the first OFDM time domain signal.
  • the above first OFDM time domain signal is used for WUS
  • the identification information of waking up the terminal device and the first OFDM time-domain signal is just an example, and does not constitute any limitation on the protection scope of the present application.
  • the above-mentioned sending-end device generates the first OFDM time-domain signal, which may be that the sending-end device first generates the first frequency-domain sequence, and then generates the first OFDM time-domain signal based on the first frequency-domain sequence.
  • Generate the N first modulation symbols by generating the first frequency domain sequence, compared with the method of obtaining N first modulation symbols by operating on the time domain signal, the time domain signal mapped by the method provided by this application maintains the same frequency domain as
  • the existing NR OFDM system maintains orthogonality in the frequency domain, which can avoid the interference of spectrum leakage on the transmission frequency domain of the NR system, reduce the impact on the performance of the NR system, and better coexist with the NR OFDM system.
  • the generating of the first OFDM time domain signal by the above-mentioned transmitting end device includes: generating the first frequency domain sequence by the transmitting end device, and generating the first OFDM time domain signal according to the first frequency domain sequence domain signal.
  • the transmitting end device performs Q-point IFFT transformation or time domain transformation on the first frequency domain sequence to obtain the first OFDM time domain signal.
  • the value of Q is specifically related to the allocated frequency domain bandwidth.
  • FIG. 6 is a schematic diagram of generating a first OFDM time-domain signal provided by an embodiment of the present application.
  • the sending end device may first generate the first frequency domain sequence, and then generate the first OFDM time domain signal based on the first frequency domain sequence. As shown in FIG. 6 , how the first frequency domain sequence generates the first OFDM time domain signal when the subcarrier spacing is 15 KHz.
  • the bandwidth occupied by the first frequency domain sequence mapped to the frequency domain is 1 physical resource block (physical resource block, PRB) (that is, 12 subcarriers as shown in Figure 6), and each subcarrier occupies 15KHz (the subcarrier spacing is 15KHz ).
  • PRB physical resource block
  • a total of Q 64 subcarriers, the middle PRB occupied by the first frequency domain sequence.
  • PRB physical resource block
  • the first frequency domain sequence includes 12 elements, which are respectively a 1 , a 2 , . . . , a 12 .
  • a 1 , a 2 , ..., a 12 are carried on c 27 , c 28 , ..., c 38 respectively.
  • the rest of the subcarriers are mapped to 0, also known as zero padding. That is, subcarriers c 1 to c 26 are mapped to 0.
  • the subcarrier mapping of 0 may also be understood as the OOK modulation symbol carried by the subcarrier is 0, or the OOK modulation symbol carried by the subcarrier is empty.
  • the first frequency domain sequence S ⁇ 0, ..., 0 (26 0s), a 1 , a 2 , ..., a 12 , 0, ..., 0 (26 0s) with a length of 64 is obtained ⁇ .
  • the first OFDM time domain signal includes a plurality of first modulation symbols (as shown in FIG. 6 , the first modulation symbols included in the first OFDM time domain signal are ⁇ 100110 ⁇ ).
  • the sending end device sends the first OFDM time domain signal and the CP signal.
  • the method shown in Figure 4 also includes:
  • the sending end device generates a first frequency domain sequence.
  • the first frequency domain sequence has a mapping relationship with the aforementioned N first modulation symbols.
  • the mapping relationship between the first frequency domain sequence and the N first modulation symbols can be understood as: the time domain signal corresponding to the first frequency domain sequence includes N first modulation symbols; or it can also be understood as: the first frequency
  • the OFDM time-domain signal obtained through mapping or time-domain transformation (for example, IFFT transformation) of the domain sequence includes N first modulation symbols.
  • the subcarrier interval mapped by the first frequency domain sequence is any one of subcarrier intervals such as 15kHz, 30kHz, and 60kHz.
  • Time-domain samples D ⁇ d 1 , d 2 , . . . d 64 ⁇ .
  • the time domain interval between two adjacent time domain samples of D is t, for example, the time domain interval between d 2 and d 3 is t.
  • the sending end converts D through a digital-to-analog conversion, and sends it out through a carrier wave.
  • the duration of an OOK modulation symbol in the time domain is 1/8 of the signal time in the OFDM time domain.
  • the first frequency domain sequence generated by the sending end device is mapped to the subcarrier, and the combination of OOK modulation symbols obtained by IFFT transformation to the time domain is ⁇ 10011001 ⁇ , that is to say, the combination of modulation symbols has an amplitude or energy of ⁇ ON, OFF,OFF,ON,ON,OFF,OFF,ON ⁇ .
  • the sending end device generates the first frequency domain sequence, including:
  • the sending end device generates the first frequency domain sequence according to the second frequency domain sequence, and the time domain signal mapped by the first frequency domain sequence includes part or all of the time domain signal mapped by the second frequency domain sequence.
  • the second frequency domain sequence may be a frequency domain sequence generated by the sending end device or predefined by the protocol, which may be called a base sequence, and the second frequency domain sequence can be used to generate the first frequency domain sequence.
  • the second frequency domain sequence is mapped to the subcarrier, and the OOK modulation symbol obtained by IFFT transformation to the time domain is: ⁇ 10000000 ⁇ , while the first frequency domain sequence is mapped to the subcarrier, and the IFFT transformation is obtained to the time domain
  • the OOK modulation symbol is: ⁇ 10011001 ⁇ , where the first 3 bits of ⁇ 10000000 ⁇ and ⁇ 10011001 ⁇ are the same, it can be understood that the time domain signal mapped by the first frequency domain sequence includes the part of the OOK modulation symbol mapped by the second frequency domain sequence.
  • the second frequency domain sequence is mapped to the subcarrier, and the OOK modulation symbol obtained by IFFT transformation to the time domain is: ⁇ 10011001 ⁇ , while the first frequency domain sequence is mapped to the subcarrier, and the IFFT transformation is performed to the time domain to obtain
  • the OOK modulation symbol of is: ⁇ 10011001 ⁇
  • the time domain signal mapped by the first frequency domain sequence includes all the OOK modulation symbols mapped by the second frequency domain sequence.
  • the second frequency domain sequence may be directly identified as the first frequency domain sequence.
  • the above-mentioned time-domain signal mapped by the second frequency-domain sequence includes N second modulation symbols, where the second modulation symbols are amplitude shift keying modulation symbols.
  • the modulation manner of the second modulation symbol is the same as that of the above-mentioned first modulation symbol.
  • the time domain signal mapped by the second frequency domain sequence includes N second modulation symbols, which can also be understood as the second frequency domain
  • the time-domain signal mapped by the sequence includes N second modulation symbols arranged in the time domain; or it can also be understood that the time-domain signal mapped by the second frequency-domain sequence can carry N second modulation symbols, for example, the second
  • the time domain signal mapped by the frequency domain sequence carries a second modulation symbol within a period of time in the time domain; or it can also be understood that the time domain signal mapped by the second frequency domain sequence is represented by N second modulation symbols; or It can be understood that the time-domain signal mapped by the second frequency-domain sequence includes signals corresponding to N second modulation symbols.
  • the time-domain signal mapped by the second frequency-domain sequence includes N second modulation symbols. It includes at least one amplitude shift keying modulation symbol 1 and one amplitude shift keying The modulation symbol 0 is enough.
  • the N second modulation symbols include at least one OOK modulation symbol 1 and one OOK modulation symbol 0.
  • the one with high amplitude, envelope, level or energy is called OOK modulation symbol 1, or OOK modulation symbol ON; the one with low amplitude, envelope, level or energy is called OOK modulation symbol 0, or OOK
  • the modulation symbol is OFF.
  • the N second modulation symbols include at least one ASK modulation symbol 1 and an ASK modulation symbol 0 .
  • the one with high amplitude, envelope, level or energy is called ASK modulation symbol 1, or ASK modulation symbol ON; the one with low amplitude, envelope, level or energy is called ASK modulation symbol 0, or ASK modulation symbol 0
  • the modulation symbol is OFF.
  • the sending end device generates the first frequency domain sequence according to the second frequency domain sequence, including:
  • the sending end device generates M third frequency domain sequences according to the second frequency domain sequence
  • the sending end device generates the first frequency domain sequence according to the M third frequency domain sequences.
  • N MP
  • P is a positive integer. For example, P equals 1, 2 or 4.
  • P>1 P is the factor of line code encoding. That is, one original information bit is encoded into P bits by line code.
  • generating the first frequency-domain sequence by the sending-end device according to the second frequency-domain sequence can reduce the storage capacity of the sending-end device and the complexity of the sending-end device, and the reasons may be:
  • a frequency-domain sequence corresponding to one value of the N amplitude-shift keying modulation symbols refers to a frequency-domain sequence obtained by time-frequency transforming the time-domain signals of the N amplitude-shift keying modulation symbols.
  • the time-frequency transform may be a Fourier transform. For example, the time domain signals of the N ASK modulation symbols are sampled in the time domain, interpolated, and then transformed into the frequency domain by FFT to obtain the frequency domain sequence.
  • the storage capacity of the sending end device and the complexity of the sending end device will be increased.
  • generating the first frequency domain sequence based on the second frequency domain does not need to store frequency domain sequences corresponding to each value of the N amplitude shift keying modulation symbols, thereby reducing the storage capacity and complexity of the transmitting end device.
  • the sending end device generates the first frequency domain sequence according to the M third frequency domain sequences, including:
  • the sending end device obtains the first sequence by adding the M third frequency domain sequences.
  • M second frequency-domain sequences are added to obtain a fourth frequency-domain sequence
  • the first frequency-domain sequence is determined by normalizing the square sum of moduli of elements in the fourth frequency-domain sequence.
  • the normalization of the square of the modulus can be understood as: the sum of the modulus squares of all elements in the fourth frequency domain sequence is X, and each element in the fourth frequency domain sequence is divided by the root sign X so that the sequence element The value of the modular sum of squares is normalized.
  • the relationship between the second frequency domain sequence and the M third frequency domain sequences includes the following two types:
  • the second frequency domain sequence has a cyclic shift relationship with each of the M third frequency domain sequences in the time domain.
  • the cyclic shift relationship between the second frequency domain sequence and the third frequency domain sequence in the time domain can be understood as: the time domain signal mapped by the third frequency domain sequence can be the time domain signal mapped by the second frequency domain sequence obtained by cyclic shift.
  • the second frequency domain sequence is mapped to a subcarrier
  • the OOK modulation symbol obtained by performing IFFT transformation to the time domain is ⁇ 10000000 ⁇
  • one of the M third frequency domain sequences is mapped to a subcarrier, and the IFFT is performed
  • the OOK modulation symbol obtained by transforming to the time domain is ⁇ 00010000 ⁇
  • ⁇ 00010000 ⁇ can be obtained by cyclically shifting ⁇ 10000000 ⁇ by 3 in the time domain, and the cyclic shift value is 3.
  • the time-domain signal mapped by another frequency-domain sequence in the M third frequency-domain sequences is ⁇ 00001000 ⁇
  • ⁇ 00001000 ⁇ can be obtained by cyclically shifting 4 in the time domain from ⁇ 1000000 ⁇ , then the cyclic shift value for 4.
  • the sending end device In the case where the relationship between the second frequency domain sequence and the M third frequency domain sequences is the first type, the sending end device generates M third frequency domain sequences according to the second frequency domain sequence, including:
  • the sending end device generates M third frequency domain sequences according to the second frequency domain sequence and M phase factors,
  • the i-th frequency-domain sequence in the M third frequency-domain sequences is composed of the second frequency-domain sequence and the i-th phase factor in the M phase factors
  • the time-domain signal mapped by the second frequency-domain sequence is cyclically shifted in the time domain by T i amplitude shift keying modulation symbol length is the time-domain signal mapped by the ith frequency-domain sequence, the and T i satisfy the following formula:
  • T i is equal to 3.
  • T i is equal to 4.
  • the k-th element b k in the above i-th frequency domain sequence, the k-th element a k in the second frequency domain sequence, the i-th phase factor in the M phase factors Satisfy the following relationship:
  • the k is a positive integer less than or equal to L, and the L is the length of the third frequency domain sequence.
  • L is less than or equal to the number of subcarriers corresponding to the number of PRBs occupied by a third frequency domain sequence mapped to the frequency domain, for example, when the frequency domain occupies 1 PRB, the L is less than or equal to 12.
  • the second type is the first type:
  • the L first elements included in the second frequency domain sequence are the same as the L second elements included in one third frequency domain sequence in the M third frequency domain sequences, and the L first elements and L second elements
  • the order of mapping to the frequency domain is the same or different.
  • the order in which the L first elements are mapped to the frequency domain can be understood as the mapping of the first elements (eg, ⁇ a 0 , a 1 ,...,a L-1 ⁇ ) to the subcarriers e 0 , e 1 ,...,e order on L-1 ;
  • the order in which L second elements are mapped to the frequency domain can be understood as the second element (eg, ⁇ a L-1 ,..,a 1 ,a 0 ⁇ ) mapping to the order on subcarriers e 0 , e 1 ,...,e L-1 .
  • the transmitting end may determine that the elements included in the second frequency domain sequence are mapped to The order of the frequency domain is the same as or different from the order in which elements included in the third frequency domain sequence are mapped to the frequency domain.
  • the second frequency domain sequence is mapped to the subcarrier
  • the OOK modulation symbol obtained by performing IFFT transformation to the time domain is ⁇ 10000000 ⁇
  • one of the M third frequency domain sequences is mapped to the subcarrier
  • the OOK modulation symbol obtained by performing IFFT transformation to the time domain is ⁇ 00000001 ⁇ , which can be understood as the order in which the elements included in the second frequency domain sequence are mapped to the frequency domain and the order in which the elements included in the third frequency domain sequence are mapped to the frequency domain on the contrary.
  • FIG. 7 is a method for generating the first frequency domain sequence provided by the embodiment of this application. Schematic flow chart of .
  • the second frequency domain sequence may be generated by the sending end device.
  • the transmitting end device determines the second frequency domain sequence (or called the base sequence) from the constellation points of any of the following modulation modes:
  • the transmitting end device determines a plurality of BPSK constellation points as the second frequency domain sequence.
  • the transmitting end device determines a plurality of 16QAM constellation points as the second frequency domain sequence.
  • the transmitting end device determines a plurality of QPSK constellation points as the second frequency domain sequence.
  • modulation methods are just examples, and do not constitute any limitation to the protection scope of the present application.
  • the modulation methods in the present application may also be other modulation methods, which will not be repeated here.
  • the specific process for the sending end device to determine the second frequency domain sequence includes:
  • the sending end device determines that one OFDM time domain signal in the time domain contains N second modulation symbols.
  • the transmitting end device determines the basic pattern of N second modulation symbols in one OFDM time domain signal, wherein the basic pattern refers to a period of symbol time (such as several 1/N symbol times) in one OFDM time domain signal ) is high level to represent "1", and the waveform of a period of symbol time (for example, several 1/N symbol time) is low level to represent "0".
  • the basic pattern refers to a period of symbol time (such as several 1/N symbol times) in one OFDM time domain signal ) is high level to represent "1”
  • the waveform of a period of symbol time for example, several 1/N symbol time
  • Each OOK modulation symbol is considered as a 1/8 OFDM time domain signal.
  • the sending end device determines time-domain samples according to the basic patterns of the N second modulation symbols, and performs FFT transformation on a time-domain signal composed of the time-domain samples.
  • the 8 second modulation symbol patterns are ⁇ 10000000 ⁇ , and each modulation symbol corresponds to 8 time-domain samples, and the 8 time-domain samples have the same value.
  • the first OOK modulation symbol is 1, and its corresponding 8
  • the time-domain samples are 8 time-domain samples with the same value, for example, corresponding to 8 time-domain samples with a value of 1.
  • 8 modulation symbols can get 64 samples in time domain.
  • the sending end device performs 64-point FFT transformation on the 64 time-domain samples, and obtains the transformed frequency-domain sequence as ⁇ z 1 , z 2 ,...,z 64 ⁇ .
  • Way 1 The sending end device intercepts 12 elements ⁇ z 27 , z 28 , . . . , z 38 ⁇ located in the middle of the sequence as the second frequency domain sequence.
  • Mode 2 The symbols mapped to subcarriers are required to be a modulation (eg, PSK or QAM) constellation point.
  • symbols that are required to be mapped to subcarriers are constellation points of 64QAM.
  • each element of ⁇ z 27 , z 28 ,..., z 38 ⁇ is quantized to the constellation point of the modulation scheme with the closest Euclidean distance (for example, 64QAM).
  • z 27 equals 6.34-2.63j
  • the nearest 64QAM constellation point to z 27 is 7-3j.
  • z 27 is quantized to 7-3j.
  • the quantized sequence of ⁇ z 27 , z 28 , . . . , z 38 ⁇ according to the modulation mode is used as the second frequency domain sequence.
  • the transmitting end device maps the obtained second frequency domain sequence to the time domain to obtain an OFDM time domain signal including the OOK modulation symbol ⁇ 10000000 ⁇ .
  • FIG. 8 is a time domain signal pattern mapped on the time domain by the second frequency domain sequence.
  • the second frequency domain sequence may be predefined by a protocol.
  • the sending end device may acquire the second frequency domain sequence according to the second frequency domain sequence predetermined by the protocol.
  • the sending end device After the sending end device determines the second frequency domain sequence, the sending end device can generate M third frequency domain sequences according to the second frequency domain sequence, and the method flow shown in FIG. 7 also includes:
  • generating M third frequency domain sequences includes the following two ways:
  • Mode 1 corresponding to the above-mentioned first relationship.
  • the second frequency domain sequence has a cyclic shift relationship with each of the M third frequency domain sequences in the time domain.
  • the process of generating M third frequency domain sequences includes:
  • Step 1 The sending end device determines the set of phase factors
  • the sending end device determines that the first OFDM time domain signal to be sent includes N first modulation symbols arranged in the time domain, such as OOK modulation symbols ⁇ 10011001 ⁇ .
  • the method for the transmitting end device to determine the bits to be transmitted in one OFDM time domain signal may be to determine the information bits after line code encoding according to the information bits to be transmitted, for example, the Manchester coding factor is 2, and the information bits are ⁇ 0101 ⁇ , the original information bit 1 is encoded as 10, the original information bit 0 is encoded as 01, and the encoded bit is ⁇ 10011001 ⁇ .
  • the sending end device determines the phase factor set according to the relationship between the time domain signal mapped by the second frequency domain sequence and the first OFDM time domain signal to be transmitted, including the N first modulation symbols arranged in the time domain
  • the OOK modulation symbols included in the time domain signal mapped with the second frequency domain sequence are ⁇ 10000000 ⁇
  • the first OFDM time domain signal includes N first modulation symbols arranged in the time domain as OOK modulation symbols ⁇ 10011001 ⁇ as an example:
  • N When N is equal to 8, when the N second modulation symbols included in the second frequency domain sequence are OOK modulation symbols ⁇ 10000000 ⁇ , shifting 0 1/N OFDM time domain signal time on the basis of ⁇ 10000000 ⁇ is obtained ⁇ 10000000 ⁇ , shift 3 times 1/N OFDM time domain signal to get ⁇ 00010000 ⁇ , and shift 4 times 1/N OFDM time domain signal to get ⁇ 00001000 ⁇ and shift 7 times 1/N OFDM time domain signal Time gets ⁇ 00000001 ⁇ , where ⁇ 10000000 ⁇ , ⁇ 00010000 ⁇ , ⁇ 00001000 ⁇ and ⁇ 00000001 ⁇ can be superimposed on the time domain to get ⁇ 10011001 ⁇ , then ⁇ 10011001 ⁇ needs to be shifted by ⁇ 10000000 ⁇ by 0, 3, 4 respectively ,7 is formed by superposition of the time domain signals obtained.
  • the OOK modulation symbols included in the time domain signal mapped by the second frequency domain sequence are ⁇ 10000000 ⁇
  • the first OFDM time domain signal includes N first modulation symbols arranged in the time domain as ⁇ 10011001 ⁇ Just for example. It does not constitute any limitation to the protection scope of this application.
  • Step 2 Generate M third frequency domain sequences.
  • the k-th element a k of the second frequency-domain sequence undergoes phase transformation to obtain a k-th element in the third frequency-domain sequence
  • Q is the number of IFFT points, for example, the value of Q can be 256.
  • Q is the number of IFFT points for IFFT transformation into a time domain signal after the frequency domain sequence is mapped to the subcarrier, and Q can be a positive integer to the power of 2.
  • the elements included in the second frequency-domain sequence are ⁇ a 0 , a 1 ,...,a L-1 ⁇ , where L is a positive integer representing the length of the second frequency-domain sequence.
  • One of the M third frequency domain sequences includes elements ⁇ b 0 , b 1 ,...,b L-1 ⁇ , assuming that the time domain signal mapped by the second frequency domain sequence (eg, ⁇ 10000000 ⁇ ) can be shifted by 3 bits to obtain the time-domain signal mapped by the third frequency-domain sequence (for example, ⁇ 00010000 ⁇ ), then:
  • mapping the obtained third frequency domain sequence to the time domain can obtain an OFDM time domain signal including OOK modulation symbol ⁇ 00010000 ⁇ as shown in Figure 9,
  • Figure 9 is the mapping of the third frequency domain sequence on the time domain time-domain signal patterns.
  • the other frequency-domain sequences in the M third frequency-domain sequences are generated in a manner similar to the above-mentioned third frequency-domain sequence, which will not be repeated here.
  • the second frequency domain sequence includes the same elements as each of the M third frequency domain sequences, but the order in which the elements are mapped to the frequency domain is the same or different.
  • the process of generating M third frequency domain sequences includes:
  • Step 1 The sending end device determines the order in which elements are mapped to the frequency domain.
  • the sending end device determines that the first OFDM time domain signal to be sent includes N first modulation symbols arranged in the time domain, such as ⁇ 10000001 ⁇ .
  • the transmitting end device determines M third frequency domain sequences according to the relationship between the time domain signal mapped by the second frequency domain sequence and the first OFDM time domain signal to be transmitted, including the N first modulation symbols arranged in the time domain The order in which the elements included in each third frequency domain sequence in are mapped to the frequency domain.
  • the time domain signal mapped with the second frequency domain sequence is OOK modulation symbol ⁇ 10000000 ⁇
  • the first OFDM time domain signal includes N first modulation symbols arranged in the time domain as OOK modulation symbol ⁇ 10000001 ⁇ as Example to illustrate:
  • the M third frequency domain sequences include two third frequency domain sequences, wherein the elements included in one third frequency domain sequence and the order in which the elements are mapped to the frequency domain are the same as the order of the second frequency domain
  • the sequence is the same; the elements included in another third frequency domain sequence are the same as the second frequency domain sequence, but the elements included in another third frequency domain sequence are mapped to the frequency domain in the same order as the elements included in the second frequency domain sequence are mapped to the frequency domain.
  • the domains are in reverse order.
  • the above-mentioned time-domain signal mapped by the second frequency-domain sequence is ⁇ 10000000 ⁇
  • the first OFDM time-domain signal includes N first modulation symbols arranged in the time domain as ⁇ 10011001 ⁇ , which is just an example for this application
  • the scope of protection does not constitute any limitation.
  • the M third frequency domain sequences include two third frequency domain sequences , wherein the elements included in a third frequency domain sequence and the order in which the elements are mapped to frequency domain subcarriers are the same as the second frequency domain sequence; the elements included in another third frequency domain sequence are the same as the second frequency domain sequence, wherein, The order in which elements in the other third frequency domain sequence are mapped to frequency domain subcarriers is opposite to the order in which elements in the second frequency domain sequence are mapped to frequency domain subcarriers.
  • the amplitude order of the time domain signal (for example, OOK modulation symbol) mapped on the time domain by the other third frequency domain sequence is opposite to that of the time domain signal (for example, OOK modulation symbol) mapped by the second frequency domain sequence on the time domain .
  • Step 2 Generate M third frequency domain sequences.
  • the sending end device obtains M third frequency domain sequences according to the order in which elements determined in step 1 are mapped to frequency domain subcarriers.
  • the M third frequency domain sequences include two third frequency domain sequences, wherein the elements included in one third frequency domain sequence and the order in which the elements are mapped to frequency domain subcarriers are the same as the second frequency domain sequence;
  • the elements included in a third frequency domain sequence are the same as the second frequency domain sequence, but the order in which the elements included in the other third frequency domain sequence are mapped to frequency domain subcarriers is the same as the order in which the elements included in the second frequency domain sequence are mapped to frequency subcarriers.
  • the order of domain subcarriers is reversed.
  • the elements ⁇ a 0 ,a 1 ,...,a L-1 ⁇ included in the second frequency domain sequence are mapped one by one to the frequency domain subcarriers e 0 , e 1 ,...,e L
  • the elements ⁇ a 0 , a 1 ,...,a L-1 ⁇ included in a third frequency domain sequence are mapped to frequency domain subcarriers e 0 , e 1 ,..., e L-1
  • elements ⁇ a L-1 ,..,a 1 ,a 0 ⁇ included in another third frequency domain sequence are mapped to frequency domain subcarriers e 0 , e 1 ,...,e L-1 .
  • the M third frequency-domain sequences generated by the sending end device are added, and power normalization is performed on elements in the sequence obtained after the addition, and then mapped to frequency-domain subcarriers to obtain the first frequency-domain sequence.
  • the M third frequency domain sequences are: the second frequency domain sequence (hereinafter referred to as the third frequency domain sequence #1), the second frequency domain sequence and the phase factor A generated third frequency domain sequence (hereinafter referred to as the third frequency domain sequence #2), the second frequency domain sequence and the phase factor Another generated third frequency domain sequence (hereinafter referred to as the third frequency domain sequence #3), the second frequency domain sequence and the phase factor Another generated third frequency domain sequence (hereinafter referred to as third frequency domain sequence #4).
  • the elements in 1 are mapped to the subcarriers in the frequency domain by power normalization to obtain the first frequency domain sequence.
  • the second frequency domain sequence as ⁇ a 0 , a 1 ,...,a L-1 ⁇
  • the OOK modulation symbols included in the time domain signal mapped by the second frequency domain sequence as ⁇ 10000000 ⁇ as an example. illustrate.
  • the second frequency domain sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the above third frequency domain sequence #1 is ⁇ a 0 ,a 1 ,...,a L- 1 ⁇
  • the third frequency domain sequence #2 is
  • the third frequency domain sequence #3 is
  • the third frequency domain sequence #4 is
  • the fourth frequency domain sequence #1 is ⁇ g 0 , g 1 ,...,g L-1 ⁇ , where, After g 0 , g 1 ,...,g L-1 power normalization, the first frequency domain sequence is obtained.
  • the obtained first frequency-domain sequence can be mapped to the corresponding frequency-domain subcarrier, and the IFFT transformation can be performed to the time domain to obtain the OFDM time-domain signal including the OOK modulation symbol ⁇ 10011001 ⁇ , as shown in Figure 10.
  • 10 is a time-domain signal pattern in which the first frequency-domain sequence is mapped in the time domain.
  • the M third frequency domain sequences are respectively: the third frequency domain sequence #5 and the third frequency domain sequence #6, wherein the third frequency domain sequence #5
  • the order in which the elements of the element are mapped to frequency domain subcarriers is the same as the order in which the second frequency domain sequence is mapped to frequency domain subcarriers; the order in which elements in the third frequency domain sequence #6 are mapped to frequency domain subcarriers is the same as the order in which the first
  • the order in which the two frequency domain sequences are mapped to the frequency domain subcarriers is reversed.
  • the second frequency domain sequence as ⁇ a 0 , a 1 ,...,a L-1 ⁇
  • the OOK modulation symbols included in the time domain signal mapped by the second frequency domain sequence as ⁇ 10000000 ⁇ as an example. illustrate.
  • the second frequency domain sequence ⁇ a 0 , a 1 ,...,a L-1 ⁇ is mapped to subcarriers e 0 , e 1 ,...,e L-1 respectively, then the above third frequency domain Sequence #5 ⁇ a 0 ,a 1 ,...,a L-1 ⁇ are respectively mapped to subcarriers e 0 ,e 1 ,...,e L-1 , and the third frequency domain sequence #6 ⁇ a L- 1 ,..,a 1 ,a 0 ⁇ are mapped to subcarriers e 1 , e 2 ,...,e L respectively.
  • the first frequency domain sequence is obtained.
  • the obtained first frequency domain sequence can be mapped to the corresponding frequency domain subcarrier, and the IFFT transformation can be performed to the time domain to obtain an OFDM time domain signal pattern including the OOK modulation symbol ⁇ 10000001 ⁇ , as shown in FIG. 11 , FIG. 11 is another time-domain signal pattern in which the first frequency-domain sequence is mapped on the time domain.
  • serial numbers of the above-mentioned processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present application . And it may not be necessary to perform all the operations in the above method embodiments.
  • receiver device and/or the sender device in the above method embodiments may perform some or all of the steps in the embodiments, and these steps or operations are only examples, and the embodiments of the present application may also include performing other operations or various operations deformation.
  • the method implemented by the receiver device may also be implemented by components (such as chips or circuits, etc.) of the receiver device, and the method implemented by the sender device may also be implemented by the sender device component implementation.
  • the communication method in the embodiment of the present application is described in detail above with reference to FIG. 4 and FIG. 7 , and the above communication method is mainly introduced from the perspective of interaction between the sending end device and the receiving end device. It can be understood that, in order to realize the above-mentioned functions, the sending-end device and the receiving-end device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 provided by an embodiment of the present application.
  • the device 1200 includes a transceiver unit 1210 , a processing unit 1220 and a storage unit 1230 .
  • the transceiver unit 1210 can implement a corresponding communication function, and the transceiver unit 1210 can also be called a communication interface or a communication unit.
  • the processing unit 1220 is used for data processing.
  • the storage unit 1230 is used to store instructions and/or data, and the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements the aforementioned method embodiments.
  • the apparatus 1200 can be used to execute the actions performed by the devices in the above method embodiments (such as the above-mentioned sending end device, receiving end device, etc.), at this time, the apparatus 1200 can be a device or a component that can be configured in the device, the transceiver unit 1210 is configured to perform operations related to device sending and receiving in the above method embodiments, and the processing unit 1220 is used to perform operations related to device processing in the above method embodiments.
  • the apparatus 1200 is configured to perform the actions performed by the sending end device in the above method embodiments.
  • the processing unit 1220 is configured to generate a first orthogonal frequency division multiplexing OFDM time domain signal, the first OFDM time domain signal includes N first modulation symbols arranged in the time domain, and the first modulation symbols are amplitude shift keys control modulation symbol;
  • the transceiving unit 1210 is configured to send the first OFDM time domain signal to the receiving end device.
  • the processing unit 1220 generates a first OFDM time domain signal, including:
  • the processing unit 1220 generates a first frequency domain sequence, wherein the first frequency domain sequence has a mapping relationship with the N first modulation symbols; the processing unit 1220 generates the first OFDM time domain signal according to the first frequency domain sequence .
  • the processing unit 1220 generates a first frequency domain sequence, including:
  • the processing unit 1220 generates the first frequency domain sequence according to the second frequency domain sequence, and the time domain signal mapped by the first frequency domain sequence includes part or all of the time domain signal mapped by the second frequency domain sequence.
  • the time domain signal mapped by the second frequency domain sequence includes N second modulation symbols, the second modulation symbols are amplitude shift keying modulation symbols, and the N second modulation symbols include at least one amplitude shift keying Modulation symbol 1 and an ASK modulation symbol 0.
  • the processing unit 1220 generates the first frequency domain sequence according to the second frequency domain sequence, including:
  • the processing unit 1220 generates M third frequency domain sequences according to the second frequency domain sequence; the processing unit 1220 generates the first frequency domain sequence according to the M third frequency domain sequences, wherein the second frequency domain sequence and Each of the M third frequency domain sequences has a cyclic shift relationship in the time domain.
  • the processing unit 1220 generates the first frequency domain sequence according to the M third frequency domain sequences, including:
  • the processing unit 1220 obtains the first frequency domain sequence by adding the M third frequency domain sequences.
  • the processing unit 1220 generates M third frequency domain sequences according to the second frequency domain sequence, including:
  • the processing unit 1220 generates the M third frequency domain sequences according to the second frequency domain sequence and the M phase factors, wherein the i-th frequency domain sequence in the M third frequency domain sequences is determined by the second frequency domain
  • the i-th phase factor in the sequence and the M phase factors Generate, the time-domain signal mapped by the second frequency-domain sequence is cyclically shifted in the time domain by T i amplitude shift keying modulation symbol length is the time-domain signal mapped by the ith frequency-domain sequence, the and T i satisfy the following formula:
  • the k-th element b k in the i-th frequency domain sequence, the k-th element a k in the second frequency-domain sequence, the i-th phase factor in the M phase factors satisfy the following equation:
  • the Q is a positive integer
  • the k is a positive integer less than or equal to L
  • the L is the length of the third frequency domain sequence.
  • the processing unit 1220 generates the first frequency domain sequence according to the second frequency domain sequence, including:
  • the processing unit 1220 generates M third frequency domain sequences according to the second frequency domain sequence; the processing unit 1220 generates the first frequency domain sequence according to the M third frequency domain sequences, wherein, in the second frequency domain sequence
  • the L first elements included are the same as the L second elements included in a third frequency domain sequence in the M third frequency domain sequences, and the L first elements and L second elements are mapped to the frequency domain
  • the order is different, and L is a positive integer.
  • the order in which the L first elements and the L second elements are mapped to the frequency domain is reversed.
  • N MP, where P is a positive integer.
  • the transceiving unit 1210 is also configured to send indication information, where the indication information is used to indicate at least one of the following:
  • the N the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal, or the subcarrier interval corresponding to the duration of the first OFDM time domain signal .
  • the N the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal and the subcarrier interval corresponding to the duration of the first OFDM time domain signal At least one of the is predefined.
  • the apparatus 1200 may implement the steps or processes corresponding to the execution of the sender device in the method embodiment according to the embodiment of the present application, and the apparatus 1200 may include a unit for executing the method executed by the sender device in the method embodiment. Moreover, each unit in the apparatus 1200 and other operations and/or functions described above are respectively for realizing the corresponding process of the method embodiment in the sender device in the method embodiment.
  • the transceiver unit 1210 can be used to execute the step of sending information in the method, such as step S420; the processing unit 1220 can be used to execute the processing steps in the method, such as step S411 and S410.
  • the processing unit 1220 can be used to execute processing steps in the method, such as steps S710 , S720 and S730 .
  • the apparatus 1200 is configured to perform the actions performed by the receiver device in the above method embodiments.
  • a transceiver unit 1210 configured to receive a first Orthogonal Frequency Division Multiplexing OFDM time domain signal
  • a processing unit 1220 configured to determine that the first OFDM time domain signal includes N first modulation symbols arranged in the time domain, where the first modulation symbols are amplitude shift keying modulation symbols, where N is greater than or equal to 2 an integer of .
  • the transceiving unit 1210 is further configured to receive indication information, where the indication information is used to indicate at least one of the following items: the N, the duration of each first modulation symbol in the N first modulation symbols, and the first The relationship between the duration of the OFDM time domain signal, or the subcarrier interval corresponding to the duration of the first OFDM time domain signal.
  • the N the relationship between the duration of each first modulation symbol in the N first modulation symbols and the duration of the first OFDM time domain signal and the subcarrier interval corresponding to the duration of the first OFDM time domain signal At least one of the is predefined.
  • the apparatus 1200 may implement the steps or processes corresponding to the steps or processes performed by the receiver device in the method embodiments according to the embodiments of the present application, and the apparatus 1200 may include a unit for executing the method performed by the receiver device in the method embodiments. Moreover, each unit in the apparatus 1200 and other operations and/or functions described above are respectively for realizing the corresponding process of the method embodiment in the receiver device in the method embodiment.
  • the transceiver unit 1210 can be used to execute the step of receiving information in the method, such as step S420.
  • the processing unit 1220 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver unit 1210 may be implemented by a transceiver or transceiver-related circuits.
  • the storage unit can be realized by at least one memory.
  • the embodiment of the present application further provides a device 1300 .
  • the apparatus 1300 includes a processor 1310 and may further include one or more memories 1320 .
  • the processor 1310 is coupled with the memory 1320, and the memory 1320 is used to store computer programs or instructions and/or data, and the processor 1310 is used to execute the computer programs or instructions and/or data stored in the memory 1320, so that the methods in the above method embodiments be executed.
  • the apparatus 1300 may further include a transceiver 1330, and the transceiver 1330 is used for receiving and/or sending signals.
  • the processor 1310 is configured to control the transceiver 1330 to receive and/or send signals.
  • the processor 1310 in FIG. 13 may be the processing unit 1220 in FIG. 12 to realize the functions of the processing unit 1220.
  • the operations performed by the processor 1310 may refer to the description of the processing unit 1220 above, and will not be repeated here;
  • the transceiver 1330 in Figure 13 can be the transceiver unit 1210 in Figure 12, which realizes the function of the transceiver unit 1210, and the operation performed by the transceiver 1330 can refer to the description of the transceiver unit 1210 above, and will not be repeated here;
  • the memory 1320 may be the storage unit 1230 in FIG. 12 to implement the function of the storage unit 1230 .
  • the apparatus 1300 includes one or more processors 1310 .
  • the memory 1320 may be integrated with the processor 1310, or set separately.
  • the apparatus 1300 is used to implement the operations performed by the device (such as the above-mentioned receiving end device, sending end device, etc.) in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the device (such as the above-mentioned receiving end device, sending end device, etc.) in the above method embodiment are stored.
  • the computer program when executed by a computer, the computer can implement the methods performed by the sending end device in the above method embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which when executed by a computer enable the computer to implement the method performed by the device (such as the above receiving end device, sending end device, etc.) in the above method embodiment.
  • An embodiment of the present application further provides a communication system, where the communication system includes the devices in the foregoing embodiments (such as the above-mentioned receiving end device, sending end device, etc.).
  • the embodiment of the present application also provides a chip device, including a processing circuit, the processing circuit is used to call and run the program from the memory, so that the communication device installed with the chip device implements the method described in the above method embodiment by the device (such as the above receiving terminal) device, sender device, etc.) to execute the method.
  • the processing circuit is used to call and run the program from the memory, so that the communication device installed with the chip device implements the method described in the above method embodiment by the device (such as the above receiving terminal) device, sender device, etc.) to execute the method.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solutions provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a sending end device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) etc.
  • the aforementioned available medium may include But not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供了一种通信的方法和装置,该通信的方法包括:发送端设备生成正交频分复用OFDM时域信号,该OFDM时域信号包括在时域上排列的多个幅移键控调制符号。发送端设备向接收端设备发送该OFDM时域信号。本申请提供的通信的方法,发送端生成的OFDM时域信号包括多个幅移键控调制符号,能够提高数据传输的速率。

Description

通信的方法和装置
本申请要求于2021年11月04日提交国家知识产权局、申请号为202111301685.X、发明名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信的方法和装置。
背景技术
随着新无线(new radio,NR)通信系统中的机器型通信(machine-type communication,MTC)和物联网(internet of Things,IoT)通信的应用越来越广泛,IoT设备的数量在逐日增长,业界对IoT设备的成本和功耗降低的诉求越来越强烈。具体地,为了降低设备的功耗,在发送端通过幅移键控调制符号承载信息,在接收端通过包络检波电路接收信号可以降低接收机的功耗。
正交频分复用(orthogonal frequency division multiplexing,OFDM)广泛应用到长期演进(long term evolution,LTE)系统、NR中。在LTE,NR的OFDM系统中,有节能需求的终端设备会应用幅移键控调制和包络检波接收机接收信号。在这种情况下,如何提高数据传输的速率,成为亟待解决的问题。
发明内容
本申请提供一种通信的方法,能够提高数据传输的速率。
第一方面,提供了一种通信的方法,该通信的方法可以由发送端设备执行,或者,也可以由设置于发送端设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该通信的方法包括:发送端设备生成第一正交频分复用OFDM时域信号,该第一OFDM时域信号包括在时域上排列的N个第一调制符号,该第一调制符号为幅移键控调制符号。发送端设备向接收端设备发送该第一OFDM时域信号。其中,N为大于或者等于2的整数。
一个OFDM时域信号包括多个幅移键控调制符号,能够提高数据传输的速率,进而提高通信效率。
结合第一方面,在第一方面的某些实现方式中,该N个第一调制符号在时域上两两不重叠。
上述的第一OFDM时域信号包括的N个幅移键控调制符号在时域两两不重叠可以提高接收机检测幅移键控调制符号的性能。
结合第一方面,在第一方面的某些实现方式中,该发送端设备生成第一OFDM时域 信号,包括:发送端设备生成第一频域序列。发送端设备根据该第一频域序列生成该第一OFDM时域信号。其中,该第一频域序列与该N个第一调制符号具有映射关系。
本申请提供的通信的方法中通过生成第一频域序列映射生成该N个第一调制符号,相比直接在时域生成N个第一调制符号的方法,本申请提供的方法映射后的时域信号在频域上保持与现有OFDM系统频域上保持正交性,能够避免频谱泄露,对现有OFDM系统的传输频域干扰较小,降低对现有OFDM系统性能的影响,可以更好的和现有OFDM系统进行共存。现有OFDM可以是LTE,NR等系统。
结合第一方面,在第一方面的某些实现方式中,该发送端设备生成第一频域序列,包括:发送端设备根据第二频域序列生成该第一频域序列,该第一频域序列映射的时域信号包括该第二频域序列映射的部分或者全部时域信号。
结合第一方面,在第一方面的某些实现方式中,该第二频域序列映射的时域信号包括N个第二调制符号。该N个第二调制符号至少包括一个幅移键控调制符号1和一个幅移键控调制符号0。其中,该第二调制符号为幅移键控调制符号。
上述的第二频域序列至少包括一个幅移键控调制符号1和一个幅移键控调制符号0即可,不限定具体形式。对于幅移键控调制信息传输,如果连续传输幅移键控调制符号全为1或者幅移键控调制符号全为0时,接收机会出现时域信号边界混淆的情况,严重影响幅移键控调制符号检测的性能,所以通常采用线路编码调制原始信息比特,使得系统不会出现连续传输幅移键控调制符号全为1的情形。
结合第一方面,在第一方面的某些实现方式中,该发送端设备根据第二频域序列生成该第一频域序列,包括:发送端设备根据该第二频域序列生成M个第三频域序列。发送端设备根据该M个第三频域序列生成该第一频域序列。其中,该第二频域序列与该M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
第二频域序列与某个第三频域序列在时域上具有循环移位关系可以理解为:第三频域序列映射的时域信号可以由第二频域序列映射的时域信号循环移位得到。
例如,第二频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{10000000}(或者说OOK调制符号为{ON,OFF,OFF,OFF,OFF,OFF,OFF,OFF}),M个第三频域序列中的一个第三频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{00010000}(或者说OOK调制符号为{OFF,OFF,OFF,ON,OFF,OFF,OFF,OFF}),OOK调制符号{00010000}可以由OOK调制符号{10000000}在时域上循环移位3得到,则循环移位值为3。
结合第一方面,在第一方面的某些实现方式中,该发送端设备根据第二频域序列生成该第一频域序列,包括:发送端设备根据该第二频域序列生成M个第三频域序列。发送端设备根据该M个第三频域序列生成该第一频域序列。其中,该第二频域序列中包括的L个第一元素与该M个第三频域序列中一个第三频域序列包括的L个第二元素的相同,且L个第一元素和L个第二元素映射到频域的顺序不同,L为正整数。其中,L个第一元素映射到频域的顺序可以理解为第一元素(如,{a 0,a 1,...,a L-1})映射到子载波e 0,e 1,...,e L-1上的顺序;L个第二元素映射到频域的顺序可以理解为第二元素(如,{a L-1,..,a 1,a 0})映射到子载波e 0,e 1,...,e L-1上的顺序。
由于承载在第一OFDM时域信号的N个幅移键控调制符号有多种取值。每种取值在 频域都对应一个频域序列(第一频域序列)。比如,N=8,8个OOK调制符号一种取值为{10000000},另一种取值为10000001}。N个幅移键控调制符号一种取值对应的频域序列指的是这N个幅移键控调制符号的时域信号经过时频变换得到的频域序列。时频变换可以是傅里叶变换。比如,这N个幅移键控调制符号的时域信号经过时域采样,然后通过FFT变换到频域,得到该频域序列。
如果将N个幅移键控调制符号每种取值对应的频域序列都在发送端存储,会增加发送端设备的存储量和发送端设备的复杂度。而基于第二频域生成第一频域序列,不用存储N个幅移键控调制符号每种取值对应的频域序列,进而降低了发送端设备的存储量和发送端设备的复杂度。
结合第一方面,在第一方面的某些实现方式中,该发送端设备根据该M个第三频域序列生成该第一频域序列,包括:发送端设备相加该M个第三频域序列获得该第一频域序列。
结合第一方面,在第一方面的某些实现方式中,该发送端设备根据该第二频域序列生成M个第三频域序列,包括:发送端设备根据该第二频域序列和M个相位因子生成该M个第三频域序列。其中,该M个第三频域序列中的第i个频域序列由该第二频域序列和该M个相位因子中第i个相位因子
Figure PCTCN2022129598-appb-000001
生成,所述第二频域序列映射的时域信号在时域上循环移位T i个幅移键控调制符号长度为所述第i个频域序列映射的时域信号,该
Figure PCTCN2022129598-appb-000002
与T i满足以下公式:
Figure PCTCN2022129598-appb-000003
发送端设备根据上述不同相位因子产生不同的频域序列,可以满足时域上循环移位的效果,进而得到发送的N个幅移键控调制符号的组合。
结合第一方面,在第一方面的某些实现方式中,该第i个频域序列中的第k个元素b k、该第二频域序列中的第k个元素a k、该M个相位因子中第i个相位因子
Figure PCTCN2022129598-appb-000004
满足以下关系:
Figure PCTCN2022129598-appb-000005
该Q为正整数,该k为小于或者等于L的正整数,该L为该第三频域序列的长度。
结合第一方面,在第一方面的某些实现方式中,该L个第一元素和L个第二元素映射到频域的顺序相反。
利用序列元素映射到频域子载波顺序的不同,得到OFDM时域信号上N个第一调制符号的不同组合,发送端设备存储的序列的元素保持不变,只是映射顺序不同,有效的降低了设备的存储量以及设备的复杂度。
结合第一方面,在第一方面的某些实现方式中,该M和N满足以下关系:N=MP,其中,P为正整数。例如,P等于1、2或4。
在一种可能的实现方式中,P为1或偶数;或者,P=2 x,x为非负整数。当P=1时,相当于没有线路码编码。当P>1,P为线路码编码的因子。即1个原始信息比特线路码编码后为P个比特。
通过考虑线路码编码的因子P的取值,有效的实现发送端设备侧发送的OFDM时域信号包括的N个第一调制符号承载的比特满足线路码的编码形式,有利于提升接收端检测信息的解调性能。
结合第一方面,在第一方面的某些实现方式中,所述N个第一调制符号承载N个比特,所述N个比特包括以下任意一种:所述N个比特为待发送的信息比特;或,所述N 个比特为所述待发送的信息比特经过线路编码之后的比特,其中,所述线路编码因子为所述P。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送端设备向接收端设备发送指示信息。
该指示信息用于指示以下至少一项:该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系、或该第一OFDM时域信号持续的时间对应的子载波间隔。
或者,
该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系和该第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
通过指示或预定义的方式,接收端设备有效的获取了第一调制符号的符号时间信息,能够有效的实现接收端设备对第一调制符号的检测。
结合第一方面,在第一方面的某些实现方式中,该第一OFDM时域信号用于指示如下标识中的一种:终端设备的标识、该终端设备所在终端设备组的标识、该终端设备的标识的一部分或该终端设备所在终端设备组的标识的一部分。
通过指示终端设备的标识或者标识的一部分,使得终端设备在休眠的状态下能够及时被唤醒,提升了终端设备的节能效果。
第二方面,提供了一种通信的方法,该通信的方法可以由接收端设备执行,或者,也可以由设置于接收端设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由接收端设备执行为例进行说明。
该通信的方法包括:接收端设备接收来自发送端设备的第一正交频分复用OFDM时域信号。接收端设备确定该第一OFDM时域信号包括在时域上排列的N个第一调制符号。该第一调制符号为幅移键控调制符号,其中,该N为大于或者等于2的整数。
本申请提供的通信的方法中接收端设备接收到的OFDM时域信号包括多个幅移键控调制符号,能够提高数据传输的速率,进而提高通信效率。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收端设备接收来自发送端设备的指示信息,该指示信息用于指示以下至少一项:该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系、或该第一OFDM时域信号持续的时间对应的子载波间隔。
或者,
该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系和该第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
通过指示或预定义的方式,接收端设备有效的获取了第一调制符号的符号时间信息,能够有效的实现接收端设备对第一调制符号的检测。
结合第二方面,在第二方面的某些实现方式中,该第一OFDM时域信号用于指示如下标识中的一种:终端设备的标识、该终端设备所在终端设备组的标识、该终端设备的标识的一部分或该终端设备所在终端设备组的标识的一部分。
通过指示终端设备的标识或者标识的一部分,使得终端设备在休眠的状态下能够瞬时的唤醒或者有效的通信,提升了终端设备的节能效果。
第三方面,提供一种通信的装置,该通信的装置包括处理器,用于实现上述第一方面描述的方法中发送端设备的功能。
可选地,该通信的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中发送端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中发送端设备的功能。
可选地,该通信的装置还可以包括通信接口,该通信接口用于该通信的装置与其它设备进行通信。该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信的装置包括:处理器和通信接口,
该处理器用于运行计算机程序,以使得该通信的装置实现上述第一方面描述的任一种方法;
该处理器利用该通信接口与外部通信。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该通信的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第四方面,提供一种通信的装置,该通信的装置包括处理器,用于实现上述第二方面描述的方法中接收端设备的功能。
可选地,该通信的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中接收端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中接收端设备的功能。
可选地,该通信的装置还可以包括通信接口,该通信接口用于该通信的装置与其它设备进行通信。该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信的装置包括:处理器和通信接口,
该处理器用于运行计算机程序,以使得该通信的装置实现上述第二方面描述的任一种方法;
该处理器利用该通信接口与外部通信。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该通信的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得 计算机执行上述各方面所述的方法。
第七方面,提供了一种通信系统,包括第三方面所示的通信的装置和第四方面所示的通信的装置。
第八方面,提供了一种芯片装置,包括处理电路,该处理电路用于从存储器中调用并运行程序,使得安装有该芯片装置的通信设备执行上述第一和第二方面中任一种可能实现方式中的方法。
附图说明
图1是本申请适用的通信系统的示意图。
图2是802.11ba中一种信号处理的方法的示意图。
图3是一种波形的示意图。
图4是本申请实施例提供的一种通信的方法的示意性流程图。
图5中的(a)至(c)为第一OFDM时域信号和N个第一调制符号之间的关系的示意图。
图6是本申请实施例提供的生成第一OFDM时域信号的示意图。
图7是本申请实施例提供的一种生成第一频域序列的示意性流程图。
图8是第二频域序列在时域上映射的时域信号图样。
图9是第三频域序列在时域上映射的时域信号图样。
图10是一种第一频域序列在时域上映射的时域信号图样。
图11是另一种第一频域序列在时域上映射的时域信号图样。
图12是本申请实施例提供的装置1200的示意性框图。
图13是本申请实施例提供的装置1300的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、NR或未来网络等,本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、IoT通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol, SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,例如,终端设备也可以是标签,例如,有源标签,无源标签等。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。网络设备还可以是读写器等。
在一些部署中,本申请实施例中的网络设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令, 如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
进一步地,CU还可以划分为控制面的中央单元(central unit-control plane,CU-CP)和用户面的中央单元(central unit-user plane,CU-UP)。其中,CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责控制面功能,主要包含RRC层和PDCP-C层。PDCP-C层主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP层和PDCP-U层。其中SDAP层主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U层主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。具体地,CU-CP和CU-UP通过通信接口(例如,E1接口)连接。CU-CP代表网络设备通过通信接口(例如,Ng接口)和核心网设备连接,通过通信接口(例如,F1-C(控制面)接口)和DU连接。CU-UP通过通信接口(例如,F1-U(用户面)接口)和DU连接。
还有一种可能的实现,PDCP-C层也包含在CU-UP中。
可以理解的是,以上关于CU和DU,以及CU-CP和CU-UP的协议层划分仅为示例,也可能有其他的划分方式,本申请实施例对此不做限定。
本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请 实施例的通信系统。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备101。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
可选地,终端设备之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端设备之间的直接通信。如图1中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
各通信设备,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,可通过多天线技术通信。
示例性地,本申请实施例中涉及的终端设备具有包络检波的低功耗接收电路,该接收电路用于接收信息,如图1所示的通信系统中,包括至少一个具有包络检波的低功耗接收电路的终端设备(如,终端设备102至终端设备107中的一个或多个具有包络检波的低功耗接收电路)。
具体地,本申请实施例中涉及的具有包络检波的低功耗接收电路的终端设备可以理解为用户侧的一种用于接收或发射信号的实体,如工业网络传感器、视频监控摄像头、可穿戴设备(如,智能手表)、水表、电表以及其他具有辅电路的终端设备。
作为一种可能的实现方式,具有包络检波的低功耗接收电路的终端设备中的包络检波的低功耗接收电路可以是:用于接收唤醒信号(wake-up signal,WUS)的唤醒无线电(wake-up radio,WUR)收发机。
本申请实施例中对于具有辅助电路的终端设备中的辅助电路的具体实现方式不做限定,可以是能够实现接收WUS的任意功能实体。其中,该功能实体可以与终端设备合设。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以NR协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到其它系统,比如采用OFDM技术的系统,或OFDM技术相类似的系统。
1、唤醒无线电(wake-up radio,WUR)。
在通信网络中,设备相当一部分能量浪费在无接收信号时的监听,当前传统802.11协议中相关解决方案集中在优化设备的休眠策略上。除了优化休眠策略外,减少设备能量浪费的另一条途径是使用低功耗的WUR,设备除包含传统的主收发机外,还包括WUR收发机,当主收发机进入深度休眠后,低功耗的WUR收发机苏醒开始工作。如果其他设 备需要与该设备通信,首先给该设备的WUR收发机发送唤醒信号(wake-up signal,WUS)(或者称为唤醒帧(wake-up packet,WUP)),WUR收发机正确收到发给自己的WUS后唤醒主收发机进行通信。
WUR技术采用了低功耗的WUR收发机代替主收发机在媒介空闲时侦听信道,能够有效降低设备的能量浪费。
2、幅移键控(amplitude shift keying,ASK)。
如果数字调制信号的可能状态与二进制信息符号或它的相应基带信号状态一一对应,则称其已调信号为二进制数字调制信号。用二进制信息符号进行键控,称为二进制振幅键控,用ASK表示。
在一种“二进制幅移键控”方式中,振幅为A的载波表示比特“1”,关断载波表示比特0。反之亦然。
ASK是一种相对简单的调制方式,相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
3、通断键控(On-Off Keying,OOK)调制。
OOK调制是二进制振幅键控。OOK是ASK调制的一个特例。幅度(或者说包络、电平或能量等)高(如,高于某个阈值,或者为非0)的称为OOK调制符号1,或者称为OOK调制符号开(ON),或者称为OOK调制符号通;幅度(或者说包络、电平或能量等)低(如,低于某个阈值,或者为0)的称为OOK调制符号0,或者称为OOK调制符号关(OFF),或者称为OOK调制符号断。幅度的高低相对于接收机的幅度解调门限去定义的,大于解调门限称为幅度高,低于解调门限成为幅度低。
4、相移键控(phase shift keying,PSK)。
一种用载波相位表示输入信号信息的调制技术。以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差180°。
5、正交振幅调制(quadrature amplitude modulation,QAM)。
幅度和相位同时变化,属于非恒包络二维调制。QAM是正交载波调制技术与多电平振幅键控的结合。
正交振幅键控是一种将两种调幅信号(ASK和PSK)汇合到一个信道的方法。正交调幅信号有两个相同频率的载波,但是相位相差90度。一个信号为I路信号,另一个信号为Q路信号。从数学角度将一个信号表示成正弦,另一个表示成余弦。两种被调制的载波在发射时已被混和。到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相混和。
QAM是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。
常见的QAM调制有,二进制相移键控(binary phase shift keying,BPSK),正交相移键控(quadrature phase shift keying,QPSK),16QAM,64QAM等。
6、星座点。
一种调制方式的一个调制符号在坐标系的坐标表示为星座点。坐标系的一个坐标轴为 I路,表示I路信号的坐标;坐标系的另一个坐标轴为Q路,表示Q路信号的坐标。例如QSPK调制,4个调制符号为
Figure PCTCN2022129598-appb-000006
以星座点
Figure PCTCN2022129598-appb-000007
为例,
Figure PCTCN2022129598-appb-000008
为Q路坐标;
Figure PCTCN2022129598-appb-000009
为I路坐标。
7、相干解调。
相干解调也叫同步检波,它适用于所有线性调制信号的解调。实现相干解调的关键是接收端要恢复出一个与调制载波严格同步的相干载波。相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。
8、非相干解调。
通信接收端从已调高频信号中恢复出原始数字基带信号时,采用的非相干解调方式,相对于相干解调方式,是指不需要提取载波信息的一种解调方法。通常来说,非相干解调方法,电路简单,实现容易,但是相较相干解调方法,其性能略有损失。
9、包络检波。
包络检波是以高频信号为输入信号,经过半波或者全波整流电路得到低频原始信号的包络或者幅度线的一种信号检测方法。接收机根据得到的原始信号的包络,将原始信号的包络经过数字采样后,和接收机设置的幅度或者能量门限进行比较,判决发射的信号为1还是0,也就是信号为开还是关(ON/OFF)。
10、FR1频段。
根据3GPP协议规定,5G网络主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz-6GHz,又称6GHz以下(sub 6GHz)频段;FR2频段的频率范围是24.25GHz-52.6GHz,通常被称为毫米波(mmWave)。
11、欧式距离。
也称为欧几里得度量(euclidean metric),是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。
12、WUR接收机。
电气与电子工程师协会(institute of electrical and electronic engineers,IEEE)802.11标准组织于2017年开始讨论WUR的相关内容,确定IEEE WUR标准为IEEE 802.11ba,使能一种接收机接收信号的功耗小(如,功耗<1mW),终端设备具备两个接收机链路(如,主接收机和辅接收机),其中主接收机和传统蜂窝终端设备的接收机是类似的,不做明显改变;而辅接收机即需要设计功耗小(如,功耗<1mW)的WUR接收机。
网络设备向WUR接收机发送时域呈现ON/OFF波形的ASK或OOK调制信号。WUR接收机接收到该调制信号后并不是和传统蜂窝OFDM信号接收机一样,利用高频本振产生的信号进行相干解调,而是利用包络检波器进行根据信号的幅度包络(Envelope Detector)进行非相干解调。因为WUR接收机不需要产生高频本振信号,因此WUR接收机的功耗大幅降低,仅为几十微瓦的量级远小于几十或几百毫瓦的量级。在WUR接收机通过包络检波成功解调数据信息后,WUR接收机唤醒主接收机,主接收此时才需要唤醒进行信息传输的工作。
13、序列长度。
本申请中涉及的序列长度可以理解为序列包括的元素的数目。
例如,若某个频域序列包括12个元素,则成该频域序列的长度为12。
14、分配的频域带宽。
网络设备中分配给传输信号(如,WUR传输唤醒信号)的最大频域带宽,信号传输占用的实际带宽位于分配的频域带宽范围内。
具体地,IEEE 802.11ba WUR协议中,目前支持在2.4GHz或5GHz频点下工作,802.11ba支持子载波间隔312.5kHz,OFDM时域信号时间为4μs符号(可以称为高速率(high data rate,HDR))和2μs符号(可以称为低速率(low data rate,LDR))。
802.11ba的一种信号处理的方法的示意图如图2所示。WUR信号占用系统20MHz的中心13个子载波,占用带宽约为4.06MHz,在13个子载波除中心子载波(子载波#0)以外的12个子载波上映射一个序列,该序列的元素可以从相移键控(如,二进制相移键控(binary phase shift keying,BPSK)或正交相移键控(quadrature phase shift keying,QPSK))和/或正交振幅(如,16QAM、64QAM或256QAM)调制星座点选取。
示例性地,在该序列的元素确定之后,进行OFDM发射机的快速傅里叶逆变换(inverse fast Fourier transform,IFFT)和加循环前缀(cyclic prefix,CP)操作,产生OFDM时域信号,此时产生的4μs符号作为ON符号,即WUR接收机通过包络检波判定此符号为发送的OOK调制符号{1};如果在13个子载波不发送信息,经过OFDM发射机的IFFT和加CP操作,产生的OFDM时域信号也是无能量的信号,此时该符号作为OFF符号,即WUR接收机通过包络检波判定此符号为OOK调制符号{0}。
802.11ba中支持曼彻斯特(Manchester)线路编码,针对4μs符号,信息比特0编码为1010,信息比特1编码为0101,因此传输1个信息需要4个ON/OFF符号传输完成,信息传输速率为1bit/(4*4μs)=62.5kbps。
如果将IEEE 802.11ba标准产生的波形的方法直接引入到NR中,以子载波间隔为15kHz为例一个波形的ON/OFF的符号时间就从4μs变为71.4μs,如图3所示,图3是一种波形的示意图。在NR系统使用子载波间隔15kHz、30kHz、60kHz等子载波间隔的情况下,OFDM时域信号时间远大于IEEE WUR的OFDM时域信号时间,如果仍然按照1个ON/OFF OFDM时域信号承载1bit 1/0信息的话,传输信息速率远低于WUR的信息速率。比如在子载波间隔15kHz的情况下,数据速率远低于IEEE WUR,使得NR中WUR的信息传输效率过低,终端设备的唤醒效率也大幅降低。
为了避免发生上述信号处理的方法存在的缺点,本申请提供一种通信的方法,使得在一个OFDM时域信号中能够承载多个ON/OFF的信息波形,提高数据传输的速率。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同消 息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第二,在本申请中,“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括接收端设备或发送端设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第五,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,不失一般性,以发送端设备和接收端设备之间的交互为例详细说明本申请实施例提供的通信的方法。
图4是本申请实施例提供的一种通信的方法的示意性流程图。
包括以下步骤:
S410,发送端设备生成第一OFDM时域信号。
该第一OFDM时域信号也可以称为第一OFDM时域符号,或者也可以理解为第一OFDM时域波形。
本申请中发送端设备可以是网络设备(如,接入网设备)。发送端设备还可以是其他发送OFDM时域信号的设备。
该第一OFDM时域信号包括:在时域上排列的N个第一调制符号,该第一调制符号为幅移键控调制符号。
幅移键控调制符号可以是前文基本概念中涉及的ASK调制符号,或者OOK调制符号(OOK调制符号还可以称为2ASK调制符号),或者还可以是其他能够在时域一段时间呈现幅度或者能量高或者低的信号作为ON/OFF调制符号,其中,ON/OFF调制符号指的是信号在时域上一段时间幅度低(如,一段时间内信号平均能量或者平均幅度低于某个设定的阈值,或者信号幅度值均为0),一段时间内信号平均能量或者平均幅度高(如,一段时间内信号平均能量或者平均幅度高于某个设定的阈值)。
其中,N个第一调制符号承载N个比特,N个比特可以为原始的信息比特或者原始的信息比特经过线路编码之后的比特,如N=8,8个第一调制符号承载8个比特为“101010101”。这个8个调制符号每个调制符号承载一个比特。比如,调制方式为OOK,OOK的调制符号{1}表示比特“1”;OOK的调制符号{0}表示比特“0”。或者,OOK的调制符号{0}表示比特“1”;OOK的调制符号{1}表示比特“0”。该N个比特可以为原始信息8个比特,也可以是线路码Manchester编码后的比特。如Manchester编码因子为2, 原始信息比特为“1100”,原始信息比特“1”编码为10,原始信息比特“0”编码为01,编码之后的比特为“10100101”;还如Manchester编码因子为4,原始信息比特为“10”,原始信息比特“1”编码为“1010”,原始信息比特“0”编码为“0101”,编码之后的比特为“10100101”。另外线路编码可以为脉冲间隔编码(Pulse Interval Encoding,PIE),或者其他线路编码之后最后一位比特为0的线路编码格式。
需要说明的是,本申请实施例中对于第一OFDM时域信号所包括的第一调制符号的具体类型不做限定,在时域上一段时间呈现幅度或者能量高或者低的信号即可。
上述第一OFDM时域信号包括在时域上排列的N个第一调制符号可以理解为,第一OFDM时域信号上承载N个第一调制符号,如,第一OFDM时域信号在时域上的一段时间内承载一个第一调制符号;或者还可以理解为第一OFDM时域信号由N个第一调制符号表示;或者还可以理解为第一OFDM时域信号包括N个第一调制符号对应的信号。
其中,时域上排列的N个第一调制符号可以理解为:该N个第一调制符号在时域上连续排列;或者可以理解为:该N个第一调制符号在时域上依次排列。
例如,N个第一调制符号为第一个第一调制符号、第二个第一调制符号、……、第N个第一调制符号,在时域上连续的两个第一调制符号(如第一个第一调制符号和第二个第一调制符号)相邻排列,且连续的两个第一调制符号之间可以有间隙(如,该N个第一调制符号在时域上等间隔排列),也可以没有间隙(如,每个第一调制符号在时域上持续的时间为1/N的第一OFDM时域信号持续的时间),本申请中不限定。
为了便于理解,结合图5中的(a)至(c)说明第一OFDM时域信号和N个第一调制符号之间的关系。为了便于描述,下面以第一调制符号为OOK调制符号为例进行说明。
如图5中的(a)所示,第一OFDM时域信号包括在时域上依次连续排列的N个OOK调制符号,该N个OOK调制符号的长度之和为第一OFDM时域信号的长度;
如图5中的(b)所示,第一OFDM时域信号包括在时域上依次连续排列的N个OOK调制符号,该N个OOK调制符号的长度之和小于第一OFDM时域信号的长度;
如图5中的(c)所示,第一OFDM时域信号包括在时域上依次间隔排列的N个OOK,在时域上该N个第一调制符号中连续的两个第一调制符号之间存在间隔(gap),该N个OOK调制符号的长度之和小于第一OFDM时域信号的长度。
应理解,图5中的(a)至(c)只是示例性表示第一OFDM时域信号和N个第一调制符号的关系,对本申请的保护范围不构成任何的限定。例如,N个第一调制符号中不同的第一调制符号的长度可以不同。
作为一种可能的实现方式,N个第一调制符号在时域上两两不重叠。
上述的第一OFDM时域信号包括的N个幅移键控调制符号在时域两两不重叠可以提高接收机检测幅移键控调制符号的性能。
N个第一调制符号在时域上两两不重叠可以理解为:N个第一调制符号中任意的两个第一调制符号在时域上不存在重叠的部分。
例如,相邻的两个第一调制符号中前一个第一调制符号在时域上的终点为后一个第一调制符号在时域上的起点。
还例如,相邻的两个第一调制符号中前一个第一调制符号在时域上的终点早于后一个第一调制符号时域上的起点。
进一步地,发送端设备生成第一OFDM时域信号之后,可以将该第一OFDM时域信 号发送给接收端设备,图4所示的方法流程还包括:
S420,发送端设备向接收端设备发送第一OFDM时域信号,或者说接收端设备接收来自发送端设备的第一OFDM时域信号。
发送端设备生成第一OFDM时域信号之后,加入第一OFDM时域信号对应子载波间隔对应的CP,然后将第一OFDM时域信号和CP发送。
发送端设备可以以单播的方式发送第一OFDM时域信号,也可以以广播的方式发送第一OFDM时域信号。
本申请中接收端设备可以是终端设备,还可以是其他的进行包络检波的设备。
需要说明的是,本申请实施例中对于OFDM时域信号的传输方式不做任何的限定,可以参考目前相关技术中的介绍。
示例性地,接收端设备可以根据指示信息指示的方式或者预定义的方式获知第一OFDM时域信号包括在时域上排列N个第一调制符号,能够有效的实现接收端设备对第一调制符号的检测。
作为一种可能的实现方式,接收端设备可以根据发送端设备发送的指示信息获知第一OFDM时域信号包括在时域上排列N个第一调制符号。
例如,接收端设备接收来自发送端设备的指示信息,所述指示信息用于指示以下至少一项:
所述指示信息用于指示所述N(如,指示信息指示N=8);或者,
指示信息用于指示N个第一调制符号中每个OOK调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系(如,指示信息指示每个第一调制符号持续的时间占第一OFDM时域信号时间的1/N);或者,
指示信息用于指示所述第一OFDM时域信号持续的时间对应的子载波间隔。
如指示信息指示第一调制符号持续的时间为第一OFDM时域信号持续时间的1/N以及第一OFDM时域信号的子载波间隔为15kHz,接收端接收到指示信息之后得到第一调制符号持续的时间。
其中,“持续的时间”也可以理解为“占用的时间”。
作为另一种可能的实现方式,接收端设备可以根据预定义(如,协议预定义)获知第一OFDM时域信号包括在时域上排列N个第一调制符号。
例如,第一OFDM时域信号包括在时域上排列第一调制符号的个数是N为预定义的;或者,
N个第一调制符号中每个OOK调制符号持续的时间和第一OFDM时域信号持续时间的关系为预定义的;或者,
第一OFDM时域信号持续的时间对应的子载波间隔为预定义的。
示例性地,接收端设备为前文所介绍的具有包络检波的低功耗接收电路的终端设备,包络检波的低功耗接收电路可以是:用于接收WUS的WUR收发机,在该具有包络检波的低功耗接收电路的终端设备中的WUR收发机收发的WUS为时域呈现ON/OFF波形的1个OFDM时域信号,且1个OFDM时域信号内包括多个调制符号,有效的提升了NR WUR的下行数据传输速率。
接收端设备根据指示信息指示的子载波间隔或者预定义的子载波间隔,得到第一 OFDM时域信号对应的CP的时间长度。接收端设备在接收机去掉CP,进行包络检波检测第一OFDM时域信号。接收端设备根据指示信息指示的或者预定义的第一调制符号持续时间检测第一OFDM时域信号包括的N个第一调制符号。
示例性地,所述第一OFDM时域信号还可以用于指示如下标识中的一种:
所述终端设备的标识、所述终端设备所在终端设备组的标识、所述终端设备的标识的一部分或所述终端设备所在终端设备组的标识的一部分。通过指示终端设备的标识或者标识的一部分,使得终端设备在休眠的状态下能够瞬时的唤醒或者有效的通信,提升了终端设备的节能效果。
例如,终端设备的标识(UE ID)由40比特表示,第一OFDM时域信号可以指示UE ID的前几位。
如,第一OFDM时域信号承载8个OOK调制符号,8个OOK调制符号承载8个比特信息,从而第一OFDM时域信号可以指示8个比特;同理第一OFDM时域信号可以指示16个比特等。
还如,第一OFDM时域信号还可以指示UE ID的全部比特位(如,指示40个比特)。
还例如,终端设备所在终端设备组的标识(UE groupID)由40比特表示,第一OFDM时域信号可以指示UE groupID的前几位(如指示8个比特,或指示16个比特等),还可以指示UE groupID的全部比特位(如,指示40个比特)。
需要说明的是,本申请实施例中对于接收端设备接收到第一OFDM时域信号之后基于该第一OFDM时域信号执行的行为不做限定,上述的第一OFDM时域信号为WUS用于唤醒终端设备以及第一OFDM时域信号为标识信息只是举例,对本申请的保护范围不构成任何的限定。
示例性地,上述的发送端设备生成第一OFDM时域信号,可以是发送端设备先生成第一频域序列,然后基于第一频域序列生成第一OFDM时域信号。通过生成第一频域序列生成该N个第一调制符号,相比时域信号进行操作得到N个第一调制符号的方法,本申请提供的方法映射后的时域信号在频域上保持与现有NR OFDM系统频域上保持正交性,能够避免频谱泄露对NR系统的传输频域干扰较小,降低对NR系统性能的影响,可以更好的和NR OFDM系统进行共存。
作为一种可能的实现方式,本申请实施例中上述的发送端设备生成第一OFDM时域信号,包括:发送端设备生成第一频域序列,并根据第一频域序列生成第一OFDM时域信号。
例如,发送端设备对第一频域序列进行Q点IFFT变换或者时域变换得到第一OFDM时域信号,Q的取值具体和分配的频域带宽相关,如,分配的频域带宽为20MHz,对应于Q=2048;分配的频域带宽为10MHz,对应于Q=1024。
为便于理解,结合图6简单介绍本申请中第一OFDM时域信号的生成方式。图6是本申请实施例提供的生成第一OFDM时域信号的示意图。
发送端设备可以先生成第一频域序列,然后基于第一频域序列生成第一OFDM时域信号。如图6中所示的在子载波间隔为15KHz的情况下,第一频域序列如何生成第一OFDM时域信号的。
例如,分配的频域带宽1MHz,对应的Q=64,即IFFT点数为64。假设第一频域序 列映射到频域占用的带宽为1个物理资源块(physical resource block,PRB)(即如图6中所示的12个子载波),每个子载波占15KHz(子载波间隔15KHz)。一共Q=64个子载波,第一频域序列占用的中间一个PRB。第一频域序列映射到中间的12个子载波一种方式如下:
第一频域序列包括12个元素,分别为a 1,a 2,……,a 12。Q=64对应64个子载波,这64个子载波按频域从小到大分别表示为c 1,c 2,……,c 64。分别在c 27,c 28,……,c 38上承载a 1,a 2,……,a 12。其余的子载波映射为0,也称为补零。也就是说,子载波c 1到c 26映射为0。子载波映射为0也可以理解为子载波的承载的OOK调制符号为0,或子载波的承载的OOK调制符号为空。
然后,得到长度为64的第一频域序列S={0,……,0(26个0),a 1,a 2,……,a 12,0,……,0(26个0)}。
进一步地,将第一频域序列S进行64点IFFT,第一OFDM时域信号包括的64个时域采样点D={d1,d2,……d64}。其中,第一OFDM时域信号包括多个第一调制符号(如图6中所示第一OFDM时域信号包括的第一调制符号为{100110})。
发送端设备发送第一OFDM时域信号和CP信号。
在该实现方式下,图4所示的方法还包括:
S411,发送端设备生成第一频域序列。
其中,第一频域序列与上述的N个第一调制符号具有映射关系。
示例性地,第一频域序列与N个第一调制符号具有映射关系可以理解为:第一频域序列对应的时域信号包括N个第一调制符号;或者还可以理解为:第一频域序列经过映射或者时域变换(如,IFFT变换)得到的OFDM时域信号包括N个第一调制符号。第一频域序列映射的子载波间隔为15kHz,30kHz,60kHz等子载波间隔中的任意一个。
以前面描述的第一频域序列是a 1,a 2,……,a 12,Q=64,子载波间隔15KHz为例。长度为64的序列S={0,……,0(26个0),a 1,a 2,……,a 12,0,……,0(26个0)}经过64点的IFFT得到时域样点D={d 1,d 2,……d 64}。时域样点D包括Q=64个时域样点。D的两个相邻的时域样点的时域间隔为t,比如d 2和d 3的时域间隔为t。根据傅里叶变换的理论,频率的子载波间隔的倒数为IFFT变换后的时域的符号长度,时域信号D在时域的持续时间为64t=1/15K(秒)。发送端将D经过数模转换后,通过载波发送出去。
本例中,一个OOK调制符号在时域的持续时间为1/8的OFDM时域信号时间。一个OOK调制符号在时域的所占的时间长度也是K=8个时域样点的时间长度。D的每K个时域样点表示一个OOK调制符号。例如K=8,64个样点表示8个OOK调制符号。
例如,发送端设备生成的第一频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号的组合为{10011001},也就是说调制符号组合为幅度或能量为{ON,OFF,OFF,ON,ON,OFF,OFF,ON}。
接收端对接收到的时域信号进行包络检波,数字采样后(例如,64个采样点)每K=8个时域样点平均能量或平均幅度和预设的解调门限进行对比,平均能量低于接收端的解调门限判定为OOK调制符号0(OFF),能量高于解调门限的判定为OOK调制符号1(ON)。
作为一种可能的实现方式,本申请实施例中,发送端设备生成第一频域序列,包括:
第一频域序列可以是预定义;或者第一频域序列根据1个OFDM时域信号承载N个 OOK调制符号N的取值关联。如,N=8,关联第一种第一频域序列;N=4,关联第二种第一频域序列。
或者,发送端设备根据第二频域序列生成第一频域序列,第一频域序列映射的时域信号包括第二频域序列映射的部分或者全部的时域信号。
示例性地,该第二频域序列可以是发送端设备生成的或协议预定义的一个频域序列,可以称为基序列,该第二频域序列能够用于生成第一频域序列。
例如,第二频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为:{10000000},而第一频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为:{10011001},其中,{10000000}和{10011001}前3位相同,可以理解为第一频域序列映射的时域信号包括第二频域序列映射的部分的OOK调制符号。
还例如,第二频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为:{10011001},而第一频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为:{10011001},可以理解为第一频域序列映射的时域信号包括第二频域序列映射的全部的OOK调制符号。在该情况下,第二频域序列可以直接认定为第一频域序列。
具体地,上述的第二频域序列映射的时域信号包括N个第二调制符号,该第二调制符号为幅移键控调制符号。
第二调制符号与上述的第一调制符号的调制方式相同。
与上述的第一OFDM时域信号包括在时域上排列的N个第一调制符号类似,第二频域序列映射的时域信号包括N个第二调制符号也可以理解为该第二频域序列映射的时域信号包括在时域上排列的N个第二调制符号;或者还可以理解为该第二频域序列映射的时域信号上能够承载N个第二调制符号,如,第二频域序列映射的时域信号在时域上的一段时间内承载一个第二调制符号;或者还可以理解为该第二频域序列映射的时域信号由N个第二调制符号表示;或者还可以理解为第二频域序列映射的时域信号包括N个第二调制符号对应的信号。
需要说明的是,本申请实施例中对于第二频域序列映射的时域信号包括N个第二调制符号具体形式不做限定,至少包括一个幅移键控调制符号1和一个幅移键控调制符号0即可。
例如,在第二调制符号为OOK调制符号的情况下,N个第二调制符号至少包括一个OOK调制符号1和一个OOK调制符号0。其中,幅度、包络、电平或能量高的称为OOK调制符号1,或者称为OOK调制符号ON;幅度、包络、电平或能量低的称为OOK调制符号0,或者称为OOK调制符号OFF。
还例如,在第二调制符号为ASK调制符号的情况下,N个第二调制符号至少包括一个ASK调制符号1和ASK调制符号0。其中,幅度、包络、电平或能量高的称为ASK调制符号1,或者称为ASK调制符号ON;幅度、包络、电平或能量低的称为ASK调制符号0,或者称为ASK调制符号OFF。
作为一种可能的实现方式,在上述的第一频域序列和第二频域序列不同的情况下,发送端设备根据第二频域序列生成第一频域序列,包括:
发送端设备根据第二频域序列生成M个第三频域序列;
发送端设备根据M个第三频域序列生成第一频域序列。
其中,M和N满足以下关系:
N=MP,P为正整数。例如,P等于1、2或4。
在一种可能的实现方式中,P为1或偶数;或者,P=2 x,x为非负整数。当P=1时,相当于没有线路码编码。当P>1,P为线路码编码的因子。即1个原始信息比特线路码编码后为P个比特。通过考虑线路码编码的因子P的取值,有效的实现发送端设备侧发送的OFDM时域信号包括的N个第一调制符号承载的比特满足线路码的编码形式,有利于提升接收端检测信息的解调性能。P越大,解调性能越好。
需要说明的是,发送端设备根据第二频域序列生成第一频域序列能够降低了发送端设备的存储量和发送端设备的复杂度,原因可以是:
由于承载在第一OFDM时域信号的N个幅移键控调制符号有多种取值。每种取值在频域都对应一个频域序列(第一频域序列)。比如,N=8,8个OOK调制符号一种取值为{10000000},另一种取值为10000001}。N个幅移键控调制符号一种取值对应的频域序列指的是这N个幅移键控调制符号的时域信号经过时频变换得到的频域序列。时频变换可以是傅里叶变换。比如,这N个幅移键控调制符号的时域信号经过时域采样,插值,然后通过FFT变换到频域,得到该频域序列。
如果将N个幅移键控调制符号每种取值对应的频域序列都在发送端存储,会增加发送端设备的存储量和发送端设备的复杂度。而基于第二频域生成第一频域序列,不用存储N个幅移键控调制符号每种取值对应的频域序列,进而降低了发送端设备的存储量和发送端设备的复杂度。
具体地,发送端设备根据M个第三频域序列生成第一频域序列,包括:
发送端设备通过相加M个第三频域序列获得第一序列。
例如,M个第二频域序列相加得到第四频域序列,第一频域序列是由第四频域序列中的元素的模的平方和归一化确定。其中,模的平方和归一化可以理解为:第四频域序列中所有元素的模平方求和值为X,第四频域序列中的每一个元素除以根号X以使得序列元素的模平方和的值是归一化的。
示例性地,第二频域序列和M个第三频域序列之间的关系包括以下两种:
第一种:
第二频域序列与M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
示例性地,第二频域序列与第三频域序列在时域上具有循环移位关系可以理解为:第三频域序列映射的时域信号可以由第二频域序列映射的时域信号循环移位得到。
例如,第二频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{10000000},M个第三频域序列中的一个频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{00010000},{00010000}可以由{10000000}在时域上循环移位3得到,则循环移位值为3。
还例如,M个第三频域序列中的另一个频域序列映射的时域信号为{00001000},{00001000}可以由{1000000}在时域上循环移位4得到,则循环移位值为4。
在第二频域序列和M个第三频域序列之间的关系为第一种的情况下,发送端设备根据第二频域序列生成M个第三频域序列,包括:
发送端设备根据第二频域序列和M个相位因子生成M个第三频域序列,
其中,该M个第三频域序列中的第i个频域序列由该第二频域序列和该M个相位因 子中第i个相位因子
Figure PCTCN2022129598-appb-000010
生成,所述第二频域序列映射的时域信号在时域上循环移位T i个幅移键控调制符号长度为所述第i个频域序列映射的时域信号,该
Figure PCTCN2022129598-appb-000011
与T i满足以下公式:
Figure PCTCN2022129598-appb-000012
例如,在OOK调制符号为{10000000}在时域上循环移位3得到{00010000}的情况下,T i等于3。
还例如,在OOK调制符号为{10000000}在时域上循环移位4得到{00001000}的情况下,T i等于4。
具体地,上述的第i个频域序列中的第k个元素b k、该第二频域序列中的第k个元素a k、该M个相位因子中第i个相位因子
Figure PCTCN2022129598-appb-000013
满足以下关系:
Figure PCTCN2022129598-appb-000014
该k为小于或者等于L的正整数,该L为该第三频域序列的长度。
Figure PCTCN2022129598-appb-000015
表示所述第k个元素对应的相位加权,所述Q为正整数。
示例性地,L小于或者等于一个第三频域序列映射到频域占用的PRB数对应的子载波数,如频域占用1个PRB时,所述L小于等于12。
第二种:
第二频域序列中包括的L个第一元素与M个第三频域序列中一个第三频域序列包括的L个第二元素的相同,且L个第一元素和L个第二元素映射到频域的顺序相同或者不同。
示例性地,L个第一元素映射到频域的顺序可以理解为第一元素(如,{a 0,a 1,...,a L-1})映射到子载波e 0,e 1,...,e L-1上的顺序;L个第二元素映射到频域的顺序可以理解为第二元素(如,{a L-1,..,a 1,a 0})映射到子载波e 0,e 1,...,e L-1上的顺序。
示例性地,发送端可以根据第二频域序列在时域上映射的时域信号以及第三频域序列在时域上映射的时域信号,确定第二频域序列中包括的元素映射到频域的顺序与第三频域序列中包括的元素映射到频域的顺序相同或者不同。
例如,第二频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{10000000},M个第三频域序列中的一个第三频域序列映射到子载波上,进行IFFT变换到时域得到的OOK调制符号为{00000001},可以理解为第二频域序列中包括的元素映射到频域的顺序与第三频域序列中包括的元素映射到频域的顺序相反。
为了便于理解,下面将结合图7以一个具体的例子说明,发送端设备如何根据第二频域序列生成第一频域序列,图7是本申请实施例提供的一种生成第一频域序列的示意性流程图。
包括以下几个步骤:
S710,确定第二频域序列。
作为一种可能的实现方式,本申请实施例中第二频域序列可以是发送端设备生成的。
例如,发送端设备从以下任意一种调制方式的星座点中确定第二频域序列(或者称为基序列):
BPSK、QPSK、16QAM、64QAM或256QAM。
示例性地,发送端设备确定BPSK的星座点中的多个作为第二频域序列。
示例性地,发送端设备确定16QAM的星座点中的多个作为第二频域序列。
示例性地,发送端设备确定QPSK的星座点中的多个作为第二频域序列。
应理解,上述的调制方式只是举例,对本申请的保护范围不构成任何的限定,本申请中的调制方式还可以是其他的调制方式,这里不再赘述。
具体地,发送端设备确定第二频域序列的具体流程包括:
首先,发送端设备确定在时域上1个OFDM时域信号内包含N个第二调制符号。
为了便于描述,下文中以N=8举例说明,在N为其他值的情况下,下述流程与N=8类似,不再赘述。
然后,发送端设备确定1个OFDM时域信号内N个第二调制符号的基本图样,其中,基本图样是指在1个OFDM时域信号内,一段符号时间(如,若干1/N符号时间)的波形为高电平表示“1”,一段符号时间(如,若干1/N符号时间)的波形为低电平表示“0”。
例如,N=8,N个第二调制符号的基本图样为{10000000}。其中,N=8表示1个OFDM时域信号要承载8个OOK符号。每个OOK调制符号的时域长度是1/N=1/8OFDM时域信号的长度。以前述子载波间隔15KHz,IFFT点数的Q=64为例,8个OOK符号中每一个OOK符号包含的时域样点数K=Q/N=8。每个OOK调制符号认为是1/8OFDM时域信号。
其次,发送端设备根据N个第二调制符号的基本图样,确定时域样点,并对时域样点组成的时域信号进行FFT变换。比如8个第二调制符号图样为{10000000},每个调制符号对应8个时域样点,该8个时域样点取值相同,如第一个OOK调制符号为1,其对应的8个时域样点为8个取值相同的时域样点,例如,对应到8个取值为1的时域样点。8个调制符号可以得到64个时域样点。发送端设备对这64个时域样点进行64点FFT变换,得到变换后的频域序列为{z 1,z 2,…….,z 64}。
通过频域序列{z 1,z 2,…….,z 64}得到第二频域序列有如下两种方式。
方式1;发送端设备截取位于序列中间的12个元素{z 27,z 28,……,z 38}作为第二频域序列。
方式2;映射到子载波的符号被要求为一种调制(如,PSK或QAM)星座点。例如,要求映射到子载波的符号是64QAM的星座点。在这种情况下,{z 27,z 28,……,z 38}每个元素量化到欧式距离最近的调制方式(比如,64QAM)的星座点。例如,z 27等于6.34-2.63j,和z 27最近的64QAM星座点为7-3j。则将z 27量化为7-3j。在这种情况下,将{z 27,z 28,……,z 38}按照调制方式量化后的序列作为第二频域序列。
发送端设备将获得的第二频域序列映射到时域上可以得到包括OOK调制符号{10000000}的OFDM时域信号。如图8所示,图8是第二频域序列在时域上映射的时域信号图样。
作为另一种可能的实现方式,本申请实施例中第二频域序列可以是协议预定义的。发送端设备可以根据协议预定的第二频域序列获知第二频域序列。
在发送端设备确定第二频域序列之后,发送端设备能够根据第二频域序列生成M个第三频域序列,图7所示的方法流程还包括:
S720,生成M个第三频域序列。
具体地,生成M个第三频域序列包括以下两种方式:
方式一:对应于上述第一种关系。
第二频域序列与M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
在该方式一下,生成M个第三频域序列的流程包括:
步骤一:发送端设备确定相位因子集合
Figure PCTCN2022129598-appb-000016
具体地,发送端设备确定待发送的第一OFDM时域信号包括在时域上排列的N个第一调制符号,如OOK调制符号{10011001}。
其中,发送端设备确定1个OFDM时域信号内的待发送比特的方法可以是根据待发送的信息比特确定经过线路码编码之后的信息比特,如,Manchester编码因子为2,信息比特为{0101},原始信息比特1编码为10,原始信息比特0编码为01,编码之后的比特为{10011001}。
发送端设备根据第二频域序列映射的时域信号和待发送的第一OFDM时域信号包括在时域上排列的N个第一调制符号之间的关系,确定相位因子集合
Figure PCTCN2022129598-appb-000017
为了便于理解,以第二频域序列映射的时域信号包括的OOK调制符号为{10000000},第一OFDM时域信号包括在时域上排列的N个第一调制符号为OOK调制符号{10011001}为例进行说明:
当N等于8时,第二频域序列包括的N个第二调制符号为OOK调制符号{10000000}的情况下,在{10000000}的基础上移位0个1/N OFDM时域信号时间得到{10000000},移位3个1/N OFDM时域信号时间得到{00010000},和移位4个1/N OFDM时域信号时间得到{00001000}以及移位7个1/N OFDM时域信号时间得到{00000001},其中,{10000000}、{00010000}、{00001000}和{00000001}在时域上叠加能够得到{10011001},则{10011001}需要{10000000}分别移位0,3,4,7得到的时域信号叠加形成的。
按照时域循环移位可以得到频域上相位旋转的原理,上述的循环移位值集合{0,3,4,7}确定频域序列需要相乘的相位因子集合
Figure PCTCN2022129598-appb-000018
Figure PCTCN2022129598-appb-000019
其中,
Figure PCTCN2022129598-appb-000020
Figure PCTCN2022129598-appb-000021
该示例中M=4,N=8。
需要说明的是,上述的第二频域序列映射的时域信号包括的OOK调制符号为{10000000},第一OFDM时域信号包括在时域上排列的N个第一调制符号为{10011001}只是举例。对本申请的保护范围不构成任何的限定。
例如,第一OFDM时域信号包括在时域上排列的N个第一调制符号为{10011001},第二频域序列包括的N个第二调制符号为{10010000}的情况下,在{10010000}的基础上移位0个1/N OFDM时域信号时间得到{10010000},移位4个1/N OFDM时域信号时间得到{00001001},其中,{10010000}和{00001001}在时域上叠加能够得到{10011001},则{10011001}需要{10000000}分别移位0,4得到的时域信号叠加形成的,相位因子集合
Figure PCTCN2022129598-appb-000022
Figure PCTCN2022129598-appb-000023
其中,
Figure PCTCN2022129598-appb-000024
Figure PCTCN2022129598-appb-000025
该示例中M=2,N=8。
第二频域序列包括的N个第二调制符号为其他时域信号的情况类似,这里不再赘述。
步骤二:生成M个第三频域序列。
发送端设备根据步骤一确定的相位因子集合
Figure PCTCN2022129598-appb-000026
得到M个第三频域序列。
具体地,第二频域序列的第k个元素a k经过相位变换得到一个第三频域序列中第k个元素
Figure PCTCN2022129598-appb-000027
Q为IFFT的点数,比如Q取值可以为256。Q为频域序列映射到子载波后进行IFFT变换到时域信号的IFFT点数,Q可以为2的幂次方的正整数。
以第二频域序列和1个相位因子生成1个第三频域序列为例说明:
第二频域序列中包括的元素为{a 0,a 1,...,a L-1},其中,L为正整数,表示第二频域序列的长度。
M个第三频域序列中的一个第三频域序列包括的元素为{b 0,b 1,...,b L-1},假设第二频域序列映射的时域信号(如,{10000000})循环移位3位能够得到该第三频域序列映射的时域信号(如,{00010000}),则:
Figure PCTCN2022129598-appb-000028
可选地,将获得的第三频域序列映射到时域上可以得到包括OOK调制符号{00010000}的OFDM时域信号如图9所示,图9是第三频域序列在时域上映射的时域信号图样。
M个第三频域序列中其他的频域序列的生成方式与上述的第三频域序列的生成方式类似,这里不再赘述。
方式二:对应于上述第二种关系。
第二频域序列与M个第三频域序列中每个第三频域序列包括的元素相同,但是元素映射到频域的顺序相同或者不同。
在该方式一下,生成M个第三频域序列的流程包括:
步骤一:发送端设备确定元素映射到频域的顺序。
具体地,发送端设备确定待发送的第一OFDM时域信号包括在时域上排列的N个第一调制符号,如{10000001}。
发送端设备根据第二频域序列映射的时域信号和待发送的第一OFDM时域信号包括在时域上排列的N个第一调制符号之间的关系,确定M个第三频域序列中每个第三频域序列中包括的元素映射到频域的顺序。
为了便于理解,以第二频域序列映射的时域信号为OOK调制符号{10000000},第一OFDM时域信号包括在时域上排列的N个第一调制符号为OOK调制符号{10000001}为例进行说明:
当第二频域序列包括的N个第二调制符号为{10000000}的情况下,该{10000000}和{00000001}在时域上叠加能够得到{10000001},{00000001}和{10000000}在时域上为相反的关系,由此可知M个第三频域序列包括两个第三频域序列,其中,一个第三频域序列包括的元素以及元素映射到频域的顺序与第二频域序列相同;另一个第三频域序列包括的元素与第二频域序列相同,但是另一个第三频域序列包括的元素映射到频域的顺序与第二频域序列包括的元素映射到频域的顺序相反。
需要说明的是,上述的第二频域序列映射的时域信号为{10000000},第一OFDM时域信号包括在时域上排列的N个第一调制符号为{10011001}只是举例对本申请的保护范围不构成任何的限定。
例如,第一OFDM时域信号包括在时域上排列的N个第一调制符号为{10011001},第二频域序列包括的N个第二调制符号为{10010000}的情况下,该{10010000}和{00001001}在时域上叠加能够得到{10011001},{10010000}和{00001001}在时域上为相反的关系,由此可知M个第三频域序列包括两个第三频域序列,其中,一个第三频域序列包括的元素以及元素映射到频域子载波的顺序与第二频域序列相同;另一个第三频域序列包括的元素与第二频域序列相同,其中,该另一个第三频域序列中的元素映射到频域子载 波的顺序和第二频域序列中的元素映射到频域子载波的顺序相反。该另一个第三频域序列在时域上映射的时域信号(如,OOK调制符号)与第二频域序列在时域上映射的时域信号(如,OOK调制符号)的幅度顺序相反。
第二频域序列包括的N个第二调制符号为其他时域信号的情况类似,这里不再赘述。
步骤二:生成M个第三频域序列。
发送端设备根据步骤一确定的元素映射到频域子载波的顺序得到M个第三频域序列。
示例性地,M个第三频域序列包括两个第三频域序列,其中,一个第三频域序列包括的元素以及元素映射到频域子载波的顺序与第二频域序列相同;另一个第三频域序列包括的元素与第二频域序列相同,但是该另一个第三频域序列包括的元素映射到频域子载波的顺序与第二频域序列中包括的元素映射到频域子载波的顺序相反。
也就是说,当第二频域序列中包括的元素{a 0,a 1,...,a L-1}一一映射到频域子载波e 0,e 1,...,e L-1的情况下,一个第三频域序列中包括的元素{a 0,a 1,...,a L-1}一一映射到频域子载波e 0,e 1,...,e L-1,另一个第三频域序列中包括的元素{a L-1,..,a 1,a 0}一一映射到频域子载波e 0,e 1,...,e L-1
S730,生成第一频域序列。
发送端设备生成的M个第三频域序列相加,并对相加之后得到的序列中的元素进行功率归一化,之后映射到频域子载波上得到第一频域序列。
作为一个示例,对应于步骤S720中的方式一,M个第三频域序列分别为:第二频域序列(下文称为第三频域序列#1)、第二频域序列和相位因子
Figure PCTCN2022129598-appb-000029
生成的一个第三频域序列(下文称为第三频域序列#2)、第二频域序列和相位因子
Figure PCTCN2022129598-appb-000030
生成的另一个第三频域序列(下文称为第三频域序列#3)、第二频域序列和相位因子
Figure PCTCN2022129598-appb-000031
生成的又一个第三频域序列(下文称为第三频域序列#4)。
将第三频域序列#1、第三频域序列#2、第三频域序列#3和第三频域序列#4相加得到第四频域序列#1,对第四频域序列#1中的元素进行功率归一化映射到频域子载波上得到第一频域序列。
为了便于理解,以第二频域序列为{a 0,a 1,...,a L-1},第二频域序列映射的时域信号包括的OOK调制符号为{10000000}为例进行说明。
例如,第二频域序列为{a 0,a 1,...,a L-1},则上述的第三频域序列#1为{a 0,a 1,...,a L-1}、第三频域序列#2为
Figure PCTCN2022129598-appb-000032
第三频域序列#3为
Figure PCTCN2022129598-appb-000033
第三频域序列#4为
Figure PCTCN2022129598-appb-000034
第四频域序列#1为{g 0,g 1,...,g L-1},其中,
Figure PCTCN2022129598-appb-000035
Figure PCTCN2022129598-appb-000036
Figure PCTCN2022129598-appb-000037
g 0,g 1,...,g L-1功率归一化之后得到第一频域序列。
进一步地,可以将获得的第一频域序列映射到对应的频域子载波上,进行IFFT变换到时域上可以得到包括OOK调制符号{10011001}的OFDM时域信号如图10所示,图10是一种第一频域序列在时域上映射的时域信号图样。
示例性地,第一频域序列在时域上映射OFDM时域信号的具体方式参见上文中图6所示的,这里不再赘述。
作为另一个示例,对应于步骤S720中的方式二,M个第三频域序列分别为:第三频域序列#5和第三频域序列#6,其中,第三频域序列#5中的元素映射到频域子载波的顺序和所述第二频域序列映射到频域子载波的顺序相同;第三频域序列#6中的元素映射到频域子载波的顺序和所述第二频域序列映射到频域子载波的顺序相反。
将第三频域序列#5和第三频域序列#6相加得到第四频域序列#2,对第四频域序列#2中的元素进行功率归一化映射到频域子载波上得到第一频域序列。
为了便于理解,以第二频域序列为{a 0,a 1,...,a L-1},第二频域序列映射的时域信号包括的OOK调制符号为{10000000}为例进行说明。
例如,第二频域序列{a 0,a 1,...,a L-1}分别映射到子载波e 0,e 1,...,e L-1,则上述的第三频域序列#5{a 0,a 1,...,a L-1}分别映射到子载波e 0,e 1,...,e L-1、第三频域序列#6{a L-1,..,a 1,a 0}分别映射到子载波e 1,e 2,...,e L。第四频域序列#2{h 0,h 1,...,h L-1}分别映射到子载波e 0,e 1,...,e L-1,其中,h 0=a 0+a L-1,h 1=a 1+a L-2,…,h L-1=a L-1+a 0。h 0,h 1,...,h L-1功率归一化之后得到第一频域序列。
进一步地,可以将获得的第一频域序列映射到对应的频域子载波上,进行IFFT变换到时域可以得到包括OOK调制符号{10000001}的OFDM时域信号图样,如图11所示,图11是另一种第一频域序列在时域上映射的时域信号图样。
上述方法实施例中,上述各过程的序列号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。并且有可能并非要执行上述方法实施例中的全部操作。
应理解,上述方法实施例中接收端设备和/或发送端设备可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
可以理解的是,上述方法实施例中,由接收端设备实现的方法,也可以由接收端设备的部件(例如芯片或者电路等)实现,由发送端设备实现的方法,也可以由发送端设备的部件实现。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图4和图7详细介绍了本申请实施例中的通信的方法,上述通信的方法主要从发送端设备和接收端设备之间交互的角度进行了介绍。可以理解的是,发送端设备和接 收端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图12和图13详细说明本申请实施例提供的通信的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图12是本申请实施例提供的装置1200的示意性框图。该装置1200包括收发单元1210、处理单元1220和存储单元1230。收发单元1210可以实现相应的通信功能,收发单元1210还可以称为通信接口或通信单元。处理单元1220用于进行数据处理。存储单元1230用于存储指令和/或数据,处理单元1220可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
该装置1200可以用于执行上文方法实施例中设备(如上述发送端设备、接收端设备等)所执行的动作,这时,该装置1200可以为设备或者可配置于设备的部件,收发单元1210用于执行上文方法实施例中设备的收发相关的操作,处理单元1220用于执行上文方法实施例中设备处理相关的操作。
作为一种设计,该装置1200用于执行上文方法实施例中发送端设备所执行的动作。
处理单元1220,用于生成第一正交频分复用OFDM时域信号,该第一OFDM时域信号包括在时域上排列的N个第一调制符号,该第一调制符号为幅移键控调制符号;
收发单元1210,用于向接收端设备发送该第一OFDM时域信号。
可选地,该处理单元1220生成第一OFDM时域信号,包括:
该处理单元1220生成第一频域序列,其中,该第一频域序列与该N个第一调制符号具有映射关系;该处理单元1220根据该第一频域序列生成该第一OFDM时域信号。
可选地,该处理单元1220生成第一频域序列,包括:
该处理单元1220根据第二频域序列生成该第一频域序列,该第一频域序列映射的时域信号包括该第二频域序列映射的部分或者全部时域信号。
可选地,该第二频域序列映射的时域信号包括N个第二调制符号,该第二调制符号为幅移键控调制符号,该N个第二调制符号至少包括一个幅移键控调制符号1和一个幅移键控调制符号0。
可选地,该处理单元1220根据第二频域序列生成该第一频域序列,包括:
该处理单元1220根据该第二频域序列生成M个第三频域序列;该处理单元1220根 据该M个第三频域序列生成该第一频域序列,其中,该第二频域序列与该M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
可选地,该处理单元1220根据该M个第三频域序列生成该第一频域序列,包括:
该处理单元1220通过相加该M个第三频域序列获得该第一频域序列。
可选地,该处理单元1220根据该第二频域序列生成M个第三频域序列,包括:
该处理单元1220根据该第二频域序列和M个相位因子生成该M个第三频域序列,其中,该M个第三频域序列中的第i个频域序列由该第二频域序列和该M个相位因子中第i个相位因子
Figure PCTCN2022129598-appb-000038
生成,该第二频域序列映射的时域信号在时域上循环移位T i个幅移键控调制符号长度为该第i个频域序列映射的时域信号,该
Figure PCTCN2022129598-appb-000039
与T i满足以下公式:
Figure PCTCN2022129598-appb-000040
可选地,该第i个频域序列中的第k个元素b k、该第二频域序列中的第k个元素a k、该M个相位因子中第i个相位因子
Figure PCTCN2022129598-appb-000041
满足以下等式:
Figure PCTCN2022129598-appb-000042
其中,该Q为正整数,该k为小于或者等于L的正整数,该L为该第三频域序列的长度。
可选地,该处理单元1220根据第二频域序列生成该第一频域序列,包括:
该处理单元1220根据该第二频域序列生成M个第三频域序列;该处理单元1220根据该M个第三频域序列生成该第一频域序列,其中,该第二频域序列中包括的L个第一元素与该M个第三频域序列中一个第三频域序列包括的L个第二元素的相同,且L个第一元素和L个第二元素映射到频域的顺序不同,L为正整数。
可选地,该L个第一元素和L个第二元素映射到频域的顺序相反。
可选地,该M和N满足以下关系:N=MP,其中,P为正整数。
可选地,该收发单元1210,还用于发送指示信息,该指示信息用于指示以下至少一项:
该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系、或该第一OFDM时域信号持续的时间对应的子载波间隔。
或者,
该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系和该第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
可选地,该N个第一调制符号在时域上两两不重叠。
该装置1200可实现对应于根据本申请实施例的方法实施例中的发送端设备执行的步骤或者流程,该装置1200可以包括用于执行方法实施例中的发送端设备执行的方法的单元。并且,该装置1200中的各单元和上述其他操作和/或功能分别为了实现方法实施例中的发送端设备中的方法实施例的相应流程。
其中,当该装置1200用于执行图4中的方法时,收发单元1210可用于执行方法中的发送信息的步骤,如步骤S420;处理单元1220可用于执行方法中的处理步骤,如步骤S411和S410。
当该装置1200用于执行图7中的方法时,处理单元1220可用于执行方法中的处理步骤,如步骤S710、S720和S730。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,该装置1200用于执行上文方法实施例中接收端设备所执行的动作。
收发单元1210,用于接收第一正交频分复用OFDM时域信号;
处理单元1220,用于确定该第一OFDM时域信号包括在时域上排列的N个第一调制符号,该第一调制符号为幅移键控调制符号,其中,该N为大于或者等于2的整数。
可选地,收发单元1210,还用于接收指示信息,该指示信息用于指示以下至少一项:该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系、或该第一OFDM时域信号持续的时间对应的子载波间隔。
或者,
该N、该N个第一调制符号中每个第一调制符号持续的时间和该第一OFDM时域信号持续的时间的关系和该第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
该装置1200可实现对应于根据本申请实施例的方法实施例中的接收端设备执行的步骤或者流程,该装置1200可以包括用于执行方法实施例中的接收端设备执行的方法的单元。并且,该装置1200中的各单元和上述其他操作和/或功能分别为了实现方法实施例中的接收端设备中的方法实施例的相应流程。
其中,当该装置1200用于执行图4中的方法时,收发单元1210可用于执行方法中的接收信息的步骤,如步骤S420。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理单元1220可以由至少一个处理器或处理器相关电路实现。收发单元1210可以由收发器或收发器相关电路实现。存储单元可以通过至少一个存储器实现。
如图13所示,本申请实施例还提供一种装置1300。该装置1300包括处理器1310,还可以包括一个或多个存储器1320。
处理器1310与存储器1320耦合,存储器1320用于存储计算机程序或指令和/或数据,处理器1310用于执行存储器1320存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,如图13所示,该装置1300还可以包括收发器1330,收发器1330用于信号的接收和/或发送。例如,处理器1310用于控制收发器1330进行信号的接收和/或发送。
其中,图13中的处理器1310可以为图12中的处理单元1220,实现处理单元1220的功能,处理器1310执行的操作具体可以参见上文对处理单元1220的说明,这里不再赘述;图13中的收发器1330可以为图12中的收发单元1210,实现收发单元1210的功能,收发器1330执行的操作具体可以参见上文对收发单元1210的说明,这里不再赘述;图13中的存储器1320可以为图12中的存储单元1230,实现存储单元1230的功能。
可选地,该装置1300包括的处理器1310为一个或多个。
可选地,该存储器1320可以与该处理器1310集成在一起,或者分离设置。
作为一种方案,该装置1300用于实现上文方法实施例中由设备(如上述接收端设备、发送端设备等)执行的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由设备(如上述接收端设备、发送端设备等)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由发送端设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由设备(如上述接收端设备、发送端设备等)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的设备(如上述接收端设备、发送端设备等)。
本申请实施例还提供一种芯片装置,包括处理电路,该处理电路用于从存储器中调用并运行程序,使得安装有该芯片装置的通信设备实现上述方法实施例中由设备(如上述接收端设备、发送端设备等)执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者发送端设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种通信的方法,其特征在于,包括:
    生成第一正交频分复用OFDM时域信号,所述第一OFDM时域信号包括在时域上排列的N个第一调制符号,所述第一调制符号为幅移键控调制符号;
    发送所述第一OFDM时域信号;
    其中,N为大于或者等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述生成第一OFDM时域信号,包括:
    生成第一频域序列,其中,所述第一频域序列与所述N个第一调制符号具有映射关系;
    根据所述第一频域序列生成所述第一OFDM时域信号。
  3. 根据权利要求2所述的方法,其特征在于,所述生成第一频域序列,包括:
    根据第二频域序列生成所述第一频域序列,所述第一频域序列映射的时域信号包括所述第二频域序列映射的部分或者全部时域信号。
  4. 根据权利要求3所述的方法,其特征在于,所述第二频域序列映射的时域信号包括N个第二调制符号,所述第二调制符号为幅移键控调制符号,所述N个第二调制符号至少包括一个幅移键控调制符号1和一个幅移键控调制符号0。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据第二频域序列生成所述第一频域序列,包括:
    根据所述第二频域序列生成M个第三频域序列;
    根据所述M个第三频域序列生成所述第一频域序列,
    其中,所述第二频域序列与所述M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述M个第三频域序列生成所述第一频域序列,包括:
    相加所述M个第三频域序列获得所述第一频域序列。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据所述第二频域序列生成M个第三频域序列,包括:
    根据所述第二频域序列和M个相位因子生成所述M个第三频域序列,
    其中,所述M个第三频域序列中的第i个频域序列由所述第二频域序列和所述M个相位因子中第i个相位因子
    Figure PCTCN2022129598-appb-100001
    生成,所述第二频域序列映射的时域信号在时域上循环移位T i个幅移键控调制符号长度为所述第i个频域序列映射的时域信号,
    所述
    Figure PCTCN2022129598-appb-100002
    与T i满足以下公式:
    Figure PCTCN2022129598-appb-100003
  8. 根据权利要求7所述的方法,其特征在于,所述第i个频域序列中的第k个元素b k、所述第二频域序列中的第k个元素a k、所述M个相位因子中第i个相位因子
    Figure PCTCN2022129598-appb-100004
    满足以下等式:
    Figure PCTCN2022129598-appb-100005
    其中,所述Q为正整数,所述k为小于或者等于L的正整数,所述L为所述第i个频 域序列的长度。
  9. 根据权利要求3或4所述的方法,其特征在于,所述根据第二频域序列生成所述第一频域序列,包括:
    根据所述第二频域序列生成M个第三频域序列;
    根据所述M个第三频域序列生成所述第一频域序列,
    其中,所述第二频域序列中包括的L个第一元素与所述M个第三频域序列中一个第三频域序列包括的L个第二元素的相同,且L个第一元素和L个第二元素映射到频域的顺序不同,L为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述L个第一元素和L个第二元素映射到频域的顺序相反。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述M和N满足以下关系:
    N=MP,其中,P为正整数。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示以下至少一项:
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系、或所述第一OFDM时域信号持续的时间对应的子载波间隔;
    或者,
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系和所述第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一OFDM时域信号用于指示如下标识中的一种:
    终端设备的标识;
    所述终端设备所在终端设备组的标识;
    所述终端设备的标识的一部分;或,
    所述终端设备所在终端设备组的标识的一部分。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述N个第一调制符号在时域上两两不重叠。
  15. 一种通信的方法,其特征在于,包括:
    接收第一正交频分复用OFDM时域信号;
    确定所述第一OFDM时域信号包括在时域上排列的N个第一调制符号,所述第一调制符号为幅移键控调制符号,
    其中,所述N为大于或者等于2的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示以下至少一项:
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系、或所述第一OFDM时域信号持续的时间对应的子载波间隔;
    或者,
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系和所述第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一OFDM时域信号用于指示如下标识中的一种:
    终端设备的标识;
    所述终端设备所在终端设备组的标识;
    所述终端设备的标识的一部分;或,所述终端设备所在终端设备组的标识的一部分。
  18. 一种通信的装置,其特征在于,包括:
    处理单元,用于生成第一正交频分复用OFDM时域信号,所述第一OFDM时域信号包括在时域上排列的N个第一调制符号,所述第一调制符号为幅移键控调制符号;
    发送单元,用于发送所述第一OFDM时域信号;
    其中,N为大于或者等于2的整数。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元生成第一OFDM时域信号,包括:
    所述处理单元生成第一频域序列,其中,所述第一频域序列与所述N个第一调制符号具有映射关系;
    所述处理单元根据所述第一频域序列生成所述第一OFDM时域信号。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元生成第一频域序列,包括:
    所述处理单元根据第二频域序列生成所述第一频域序列,所述第一频域序列映射的时域信号包括所述第二频域序列映射的部分或者全部时域信号。
  21. 根据权利要求20所述的装置,其特征在于,所述第二频域序列映射的时域信号包括N个第二调制符号,所述第二调制符号为幅移键控调制符号,所述N个第二调制符号至少包括一个幅移键控调制符号1和一个幅移键控调制符号0。
  22. 根据权利要求20或21所述的装置,其特征在于,所述处理单元根据第二频域序列生成所述第一频域序列,包括:
    所述处理单元根据所述第二频域序列生成M个第三频域序列;
    所述处理单元根据所述M个第三频域序列生成所述第一频域序列,
    其中,所述第二频域序列与所述M个第三频域序列中每个第三频域序列在时域上具有循环移位关系。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元根据所述M个第三频域序列生成所述第一频域序列,包括:
    所述处理单元通过相加所述M个第三频域序列获得所述第一频域序列。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理单元根据所述第二频域序列生成M个第三频域序列,包括:
    所述处理单元根据所述第二频域序列和M个相位因子生成所述M个第三频域序列,
    其中,所述M个第三频域序列中的第i个频域序列由所述第二频域序列和所述M个相位因子中第i个相位因子
    Figure PCTCN2022129598-appb-100006
    生成,所述第二频域序列映射的时域信号在时域上循环移位 T i个幅移键控调制符号长度为所述第i个频域序列映射的时域信号,所述
    Figure PCTCN2022129598-appb-100007
    与T i满足以下公式:
    Figure PCTCN2022129598-appb-100008
  25. 根据权利要求24所述的装置,其特征在于,所述第i个频域序列中的第k个元素b k、所述第二频域序列中的第k个元素a k、所述M个相位因子中第i个相位因子
    Figure PCTCN2022129598-appb-100009
    满足以下等式:
    Figure PCTCN2022129598-appb-100010
    其中,所述Q为正整数,所述k为小于或者等于L的正整数,所述L为所述第三频域序列的长度。
  26. 根据权利要求20或21所述的装置,其特征在于,所述处理单元根据第二频域序列生成所述第一频域序列,包括:
    所述处理单元根据所述第二频域序列生成M个第三频域序列;
    所述处理单元根据所述M个第三频域序列生成所述第一频域序列,
    其中,所述第二频域序列中包括的L个第一元素与所述M个第三频域序列中一个第三频域序列包括的L个第二元素的相同,且L个第一元素和L个第二元素映射到频域的顺序不同,L为正整数。
  27. 根据权利要求26所述的装置,其特征在于,所述L个第一元素和L个第二元素映射到频域的顺序相反。
  28. 根据权利要求22至27中任一项所述的装置,其特征在于,所述M和N满足以下关系:
    N=MP,其中,P为正整数。
  29. 根据权利要求18至28中任一项所述的装置,其特征在于,所述发送单元,还用于发送指示信息,所述指示信息用于指示以下至少一项:
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系、或所述第一OFDM时域信号持续的时间对应的子载波间隔;
    或者,
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系和所述第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
  30. 根据权利要求18至29中任一项所述的装置,其特征在于,所述N个第一调制符号在时域上两两不重叠。
  31. 根据权利要求18至30中任一项所述的装置,其特征在于,所述第一OFDM时域信号用于指示如下标识中的一种:
    终端设备的标识;
    所述终端设备所在终端设备组的标识;
    所述终端设备的标识的一部分;或,
    所述终端设备所在终端设备组的标识的一部分。
  32. 一种通信的装置,其特征在于,包括:
    接收单元,用于接收第一正交频分复用OFDM时域信号;
    处理单元,用于确定所述第一OFDM时域信号包括在时域上排列的N个第一调制符号,所述第一调制符号为幅移键控调制符号,
    其中,所述N为大于或者等于2的整数。
  33. 根据权利要求32所述的装置,其特征在于,所述接收单元,还用于接收指示信息,所述指示信息用于指示以下至少一项:
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系、或所述第一OFDM时域信号持续的时间对应的子载波间隔;
    或者,
    所述N、所述N个第一调制符号中每个第一调制符号持续的时间和所述第一OFDM时域信号持续的时间的关系和所述第一OFDM时域信号持续的时间对应的子载波间隔中的至少一项为预定义的。
  34. 根据权利要求32或33所述的装置,其特征在于,所述第一OFDM时域信号用于指示如下标识中的一种:
    终端设备的标识;
    所述终端设备所在终端设备组的标识;
    所述终端设备的标识的一部分;或,
    所述终端设备所在终端设备组的标识的一部分。
  35. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求1至14中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求15至17中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至14中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求15至17中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得权利要求1至14中任一项所述的方法被执行。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得权利要求15至17中任一项所述的方法被执行。
  41. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求1至14中任一项所述的方法。
  42. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机 程序,使得安装有所述芯片系统的通信设备执行权利要求15至17中任一项所述的方法。
  43. 一种通信系统,其特征在于,包括至少一个如权利要求18至31中任一项所述的装置和至少一个如权利要求32至34中任一项所述的装置。
PCT/CN2022/129598 2021-11-04 2022-11-03 通信的方法和装置 WO2023078358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111301685.X 2021-11-04
CN202111301685.XA CN116073971A (zh) 2021-11-04 2021-11-04 通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2023078358A1 true WO2023078358A1 (zh) 2023-05-11

Family

ID=86182580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129598 WO2023078358A1 (zh) 2021-11-04 2022-11-03 通信的方法和装置

Country Status (2)

Country Link
CN (1) CN116073971A (zh)
WO (1) WO2023078358A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101766A1 (ko) * 2016-12-01 2018-06-07 엘지전자 주식회사 무선랜 시스템에서 웨이크업 패킷을 송신하는 방법 및 장치
CN109314929A (zh) * 2017-02-06 2019-02-05 华为技术有限公司 多载波唤醒无线帧的波形编码
CN111343120A (zh) * 2018-12-19 2020-06-26 成都华为技术有限公司 一种信号处理方法及装置
US10863437B1 (en) * 2017-08-30 2020-12-08 Newracom, Inc. Wireless device low power wake up
WO2021004697A1 (en) * 2019-07-10 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Avoiding false detection associated with wake-up signal
CN113498598A (zh) * 2019-02-22 2021-10-12 Idac控股公司 用于功率节省的唤醒信号

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101766A1 (ko) * 2016-12-01 2018-06-07 엘지전자 주식회사 무선랜 시스템에서 웨이크업 패킷을 송신하는 방법 및 장치
CN109314929A (zh) * 2017-02-06 2019-02-05 华为技术有限公司 多载波唤醒无线帧的波形编码
US10863437B1 (en) * 2017-08-30 2020-12-08 Newracom, Inc. Wireless device low power wake up
CN111343120A (zh) * 2018-12-19 2020-06-26 成都华为技术有限公司 一种信号处理方法及装置
CN113498598A (zh) * 2019-02-22 2021-10-12 Idac控股公司 用于功率节省的唤醒信号
WO2021004697A1 (en) * 2019-07-10 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Avoiding false detection associated with wake-up signal

Also Published As

Publication number Publication date
CN116073971A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
EP3723348B1 (en) Method for separating physical layer functions in wireless communication system
WO2021097597A1 (zh) 信号传输的方法和装置、反射器以及接收器
WO2012148488A1 (en) Methods and arrangements for communications in low power wireless networks
US11743085B2 (en) Cyclic prefix orthogonal frequency division multiplexing sequence configuration of a downlink/uplink
WO2023071864A1 (zh) 发送信号的方法和装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2023109920A1 (zh) 一种通信方法及装置
WO2023078358A1 (zh) 通信的方法和装置
WO2022077142A1 (zh) 物理上行共享信道发送的方法和通信装置
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023241319A1 (zh) 一种通信方法及通信装置
WO2024032229A1 (zh) 通信方法、装置、设备以及存储介质
WO2023083037A1 (zh) 信号传输的方法和装置
CN114189318A (zh) 数据传输方法和装置
WO2024093634A1 (zh) 信息传输的方法与装置
WO2023083036A1 (zh) 信号传输的方法和装置
WO2024098404A1 (zh) 无线通信的方法和设备
WO2024041522A1 (zh) 信号处理的方法和装置
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024007937A1 (zh) 调制编码的方法和装置
WO2023046064A1 (zh) 一种通信方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2024055878A1 (zh) 通信方法和通信装置
CN113852577B (zh) 无线通信方法和通信装置
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889379

Country of ref document: EP

Kind code of ref document: A1