WO2023142831A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2023142831A1
WO2023142831A1 PCT/CN2022/142035 CN2022142035W WO2023142831A1 WO 2023142831 A1 WO2023142831 A1 WO 2023142831A1 CN 2022142035 W CN2022142035 W CN 2022142035W WO 2023142831 A1 WO2023142831 A1 WO 2023142831A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
ofdm
subcarrier
signal
domain signal
Prior art date
Application number
PCT/CN2022/142035
Other languages
English (en)
French (fr)
Inventor
罗之虎
陈俊
吴毅凌
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023142831A1 publication Critical patent/WO2023142831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method, device, device and storage medium.
  • the Long Term Evolution (LTE) system and the New Radio (NR) system are both Orthogonal Frequency Division Multiplexing (OFDM) systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MTC machine-type communication
  • IoT Internet of Things
  • RFID radio frequency identification
  • the embodiment of the present application provides a communication method, device, device and storage medium, in order to realize the integration of RFID or similar technologies with various OFDM systems.
  • the present application provides a communication method, which can be executed by a terminal device or a network device, such as the first device exemplified below, or by components configured in the terminal device or network device (such as a chip, chip system, etc.), which is not limited in this embodiment of the present application.
  • a communication method which can be executed by a terminal device or a network device, such as the first device exemplified below, or by components configured in the terminal device or network device (such as a chip, chip system, etc.), which is not limited in this embodiment of the present application.
  • the method is described below with the first device as the main body.
  • the method includes: the first device generates a first OFDM time domain signal, where the first OFDM time domain signal occupies one subcarrier in the frequency domain.
  • the first device sends the first OFDM time-domain signal to the second device, so that the second device can perform reflective communication based on the first OFDM time-domain signal.
  • the first OFDM time-domain signal used to realize the communication between the first device and the second device adopts OFDM waveform, which is consistent with the waveform of signals of other OFDM-based communication systems, and realizes the integration of RFID technology and similar systems based on
  • the carrier reflection communication technology is applied to the OFDM system; further, the first OFDM time domain signal occupies a subcarrier in the frequency domain, the first device can concentrate power on the subcarrier, and the second device subsequently uses the first OFDM time domain signal to When communicating with domain signal reflection, the reliability of reflection data can be improved.
  • the first device When the first device receives the uplink data transmitted by the second device through reflective communication, in order to correctly demodulate the uplink data, it needs to eliminate the interference of the carrier signal leaked by itself and/or the carrier signal reflected by the environment through interference suppression.
  • the first OFDM The time-domain signal occupies one subcarrier in the frequency domain, which can reduce the implementation complexity of interference suppression by the first device.
  • the first OFDM time domain signal may be a phase continuous time domain signal.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol in the time domain, the first OFDM symbol and the second OFDM symbol are adjacent, and the phase between the first OFDM symbol and the second OFDM symbol is continuous.
  • the first OFDM symbol and the second OFDM symbol are any two adjacent OFDM symbols in the first OFDM time-domain signal, which are described here only as an example and should not be construed as limiting the application, for example
  • the first OFDM time-domain signal may include multiple OFDM symbols, and every two adjacent OFDM symbols have continuous phases.
  • a first design following any of the above examples is: a subcarrier occupied by the first OFDM time domain signal in the frequency domain may be a subcarrier with a frequency of zero.
  • a subcarrier with frequency zero is also called a DC subcarrier.
  • the one subcarrier is a subcarrier with a frequency of zero, the phase of the first OFDM time domain signal is continuous.
  • the subcarrier with frequency zero is at the middle frequency position in the first downlink frequency domain unit.
  • the first downlink frequency domain unit may be a frequency domain resource used for communication between the first device and the second device (such as the first frequency domain resource below), or the first downlink frequency domain unit may be based on the first device It is obtained by offsetting frequency domain resources for communicating with the second device.
  • the intermediate frequency position of the first downlink frequency domain unit can also be expressed as the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit The absolute value of is 0 or 1.
  • the index n PRB of the resource block where the subcarrier with frequency zero is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the index of the subcarrier whose frequency is zero may be the index of the subcarrier in the aforementioned resource block, and the index may be determined according to the parity of the number of resource blocks in the first downlink frequency domain unit. For example, when the number of resource blocks in the first downlink frequency domain unit is an odd number, the index of the subcarrier with frequency zero is equal to half the number of subcarriers in one resource block or the index of the subcarrier with frequency zero is equal to 6 ; When the number of resource blocks in the first downlink frequency domain unit is an even number, the index of the subcarrier whose frequency is zero is equal to zero or the number of subcarriers in one resource block.
  • the index of the subcarrier whose frequency is zero may be equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the index of the subcarrier whose frequency is zero refers to the index of the subcarrier in the first downlink frequency domain unit.
  • the index of the subcarrier whose frequency is zero may be determined by the first value and the offset.
  • the first value may be a value determined by parity of the number of resource blocks in the first downlink frequency domain unit, or the first value may be half of the number of subcarriers in the first downlink frequency domain unit.
  • the offset is determined according to at least one of the following:
  • the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal are the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal.
  • the above three schemes are examples in which a subcarrier is located at the middle frequency position of the first downlink frequency domain unit, all of which can make the frequency of the subcarrier be zero, thereby making the phase of the first OFDM time domain signal continuous.
  • the third solution may be applied to the case where there is a frequency offset between the first downlink frequency domain unit and the first frequency domain resource.
  • a second design following any of the foregoing examples is: the foregoing first OFDM time-domain signal does not include a cyclic prefix.
  • the first OFDM time-domain signal does not include a cyclic prefix, so that the phase of the first OFDM time-domain signal can be continuous.
  • the first OFDM time domain signal does not include a cyclic prefix, that is, any OFDM symbol in the first OFDM time domain signal does not include a cyclic prefix.
  • Two adjacent OFDM symbols in the first OFDM time domain signal are connected end to end in the time domain. Since the first OFDM time-domain signal does not include a cyclic prefix, the phase of the first OFDM time-domain signal can be made continuous.
  • the foregoing one subcarrier may be any subcarrier in the first downlink frequency domain unit, which is not limited in this application.
  • the above-mentioned one subcarrier is located at an intermediate frequency position in the first downlink frequency-domain unit, which can improve spectrum usage efficiency.
  • the index n PRB of the resource block where the subcarrier is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the index of the subcarrier may be determined according to the parity of the number of resource blocks in the first downlink frequency domain unit. For example, when the number of resource blocks in the first downlink frequency domain unit is an odd number, the index of a subcarrier is equal to half of the number of subcarriers in the resource block; when the number of resource blocks in the first downlink frequency domain unit is When even, the index of a subcarrier is equal to zero or the number of subcarriers in the resource block.
  • the index of one subcarrier may be equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the index of a subcarrier may be determined by the first value and the offset.
  • the first value may be a value determined by parity of the number of resource blocks in the first downlink frequency domain unit, or the first value may be half of the number of subcarriers in the first downlink frequency domain unit.
  • the offset is determined according to at least one of the following:
  • the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal are the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal.
  • the above three schemes are examples in which a subcarrier is located at the middle frequency position of the first downlink frequency domain unit, and all of them can improve spectrum utilization efficiency.
  • the third solution may be applied to the case where there is a frequency offset between the first downlink frequency domain unit and the first frequency domain resource.
  • the first OFDM time domain signal includes a cyclic prefix, that is, any OFDM symbol in the first OFDM time domain signal includes a cyclic prefix.
  • the first OFDM time-domain signal includes a cyclic prefix, which easily causes phase discontinuity of the first OFDM time-domain signal.
  • the first device makes the first OFDM time domain signal phase continuous through phase compensation.
  • the first OFDM time-domain signal may include multiple OFDM time-domain symbols, and the following uses the first OFDM symbol and the second OFDM symbol in the first OFDM time-domain signal for exemplary description.
  • the time domain starting position of the second OFDM symbol is based on the time domain starting position of the first OFDM symbol, the index of the second OFDM symbol in the first time domain resource, and the duration of the first OFDM symbol It is determined that the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0. Based on this, the initial phase of the second OFDM symbol can be made to be the sum of the initial phase of the first OFDM symbol and the phase change in the corresponding time length of the first OFDM symbol, and according to the recurrence relationship, the second OFDM symbol and the first OFDM symbol can be made The symbol phase is continuous.
  • first OFDM symbol and the second OFDM symbol are any two adjacent OFDM symbols in the first OFDM time-domain signal, that is, the first OFDM time-domain signal is
  • first OFDM time-domain signal is
  • Each OFDM symbol in the domain resource can achieve phase continuity according to the above recurrence relationship, so that the phase of the first OFDM time domain signal is continuous in the first time domain resource.
  • the first time domain resource is a time domain resource used to transmit the first OFDM time domain signal; or, the first time domain resource is at least one subframe.
  • the symbol-by-symbol phase compensation is performed on the first OFDM time-domain signal, which is conducive to the compatibility of Passive IoT and the OFDM system; and according to the index used to transmit the first OFDM time-domain signal
  • the index of the OFDM symbol in the time-domain resource of the first OFDM time-domain signal is carried out symbol-by-symbol phase compensation, when the index of the OFDM symbol is 0, the initial phase (being initial phase) of the first OFDM time-domain signal is 0, There is no need to determine the initial phase of the first OFDM time-domain signal, which can reduce the computational complexity of phase compensation.
  • the above one subcarrier may be any subcarrier in the first downlink frequency domain unit, which is not limited in this application.
  • the above-mentioned one subcarrier is located at an intermediate frequency position in the first downlink frequency-domain unit, which can improve spectrum usage efficiency.
  • the index of the one subcarrier is the same as the index of the one subcarrier in the above-mentioned second design, which will not be repeated here.
  • the first device may map the element A to the above-mentioned one subcarrier through subcarrier mapping, so as to generate the first OFDM time-domain signal.
  • the first device may start transform precoding, or perform DFT extension; of course, before subcarrier mapping, the first device may not perform transform precoding, or perform DFT extension.
  • the first device when the first device starts transform precoding, the first device may perform transform precoding on the first sequence to obtain a second sequence, and one element in the second sequence is non-zero (such as the above-mentioned element A) , the other elements in the second sequence are zero except for this one element. Further, the first device maps the non-zero elements in the second sequence to the above-mentioned one subcarrier, so as to generate the first OFDM time domain signal.
  • the elements carried by each subcarrier except the foregoing one subcarrier are all zero.
  • the first device generates a second OFDM time-domain signal
  • the second OFDM time-domain signal is used to transmit downlink data.
  • the second OFDM time-domain signal adopts OFDM waveform, which is consistent with the waveform of signals of other OFDM-based communication systems, realizing the application of RFID technology and similar communication technologies based on carrier reflection to OFDM systems.
  • the second OFDM time domain signal occupies the first downlink frequency domain unit in the frequency domain, and the number of subcarriers with a frequency lower than one subcarrier in the first downlink frequency domain unit is the same as the number of subcarriers with a frequency higher than one subcarrier.
  • the absolute value of the difference in the number of subcarriers is 0 or 1, so that a subcarrier occupied by the first OFDM time domain signal is located at the middle frequency position of the first downlink frequency domain unit occupied by the second OFDM time domain signal, which improves the frequency spectrum Use efficiency.
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource, and the first frequency domain resource is used for the first device to communicate with the second device; or, the first downlink The row frequency domain unit includes subcarriers in the first frequency domain resource whose frequency is offset according to a preset value. The center symmetry of the first downlink frequency domain unit with respect to a subcarrier carrying the first OFDM time domain signal is realized, and the frequency utilization efficiency is improved.
  • the first device sends the first OFDM time-domain signal to the second device
  • the second device may send an uplink signal to the first device in a reflective communication manner during the process of receiving the first OFDM time-domain signal.
  • the second device stops sending the uplink signal due to the loss of the carrier signal that can be used for reflection.
  • the second device cannot receive Before the first OFDM use signal sent by the first device, send an uplink signal to the first device in a reflective communication manner.
  • the time domain resource occupied by the second device to send the uplink signal to the first device in reflective communication should be a subset of the time domain resource occupied by the first device to send the first OFDM time domain signal to the second device.
  • the start position of the time domain of the uplink signal is later than the start position of the time domain of the first OFDM time domain signal, and/or the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • the time domain end positions of the time domain signals are separated by a second time domain length T2.
  • the above-mentioned first time domain length T1 should be related to at least one of the following:
  • the generation time of the uplink signal by the second device (for example, the preparation time for the uplink data to be reflected).
  • the above second time domain length T2 should be related to at least one of the following:
  • the embodiment of the present application provides a communication method, the method includes: the second device receives a first OFDM time domain signal from the first device, and the first OFDM time domain signal occupies one subcarrier in the frequency domain; the The second device sends an uplink signal to the first device in a reflective communication manner, and the radio frequency carrier of the uplink signal is determined according to the radio frequency carrier of the first OFDM time domain signal.
  • the radio frequency carrier of the uplink signal is the same as the radio frequency carrier of the first OFDM time domain signal, or there is a radio frequency carrier between the radio frequency carrier of the uplink signal and the first OFDM time domain signal offset value.
  • the frequency of the one subcarrier is zero.
  • the first OFDM time domain signal does not include a cyclic prefix.
  • the first OFDM time domain signal includes a cyclic prefix.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol in the time domain, the first OFDM symbol and the second OFDM symbol are adjacent, and the first OFDM symbol and The phases between the second OFDM symbols are continuous.
  • the time-domain starting position of the second OFDM symbol is based on the time-domain starting position of the first OFDM symbol, the index of the second OFDM symbol in the first time-domain resource, and the first OFDM symbol
  • the duration of an OFDM symbol is determined, and the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0.
  • the first time domain resource is a time domain resource used to transmit the first OFDM time domain signal.
  • the first time domain resource is at least one subframe.
  • the one subcarrier is located in the first downlink frequency domain unit, and the number of subcarriers with frequencies lower than the one subcarrier and frequencies higher than the one subcarrier in the first downlink frequency domain unit are The absolute value of the difference between the numbers of subcarriers of the carrier is 0 or 1, and the first downlink frequency domain unit is used for the first device to communicate with the second device.
  • the index of the one subcarrier is a first value; or the index of the one subcarrier is a second value, and the second value is determined according to the first value and an offset.
  • the first value is determined according to the parity of the number of resource blocks in the first downlink frequency domain unit.
  • the index of the resource block where the subcarrier is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the first value when the number of resource blocks in the first downlink frequency domain unit is an odd number, the first value is equal to half the number of subcarriers in a resource block or the first value is equal to 6; Or, when the number of resource blocks in the first downlink frequency domain unit is an even number, the first value is equal to zero or the number of subcarriers in the one resource block.
  • the first value is equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the second value is the sum of the first value and the offset, and the offset is determined according to at least one of the following: the subcarrier spacing of the first OFDM time domain signal and maximum subcarrier spacing; or, a preset value.
  • elements carried by each subcarrier except the one subcarrier are all zero.
  • the method further includes: the second device receives a second OFDM time domain signal from the first device, the second OFDM time domain signal is used to transmit downlink data, and the second OFDM time domain signal
  • the signal occupies the first downlink frequency domain unit in the frequency domain, the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit
  • the absolute value of is 0 or 1.
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource, and the first frequency domain resource is used for the first device to communicate with the second device ; or, the first downlink frequency domain unit includes subcarriers in the first frequency domain resource whose frequency is offset according to a preset value.
  • the method further includes: the second device sends an uplink signal to the first device, the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal position, and/or, the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • first time domain length between the time domain starting position of the uplink signal and the time domain starting position of the first OFDM time domain signal, and/or, the time domain of the uplink signal
  • second time domain length between the end position of the domain and the end position of the time domain of the first OFDM time domain signal.
  • the embodiment of the present application provides a communication device, including: a processing unit, configured to generate a first OFDM time-domain signal, and the first OFDM time-domain signal is used by the second device to perform reflective communication , the first OFDM time-domain signal occupies one subcarrier in the frequency domain; the transceiver unit is configured to send the first OFDM time-domain signal to the second device.
  • the frequency of the one subcarrier is zero.
  • the first OFDM time domain signal does not include a cyclic prefix.
  • the first OFDM time domain signal includes a cyclic prefix.
  • the first OFDM time-domain signal includes a first OFDM symbol and a second OFDM symbol in the time domain, the first OFDM symbol and the second OFDM symbol are adjacent, and the first OFDM symbol The phase is continuous with the second OFDM symbol.
  • the time-domain starting position of the second OFDM symbol is based on the time-domain starting position of the first OFDM symbol, the index of the second OFDM symbol in the first time-domain resource, and the first OFDM symbol
  • the duration of an OFDM symbol is determined, and the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0.
  • the first time domain resource is a time domain resource used to transmit the first OFDM time domain signal.
  • the first time domain resource is at least one subframe.
  • the processing unit is specifically configured to: perform transform precoding on the first sequence to obtain a second sequence; wherein, an element in the second sequence is non-zero, and the second sequence is divided by the Elements other than one element are zero, and non-zero elements in the second sequence are mapped to the one subcarrier.
  • the one subcarrier is located in the first downlink frequency domain unit, and the number of subcarriers with frequencies lower than the one subcarrier and frequencies higher than the one subcarrier in the first downlink frequency domain unit are The absolute value of the difference between the number of subcarriers of the carrier is 0 or 1, and the first downlink frequency domain unit is used for the communication device to communicate with the second device.
  • the index of the one subcarrier is a first value; or the index of the one subcarrier is a second value, and the second value is determined according to the first value and an offset.
  • the first value is determined according to the parity of the number of resource blocks in the first downlink frequency domain unit.
  • the index of the resource block where the subcarrier is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the first value when the number of resource blocks in the first downlink frequency domain unit is an odd number, the first value is equal to half the number of subcarriers in a resource block or the first value is equal to 6; Alternatively, when the number of resource blocks in the first downlink frequency domain unit is an even number, the first value is equal to zero or the number of subcarriers in one resource block.
  • the first value is equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the second value is the sum of the first value and the offset, and the offset is determined according to at least one of the following: the subcarrier spacing of the first OFDM time domain signal and maximum subcarrier spacing; or, a preset value.
  • elements carried by each subcarrier except the one subcarrier are all zero.
  • the processing unit is further configured to: generate a second OFDM time domain signal, the second OFDM time domain signal is used to transmit downlink data, and the second OFDM time domain signal occupies the first A downlink frequency domain unit, the absolute value of the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit is 0 or 1 .
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource, and the first frequency domain resource is used for the communication device to communicate with the second device;
  • the first downlink frequency domain unit includes subcarriers in the first frequency domain resource that are frequency-offset according to a preset value.
  • the transceiving unit is further configured to: receive an uplink signal from the second device, the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal , and/or, the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • first time domain length between the time domain starting position of the uplink signal and the time domain starting position of the first OFDM time domain signal, and/or, the time domain of the uplink signal
  • second time domain length between the end position of the domain and the end position of the time domain of the first OFDM time domain signal.
  • an embodiment of the present application provides a communication device, including: a transceiver unit configured to receive a first OFDM time domain signal from a first device, where the first OFDM time domain signal occupies one subcarrier in the frequency domain; the The transceiver unit is further configured to send an uplink signal to the first device in a reflective communication manner, the radio frequency carrier of the uplink signal is determined according to the radio frequency carrier of the first OFDM time domain signal.
  • the radio frequency carrier of the uplink signal is the same as the radio frequency carrier of the first OFDM time domain signal, or there is a radio frequency carrier between the radio frequency carrier of the uplink signal and the first OFDM time domain signal offset value.
  • the frequency of the one subcarrier is zero.
  • the first OFDM time domain signal does not include a cyclic prefix.
  • the first OFDM time domain signal includes a cyclic prefix.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol in the time domain, the first OFDM symbol and the second OFDM symbol are adjacent, and the first OFDM symbol and The phases between the second OFDM symbols are continuous.
  • the time-domain starting position of the second OFDM symbol is based on the time-domain starting position of the first OFDM symbol, the index of the second OFDM symbol in the first time-domain resource, and the first OFDM symbol
  • the duration of an OFDM symbol is determined, and the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0.
  • the first time domain resource is a time domain resource used to transmit the first OFDM time domain signal.
  • the first time domain resource is at least one subframe.
  • the one subcarrier is located in the first downlink frequency domain unit, and the number of subcarriers with frequencies lower than the one subcarrier and frequencies higher than the one subcarrier in the first downlink frequency domain unit are The absolute value of the difference between the number of subcarriers of the carrier is 0 or 1, and the first downlink frequency domain unit is used for the first device to communicate with the communication device.
  • the index of the one subcarrier is a first value; or the index of the one subcarrier is a second value, and the second value is determined according to the first value and an offset.
  • the first value is determined according to the parity of the number of resource blocks in the first downlink frequency domain unit.
  • the index of the resource block where the subcarrier is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the first value when the number of resource blocks in the first downlink frequency domain unit is an odd number, the first value is equal to half the number of subcarriers in a resource block or the first value is equal to 6; Or, when the number of resource blocks in the first downlink frequency domain unit is an even number, the first value is equal to zero or the number of subcarriers in the one resource block.
  • the first value is equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the second value is the sum of the first value and the offset, and the offset is determined according to at least one of the following: the subcarrier spacing of the first OFDM time domain signal and maximum subcarrier spacing; or, a preset value.
  • elements carried by each subcarrier except the one subcarrier are all zero.
  • the transceiver unit is further configured to: receive a second OFDM time domain signal from the first device, the second OFDM time domain signal is used to transmit downlink data, and the second OFDM time domain signal is Occupying the first downlink frequency domain unit in the frequency domain, the absolute difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit Value is 0 or 1.
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource, and the first frequency domain resource is used for the first device to communicate with the communication device;
  • the first downlink frequency domain unit includes subcarriers in the first frequency domain resource that are frequency-offset according to a preset value.
  • the transceiver unit is further configured to: send an uplink signal to the first device, the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal, And/or, the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • first time domain length between the time domain starting position of the uplink signal and the time domain starting position of the first OFDM time domain signal, and/or, the time domain of the uplink signal
  • second time domain length between the end position of the domain and the end position of the time domain of the first OFDM time domain signal.
  • an embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and perform the tasks described in the first aspect, The method in the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip executes the first aspect, the second aspect, or each possible implementation methods in methods.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • the embodiment of the present application provides a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or transfer signals from The signal of the logic circuit is sent to other communication devices other than the device, and the logic circuit is used to execute code instructions to implement the method in the first aspect, the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a communication system, including: the apparatus in the first aspect, the second aspect, or each possible implementation manner.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application
  • FIG. 2a is a schematic diagram of an RFID communication system provided by the present application.
  • Figure 2b is a schematic diagram of a separate architecture RFID communication system provided by the present application.
  • FIG. 2c is a schematic diagram of a centralized RFID communication system provided by the present application.
  • Fig. 3 exemplarily shows a schematic diagram of a Passive IoT downlink communication method
  • Fig. 4 exemplarily shows a schematic diagram of an uplink communication method in Passive IoT communication
  • FIG. 5 is a schematic diagram of a common resource block provided by the present application.
  • FIG. 6 is a schematic diagram of a frequency-domain positional relationship between a partial bandwidth and a carrier provided by the present application
  • FIG. 7 is a schematic diagram of an interaction process of a communication method 200 provided in an embodiment of the present application.
  • Fig. 8a shows a schematic diagram of an OFDM transmission link provided by the present application
  • Fig. 8b shows a schematic diagram of a discrete Fourier transform extended OFDM transmission link provided by the present application
  • FIG. 9 is a schematic diagram of a time-domain signal provided by the present application.
  • FIG. 10a is a schematic diagram of a time-domain signal provided by an embodiment of the present application.
  • FIG. 10b is a schematic diagram of another time-domain signal provided by the embodiment of the present application.
  • FIG. 10c is a schematic diagram of another time-domain signal provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a time-domain position of a signal provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an interaction process of a communication method 300 provided in an embodiment of the present application.
  • FIG. 13a is a schematic diagram of a downlink frequency domain unit provided by an embodiment of the present application.
  • Fig. 13b is a schematic diagram of another downlink frequency domain unit provided by the embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 15 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, wideband code division multiple access ( Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity ( Wireless Fidelity, WiFi) or other communication systems, etc.
  • LTE and LTE-A are fourth-generation (4th-Generation, 4G) communication systems; NR systems and their evolution are fifth-generation (5th-Generation
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the embodiments of the present application are especially applicable to OFDM systems, such as the aforementioned LTE communication system, NR communication system, etc.
  • OFDM systems such as the aforementioned LTE communication system, NR communication system, etc.
  • the embodiments of the present application are also applicable to various communication systems based on OFDM or similar OFDM technologies that evolve in the future.
  • Fig. 1 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application.
  • the communication system 100 may include network devices and terminal devices, and the number of network devices and terminal devices may be one or more, such as network devices 111 and 112 and terminal devices 121 to 128 shown in FIG. 1 , in the communication system 100, the network device 111 can communicate with one or more of the terminal devices 121 to 126 through a wireless air interface, and the network device 111 can communicate with one or more of the terminal devices 127 and 128 through the network device 112 communicate with a terminal device.
  • the terminal devices 124 to 126 can form the communication system 101.
  • the terminal device 124 can communicate with one or more of the terminal devices 125 and 126 through wireless air interfaces
  • the network device 112 and the terminal device 127 and 128 may form a communication system 102, in which the network device 112 may communicate with one or more terminal devices among the terminal devices 127 and 128 through a wireless air interface.
  • FIG. 1 is only an example, showing two network devices and eight terminal devices in the communication system 100, three terminal devices in the communication system 101, and one network device and two terminal devices in the communication system 102. . But this should not constitute any limitation to the present application. Any of the above communication systems may include more or less network devices, or more or less terminal devices. This embodiment of the present application does not limit it.
  • IoT Internet of Things
  • IoT is still mainly driven by operators, and IoT modules need to communicate with base stations using standard cellular protocols. Since the base station needs to cover as large an area as possible, the IoT module needs to be able to communicate even when it is far away from the base station, which makes the IoT device still need to consume up to 30mA of current during wireless communication, so the current IoT module It is still necessary to use a battery with a higher capacity to work, which also makes it difficult to make the size of the IoT module small and increases the cost of the IoT device.
  • RFID technology is a non-contact automatic identification technology, which can automatically identify target objects and obtain relevant data through radio frequency signals.
  • an RFID system consists of a reader and a tag. As shown in Fig. 2a, the reader charges the tag by sending an excitation signal to the tag, and the tag receives the signaling sent by the reader and sends a reflected signal to the reader in a reflective communication manner. In this way, the reader can identify the tag's identity document (ID), and perform operations such as reading and writing the tag.
  • ID identity document
  • the excitation signal sent by the reader to the tag may be the downlink signal or one of the downlink signals hereinafter, and the reflected signal may be the uplink signal or one of the uplink signals hereinafter.
  • the downlink signal is a carrier signal, and the tag sends the reflected signal to the reader in a reflective communication manner. Specifically, the tag uses the carrier provided by the downlink signal to transmit the uplink signal.
  • the separated reader includes a helper and a receiver.
  • the helper sends an excitation signal to the tag through the forward link, and the receiver receives the reflected signal from the tag through the reverse link.
  • the receiver generates RFID-related downlink signaling, and sends the downlink signaling to the helper through the forward link, and then the helper in Forwarding on the forward link.
  • Method 2c in addition to the excitation and reflection of signals between the reader and the tag through the forward link and the reverse link, the reader also communicates with the centralized control unit (such as Base station) for communication, the centralized control unit can schedule and control the resources and transmission behavior of the forward link used by the reader.
  • the centralized control unit such as Base station
  • the communication between the helper and the receiver in the above-mentioned method 1, and between the reader and the centralized control unit in the above-mentioned method 2 can be performed through NR technology.
  • the RFID technology applied in the NR system can be called passive (Passive) IoT.
  • the Passive IoT provided by this application is similar to the RFID transmission mechanism.
  • Passive IoT Passive IoT devices (such as tags) can be passive (Batter Free), that is, Passive IoT devices are not equipped with themselves or do not mainly rely on batteries or wired power sources for power supply.
  • the fact that Passive IoT devices do not have a power module does not mean that no electricity is required.
  • Passive IoT devices can obtain energy from ambient light, heat, and radio frequency, thereby supporting IoT data perception, wireless transmission, and distributed computing. wait.
  • Passive IoT devices can also be passive or semi-passive.
  • Energy storage passive devices have energy storage devices.
  • Semi-passive devices have batteries. The battery powers the receive circuitry, digital circuitry for protocol stack processing, and storage.
  • Fig. 3 exemplarily shows a schematic diagram of a Passive IoT downlink communication method
  • Fig. 4 exemplarily shows a schematic diagram of an uplink communication method in Passive IoT communication.
  • the reader sends an AM signal to the tag through the downlink, and the tag receives the AM signal, and an envelope detector can be used to perform envelope detection on the AM signal to obtain the low-frequency signal.
  • the main components of the envelope detector include the diode D shown in Figure 3 and the resistor-capacitance circuit (resistor-capacitance circuit, RC), that is, the oscillator circuit.
  • the RC circuit is composed of a resistor R and a capacitor C.
  • the above-mentioned envelope detection refers to the process of demodulating the low-frequency signal from the AM signal.
  • the generalized detection is usually called demodulation, which is the inverse process of modulation, that is, the process of extracting the modulated signal from the modulated signal.
  • envelope detection is the process of extracting the modulating signal from its amplitude variation.
  • the envelope reflects the amplitude change curve of a high-frequency signal.
  • the envelope detection circuit shown in FIG. 3 is a schematic diagram of the most traditional basic circuit structure, and the evolution structure of the envelope detection circuit will not be repeated here.
  • the embodiment of the present application does not limit the structure of the envelope detection circuit adopted by the tag.
  • the tag itself cannot provide power, and it is unconditionally connected to a wired power source for the tag to transmit data. Therefore, the tag needs to obtain energy from the external environment, and then provide the tag for data transmission, data processing and other operations.
  • the tag when it receives the carrier signal sent by the reader, it can use the energy obtained from the electromagnetic field generated in the space to drive the chip to transmit the information stored by itself.
  • the relationship between the reader and the tag is the “electromagnetic backscatter coupling” relationship.
  • Electromagnetic backscatter coupling refers to the use of the spatial propagation law of electromagnetic waves. The information of the measured object is reflected back. This coupling is suitable for long-distance radio frequency identification systems that work at high frequencies and microwaves.
  • the tag can also drive the chip to store the information stored by itself by acquiring energy such as ambient light and heat. teleport out.
  • tags can also be passive or semi-passive devices for energy storage.
  • Passive IoT is only an exemplary name, and when it is replaced by other expressions, it also belongs to the protection scope of this application.
  • Parameter set (numerology): In the NR system, in order to adapt to a variety of OFDM waveforms with different subcarrier spacing, a parameter set is introduced, so that the subcarrier spacing is not limited and can be adapted according to different usage scenarios.
  • mu ⁇ f 2 ⁇ ⁇ 15[kHz] cyclic prefix 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • ⁇ f is the subcarrier spacing.
  • the specific ⁇ and cyclic prefix used are configured by the network device.
  • the length of the normal CP and the length of the extended CP are defined in formula (6) below.
  • the subcarrier spacing configuration ⁇ is 1, the subcarrier spacing ⁇ f is 30 kHz, and the cyclic prefix is normal CP.
  • the subcarrier spacing configuration ⁇ is 2, the subcarrier spacing ⁇ f is 60 kHz, and the cyclic prefix is normal CP or extended CP.
  • the uplink and downlink transmissions are formed into frames in the time domain, and one frame is divided into 10 subframes, numbered #0 ⁇ #9.
  • a frame can be divided into two half-frames of the same size, numbered #0 and #1, each half-frame includes five sub-frames, for example, half-frame #0 includes sub-frames #0 to #4, Field #1 includes subframes #5 to #9.
  • a subframe can consist of time slots, a frame can include time slots.
  • the slots are numbered in ascending order within a subframe Permutation; slots are numbered in ascending order within a frame arrangement.
  • Different subcarrier spacing configuration ⁇ corresponds to and different, as shown in Table 2 below.
  • each subcarrier configuration ⁇ in Table 1 corresponds to a regular cyclic prefix
  • the subcarrier configuration ⁇ in Table 3 corresponds to an extended cyclic prefix.
  • a subframe includes OFDM symbols. time slot in a subframe The start of the OFDM symbol in the same subframe as The start of is aligned in time.
  • a time slot in a subframe includes time slot #0, time slot #1, time slot #2, etc., and each time slot includes 14 OFDM symbols
  • the time slot #0 and the subframe The beginning of the OFDM symbol #0 in the subframe is aligned in time, the beginning of the slot #1 in the subframe and the OFDM symbol #14 in the subframe are aligned in time, the slot #2 and the slot #2 in the subframe are aligned in time.
  • the start of OFDM symbol #28 in the one subframe is aligned in time, and so on.
  • OFDM symbols in one slot can be classified into downlink (downlink) symbols, flexible (flexible) symbols or uplink (uplink) symbols.
  • downlink downlink
  • flexible flexible
  • uplink uplink
  • the terminal equipment In the time slot of the downlink frame, the terminal equipment generally transmits in the downlink or flexible symbol.
  • the terminal equipment In the time slots of the uplink frame, the terminal equipment generally transmits in uplink or flexible symbols.
  • Antenna port An antenna port is defined such that the channel of one symbol transmitted on that antenna port can be inferred from the channel of another symbol transmitted on the same antenna port, in other words, the experience of different signals transmitted on the same antenna port The channel environment is the same.
  • Resource grid refers to a parameter set and carrier
  • the resource grid includes subcarriers and OFDM symbols, where, Indicates the number of resource blocks (resource element, RB) in one resource grid when the subcarrier spacing is configured as ⁇ . Indicates the number of subcarriers in one RB. optional, consecutive subcarriers.
  • the starting resource block of the resource grid is a common resource block (CRB).
  • CRB common resource block
  • Resource element Each element in the resource grid used for antenna port p and subcarrier spacing configuration ⁇ is called a resource element, and is uniquely identified by (k,l) p, ⁇ , where k is The index of the RE in the frequency domain, l is the position of the symbol of the RE in the time domain relative to a certain reference point.
  • Resource element (k,l) p, ⁇ corresponds to a physical resource and complex value Indexes p and ⁇ may be discarded when there is no risk of confusion, or when no specific antenna port or subcarrier spacing is specified, It can be expressed as Or a k,l .
  • Resource block (resource block, RB): The resource block is defined as the consecutive subcarriers.
  • the frequency of each subcarrier in this embodiment of the present application may refer to a center frequency of the subcarrier.
  • point A is the public reference point of the resource grid.
  • Common resource blocks For the subcarrier spacing configuration ⁇ , the common resource blocks are numbered upwards from 0 in the frequency domain. The center frequency point of subcarrier 0 of common resource block 0 of subcarrier spacing configuration ⁇ coincides with point A, see Figure 5.
  • Physical resource blocks The physical resource blocks of the subcarrier spacing configuration ⁇ are defined in a partial bandwidth (bandwidth part, BWP), numbered from 0 to where i is the number of the BWP. Physical resource blocks in BWP i with common resource block between satisfy the following formula (2)
  • BWP For a given parameter set ⁇ i in BWP i on a given (given) carrier (carrier), the BWP is a subset of continuous CRBs. The starting position of the BWP and the number of PRBs of physical resource blocks should be satisfied respectively and in Indicates the size of the resource grid, Indicates the starting position of the resource grid. The frequency domain location relationship between the BWP and the carrier can be shown in FIG. 6 .
  • an end-device can have up to four BWPs configured in the downlink, one of which is active at a given time; an end-device can be configured with up to four BWPs in the uplink, of which one The upstream BWP is active at a given time.
  • the first, second, third and various numbers are only for convenience of description, and are not used to limit the scope of the embodiments of the present application.
  • different OFDM time domains, time domain resources, sequences, downlink frequency domain units, values, time domain lengths, equipment, etc. are distinguished.
  • predefined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including the first device and the second device).
  • the method is not limited.
  • Pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including the first device and the first device), or it can be pre-configured through signaling, such as network
  • the device is implemented through methods such as signaling pre-configuration, and this application does not limit the specific implementation method.
  • the "protocol” involved in this embodiment of the application may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the first device may be, for example, the above-mentioned reader, or a terminal device equipped with a reader, or a network device equipped with a reader; for example, the second device may be the above-mentioned tag, or a terminal device equipped with a tag.
  • the first device may be the terminal device 124 in FIG. 1
  • the second device may be the terminal device in FIG. 1 125 or 126;
  • the first device may be the network device 111 in FIG.
  • the second device may be the network device shown in FIG. 1 Any one of the terminal devices 121 to 123 in FIG. 1 , or the first device may be the network device 112 in FIG. 1 , and the second device may be the terminal device 127 or 128 in FIG. 1 .
  • the first device shown in the following embodiments may also be replaced with components in the first device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • the second device may also be replaced with components in the second device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • FIG. 7 is a schematic diagram of an interaction process of a communication method 200 provided in an embodiment of the present application. As shown in FIG. 7 , the method 200 may include part or all of S210 to S230. Each step in the method 200 will be described in detail below.
  • the first device generates a first OFDM time domain signal, where the first OFDM time domain signal is used by the second device to perform reflection communication, and the first OFDM time domain signal occupies one subcarrier in the frequency domain.
  • the first device sends the first OFDM time domain signal to the second device; correspondingly, the second device receives the first OFDM time domain signal sent by the first device.
  • the second device sends an uplink signal to the first device in a reflective communication manner; correspondingly, the first device receives the uplink signal sent by the second device.
  • the radio frequency carrier of the uplink signal is determined according to the radio frequency carrier of the first OFDM time domain signal.
  • the radio frequency carrier of the uplink signal may be the same as the radio frequency carrier of the first OFDM time domain signal, or there is an offset value between the radio frequency carrier of the uplink signal and the radio frequency carrier of the first OFDM time domain signal.
  • the second device uses the radio frequency carrier of the first OFDM time domain signal as a carrier, and adjusts the reflection factor to transmit information.
  • the reflection factor includes frequency information
  • a frequency shift operation can be implemented, that is, there is an offset value between the radio frequency carrier of the uplink signal and the radio frequency carrier of the first OFDM time domain signal.
  • the radio frequency carrier of the uplink signal may be the same as the radio frequency carrier of the first OFDM time domain signal.
  • the first OFDM time domain signal occupies one subcarrier in the frequency domain, and the one subcarrier may be located in the first frequency domain resource.
  • the first frequency domain resource may be deployed in the transmission bandwidth of the NR system (such as BWP or downlink carrier), and the first frequency domain resource may be deployed in the guard band or non-guard band of the NR transmission bandwidth; or the first A frequency domain resource can be deployed in an independent frequency domain resource, such as deploying one or more GSM carriers in a wireless access network (GSM EDGE radio access network, GERAN) system as the first frequency domain resource, or deploying a potential Internet of Things
  • GSM EDGE radio access network, GERAN wireless access network
  • the deployed frequency spectrum is used as a first frequency domain resource.
  • the first frequency domain resource may be, for example, the transmission bandwidth of Passive IoT, and the first device and the second device may perform communication and reflective communication in the first frequency domain resource.
  • the first frequency domain resource is the transmission bandwidth of Passive IoT, which occupies one RB and includes 12 subcarriers.
  • the first OFDM time domain signal occupies the sixth subcarrier of the 12 subcarriers in the frequency domain. That is to say, the first OFDM time-domain signal maps or bears elements to be transmitted on the sixth subcarrier.
  • the first OFDM time-domain signal does not map or carry elements to be transmitted on the 1st-5th and 7th-11th subcarriers of this RB. In other words, the first OFDM time domain signal maps or bears 0 on the 1st-5th and 7th-11th subcarriers of this RB.
  • the first OFDM time-domain signal may occupy one RE in the time-frequency space.
  • each element in the resource grid of the antenna port p and the subcarrier spacing configuration ⁇ can be uniquely identified by (k,l) p, ⁇ , where k is the index of the RE in the frequency domain (that is, the above-mentioned subcarrier carrier index), l is the position of the RE symbol in the time domain relative to a certain reference point, and the reference point is predefined.
  • Resource element (k,l) p, ⁇ corresponds to a physical resource and complex value
  • the first OFDM time-domain signal may be used to generate a carrier signal.
  • the first device may perform up-conversion on the first OFDM time-domain signal to obtain a carrier signal, and send the carrier signal to the second device. It can be simply understood that the first OFDM time domain signal corresponds to the carrier signal to be transmitted.
  • the first device may map elements to the foregoing one subcarrier, so as to generate a first OFDM time-domain signal occupying the one subcarrier.
  • This element can be a non-zero value A
  • A can be a real number or a complex number, for example, A can be 1, and A can also be the above-mentioned complex value
  • the first OFDM time-domain signal used for the reflective communication of the second device adopts an OFDM waveform, which is consistent with the NR waveform, and can ensure coexistence with NR.
  • the first device can use the power Concentrating on the sub-carrier, when the second device subsequently reflects and communicates according to the first OFDM time-domain signal, it can improve the reliability of the reflected data.
  • the first device receives the uplink data transmitted by the second device through reflective communication, in order to correctly demodulate the uplink data, it needs to eliminate the interference of the carrier signal leaked by itself and/or the carrier signal reflected by the environment through interference suppression.
  • the first OFDM The time-domain signal occupies one subcarrier in the frequency domain, which can reduce the implementation complexity of interference suppression by the first device.
  • the above S210 may generate the first OFDM time domain signal in combination with the baseband signal generation method in the NR system.
  • both the waveform of the downlink signal and the waveform of the uplink signal are conventional (conventional) OFDM using a cyclic prefix (cyclic prefix, CP).
  • Fig. 8a shows a schematic diagram of an OFDM transmission link provided by the present application. Referring to Fig.
  • the sending end device can map the symbols of the downlink signal to multiple subcarriers, and Perform inverse fast fourier transform (IFFT) on the mapped sequence to obtain the time domain signal of the downlink signal, and then insert CP into the time domain signal of the downlink signal to obtain the OFDM time domain signal of the downlink signal.
  • IFFT inverse fast fourier transform
  • Figure 8b shows a schematic diagram of a discrete Fourier transform spread orthogonal frequency division multiplexing (Discrete Fourier Transform-Spread-OFDM, DFT-S-OFDM) transmission link provided by the present application
  • the sending end device Transform precoding can be performed on the symbols of the downlink signal, and the sequence obtained after the transform precoding is mapped to multiple subcarriers, and then IFFT is performed on the mapped sequence to obtain the time domain signal of the downlink signal, and then the time domain signal of the downlink signal Insert the CP to obtain the OFDM time domain signal of the downlink signal.
  • the phase of the first OFDM time domain signal is continuous before inserting the CP, and after inserting the CP, the inserted CP will cause the first OFDM time domain signal
  • the phases between adjacent OFDM symbols in the signal are discontinuous.
  • the phase of the first OFDM time domain signal is discontinuous between OFDM symbol m and OFDM symbol m+1.
  • the first device needs to eliminate the interference of the leaked carrier signal and/or the carrier signal reflected by the environment.
  • the phase discontinuity of the OFDM time-domain signal of the carrier signal (for example, the above-mentioned first OFDM time-domain signal) will increase the complexity of interference suppression.
  • the first OFDM time-domain signal is a phase-continuous OFDM time-domain signal, so as to reduce the complexity of performing interference suppression by the first device.
  • Mode 1 the frequency of the above-mentioned one subcarrier is zero, and the phase of the first OFDM time domain signal is continuous.
  • the first OFDM time-domain signal is a DC signal as shown in FIG. 10a.
  • inserting a CP will not cause phase discontinuity of the first OFDM time-domain signal.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol adjacent to the first OFDM symbol, such as OFDM symbol #m and OFDM symbol #m+1 in Figure 10a, the first OFDM symbol and the second OFDM symbol The phases between two OFDM symbols are continuous.
  • the foregoing subcarrier with a frequency of 0 may also be called a direct current (direct current, DC) subcarrier.
  • the frequency of the subcarrier may be the center frequency of the subcarrier.
  • the first device may map element A to a subcarrier with a frequency of zero through subcarrier mapping, so as to generate a first OFDM time domain signal of direct current.
  • the first device may start transform precoding, or perform DFT extension; of course, before subcarrier mapping, the first device may not perform transform precoding, or perform DFT extension.
  • the first device when the first device starts transform precoding, the first device may perform transform precoding on the first sequence to obtain a second sequence, and one element in the second sequence is non-zero (such as the above-mentioned element A) , the other elements in the second sequence are zero except for this one element. Further, the first device maps the non-zero elements in the second sequence to the above-mentioned one subcarrier (such as the subcarrier with frequency 0).
  • Mode 2 the first OFDM time domain signal does not include a cyclic prefix, and the phase of the first OFDM time domain signal is continuous.
  • the first device does not insert a CP after performing IFFT.
  • the first OFDM time-domain signal without CP is continuous in phase.
  • the first OFDM time-domain signal includes a first OFDM symbol and a second OFDM symbol adjacent to the first OFDM symbol, such as OFDM symbol #m and OFDM symbol #m+1 in Figure 10b, the first OFDM symbol and the second OFDM symbol The two OFDM symbols are continuous in phase without inserting a CP.
  • the first device may map element A to any subcarrier on the first downlink frequency domain unit (such as the subcarrier with index k, where k is an integer greater than or equal to 0) on the first downlink frequency domain unit to generate phase continuous
  • the first OFDM time-domain signal, and the subcarrier occupied by the first OFDM time-domain signal in the frequency domain is the subcarrier during subcarrier mapping (such as the subcarrier with index k).
  • the first downlink frequency domain unit may be the above-mentioned first frequency domain resource, or the first downlink frequency domain unit may be obtained by performing frequency offset based on the first frequency domain resource, for example, the first downlink frequency domain unit described below in conjunction with FIG. 13b
  • the downlink frequency domain unit includes subcarriers of the first frequency domain resource that are frequency-offset according to a preset value.
  • the first device may start transform precoding, or perform DFT extension; of course, before subcarrier mapping, the first device may not perform transform precoding, or perform DFT extension.
  • the first device when the first device starts transform precoding, the first device may perform transform precoding on the first sequence to obtain a second sequence, and one element in the second sequence is non-zero (such as the above-mentioned element A) , the other elements in the second sequence are zero except for this one element. Further, the first device maps the non-zero elements in the second sequence to the above-mentioned one subcarrier (such as the subcarrier with index k).
  • the first OFDM time domain signal includes a cyclic prefix, and the phase of the first OFDM time domain signal is continuous.
  • the first OFDM time domain signal in method 3 includes a cyclic prefix.
  • Passive IoT can be better compatible with the OFDM system that needs to insert CP, so that Passive IoT can be more Good for every OFDM system.
  • inserting a CP after performing IFFT by the first device will make the phase of the first OFDM time-domain signal discontinuous.
  • the first device may make the phase of the first OFDM time-domain signal continuous by performing phase compensation on the first OFDM time-domain signal.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol adjacent to the first OFDM symbol, such as OFDM symbol #m and OFDM symbol #m+1 in Figure 10c, the first OFDM symbol and the second OFDM symbol
  • the phases of the two OFDM symbols are continuous when the CP is inserted.
  • the first device may map element A to any subcarrier on the first downlink frequency domain unit (such as a subcarrier with index k, where k is an integer greater than or equal to 0) on the first downlink frequency domain unit to generate the first
  • the OFDM time-domain signal, and the subcarrier occupied by the first OFDM time-domain signal in the frequency domain is the subcarrier during subcarrier mapping (such as the subcarrier with index k).
  • phase compensation needs to be performed on the first OFDM time-domain signal, so as to generate the first OFDM time-domain signal with continuous phase.
  • the first device may start transform precoding, or perform DFT extension; of course, before subcarrier mapping, the first device may not perform transform precoding, or perform DFT extension.
  • the first device when the first device starts the transformation precoding, the first device also needs to perform the transformation precoding on the first sequence, and the implementation process and the subcarrier mapping process after the transformation precoding are the same as the above method two, I won't repeat them here.
  • Fig. 10a to Fig. 10c all take two OFDM symbols as an example for illustration, but do not constitute any limitation to this application.
  • the first OFDM time domain signal may include more OFDM symbols, and the phases between two adjacent OFDM symbols are continuous.
  • the elements carried by each subcarrier except the one subcarrier are all zero.
  • the first device may perform transform precoding on the first sequence to obtain a second sequence, one element in the second sequence is non-zero (such as the above-mentioned element A), and in the second sequence Elements other than the one element are zero.
  • the first device maps the non-zero elements in the second sequence to the above-mentioned one subcarrier (such as the subcarrier with index k), and maps the other zero elements in the second sequence to subcarriers other than the one subcarrier on each of the subcarriers.
  • the first downlink frequency domain unit may be the aforementioned first frequency domain resource, or the first downlink frequency domain unit may be obtained by performing frequency offset based on the first frequency domain resource (details will be described below).
  • the following is an exemplary description of how the first device performs phase compensation on the first OFDM time-domain signal in mode three, so that the phase of the first OFDM time-domain signal is continuous:
  • the time-domain starting position of the second OFDM symbol is based on the time-domain starting position of the first OFDM symbol, and the second OFDM symbol is at An index in the time domain resource, the duration of the first OFDM symbol is determined, and the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0.
  • l is the index of the second OFDM symbol in the first time domain resource, is the time domain starting position of the first OFDM symbol, is the length of CP,
  • the first time domain resource includes M1 OFDM symbols
  • the first OFDM symbol can be any one of the OFDM symbols with indexes from 0 to M1-2 in the first time domain resource
  • the second OFDM symbol can be the first OFDM symbol OFDM symbols adjacent to the first OFDM symbol in a time domain resource, for example, the first OFDM symbol is OFDM symbol #0, and the second OFDM symbol is OFDM symbol #1.
  • the first OFDM symbol is OFDM symbol #0 (that is, the OFDM symbol whose index is 0)
  • the time domain start position of the first OFDM symbol is OFDM symbol #1
  • the time domain starting position of the second OFDM symbol That is, the time domain start position of the second OFDM symbol and the time domain start position of the first OFDM symbol are separated by the duration of the first OFDM symbol.
  • the first OFDM symbol and the second OFDM symbol are in phase pick up.
  • each OFDM symbol and its time domain position is followed by an adjacent OFDM symbol with a difference of the duration of the OFDM symbol, and also That is, every two adjacent OFDM symbols in the first time domain resource are connected end to end.
  • the index of the first OFDM symbol in the first time domain resource may be an integer greater than or equal to 0.
  • the time domain starting position of the first OFDM symbol is 0.
  • the index of the second OFDM symbol is the index of the first OFDM symbol plus one.
  • the time domain start position of the second OFDM symbol is the sum of the time domain start position of the first OFDM symbol and the duration of the first OFDM symbol .
  • the first device can perform phase compensation in the process of generating the first OFDM time domain signal in combination with the following formula (4), so as to obtain the first OFDM time domain signal with continuous phase
  • each OFDM symbol in the first time domain resource is connected end to end in the time domain, and, based on the above formula (4), the is continuous, therefore, the phase of the first OFDM time domain signal obtained by combining the above formula (3) and formula (4) is continuous in the first time domain resource.
  • the foregoing first time-domain resource may be a time-domain resource used to transmit the first OFDM time-domain signal.
  • each OFDM symbol in the first time domain resource has a corresponding index l, assuming that the first time domain resource includes N OFDM symbols, then the index l of the first OFDM symbol in the N OFDM symbols is 0 , and increase to N-1 in turn.
  • the first OFDM time-domain signal can be generated based on the above formula (4)
  • the above-mentioned first time-domain resource may be at least one subframe, and may also be expressed as, the first time-domain resource may be a resource with a time-domain length of 1 ms or a resource with a time-domain length that is an integer multiple of 1 ms .
  • the first time-domain resource as a subframe as an example, each OFDM symbol in the subframe has a corresponding index l, and the index l of the first OFDM symbol in the subframe is 0, and is incremented to For OFDM symbols at antenna port p with subcarrier spacing configured as ⁇
  • the first OFDM time domain signal can be generated based on the above formula (4)
  • performing symbol-by-symbol phase compensation on the first OFDM time domain signal is conducive to the compatibility of Passive IoT and OFDM systems; and the above is based on the time used to transmit the first OFDM time domain signal
  • the index of the OFDM symbol in the domain resource is used to perform symbol-by-symbol phase compensation on the first OFDM time-domain signal.
  • the initial phase (ie, initial phase) of the first OFDM time-domain signal is 0. No need Determining the initial phase of the first OFDM time-domain signal reduces the computational complexity of phase compensation.
  • the initial phase of the first OFDM time domain signal refers to the phase at the initial moment of the first OFDM symbol in the first OFDM time domain signal.
  • the initial phase of an OFDM symbol refers to the phase at the initial moment of the OFDM symbol.
  • f is the frequency of the sinusoidal signal.
  • the first device may also generate the first OFDM time domain signal based on the above formulas (3) to (6)
  • the difference from method 3 is that in method 1, k satisfies The value of is 0, that is,
  • the first device may also generate the first OFDM time domain signal based on the above formulas (3) to (6)
  • the difference between it and method 3 is that the CP is not inserted in the method 2, so the time occupied by the CP is 0, that is
  • a subcarrier occupied by the first OFDM time domain signal is located in the first downlink frequency domain unit.
  • the absolute value of the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit is 0 or 1, in other words,
  • the first downlink frequency domain unit includes multiple subcarriers, and the one subcarrier may be a subcarrier close to an intermediate frequency position among the multiple subcarriers.
  • the first device may map element A to the subcarrier with index k.
  • the subcarrier index k may be one of the subcarrier indexes in the first downlink frequency domain unit.
  • the first downlink frequency domain unit includes 24 subcarriers (subcarrier #0, subcarrier #1...
  • the first downlink frequency domain unit includes 3 RBs (such as RB#0, RB#1 and RB#2), the RB where the subcarrier is located may be RB#1, and the RB#1 includes 12 subcarriers (such as subcarrier #0 to subcarrier #11), the index k of the subcarrier may be 6.
  • the index of the subcarrier can start from 0. The larger the index of the subcarrier, the greater the frequency of the corresponding subcarrier.
  • the index of the subcarrier is 0 to 11 in sequence, then the subcarrier #0 to The frequency of 11 increases sequentially.
  • the first downlink frequency domain unit may include multiple RBs, and each RB may include, for example, 12 subcarriers.
  • the above index k of one subcarrier may be a first value, and in some embodiments, the first value is equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • N RB is the number of RBs included in the first downlink frequency domain unit.
  • the first downlink frequency domain unit includes 11 RBs (the RB indexes are #0, #1... ⁇ #10 in sequence), and each RB includes 12 subcarriers, that is, the first downlink frequency domain unit includes 132 subcarriers ( The sub-carrier indexes are #0, #1...#131 in sequence), and the above-mentioned one sub-carrier may be the sub-carrier #66 in the first downlink frequency domain unit.
  • the first value is determined according to the parity of the number of RBs in the first downlink frequency domain unit.
  • the index of the above-mentioned one subcarrier is used to indicate the one subcarrier from one RB in the first downlink frequency domain unit.
  • the one RB is located in the first downlink frequency domain unit, and the absolute value of the difference between the number of RBs with a frequency lower than one RB and the number of RBs with a frequency higher than the one RB in the first downlink frequency domain unit Equal to 0 or 1.
  • the index n PRB of the resource block where the subcarrier is located in the first downlink frequency domain unit satisfies the following formula (7):
  • N RB is the number of RBs in the first downlink frequency domain unit.
  • the first downlink frequency domain unit includes 11 RBs (the RB indexes are #0, #1... ⁇ #10 in sequence), and the above-mentioned one RB is RB#5.
  • the first downlink frequency domain unit includes 12 RBs (the RB indexes are #0, #1... ⁇ #11 in sequence), the above-mentioned one RB is RB#6.
  • the first value may be 0 (or 12).
  • the index of the above-mentioned subcarrier is the first value, and the frequency of the subcarrier can be set to 0 (that is, the subcarrier is a DC subcarrier); for the foregoing methods 2 and 3 , the index of the above-mentioned subcarrier is the first value, so that the subcarrier is located in the middle of the first downlink frequency domain unit, so as to ensure that the uplink reflected signal is symmetrical about the center of the subcarrier, so as to improve spectrum utilization efficiency.
  • the index of the above-mentioned one subcarrier may be a second value, and the second value may be determined according to the above-mentioned first value and the offset.
  • the second value may be the sum of the first value and the offset. It should be understood that the offset may be positive or negative. When the offset is negative, the second value may be expressed as the first value The difference from the offset.
  • the above offset may be determined according to the subcarrier spacing and the maximum subcarrier spacing of the first OFDM signal.
  • the above formula (5) is the offset An example of , and the above index k of a subcarrier can satisfy
  • subcarrier index k in any of the above examples may be defined in the protocol; or may be predefined in the first device and/or the second device; or may be pre-configured by the network device through configuration signaling. This application is not limited to this.
  • the aforementioned offset may also be a preset value, for example, the preset value may be half a subcarrier.
  • the above offset can also be determined according to the subcarrier spacing, the maximum subcarrier spacing and a preset value of the first OFDM time-domain signal.
  • the preset value can be, for example, half a subcarrier.
  • the first device sends the first OFDM time-domain signal to the second device, which may be that the first device may up-convert the first OFDM time-domain signal and send it to the second device. After the first OFDM time-domain signal is up-converted, the carrier signal in the foregoing content can be obtained.
  • the second device may perform reflective communication based on the first OFDM time domain signal, so that the second device sends up and down signals to the first device.
  • the second device may perform signal modulation on the first OFDM time domain signal or the carrier signal corresponding to the first OFDM time domain signal, carry the uplink data to be transmitted through the carrier signal, and send it to the first OFDM time domain signal. equipment.
  • the execution time of the above S220 and S230 partially overlaps.
  • the first device sends the first OFDM time domain signal to the second device, and the second device can use reflection communication during the process of receiving the first OFDM time domain signal. to send an uplink signal to the first device.
  • the second device stops sending the uplink signal due to the loss of the carrier signal that can be used for reflection.
  • the second device cannot receive Before the first OFDM use signal sent by the first device, send an uplink signal to the first device in a reflective communication manner.
  • the time domain resource occupied by the second device to send the uplink signal to the first device in reflective communication should be a subset of the time domain resource occupied by the first device to send the first OFDM time domain signal to the second device.
  • the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal, and/or, the time domain end position of the uplink signal is earlier than the first OFDM time domain signal The end position of the time domain.
  • a first time domain length T1 between the time domain start position of the uplink signal and the time domain start position of the first OFDM time domain signal, and/or, the time domain end position of the uplink signal and the first OFDM time domain signal
  • the time domain end positions of the time domain signals are separated by a second time domain length T2.
  • the above first time domain length T1 should be related to at least one of the following:
  • the generation time of the uplink signal by the second device (for example, the preparation time for the uplink data to be reflected).
  • the first time domain length T1 may be, for example, one of the above-mentioned related items, or may be the sum of all or part of the above-mentioned related items, or may be the maximum value of the above-mentioned related items, or may be the sum of the above-mentioned related items. The minimum value of the item.
  • the above second time domain length T2 should be related to at least one of the following:
  • the second time domain length T2 can be, for example, one of the above-mentioned two related items, or the sum of the above-mentioned two related items, or can be the maximum value of the above-mentioned two related items, or can be the sum of the above-mentioned two related items. min.
  • FIG. 12 is a schematic diagram of an interaction process of a communication method 300 provided in an embodiment of the present application.
  • the method 300 shown in FIG. 12 is described in conjunction with the method 200 shown in FIG. 7 as an example.
  • this embodiment does not limit that the method 300 shown in FIG. 12 can only be realized on the basis of the method 200 shown in FIG. 7 .
  • the method 300 may include part or all of S310 to S350 .
  • S330 to S350 respectively correspond one-to-one to S210 to S230 in the embodiment shown in FIG. 7 , and the technical means and technical effects to be achieved are similar, so details are not repeated here.
  • S310 and S320 may be performed before the first device starts sending the first OFDM time-domain signal, or after finishing sending the first OFDM time-domain signal.
  • the second OFDM time domain signal may be a kind of downlink signaling used to instruct the second device to perform reflective communication, then S310 and S320 may be performed before starting to send the first OFDM time domain signal, see FIG. 11 Show.
  • a second OFDM time-domain signal for instructing the second device to perform next reflection communication may be sent, which is marked with a dotted line box in FIG. 11 .
  • the first device generates a second OFDM time domain signal
  • the second OFDM time domain signal is used to transmit downlink signaling and/or data
  • the second OFDM time domain signal occupies the first downlink signal in the frequency domain frequency domain unit.
  • the first device maps the elements to be transmitted to multiple subcarriers (or multiple REs) of the first downlink frequency domain unit.
  • the second OFDM time domain signal may be an OFDM time domain signal corresponding to downlink signaling and/or data.
  • the first device may up-convert the second OFDM time domain signal and send it to the second device.
  • the absolute value of the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit is 0 or 1.
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource.
  • the first frequency domain resource includes 12 subcarriers (subcarrier #0 to subcarrier #11), wherein the frequency of subcarrier #0 to subcarrier #11 increases sequentially, and the frequency of subcarrier #0 For example, it can be 0, and the first downlink frequency domain unit includes 11 subcarriers (subcarriers #1 to #11) except subcarrier #0.
  • the subcarrier #6 is center-symmetrical, and the subcarrier #6 is also a subcarrier carrying the first OFDM time domain symbol.
  • the first downlink frequency domain unit when the downlink signal adopts double-sideband modulation, in order to improve the efficiency of downlink spectrum frequency use, the first downlink frequency domain unit includes subcarriers in the first frequency domain resource that are frequency-shifted according to a preset value .
  • the first frequency domain resource includes 12 subcarriers (subcarrier #0 to subcarrier #11), assuming that the preset value is half a subcarrier, each subcarrier included in the first downlink frequency domain unit Both are offset by half a subcarrier, for example, if the subcarrier interval is 15kHz, the default value is 7.5kHz.
  • the preset value can be a positive value or a negative value, and when the preset value is a positive value, each subcarrier in the first downlink frequency domain unit is shifted to a higher frequency direction by a distance of the preset value , when the preset value is a negative value, each subcarrier in the first downlink frequency domain unit is shifted to a lower frequency direction by a distance of a preset value.
  • the index of the above-mentioned one subcarrier is the second value, and is used to determine the offset of the second value
  • the amount should be determined at least according to the preset value, for example, the offset may be the preset value or the offset may be determined based on the preset value, the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal.
  • the offset may be the preset value or the offset may be determined based on the preset value, the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal.
  • the first device in the above-mentioned method three performs During the phase compensation process, the first time-domain resource is at least two subframes (such as 2 subframes or subframes that are an integer multiple of 2), or in other words, the period for the first device to perform OFDM symbol-by-OFDM phase compensation in mode 3 should be at least is 2 subframes (or 2ms), for example, the value range of the OFDM symbol index l can be modified as Where M is 2 or an integer multiple of 2.
  • Performing phase compensation with a period of at least 2 subframes (or 2ms) can ensure that the change of the phase during the compensation period is an integer multiple of 2 ⁇ , thereby ensuring phase continuity between two different subframes (or 2ms).
  • both the above-mentioned first example and the second example can realize the center symmetry of the first downlink frequency domain unit with respect to a subcarrier carrying the first OFDM time domain signal, which improves the frequency utilization efficiency.
  • a manner in which each subcarrier in a frequency resource is shifted in frequency as a whole can ensure that all subcarriers can be used to transmit downlink signals, and can further improve spectrum utilization efficiency.
  • Fig. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 400 may include: a transceiver unit 410 and a processing unit 420 .
  • the communication apparatus 400 may correspond to the first device in the above method embodiment, for example, may be the first device, or a component configured in the first device (eg, a chip or a chip system, etc.).
  • the communication apparatus 400 may correspond to the first device in the method 200 shown in FIG. 7 or the method 300 shown in FIG. 12 according to the embodiment of the present application, and the communication apparatus 400 may include a 200 or the units of the method executed by the first device in the method 300 shown in FIG. 12 . Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method 200 in FIG. 7 or the method 300 in FIG. 12 .
  • the processing unit 420 can be used to generate a first OFDM time domain signal, and the first OFDM time domain signal is used by the second device to perform For reflective communication, the first OFDM time-domain signal occupies one subcarrier in the frequency domain; the transceiver unit 410 may be configured to send the first OFDM time-domain signal to the second device.
  • the processing unit 420 is specifically configured to: perform transform precoding on the first sequence to obtain a second sequence; wherein, one element in the second sequence is non-zero, and the second sequence is divided by the one element The other elements are zero, and the non-zero elements in the second sequence are mapped to the one subcarrier.
  • the processing unit 420 is further configured to: generate a second OFDM time-domain signal, the second OFDM time-domain signal is used to transmit downlink data, and the second OFDM time-domain signal occupies the first lower frequency domain in the frequency domain.
  • the absolute value of the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit is 0 or 1.
  • transceiver unit 410 can be used to execute step 220 and step 230 in the method shown in FIG. 7, and the processing unit 420 can be used to execute step 210 in the method shown in FIG. 7; In step 320, step 340 and step 350, the processing unit 420 may be used to execute step 310 and step 330 in the method shown in FIG. 12 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication apparatus 400 may correspond to the second device in the above method embodiments, for example, may be the second device, or a component configured in the second device (eg, a chip or a chip system, etc.).
  • the communication apparatus 400 may correspond to the second device in the method 200 shown in FIG. 7 or the method 300 shown in FIG. 12 according to the embodiment of the present application, and the communication apparatus 400 may include a Or the units of the method executed by the second device in the method 300 shown in FIG. 12 . Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method 200 in FIG. 7 or the method 300 in FIG. 12 .
  • the transceiver unit 410 can be used to receive a first OFDM time domain signal from the first device, and the first OFDM time domain signal occupies one subcarrier in the frequency domain; the The transceiver unit 410 is further configured to send an uplink signal to the first device in a reflective communication manner, the radio frequency carrier of the uplink signal is determined according to the radio frequency carrier of the first OFDM time domain signal.
  • the radio frequency carrier of the uplink signal is the same as the radio frequency carrier of the first OFDM time domain signal, or there is an offset value between the radio frequency carrier of the uplink signal and the radio frequency carrier of the first OFDM time domain signal .
  • the transceiver unit 410 is further configured to: receive a second OFDM time domain signal from the first device, the second OFDM time domain signal is used to transmit downlink data, and the second OFDM time domain signal is in the frequency domain Uplink occupies the first downlink frequency domain unit, and the absolute value of the difference between the number of subcarriers with a frequency lower than the one subcarrier and the number of subcarriers with a frequency higher than the one subcarrier in the first downlink frequency domain unit is 0 or 1.
  • the transceiving unit 410 is further configured to: send an uplink signal to the first device, the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal, and/ Or, the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • transceiver unit 420 may be used to execute steps 220 and 230 in the method 200 shown in FIG. 7 , or step 320, step 340 and step 350 in the method 300 shown in FIG. 12 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the frequency of the one subcarrier is zero.
  • the first OFDM time domain signal does not include a cyclic prefix.
  • the first OFDM time domain signal includes a cyclic prefix.
  • the first OFDM time domain signal includes a first OFDM symbol and a second OFDM symbol in the time domain, the first OFDM symbol and the second OFDM symbol are adjacent, the first OFDM symbol and the second OFDM symbol The phases between two OFDM symbols are continuous.
  • the time domain starting position of the second OFDM symbol is based on the time domain starting position of the first OFDM symbol, the index of the second OFDM symbol in the first time domain resource, the first OFDM symbol The time length of is determined, and the index of the second OFDM symbol in the first time domain resource is an integer greater than or equal to 0.
  • the first time domain resource is a time domain resource used to transmit the first OFDM time domain signal.
  • the first time domain resource is at least one subframe.
  • the one subcarrier is located in the first downlink frequency domain unit, and the number of subcarriers with a frequency lower than the one subcarrier in the first downlink frequency domain unit is the same as the number of subcarriers with a frequency higher than the one subcarrier
  • the absolute value of the difference between the numbers of carriers is 0 or 1, and the first downlink frequency domain unit is used for the communication device to communicate with the second device.
  • the index of the one subcarrier is a first value; or the index of the one subcarrier is a second value, and the second value is determined according to the first value and the offset.
  • the first value is determined according to the parity of the number of resource blocks in the first downlink frequency domain unit.
  • the index of the resource block where the one subcarrier is located in the first downlink frequency domain unit satisfies the following formula: Wherein, N RB is the number of resource blocks in the first downlink frequency domain unit, Indicates rounding down.
  • the first value when the number of resource blocks in the first downlink frequency domain unit is an odd number, the first value is equal to half the number of subcarriers in the resource block or the first value is equal to 6; or, the first value When the number of resource blocks in the downlink frequency domain unit is an even number, the first value is equal to zero or the number of subcarriers in the resource block.
  • the first value is equal to half of the number of subcarriers in the first downlink frequency domain unit.
  • the second value is the sum of the first value and the offset, and the offset is determined according to at least one of the following: the subcarrier spacing and the maximum subcarrier spacing of the first OFDM time domain signal Carrier spacing; or, preset value.
  • the elements carried by each subcarrier except the one subcarrier are all zero.
  • the first downlink frequency domain unit does not include the subcarrier with the lowest frequency in the first frequency domain resource, and the first frequency domain resource is used for the communication device to communicate with the second device; or, the The first downlink frequency domain unit includes subcarriers in the first frequency domain resource that are frequency-offset according to a preset value.
  • the transceiving unit 410 is further configured to: receive an uplink signal from the second device, the time domain start position of the uplink signal is later than the time domain start position of the first OFDM time domain signal, and /or, the end position of the time domain of the uplink signal is earlier than the end position of the time domain of the first OFDM time domain signal.
  • the second time domain length is spaced from the end position of the time domain of the first OFDM time domain signal.
  • the transceiver unit 410 in the communication device 400 can be realized by a transceiver, for example, it can correspond to the transceiver 510 in the communication device 500 shown in FIG. 15 , in the communication device 400
  • the processing unit 420 of can be implemented by at least one processor, for example, it can correspond to the processor 520 in the communication device 500 shown in FIG. 15 .
  • the transceiver unit 410 in the communication device 400 can be realized by a transceiver, for example, it can correspond to the transceiver 510 in the communication device 500 shown in FIG. 15 , in the communication device 400
  • the processing unit 420 of can be implemented by at least one processor, for example, it can correspond to the processor 520 in the communication device 500 shown in FIG. 15 .
  • the transceiver unit 410 in the communication device 400 can be implemented through an input/output interface, a circuit, etc.
  • the communication The processing unit 420 in the device 400 may be implemented by a processor, a microprocessor, or an integrated circuit integrated on the chip or the chip system.
  • Fig. 15 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 may include: a transceiver 510 , a processor 520 and a memory 530 .
  • the transceiver 510, the processor 520 and the memory 530 communicate with each other through an internal connection path, the memory 530 is used to store instructions, and the processor 520 is used to execute the instructions stored in the memory 530 to control the transceiver 510 to send signals and /or to receive a signal.
  • the communication apparatus 500 may correspond to the first device or the second device in the above method embodiments, and may be used to execute various steps and/or processes performed by the first device or the second device in the above method embodiments.
  • the memory 530 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 530 may be an independent device, or may be integrated in the processor 520 .
  • the processor 520 may be used to execute instructions stored in the memory 530, and when the processor 520 executes the instructions stored in the memory, the processor 520 is used to execute the above-mentioned method embodiments corresponding to the first device or the second device individual steps and/or processes.
  • the communications apparatus 500 is the first device in the foregoing embodiments.
  • the communications apparatus 500 is the second device in the foregoing embodiments.
  • the transceiver 510 may include a transmitter and a receiver.
  • the transceiver 510 may further include antennas, and the number of antennas may be one or more.
  • the processor 520, the memory 530 and the transceiver 510 may be devices integrated on different chips.
  • the processor 520 and the memory 530 may be integrated in a baseband chip, and the transceiver 510 may be integrated in a radio frequency chip.
  • the processor 520, the memory 530 and the transceiver 510 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 500 is a component configured in the first device, such as a chip, a chip system, and the like.
  • the communication apparatus 500 is a component configured in the second device, such as a chip, a chip system, and the like.
  • the transceiver 520 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 520 , the processor 510 and the memory 530 may be integrated in the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method performed by the first device in the above method embodiment. Two equipment.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method performed by the first device in the above method embodiment and the second device.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method performed by the first device in the above method embodiment and the second device.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the first step in the above method embodiments A method performed by a device or a second device.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the above-mentioned method embodiments A method performed by the first device or the second device.
  • the present application further provides a communication system, where the communication system may include the aforementioned first device and/or the second device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:第一设备生成第一OFDM时域信号,第一OFDM时域信号用于第二设备进行反射通信。第一OFDM时域信号在频域上占用一个子载波,第一设备向第二设备发送该第一OFDM时域信号。第一OFDM时域信号采用OFDM波形,与OFDM系统的信号的波形一致,实现了将基于载波反射的通信技术应用于OFDM系统。第一OFDM时域信号在频域上占用一个子载波,将功率集中在该子载波上,第二设备根据第一OFDM时域信号反射通信时,提高了反射数据的可靠性,并且第一设备在接收第二设备以反射通信方式传输的上行数据时,可以降低第一设备解调上行数据时的干扰抑制的复杂度。

Description

通信方法、装置、设备以及存储介质
本申请要求于2022年1月27日提交中国专利局、申请号为202210103513.X、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
长期演进(Long Term Evolution,LTE)系统,新空口(New Radio,NR)系统都是正交频分复用(orthogonal frequency division multiplexing,OFDM)系统。随着机器型通信(machine-type communication,MTC)和物联(internet of things,IoT)通信的广泛应用,在OFDM系统中支持射频识别(radio frequency identification,RFID)技术,来降低IoT应用成本和功耗的需求变得越来越强烈。如何将RFID技术及其类似的基于载波反射的通信技术应用于OFDM系统,是当前亟待解决的问题。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,以期实现将RFID或其类似技术与各OFDM系统的融合。
第一方面,本申请提供了一种通信方法,该方法可以由终端设备或网络设备执行,例如下文示例的第一设备,也可以由配置在终端设备或网络设备中的部件(如芯片、芯片系统等)执行,本申请实施例对此不作限定。下文为方便理解,以第一设备作为主体来说明该方法。
示例性的,该方法包括:第一设备生成第一OFDM时域信号,该第一OFDM时域信号在频域上占用一个子载波。第一设备向第二设备发送该第一OFDM时域信号,使第二设备可以基于该第一OFDM时域信号进行反射通信。
基于此,用于实现第一设备和第二设备进行通信的第一OFDM时域信号采用OFDM波形,与其他基于OFDM实现通信的系统的信号的波形一致,实现了将RFID技术及其类似的基于载波反射的通信技术应用于OFDM系统;进一步地,第一OFDM时域信号在频域上占用一个子载波,第一设备可以将功率集中在该子载波上,第二设备后续根据第一OFDM时域信号反射通信时,可以提高反射数据的可靠性。第一设备在接收第二设备以反射通信方式传输的上行数据时,为了正确解调上行数据,需要通过干扰抑制消除自身泄露的载波信号和/或经过环境反射的载波信号的干扰,第一OFDM时域信号在频域上占用一个子载波,可以降低第一设备干扰抑制的实现复杂度。
其中,第一OFDM时域信号可以是相位连续的时域信号。例如,第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,第一OFDM符号和第二OFDM符号相邻,第一OFDM符号和第二OFDM符号之间相位连续。需要说明的是,第一 OFDM符号和第二OFDM符号是第一OFDM时域信号中的任意两个相邻的OFDM符号,此处仅作为示例进行说明,不应理解为对本申请的限定,例如第一OFDM时域信号可以包括多个OFDM符号,且每两个相邻的OFDM符号之间均相位连续。第一设备解调上行数据的过程中,通过干扰抑制消除自身泄露的载波信号和/或经过环境反射的载波信号的干扰时,第一OFDM时域信号相位连续可以降低第一设备进行干扰抑制的复杂度。
接续上述任一示例的第一种设计是:上述第一OFDM时域信号在频域上占用的一个子载波可以是频率为零的子载波。频率为零的子载波也称作直流子载波。当该一个子载波是频率为零的子载波时,第一OFDM时域信号相位连续。
一般来说,频率为零的子载波在第一下行频域单元中的中间频率位置。这里第一下行频域单元可以是用于第一设备和第二设备进行通信的频域资源(如下文中的第一频域资源),或者第一下行频域单元可以是根据第一设备和第二设备进行通信的频域资源进行偏移得到的。第一下行频域单元的中间频率位置还可以表述为第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
为了使该一个子载波位于第一下行频域单元的中间频域位置,该频率为零的子载波所在的资源块在第一下行频域单元中的索引n PRB满足如下公式:
Figure PCTCN2022142035-appb-000001
其中,N RB为所述第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000002
表示向下取整。
该频率为零的子载波的索引可以是该子载波在上述一个资源块中的索引,其索引可以根据第一下行频域单元中的资源块的数量的奇偶确定。例如,当第一下行频域单元中资源块的数量为奇数时,频率为零的子载波的索引等于一个资源块中的子载波的数量的一半或者频率为零的子载波的索引等于6;当第一下行频域单元中资源块的数量为偶数时,频率为零的子载波的索引等于零或者一个资源块中的子载波的数量。
同样为了使该一个子载波位于第一下行频域单元的中间频率位置,频率为零的子载波的索引可以等于第一下行频域单元中子载波的数量的一半,此种情况下,该频率为零的子载波的索引是指该子载波在第一下行频域单元中的索引。
在另一些场景中,为了使该一个子载波位于第一下行频域单元的中间频率位置,频率为零的子载波的索引可以是由第一数值和偏移量确定的。这里第一数值可以是上述第一下行频域单元中资源块的数量的奇偶确定的数值,或者第一数值可以是上述第一下行频域单元中子载波的数量的一半。
可选的,偏移量为根据以下至少之一确定的:
第一OFDM时域信号的子载波间隔和最大子载波间隔;或,
预设值。
上述三种方案是一个子载波位于第一下行频域单元的中间频率位置的示例,均可以使该一个子载波的频率为零,进而使第一OFDM时域信号的相位连续。其中第三种方案可以应用于第一下行频域单元相对于第一频域资源存在频率偏移的情况。
接续上述任一示例的第二种设计是:上述第一OFDM时域信号不包括循环前缀。该第一OFDM时域信号不包括循环前缀,可以使第一OFDM时域信号相位连续。可 以理解的是,第一OFDM时域信号不包括循环前缀,也即第一OFDM时域信号中的任一OFDM符号均不包括循环前缀。第一OFDM时域信号中相邻的两个OFDM符号在时域上首尾相接。由于该第一OFDM时域信号不包括循环前缀,因此可以使第一OFDM时域信号相位连续。
在第一OFDM时域信号不包括循环前缀的情况下,上述一个子载波可以是第一下行频域单元中的任一子载波,本申请对此不作限定。
在一些实施例中,在第一OFDM时域信号不包括循环前缀的情况下,上述一个子载波位于第一下行频域单元中的中间频率位置,可以提高频谱使用效率。此种情况下,为了使该一个子载波位于第一下行频域单元的中间频域位置,该一个子载波所在的资源块在第一下行频域单元中的索引n PRB满足如下公式:
Figure PCTCN2022142035-appb-000003
其中,N RB为所述第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000004
表示向下取整。
该一个子载波的索引可以根据第一下行频域单元中的资源块的数量的奇偶确定。例如,当第一下行频域单元中资源块的数量为奇数时,一个子载波的索引等于资源块中的子载波的数量的一半;当第一下行频域单元中资源块的数量为偶数时,一个子载波的索引等于零或者资源块中的子载波的数量。
同样为了使该一个子载波位于第一下行频域单元的中间频率位置,一个子载波的索引可以等于第一下行频域单元中子载波的数量的一半。
在另一些场景中,为了使该一个子载波位于第一下行频域单元的中间频率位置,一个子载波的索引可以是由第一数值和偏移量确定的。这里第一数值可以是上述第一下行频域单元中资源块的数量的奇偶确定的数值,或者第一数值可以是上述第一下行频域单元中子载波的数量的一半。
可选的,偏移量为根据以下至少之一确定的:
所述第一OFDM时域信号的子载波间隔和最大子载波间隔;或,
预设值。
上述三种方案是一个子载波位于第一下行频域单元的中间频率位置的示例,均可以提高频谱使用效率。其中第三种方案可以应用于第一下行频域单元相对于第一频域资源存在频率偏移的情况。
接续上述任一示例的第三种设计是:上述第一OFDM时域信号包括循环前缀,也即第一OFDM时域信号中的任一OFDM符号均包括循环前缀。该第一OFDM时域信号包括循环前缀,容易导致第一OFDM时域信号相位不连续。
在一些实施例中,第一设备通过相位补偿使第一OFDM时域信号相位连续。第一OFDM时域信号中可以包括多个OFDM时域符号,下面以第一OFDM时域信号中的第一OFDM符号和第二OFDM符号进行示例性的说明。
示例性的,该第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,该第二OFDM符号在第一时域资源内的索引,该第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。基于此,可以使得第二OFDM符号的初始相位为第一OFDM符号的初始相位和第一OFDM符号对应 的时长内的相位变化之和,根据该递推关系可以使得第二OFDM符号和第一OFDM符号相位连续,可以理解的是,第一OFDM符号和第二OFDM符号为第一OFDM时域信号中的任意两个相邻的两个OFDM符号,也即第一OFDM时域信号在第一时域资源内各个OFDM符号均可以根据上述递推关系实现相位连续,进而使得第一OFDM时域信号在第一时域资源内相位连续。
可选的,上述第一时域资源为用于传输第一OFDM时域信号的时域资源;或者,第一时域资源为至少一个子帧。其区别在于,按照至少一个子帧内的OFDM符号的索引,对第一OFDM时域信号进行逐符号相位补偿,有利于Passive IoT与OFDM系统的兼容;而按照用于传输第一OFDM时域信号的时域资源内的OFDM符号的索引,对第一OFDM时域信号进行逐符号相位补偿,当OFDM符号的索引为0时,第一OFDM时域信号的初始相位(即初相)为0,不需要确定第一OFDM时域信号的初始相位,可以降低相位补偿的运算复杂度。
在上述第三种设计中,第一OFDM时域信号包括循环前缀的情况下,上述一个子载波可以是第一下行频域单元中的任一子载波,本申请对此不作限定。
在一些实施例中,在第一OFDM时域信号包括循环前缀的情况下,上述一个子载波位于第一下行频域单元中的中间频率位置,可以提高频谱使用效率。此种情况下,该一个子载波的索引与上述第二种设计中的一个子载波的索引相同,此处不再赘述。
第一设备可以通过子载波映射,将元素A映射至上述一个子载波上,以生成第一OFDM时域信号。可选的,在子载波映射前,第一设备可以启动变换预编码,或者说执行DFT扩展;当然,在子载波映射前,第一设备也可以不用变换预编码,或者说不执行DFT扩展。
示例性的,在第一设备启动变换预编码的情况下,第一设备可以对第一序列进行变换预编码,得到第二序列,该第二序列中的一个元素非零(例如上述元素A),第二序列中除该一个元素之外的其他元素为零。进一步地,第一设备将第二序列中的非零元素映射到上述一个子载波,以生成第一OFDM时域信号。可选的,第一下行频域单元中,除上述一个子载波之外的各子载波承载的元素均为零。
在一些实施例中,第一设备生成第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据。第二OFDM时域信号采用OFDM波形,与其他基于OFDM实现通信的系统的信号的波形一致,实现了将RFID技术及其类似的基于载波反射的通信技术应用于OFDM系统。进一步地,该第二OFDM时域信号在频域上占用第一下行频域单元,第一下行频域单元中频率低于一个子载波的子载波的数量与频率高于一个子载波的子载波的数量之差的绝对值为0或1,使得第一OFDM时域信号占用的一个子载波位于第二OFDM时域信号占用的第一下行频域单元的中间频率位置,提高了频谱使用效率。
在一些实施例中,第一下行频域单元不包括第一频域资源中频率最低的子载波,该第一频域资源用于第一设备与第二设备进行通信;或者,第一下行频域单元包括第一频域资源中按照预设值进行频率偏移的各子载波。实现了第一下行频域单元关于承载第一OFDM时域信号的一个子载波中心对称,提高了频率利用效率。
在一些实施例中,第一设备向第二设备发送第一OFDM时域信号,第二设备可以 在接收第一OFDM时域信号的过程中以反射通信的方式向第一设备发送上行信号。
可以理解的是,第一设备向第二设备发送第一OFDM时域信号结束时,第二设备由于失去能够用于反射的载波信号而停止发送上行信号,类似的,第二设备无法在接收到第一设备发送的第一OFDM使用信号之前,以反射通信的方式向第一设备发送上行信号。换言之,第二设备以反射通信的方式向第一设备发送上行信号所占用的时域资源,应为第一设备向第二设备发送第一OFDM时域信号占用的时域资源的子集。
上述上行信号的时域起始位置晚于第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于第一OFDM时域信号的时域结束位置。示例性的,上行信号的时域起始位置和第一OFDM时域信号的时域起始位置之间间隔第一时域长度T1,和/或,上行信号的时域结束位置和第一OFDM时域信号的时域结束位置之间间隔第二时域长度T2。
可选的,为了提高Passive IoT传输的可靠性,上述第一时域长度T1应与以下至少之一相关:
第一设备和第二设备之间的传输时延;
第二设备对第一OFDM时域信号的处理时间;
第二设备对上行信号的生成时间(例如对所需反射的上行数据的准备时间)。
上述第二时域长度T2应与以下至少之一相关:
第一设备对接收到的上行信号的处理时间;
第一设备对接下来所需发送的第一OFDM时域信号的准备时间。
第二方面,本申请实施例提供一种通信方法,该方法包括:第二设备从第一设备接收第一OFDM时域信号,该第一OFDM时域信号在频域上占用一个子载波;该第二设备以反射通信的方式向该第一设备发送上行信号,该上行信号的射频载波根据该第一OFDM时域信号的射频载波确定。
在一种可能的实施方式中,该上行信号的射频载波与该第一OFDM时域信号的射频载波相同,或者,该上行信号的射频载波与该第一OFDM时域信号的射频载波之间存在偏移值。
在一种可能的实施方式中,该一个子载波的频率为零。
在一种可能的实施方式中,该第一OFDM时域信号不包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,该第一OFDM符号和第二OFDM符号相邻,该第一OFDM符号和该第二OFDM符号之间相位连续。
在一种可能的实施方式中,该第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,该第二OFDM符号在第一时域资源内的索引,该第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
在一种可能的实施方式中,该第一时域资源为用于传输该第一OFDM时域信号的时域资源。
在一种可能的实施方式中,该第一时域资源为至少一个子帧。
在一种可能的实施方式中,该一个子载波位于第一下行频域单元,该第一下行频 域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1,该第一下行频域单元用于该第一设备与该第二设备进行通信。
在一种可能的实施方式中,该一个子载波的索引为第一数值;或该一个子载波的索引为第二数值,该第二数值是根据该第一数值和偏移量确定的。
在一种可能的实施方式中,该第一数值是根据第一下行频域单元中的资源块的数量的奇偶确定的。
在一种可能的实施方式中,该一个子载波所在的资源块在该第一下行频域单元中的索引满足如下公式:
Figure PCTCN2022142035-appb-000005
其中,N RB为该第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000006
表示向下取整。
在一种可能的实施方式中,该第一下行频域单元中资源块的数量为奇数时,该第一数值等于一个资源块中的子载波的数量的一半或者该第一数值等于6;或者,该第一下行频域单元中资源块的数量为偶数时,该第一数值等于零或者该一个资源块中的子载波的数量。
在一种可能的实施方式中,该第一数值等于该第一下行频域单元中子载波的数量的一半。
在一种可能的实施方式中,该第二数值为该第一数值和该偏移量之和,该偏移量为根据以下至少之一确定的:该第一OFDM时域信号的子载波间隔和最大子载波间隔;或,预设值。
在一种可能的实施方式中,该第一下行频域单元中,除该一个子载波之外的各子载波承载的元素均为零。
在一种可能的实施方式中,该方法还包括:该第二设备从该第一设备接收第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据,该第二OFDM时域信号在频域上占用第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
在一种可能的实施方式中,该第一下行频域单元不包括第一频域资源中频率最低的子载波,该第一频域资源用于该第一设备与该第二设备进行通信;或者,该第一下行频域单元包括该第一频域资源中按照预设值进行频率偏移的各子载波。
在一种可能的实施方式中,该方法还包括:该第二设备向该第一设备发送上行信号,该上行信号的时域起始位置晚于该第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于该第一OFDM时域信号的时域结束位置。
在一种可能的实施方式中,该上行信号的时域起始位置和该第一OFDM时域信号的时域起始位置之间间隔第一时域长度,和/或,该上行信号的时域结束位置和该第一OFDM时域信号的时域结束位置之间间隔第二时域长度。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:处理单元,用于生成第一正 交频分复用OFDM时域信号,该第一OFDM时域信号用于第二设备进行反射通信,该第一OFDM时域信号在频域上占用一个子载波;收发单元,用于向第二设备发送该第一OFDM时域信号。
在一种可能的实施方式中,该一个子载波的频率为零。
在一种可能的实施方式中,该第一OFDM时域信号不包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,该第一OFDM符号和该第二OFDM符号相邻,该第一OFDM符号和该第二OFDM符号之间相位连续。
在一种可能的实施方式中,该第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,该第二OFDM符号在第一时域资源内的索引,该第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
在一种可能的实施方式中,该第一时域资源为用于传输该第一OFDM时域信号的时域资源。
在一种可能的实施方式中,该第一时域资源为至少一个子帧。
在一种可能的实施方式中,该处理单元具体用于:对第一序列进行变换预编码,得到第二序列;其中,该第二序列中的一个元素非零,该第二序列中除该一个元素之外的其他元素为零,该第二序列中的非零元素映射到该一个子载波。
在一种可能的实施方式中,该一个子载波位于第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1,该第一下行频域单元用于该通信装置与该第二设备进行通信。
在一种可能的实施方式中,该一个子载波的索引为第一数值;或该一个子载波的索引为第二数值,该第二数值是根据该第一数值和偏移量确定的。
在一种可能的实施方式中,该第一数值是根据第一下行频域单元中的资源块的数量的奇偶确定的。
在一种可能的实施方式中,该一个子载波所在的资源块在该第一下行频域单元中的索引满足如下公式:
Figure PCTCN2022142035-appb-000007
其中,N RB为该第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000008
表示向下取整。
在一种可能的实施方式中,该第一下行频域单元中资源块的数量为奇数时,该第一数值等于一个资源块中的子载波的数量的一半或者该第一数值等于6;或者,该第一下行频域单元中资源块的数量为偶数时,该第一数值等于零或者一个资源块中的子载波的数量。
在一种可能的实施方式中,该第一数值等于该第一下行频域单元中子载波的数量的一半。
在一种可能的实施方式中,该第二数值为该第一数值和该偏移量之和,该偏移量为根据以下至少之一确定的:该第一OFDM时域信号的子载波间隔和最大子载波间隔;或,预设值。
在一种可能的实施方式中,该第一下行频域单元中,除该一个子载波之外的各子载波承载的元素均为零。
在一种可能的实施方式中,该处理单元还用于:生成第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据,该第二OFDM时域信号在频域上占用第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
在一种可能的实施方式中,该第一下行频域单元不包括第一频域资源中频率最低的子载波,该第一频域资源用于该通信装置与该第二设备进行通信;或者,该第一下行频域单元包括该第一频域资源中按照预设值进行频率偏移的各子载波。
在一种可能的实施方式中,该收发单元还用于:接收来自该第二设备的上行信号,该上行信号的时域起始位置晚于该第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于该第一OFDM时域信号的时域结束位置。
在一种可能的实施方式中,该上行信号的时域起始位置和该第一OFDM时域信号的时域起始位置之间间隔第一时域长度,和/或,该上行信号的时域结束位置和该第一OFDM时域信号的时域结束位置之间间隔第二时域长度。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:收发单元,用于从第一设备接收第一OFDM时域信号,该第一OFDM时域信号在频域上占用一个子载波;该收发单元还用于以反射通信的方式向该第一设备发送上行信号,该上行信号的射频载波根据该第一OFDM时域信号的射频载波确定。
在一种可能的实施方式中,该上行信号的射频载波与该第一OFDM时域信号的射频载波相同,或者,该上行信号的射频载波与该第一OFDM时域信号的射频载波之间存在偏移值。
在一种可能的实施方式中,该一个子载波的频率为零。
在一种可能的实施方式中,该第一OFDM时域信号不包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号包括循环前缀。
在一种可能的实施方式中,该第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,该第一OFDM符号和第二OFDM符号相邻,该第一OFDM符号和该第二OFDM符号之间相位连续。
在一种可能的实施方式中,该第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,该第二OFDM符号在第一时域资源内的索引,该第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
在一种可能的实施方式中,该第一时域资源为用于传输该第一OFDM时域信号的时域资源。
在一种可能的实施方式中,该第一时域资源为至少一个子帧。
在一种可能的实施方式中,该一个子载波位于第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的 数量之差的绝对值为0或1,该第一下行频域单元用于该第一设备与该通信装置进行通信。
在一种可能的实施方式中,该一个子载波的索引为第一数值;或该一个子载波的索引为第二数值,该第二数值是根据该第一数值和偏移量确定的。
在一种可能的实施方式中,该第一数值是根据第一下行频域单元中的资源块的数量的奇偶确定的。
在一种可能的实施方式中,该一个子载波所在的资源块在该第一下行频域单元中的索引满足如下公式:
Figure PCTCN2022142035-appb-000009
其中,N RB为该第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000010
表示向下取整。
在一种可能的实施方式中,该第一下行频域单元中资源块的数量为奇数时,该第一数值等于一个资源块中的子载波的数量的一半或者该第一数值等于6;或者,该第一下行频域单元中资源块的数量为偶数时,该第一数值等于零或者该一个资源块中的子载波的数量。
在一种可能的实施方式中,该第一数值等于该第一下行频域单元中子载波的数量的一半。
在一种可能的实施方式中,该第二数值为该第一数值和该偏移量之和,该偏移量为根据以下至少之一确定的:该第一OFDM时域信号的子载波间隔和最大子载波间隔;或,预设值。
在一种可能的实施方式中,该第一下行频域单元中,除该一个子载波之外的各子载波承载的元素均为零。
在一种可能的实施方式中,该收发单元还用于:从该第一设备接收第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据,该第二OFDM时域信号在频域上占用第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
在一种可能的实施方式中,该第一下行频域单元不包括第一频域资源中频率最低的子载波,该第一频域资源用于该第一设备与该通信装置进行通信;或者,该第一下行频域单元包括该第一频域资源中按照预设值进行频率偏移的各子载波。
在一种可能的实施方式中,该收发单元还用于:向该第一设备发送上行信号,该上行信号的时域起始位置晚于该第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于该第一OFDM时域信号的时域结束位置。
在一种可能的实施方式中,该上行信号的时域起始位置和该第一OFDM时域信号的时域起始位置之间间隔第一时域长度,和/或,该上行信号的时域结束位置和该第一OFDM时域信号的时域结束位置之间间隔第二时域长度。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行 如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种通信系统,包括:如第一方面、第二方面或各可能的实现方式中的装置。
附图说明
图1示出了适用于本申请实施例的通信方法的通信系统的示意图;
图2a为本申请提供的一种RFID通信系统的示意图;
图2b为本申请提供的一种分离式架构的RFID通信系统的示意图;
图2c为本申请提供的一种集中式架构的RFID通信系统的示意图;
图3示例性示出Passive IoT下行通信方法示意图;
图4示例性示出Passive IoT通信中的上行通信方法示意图;
图5为本申请提供的一种公共资源块的示意图;
图6为本申请提供的一种部分带宽与载波之间频域位置关系的示意图;
图7为本申请实施例提供的一种通信方法200的示意性交互流程示意图;
图8a示出了本申请提供的一种正交频分复用传输链路示意图;
图8b示出了本申请提供的一种离散傅里叶变换扩展正交频分复用传输链路示意图;
图9为本申请提供的一种时域信号的示意图;
图10a为本申请实施例提供的一种时域信号的示意图;
图10b为本申请实施例提供的另一种时域信号的示意图;
图10c为本申请实施例提供的另一种时域信号的示意图;
图11为本申请实施例提供的一种信号的时域位置示意图;
图12为本申请实施例提供的一种通信方法300的示意性交互流程示意图;
图13a为本申请实施例提供的一种下行频域单元的示意图;
图13b为本申请实施例提供的另一种下行频域单元的示意图;
图14是本申请实施例提供的通信装置的示意性框图;
图15是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。其中,LTE和LTE-A是第四代(4th-Generation,4G)通信系统;NR系统及其演进是第五代(5th-Generation,5G)通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、 开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本申请对于网络设备和终端设备的具体形式均不做限定。
本申请实施例尤其适用于OFDM系统,例如前述LTE通信系统、NR通信系统等,当然本申请实施例也同样适用于未来演进的各种基于OFDM或基于类似OFDM技术的通信系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,通信系统100可以包括网络设备和终端设备,网络设备和终端设备的数量均可以是一个或者多个,例如图1中所示的网络设备111和112、终端设备121至128,在该通信系统100中,网络设备111可以与终端设备121至126中的一个或多个终端设备通过无线空口通信,网络设备111可以通过网络设备112与终端设备127和128中的一个或多个终端设备进行通信。此外,终端设备124至126可以组成通信系统101,在该通信系统101中,终端设备124可以与终端设备125和126中的一个或多个终端设备通过无线空口通信、网络设备112与终端设备127和128可以组成通信系统102,在该通信系统102中,网络设备112可以与终端设备127和128中的一个或多个终端设备通过无线空口通信。
应理解,通信系统101可以是通信系统100的子系统,或者独立于通信系统100的通信系统;通信系统102可以是通信系统100的子系统,或者独立于通信系统100的通信系统。
还应理解,图1仅为示例,示出了通信系统100中两个网络设备和八个终端设备,通信系统101中的三个终端设备,通信系统102中的一个网络设备和两个终端设备。但这不应对本申请构成任何限定。上述任一通信系统可以包括更多或更少的网络设备,或者包括更多或更少的终端设备。本申请实施例对此不做限定。
随着5G NR系统MTC和物联(internet of things,IoT)通信的普及,越来越多的IoT设备已经部署在人们的生活中。例如:智能水表、共享单车,以及智慧城市、环境监测、智能家居、森林防火等以传感和数据采集为目标的设备等等。而未来,IoT设备将是无处不在的,可能会嵌入每一件衣服、每一个包裹、每一把钥匙,几乎所有的离线物品都将在物联网技术的赋能下实现在线。但与此同时,由于IoT设备分布范围广泛、数量众多,所以实现万物互联的过程也给产业界带来了不小的挑战,首当其冲的便是供电问题。目前,IoT仍然主要由运营商推动,IoT模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此IoT模块需要能做到在距离基站很远时仍能进行通信,这就使得IoT设备在无线通信时仍然需要消耗高达30mA的电流,所以目前的IoT模块仍然需要使用较高容量的电池才能工作,这也导致了IoT模块的尺寸很难做小,增加了IoT设备的成本。
此外,一些低功耗终端在医疗、智能家居、工业传感器、可穿戴设备等物联网应用中发挥着重要作用。然而,由于这类终端尺寸大小有限,如果要延长这些设备的运行时间,很难通过简单的提高电池容量来实现。因此,要实现延长终端续航时间,需降低无线通信的功耗,其中,无线电收发器则是最耗电的组件之一。
因此,为了能进一步普及IoT,把IoT模块植入人体内,或者更小的物件中,则不可能再搭配较高容量的电池,而必须使用更小的电池甚至彻底摆脱电池的限制,或者是设计一种降低无线电收发器功耗的方法,进而来克服IoT设备的成本、尺寸、功耗等的限制问题。因此,2021年6月,在3GPP在组织R18潜在研究方向讨论会中,讨论了物联网增强技术,且披露了5G演进(5G-Advanced)将从R18开始,在5G NR系统中引入无源(Passive)IoT和WUR。Passive IoT是从目前大量且成熟使用RFID技术中得出启发后应运而生。因为省去了电源模块,所以无源RFID产品的体积可以达到厘米量级甚至更小,而且自身结构简单,成本低,故障率低,使用寿命较长。
RFID技术是一种非接触式的自动识别技术,其可以通过射频信号自动识别目标对象并获取相关数据。通常情况下,RFID系统由阅读器(reader)和标签(tag)组成。结合图2a所示,阅读器通过向标签发送激励信号为标签进行充能,标签接收阅读器发送的信令,并以反射通信的方式向阅读器发送反射信号。通过这种方式,阅读器可以识别标签的标识(identity document,ID),以及对标签进行读写等操作。
需要说明的是,阅读器向标签发送的激励信号可以是下文中的下行信号或下行信号中的一种,反射信号可以是下文中的上行信号或上行信号中的一种。该下行信号为载波信号,标签以反射通信的方式向阅读器发送反射信号,具体可以是,标签利用下行信号提供的载波进行上行信号的传输。
目前,为了扩展RFID的有效工作距离,通常采用以下两种方式:
方式1、分离式架构:结合图2b所示,分离式的阅读器包括辅助器(helper)和接收器(receiver)。helper通过前向链路向标签发送激励信号,receiver通过反向链路从标签接收反射信号,另外receiver生成RFID相关的下行信令,并通过前传链路向helper发送下行信令,再由helper在前向链路上进行转发。
方式2、集中式或一体式架构:结合图2c所示,除了阅读器与标签间通过前向链路和反向链路进行信号的激励和反射之外,阅读器还与集中控制单元(如基站)进行通信,集中控制单元可以对阅读器使用的前向链路的资源和发送行为进行的调度、控制等。
本申请实施例中,为了实现在NR系统中支持RFID,上述方式1中的helper和receiver之间,以及上述方式2中的阅读器和集中控制单元之间可以通过NR技术进行通信。
针对NR系统中应用的RFID技术,例如可以称作无源(Passive)IoT。本申请提供的Passive IoT与RFID的传输机制类似。在Passive IoT中,Passive IoT设备(例如标签)可以是无源(Batter Free)的,即Passive IoT设备自身不配备或不主要依赖于电池或者有线电源来供电。但是,Passive IoT设备不具备电源模块并不意味着不需要用电,Passive IoT设备可以从环境光、热量、射频中获取能量,从而支撑起物联网数据的感知、无线传输和分布式的计算等等。Passive IoT设备也可以是储能无源的,还可以是半无源的。储能无源设备有储能设备。半无源设备有电池。电池为接收电路、协议栈处理的数字电路以及存储供电。
图3示例性示出Passive IoT下行通信方法示意图;图4示例性示出Passive IoT通信中的上行通信方法示意图。
如图3所示,阅读器通过下行链路向标签发送调幅信号,标签接收该调幅信号,可以采用包络检波器,对该调幅信号进行包络检波,获取其中的低频信号。包络检波器的主要组成部分包括图3所示的二极管D和电阻-电容电路(resistor-capacitance circuit,RC),也即振荡电路,RC电路由电阻器R和电容器C组成。
上述包络检波是指:从调幅信号中将低频信号解调出来的过程,广义的检波通常称为解调,是调制的逆过程,即从已调信号提取调制信号的过程。对调幅信号来说,包络检波就是从它的振幅变化中提取调制信号的过程。其中,包络是反映一个高频信号的幅度变化曲线,当用一个低频信号对一个高频信号进行幅度调制时,低频信号就成了高频信号的包络线。
可以理解的是,图3所示出的包络检波电路为最传统的基础电路结构示意图,关于包络检波电路的演进结构,在此在暂不赘述。本申请实施例对标签采用的包络检波电路结构不作限制。
如图4所示,标签自身无法提供电源,也无条件连接有线电源,来供标签进行数据传输。所以标签需要从外接环境中获取能量,进而提供标签进行数据传输,以及数据处理等其他操作。
具体的,当标签接收阅读器发出的载波信号,可以利用空间中产生的电磁场得到的能量,驱动芯片将自身存储的信息传送出去。
在上述实现方法中,阅读器和标签的关系为“电磁反向散射耦合”关系,“电磁反向散射耦合”是指利用电磁波的空间传播规律,当发射的电磁波接触到被测物体后,携带着被测物体的信息被反射回来。这种耦合适合用在高频、微波工作的远距离射频识别系统。
可以理解的是,图4所示的Passive IoT通信中上行通信方法仅为示例,在本申请另一些实施例中,标签还可以通过获取环境光、热等能量,来驱动芯片将自身存储的信息传送出去。如前所述,标签也可以是储能无源设备或者半无源设备。
应理解,Passive IoT仅为一种示例性的名称,当其替换为其他表述时也属于本申请保护范围。
还应理解,上述Passive IoT场景下的信息交互流程、信令格式仅为一种示例,而非限制性的说明。
目前,为了使Passive IoT能够应用于OFDM系统,如何生成第一设备(例如阅读器)与第二设备(标签)之间的传输信号,以使第一设备和第二设备基于该传输信号进行通信和反射通信,是当前亟待解决的问题。
为便于理解本申请实施例,首先对本申请中涉及的术语作简单说明。
1、通用概念:
NR时域以时间单位T c=1/(Δf max·N f)表示,其中Δf max=480·10 3Hz,N f=4096,例如NR的时域长度可以表示为整数倍T c
LTE时域以时间单位T s=1/(Δf ref·N f,ref)表示,其中子载波间隔Δf ref=15·10 3Hz,N f,ref=2048,例如LTE的时域长度可以表示为整数倍T s
常数κ=T s/T c=64。
2、参数集(numerology):在NR系统中,为适应多种不同子载波间隔的OFDM波形,引入了参数集,使得子载波间隔不受局限,能够根据不同的使用场景进行适配。
NR系统支持的传输参数集如下表1所示:
表1
μ Δf=2 μ·15[kHz] 循环前缀(cyclic prefix)
0 15 常规(normal)
1 30 normal
2 60 normal,扩展(extended)
3 120 normal
4 240 normal
其中,Δf为子载波间隔。具体使用的μ和循环前缀由网络设备配置。在一个示例中,normal CP的长度和extended CP的长度定义见下文中公式(6)。
例如,子载波间隔配置μ为1时,子载波间隔Δf为30kHz,循环前缀为normal CP。例如,子载波间隔配置μ为2时,子载波间隔Δf为60kHz,循环前缀为normal CP或extended CP。例如,通过信令配置确定在μ为2时,使用normal CP或extended CP。
3、帧(frame)、子帧(subframe)、时隙和OFDM符号:
在NR系统中,上下行传输在时域上被组成帧,一帧分为10个子帧,编号为#0~#9。 一帧又可以分为两个大小相同的半帧(half-frame),编号为#0和#1,每个半帧包括五个子帧,比如半帧#0包括子帧#0~#4,半帧#1包括子帧#5~#9。
一帧的持续时间可以为T f=(Δf maxN f/100)=10ms,一个子帧的持续时间可以为T sf=(Δf maxN f/1000)=1ms。
对于子载波配置μ,一子帧可以包括
Figure PCTCN2022142035-appb-000011
个时隙,一帧可以包括
Figure PCTCN2022142035-appb-000012
个时隙。相应的,对于子载波间隔配置μ,时隙在一个子帧内按升序编号
Figure PCTCN2022142035-appb-000013
排列;时隙在一个帧内按升序编号
Figure PCTCN2022142035-appb-000014
排列。不同的子载波间隔配置μ对应的
Figure PCTCN2022142035-appb-000015
Figure PCTCN2022142035-appb-000016
不同,如下表2所示。
在一个时隙中有
Figure PCTCN2022142035-appb-000017
个连续的OFDM符号,其中
Figure PCTCN2022142035-appb-000018
数值取决于循环前缀类型,如下表2和表3所示,表1中各子载波配置μ均对应常规循环前缀,表3中子载波配置μ对应扩展循环前缀。进而,对于子载波配置μ,一子帧包括
Figure PCTCN2022142035-appb-000019
个OFDM符号。一个子帧中时隙
Figure PCTCN2022142035-appb-000020
的开始与同一子帧中的OFDM符号
Figure PCTCN2022142035-appb-000021
的开始在时间上对齐。例如,一个子帧中时隙包括时隙#0、时隙#1、时隙#2等,每个时隙包括14个OFDM符号,那么该一个子帧中时隙#0和该一个子帧中的OFDM符号#0的开始在时间上对齐,该一个子帧中时隙#1和该一个子帧中的OFDM符号#14的开始在时间上对齐,该一个子帧中时隙#2和该一个子帧中的OFDM符号#28的开始在时间上对齐,以此类推。
表2
Figure PCTCN2022142035-appb-000022
表3
Figure PCTCN2022142035-appb-000023
一个时隙中的OFDM符号可分为下行链路(downlink)符号、灵活(flexible)符号或上行链路(uplink)符号。在下行帧的时隙中,终端设备一般在downlink或flexible符号中进行传输。在上行帧的时隙中,终端设备一般在uplink或flexible符号中进行传输。
4、天线端口:天线端口被定义为使得在该天线端口上传输的一个符号的信道可以从在相同天线端口上传输的另一个符号的信道推断出来,换言之,同一天线端口传输 的不同信号所经历的信道环境是一样的。
5、资源格(resource grid)或称作资源网格:一个资源格对应于一个参数集和载波,该资源格包括
Figure PCTCN2022142035-appb-000024
个子载波和
Figure PCTCN2022142035-appb-000025
个OFDM符号,其中,
Figure PCTCN2022142035-appb-000026
表示子载波间隔配置为μ时一个资源格内的资源块(resource element,RB)数。
Figure PCTCN2022142035-appb-000027
表示一个RB中的子载波数。可选的,
Figure PCTCN2022142035-appb-000028
个连续子载波。
应理解,每个传输方向(上行链路或下行链路)有一组资源格。对于给定的天线端口p、子载波间隔配置μ和传输方向(下行链路或上行链路),存在一个资源格。
资源格的起始资源块为公共资源块(common resource block,CRB)。
6、资源元素(resource element,RE):用于天线端口p和子载波间隔配置μ的资源格中的每个元素称为资源元素,并由(k,l) p,μ唯一标识,其中k是RE在频域中的索引,l为RE的符号在时域中相对于某参考点的位置。资源元素(k,l) p,μ对应一个物理资源和复数值
Figure PCTCN2022142035-appb-000029
当没有混淆的风险,或者没有指定特定的天线端口或子载波间隔时,索引p和μ可能会被丢弃,
Figure PCTCN2022142035-appb-000030
可以表示为
Figure PCTCN2022142035-appb-000031
或a k,l
7、资源块(resource block,RB):资源块定义为频域中的
Figure PCTCN2022142035-appb-000032
个连续子载波。本申请实施例中每个子载波的频率可以是指子载波的中心频率。
8、point A:point A为资源格的公共参考点。
9、公共资源块(common resource blocks):对于子载波间隔配置μ,公共资源块在频域中从0开始向上编号。子载波间隔配置μ的公共资源块0的子载波0的中心频点与point A重合,参见图5。
频域中的公共资源块编号(number)
Figure PCTCN2022142035-appb-000033
与子载波间隔配置μ的资源元素(k,l)之间满足如下公式(1)
Figure PCTCN2022142035-appb-000034
其中,k相对于point A定义,使得k=0的RE对应于以point A为中心的子载波。
Figure PCTCN2022142035-appb-000035
表示对x下取整。
10、物理资源块(physical resource blocks):子载波间隔配置μ的物理资源块定义在一个部分带宽(bandwidth part,BWP)内,编号从0到
Figure PCTCN2022142035-appb-000036
其中i是BWP的编号。BWP i中的物理资源块
Figure PCTCN2022142035-appb-000037
与公共资源块
Figure PCTCN2022142035-appb-000038
之间的满足如下公式(2)
Figure PCTCN2022142035-appb-000039
其中,
Figure PCTCN2022142035-appb-000040
是BWP相对于公共资源块0开始的公共资源块,也即
Figure PCTCN2022142035-appb-000041
为BWP的起始位置。当没有混淆的风险时,索引μ可能会被删除。
11、BWP:对于一个给定(given)载波(carrier)上的BWP i中的给定参数集μ i,BWP是连续的CRBs的子集。BWP的起始位置
Figure PCTCN2022142035-appb-000042
和物理资源块PRB数
Figure PCTCN2022142035-appb-000043
应分别满足
Figure PCTCN2022142035-appb-000044
Figure PCTCN2022142035-appb-000045
其中
Figure PCTCN2022142035-appb-000046
表示资源格的大小,
Figure PCTCN2022142035-appb-000047
表示资源格的起始位置。BWP和载波之间的频域位置关系可以如图6所示。
一般来说,一个终端设备在下行链路中可以配置多达四个BWP,其中一个下行BWP在给定时间处于活动状态;一个终端设备在上行链路中可以配置多达四个BWP,其中一个上行BWP在给定时间处于活动状态。
为便于理解本申请实施例,做出如下几点说明:
第一,在下文示出的实施例中,第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的OFDM时域、时域资源、序列、下行频域单元、数值、时域长度、设备等。
第二,“预定义”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括第一设备和第一设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
第五,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,第一设备或者第二设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,第一设备或者第二设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第六,本申请实施例中采用的运算符号包括:
Figure PCTCN2022142035-appb-000048
表示向下取整,
Figure PCTCN2022142035-appb-000049
表示向上取整,mod表示取模运算。
下面将结合附图对本申请实施例提供的通信方法做详细说明。
应理解,下文仅为便于理解和说明,以第一设备和第二设备之间的交互为例详细说明本申请实施例所提供的方法。
其中,第一设备例如可以是上述阅读器,或者部署有阅读器的终端设备,或者部署有阅读器的网络设备;第二设备例如可以是上述标签,或者部署有标签的终端设备。当第一设备是部署有阅读器的终端设备,第二设备是部署有标签的终端设备时,该第一设备可以是图1中的终端设备124,第二设备可以是图1中的终端设备125或126;当第一设备是部署有阅读器的网络设备,第二设备是部署有标签的终端设备时,该第一设备可以是图1中的网络设备111,第二设备可以是图1中的终端设备121至123中的任意一个,或者第一设备可以是图1中的网络设备112,第二设备可以是图1中的终端设备127或128。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一设备也可以替换为该第一设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。第二设备也可以替换为该第二设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块等。
图7为本申请实施例提供的一种通信方法200的示意性交互流程示意图。如图7所示,该方法200可以包括S210至S230中的部分或者全部。下面对方法200中的各个步骤做详细说明。
S210,第一设备生成第一OFDM时域信号,该第一OFDM时域信号用于第二设备进行反射通信,该第一OFDM时域信号在频域上占用一个子载波。
S220,第一设备向第二设备发送该第一OFDM时域信号;相应的,第二设备接收第一设备发送的该第一OFDM时域信号。
S230,第二设备以反射通信的方式向第一设备发送上行信号;相应的,第一设备接收第二设备发送的上行信号。
该上行信号的射频载波根据该第一OFDM时域信号的射频载波确定。例如,该上行信号的射频载波可以和该第一OFDM时域信号的射频载波相同,或者,该上行信号的射频载波和该第一OFDM时域信号的射频载波之间有一个偏移值。例如,在一种实现中,第二设备以第一OFDM时域信号的射频载波为载体,调整反射因子来传递信息。反射因子包含频率信息时,可以实现频率搬移操作,即该上行信号的射频载波和该第一OFDM时域信号的射频载波之间有一个偏移值。反射因子不包含频率信息时,该上行信号的射频载波可以和该第一OFDM时域信号的射频载波相同。
可以理解的,第一OFDM时域信号在频域上占用一个子载波,该一个子载波可以位于第一频域资源内。可选的,该第一频域资源可以部署于NR系统的传输带宽(例如BWP或下行载波),该第一频域资源可以部署于NR传输带宽的保护带或者非保护带内;或者该第一频域资源可以部署于独立的频域资源,例如将无线接入网络(GSM EDGE radio access network,GERAN)系统中的一个或多个GSM载波部署为第一频域资源,或者将潜在物联网部署的频谱作为第一频域资源。该第一频域资源例如可以是Passive IoT的传输带宽,第一设备和第二设备可以在第一频域资源进行通信以及反射通信。例如,该第一频域资源是Passive IoT的传输带宽,占一个RB,包括12个子载波。第一OFDM时域信号在频域上占用这12子载波的第6个子载波。也就是说,第一OFDM时域信号在第6个子载波映射或承载待传输的元素。第一OFDM时域信号在这个RB的第1-5和第7-11的子载波不映射或承载待传输的元素。换言之,第一OFDM时域信号在这个RB的第1-5和第7-11的子载波映射或承载的元素为0。
还应理解的是,第一OFDM时域信号在时频空间中可以占用一个RE。前已述及,天线端口p和子载波间隔配置μ的资源格中的每个元素可以由(k,l) p,μ唯一标识,其中k是RE在频域中的索引(也即上述一个子载波的索引),l为RE的符号在时域中相对于某参考点的位置,该参考点为预定义的。资源元素(k,l) p,μ对应一个物理资源和复数值
Figure PCTCN2022142035-appb-000050
如前所述,第一OFDM时域信号可以用于生成载波信号,例如第一设备可以对第一OFDM时域信号进行上变频得到载波信号,并将该载波信号发送至第二设备。可以简单理解为,第一OFDM时域信号与待传输的载波信号对应。
作为上述S210的一种示例,第一设备可以将元素映射至上述一个子载波,以生成占用该一个子载波的第一OFDM时域信号。该元素可以是一个不为零的数值A,A可以是实数或者复数,例如A可以为1,A还可以是上述复数值
Figure PCTCN2022142035-appb-000051
上述S210中,用于第二设备反射通信的第一OFDM时域信号采用OFDM波形,和NR波形一致,可以保证和NR共存,此外,在频域上占用一个子载波,第一设备可以将功率集中在该子载波上,第二设备后续根据第一OFDM时域信号反射通信时,可以提高反射数据的可靠性。第一设备在接收第二设备以反射通信方式传输的上行数据时,为了正确解调上行数据,需要通过干扰抑制消除自身泄露的载波信号和/或经过环境反射的载波信号的干扰,第一OFDM时域信号在频域上占用一个子载波,可以降低第一设备干扰抑制的实现复杂度。
上述S210可以结合NR系统中的基带信号生成方式,生成该第一OFDM时域信号。示例性的,在NR系统中,下行信号的波形和上行信号的波形均是使用循环前缀(cyclic prefix,CP)的常规(conventional)OFDM。图8a示出了本申请提供的一种OFDM传输链路示意图,参见图8a所示,针对下行信号的传输进行示例性的说明:发送端设备可以下行信号的符号通过映射至多个子载波,并对映射后的序列执行快速傅里叶逆变换(inverse fast fourier transform,IFFT),得到下行信号的时域信号,再对下行信号的时域信号插入CP,得到下行信号的OFDM时域信号。图8b示出了本申请提供的一种离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform-Spread-OFDM,DFT-S-OFDM)传输链路示意图,参见图8b,发送端设备可以对下行信号的符号执行变换预编码,并将变换预编码后得到的序列映射至多个子载波,再对映射后的序列执行IFFT,得到下行信号的时域信号,进而对下行信号的时域信号插入CP,得到下行信号的OFDM时域信号。
上述S210中,若第一设备基于上述方式生成第一OFDM时域信号,在插入CP之前第一OFDM时域信号是相位连续的,而在插入CP后,插入的CP将导致第一OFDM时域信号中相邻的OFDM符号之间相位不连续,结合图9所示,插入CP后第一OFDM时域信号在OFDM符号m和OFDM符号m+1之间相位不连续。然而,如前所述,第一设备为了正确解调上行信号需要消除泄露的载波信号和/或环境反射的载波信号的干扰。而载波信号的OFDM时域信号(例如上述第一OFDM时域信号)的相位不连续将增加干扰抑制的复杂度。
基于此,本申请在一些实施例中,第一OFDM时域信号是相位连续的OFDM时域信号,以降低第一设备执行干扰抑制的复杂度。下面结合图10a至图10c分别对本申请实施例提供的三种可能实现方式进行说明:
方式一:上述一个子载波的频率为零,第一OFDM时域信号相位连续。
当上述一个子载波的频率为零时,第一OFDM时域信号为如图10a所示的直流信号,此种情况下,插入CP不会导致第一OFDM时域信号的相位不连续。例如第一OFDM时域信号包括第一OFDM符号和与第一OFDM符号相邻的第二OFDM符号,如图10a 中的OFDM符号#m和OFDM符号#m+1,该第一OFDM符号和第二OFDM符号之间相位连续。
应理解,上述频率为0的子载波也可以称为直流(direct current,DC)子载波。
应理解,子载波的频率可以为子载波的中心频率。
第一设备可以通过子载波映射,将元素A映射至频率为零的子载波上,以生成直流的第一OFDM时域信号。可选的,在子载波映射前,第一设备可以启动变换预编码,或者说执行DFT扩展;当然,在子载波映射前,第一设备也可以不用变换预编码,或者说没有执行DFT扩展。
示例性的,在第一设备启动变换预编码的情况下,第一设备可以对第一序列进行变换预编码,得到第二序列,该第二序列中的一个元素非零(例如上述元素A),第二序列中除该一个元素之外的其他元素为零。进一步地,第一设备将第二序列中的非零元素映射到上述一个子载波(如频率为0的子载波)。
方式二:第一OFDM时域信号不包括循环前缀,第一OFDM时域信号相位连续。
示例性的,在生成第一OFDM时域信号的过程中,第一设备在进行IFFT之后不插入CP。如前所述,未插入CP的第一OFDM时域信号是相位连续的。例如第一OFDM时域信号包括第一OFDM符号和与第一OFDM符号相邻的第二OFDM符号,如图10b中的OFDM符号#m和OFDM符号#m+1,该第一OFDM符号和第二OFDM符号在未插入CP的情况下相位连续。
第一设备可以通过子载波映射,将元素A映射至第一下行频域单元上的任一子载波(如索引为k的子载波,k为大于或等于0的整数),以生成相位连续的第一OFDM时域信号,且该第一OFDM时域信号在频域占用的子载波即为子载波映射时的子载波(如索引为k的子载波)。该第一下行频域单元可以是上述第一频域资源,或者第一下行频域单元可以是基于第一频域资源进行频率偏移得到的,例如下文中结合图13b所说明的第一下行频域单元包括第一频域资源按照预设值进行频率偏移的各子载波。
可选的,在子载波映射前,第一设备可以启动变换预编码,或者说执行DFT扩展;当然,在子载波映射前,第一设备也可以不用变换预编码,或者说没有执行DFT扩展。
示例性的,在第一设备启动变换预编码的情况下,第一设备可以对第一序列进行变换预编码,得到第二序列,该第二序列中的一个元素非零(例如上述元素A),第二序列中除该一个元素之外的其他元素为零。进一步地,第一设备将第二序列中的非零元素映射到上述一个子载波(如索引为k的子载波)。
方式三:第一OFDM时域信号包括循环前缀,第一OFDM时域信号相位连续。
相比于方式一和方式二,方式三中第一OFDM时域信号包括循环前缀,此种情况下,可以使Passive IoT与需要执行插入CP的OFDM系统之间更好兼容,使Passive IoT能够更好的适用于各OFDM系统。然而,如前所述,在生成第一OFDM时域信号的过程中,第一设备在进行IFFT之后插入CP将使第一OFDM时域信号的相位不连续。
此种情况下,本方式三中第一设备可以通过对第一OFDM时域信号进行相位补偿使第一OFDM时域信号相位连续。例如第一OFDM时域信号包括第一OFDM符号和与第一OFDM符号相邻的第二OFDM符号,如图10c中的OFDM符号#m和OFDM符号#m+1,该第一OFDM符号和第二OFDM符号在插入CP的情况下相位连续。
第一设备可以通过子载波映射,将元素A映射至第一下行频域单元上的任一子载波(如索引为k的子载波,k为大于或等于0的整数),以生成第一OFDM时域信号,且该第一OFDM时域信号在频域占用的子载波即为子载波映射时的子载波(如索引为k的子载波)。需要说明的是,在生成第一OFDM时域信号的过程中需要对第一OFDM时域信号进行相位补偿,以生成相位连续的第一OFDM时域信号。
可选的,在子载波映射前,第一设备可以启动变换预编码,或者说执行DFT扩展;当然,在子载波映射前,第一设备也可以不用变换预编码,或者说没有执行DFT扩展。
本方式三中,在第一设备启动变换预编码的情况下,第一设备也需要对第一序列进行变换预编码,其实现过程以及变换预编码后的子载波映射过程与上述方式二相同,此处不再赘述。
应理解,图10a至图10c均以两个OFDM符号为例进行说明,但并不对本申请构成任何限定。例如第一OFDM时域信号可以包括更多的OFDM符号,且相邻的两个OFDM符号之间相位连续。
在一些实施例中,第一下行频域单元中,除该一个子载波之外的各子载波承载的元素均为零。例如,若第一设备启动变换预编码,第一设备可以对第一序列进行变换预编码,得到第二序列,该第二序列中的一个元素非零(例如上述元素A),第二序列中除该一个元素之外的其他元素为零。进一步地,第一设备将第二序列中的非零元素映射到上述一个子载波(如索引为k的子载波),并将第二序列中的其他为零的元素映射到除该一个子载波之外的各子载波上。该第一下行频域单元可以是前述第一频域资源,或者第一下行频域单元可以是基于第一频域资源进行频率偏移得到的(下文中详细说明)。
下面对方式三中,第一设备如何对第一OFDM时域信号进行相位补偿,以使第一OFDM时域信号相位连续,进行示例性的说明:
仍以第一OFDM时域信号包括第一OFDM符号和第二OFDM符号为例,第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,第二OFDM符号在第一时域资源内的索引,第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
例如,对于在天线端口p,子载波间隔配置μ,第二OFDM符号的时域起始位置
Figure PCTCN2022142035-appb-000052
可以满足如下公式(3):
Figure PCTCN2022142035-appb-000053
其中,l为第二OFDM符号在第一时域资源内的索引,
Figure PCTCN2022142035-appb-000054
为第一OFDM符号的时域起始位置,
Figure PCTCN2022142035-appb-000055
为CP的长度,
Figure PCTCN2022142035-appb-000056
常数κ=T s/T c=64,
Figure PCTCN2022142035-appb-000057
为第一OFDM符号的时长。
举例说明:假设第一时域资源包括M1个OFDM符号,第一OFDM符号可以是第一时域资源内的索引为0至M1-2的OFDM符号中的任意一个,第二OFDM符号可以是第一时域资源内与第一OFDM符号相邻的OFDM符号,例如第一OFDM符号为 OFDM符号#0,则第二OFDM符号为OFDM符号#1。结合上述公式(3),当第一OFDM符号为OFDM符号#0(即索引为0的OFDM符号)时,第一OFDM符号的时域起始位置
Figure PCTCN2022142035-appb-000058
此时,第二OFDM符号为OFDM符号#1,则第二OFDM符号的时域起始位置
Figure PCTCN2022142035-appb-000059
即第二OFDM符号的时域起始位置与第一OFDM符号的时域起始位置之间间隔第一OFDM符号的时长,换言之,第一OFDM符号和第二OFDM符号在时域上是首尾相接的。当第一时域资源内包括多个OFDM符号时,结合上述公式(3)可以确定,每个OFDM符号与其时域位置之后且相邻的一个OFDM符号之间均相差该OFDM符号的时长,也即第一时域资源内每两个相邻的OFDM符号之间均首尾相接。
还需要说明的是,第一OFDM符号在第一时域资源内的索引可以是大于或等于0的整数,可选的,当第一OFDM符号在第一时域资源内的索引为0时,第一OFDM符号的时域起始位置为0。第二OFDM符号的索引为第一OFDM符号的索引加1。
基于上述公式(3)可知,当第二OFDM符号的索引不为0时,第二OFDM符号的时域起始位置为第一OFDM符号的时域起始位置与第一OFDM符号的时长之和。
在上述公式(3)的基础上,第一设备可以结合如下公式(4)在生成第一OFDM时域信号的过程进行相位补偿,以得到相位连续的第一OFDM时域信号
Figure PCTCN2022142035-appb-000060
Figure PCTCN2022142035-appb-000061
其中,
Figure PCTCN2022142035-appb-000062
为上述元素A;
Figure PCTCN2022142035-appb-000063
为资源格的大小(或带宽),以RB为单位;
Figure PCTCN2022142035-appb-000064
为一个资源块中的子载波个数;k为上述一个子载波的索引,
Figure PCTCN2022142035-appb-000065
为偏移值;Δf为子载波间隔,t为一个子帧中的时间,且t满足
Figure PCTCN2022142035-appb-000066
如前所述,基于上述公式(3),第一时域资源内的各个OFDM符号在时域上首尾相接,并且,基于上述公式(4)得到的
Figure PCTCN2022142035-appb-000067
是连续的,因此,结合上述公式(3)和公式(4)得到的第一OFDM时域信号在第一时域资源内相位连续。
上述
Figure PCTCN2022142035-appb-000068
可以满足如下公式(5);上述
Figure PCTCN2022142035-appb-000069
可以满足如下公式(6)。
Figure PCTCN2022142035-appb-000070
其中,
Figure PCTCN2022142035-appb-000071
为子载波间隔配置μ 0的资源格的大小(或带宽),μ 0为子载波间隔配置中配置的最大μ值。例如,一个资源格上配置了μ等于0、1、3,其中μ 0=3。
Figure PCTCN2022142035-appb-000072
在一些实施例中,上述第一时域资源可以是用于传输第一OFDM时域信号的时域资源。此种情况下,第一时域资源中的各OFDM符号均有对应的索引l,假设第一时 域资源包括N个OFDM符号,则N个OFDM符号中的第一个OFDM符号索引l为0,且依次递增至N-1。对于在天线端口p,子载波间隔配置为μ的OFDM符号l∈{0,1,…N-1},可以基于上述公式(4)生成第一OFDM时域信号
Figure PCTCN2022142035-appb-000073
在另一些实施例中,上述第一时域资源可以是至少一个子帧,还可以表述为,第一时域资源可以是时域长度为1ms的资源或者时域长度为整数倍个1ms的资源。以第一时域资源为一个子帧为例,该一个子帧中的各OFDM符号均有对应的索引l,该一个子帧的第一个OFDM符号的索引l为0,且依次递增至
Figure PCTCN2022142035-appb-000074
对于在天线端口p,子载波间隔配置为μ的OFDM符号
Figure PCTCN2022142035-appb-000075
可以基于上述公式(4)生成第一OFDM时域信号
Figure PCTCN2022142035-appb-000076
上述按照至少一个子帧内的OFDM符号的索引,对第一OFDM时域信号进行逐符号相位补偿,有利于Passive IoT与OFDM系统的兼容;而上述按照用于传输第一OFDM时域信号的时域资源内的OFDM符号的索引,对第一OFDM时域信号进行逐符号相位补偿,当OFDM符号的索引为0时,第一OFDM时域信号的初始相位(即初相)为0,不需要确定第一OFDM时域信号的初始相位,降低了相位补偿的运算复杂度。第一OFDM时域信号的初始相位指的是第一OFDM时域信号中第一个OFDM符号的起始时刻的相位。一个OFDM符号的初始相位指的是该OFDM符号的起始时刻的相位。例如一个OFDM符号是正弦信号,表示为sin(2π×f×t),起始时刻为t=0,则初始相位为0。其中,f为正弦信号的频率。
需要说明的是,上述方式一中,第一设备也可以基于上述公式(3)至(6),生成第一OFDM时域信号
Figure PCTCN2022142035-appb-000077
其与方式三的区别在于,方式一中,k满足
Figure PCTCN2022142035-appb-000078
的值为0,也即
Figure PCTCN2022142035-appb-000079
上述方式二中,第一设备也可以基于上述公式(3)至(6),生成第一OFDM时域信号
Figure PCTCN2022142035-appb-000080
其与方式三的区别在于,方式二中未插入CP,所以CP占用的时间
Figure PCTCN2022142035-appb-000081
为0,也即
Figure PCTCN2022142035-appb-000082
上述第一OFDM时域信号所占用的一个子载波位于第一下行频域单元。示例性的,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1,换言之,该第一下行频域单元包括多个子载波,该一个子载波可以是多个子载波中靠近中间频率位置的子载波。
如前所述,第一设备可以将元素A映射至索引为k的子载波上。该子载波的索引k可以是第一下行频域单元中各子载波的索引中的一个,例如,第一下行频域单元包括24个子载波(子载波#0、子载波#1……子载波#23),则该一个子载波的索引可以是12;或者,该子载波的索引k可以是第一下行频域单元中一个资源块上的各子载波的 索引中的一个,例如第一下行频域单元包括3个RB(如RB#0、RB#1和RB#2),该一个子载波所在的RB可以是RB#1,该RB#1中包括12个子载波(如子载波#0至子载波#11),该一个子载波的索引k可以是6。
可选的,子载波的索引可以从0开始,子载波的索引越大,对应的子载波的频率越大,例如,子载波的索引依次为0至11,则子载波#0至子载波#11的频率依次增大。
该第一下行频域单元可以包括多个RB,每个RB例如可以包括12个子载波。上述一个子载波的索引k可以是第一数值,在一些实施例中,该第一数值等于第一下行频域单元中子载波的数量的一半。例如,该一个子载波的索引
Figure PCTCN2022142035-appb-000083
其中,N RB为第一下行频域单元包括的RB的数量。
例如,第一下行频域单元包括11个RB(RB索引依次为#0、#1…^#10),每个RB包括12个子载波,即第一下行频域单元包括132个子载波(子载波索引依次为#0、#1……#131),上述一个子载波可以为第一下行频域单元中的子载波#66。
在另一些实施例中,该第一数值是根据第一下行频域单元中的RB的数量的奇偶确定的。此种情况下,上述一个子载波的索引用于从第一下行频域单元中的一个RB中指示该一个子载波。可选的,该一个RB位于第一下行频域单元,且第一下行频域单元中频率低于一个RB的RB的数量与频率高于该一个RB的RB的数量之差的绝对值等于0或1。
例如,该一个子载波所在的资源块在第一下行频域单元中的索引n PRB满足如下公式(7):
Figure PCTCN2022142035-appb-000084
其中,N RB为第一下行频域单元中的RB的数量。
例如,第一下行频域单元包括11个RB(RB索引依次为#0、#1…^#10),上述一个RB为RB#5,再例如,第一下行频域单元包括12个RB(RB索引依次为#0、#1…^#11),上述一个RB为RB#6。
示例性的,当第一下行频域单元中的RB的数量N RB为奇数时,换言之,当N RBmod 2=1时,第一数值等于该一个资源块中的子载波的数量的一半,或者,第一数值等于6,例如,假设上述一个资源块包括12个子载波,该第一数值可以为6;当第一下行频域单元中的RB的数量N RB为偶数时,换言之,当N RBmod 2=0时,第一数值等于零或者该一个资源块中的子载波的数量,例如,假设第一资源块包括12个子载波,该第一数值可以为0(或12)。
可以理解的是,对于前述方式一,上述一个子载波的索引为第一数值,可以使该一个子载波的频率为0(即该一个子载波为直流子载波);对于前述方式二和方式三,上述一个子载波的索引为第一数值,使该一个子载波位于第一下行频域单元的中间位置,保证上行的反射信号关于该子载波中心对称,以提高频谱使用效率。
在又一些实施例中,上述一个子载波的索引可以是第二数值,该第二数值可以是根据上述第一数值和偏移量确定的。例如,第二数值可以是第一数值与偏移量之和,应理解,该偏移量可以为正值或者负值,当偏移量为负值时,第二数值可以表述为第一数值与偏移量之差。
需要说明的是,为了保证不同参数集下的CRB的Point A对齐,上述偏移量可以是根据第一OFDM使用信号的子载波间隔和最大子载波间隔确定的。上述公式(5) 为该偏移量
Figure PCTCN2022142035-appb-000085
的一种示例,且上述一个子载波的索引k例如可以满足
Figure PCTCN2022142035-appb-000086
应理解,上述任一示例中子载波的索引k可以是协议中定义的;或者可以是第一设备和/或第二设备中预定义的;或者可以是网络设备通过配置信令预配置的。本申请对此不作限定。
在一些实施例中,上述偏移量还可以是预设值,该预设值例如可以是半个子载波。
在一些实施例中,上述偏移量还可以是根据第一OFDM时域信号的子载波间隔、最大子载波间隔和预设值确定的,该预设值例如可以是半个子载波,此时上述公式(4)可以为
Figure PCTCN2022142035-appb-000087
或者,
Figure PCTCN2022142035-appb-000088
示例性的,上述S220中,第一设备向第二设备发送该第一OFDM时域信号,其可以是第一设备可以对第一OFDM时域信号进行上变频后发送至第二设备。第一OFDM时域信号进行上变频后可以得到前述内容中的载波信号。
在上述S230中,第二设备基于该第一OFDM时域信号,可以进行反射通信,以实现第二设备将上下信号发送至第一设备。示例性的,第二设备可以对第一OFDM时域信号或者说对第一OFDM时域信号对应的载波信号进行信号调制,通过载波信号承载所需传输的上行数据,并将其发送至第一设备。
需要说明的是,上述S220和S230的执行时间存在部分重叠,例如第一设备向第二设备发送第一OFDM时域信号,第二设备可以在接收第一OFDM时域信号的过程中以反射通信的方式向第一设备发送上行信号。
可以理解的是,第一设备向第二设备发送第一OFDM时域信号结束时,第二设备由于失去能够用于反射的载波信号而停止发送上行信号,类似的,第二设备无法在接收到第一设备发送的第一OFDM使用信号之前,以反射通信的方式向第一设备发送上行信号。换言之,第二设备以反射通信的方式向第一设备发送上行信号所占用的时域资源,应为第一设备向第二设备发送第一OFDM时域信号占用的时域资源的子集。
结合图11所示,该上行信号的时域起始位置晚于第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于第一OFDM时域信号的时域结束位置。示例性的,上行信号的时域起始位置和第一OFDM时域信号的时域起始位置之间间隔第一时域长度T1,和/或,上行信号的时域结束位置和第一OFDM时域信号的时域结束位置之间间隔第二时域长度T2。
为了提高Passive IoT传输的可靠性,上述第一时域长度T1应与以下至少之一相关:
第一设备和第二设备之间的传输时延;
第二设备对第一OFDM时域信号的处理时间;
第二设备对上行信号的生成时间(例如对所需反射的上行数据的准备时间)。
第一时域长度T1例如可以是上述各相关项中的一个,或者可以是上述各相关项中的全部或者部分之和,或者可以是上述各相关项中的最大值,或者可以是上述各相关 项的最小值。
上述第二时域长度T2应与以下至少之一相关:
第一设备对接收到的上行信号的处理时间;
第一设备对接下来所需发送的第一OFDM时域信号的准备时间。
第二时域长度T2例如可以是上述两个相关项中的一个,或者是上述两个相关项之和,或者可以是上述两个相关项中的最大值,或者可以是上述两个相关项的最小值。
图12为本申请实施例提供的一种通信方法300的示意性交互流程示意图。图12所示的方法300是以结合图7所示方法200为例进行说明的,当然,本实施例并不限定图12所示的方法300仅能在图7所示方法200的基础上实现。如图12所示,该方法300可以包括S310至S350中的部分或者全部。其中,S330至S350分别与图7所示实施例中的S210至S230一一对应,且其技术手段以及所要实现的技术效果均类似,此处不再赘述。
本实施例对图12中各步骤的执行顺序不作限定。一般来说,S310和S320可以在第一设备开始发送第一OFDM时域信号之前执行,或者在结束发送第一OFDM时域信号之后执行。
在一些实施例中,第二OFDM时域信号可以是一种下行信令用于指示第二设备进行反射通信,则S310和S320可以在开始发送第一OFDM时域信号之前执行,参见图11所示。可选的,第二OFDM时域信号与第一OFDM时域信号之间可以存在时域间隔,或者第二OFDM时域信号与第一OFDM时域信号之间可以不存在时域间隔,本实施例对此不作限定。图11中在第一OFDM时域信号结束发送之后,可以发送用于指示第二设备进行下一次反射通信的第二OFDM时域信号,在图11中以虚线框标注。
下面对方法300中的S310和S320进行说明。
在上述S310中,第一设备生成第二OFDM时域信号,该第二OFDM时域信号用于传输下行信令和/或数据,且第二OFDM时域信号在频域上占用第一下行频域单元。例如可以是第一设备将待传输的元素映射至第一下行频域单元的多个子载波(或者多个RE)上。
可选的,第二OFDM时域信号可以是下行信令和/或数据对应的OFDM时域信号。例如第一设备可以对第二OFDM时域信号进行上变频后发送至第二设备。
进一步地,为了提高频率利用效率,该第一下行频域单元中频率低于上述一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
在第一种示例中,第一下行频域单元不包括第一频域资源中频率最低的子载波。结合图13a所示,例如第一频域资源包括12个子载波(子载波#0至子载波#11),其中子载波#0至子载波#11的频率依次增大,子载波#0的频率例如可以是0,第一下行频域单元中包括除子载波#0之外的11个子载波(子载波#1至#11),换言之子载波#0没有映射下行信号,可以使得下行信号关于子载波#6中心对称,该子载波#6也为承载第一OFDM时域符号的子载波,下行信号采用双边带调制时,可以提升下行频谱使用效率。
在第二种示例中,下行信号采用双边带调制时,为了提升下行频谱频率的使用效率,第一下行频域单元包括第一频域资源中按照预设值进行频率偏移的各子载波。结 合图13b所示,例如第一频域资源包括12个子载波(子载波#0至子载波#11),假设预设值为半个子载波,第一下行频域单元中包括的各子载波均按照偏移半个子载波,例如子载波间隔为15kHz,则预设值为7.5kHz。可以理解的是,预设值可以为正值或者负值,当预设值为正值时,第一下行频域单元中的各子载波向频率较高的方向偏移预设值的距离,当预设值为负值时,第一下行频域单元中的各子载波向频率较低的方向偏移预设值的距离。
在上述第二种示例中,为了保证第二OFDM时域符号和第一OFDM时域符号的信号生成方式一致,上述一个子载波的索引为第二数值,且用于确定第二数值的偏移量应至少根据该预设值确定,例如偏移量可以是该预设值或者偏移量可以是基于该预设值、第一OFDM时域信号的子载波间隔和最大子载波间隔确定的。具体可以参见上述实施例中对于第二数值或偏移量的说明,此处不再赘述。
进一步地,在上述第二种示例中,上述一个子载波的索引为第二数值,且用于确定第二数值的偏移量至少包括预设值的情况下,上述方式三中第一设备进行相位补偿的过程中,第一时域资源为至少两个子帧(如2个子帧或2的整数倍个子帧),或者说,方式三中第一设备进行逐OFDM符号的相位补偿的周期应至少为2个子帧(或2ms),例如可以将OFDM符号索引l的取值范围修改为
Figure PCTCN2022142035-appb-000089
其中M为2或者2的整数倍。以至少2个子帧(或2ms)为周期进行相位补偿可以确保相位在补偿周期的变化为2π的整数倍,进而保证不同的2个子帧(或2ms)之间相位连续。
因此,上述第一种示例和第二种示例均可以实现第一下行频域单元关于承载第一OFDM时域信号的一个子载波中心对称,提高了频率利用效率,第二种示例通过对第一频率资源内的各个子载波整体进行频率偏移的方式,可以保证所有子载波均可用于传输下行信号,可以进一步提高频谱使用效率。
以上,结合图7至图13详细说明了本申请实施例提供的方法。以下,结合图14至图15详细说明本申请实施例提供的装置。
图14是本申请实施例提供的通信装置的示意性框图。如图14所示,该装置400可以包括:收发单元410和处理单元420。
可选地,该通信装置400可对应于上文方法实施例中的第一设备,例如,可以为第一设备,或者配置于第一设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的图7所示的方法200或图12所示的方法300中的第一设备,通信装置400可以包括用于执行图7中的方法200或图12所示方法300中第一设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图7中的方法200或图12中的方法300的相应流程。
其中,当通信装置400用于执行图7中的方法200或图12中的方法300时,处理单元420可用于生成第一OFDM时域信号,该第一OFDM时域信号用于第二设备进行反射通信,该第一OFDM时域信号在频域上占用一个子载波;收发单元410可用于 向第二设备发送该第一OFDM时域信号。
在一些实施例中,该处理单元420具体用于:对第一序列进行变换预编码,得到第二序列;其中,该第二序列中的一个元素非零,该第二序列中除该一个元素之外的其他元素为零,该第二序列中的非零元素映射到该一个子载波。
在一些实施例中,该处理单元420还用于:生成第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据,该第二OFDM时域信号在频域上占用第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
应理解,收发单元410可用于执行图7所示方法中的步骤220和步骤230,处理单元420可用于执行图7所示方法中的步骤210;收发单元410可用于执行图12所示方法中的步骤320、步骤340和步骤350,处理单元420可用于执行图12所示方法中的步骤310和步骤330。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置400可对应于上文方法实施例中的第二设备,例如,可以为第二设备,或者配置于第二设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的图7所示的方法200或图12所示方法300中的第二设备,通信装置400可以包括用于执行图7中的方法200或图12所示方法300中第二设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图7中的方法200或图12中的方法300的相应流程。
其中,当通信装置400用于执行图12中的方法时,收发单元410可用于从第一设备接收第一OFDM时域信号,该第一OFDM时域信号在频域上占用一个子载波;该收发单元410还用于以反射通信的方式向该第一设备发送上行信号,该上行信号的射频载波根据该第一OFDM时域信号的射频载波确定。
在一些实施例中,该上行信号的射频载波与该第一OFDM时域信号的射频载波相同,或者,该上行信号的射频载波与该第一OFDM时域信号的射频载波之间存在偏移值。
在一些实施例中,该收发单元410还用于:从该第一设备接收第二OFDM时域信号,该第二OFDM时域信号用于传输下行数据,该第二OFDM时域信号在频域上占用第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1。
在一些实施例中,该收发单元410还用于:向该第一设备发送上行信号,该上行信号的时域起始位置晚于该第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于该第一OFDM时域信号的时域结束位置。
应理解,收发单元420可用于执行图7所示方法200中的步骤220和步骤230,或图12所示方法300中的步骤320、步骤340和步骤350。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一些实施例中,该一个子载波的频率为零。
在一些实施例中,该第一OFDM时域信号不包括循环前缀。
在一些实施例中,该第一OFDM时域信号包括循环前缀。
在一些实施例中,该第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,该第一OFDM符号和该第二OFDM符号相邻,该第一OFDM符号和该第二OFDM符号之间相位连续。
在一些实施例中,该第二OFDM符号的时域起始位置根据该第一OFDM符号的时域起始位置,该第二OFDM符号在第一时域资源内的索引,该第一OFDM符号的时长确定,该第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
在一些实施例中,该第一时域资源为用于传输该第一OFDM时域信号的时域资源。
在一些实施例中,该第一时域资源为至少一个子帧。
在一些实施例中,该一个子载波位于第一下行频域单元,该第一下行频域单元中频率低于该一个子载波的子载波的数量与频率高于该一个子载波的子载波的数量之差的绝对值为0或1,该第一下行频域单元用于该通信装置与该第二设备进行通信。
在一些实施例中,该一个子载波的索引为第一数值;或该一个子载波的索引为第二数值,该第二数值是根据该第一数值和偏移量确定的。
在一些实施例中,该第一数值是根据第一下行频域单元中的资源块的数量的奇偶确定的。
在一些实施例中,该一个子载波所在的资源块在该第一下行频域单元中的索引满足如下公式:
Figure PCTCN2022142035-appb-000090
其中,N RB为该第一下行频域单元中的资源块的数量,
Figure PCTCN2022142035-appb-000091
表示向下取整。
在一些实施例中,该第一下行频域单元中资源块的数量为奇数时,该第一数值等于资源块中的子载波的数量的一半或者该第一数值等于6;或者,该第一下行频域单元中资源块的数量为偶数时,该第一数值等于零或者该资源块中的子载波的数量。
在一些实施例中,该第一数值等于该第一下行频域单元中子载波的数量的一半。
在一些实施例中,该第二数值为该第一数值和该偏移量之和,该偏移量为根据以下至少之一确定的:该第一OFDM时域信号的子载波间隔和最大子载波间隔;或,预设值。
在一些实施例中,该第一下行频域单元中,除该一个子载波之外的各子载波承载的元素均为零。
在一些实施例中,该第一下行频域单元不包括第一频域资源中频率最低的子载波,该第一频域资源用于该通信装置与该第二设备进行通信;或者,该第一下行频域单元包括该第一频域资源中按照预设值进行频率偏移的各子载波。
在一些实施例中,该收发单元410还用于:接收来自该第二设备的上行信号,该上行信号的时域起始位置晚于该第一OFDM时域信号的时域起始位置,和/或,该上行信号的时域结束位置早于该第一OFDM时域信号的时域结束位置。
在一些实施例中,该上行信号的时域起始位置和该第一OFDM时域信号的时域起始位置之间间隔第一时域长度,和/或,该上行信号的时域结束位置和该第一OFDM时域信号的时域结束位置之间间隔第二时域长度。
当该通信装置400为第一设备时,该通信装置400中的收发单元410可以通过收 发器实现,例如可对应于图15中所示的通信装置500中的收发器510,该通信装置400中的处理单元420可通过至少一个处理器实现,例如可对应于图15中示出的通信装置500中的处理器520。
当该通信装置400为第二设备时,该通信装置400中的收发单元410可以通过收发器实现,例如可对应于图15中所示的通信装置500中的收发器510,该通信装置400中的处理单元420可通过至少一个处理器实现,例如可对应于图15中示出的通信装置500中的处理器520。
当该通信装置400为配置于通信设备(如第一设备或第二设备)中的芯片或芯片系统时,该通信装置400中的收发单元410可以通过输入/输出接口、电路等实现,该通信装置400中的处理单元420可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图15是本申请实施例提供的通信装置的另一示意性框图。如图15所示,该通信装置500可以包括:收发器510、处理器520和存储器530。其中,收发器510、处理器520和存储器530通过内部连接通路互相通信,该存储器530用于存储指令,该处理器520用于执行该存储器530存储的指令,以控制该收发器510发送信号和/或接收信号。
应理解,该通信装置500可以对应于上述方法实施例中的第一设备或第二设备,并且可以用于执行上述方法实施例中第一设备或第二设备执行的各个步骤和/或流程。可选地,该存储器530可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器530可以是一个单独的器件,也可以集成在处理器520中。该处理器520可以用于执行存储器530中存储的指令,并且当该处理器520执行存储器中存储的指令时,该处理器520用于执行上述与第一设备或第二设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置500是前文实施例中的第一设备。
可选地,该通信装置500是前文实施例中的第二设备。
其中,收发器510可以包括发射机和接收机。收发器510还可以进一步包括天线,天线的数量可以为一个或多个。该处理器520和存储器530与收发器510可以是集成在不同芯片上的器件。如,处理器520和存储器530可以集成在基带芯片中,收发器510可以集成在射频芯片中。该处理器520和存储器530与收发器510也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置500是配置在第一设备中的部件,如芯片、芯片系统等。
可选地,该通信装置500是配置在第二设备中的部件,如芯片、芯片系统等。
其中,收发器520也可以是通信接口,如输入/输出接口、电路等。该收发器520与处理器510和存储器530都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中第一设备执行的方法第二设备。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括 指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中第一设备执行的方法第二设备。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中第一设备执行的方法第二设备。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一设备和/或第二设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备生成第一正交频分复用OFDM时域信号,所述第一OFDM时域信号用于第二设备进行反射通信,所述第一OFDM时域信号在频域上占用一个子载波;
    所述第一设备向第二设备发送所述第一OFDM时域信号。
  2. 根据权利要求1所述的方法,其特征在于,所述一个子载波的频率为零。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一OFDM时域信号不包括循环前缀。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一OFDM时域信号包括循环前缀。
  5. 根据权利要求4所述的方法,其特征在于,所述第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,所述第一OFDM符号和所述第二OFDM符号相邻,所述第一OFDM符号和所述第二OFDM符号之间相位连续。
  6. 根据权利要求5所述的方法,其特征在于,所述第二OFDM符号的时域起始位置根据所述第一OFDM符号的时域起始位置,所述第二OFDM符号在第一时域资源内的索引,所述第一OFDM符号的时长确定,所述第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时域资源为用于传输所述第一OFDM时域信号的时域资源。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一时域资源为至少一个子帧。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备对第一序列进行变换预编码,得到第二序列;
    其中,所述第二序列中的一个元素非零,所述第二序列中除所述一个元素之外的其他元素为零,所述第二序列中的非零元素映射到所述一个子载波。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述一个子载波的索引为第一数值;或
    所述一个子载波的索引为第二数值,所述第二数值是根据所述第一数值和偏移量确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述一个子载波所在的资源块在第一下行频域单元中的索引n PRB满足如下公式:
    Figure PCTCN2022142035-appb-100001
    其中,N RB为所述第一下行频域单元中的资源块的数量,
    Figure PCTCN2022142035-appb-100002
    表示向下取整,所述第一下行频域单元用于所述第一设备与所述第二设备进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述第一下行频域单元中资源块的数量为奇数时,所述第一数值等于一个资源块中的子载波的数量的一半;或者,
    所述第一下行频域单元中资源块的数量为偶数时,所述第一数值等于零或者一个资源块中的子载波的数量。
  13. 根据权利要求10所述的方法,其特征在于,所述第一数值等于第一下行频域单元中子载波的数量的一半。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,所述第二数值为所述第一数值和所述偏移量之和,所述偏移量为根据以下至少之一确定的:
    所述第一OFDM时域信号的子载波间隔和最大子载波间隔;或,
    预设值。
  15. 根据权利要求11至13任一项所述的方法,其特征在于,所述第一下行频域单元中,除所述一个子载波之外的各子载波承载的元素均为零。
  16. 一种通信方法,其特征在于,所述方法包括:
    第二设备从第一设备接收第一OFDM时域信号,所述第一OFDM时域信号在频域上占用一个子载波;
    所述第二设备以反射通信的方式向所述第一设备发送上行信号,所述上行信号的射频载波根据所述第一OFDM时域信号的射频载波确定。
  17. 根据权利要求16所述的方法,其特征在于,所述上行信号的射频载波与所述第一OFDM时域信号的射频载波相同,或者,所述上行信号的射频载波与所述第一OFDM时域信号的射频载波之间存在偏移值。
  18. 根据权利要求16或17所述的方法,其特征在于,所述一个子载波的频率为零。
  19. 根据权利要求16或17所述的方法,其特征在于,所述第一OFDM时域信号不包括循环前缀。
  20. 根据权利要求16或17所述的方法,其特征在于,所述第一OFDM时域信号包括循环前缀。
  21. 根据权利要求20所述的方法,其特征在于,所述第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,所述第一OFDM符号和第二OFDM符号相邻,所述第一OFDM符号和所述第二OFDM符号之间相位连续。
  22. 根据权利要求21所述的方法,其特征在于,所述第二OFDM符号的时域起始位置根据所述第一OFDM符号的时域起始位置,所述第二OFDM符号在第一时域资源内的索引,所述第一OFDM符号的时长确定,所述第二OFDM符号在第一时域资源内的索引为大于或等于0的整数。
  23. 根据权利要求22所述的方法,其特征在于,所述第一时域资源为用于传输所述第一OFDM时域信号的时域资源。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一时域资源为至少一个子帧。
  25. 根据权利要求16至24任一项所述的方法,其特征在于,
    所述一个子载波的索引为第一数值;或,
    所述一个子载波的索引为第二数值,所述第二数值是根据所述第一数值和偏移量确定的。
  26. 根据权利要求25所述的方法,其特征在于,所述一个子载波所在的资源块在第一下行频域单元中的索引n PRB满足如下公式:
    Figure PCTCN2022142035-appb-100003
    其中,N RB为所述第一 下行频域单元中的资源块的数量,
    Figure PCTCN2022142035-appb-100004
    表示向下取整,所述第一下行频域单元用于所述第二设备与所述第一设备进行通信。
  27. 根据权利要求26所述的方法,其特征在于,所述第一下行频域单元中资源块的数量为奇数时,所述第一数值等于一个资源块中的子载波的数量的一半;或者,
    所述第一下行频域单元中资源块的数量为偶数时,所述第一数值等于零或者一个资源块中的子载波的数量。
  28. 根据权利要求25所述的方法,其特征在于,所述第一数值等于所第一下行频域单元中子载波的数量的一半。
  29. 根据权利要求25至28任一项所述的方法,其特征在于,所述第二数值为所述第一数值和所述偏移量之和,所述偏移量为根据以下至少之一确定的:
    所述第一OFDM时域信号的子载波间隔和最大子载波间隔;或,
    预设值。
  30. 根据权利要求26至28任一项所述的方法,其特征在于,所述第一下行频域单元中,除所述一个子载波之外的各子载波承载的元素均为零。
  31. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一OFDM时域信号,所述第一OFDM时域信号用于第二设备进行反射通信,所述第一OFDM时域信号在频域上占用一个子载波;
    收发单元,用于向第二设备发送所述第一OFDM时域信号。
  32. 根据权利要求31所述的装置,其特征在于,所述一个子载波的频率为零。
  33. 根据权利要求31所述的装置,其特征在于,所述第一OFDM时域信号不包括循环前缀。
  34. 根据权利要求31所述的装置,其特征在于,所述第一OFDM时域信号包括循环前缀。
  35. 根据权利要求34所述的装置,其特征在于,所述第一OFDM时域信号在时域上包括第一OFDM符号和第二OFDM符号,所述第一OFDM符号和所述第二OFDM符号相邻,所述第一OFDM符号和所述第二OFDM符号之间相位连续。
  36. 一种通信装置,其特征在于,包括:
    收发单元,用于从第一设备接收第一OFDM时域信号,所述第一OFDM时域信号在频域上占用一个子载波;
    所述收发单元还用于以反射通信的方式向所述第一设备发送上行信号,所述上行信号的射频载波根据所述第一OFDM时域信号的射频载波确定。
  37. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  41. 一种装置,其特征在于,包括逻辑电路和输入输出接口,其中,所述输入输出接口用于接收来自所述装置之外的其他通信装置的信号并传输至所述逻辑电路或将来自所述逻辑电路的信号发送给所述装置之外的其他通信装置,所述逻辑电路用于执行代码指令以实现权利要求1至30中任一项所述的方法。
PCT/CN2022/142035 2022-01-27 2022-12-26 通信方法、装置、设备以及存储介质 WO2023142831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103513.X 2022-01-27
CN202210103513.XA CN116566783A (zh) 2022-01-27 2022-01-27 通信方法、装置、设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2023142831A1 true WO2023142831A1 (zh) 2023-08-03

Family

ID=87470414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142035 WO2023142831A1 (zh) 2022-01-27 2022-12-26 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN116566783A (zh)
WO (1) WO2023142831A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN110224965A (zh) * 2019-06-17 2019-09-10 电子科技大学 一种基于ofdm反向散射通信系统半盲接收机设计方法
WO2020244392A1 (zh) * 2019-06-06 2020-12-10 华为技术有限公司 一种信号的发送、接收方法及通信装置
CN113315729A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
WO2020244392A1 (zh) * 2019-06-06 2020-12-10 华为技术有限公司 一种信号的发送、接收方法及通信装置
CN110224965A (zh) * 2019-06-17 2019-09-10 电子科技大学 一种基于ofdm反向散射通信系统半盲接收机设计方法
CN113315729A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 一种通信方法及装置
WO2021169586A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN116566783A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020020180A1 (zh) 一种资源配置方法及装置
CN114556842B (zh) 信号传输的方法和装置、反射器以及接收器
US9681446B2 (en) Flexible Gaussian minimum shift keying in a cellular internet of things system
US20220052894A1 (en) Method for generating low papr sequence in wireless communication system, and apparatus for same
CN114128185A (zh) 增强用于非地面网络的同步、随机接入和harq操作
JP7371162B2 (ja) 無線通信システムにおけるアップリンク制御信号に対する復調参照信号を送信するための方法、及びこのための装置
WO2023071864A1 (zh) 发送信号的方法和装置
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质
WO2022037462A1 (zh) 信号传输方法、通信装置及存储介质
CN116073971A (zh) 通信的方法和装置
WO2023143548A1 (zh) 通信方法、装置、设备以及存储介质
WO2024032229A1 (zh) 通信方法、装置、设备以及存储介质
WO2023071863A1 (zh) 通信方法、装置、设备以及存储介质
WO2024098403A1 (zh) 无线通信的方法及设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2024093634A1 (zh) 信息传输的方法与装置
WO2024067191A1 (zh) 一种通信方法及装置
WO2023159468A1 (zh) 信息传输方法、终端设备和网络设备
WO2023083037A1 (zh) 信号传输的方法和装置
WO2023125338A1 (zh) 一种信息传输方法及通信装置
WO2023159474A1 (zh) 信息传输方法、终端设备和网络设备
WO2024012174A1 (zh) 通信方法、装置、设备以及存储介质
WO2023241407A1 (zh) 同步方法及通信装置
WO2024082107A1 (en) User activity detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923617

Country of ref document: EP

Kind code of ref document: A1