WO2023236144A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023236144A1
WO2023236144A1 PCT/CN2022/097890 CN2022097890W WO2023236144A1 WO 2023236144 A1 WO2023236144 A1 WO 2023236144A1 CN 2022097890 W CN2022097890 W CN 2022097890W WO 2023236144 A1 WO2023236144 A1 WO 2023236144A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
backscatter
backscattering
unit
frequency
Prior art date
Application number
PCT/CN2022/097890
Other languages
English (en)
French (fr)
Inventor
徐伟杰
左志松
贺传峰
崔胜江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/097890 priority Critical patent/WO2023236144A1/zh
Publication of WO2023236144A1 publication Critical patent/WO2023236144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a wireless communication method and device.
  • zero-power terminals can achieve backscatter communication based on radio waves. Due to the low complexity of zero-power terminals, they only support simple modulation methods, such as Amplitude Shift Keying (ASK). , while traditional terminals use more complex modulation waveforms, such as Orthogonal Frequency Division Multiplexing (OFDM). Therefore, when zero-power terminals are connected to the system on a large scale, how to realize zero-power terminals and traditional terminals Symbiotic communication between them is an urgent problem that needs to be solved.
  • ASK Amplitude Shift Keying
  • OFDM Orthogonal Frequency Division Multiplexing
  • This application provides a wireless communication method and device, which can realize symbiotic communication between zero-power terminals and traditional terminals.
  • a wireless communication method including: a first device performs backscattering on the full bandwidth or part of the bandwidth of an orthogonal frequency division multiplexing OFDM signal to obtain a backscattered signal.
  • a wireless communication method including: a second device receiving a backscattered signal, where the backscattered signal is the first device's response to all or part of the bandwidth of an orthogonal frequency division multiplexing OFDM signal.
  • the signal is backscattered.
  • a third aspect provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a fourth aspect provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, and execute the method in the above second aspect or its respective implementations.
  • a seventh aspect provides a chip for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or implementations thereof. method.
  • An eighth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the first device when the first device accesses the system, it can use the full bandwidth or part of the bandwidth of the broadband OFDM signal to perform backscattering, thereby enabling symbiotic communication with traditional terminals in the system.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • Figure 5 is a circuit schematic diagram of resistive load modulation according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of backscattering based on downlink signals provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of backscattering based on the uplink channel provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of single carrier backscattering provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of single carrier backscattering in the case of multi-reflection equipment provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of multi-carrier backscattering provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a system applicable to the embodiment of this application.
  • Figure 13 is a schematic diagram of another system applicable to the embodiment of the present application.
  • Figure 14 is a schematic diagram of a symbiotic communication system model provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of signal relationships in a symbiotic communication system.
  • Figure 16 is a schematic diagram of the sign characteristics of a backscattered signal provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of resource mapping of data symbols according to the frequency domain first and then the time domain according to an embodiment of the present application.
  • Figure 18 is another schematic diagram of resource mapping of data symbols according to the frequency domain first and then the time domain according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of another communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), wireless fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system, cellular Internet of Things system, cellular passive Internet of Things system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where, Licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network Network equipment (gNB) or network equipment in the cellular Internet of Things, or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB in LTE
  • gNB NR network Network equipment
  • network equipment in the cellular Internet of Things or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • Key technologies for zero-power communication include energy harvesting, backscatter communication and low-power technology.
  • a typical zero-power communication system (such as an RFID system) includes network equipment (such as a reader/writer of an RFID system) and a zero-power terminal (such as an electronic tag).
  • the network equipment is used to send wireless power supply signals and downlink communication signals to zero-power terminals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module and a low-power computing module.
  • the zero-power terminal can also be equipped with a memory or sensor to store some basic information (such as item identification, etc.) or sensing data such as ambient temperature and ambient humidity.
  • the energy harvesting module can collect the energy carried by radio waves in space (shown as radio waves emitted by network equipment in Figure 2), and is used to drive low-power computing modules of zero-power terminals and implement backscatter communications.
  • the zero-power terminal After the zero-power terminal obtains energy, it can receive control commands from the network device and send data to the network device in a backscattering manner based on control signaling.
  • the data sent can be data stored by the zero-power terminal itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power terminals can also be loaded with various sensors to report data collected by various sensors based on a zero-power mechanism.
  • the RF energy collection module collects space electromagnetic wave energy based on the principle of electromagnetic induction, thereby obtaining the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors, and Memory reading, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the zero-power terminal receives the carrier signal sent by the network device, modulates the carrier signal, loads the information that needs to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communications.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the rhythm of the data flow, so that parameters such as the impedance of the zero-power terminal change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, which is turned on or off based on control of a binary data stream, as shown in Figure 5.
  • the switching of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is implemented, that is, the signal is modulated and transmitted by adjusting the amplitude of the backscattered signal from the zero-power terminal.
  • ASK amplitude keying modulation
  • capacitive load modulation the resonant frequency of the circuit can be changed by switching the capacitor on and off to achieve frequency keying modulation (FSK), that is, the signal is modulated by adjusting the operating frequency of the backscattered signal of the zero-power terminal. and transmission.
  • FSK frequency keying modulation
  • zero-power terminal uses load modulation to perform information modulation on the incoming signal, thereby realizing the backscattering communication process. Therefore, zero-power terminals have significant advantages:
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero encoding, differential biphase (DBP) encoding, differential encoding, Pulse interval encoding (PIE), bidirectional spatial encoding (FM0), Miller encoding, differential dynamic encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential biphase
  • PIE Pulse interval encoding
  • FM0 bidirectional spatial encoding
  • Miller encoding differential dynamic encoding
  • zero-power communication can be widely used in various industries, such as logistics for vertical industries, smart warehousing, smart agriculture, energy and electricity, industrial Internet, etc.; it can also Used in smart wearables, smart homes and other personal applications.
  • zero-power terminals can be divided into the following types:
  • Zero-power terminals do not need built-in batteries. When zero-power terminals are close to network equipment (such as readers and writers in RFID systems), the zero-power terminals are within the near field range formed by the antenna radiation of the network equipment. . Therefore, the zero-power terminal antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link (or reflection link). For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power terminal.
  • RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). and other devices, so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use an RF energy collection module to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the semi-passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy collection module. energy, so it is also a truly zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such devices can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power terminals. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. But for backscatter links, zero-power terminals use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of equipment is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering.
  • the active zero-power terminal has a built-in battery that supplies power to the RFID chip to increase the reading and writing distance of the active zero-power terminal and improve the reliability of communication. Therefore, it can be used in some scenarios that have relatively high requirements on communication distance, read latency, etc.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • the energy supply signal, scheduling signal and carrier signal related to zero-power communication are described.
  • the energy supply signal is the energy source for zero-power consumption terminals to collect energy.
  • the energy supply signal carrier From the energy supply signal carrier, it can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.
  • the frequency bands of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the energy supply signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard.
  • Sounding Reference Signal SRS
  • Physical Uplink Shared Channel PUSCH
  • Physical Random Access Channel PRACH
  • Physical Uplink Control Channel PUCCH
  • Physical Downlink Control Channel PUCCH
  • Physical Downlink Shared Channel PDSCH
  • Physical Broadcast Channel PBCH
  • the energy supply signal can also be implemented by adding a new signal, for example, adding a signal dedicated to energy supply.
  • the trigger signal is used to trigger or schedule zero-power terminals for data transmission.
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for triggering or scheduling can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard.
  • SRS Session Detection
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the trigger signal can also be implemented by adding a new signal, for example, adding a new signal dedicated to triggering or scheduling.
  • the carrier signal is used by a zero-power terminal to generate a backscatter signal.
  • the zero-power terminal can modulate the received carrier signal according to the information that needs to be sent to form a backscatter signal.
  • the carrier signal carrier From the carrier signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as carrier signals can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the carrier signal can also be implemented by adding a new signal, for example, adding a carrier signal dedicated to generating a backscatter signal.
  • the energy supply signal, the scheduling signal and the carrier signal can be the same signal, or they can be different signals.
  • the energy supply signal can be used as the carrier signal
  • the scheduling signal can also be used. as carrier signal, etc.
  • zero-power terminals due to the low complexity of zero-power terminals, they only support simple modulation methods, such as Amplitude Shift Keying (ASK), while traditional terminals use more complex modulation waveforms, such as orthogonal frequency division multiplexing ( Orthogonal Frequency Division Multiplexing (OFDM), when a large number of zero-power terminals are connected to the system, therefore, how to achieve symbiotic communication between zero-power terminals and traditional terminals is an urgent problem that needs to be solved.
  • ASK Amplitude Shift Keying
  • OFDM Orthogonal Frequency Division Multiplexing
  • Figure 6 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 6, the method 200 includes at least part of the following content:
  • the first device performs backscattering on the full bandwidth or part of the bandwidth of the orthogonal frequency division multiplexing OFDM signal to obtain a backscattering signal.
  • the first device is either a reflective device or a backscattering device.
  • the target receiving device of the backscattered signal may be a second device, and the second device may be a network device, or a terminal device (such as a traditional terminal, or another reflection device).
  • a traditional terminal may refer to a terminal device that does not communicate through backscattering.
  • the first device can be any type of device capable of performing backscatter communication, which is not limited in this application.
  • the first device may be a zero-power consumption terminal, such as an Internet of Things terminal, as an example, an electronic tag.
  • zero-power terminals are usually less complex and only support a narrower operating bandwidth. Therefore, the bandwidth of backscatter communication is also narrower, for example, it can be 200kHz, 1MHz, etc.
  • the zero-power terminal may have some or all of the following structural units:
  • a low-power receiver may receive information sent by a network device or other node.
  • the low-power receiver can have relatively low information processing capabilities, such as only supporting narrowband, low-rate information reception and processing.
  • the backscatter transmitter supports sending information using backscatter.
  • the backscatter transmitter cannot generate signals autonomously and needs to modulate and reflect the received signal to carry the information to be sent.
  • the first device is a high-capability terminal, or in other words, a high-complexity terminal.
  • high-capability terminals usually have higher complexity and support a larger operating bandwidth. Therefore, the bandwidth of backscatter communication is also larger, for example, it may be 1 MHz or larger.
  • the first device may include part or all of the following structural units:
  • Main receiver low power receiver, backscatter transmitter, main transmitter.
  • the primary receiver may receive information sent by network devices or other nodes.
  • the main receiver can have strong information processing capabilities, such as supporting large bandwidth (such as 100MHz) and high speed (such as 1Gbps) information reception and processing.
  • the main receiver can be an LTE terminal receiver, an NR terminal receiver or other terminal receivers in future standard evolution.
  • a low-power receiver may receive information sent by a network device or other node.
  • the low-power receiver can have relatively low information processing capabilities, such as only supporting narrowband, low-rate information reception and processing. This low-power receiver can be used when receiving a small amount of information to save terminal power consumption.
  • the backscatter transmitter supports sending information using backscatter.
  • the transmitter cannot generate its own signal and needs to modulate and reflect the received signal to carry the information to be sent.
  • the master transmitter may send information to network devices or other nodes.
  • the main transmitter can have strong information processing capabilities, such as supporting broadband, high-rate information encoding, modulation and transmission.
  • the main transmitter can be an LTE terminal transmitter, an NR terminal transmitter or other terminal receivers in future standard evolution.
  • the first device can communicate with other devices through the main transmitter and the main receiver. In other scenarios, the first device can also use a backscatter transmitter to send signals.
  • the first device communicating in a backscattering manner may have the following beneficial effects:
  • the first device communicates using the backscattering method to achieve energy saving.
  • the first device can perform backscattering based on the signal in the communication process, thereby realizing additional information transmission while the communication process is ongoing, and the additional information transmission multiplexes the communication. Spectrum resources of the process. Therefore, backscatter communication is beneficial to saving spectrum resources.
  • the device can implement additional backscattering, that is, the first device can flexibly choose Transmission timing for backscatter communications. For example, in the downlink time slot, the first device can backscatter the downlink signal sent by the base station to achieve uplink transmission, thereby realizing uplink transmission in the downlink time slot without configuring a dedicated uplink time slot for uplink transmission. Therefore, It breaks through the transmission limitations of traditional time slot configuration and achieves more flexible transmission.
  • the embodiment of the present application does not limit the transmission direction of the OFDM signal.
  • the OFDM signal may be a downlink signal, an uplink signal, or a sidelink signal.
  • the source of the carrier signal corresponding to the backscattered signal may be a downlink signal, an uplink signal, or a sidelink signal.
  • the third device may be a network device, or may also be a terminal device, such as a traditional terminal.
  • the network device sends a downlink (DL) signal to UE1, but UE2 and UE3 also receive the DL signal. Therefore, UE2 and UE3 can backscatter based on the DL signal to obtain the backscatter signal. to transmit uplink information.
  • DL downlink
  • UE1 sends an uplink (UL) signal to the network device, but UE2 and UE3 also receive the UL signal. Therefore, UE2 and UE3 can backscatter based on the UL signal to obtain the backscattered signal. to transmit uplink information.
  • UL uplink
  • the OFDM signal is a broadband signal, and this application does not specifically limit the bandwidth of the OFDM signal.
  • the bandwidth of OFDM signals sent by network equipment or terminal equipment can reach 100MHz
  • the bandwidth of OFDM signals sent by network equipment or terminal equipment can reach 400MHz.
  • the first device performs backscattering on the entire bandwidth or part of the bandwidth of the OFDM signal to send the backscattering signal to the second device.
  • the size of the bandwidth used by the first device to perform backscattering on the OFDM signal may be determined based on the capabilities of the first device.
  • the first device may perform backscattering using signals on a portion of the bandwidth of the OFDM signal.
  • the first device may perform backscattering using a signal on part of the bandwidth or the entire bandwidth of the OFDM signal.
  • backscattering OFDM signals by the first device to obtain backscattered signals will be described below with reference to specific embodiments.
  • Embodiment 1 The first device performs backscattering on a partial bandwidth of the OFDM signal as a carrier signal to obtain a backscattered signal. That is, the first device may perform single carrier backscattering on a signal over a portion of the bandwidth of the wideband OFDM signal.
  • this Embodiment 1 may be applicable to the device type in Situation 1, or may also be applicable to the device type in Situation 2.
  • the size of the partial bandwidth of the OFDM signal used by the first device does not exceed the maximum bandwidth supported by the first device.
  • the first device can use no more than 200KHz in the OFDM signal for backscattering.
  • the first device when the subcarrier spacing of the OFDM signal is 15KHz, the first device can use a signal on a physical resource block (PRB) (bandwidth of 180KHz) of the OFDM signal to perform reflection. scattering.
  • PRB physical resource block
  • the first device can use 1MHz or 1 PRB in the OFDM signal for backscattering.
  • different reflecting devices may perform backscattering of signals on different frequency portions of the OFDM signal.
  • different reflecting devices may perform backscattering of the signal on different PRBs of the OFDM signal.
  • device 1 and device 2 may perform backscattering using signals on different frequency portions of the OFDM signal.
  • Embodiment 2 The first device performs backscattering on the OFDM signal as a carrier signal to obtain a backscattered signal. That is, the first device may perform single carrier backscattering on the wideband OFDM signal. That is, the first device may perform single carrier backscattering on the signal over the entire bandwidth of the wideband OFDM signal.
  • the backscattered signal is carried on the entire OFDM signal. That is to say, the time domain symbol of a backscattered signal can be carried on the broadband backscattered signal. In terms of signal, it is helpful to improve the transmission performance of backscattering.
  • this Embodiment 2 may be applicable to the device type in Scenario 2.
  • Embodiment 3 The first device treats the OFDM signal as multiple carrier signals, and performs backscattering on the multiple carrier signals to obtain backscattered signals, where each carrier signal includes a signal on a partial bandwidth of the OFDM signal. That is, the first device can perform multi-carrier backscattering on the wideband OFDM signal.
  • this Embodiment 3 may be applicable to the device type in Scenario 2.
  • the bandwidths occupied by the multiple carrier signals do not overlap with each other.
  • the first device can divide the OFDM signal into n carrier signals, and the first device can backscatter each carrier signal to obtain a corresponding backscattered signal.
  • each carrier signal may be modulated to carry different information bits.
  • the first device can divide the OFDM signal into 50 carriers, that is, every 4 PRBs are divided into one carrier signal, and each carrier When backscattering occurs on a signal, each carrier signal can be modulated to carry different bits of information. For example, in this example, the first device can carry up to 50 bits when backscattering an OFDM signal containing 200 PRBs. Each carrier signal is modulated to carry one bit.
  • the embodiments of the present application do not limit the bandwidth occupied by each of the multiple carrier signals and the number of the multiple carrier signals. For example, it may be determined based on the number of information bits to be transmitted by the first device. As an example, if the OFDM signal is 100 MHz and the number of information bits to be transmitted by the first device is 50, the first device can divide the OFDM signal into 50 carrier signals, each carrier signal occupying 2 MHz.
  • This application does not limit the specific implementation of the first device performing a separate backscattering operation on each carrier signal, thereby carrying independent information bits on different carrier signals.
  • the first device includes multiple backscattering communication modules, and the multiple backscattering communication modules are configured to perform backscattering on the multiple carrier signals respectively.
  • each backscatter communication module corresponds to a carrier signal.
  • backscattering different frequency portions of the OFDM signal can be performed by separate backscatter communication modules.
  • the wideband OFDM signal is divided into 50 carrier signals, and each carrier signal can be backscattered by an independent backscattering communication module in the first device.
  • the multi-carrier backscattering method is used to transmit multiple information bits (for example, as long as the OFDM bandwidth is wide enough) at the same time (for example, the same backscatter symbol).
  • Carrier signal so that backscatter can also transmit tens to hundreds of bits on the same time domain symbol), further improving the communication rate of backscatter communication.
  • the unit of the backscattered signal in the time domain is recorded as a backscatter symbol
  • the unit of the backscattered signal in the frequency domain is recorded as a backscattered frequency domain unit.
  • the smallest clock-frequency unit is denoted as the backscattered clock-frequency unit.
  • the unit of OFDM signal in the time domain is OFDM symbol
  • the unit in the frequency domain is PRB.
  • the embodiments of the present application can be applied to a communication system that introduces reflective equipment.
  • the communication system can be considered to include a master system and a slave system, where the master system can be a traditional terminal and network in the communication system. It consists of equipment, such as terminal equipment and network equipment in the communication system shown in Figure 1.
  • the slave system can be a target receiving equipment composed of reflection equipment and backscatter communication (for example, it can be a network equipment, or it can also be a traditional terminal, or It can also be composed of another reflective device).
  • Figure 12 is a schematic diagram of a system model applicable to the embodiment of the present application.
  • the third device can send an OFDM signal to the second device, and the reflecting device can use the OFDM signal to perform backscatter communication, for example, to The second device sends a backscattered signal, where the master system may include a third device and the second device, and the slave system may include a reflective device and the second device.
  • the third device may be a network device or a traditional terminal.
  • the second device may be a traditional terminal or a network device.
  • the sending device of the carrier signal of the backscattered signal ie, the third device
  • the target receiving device of the backscattered signal ie, the second device
  • the sending device of the carrier signal of the backscattered signal may be a network device or a traditional terminal
  • the target receiving device of the backscattered signal ie, the second device
  • the third device may be a network device, and the second device may be a traditional terminal.
  • the third device may also be the first terminal, and the second device may be the second terminal.
  • the third device is a traditional terminal and the second device is a network device.
  • the target receiving device of the carrier signal of the backscattered signal may be the second device, or it may also be the first device, which is not limited in this application.
  • FIG 13 is a schematic diagram of an environmental backscattering system model suitable for embodiments of the present application.
  • reflective devices such as electronic tags
  • Scatter communication As shown in Figure 13, a main system composed of a router and a traditional terminal is communicating, and the reflection device performs backscatter modulation on the downlink signal sent by the router, thereby transmitting the information it needs to send to the reader.
  • the reflection device A slave system supported by backscatter communication technology is formed with the reader/writer.
  • the communication of the slave system may interfere with the master system communication link, that is, the backscattered signal of the reflecting device may be mixed with the master system signal and affect the master system. Interference occurs with the system receiver. At this time, although the slave system using backscatter benefits, the data transmission to the master system may be lossy.
  • Symbiotic communication is based on backscattering. Through good coordination between the master and slave systems, it not only eliminates the interference of the backscattered signals generated by the slave system on the master system, but also converts the backscattered signals into benefits for the master system. signal of.
  • symbiotic communication between the master and slave systems is achieved by constraining the chip width of the backscattered signal and the chip width of the OFDM signal to satisfy a K-fold relationship, where K is greater than 1.
  • the symbol width of one backscatter symbol is the symbol width of K OFDM symbols.
  • one backscatter symbol and K OFDM symbols are aligned in the time domain.
  • one backscattered symbol and K OFDM symbols aligned in the time domain may refer to:
  • the starting point of one backscatter symbol is aligned with the starting point of K OFDM symbols, and the end point of one backscatter symbol is aligned with the end point of K OFDM symbols.
  • the master transmitter PTx and the master receiver PRx constitute the master system
  • the slave transmitter STx and the slave receiver SRx constitute the slave system.
  • STx achieves backscatter modulation with the help of the signal transmitted by PTx.
  • the backscattered signal from the slave system is equivalent to a multipath signal mixed into the master received signal of the master system. Therefore, through such constraints, the slave system not only does not interfere with the master system, but also improves the performance of the master system by providing multipath signals while completing backscattering of signals relying on the master system to complete its own communication. Because this subtle relationship between the master and slave systems is similar to the symbiotic relationship in biology, the above communication system model is named the symbiotic communication model.
  • symbiotic communication solves the wireless energy supply problem of zero-power communication, and on the other hand, it also solves the spectrum problem of zero-power communication, so that zero-power communication can share the spectrum of traditional communication and perform well on the same spectrum as traditional communication. coexist. Therefore, symbiotic communication is expected to become an important implementation method for zero-power communication.
  • the symbol width of one backscatter symbol is the smallest unit for channel estimation in the time domain when the target receiving device of the OFDM signal receives the OFDM signal, such as half a time slot or one time slot.
  • the minimum unit for channel estimation in the time domain is K OFDM symbols, then the symbol width of one backscatter symbol can be an integer multiple of K OFDM symbols.
  • the minimum unit for terminal equipment to perform channel estimation in the time domain when receiving OFDM signals is 7 OFDM symbols, so the symbol width of a backscatter symbol can be 7 OFDM symbols, Alternatively, it can also be other integer multiples of 7 OFDM symbols.
  • K may be configured by the target receiving device of the backscattered signal, or may be predefined.
  • the size of one backscatter frequency domain unit is equal to the size of M PRBs, where M is a positive integer.
  • M may be configured by the target receiving device of the backscattered signal, or may be predefined.
  • one backscatter frequency domain unit and M PRBs are aligned in the frequency domain.
  • one backscatter frequency domain unit and M PRBs aligned in the frequency domain may refer to:
  • the starting point of a backscatter frequency domain unit is aligned with the starting point of M PRBs, and the end point of a backscattered frequency domain unit is aligned with the end points of M PRBs.
  • the minimum bandwidth of the carrier signal used by the first device for backscattering is the smallest unit for channel estimation in the frequency domain by the target receiving device of the OFDM signal when receiving the OFDM signal.
  • the minimum unit for channel estimation in the frequency domain is M PRBs
  • the size of a backscattering frequency domain unit can be an integer multiple of M PRBs, or in other words, a carrier
  • the minimum bandwidth of the signal can be an integer multiple of M PRBs.
  • the minimum unit for terminal equipment to perform channel estimation in the frequency domain when receiving OFDM signals is 4 PRBs.
  • the size of a backscattering frequency domain unit can be 4 PRBs, or , or it can be other integer multiples of 4 PRBs.
  • a backscatter time-frequency unit consists of a backscatter symbol and a backscatter frequency domain unit.
  • the symbol width of a backscatter symbol is equal to the symbol width of K OFDM symbols.
  • the size of the radio frequency domain unit is equal to M PRBs.
  • backscatter communication is performed on a minimum frequency unit consisting of K OFDM symbols and M PRBs on the OFDM signal sent by the main system.
  • the first device may modulate the OFDM signal based on backscattering on one backscattering time-frequency unit, thereby transmitting bit "0" and bit "1".
  • the OFDM signal is backscattered, bit "0" is transmitted.
  • the OFDM signal may not be backscattered.
  • the received signal is an OFDM signal transmitted only by the main system transmitter, so the reflection device does not introduce interference at this time.
  • the OFDM signal of the main system is backscattered, the purpose is to transmit bit "1".
  • it may be a state of backscattering the OFDM signal of the main system, or a state of high-level backscattering of the OFDM signal of the main system.
  • the received signal is the OFDM signal transmitted by the main system transmitter and the reverse transmission signal.
  • the reflection device has a backscattered signal, but the backscattered signal is modulated as a whole with the smallest unit of a channel estimate of the main system receiver. That is to say, the backscattered signal is the channel estimate of the main system.
  • the reflection device can process signals on part or all of the bandwidth of the OFDM signal to carry original information bits to form at least one data symbol.
  • the above-mentioned processing may include, for example, but is not limited to encoding, scrambling, modulation, etc.
  • the at least one data symbol may be mapped to at least one backscatter time-frequency unit for transmission.
  • one data symbol may be mapped to one backscatter time-frequency unit for transmission.
  • one data symbol may carry 1 bit of information or multiple bits of information.
  • OOK On-Off Keying
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • a data A symbol can carry 1 bit of information.
  • QPSK Quad-Phase Shift Keying
  • the reflective device when the information that the reflective device needs to send is 1 bit (such as the scenario of sending acknowledgment (ACK)/negative acknowledgment (NACK)), the reflective device can use single-carrier reverse
  • the scattering method such as the single-carrier backscattering method in Embodiment 1 or Embodiment 2, maps the 1-bit information to a backscattering time-frequency unit.
  • the reflection device needs to send multiple information bits, for example, dozens or even hundreds of bits, and the reflection device can use a multi-carrier backscattering method, such as the multi-carrier backscattering method in Embodiment 3,
  • the multiple bits of information are mapped onto multiple backscatter time-frequency units. In these cases, resource mapping of information bits needs to be considered.
  • the reflection device may map the at least one data symbol onto at least one backscatter time-frequency unit in the time domain and/or frequency domain.
  • each backscatter time-frequency unit consists of a backscatter symbol and a backscatter frequency domain unit. The method of determining the resources occupied by the backscattered signal in the time domain and frequency domain is described in detail below.
  • a reflection scattering frequency domain unit may be formed in the frequency domain. Further, the backscattering frequency domain unit and the backscattering signal in the time domain are One or more backscattered symbols constitute one or more backscattered time-frequency units used for data symbol mapping.
  • multiple reflection scattering frequency domain units may be formed in the frequency domain.
  • the multiple backscattering frequency domain units and the backscattering signal are One or more backscattered symbols occupied on the domain constitute multiple backscattered time-frequency units used for data symbol mapping.
  • the first device sequentially maps the at least one data symbol onto at least one backscattering time-frequency unit in the order of first the time domain and then the frequency domain.
  • the first device sequentially maps the at least one data symbol onto at least one backscattering time-frequency unit in the order of frequency domain first and then time domain.
  • the first device when mapping the at least one data symbol in time domain order, may follow the number of the at least one backscattering time-frequency unit in the time domain from small to large or from large to small. In order, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit in sequence. In other words, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit in sequence according to the order of the at least one backscatter time-frequency unit from first to last or from last to first in the time domain.
  • the first device when mapping the at least one data symbol in order in the frequency domain, may follow the number of the at least one backscattering time-frequency unit in the frequency domain from small to large or from large to small. In order, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit in turn. In other words, the at least one data symbol is sequentially mapped to the at least one backscatter time-frequency unit in the order of the at least one backscatter time-frequency unit from low to high or from high to low in the frequency domain.
  • the present application does not limit the numbering method of the at least one backscattering time-frequency unit.
  • the at least one backscattering time-frequency unit can be separately configured in the time domain and frequency domain. Numbering (as shown in Figure 18), or joint numbering in the time domain and frequency domain (as shown in Figure 17), is not limited in this application.
  • the at least one backscattering time-frequency unit includes 8 backscattering time-frequency units, and the 8 backscattering time-frequency units can be processed in order from small to large in the time domain and from low to high in the frequency domain.
  • the scattering time-frequency units are numbered in sequence.
  • the at least one backscattering time-frequency unit includes 8 backscattering time-frequency units, and each backscattering time-domain symbol can be performed in order from low to high in the frequency domain. Individually numbered.
  • the forward scattering symbols can also be other numbers of OFDM symbols, and one backscattering frequency domain unit can also be other numbers of PRBs, and the present application is not limited thereto.
  • Method 1 Sequentially map the at least one data symbol onto at least one backscattered time-frequency unit according to the time sequence of the backscattered time-frequency units.
  • the reflection device only performs resource mapping on the data symbols in the time domain. That is to say, the at least one backscattering time-frequency unit corresponds to the same backscattering frequency domain unit.
  • the data symbols can be mapped in the time domain.
  • the reflection device can number at least one backscattering time-frequency unit in the time domain in order of time, and further according to the number of the at least one backscattering time-frequency unit from large to small or from large to small. In ascending order, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit.
  • Method 2 Map the at least one data symbol onto at least one backscattered time-frequency unit in sequence according to the frequency order of the backscattered time-frequency units.
  • the reflection device only performs resource mapping on the data symbols in the frequency domain. That is to say, the at least one backscattering time-frequency unit corresponds to the same backscattering symbol.
  • this method 2 may be applicable to the following scenario: the at least one data symbol includes multiple data symbols, the at least one backscatter time-frequency unit includes multiple backscatter time-frequency units, and the multiple backscatter time-frequency units The backscattering time-frequency unit is on one backscattering symbol, and the plurality of backscattering time-frequency units are enough to transmit the plurality of data symbols.
  • multiple backscattering frequency domain units can be formed in the frequency domain, and therefore, data symbols can be mapped in the frequency domain.
  • the plurality of backscattering time-frequency units are numbered in order from low to high frequency, and the at least one backscattering time-frequency unit is numbered in order from large to small or from small to large.
  • the at least one data symbol is mapped on the at least one backscattered time-frequency unit.
  • Method 3 Sequentially map the at least one data symbol onto at least one backscattering time-frequency unit in the order of time domain first and then frequency domain.
  • the reflective device can simultaneously map data symbols in the time domain and frequency domain.
  • the at least one backscattering time-frequency unit is first numbered in order from low to high frequency and then from first to last in the time domain.
  • the at least one backscattering time-frequency unit is numbered from large to small. Or in order from small to large, the at least one data symbol is mapped onto the at least one backscattering time-frequency unit.
  • Method 4 Sequentially map the at least one data symbol onto at least one backscattering time-frequency unit in the order of frequency domain first and then time domain.
  • the reflective device can simultaneously map data symbols in the time domain and frequency domain.
  • the at least one backscattering time-frequency unit is numbered sequentially in the order of time domain first, then frequency from low to high, and the at least one backscattering time-frequency unit is numbered from large to small or In ascending order, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit.
  • the method 200 further includes:
  • the first device performs backscattering on the signal on the partial bandwidth of the OFDM signal to obtain a backscattering signal according to the first configuration information, where the first configuration information is used to configure the carrier used to perform backscattering.
  • the resource location of the signal and/or the resource location of the backscattered signal is used to configure the carrier used to perform backscattering.
  • the first configuration information may configure which positions of the broadband OFDM signal the reflection device uses as the carrier signal, and/or which resource positions the backscattered signal is sent to.
  • the first configuration information includes at least one of the following:
  • the first device performs backscattering on the OFDM signal using frequency information, the first device sends time information used on the backscattered signal, and the first device sends frequency information used on the backscattered signal.
  • the frequency information used by the first device to perform backscattering on the OFDM signal and the frequency information used by the first device to transmit the backscattered signal may have a fixed offset.
  • frequency information used by the first device to backscatter the OFDM signal may be used to determine which frequency portions of the OFDM signal are used by the first device to backscatter.
  • the time information used by the first device to send the backscattered signal may be used to determine the time domain unit occupied by the backscattered signal.
  • the frequency information used by the first device to send the backscattered signal may be used to determine the frequency unit occupied by the backscattered signal.
  • the frequency information used by the first device to perform backscattering on the OFDM signal may include:
  • Starting frequency information and/or frequency band length information used by the first device to perform backscattering on the OFDM signal.
  • the frequency information used by the first device to perform backscattering on the OFDM signal is characterized by frequency domain units of the OFDM signal (such as PRB), or by using frequency domain units of the backscattered signal (such as M PRB) characterized.
  • the frequency information used by the first device to perform backscattering on the OFDM signal may include:
  • the time information used by the first device to send the backscatter signal includes at least one of the following:
  • the first device sends start time information, duration information, and occupied time unit information of the backscatter signal.
  • the time information used by the first device to send the backscattered signal is characterized by using the time domain unit of the OFDM signal (such as time slot, OFDM symbol), or using the time domain unit of the backscattered signal (such as the backscatter symbol).
  • the time information used by the first device to send the backscatter signal may include:
  • the first device sends the starting OFDM symbol (or starting time slot) of the backscattered signal and the OFDM number or time slot number in which it is located.
  • the frequency information used by the first device to send the backscatter signal may include:
  • the first device sends starting frequency information of the backscattered signal and/or used frequency band length information.
  • the frequency information used by the first device to send the backscattered signal is characterized by frequency domain units of the OFDM signal (such as PRBs), or by using frequency domain units of the backscattered signal (such as M PRBs). ) represents.
  • the frequency information used by the first device to send the backscatter signal may include:
  • the first device sends the starting PRB information and/or the number of PRBs used in the backscatter signal; or
  • the first device sends the starting backscattered frequency domain unit information of the backscattered signal and/or the used backscattered frequency domain unit number information.
  • At least one backscattering time-frequency unit used for resource mapping by the first device may be determined based on the first configuration information.
  • the first configuration information is configured by a target receiving device of the backscattered signal.
  • the first configuration information is predefined.
  • the reflective device can use signals in part or all of the bandwidth of the OFDM signal to perform backscattering, thereby enabling symbiotic communication between the reflective device and the traditional terminal.
  • signals on a portion of the bandwidth of the OFDM signal can be utilized for backscattering.
  • signals on part or all of the bandwidth of the OFDM signal can be used for backscattering.
  • OFDM signals can be used for single-carrier backscattering, or OFDM signals can be used for multi-carrier backscattering.
  • the symbol width occupied by the backscattered signal in the time domain and the symbol width occupied by the OFDM symbol in the time domain are constrained to satisfy a K-fold relationship, so that the backscattered signal is equivalent to a multipath of the OFDM signal.
  • the symbol width of a backscattering symbol is constrained to be the minimum unit for channel estimation in the time domain by the target receiving device of the OFDM signal when receiving the OFDM signal, and the minimum unit of the carrier signal used by the first device to perform backscattering.
  • the bandwidth is the smallest unit for channel estimation in the frequency domain when the target receiving device of the OFDM signal receives the OFDM signal. Since there is also a pilot signal in the smallest unit of channel estimation, the backscattered signal, as a channel change caused by a multipath, not only does not cause interference when estimated by the channel estimator of the receiver, but also forms a useful signal components.
  • the reflection device can map the backscattered data symbols to at least one backscattered time-frequency unit, for example, by first converting the time domain and then the frequency domain, or by first converting the backscattered data into the frequency domain and then the time domain.
  • the symbols are mapped to at least one backscattered time-frequency unit.
  • Figure 19 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes:
  • the processing unit 410 is configured to perform backscattering on the entire bandwidth or part of the bandwidth of the orthogonal frequency division multiplexing OFDM signal to obtain a backscattered signal.
  • the backscattered signal is obtained by backscattering the OFDM signal as a carrier signal by the communication device 400 .
  • the backscattered signal is obtained by the communication device 400 treating the OFDM signal as multiple carrier signals and performing backscattering on the multiple carrier signals respectively, wherein each carrier The signal includes a signal over a portion of the bandwidth of the OFDM signal.
  • the bandwidths occupied by the multiple carrier signals do not overlap with each other.
  • the communication device 400 includes a plurality of backscatter communication modules configured to perform backscattering on the plurality of carrier signals respectively.
  • the backscattered signal is obtained by the communication device 400 performing backscattering on a signal on a partial bandwidth of the OFDM signal as a carrier signal.
  • the unit of the backscatter signal in the time domain is a backscatter symbol
  • the unit of the OFDM signal in the time domain is an OFDM symbol
  • the symbol width of one backscatter symbol is K
  • K is configured by the target receiving device of the backscattered signal, or K is predefined.
  • the symbol width of one backscatter symbol is the smallest unit for channel estimation in the time domain when the target receiving device of the OFDM signal receives the OFDM signal.
  • one backscatter symbol and K OFDM symbols are aligned in the time domain.
  • the unit of the backscatter signal in the frequency domain is a backscatter frequency domain unit
  • the unit of the OFDM signal in the frequency domain is a physical resource block (PRB), where a backscatter frequency domain unit
  • PRB physical resource block
  • the size of the unit is the size of M PRBs, where M is a positive integer.
  • one backscatter frequency domain unit and M PRBs are aligned in the frequency domain.
  • the minimum bandwidth of the carrier signal used by the communication device 400 for backscattering is the smallest unit for channel estimation in the frequency domain by the target receiving device of the OFDM signal when receiving the OFDM signal.
  • the backscattered signal includes at least one data symbol
  • the processing unit 410 is further configured to:
  • each backscatter time-frequency unit consists of one backscatter symbol and one Backscatter frequency domain unit composition.
  • the processing unit 410 is also used to:
  • the at least one data symbol is sequentially mapped onto at least one backscattering time-frequency unit in the order of time domain first and then frequency domain.
  • the processing unit 410 is also used to:
  • the at least one data symbol is mapped onto at least one backscatter time-frequency unit in sequence in the order of frequency domain first and then time domain.
  • the processing unit 410 is also used to:
  • the at least one data symbol is sequentially mapped according to the order of the number of the at least one backscattering time-frequency unit in the time domain from small to large or from large to small. mapped on the at least one backscatter time-frequency unit.
  • the processing unit 410 is further configured to: when mapping the at least one data symbol in order in the frequency domain, according to the number of the at least one backscattering time-frequency unit in the frequency domain from small to large or In descending order, the at least one data symbol is mapped onto the at least one backscatter time-frequency unit.
  • the processing unit 410 is also used to:
  • backscattering is performed on the signal on a partial bandwidth of the OFDM signal to obtain a backscattered signal, wherein the first configuration information is used to configure resources of the carrier signal used to perform backscattering.
  • the location and/or resource location of the backscattered signal is used to configure resources of the carrier signal used to perform backscattering.
  • the first configuration information includes at least one of the following:
  • the communication device 400 performs backscattering on the OFDM signal using frequency information, the communication device 400 transmits the time information used by the backscattered signal, and the communication device 400 transmits the frequency information used by the backscattered signal. .
  • the time information used by the communication device 400 to send the backscatter signal includes at least one of the following: starting time information, duration information, and duration information of the backscatter signal sent by the first device. Occupied time unit information.
  • the frequency information used by the communication device 400 to perform backscattering on the OFDM signal is characterized by frequency domain units of the OFDM signal, or is characterized by frequency domain units of the backscattered signal.
  • the time information used by the communication device 400 to send the backscatter signal is characterized by the time domain unit of the OFDM signal, or is characterized by the time domain unit of the backscatter signal.
  • the frequency information used by the communication device 400 to send the backscattered signal is characterized by the frequency domain unit of the OFDM signal, or is characterized by the frequency domain unit of the backscattered signal.
  • the first configuration information is configured by the target receiving device of the backscattered signal, or,
  • the first configuration information is predefined.
  • the communication device 400 has a low-power receiver through which the OFDM signal is received.
  • the communication device 400 has a low-power receiver and a main receiver, and the OFDM signal is received through the low-power receiver or the main receiver, wherein the low-power receiver The power consumption of the receiver is lower than that of the main receiver.
  • the communication device 400 has a backscatter transmitter through which the backscatter signal is transmitted.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 400 may correspond to the first device or the reflective device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 400 are respectively for the purpose of realizing the figures.
  • the corresponding processes of the first device or the reflecting device in the methods shown in Figures 6 to 18 will not be described again for the sake of simplicity.
  • Figure 20 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 includes: a communication unit 510, configured to receive a backscattered signal.
  • the backscattered signal is the entire bandwidth or part of the bandwidth of the orthogonal frequency division multiplexing OFDM signal of the first device.
  • the signal is backscattered.
  • the backscattered signal is obtained by backscattering the OFDM signal as a carrier signal by the first device.
  • the backscattered signal is obtained by the first device treating the OFDM signal as multiple carrier signals and backscattering the multiple carrier signals respectively, wherein each carrier The signal includes a signal on a partial bandwidth of the OFDM signal;
  • the plurality of carrier signals are backscattered respectively to obtain backscattered signals.
  • the bandwidths occupied by the multiple carrier signals do not overlap with each other.
  • the first device includes a plurality of backscatter communication modules, and the plurality of backscatter communication modules are configured to backscatter the plurality of carrier signals respectively.
  • the backscattered signal is obtained by the first device backscattering a signal on a partial bandwidth of the OFDM signal as a carrier signal.
  • the unit of the backscatter signal in the time domain is a backscatter symbol
  • the unit of the OFDM signal in the time domain is an OFDM symbol
  • the symbol width of one backscatter symbol is K
  • K is configured by the communication device 500, or K is predefined.
  • the symbol width of one backscatter symbol is the smallest unit for channel estimation in the time domain when the target receiving device of the OFDM signal receives the OFDM signal.
  • one backscatter symbol and K OFDM symbols are aligned in the time domain.
  • the unit of the backscatter signal in the frequency domain is a backscatter frequency domain unit
  • the unit of the OFDM signal in the frequency domain is a physical resource block (PRB), where a backscatter frequency domain unit
  • PRB physical resource block
  • the size of the unit is the size of M PRBs, where M is a positive integer.
  • one backscatter frequency domain unit and M PRBs are aligned in the frequency domain.
  • the minimum bandwidth of the carrier signal used by the first device for backscattering is the minimum unit for channel estimation in the frequency domain by the target receiving device of the OFDM signal when receiving the OFDM signal.
  • the communication unit 510 is also used to:
  • Send first configuration information where the first configuration information is used to configure the resource location of the carrier signal used by the first device to perform backscattering and/or the resource location of the backscattering signal.
  • the first configuration information includes at least one of the following:
  • the first device performs backscattering on the OFDM signal using frequency information, the first device sends time information used on the backscattered signal, and the first device sends frequency information used on the backscattered signal.
  • the time information used by the first device to send the backscatter signal includes at least one of the following:
  • the first device sends start time information, duration information, and occupied time unit information of the backscatter signal.
  • the frequency information used by the first device to perform backscattering on the OFDM signal is characterized by frequency domain units of the OFDM signal, or is characterized by frequency domain units of the backscattered signal.
  • the time information used by the first device to send the backscatter signal is characterized by the time domain unit of the OFDM signal, or is characterized by the time domain unit of the backscatter signal.
  • the frequency information used by the first device to send the backscattered signal is characterized by frequency domain units of the OFDM signal, or is characterized by frequency domain units of the backscattered signal.
  • the first configuration information is configured by the communication device 500, or,
  • the first configuration information is predefined.
  • the first device has a backscatter transmitter through which the backscatter signal is transmitted.
  • the first device has a low-power receiver through which the OFDM signal is received.
  • the first device has a low-power receiver and a main receiver, and the OFDM signal is received through the low-power receiver or the main receiver, wherein the low-power receiver The power consumption of the receiver is lower than that of the main receiver.
  • the communication device 500 is a network device or a terminal device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 500 may correspond to the second device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 500 are respectively to implement FIG. 6 to FIG.
  • the corresponding process of the second device in the method shown in 18 will not be repeated here for the sake of simplicity.
  • Figure 21 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 21 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device or the reflection device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device or the reflection device in the various methods of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • the communication device 600 may be specifically the second device in the embodiment of the present application (ie, the target receiving device of the backscattered signal), and the communication device 600 may implement the methods of the embodiment of the present application by the second device.
  • the corresponding process of implementation will not be repeated here for the sake of brevity.
  • FIG 22 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 22 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device or the reflective device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device or the reflective device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 23 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in Figure 23, the communication system 900 includes a reflection device 910 and a network device 920.
  • the reflection device 910 can be used to implement the corresponding functions implemented by the first device or the reflection device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the second device in the above method. For simplicity, I won’t go into details here.
  • Figure 24 is a schematic block diagram of another communication system 900 provided by an embodiment of the present application.
  • the communication system 900 includes a reflection device 1010, a network device 1020 and a terminal device 1030.
  • the reflection device 1010 can be used to implement the corresponding functions implemented by the first device or the reflection device in the above method
  • the network device 1020 can be used to implement the corresponding functions implemented by the third device in the above method
  • the terminal device 1030 can be used to implement the corresponding functions implemented by the second device in the above method, which will not be described again for the sake of simplicity.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在零功耗通信中,零功耗终端可以基于无线电波实现反向散射通信,由于零功耗终端低复杂度的特点,只支持简单的调制方式,例如幅度键控(Amplitude Shift Keying,ASK),而传统终端使用较为复杂的调制波形,如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),因此,在零功耗终端大规模接入系统时,如何实现零功耗终端和传统终端之间的共生通信是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,能够实现零功耗终端和传统终端之间的共生通信。
第一方面,提供了一种无线通信的方法,包括:第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号。
第二方面,提供了一种无线通信的方法,包括:第二设备接收反向散射信号,所述反向散射信号是第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号进行反向散射得到的。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在第一设备接入系统时,可以利用宽带OFDM信号的全部带宽或部分带宽上的信号执行反向散射,从而能够实现与系统中的传统终端之间的共生通信。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个示例的零功耗通信系统的示意图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是根据本申请实施例提供的一种无线通信的方法的示意性图。
图7是本申请实施例提供的一种基于下行信号的反向散射示意图。
图8是本申请实施例提供的一种基于上行信道的反向散射示意图。
图9是本申请实施例提供的一种单载波反向散射示意图。
图10是本申请实施例提供的多反射设备情况下的单载波反向散射的示意图。
图11是本申请实施例提供的一种多载波反向散射示意图。
图12是本申请实施例适用的一种系统示意图。
图13是本申请实施例适用的另一种系统示意图。
图14是本申请实施例提供的一种共生通信系统模型的示意图。
图15是共生通信系统中的信号关系示意图。
图16是本申请实施例提供的一种反向散射信号的符号特征的示意性图。
图17是本申请实施例提供的一种将数据符号按照先频域后时域进行资源映射的示意图。
图18是本申请实施例提供的一种将数据符号按照先频域后时域进行资源映射的另一示意图。
图19是根据本申请实施例提供的一种通信设备的示意性框图。
图20是根据本申请实施例提供的另一种通信设备的示意性框图。
图21是根据本申请实施例提供的又一种通信设备的示意性框图。
图22是根据本申请实施例提供的一种芯片的示意性框图。
图23是根据本申请实施例提供的一种通信系统的示意性框图。
图24是根据本申请实施例提供的另一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统,蜂窝物联网系统,蜂窝无源物联网系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小 区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信的关键技术包括能量采集、反向散射通信以及低功耗技术。
如图2所示,一种典型的零功耗通信系统(例如RFID系统)包括网络设备(如RFID系统的读写器)和零功耗终端(例如如电子标签)。网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一种基本的零功耗终端包括能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或环境温度、环境湿度等传感数据。
例如,能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为网络设备发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收网络设备的控制命令并基于控制信令基于反向散射的方式向网络设备发送数据。所发送的数据可以为零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗终端阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
零功耗终端传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
零功耗通信的应用场景
零功耗通信由于极低成本,零功耗,小尺寸等显著的优点,可以广泛应用于各行各业,例如面向垂直行业的物流,智能仓储,智慧农业,能源电力,工业互联网等;也可以应用于智能可穿戴,智能家居等个人应用等。
在一些场景中,基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
1、无源零功耗终端
零功耗终端(如RFID系统的电子标签)不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路(或称反射链路)的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,此类设备可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端,内置电池向RFID芯片供电,以增加有源零功耗终端的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗终端进行能量采集的能量来源。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新增信号实现,例如新增专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗终端进行数据传输。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新增信号实现,例如新增专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗终端产生反向散射信号,例如,零功耗终端可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从载波信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、 PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,载波信号也可以通过新增信号实现,例如新增专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
但是,由于零功耗终端低复杂度的特点,只支持简单的调制方式,例如幅度键控(Amplitude Shift Keying,ASK),而传统终端使用较为复杂的调制波形,如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),当大量零功耗终端接入系统时,因此,如何实现零功耗终端和传统终端的共生通信是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是根据本申请实施例的无线通信的方法200的示意性图,如图6所示,该方法200包括如下至少部分内容:
S210,第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号
在一些实施例中,第一设备或称反射设备,或反向散射设备。
在一些实施例中,所述反向散射信号的目标接收设备可以为第二设备,该第二设备可以是网络设备,或者,终端设备(例如传统终端,或者,另一反射设备)。
在本申请实施例中,传统终端可以指不通过反向散射方式进行通信的终端设备。
应理解,第一设备可以为任意能够执行反向散射通信的设备类型,本申请对此不作限定。
情况1:第一设备可以为零功耗终端,例如物联网终端,作为示例,电子标签。
可选地,零功耗终端的复杂度通常较低,仅支持较窄的工作带宽,因此,反向散射通信的带宽也较窄,例如可以为200kHz,1MHz等。
可选地,零功耗终端可以具有以下结构单元中的部分或全部:
低功耗接收机、反向散射发射机。
在一些实施例中,低功耗接收机可以接收网络设备或其他节点发送的信息。该低功耗接收机可以具备相对较低的信息处理能力,如仅支持窄带,低速率信息接收与处理。
在一些实施例中,反向散射发射机支持使用反向散射的方式进行信息的发送。该反向散射发射机不能自主生成信号,需要对接收到的信号进行调制并进行反射,从而承载待发送信息,具体实现参考前述实施例的相关描述。
情况2:第一设备为高能力终端,或者说,高复杂度的终端。
可选地,高能力终端的复杂度通常较高,支持更大的工作带宽,因此,反向散射通信的带宽也较大,例如可以为1MHz,或者更大。
在一些实施例中,第一设备可以包括如下结构单元的部分或全部:
主接收机、低功耗接收机、反向散射发射机、主发射机。
在一些实施例中,该主接收机可以接收网络设备或其他节点发送的信息。该主接收机可以具备较强的信息处理能力,如支持大带宽(如100MHz),高速率(如1Gbps)信息接收与处理。例如,该主接收机可以为LTE终端接收机,NR终端接收机或未来标准演进中的其他终端接收机。
在一些实施例中,低功耗接收机可以接收网络设备或其他节点发送的信息。该低功耗接收机可以具备相对较低的信息处理能力,如仅支持窄带,低速率信息接收与处理。该低功耗接收机可以用于在接收少量信息时使用,以节省终端功耗。
在一些实施例中,反向散射发射机支持使用反向散射的方式进行信息的发送。该发射机不能自主生成信号,需要对接收到的信号进行调制并进行反射,从而承载待发送信息。
在一些实施例中,主发射机可以向网络设备或其他节点发送信息。该主发射机可以具备较强的信息处理能力,如支持宽带,高速率信息的编码,调制与发送。例如,主发射机可以为LTE终端发射机,NR终端发射机或未来标准演进中的其他终端接收机。
在一些场景中,第一设备可以通过主发射机和主接收机与其他设备进行通信,在另一些场景中,第一设备也可以使用反向散射发射机进行信号的发送。
应理解,在本申请实施例中,第一设备采用反向散射的方式进行通信可以具有如下有益效果:
1)有利于设备的节能,在反向散射发送时,设备不需要产生射频载波信号,仅需要对入射的载波信号进行调制,从而发送信号,因此功耗很低,使用该方式可以实现设备的节能。
例如,在设备需要节能以延长工作时间的场景,或在设备处于低电量需要延长待机时间的场景, 第一设备使用反向散射方式进行通信以得到节能的目的。
2)节省频谱资源。在网络设备与其他设备通信时,第一设备可以基于该通信过程中的信号进行反向散射,从而在该通信过程进行的同时,实现额外的信息传输,且该额外的信息传输复用该通信过程的频谱资源。因此反向散射通信有利于节省频谱资源。
3)在通信过程进行时,不管该通信过程是在下行通信过程或上行通信过程还是侧行(side link,SL)通信过程,设备均可实现额外的反向散射,即第一设备可以灵活选择反向散射通信的传输时机。例如在下行时隙,第一设备可以对基站发送的下行信号进行反向散射可以实现上行传输,从而实现了在下行时隙进行上行传输,而不需要配置专用的上行时隙进行上行传输,因此突破了传统时隙配置对传输的限制,实现更灵活的传输。
应理解,本申请实施例并不限定OFDM信号的传输方向,例如,该OFDM信号可以为下行信号,上行信号,或者,也可以为侧行信号。也就是说,反向散射信号对应的载波信号的来源可以是下行信号,或者,上行信号,或者,侧行信号。
以OFDM信号的发送设备为第三设备为例,该第三设备可以为网络设备,或者,也可以为终端设备,例如传统终端。
如图7所示,网络设备向UE1发送下行(Downlink,DL)信号,但UE2与UE3也收到了该DL信号,因此,UE2与UE3可基于该DL信号进行反向散射,得到反向散射信号来传输上行信息。
如图8所示,UE1向网络设备发送上行(Uplink,UL)信号,但UE2与UE3也收到了该UL信号,因此,UE2与UE3可基于该UL信号进行反向散射,得到反向散射信号来传输上行信息。
在本申请实施例中,OFDM信号为宽带信号,本申请对于OFDM信号的带宽不作具体限定。
以NR系统为例,在FR1频段,网络设备或终端设备所发送的OFDM信号的带宽可达100MHz,在FR2频段,网络设备或终端设备所发送的OFDM信号的带宽可达400MHz。
在本申请实施例中,所述第一设备对所述OFDM信号的全部带宽或部分带宽上的信号执行反向散射以向第二设备发送反向散射信号。
在一些实施例中,第一设备对OFDM信号执行反向散射所使用的带宽大小可以是根据该第一设备的能力确定的。
例如,在第一设备为情况1中的零功耗终端的情况下,第一设备可以使用OFDM信号的部分带宽上的信号执行反向散射。
又例如,在第一设备为情况2中的高能力终端的情况下,第一设备可以使用OFDM信号的部分带宽或全部带宽上的信号执行反向散射。
以下,结合具体实施例,说明第一设备对OFDM信号进行反向散射得到反向散射信号的具体实现。
实施例1:第一设备将OFDM信号的部分带宽上的信号作为一个载波信号执行反向散射得到反向散射信号。也即,第一设备可以对宽带OFDM信号的部分带宽上的信号执行单载波反向散射。
可选地,此实施例1可以适用于情况1中的设备类型,或者,也可以适用于情况2中的设备类型。
可选地,第一设备使用的OFDM信号的部分带宽的大小不超过第一设备支持的最大带宽。
例如,若OFDM信号为100MHz,对于情况1中的零功耗终端,可以支持的最大带宽为200KHz,则第一设备可以使用不超过OFDM信号中的不超过200KHz的信号进行反向散射。
作为一个示例,如图9所示,当OFDM信号的子载波间隔为15KHz时,第一设备可以使用OFDM信号的一个物理资源块(physical resource block,PRB)(带宽为180KHz)上的信号进行反向散射。
又例如,若OFDM信号为100MHz,对于情况2中的高能力终端,第一设备可以使用OFDM信号中的1MHz或1个PRB进行反向散射。
在一些实施例中,不同反射设备可以对OFDM信号的不同频率部分上的信号执行反向散射。
例如,不同反射设备可以对OFDM信号的不同PRB上的信号执行反向散射。
作为一个示例,如图10所示,设备1和设备2可以使用OFDM信号的不同频率部分上的信号执行反向散射。
实施例2:第一设备将OFDM信号作为一个载波信号执行反向散射得到反向散射信号。也即,第一设备可以对宽带OFDM信号执行单载波反向散射。也即,第一设备可以对宽带OFDM信号的全部带宽上的信号执行单载波反向散射。通过将宽带OFDM信号作为一个整体的载波信号执行反向散射,使得反向散射信号在整个OFDM信号上进行承载,也就是说,一个反向散信号的时域符号可以承载在宽带的反向散射信号上,有利于提升反向散射的传输性能。
可选地,该实施例2可以适用于情况2中的设备类型。
实施例3:第一设备将OFDM信号作为多个载波信号,并对多个载波信号分别执行反向散射得到反向散射信号,其中,每个载波信号包括OFDM信号的部分带宽上的信号。也即,第一设备可以对宽带OFDM信号执行多载波反向散射。
可选地,该实施例3可以适用于情况2中的设备类型。
在一些实施例中,所述多个载波信号所占用的带宽互不重叠。
如图11所示,第一设备可以将OFDM信号划分为n个载波信号,第一设备可以对每个载波信号进行反向散射,得到相应的反向散射信号。
可选地,第一设备对每个载波信号进行反向散射时,可以对每个载波信号进行调制以承载不同的信息比特。
作为示例,若OFDM信号的带宽为200个PRB(子载波间隔为15KHz),第一设备可以将该OFDM信号划分为50个载波,也即将每4个PRB划分为一个载波信号,在每个载波信号上进行反向散射时,可以对每个载波信号进行调制以承载不同的信息比特。例如,在该示例中,第一设备在对包含200个PRB的OFDM信号进行反向散射时,最多可以承载50个比特。其中,对每个载波信号进行调制承载其中的一个比特。
本申请实施例并不限定所述多个载波信号中的每个载波信号所占的带宽大小,以及所述多个载波信号的数量。例如,可以根据第一设备待传输的信息比特数确定。作为示例,若OFDM信号为100MHz,第一设备待传输的信息比特数为50,则第一设备可以将OFDM信号划分为50个载波信号,每个载波信号占2MHz。
本申请并不限定第一设备对每个载波信号执行单独的反向散射操作,从而在不同的载波信号上承载独立的信息比特的具体实现。
作为一种实现方式,所述第一设备包括多个反向散射通信模块,所述多个反向散射通信模块用于对所述多个载波信号分别执行反向散射。其中,每个反向散射通信模块对应一个载波信号。
也即,对OFDM信号的不同频率部分进行反向散射可以由独立的反向散射通信模块执行。
例如,在上个例子中,宽带OFDM信号被划分为50个载波信号,每个载波信号可以由第一设备中的一个独立的反向散射通信模块来执行反向散射。
因此,在本申请实施例中,采用多载波反向散射的方法,可以实现在同一时间(例如同一反向散射符号)传输多个信息比特(例如只要OFDM的带宽足够宽就可以划分足够多的载波信号,从而使得反向散射在同一时域符号上也可以传输几十至数百比特),进一步提升了反向散射通信的通信速率。
以下结合具体实施例,说明反向散射信号的时域特性和频域特性。
为便于区分和说明,在本申请实施例中,反向散射信号在时域上的单位记为反向散射符号,在频域上的单位记为反向散射频域单元,反向散射信号的最小时频单元记为反向散射时频单元。OFDM信号在时域上的单位为OFDM符号,在频域上的单位为PRB。
应理解,本申请实施例可以应用于引入反射设备的通信系统中,此情况下,该通信系统可以认为包括主系统和从系统,其中,主系统可以是由该通信系统中的传统终端和网络设备组成,例如图1所示通信系统中的终端设备和网络设备,从系统可以是由反射设备和反向散射通信的目标接收设备(例如可以是网络设备,或者,也可以是传统终端,或者也可以是另一反射设备)组成。
图12是适用于本申请实施例的一种系统模型示意图,如图12所示,第三设备可以向第二设备发送OFDM信号,反射设备可以利用该OFDM信号进行反向散射通信,例如,向第二设备发送反向散射信号,其中,主系统可以包括第三设备和第二设备,从系统可以包括反射设备和第二设备。
在一些实施例中,第三设备可以为网络设备或传统终端。
在一些实施例中,第二设备可以为传统终端或网络设备。
即,反向散射信号的载波信号的发送设备(即第三设备)可以为网络设备或传统终端,反向散射信号的目标接收设备(即第二设备)可以为传统终端或网络设备。
在一些场景中,第三设备可以为网络设备,第二设备可以为传统终端。
在另一些场景中,第三设备也可以为第一终端,第二设备可以为第二终端。
在又一些场景中,第三设备为传统终端,第二设备为网络设备。
应理解,在本申请实施例中,反向散射信号的载波信号的目标接收设备可以是第二设备,或者也可以是第一设备,本申请对此不作限定。
图13是适用于本申请实施例的一种环境反向散射系统模型的示意图,在一个典型的环境反向散射通信系统中,反射设备(例如电子标签)可以利用空间中的无线电波实现反向散射通信。如图13所示,一个路由器与一个传统终端构成的主系统正在通信,而反射设备对路由器发送的下行信号进行反向散射调制,从而实现将自身需要发送的信息传输给读写器,反射设备与读写器之间构成了以反向 散射通信技术为支撑的从系统。
在上述系统模型中,由于从系统与主系统使用相同的频谱,从系统的通信可能干扰主系统通信链路,也即反射设备的反向散射信号可能会与主系统信号混叠在一起对主系统接收机形成干扰。此时,虽然使用反向散射的从系统获益,但对主系统的数据传输可能是有损的。
有鉴于此,提出了共生通信的概念。共生通信是在反向散射的基础上,通过主从系统之间的良好协调,不仅消除了从系统产生的反向散射信号对主系统的干扰,还将反向散射信号转化为对主系统有益的信号。
在一些实施例中,通过约束反向散射信号的码片宽度与OFDM信号的码片宽度满足K倍关系以实现主从系统之间的共生通信,其中,K大于1。
即,一个反向散射符号的符号宽度为K个OFDM符号的符号宽度。
在一些实施例中,一个反向散射符号和K个OFDM符号在时域上对齐。
在一些实施例中,一个反向散射符号和K个OFDM符号在时域上对齐可以指:
一个反向散射符号的起点和K个OFDM符号的起点对齐,且一个反向散射符号的终点和K个OFDM符号的终点对齐。
在如图14的共生通信系统模型中,主发射机PTx与主接收机PRx构成主系统,从发射机STx与从接收机SRx构成从系统。STx借助于PTx发射的信号实现反向散射调制。如图15所示,从系统反向散射的信号的码片宽度Cp与主系统的信号码片宽度Cs满足K倍关系,即Cp=K*Cs。因此,反向散射信号在K个主系统码片对应的时域区间内并未变化。由此,在主系统以K个码片为单位进行相干解调时,从系统的反向散射信号等效于混入主系统的主接收信号之外一个多径信号。因此,通过这样的约束,从系统在完成依赖主系统的信号进行反向散射完成自身通信的同时,不但对主系统没有干扰,反而通过提供多径信号使得主系统的性能上有所提升。由于主从系统这种微妙的关系类似于生物学上的共生关系,因此上述通信系统模型被命名为共生通信模型。
共生通信一方面解决了零功耗通信的无线供能问题,另一方面也解决了零功耗通信的频谱问题,使得零功耗通信可以共享传统通信的频谱且与传统通信在相同频谱上良好共存。因此,共生通信将有望成为零功耗通信的重要实现方式。
在一些实施例中,一个反向散射符号的符号宽度为OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位,例如半个时隙或一个时隙。
例如,主系统接收机在接收OFDM信号时在时域上进行信道估计的最小单位为K个OFDM符号,则一个反向散射符号的符号宽度可以是K个OFDM符号的整数倍。
如图16所示,在NR系统中,终端设备在接收OFDM信号时在时域上进行信道估计的最小单位为7个OFDM符号,则一个反向散射符号的符号宽度可以是7个OFDM符号,或者,也可以是其他7的整数倍个OFDM符号。
在一些实施例中,K可以是由反向散射信号的目标接收设备配置的,或者,也可以是预定义的。
在一些实施例中,一个反向散射频域单元的大小等于M个PRB的大小,其中,M为正整数。
在一些实施例中,M可以是由反向散射信号的目标接收设备配置的,或者,也可以是预定义的。
在一些实施例中,一个反向散射频域单元和M个PRB在频域上对齐。
在一些实施例中,一个反向散射频域单元和M个PRB在频域上对齐可以指:
一个反向散射频域单元的起点和M个PRB的起点对齐,且一个反向散射频域单元的终点和M个PRB的终点对齐。
在一些实施例中,所述第一设备进行反向散射所使用的载波信号的最小带宽为OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。
例如,主系统接收机在接收OFDM信号时在频域上进行信道估计的最小单位为M个PRB,则一个反向散射频域单元的大小可以是M个PRB的整数倍,或者说,一个载波信号的最小带宽可以是M个PRB的整数倍。
如图16所示,在NR系统中,终端设备在接收OFDM信号时在频域上进行信道估计的最小单位为4个PRB,则一个反向散射频域单元的大小可以是4个PRB,或者,也可以是其他4的整数倍个PRB。
在一些实施例中,一个反向散射时频单元由一个反向散射符号和一个反向散射频域单元组成,一个反向散射符号的符号宽度等于K个OFDM符号的符号宽度,一个反向散射频域单元的大小等于M个PRB。也就是说,反向散射通信在主系统发送的OFDM信号上由K个OFDM符号和M个PRB构成的一个最小时频单元上进行。
在一些实施例中,第一设备可以在一个反向散射时频单元上基于反向散射的方式对OFDM信号 进行调制,从而发射比特“0”和比特“1”。
若对OFDM信号进行反向散射时传输了比特“0”。例如,可以是对OFDM信号不进行反向散射的状态。这时,对于主系统接收机而言,所接收到的信号为仅为主系统发射机发射的OFDM信号,因此此时反射设备没有引入干扰。
若对主系统的OFDM信号进行反向散射时是为了传输比特“1”。例如,可以是对主系统的OFDM信号进行反向散射的状态,或是对主系统的OFDM信号进行高电平反向散射的状态。这时,对于主系统接收机而言,所接收到的信号为主系统发射机发射的OFDM信号和反向发射信号。此时反射设备有反向散射信号,但反向散射信号是以主系统接收机的一个信道估计的最小单位从整体上进行调制的,也就是说在反向散射信号为对主系统在信道估计的最小单位上的所有OFDM符号进行了整体的相同的反向散射,因此反向散射信号相当于一条多径。由于信道估计的最小单位上也有导频信号,因此这条多径带来的信道变化,可以通过接收机的信道估计器进行估算,这条多径不仅不带来干扰,反而形成了一个有用的信号分量。
由此可见,无论上述哪一种情况,只要满足前述时域和频域的约束关系,反射设备的反向散射信号均不会对主系统带来干扰。
在本申请一些实施例中,反射设备可以对OFDM信号中的部分或全部带宽上的信号进行处理以承载原始信息比特,形成至少一个数据符号。上述处理例如可以包括但不限于编码,加扰,调制等。
在一些实施例中,所述至少一个数据符号可以映射到至少一个反向散射时频单元上传输。
在一些实施例中,一个数据符号可以映射到一个反向散射时频单元上传输。
在一些实施例中,一个数据符号上可以承载1比特信息或多比特信息。例如,若反向散射信号使用开关键控(On-Off Keying,OOK)调制(或幅度键控(Amplitude Shift Keying,ASK),或频率键控(Frequency Shift Keying,FSK))生成,则一个数据符号上可以承载1比特信息。或者,若反向散射信号采用高阶调制方式生成,例如正交相移键控(Quad-Phase Shift Keying,QPSK)调制,则一个数据符号上可以承载2比特信息。
在一些实施例中,在反射设备需要发送的信息为1比特的情况下(如发送肯定应答(Acknowledgement,ACK)/否定应答(Negative Acknowledgement,NACK)的场景),反射设备可以采用单载波反向散射方式,例如实施例1或实施例2中的单载波反向散射方式,将该1比特信息映射到一个反向散射时频单元上。
在另一些实施例中,反射设备需要发送多个信息比特,例如可能几十甚至上百比特,则反射设备可以采用多载波反向散射方式,例如实施例3中的多载波反向散射方式,将该多个比特信息映射到多反向散射时频单元上。这些情况下,需要考虑信息比特的资源映射。
在本申请一些实施例中,反射设备可以在时域和/或频域上将所述至少一个数据符号映射在至少一个反向散射时频单元上。其中,每个反向散射时频单元由一个反向散射符号和一个反向散射频域单元构成。反向散射信号在时域和频域上所占的资源的确定方式参加下文的详细描述。
在一些实施例中,对于前述单载波反向散射的情况,在频域上可以形成一个反射散射频域单元,进一步地,该一个反向散射频域单元和反向散射信号在时域上所占的一个或多个反向散射符号组成用于数据符号映射的一个或多个反向散射时频单元。
在另一些实施例中,对于前述多载波反向散射的情况,在频域上可以形成多个反射散射频域单元,进一步地,该多个反向散射频域单元和反向散射信号在时域上所占的一个或多个反向散射符号组成用于数据符号映射的多个反向散射时频单元。
在一些实施例中,所述第一设备按照先时域后频域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
在一些实施例中,所述第一设备按照先频域后时域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
在一些实施例中,按照时域顺序映射所述至少一个数据符号时,所述第一设备可以按照所述至少一个反向散射时频单元在时域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。换言之,按照所述至少一个反向散射时频单元在时域由先到后或由后到先的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
在一些实施例中,按照频域顺序映射所述至少一个数据符号时,所述第一设备可以按照所述至少一个反向散射时频单元在频域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。换言之,按照所述至少一个反向散射时频单元在频域由低到高或由高到低的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
应理解,在本申请实施例中,本申请并不限定所述至少一个反向散射时频单元的编号方式,例如 可以对所述至少一个反向散射时频单元在时域和频域上单独编号(如图18所示),或者,也可以在时域和频域上联合编号(如图17所示),本申请对此不作限定。
例如,如图17所示,所述至少一个反向散射时频单元包括8个反向散射时频单元,可以按照时域由小到大,频域由低到高的顺序依次对8个反向散射时频单元依次进行编号。
例如,如图18所示,所述至少一个反向散射时频单元包括8个反向散射时频单元,在每个反向散射时域符号上可以按照频域由低到高的顺序依次进行独立编号。
需要说明的是,本申请仅以一个反向散射符号为7个OFDM符号(即K=7),一个反向散射频域单元为4个PRB(即M=4)为例进行说明,一个反向散射符号也可以为其他数量个OFDM符号,一个反向散射频域单元也可以为其他数量个PRB,本申请并不限于此。
以下结合具体实现,说明反向散射的数据符号的资源映射方式。
方式1:按照反向散射时频单元的时间先后顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。该方式1中,反射设备仅在时域上对数据符号进行资源映射。也就是说,所述至少一个反向散射时频单元对应同一个反向散射频域单元。
例如,对于单载波反向散射的情况,由于在频域上最多只能承载一个数据符号,因此,数据符号可以在时域上进行映射。
在一些实施例中,反射设备可以在时域上对至少一个反向散射时频单元按照时间的先后顺序依次编号,进一步按照所述至少一个反向散射时频单元的编号由大到小或由小到大的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
方式2:按照所述反向散射时频单元的的频率高低顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。该方式2中,反射设备仅在频域上对数据符号进行资源映射。也就是说,所述至少一个反向散射时频单元对应同一个反向散射符号。
可选地,该方式2可以适用于如下场景:所述至少一个数据符号包括多个数据符号,所述至少一个反向散射时频单元包括多个反向散射时频单元,所述多个反向散射时频单元在一个反向散射符号上,所述多个反向散射时频单元足够传输所述多个数据符号。
在一些实施例中,对于多载波反向散射的情况,频域上可以形成多个反向散射频域单元,因此,数据符号可以在频域上进行映射。例如将所述多个反向散射时频单元按照频率由低到高的顺序依次编号,按照所述至少一个反向散射时频单元的编号由大到小或由小到大的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
方式3:按照先时域后频域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
可选地,在反射设备需要传输较多信息比特的情况下,反射设备可以在时域和频域上同时进行数据符号的映射。
例如,先将所述至少一个反向散射时频单元按照先频率由低到高再时域由先到后的顺序依次编号,按照所述至少一个反向散射时频单元的编号由大到小或由小到大的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
方式4:按照先频域后时域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
可选地,在反射设备需要传输较多信息比特的情况下,反射设备可以在时域和频域上同时进行数据符号的映射。
例如,将所述至少一个反向散射时频单元按照先时域由先到后再频率由低到高的顺序依次编号,按照所述至少一个反向散射时频单元的编号由大到小或由小到大的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
在本申请一些实施例中,所述方法200还包括:
第一设备根据第一配置信息,对所述OFDM信号的部分带宽上的信号执行反向散射,得到反向散射信号,其中,所述第一配置信息用于配置执行反向散射所使用的载波信号的资源位置和/或反向散射信号的资源位置。
也即,第一配置信息可以配置反射设备利用宽带OFDM信号的哪些位置的信号作为载波信号,和/或,在哪些资源位置上发送反向散射信号。
在一些实施例中,所述第一配置信息包括以下中的至少一项:
所述第一设备对OFDM信号执行反向散射所使用的频率信息,所述第一设备发送反向散射信号所使用的时间信息,所述第一设备发送反向散射信号所使用的频率信息。
在一些实施例中,所述第一设备对OFDM信号执行反向散射所使用的频率信息和所述第一设备 发送反向散射信号所使用的频率信息可以具有固定偏移量。
在一些实施例中,所述第一设备对OFDM信号执行反向散射所使用的频率信息可以用于确定所述第一设备使用OFDM信号的哪些频率部分进行反向散射。
在一些实施例中,所述第一设备发送反向散射信号所使用的时间信息可以用于确定所述反向散射信号所占的时域单元。
在一些实施例中,所述第一设备发送反向散射信号所使用的频率信息可以用于确定所述反向散射信号所占的频率单元。
在一些实施例中,所述第一设备对OFDM信号执行反向散射所使用的频率信息可以包括:
第一设备对OFDM信号执行反向散射的起始频率信息和/或使用的频带长度信息。
可选地,所述第一设备对OFDM信号执行反向散射所使用的频率信息是采用OFDM信号的频域单位(例如PRB)表征的,或者是采用反向散射信号的频域单位(例如M个PRB)表征的。
例如,所述第一设备对OFDM信号执行反向散射所使用的频率信息可以包括:
第一设备对OFDM信号执行反向散射的起始PRB信息和/或使用的PRB个数信息;或者
第一设备对OFDM信号执行反向散射的起始反向散射频域单元信息和/或使用的反向散射频域单元个数信息。
在一些实施例中,所述第一设备发送反向散射信号所使用的时间信息包括以下中的至少一项:
所述第一设备发送反向散射信号的起始时间信息、持续时长信息、所占用的时间单元信息。
可选地,所述第一设备发送反向散射信号所使用的时间信息是采用OFDM信号的时域单位(例如时隙,OFDM符号)表征的,或者是采用反向散射信号的时域单位(例如反向散射符号)表征的。
例如,所述第一设备发送反向散射信号所使用的时间信息可以包括:
所述第一设备发送反向散射信号的起始OFDM符号(或起始时隙)、所在的OFDM数或时隙数。
在一些实施例中,所述第一设备发送反向散射信号所使用的频率信息可以包括:
第一设备发送反向散射信号的起始频率信息和/或使用的频带长度信息。
可选地,所述第一设备发送反向散射信号所使用的频率信息是采用OFDM信号的频域单位(例如PRB)表征的,或者是采用反向散射信号的频域单位(例如M个PRB)表征的。
例如,所述第一设备发送反向散射信号所使用的频率信息可以包括:
第一设备发送反向散射信号的的起始PRB信息和/或使用的PRB个数信息;或者
第一设备发送反向散射信号的起始反向散射频域单元信息和/或使用的反向散射频域单元个数信息。
在一些实施例中,第一设备进行资源映射的至少一个反向散射时频单元可以是根据第一配置信息确定的。
在一些实施例中,所述第一配置信息是所述反向散射信号的目标接收设备配置的。
在一些实施例中,所述第一配置信息是预定义的。
综上,在本申请实施例中,反射设备可以利用OFDM信号的部分或全部带宽上的信号进行反向散射,从而能够实现反射设备和传统终端之间的共生通信。
在一些实施例中,对于零功耗终端,可以利用OFDM信号的部分带宽上的信号进行反向散射。
在另一些实施例中,对于支持反向散射的高能力终端,可以利用OFDM信号的部分或全部带宽上的信号进行反向散射。比如,可以利用OFDM信号进行单载波反向散射,或者,利用OFDM信号进行多载波反向散射。
进一步地,约束反向散射信号在时域上所占的符号宽度和OFDM符号在时域上所占的符号宽度满足K倍关系,从而使得反向散射信号相当于OFDM信号的一条多径。
进一步地,约束一个反向散射符号的符号宽度为OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位,以及第一设备进行反向散射所使用的载波信号的最小带宽为OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。由于信道估计的最小单位上也有导频信号,因此反向散射信号作为一条多径带来的信道变化,在通过接收机的信道估计器进行估算时,不仅不带来干扰,反而形成了一个有用的信号分量。
进一步地,反射设备可以将反向散射的数据符号映射到至少一个反向散射时频单元上,例如采用先时域后频域,或者,先频域后时域的方式将反向散射的数据符号映射到至少一个反向散射时频单元上。
上文结合图6至图18,详细描述了本申请的方法实施例,下文结合图19至图24,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图19示出了根据本申请实施例的通信设备400的示意性框图。如图19所示,该通信设备400包 括:
处理单元410,用于对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号。
在一些实施例中,所述反向散射信号是所述通信设备400将所述OFDM信号作为一个载波信号执行反向散射得到的。
在一些实施例中,所述反向散射信号是所述通信设备400将所述OFDM信号作为多个载波信号,并对所述多个载波信号分别执行反向散射得到的,其中,每个载波信号包括所述OFDM信号的部分带宽上的信号。
在一些实施例中,所述多个载波信号所占用的带宽互不重叠。
在一些实施例中,所述通信设备400包括多个反向散射通信模块,所述多个反向散射通信模块用于对所述多个载波信号分别执行反向散射。
在一些实施例中,所述反向散射信号是所述通信设备400将所述OFDM信号的部分带宽上的信号作为一个载波信号执行反向散射得到的。
在一些实施例中,所述反向散射信号在时域上的单位为反向散射符号,所述OFDM信号在时域上的单位为OFDM符号,其中,一个反向散射符号的符号宽度为K个OFDM符号的符号宽度,其中,K大于1。
在一些实施例中,K是所述反向散射信号的目标接收设备配置的,或者,K是预定义的。
在一些实施例中,一个反向散射符号的符号宽度为所述OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位。
在一些实施例中,一个反向散射符号和K个OFDM符号在时域上对齐。
在一些实施例中,所述反向散射信号在频域上的单位为反向散射频域单元,所述OFDM信号在频域上的单位为物理资源块PRB,其中,一个反向散射频域单元的大小为M个PRB的大小,其中,M为正整数。
在一些实施例中,一个反向散射频域单元和M个PRB在频域上对齐。
在一些实施例中,所述通信设备400进行反向散射所使用的载波信号的最小带宽为所述OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。
在一些实施例中,所述反向散射信号包括至少一个数据符号,所述处理单元410还用于:
用于在时域和/或频域上将所述至少一个数据符号映射在至少一个反向散射时频单元上,其中,所述每个反向散射时频单元由一个反向散射符号和一个反向散射频域单元组成。
在一些实施例中,所述处理单元410还用于:
按照先时域后频域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
在一些实施例中,所述处理单元410还用于:
按照先频域后时域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
在一些实施例中,所述处理单元410还用于:
在按照时域顺序映射所述至少一个数据符号时,按照所述至少一个反向散射时频单元在时域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
在一些实施例中,所述处理单元410还用于:在按照频域顺序映射所述至少一个数据符号时,按照所述至少一个反向散射时频单元在频域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
在一些实施例中,所述处理单元410还用于:
根据第一配置信息,对所述OFDM信号的部分带宽上的信号执行反向散射,得到反向散射信号,其中,所述第一配置信息用于配置执行反向散射所使用的载波信号的资源位置和/或反向散射信号的资源位置。
在一些实施例中,所述第一配置信息包括以下中的至少一项:
所述通信设备400对OFDM信号执行反向散射所使用的频率信息,所述通信设备400发送反向散射信号所使用的时间信息,所述通信设备400发送反向散射信号所使用的的频率信息。
在一些实施例中,所述通信设备400发送反向散射信号所使用的时间信息包括以下中的至少一项:所述第一设备发送反向散射信号的起始时间信息、持续时长信息、所占用的时间单元信息。
在一些实施例中,所述通信设备400对OFDM信号执行反向散射所使用的频率信息是采用OFDM信号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
在一些实施例中,所述通信设备400发送反向散射信号所使用的时间信息是采用OFDM信号的 时域单位表征的,或者是采用反向散射信号的时域单位表征的。
在一些实施例中,所述通信设备400发送反向散射信号所使用的频率信息是采用OFDM信号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
在一些实施例中,所述第一配置信息是所述反向散射信号的目标接收设备配置的,或者,
所述第一配置信息是预定义的。
在一些实施例中,所述通信设备400具有低功耗接收机,所述OFDM信号是通过所述低功耗接收机接收的。
在一些实施例中,所述通信设备400具有低功耗接收机和主接收机,所述OFDM信号是通过所述低功耗接收机或所述主接收机接收的,其中,所述低功耗接收机的功耗低于主接收机的功耗。
在一些实施例中,所述通信设备400具有反向散射发射机,所述反向散射信号是通过所述反向散射发射机发送的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的第一设备或反射设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图18所示方法中第一设备或反射设备的相应流程,为了简洁,在此不再赘述。
图20示出了根据本申请实施例的通信设备500的示意性框图。如图20所示,该通信设备500包括:通信单元510,用于接收反向散射信号,所述反向散射信号是第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号进行反向散射得到的。
在一些实施例中,所述反向散射信号是所述第一设备将所述OFDM信号作为一个载波信号进行反向散射得到的。
在一些实施例中,所述反向散射信号是所述第一设备将所述OFDM信号作为多个载波信号,并对所述多个载波信号分别进行反向散射得到的,其中,每个载波信号包括所述OFDM信号的部分带宽上的信号;
对所述多个载波信号分别进行反向散射,得到反向散射信号。
在一些实施例中,所述多个载波信号所占用的带宽互不重叠。
在一些实施例中,所述第一设备包括多个反向散射通信模块,所述多个反向散射通信模块用于对所述多个载波信号分别进行反向散射。
在一些实施例中,所述反向散射信号是所述第一设备将所述OFDM信号的部分带宽上的信号作为一个载波信号进行反向散射得到的。
在一些实施例中,所述反向散射信号在时域上的单位为反向散射符号,所述OFDM信号在时域上的单位为OFDM符号,其中,一个反向散射符号的符号宽度为K个OFDM符号的符号宽度,其中,K大于1。
在一些实施例中,K是所述通信设备500配置的,或者,K是预定义的。
在一些实施例中,一个反向散射符号的符号宽度为所述OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位。
在一些实施例中,一个反向散射符号和K个OFDM符号在时域上对齐。
在一些实施例中,所述反向散射信号在频域上的单位为反向散射频域单元,所述OFDM信号在频域上的单位为物理资源块PRB,其中,一个反向散射频域单元的大小为M个PRB的大小,其中,M为正整数。
在一些实施例中,一个反向散射频域单元和M个PRB在频域上对齐。
在一些实施例中,所述第一设备进行反向散射所使用的载波信号的最小带宽为所述OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。
在一些实施例中,所述通信单元510还用于:
发送第一配置信息,所述第一配置信息用于配置所述第一设备执行反向散射所使用的载波信号的资源位置和/或反向散射信号的资源位置。
在一些实施例中,所述第一配置信息包括以下中的至少一项:
所述第一设备对OFDM信号执行反向散射所使用的频率信息,所述第一设备发送反向散射信号所使用的时间信息,所述第一设备发送反向散射信号所使用的频率信息。
在一些实施例中,所述第一设备发送反向散射信号所使用的时间信息包括以下中的至少一项:
所述第一设备发送反向散射信号的起始时间信息、持续时长信息、所占用的时间单元信息。
在一些实施例中,所述第一设备对OFDM信号执行反向散射所使用的频率信息是采用OFDM信 号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
在一些实施例中,所述第一设备发送反向散射信号所使用的时间信息是采用OFDM信号的时域单位表征的,或者是采用反向散射信号的时域单位表征的。
在一些实施例中,所述第一设备发送反向散射信号所使用的频率信息是采用OFDM信号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
在一些实施例中,所述第一配置信息是所述通信设备500配置的,或者,
所述第一配置信息是预定义的。
在一些实施例中,所述第一设备具有反向散射发射机,所述反向散射信号是通过所述反向散射发射机发送的。
在一些实施例中,所述第一设备具有低功耗接收机,所述OFDM信号是通过所述低功耗接收机接收的。
在一些实施例中,所述第一设备具有低功耗接收机和主接收机,所述OFDM信号是通过所述低功耗接收机或所述主接收机接收的,其中,所述低功耗接收机的功耗低于主接收机的功耗。
在一些实施例中,所述通信设备500为网络设备或终端设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备500可对应于本申请方法实施例中的第二设备,并且通信设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图18所示方法中第二设备的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例提供的一种通信设备600示意性结构图。图21所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图21所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备或反射设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备或反射设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备(即反向散射信号的目标接收设备),并且该通信设备600可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图22是本申请实施例的芯片的示意性结构图。图22所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图22所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备或反射设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备或反射设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图23是本申请实施例提供的一种通信系统900的示意性框图。如图23所示,该通信系统900包括反射设备910和网络设备920。
其中,该反射设备910可以用于实现上述方法中由第一设备或反射设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由第二设备实现的相应的功能为了简洁,在此不再赘述。
图24是本申请实施例提供的另一种通信系统900的示意性框图。如图24所示,该通信系统900包括反射设备1010、网络设备1020和终端设备1030。
其中,该反射设备1010可以用于实现上述方法中由第一设备或反射设备实现的相应的功能,该网络设备1020可以用于实现上述方法中由第三设备实现的相应的功能,该终端设备1030可以用于实现上述方法中由第二设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤, 能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (57)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号。
  2. 根据权利要求1所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号作为一个载波信号执行反向散射得到的。
  3. 根据权利要求1所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号作为多个载波信号,并对所述多个载波信号分别执行反向散射得到的,其中,每个载波信号包括所述OFDM信号的部分带宽上的信号。
  4. 根据权利要求3所述的方法,其特征在于,所述多个载波信号所占用的带宽互不重叠。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一设备包括多个反向散射通信模块,所述多个反向散射通信模块用于对所述多个载波信号分别执行反向散射。
  6. 根据权利要求1所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号的部分带宽上的信号作为一个载波信号执行反向散射得到的。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述反向散射信号在时域上的单位为反向散射符号,所述OFDM信号在时域上的单位为OFDM符号,其中,一个反向散射符号的符号宽度为K个OFDM符号的符号宽度,其中,K大于1。
  8. 根据权利要求7所述的方法,其特征在于,K是所述反向散射信号的目标接收设备配置的,或者,K是预定义的。
  9. 根据权利要求7或8所述的方法,其特征在于,一个反向散射符号的符号宽度为所述OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,一个反向散射符号和K个OFDM符号在时域上对齐。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述反向散射信号在频域上的单位为反向散射频域单元,所述OFDM信号在频域上的单位为物理资源块PRB,其中,一个反向散射频域单元的大小为M个PRB的大小,其中,M为正整数。
  12. 根据权利要求11所述的方法,其特征在于,一个反向散射频域单元和M个PRB在频域上对齐。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述第一设备进行反向散射所使用的载波信号的最小带宽为所述OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述反向散射信号包括至少一个数据符号,所述方法还包括:
    所述第一设备在时域和/或频域上将所述至少一个数据符号映射在至少一个反向散射时频单元上,其中,每个反向散射时频单元由一个反向散射符号和一个反向散射频域单元组成。
  15. 根据权利要求14所述的方法,其特征在于,所述第一设备在时域和/或频域上将所述至少一个数据符号映射在至少一个反向散射时频单元上,包括:
    所述第一设备按照先时域后频域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
  16. 根据权利要求14所述的方法,其特征在于,所述第一设备在时域和/或频域上将所述至少一个数据符号映射在至少一个反向散射时频单元上,包括:
    所述第一设备按照先频域后时域的顺序,依次将所述至少一个数据符号映射在至少一个反向散射时频单元上。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,所述第一设备按照时域顺序映射所述至少一个数据符号,包括:
    按照所述至少一个反向散射时频单元在时域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
  18. 根据权利要求14-17中任一项所述的方法,其特征在于,所述第一设备按照频域顺序映射所述至少一个数据符号,包括:
    按照所述至少一个反向散射时频单元在频域的编号由小到大或由大到小的顺序,依次将所述至少一个数据符号映射在所述至少一个反向散射时频单元上。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述第一设备对所述OFDM信号的 部分带宽上的信号执行反向散射,得到反向散射信号,包括:
    所述第一设备根据第一配置信息,对所述OFDM信号的部分带宽上的信号执行反向散射,得到反向散射信号,其中,所述第一配置信息用于配置执行反向散射所使用的载波信号的资源位置和/或反向散射信号的资源位置。
  20. 根据权利要求19所述的方法,其特征在于,所述第一配置信息包括以下中的至少一项:
    所述第一设备对OFDM信号执行反向散射所使用的频率信息,所述第一设备发送反向散射信号所使用的时间信息。
  21. 根据权利要求20所述的方法,其特征在于,所述第一设备发送反向散射信号所使用的时间信息包括以下中的至少一项:
    所述第一设备发送反向散射信号的起始时间信息、持续时长信息、所占用的时间单元信息。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一设备对OFDM信号执行反向散射所使用的频率信息是采用OFDM信号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
  23. 根据权利要求20-22中任一项所述的方法,其特征在于,所述第一设备发送反向散射信号所使用的时间信息是采用OFDM信号的时域单位表征的,或者是采用反向散射信号的时域单位表征的。
  24. 根据权利要求19-23中任一项所述的方法,其特征在于,
    所述第一配置信息是所述反向散射信号的目标接收设备配置的,或者,
    所述第一配置信息是预定义的。
  25. 根据权利要求1-24中任一项所述的方法,其特征在于,所述第一设备具有低功耗接收机,所述OFDM信号是通过所述低功耗接收机接收的。
  26. 根据权利要求1-24中任一项所述的方法,其特征在于,所述第一设备具有低功耗接收机和主接收机,所述OFDM信号是通过所述低功耗接收机或所述主接收机接收的,其中,所述低功耗接收机的功耗低于主接收机的功耗。
  27. 根据权利要求1-26中任一项所述的方法,其特征在于,所述第一设备具有反向散射发射机,所述反向散射信号是通过所述反向散射发射机发送的。
  28. 一种无线通信的方法,其特征在于,包括:
    第二设备接收反向散射信号,所述反向散射信号是第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号进行反向散射得到的。
  29. 根据权利要求28所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号作为一个载波信号进行反向散射得到的。
  30. 根据权利要求28所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号作为多个载波信号,并对所述多个载波信号分别进行反向散射得到的,其中,每个载波信号包括所述OFDM信号的部分带宽上的信号;
    对所述多个载波信号分别进行反向散射,得到反向散射信号。
  31. 根据权利要求30所述的方法,其特征在于,所述多个载波信号所占用的带宽互不重叠。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第一设备包括多个反向散射通信模块,所述多个反向散射通信模块用于对所述多个载波信号分别进行反向散射。
  33. 根据权利要求32所述的方法,其特征在于,所述反向散射信号是所述第一设备将所述OFDM信号的部分带宽上的信号作为一个载波信号进行反向散射得到的。
  34. 根据权利要求28-33中任一项所述的方法,其特征在于,所述反向散射信号在时域上的单位为反向散射符号,所述OFDM信号在时域上的单位为OFDM符号,其中,一个反向散射符号的符号宽度为K个OFDM符号的符号宽度,其中,K大于1。
  35. 根据权利要求34所述的方法,其特征在于,K是所述反向散射信号的目标接收设备配置的,或者,K是预定义的。
  36. 根据权利要求34或35所述的方法,其特征在于,一个反向散射符号的符号宽度为所述OFDM信号的目标接收设备在接收OFDM信号时在时域上进行信道估计的最小单位。
  37. 根据权利要求34-36中任一项所述的方法,其特征在于,一个反向散射符号和K个OFDM符号在时域上对齐。
  38. 根据权利要求28-37中任一项所述的方法,其特征在于,所述反向散射信号在频域上的单位为反向散射频域单元,所述OFDM信号在频域上的单位为物理资源块PRB,其中,一个反向散射频域单元的大小为M个PRB的大小,其中,M为正整数。
  39. 根据权利要求38所述的方法,其特征在于,一个反向散射频域单元和M个PRB在频域上 对齐。
  40. 根据权利要求28-39中任一项所述的方法,其特征在于,所述第一设备进行反向散射所使用的载波信号的最小带宽为所述OFDM信号的目标接收设备在接收OFDM信号时在频域上进行信道估计的最小单位。
  41. 根据权利要求28-40中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备发送第一配置信息,所述第一配置信息用于配置所述第一设备执行反向散射所使用的载波信号的资源位置和/或反向散射信号的资源位置。
  42. 根据权利要求41所述的方法,其特征在于,所述第一配置信息包括以下中的至少一项:
    所述第一设备对OFDM信号执行反向散射所使用的频率信息,所述第一设备发送反向散射信号所使用的时间信息。
  43. 根据权利要求42所述的方法,其特征在于,所述第一设备发送反向散射信号所使用的时间信息包括以下中的至少一项:
    所述第一设备发送反向散射信号的起始时间信息、持续时长信息、所占用的时间单元信息。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第一设备对OFDM信号执行反向散射所使用的频率信息是采用OFDM信号的频域单位表征的,或者是采用反向散射信号的频域单位表征的。
  45. 根据权利要求42-44中任一项所述的方法,其特征在于,所述第一设备发送反向散射信号所使用的时间信息是采用OFDM信号的时域单位表征的,或者是采用反向散射信号的时域单位表征的。
  46. 根据权利要求42-45中任一项所述的方法,其特征在于,
    所述第一配置信息是所述反向散射信号的目标接收设备配置的,或者,
    所述第一配置信息是预定义的。
  47. 根据权利要求28-46中任一项所述的方法,其特征在于,所述第一设备具有反向散射发射机,所述反向散射信号是通过所述反向散射发射机发送的。
  48. 根据权利要求28-47中任一项所述的方法,其特征在于,所述第一设备具有低功耗接收机,所述OFDM信号是通过所述低功耗接收机接收的。
  49. 根据权利要求28-47中任一项所述的方法,其特征在于,所述第一设备具有低功耗接收机和主接收机,所述OFDM信号是通过所述低功耗接收机或所述主接收机接收的,其中,所述低功耗接收机的功耗低于主接收机的功耗。
  50. 根据权利要求28-49中任一项所述的方法,其特征在于,所述第二设备为网络设备或终端设备。
  51. 一种通信设备,其特征在于,包括:
    处理单元,用于对正交频分复用OFDM信号的全部带宽或部分带宽上的信号执行反向散射,得到反向散射信号。
  52. 一种通信设备,其特征在于,包括:
    通信单元,用于接收反向散射信号,所述反向散射信号是第一设备对正交频分复用OFDM信号的全部带宽或部分带宽上的信号进行反向散射得到的。
  53. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至27中任一项所述的方法,或如权利要求28至50中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法,或如权利要求28至50中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或如权利要求28至50中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法,或如权利要求28至50中任一项所述的方法。
  57. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或如权利要求28至50中任一项所述的方法。
PCT/CN2022/097890 2022-06-09 2022-06-09 无线通信的方法和设备 WO2023236144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097890 WO2023236144A1 (zh) 2022-06-09 2022-06-09 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097890 WO2023236144A1 (zh) 2022-06-09 2022-06-09 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023236144A1 true WO2023236144A1 (zh) 2023-12-14

Family

ID=89117276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097890 WO2023236144A1 (zh) 2022-06-09 2022-06-09 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2023236144A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN106921415A (zh) * 2017-03-09 2017-07-04 电子科技大学 一种用于环境反向散射通信系统的信号接收方法
CN109073573A (zh) * 2016-04-04 2018-12-21 华盛顿大学 提供包含ofdm包的经反向散射信号的反向散射装置及系统
CN109412992A (zh) * 2018-11-13 2019-03-01 上海交通大学 基于正交频分多址技术的反向散射系统及方法
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法
CN114424029A (zh) * 2019-07-26 2022-04-29 费布斯光学公司 用于重建反向散射的电磁矢量波的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073573A (zh) * 2016-04-04 2018-12-21 华盛顿大学 提供包含ofdm包的经反向散射信号的反向散射装置及系统
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN106921415A (zh) * 2017-03-09 2017-07-04 电子科技大学 一种用于环境反向散射通信系统的信号接收方法
CN109412992A (zh) * 2018-11-13 2019-03-01 上海交通大学 基于正交频分多址技术的反向散射系统及方法
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法
CN114424029A (zh) * 2019-07-26 2022-04-29 费布斯光学公司 用于重建反向散射的电磁矢量波的方法和设备

Similar Documents

Publication Publication Date Title
WO2023071864A1 (zh) 发送信号的方法和装置
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2023201493A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
US20240137194A1 (en) Method and device for wireless communication
WO2023279236A1 (zh) 无线通信的方法和设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2024040402A1 (zh) 无线通信的方法和设备
WO2024098403A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945289

Country of ref document: EP

Kind code of ref document: A1