WO2023168699A1 - 上报uci的方法、终端设备和网络设备 - Google Patents

上报uci的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023168699A1
WO2023168699A1 PCT/CN2022/080366 CN2022080366W WO2023168699A1 WO 2023168699 A1 WO2023168699 A1 WO 2023168699A1 CN 2022080366 W CN2022080366 W CN 2022080366W WO 2023168699 A1 WO2023168699 A1 WO 2023168699A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
backscatter
uci
duration
pdsch
Prior art date
Application number
PCT/CN2022/080366
Other languages
English (en)
French (fr)
Inventor
崔胜江
徐伟杰
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/080366 priority Critical patent/WO2023168699A1/zh
Priority to CN202280093193.2A priority patent/CN118805412A/zh
Publication of WO2023168699A1 publication Critical patent/WO2023168699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the embodiments of this application relate to the field of communications, and more specifically, to methods, terminal devices, and network devices for reporting UCI,
  • terminal equipment usually reports uplink control information (UCI) to network equipment through physical uplink channels, such as physical uplink control channel (Physical Uplink Control Channel, PUCCH)/physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) .
  • physical uplink control channel Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • Embodiments of the present application provide a method, terminal equipment, and network equipment for reporting UCI, which can not only avoid resource conflicts between UCI reporting and other channels, but also reduce the transmission delay of UCI.
  • this application provides a method for reporting UCI, including:
  • this application provides a method for reporting UCI, including:
  • this application provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above first aspect or its respective implementations.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • this application provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • the network device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit can be an input circuit or interface of the communication chip, and the sending unit can be an output circuit or interface of the communication chip.
  • this application provides a terminal device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device also includes a transmitter (transmitter) and a receiver (receiver).
  • this application provides a network device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above second aspect or its respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or their respective implementations. method in.
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof. .
  • the present application provides a computer program product, including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the first backscatter resource may be an uplink resource or a downlink resource for a physical channel, that is, the terminal device may transmit data to the network device on the uplink resource or downlink resource.
  • Reporting the first UCI reduces the transmission delay of the first UCI; on the other hand, when the first UCI is reported based on the first backscattering resource, other channels can be used as Scattered carriers, therefore, when the terminal device reports the first UCI based on the first backscatter resource, it can be better compatible with other channels, for example, even if the first backscatter resource is different from other physical uplink channels If there is a conflict, the terminal device can still report the first UCI to the network device based on the first backscattering resource, which is equivalent to enabling resource sharing of the transmission resources of the first UCI and other channels, which not only avoids the The problem of cancellation of transmission of the first UCI caused by resource conflicts between the reporting of the first UCI and other channels can also reduce the transmission delay of the first UCI.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the zero-power communication system provided by this application.
  • FIG. 3 is a schematic diagram of energy harvesting provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of backscatter communication provided by this application.
  • Figure 5 is a schematic circuit diagram of resistive load modulation provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a subcarrier modulation method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the OOK modulation method provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of a method for reporting UCI provided by an embodiment of the present application.
  • Figure 9 is an example of determining the first backscattering resource based on the first indication information provided by the embodiment of the present application.
  • Figure 10 is an example of determining the first backscattering resource for carrying HARQ-ACK based on the PDSCH resource location provided by the embodiment of the present application.
  • Figure 11 is an example of the first duration provided by the embodiment of the present application.
  • Figure 12 is an example of the first configuration resource provided by the embodiment of the present application.
  • Figures 13 and 14 are examples in which the first backscatter resource among the candidate backscatter resources of the terminal device after the first moment related to the first UCI is used as the first backscatter resource provided by the embodiment of the present application.
  • Figure 15 is another schematic flowchart of the UCI reporting method provided by the embodiment of the present application.
  • Figure 16 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that A and B are related. relation.
  • the term "preconfiguration" or "preset value" in this article can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including terminal equipment and network equipment). This application There is no limitation on its specific implementation method. For example, preconfiguration can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • Embodiments of the present application can be applied to various communication systems, including but not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, broadband code division multiple access system Address (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (Advanced long term evolution, LTE-A) System, New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access on unlicensed spectrum) to unlicensed spectrum (NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication system, zero Power consumption communication systems, cellular IoT, cellular passive IoT or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • cellular Internet of Things is the development product of the combination of cellular mobile communication network and Internet of Things.
  • Cellular passive IoT also known as passive cellular IoT, is a combination of network equipment and passive terminals.
  • passive terminals can communicate with other passive terminals through network equipment.
  • passive terminals can communicate using Device to Device (D2D) communication, and network devices only need to send carrier signals, that is, energy supply signals, to supply energy to passive terminals.
  • D2D Device to Device
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the embodiments of this application do not limit the applied spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the network device may be a device used to communicate with mobile devices, and the network device may be an access point (Access Point, AP) in WLAN, GSM or
  • the base station (Base Transceiver Station, BTS) in CDMA can also be the base station (NodeB, NB) in WCDMA, or the evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle equipment, wearable devices, network equipment (gNB) in NR networks or network equipment in future evolved PLMN networks, etc.
  • network equipment provides services for a cell
  • terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment (for example, base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell (Pico) Cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment may also be called user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, or zero-power consumption equipment, etc.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • a zero-power consumption device may be understood as a device whose power consumption is lower than a preset power consumption. For example, it includes passive terminals and even semi-passive terminals.
  • the zero-power device is a radio frequency identification (Radio Frequency Identification, RFID) tag, which is a technology that uses the spatial coupling of radio frequency signals to achieve contactless automatic transmission and identification of tag information.
  • RFID tags are also called "radio frequency tags" or “electronic tags”.
  • the types of electronic tags classified according to different power supply methods can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, mean that the energy for the operation of the electronic tag is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag. Different from the passive radio frequency activation method, it passes through the battery until the battery is replaced. Set the frequency band to send messages.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • a passive electronic tag When a passive electronic tag is close to a reader, the tag is within the near field range formed by the radiation of the reader's antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price and long service life.
  • the built-in battery can be used when there is no reader access. It only provides power to a few circuits in the chip. Only when the reader is accessed, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • the RFID system is a wireless communication system.
  • the RFID system is composed of two parts: electronic tag (TAG) and reader/writer (Reader/Writer).
  • Electronic tags include coupling components and chips. Each electronic tag has a unique electronic code and is placed on the target to mark the target object.
  • the reader/writer can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
  • Zero-power communication uses energy harvesting and backscatter communication technology.
  • the related technologies of zero power consumption will be described.
  • Figure 2 is a schematic diagram of the zero-power communication system provided by this application.
  • the zero-power communication system consists of network equipment and zero-power terminals.
  • the network equipment is used to send wireless energy supply signals to zero-power terminals, downlink communication signals, and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module and a low-power computing module.
  • the zero-power terminal can also be equipped with a memory or sensor to store some basic information (such as item identification, etc.) or obtain sensing data such as ambient temperature and ambient humidity.
  • Zero-power communication can also be called communication based on zero-power terminals.
  • the key technologies of zero-power communication mainly include radio frequency energy harvesting and backscatter communication.
  • FIG. 3 is a schematic diagram of energy harvesting provided by the embodiment of this application.
  • the energy collection module may include a capacitor C and a resistor RL .
  • the energy collection module collects space electromagnetic wave energy based on the principle of electromagnetic induction, thereby obtaining the energy required to drive zero-power terminals, such as for driving Low-power demodulation and modulation modules, sensors and memory reading, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the principle of electromagnetic induction means that as long as the magnetic flux passing through the closed circuit changes, an induced current will be generated in the closed circuit.
  • the capacitor C and the resistor R L can be used to form a closed circuit.
  • the radio frequency energy harvesting module receives the radio frequency (RF), it can generate an induced current and store the generated induced current in the capacitor C to realize space control. Harvesting of electromagnetic wave energy.
  • RF radio frequency
  • FIG. 4 is a schematic diagram of backscatter communication provided by this application.
  • the network device when the network device serves as the transmitter (TX), the network device sends the carrier wave to the zero-power device through the amplifier (AMP).
  • the zero-power device uses the energy collected by the energy collection module to drive the logic processing module to process the information that needs to be sent, and loads the information that needs to be sent into the received carrier through the variable resistor. to obtain the reflected signal, and finally the reflected signal is radiated from the antenna.
  • This information transmission process is called backscatter communication.
  • the network device when the network device serves as the receiving end (RX), it can receive the reflected signal sent by the zero-power device through the low noise amplifier (LNA).
  • the AMP and the LNA can each be connected to a voltage display light, and an emergency light can be set between the voltage display lights of the AMP and the LNA.
  • backscatter communication principle shown in Figure 4 is illustrated through zero-power consumption devices and network devices. In fact, any device with backscatter communication capabilities can implement backscatter communication.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the rhythm of the data flow, so that the size and phase of the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • Figure 5 is a schematic circuit diagram of resistive load modulation provided by an embodiment of the present application.
  • the resistor R L is connected in parallel with a resistor R 3 .
  • the resistor R L can be called the load modulation resistor.
  • the branches where the resistor R L and the resistor R 3 are located are turned on or off based on the control of the switch S. Open, the switch S can be controlled by a binary data stream, and the switching of the branch where R L and resistor R 3 are located will cause changes in the circuit voltage.
  • the resistor R L can be connected in parallel with the inductor L 1 through the resistor R 2 .
  • the inductor L 1 is used to form a resonant circuit with the inductor L 2 .
  • the opening and closing of the branch where R L and the resistor R 3 are located will cause the circuit voltage. Changes in the resonant frequency of the resonant circuit will in turn lead to changes in the resonant frequency of the resonant circuit, ultimately achieving amplitude keying modulation (ASK), that is, by adjusting the amplitude of the backscattered signal from the zero-power terminal to achieve signal modulation and transmission.
  • ASK amplitude keying modulation
  • the inductor L 2 can also be used to be connected to the capacitor C 2 , and the capacitor C 2 can be used to convert changes in the resonant frequency of the resonant circuit into signals for transmission by the antenna.
  • the resonant frequency of the resonant circuit can be changed by switching on and off the branch of the capacitor C 1 and resistor R 3 to achieve frequency keying modulation (FSK), that is, by adjusting the zero-power terminal
  • FSK frequency keying modulation
  • zero-power terminals Since the zero-power terminal uses load modulation to perform information modulation on the incoming signal, the backscattering communication process is realized. Therefore, zero-power terminals have significant advantages:
  • the terminal equipment does not actively transmit signals and achieves backscatter communication by modulating the incoming wave signal.
  • the terminal equipment does not rely on traditional active power amplifier transmitters and uses low-power computing units to greatly reduce hardware complexity.
  • the above terminal device can be a zero-power consumption device (such as a passive terminal or even a semi-passive terminal), or even a non-zero power consumption device, such as an ordinary terminal.
  • the ordinary terminal can be used in some situations. backscatter communication.
  • the data transmitted by the terminal device can use different forms of codes to represent binary "1" and "0".
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller encoding spread dynamic encoding. In layman's terms, different pulse signals are used to represent 0 and 1.
  • zero-power terminals can be divided into the following types based on their energy sources and usage methods:
  • a zero-power terminal does not need a built-in battery.
  • a zero-power terminal When a zero-power terminal is close to a network device (such as a reader/writer of an RFID system), the zero-power terminal is within the near field range formed by the antenna radiation of the network device. Therefore, the zero-power terminal antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple. For example, they do not require low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, ADC, etc., so they are small in size, light in weight, and very affordable. Cheap, long service life and many other advantages.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC crystal oscillator
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use an RF energy collection module to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the semi-passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used during operation, the energy comes from the energy harvesting module. of radio energy, so it is also a truly zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminal used can also be an active zero-power terminal, which can have a built-in battery. Batteries are used to drive low-power chip circuits in zero-power terminals. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. But for backscatter links, zero-power terminals use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering. That is to say, the active zero-power terminal supplies power to the RFID chip through the built-in battery to increase the reading and writing distance of the zero-power terminal and improve the reliability of communication. Therefore, it can be used in some scenarios that have relatively high requirements on communication distance, read latency, etc.
  • the zero-power consumption terminal can collect energy based on the energy supply signal.
  • the energy supply signal can be a base station, a smart phone, a smart gateway, a charging station, a micro base station, etc.
  • the energy supply signal can be a low frequency, medium frequency, high frequency signal, etc.
  • the energy supply signal may be a sine wave, a square wave, a triangular wave, a pulse, a rectangular wave, etc.
  • the energy supply signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the energy supply signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Control Channel
  • the carrier signal sent by the above network device can also be used to provide energy to the zero-power consumption device, the carrier signal can also be called an energy supply signal.
  • the zero-power terminal may perform backscatter communication based on the received trigger signal.
  • the trigger signal may be used to schedule or trigger zero-power terminal backscatter communication.
  • the trigger signal carries scheduling information of the network device, or the trigger signal is scheduling signaling or a scheduling signal sent by the network device.
  • the trigger signal can be a base station, a smart phone, a smart gateway, etc.
  • the trigger signal can be a low frequency, medium frequency, high frequency signal, etc.
  • the trigger signal may be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the trigger signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
  • the energy supply signal and the trigger signal may be one signal or two independent signals, which is not specifically limited in this application.
  • the signal used for energy supply ie, the energy supply signal
  • the signal used for information transmission ie, the trigger signal
  • the energy supply signal and the trigger signal may be one signal
  • the energy supply signal and the trigger signal may be two independent signals. These two signals may not be sent in the same frequency band.
  • network equipment continuously or intermittently sends energy supply signals in a certain frequency band, and zero-power devices collect energy. After the zero-power device obtains energy, it can perform corresponding communication processes, such as measurement, channel/signal reception, channel /Signal sending, etc.
  • zero-power devices can send on preset resources. For example, different user IDs or different user types can use different resources. Zero-power devices can also send based on the scheduling of network devices. That is, the trigger signal is received and sent based on the scheduling of the trigger signal.
  • subcarrier modulation or On-Off Keying (OOK) modulation is used in the reverse link to modulate the encoded baseband coded data stream.
  • Figure 6 is a schematic diagram of a subcarrier modulation method provided by an embodiment of the present application.
  • the zero-power device first generates a low-frequency subcarrier, and then modulates the encoded baseband coded data stream on the low-frequency subcarrier to obtain the modulated subcarrier; after that, The modulated subcarrier is modulated on a high-frequency carrier through load modulation to obtain a modulated high-frequency subcarrier.
  • Figure 7 is a schematic diagram of the OOK modulation method provided by the embodiment of the present application.
  • the zero-power device modulates the encoded baseband encoded data stream on the signal received by the zero-power device to obtain the reflected signal, and sends the transmitted signal to the network device.
  • the signal received by the zero-power consumption device can be a high-frequency signal or a specific carrier signal.
  • passive IoT devices can be based on existing zero-power devices, such as Radio Frequency Identification (RFID) technology, and can be extended on this basis to be suitable for cellular IoT.
  • RFID Radio Frequency Identification
  • the following describes the reporting scheme of uplink control information (UCI) based on the physical uplink channel.
  • UCI uplink control information
  • the terminal device can report UCI to the network device through the physical uplink channel.
  • the terminal device can report UCI to the network device through the Physical Uplink Control Channel (PUCCH) or the Physical Uplink Shared Channel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the UCI may include at least one of the following: Hybrid Automatic Repeat Request-ACK (HARQ-ACK) information, HARQ non-acknowledgement (NACK) information, Radio Resource Control (RRC) reconfiguration signaling, Scheduling Request (SR), Link Recovery Request (LRR), Channel State Information (CSI).
  • HARQ-ACK Hybrid Automatic Repeat Request-ACK
  • NACK HARQ non-acknowledgement
  • RRC Radio Resource Control
  • SR Scheduling Request
  • LRR Link Recovery Request
  • CSI Channel State Information
  • the network device can configure up to 4 PUCCH resource sets for the terminal device through high-level signaling.
  • Resource set 0 is used to carry 1 to 2 bits of UCI.
  • the load of resource sets 1 and 2 can be configured through high-level signaling, and
  • the maximum load of resource set 3 is 1706, which comes from the limitation of Polar encoding.
  • high-layer signaling can configure up to 32 PUCCH resources; when the number of PUCCH resources is not greater than 8, the PUCCH resources to be used are determined directly according to the instructions in the DCI; when the PUCCH resources When the number is greater than 8, the PUCCH resources used are determined based on the index of the Control Channel Element (CCE) and the 3-bit indication information in the Downlink Control Information (DCI).
  • CCE Control Channel Element
  • DCI Downlink Control Information
  • high-layer signaling can configure up to 8 PUCCH resources, and the terminal device can determine the PUCCH resources to use based on the 3-bit indication information in the DCI.
  • the network device can determine the offset value used to determine the transmission resource of the UCI for the UCI, and indicate the determined offset value through the DCI format or higher layer signaling that schedules PUSCH transmission. to the terminal device.
  • the terminal device may send UCI, such as HARQ-ACK information and/or CSI, to the network device in a multiplexing manner.
  • situations where PUCCH and/or PUSCH transmissions with different priority indexes overlap include but are not limited to:
  • Case 1 A first PUCCH with a larger priority index and a second PUCCH or PUSCH with a smaller priority index.
  • Case 2 PUSCH with a larger priority index and PUCCH with a smaller priority index are configured.
  • Case 3 The first PUCCH with a larger priority index that carries HARQ-ACK information and is only used in response to one PDSCH reception (no corresponding PDCCH), and any of the following: carries SR and/or The second PUCCH of CSI with a lower priority index; the scheduling-free PUSCH with a lower priority index; the PUSCH with a lower priority index that does not have a corresponding PDCCH carrying SP-CSI reporting information.
  • Case 4 A PUSCH with a larger priority index that has SP-CSI reporting information but no corresponding PDCCH and carries at least one of SR, CSI, and HARQ-ACK information (only in response to PDSCH reception without a corresponding PDCCH) , and a PUCCH with a smaller priority index.
  • Case 5 On the same cell, a scheduling-free PUSCH with a higher priority index and a grant-free scheduling PUSCH with a lower priority index.
  • the terminal device When two physical uplink channels with different priority indexes overlap in time, the terminal device will process the transmission of the physical uplink channel with a lower priority index. For example, if a physical uplink channel with a lower priority index overlaps with a physical uplink channel with a higher priority index in time, the terminal device will cancel the physical uplink channel with a higher priority index that overlaps with the physical uplink channel with a higher priority index. Low physical uplink channel transmission. Further, the terminal device may also cancel the transmission of the physical uplink channel with a lower priority index before the first symbol that overlaps with the physical uplink channel with a higher priority index.
  • PUCCH transmission (or PUSCH transmission) with different priorities and repeated transmission of PUCCH (or repeated transmission of PUSCH) may also overlap in the time domain.
  • the terminal device cancels the overlap with the PUCCH transmission.
  • PUSCH transmission (or repeated transmission of PUCCH).
  • the terminal equipment may also cancel the PUSCH transmission (or repeated transmission of PUCCH) before the first symbol that overlaps with the PUCCH transmission.
  • the terminal device cancels the PUCCH that overlaps with the PUSCH transmission. repeated transmission.
  • the terminal equipment can also cancel the repeated transmission of PUCCH before the first symbol that overlaps with PUSCH transmission. For another example, if the repeated transmission of PUCCH (or repeated transmission of PUSCH) with a lower priority index overlaps in time with the PUCCH transmission (or PUSCH transmission) with a higher priority index, the terminal equipment cancels the transmission with A PUCCH transmission (or a PUSCH transmission) with a higher priority index causes repeated transmission of an overlapping PUCCH (or a repeated transmission of a PUSCH). Furthermore, the terminal device may also cancel the repeated transmission of the PUCCH with the lower priority index (or the repeated transmission of the PUSCH) before the first symbol that overlaps with the PUCCH transmission (or the PUSCH transmission) with the higher priority index.
  • UCI reporting based on physical uplink channels such as UCI reporting based on PUCCH and/or PUSCH
  • PUCCH and/or PUSCH will cause conflicts with other channels, and canceling UCI reporting may cause UCI reporting to cause a large delay.
  • embodiments of the present application provide a method, terminal equipment, and network equipment for reporting UCI, which can avoid conflicts with other channels and reduce transmission delays.
  • Figure 8 is a schematic flowchart of a UCI reporting method 200 provided by an embodiment of the present application.
  • the method 200 may be executed by a terminal device.
  • the terminal device may be a zero-power device, or may be a terminal device that supports backscatter communication, that is, a terminal device that does not require energy harvesting, such as a traditional device loaded with or integrated with a backscatter communication module.
  • the method 200 may be executed by the terminal device 120 as shown in FIG. 1 , or as another example, the method 200 may be executed by the zero-power consumption device 120 .
  • the method 200 may include:
  • the terminal device determines the first backscattering resource used to report the first uplink control information UCI;
  • the terminal device reports the first UCI to the network device based on the first backscatter resource.
  • the terminal device after determining the first backscatter resource, reports the first UCI to the network device in a backscatter communication manner based on the first backscatter resource. For example, a terminal device with backscatter communication capability reports the first UCI to the network device in the first backscatter resource.
  • the first backscatter resource may be an uplink resource or a downlink resource for a physical channel, that is, the terminal device may transmit data to the network device on the uplink resource or downlink resource.
  • Reporting the first UCI reduces the transmission delay of the first UCI; on the other hand, when the first UCI is reported based on the first backscattering resource, other channels can be used as Scattered carriers, therefore, when the terminal device reports the first UCI based on the first backscatter resource, it can be better compatible with other channels, for example, even if the first backscatter resource is different from other physical uplink channels If there is a conflict, the terminal device can still report the first UCI to the network device based on the first backscattering resource, which is equivalent to enabling resource sharing of the transmission resources of the first UCI and other channels, which not only avoids the The problem of cancellation of transmission of the first UCI caused by resource conflicts between the reporting of the first UCI and other channels can also reduce the transmission delay of the first UCI.
  • the method 200 may further include:
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate the first backscattering resource.
  • the terminal device determines the first backscattering resource through the first indication information sent by the network device.
  • the first indication information is used to indicate at least one of the following: a start time of the first backscatter resource, a duration of the first backscatter resource, the third The frequency domain location of a backscatter resource.
  • the first indication information includes at least one field, and the information carried by the at least one field is used to indicate the starting time of the first backscatter resource and/or the start time of the first backscatter resource. duration.
  • the first indication information indicates at least one of the following through a first resource configuration index: a starting time of the first backscatter resource, a duration of the first backscatter resource , the frequency domain position of the first backscattering resource.
  • the first indication information includes at least one field, and the information carried by the first field in the at least one field is used to indicate the starting time of the first backscattering resource and is used to indicate the first backscattering resource.
  • the duration of a backscatter resource is used to carry the first resource configuration index.
  • the terminal device may determine the starting position corresponding to the first resource configuration index as the starting time of the first backscattering resource; the terminal device may configure the first resource The duration corresponding to the index is determined as the duration of the first backscatter resource; the terminal device may determine the frequency domain position corresponding to the first resource configuration index as the duration of the first backscatter resource. Frequency domain location.
  • the frequency domain position of the first backscattering resource includes but is not limited to: the frequency domain starting position of the first backscattering resource, the frequency domain end position of the first backscattering resource, The frequency point location where the first backscattering resource is located, etc.
  • the frequency domain location of the first backscatter resource may only include the frequency point where the first backscatter resource is located.
  • the first backscatter resource may include a frequency domain start position and a frequency domain end position of the first backscatter resource. It should be understood that the frequency domain starting position and the frequency domain ending position of the first backscattering resource can also be replaced by the frequency band in which the first backscattering resource is located.
  • start time of the first backscatter resource and the duration of the first backscatter resource may be replaced by the period in which the first backscatter resource is located.
  • start time of the first backscatter resource may also be replaced by the time period in which the first backscatter resource is located.
  • the start time of the first backscatter resource and the end time of the first backscatter resource are specifically defined in this application.
  • the method 200 may further include:
  • the terminal device receives the first resource configuration information sent by the network device
  • the first resource configuration information includes at least one of the following: a correspondence between at least one resource configuration index and at least one start time, a correspondence between the at least one resource configuration index and at least one duration, Correspondence between the at least one resource configuration index and at least one frequency domain position; wherein the at least one resource configuration index includes the first resource configuration index.
  • the first resource configuration information may be table information or information in other formats.
  • the first resource configuration information may also be called a backscatter resource configuration table.
  • the network device can configure the starting time corresponding to each resource configuration index in at least one resource configuration index and the duration corresponding to each resource configuration index for the terminal device through the first resource configuration information; further, the network The device may indicate the first resource configuration index used by the terminal device through the first indication information, so that the terminal device determines the starting position corresponding to the first resource configuration index as the starting position of the first backscattering resource. start time, and determine the duration corresponding to the first resource configuration index as the duration of the first backscatter resource.
  • the first resource configuration information includes at least one of the following: a correspondence between multiple resource configuration indexes and multiple start times, a correspondence between the at least one resource configuration index and multiple durations. relationship, the corresponding relationship between the plurality of resource configuration indexes and the plurality of frequency domain positions; wherein the plurality of resource configuration indexes include the first resource configuration index.
  • a correspondence between multiple resource configuration indexes and multiple start times there is a one-to-one correspondence between multiple resource configuration indexes and multiple start times
  • the multiple resources There is a one-to-one correspondence between the configuration index and multiple frequency domain locations.
  • the first resource configuration information may be preconfigured information, for example, information configured through RRC signaling.
  • the first resource configuration information may also be predefined information, that is, information agreed by a protocol, which is not specifically limited in this application.
  • the first indication information indicates the starting time of the first backscattering resource through a first offset value and a second offset value; wherein the first offset value is used to indicate The time reference point of the first backscatter resource, and the second offset value is used to indicate the offset value between the start time of the first backscatter resource and the time reference point.
  • the terminal device may determine the time reference point of the first backscattering resource based on the first offset value in the first indication information. Further, it may be based on The second offset value in the first indication information determines the offset value between the starting time of the first backscatter resource and the time reference point of the first backscatter resource, and then based on the The offset value between the time reference point of the first backscatter resource and the start time of the first backscatter resource relative to the time reference point of the first backscatter resource determines the first The starting time of the backscatter resource.
  • the first indication information includes at least one field, and the information carried by the second field in the at least one field is used to indicate the starting time of the first backscattering resource, and the second field is A field used to carry the first offset value and the second offset value.
  • the first offset value is used to indicate an offset value between the time reference point of the first backscatter resource and a default reference point.
  • the default reference point may be a basic time unit of a fixed index.
  • the duration of the basic time unit adopted by the first offset value is greater than the duration of the basic time unit adopted by the second offset value.
  • the duration of the basic time unit used by the first offset value is designed to be greater than the duration of the basic time unit used by the second offset value.
  • the basic time unit adopted by the first offset value or the basic time unit adopted by the second offset value may be an absolute time unit, such as microseconds, milliseconds, seconds, etc.; optionally, the The basic time unit adopted by the first offset value or the basic time unit adopted by the second offset value may be a relative time unit.
  • the basic time unit may be a basic unit used for backscatter communication or cellular communication.
  • the basic time units include but are not limited to symbols, time slots, sub-slots, sub-frames, frames, etc.
  • the first indication information is carried in at least one of the following:
  • DCI Downlink Control Information
  • high-level signaling high-level signaling
  • dedicated control information for backscatter communication.
  • the DCI where the first indication information is located may be the same as the DCI used for scheduling PDSCH, It can also be distinguished from the DCI used to schedule PDSCH.
  • the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the S210 may include:
  • the first backscatter resource is determined.
  • the network device may pre-allocate the first preconfigured resource for backscatter communication to the terminal device in the time domain.
  • the first preconfigured resource may be a time domain resource used for UCI reporting.
  • the first preconfigured resource may also be called a semi-static resource or a semi-statically configured resource. Based on this, when the terminal device needs to report the first UCI, it can directly determine the candidate backscatter resource in the pre-allocated first preconfigured resource, and then determine the first backscatter resource in the candidate backscatter resource. resource.
  • the candidate backscatter resources may also be referred to as backscatter resources available for UCI reporting.
  • the terminal device determines at least one resource pattern used by the terminal device; each resource pattern in the at least one resource pattern is used to indicate a resource used for backscatter communication in the time domain resource set; The terminal device determines the first preconfigured resource based on each resource pattern and a time domain resource set corresponding to each resource pattern.
  • the number of the at least one resource pattern is determined by DCI, high-level signaling, dedicated control information for backscatter communication, and the like.
  • the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the time domain resource set may include at least one basic time unit.
  • the basic time unit may be an absolute time unit, such as microseconds, milliseconds, seconds, etc.; optionally, the basic time unit may be a relative time unit, for example, the basic time unit may be used for backscatter communication
  • the basic unit or the basic time unit for cellular communication includes but is not limited to symbols, time slots, sub-slots, sub-frames, frames, etc.
  • each of the resource patterns may include R bits, and each of the R bits may correspond to a resource unit or a part of a resource unit in the time domain resource set.
  • each of the R bits may correspond to a resource unit or half or one-third of a resource unit in the time domain resource set. The value of each bit is used to indicate whether the resource unit or resource corresponding to each bit is a resource used for backscatter communication.
  • each bit when the value of each bit is a first value, it is used to indicate that the resource unit or resource corresponding to each bit is a resource used for backscatter communication; the value of each bit is When the value is the second value, it is used to indicate that the resource unit or resource corresponding to each bit is not a resource used for backscatter communication.
  • the first value is 1 and the second value is 0.
  • the first value is 0 and the second value is 1.
  • the first resource pattern in the at least one resource pattern may have 10 bits of information in length, where each bit corresponds to a resource unit in the time domain resource set.
  • the first resource pattern may be 0101010101, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the first resource pattern may be 1010101010, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the second resource pattern in the at least one resource pattern may be 20-bit length information, where each bit corresponds to half of a resource unit in the time domain resource set.
  • the second resource pattern may be 101010101010101010, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the second resource pattern may be 0101010101010101, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the second resource pattern in the at least one resource pattern may be 30-bit length information, where each bit corresponds to half of a resource unit in the time domain resource set.
  • the second resource pattern may be 101010101010101010101010, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the second resource pattern may be 010101010101010101010101, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the time domain may also be determined by indicating the starting time domain position of the resources used for backscatter communication in the time domain resource set, the duration and period of the resources used for backscatter communication.
  • Resources in the resource collection used for backscatter communications For example, when the resources used for backscatter communication in the time domain resource set are periodic resources, the starting time domain position of the resource used for backscatter communication in the time domain resource set can be indicated. The duration and periodicity of the resources are used to indicate the resources used for backscatter communication in the time domain resource set.
  • the network device can indicate to the terminal device: the starting point of the resource used for backscatter communication in the time domain resource set.
  • the starting time domain position is the starting position of the second resource unit; the duration of the resource used for backscatter communication is one resource unit, or half or one-third of a resource unit; and the duration of the resource used for backscatter communication is resource cycle.
  • the start position and the end position of the resources used for backscatter communication in the time domain resource set can also be indicated.
  • the time domain can be indicated by indicating the start position and end position of the resources used for backscatter communication in the time domain resource set.
  • Resources in the resource collection used for backscatter communications For example, when the resources used for backscatter communication in the time domain resource set are not periodic resources, for each resource pattern, the network device can indicate to the terminal device: the starting position of the resource used for backscatter communication is the A resource unit for backscatter communications ending in the third resource unit.
  • the terminal device may determine the first preset based on the M resource patterns and the time domain resource set corresponding to each of the M resource patterns.
  • Configure resources For example, the terminal device may perform a modulo operation on the M based on the index of the first time domain resource set, and determine the resource pattern corresponding to the operation result as the resource pattern used by the first time domain resource set.
  • the resource pattern used by the certain time domain resource set may be X mod M Corresponding resource drawings.
  • a system frame includes 1024 wireless frames, which are numbered from 0 to 1023. Assuming that each time domain resource set is a wireless frame, the terminal device can traverse The resource pattern used by each radio frame among the 1024 radio frames determines the radio frame corresponding to each resource pattern. For example, the terminal device may perform a modulo operation on the M patterns used by the terminal device based on the number of each wireless frame, and determine the resource pattern corresponding to the operation result as the resource pattern used by each wireless frame.
  • the two adjacent time domain resource sets corresponding to each resource pattern are continuous time domain resource sets in the time domain, or the time domain resource set corresponding to each resource pattern is in the time domain.
  • the domain is a periodic collection of time domain resources.
  • all the time domain resources corresponding to each resource pattern are a continuous set of time domain resources in the time domain.
  • the at least one pattern is a resource pattern
  • all time-domain resource resources corresponding to the one resource pattern are a continuous time-domain resource set in the time domain.
  • the first preconfigured resources include resources indicated by the one resource pattern in any time domain resource set.
  • the at least one pattern is a plurality of resource patterns
  • the time domain resource set corresponding to each of the plurality of resource patterns is a periodic time domain resource set in the time domain.
  • the time domain resource set corresponding to the multiple resource patterns is an interleaved time domain resource set or an interleaved time domain resource set.
  • the terminal device may use at least one resource pattern.
  • different time domain resource sets use the same resource pattern.
  • different time domain resource set usage patterns may use different resource patterns.
  • a time domain resource set may be configured periodically, that is, a time domain resource set including backscattering resources for UCI reporting may be configured periodically.
  • the first preconfigured resource is a periodic resource in the time domain.
  • the terminal device determines the backscatter resources after the first moment related to the first UCI among the first preconfigured resources as the candidate backscatter resources.
  • the first moment is the moment when the terminal generates the first UCI, or the first moment is the moment when the terminal device determines that it needs to report the first UCI.
  • the first time may be the end time or the start time of the basic time unit where the end time of the at least one PDSCH is located, or after And the interval is the first period of time.
  • the terminal device determines a backscattering resource randomly selected among the candidate backscattering resources as the first backscattering resource; or the terminal device determines a backscattering resource among the candidate backscattering resources.
  • the first backscatter resource is determined as the first backscatter resource.
  • the terminal device determines the backscattering resource randomly selected among the candidate backscattering resources as the first backscattering resource, and the network device may receive the third backscattering resource through blind detection. 1 UCI.
  • the network device may receive the first UCI through blind detection.
  • the network device may also determine the first backscatter resource among the candidate backscatter resources as the first backscatter resource. forward scattering resources, and receiving the first UCI on the first backscattering resources.
  • the method 200 may further include:
  • the terminal device receives the second resource configuration information sent by the network device
  • the second resource configuration information includes configuration information of at least one preconfigured resource, and the at least one preconfigured resource includes the first preconfigured resource.
  • the configuration information of each preconfigured resource in the at least one preconfigured resource may include one or more resource patterns used by it.
  • the terminal device may use the network device to Indicates a first preconfigured resource used by the terminal device or at least one resource pattern used by the terminal device.
  • the terminal device determines at least one resource pattern to be used, it can determine the first preconfigured resource for the terminal device to perform backscatter communication based on the at least one resource pattern, and then determine the first preconfigured resource for reporting the third resource pattern.
  • One of UCI's first backscatter resources One of UCI's first backscatter resources.
  • the S210 may include:
  • the start time of the first backscattering resource is determined based on the end position and the first duration of the at least one PDSCH.
  • the first duration is greater than or equal to the processing delay of conventional PDSCH.
  • the processing delay of the conventional PDSCH may include the reception delay and analysis delay of the conventional PDSCH.
  • the conventional PDSCH may be fixed-length bit information.
  • the first duration may include at least one basic time unit.
  • the basic time unit may be an absolute time unit, such as microseconds, milliseconds, seconds, etc.;
  • the basic time unit may be a relative time unit, for example, the basic time unit may be used for reverse
  • the basic unit of scattering communication or the basic time unit of cellular communication includes but is not limited to symbols, time slots, sub-slots, sub-frames, frames, etc.
  • the value of the first duration may be indicated or configured by a network device, or the value of the first duration may be a preset value.
  • the value of the first duration may be determined by DCI, high-level signaling, dedicated control information for backscatter communication, etc.
  • the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the terminal device receives second indication information, where the second indication information is used to indicate the first duration.
  • the second instruction letter indicates the first duration through a third offset value and a fourth offset value; wherein the third offset value is used to indicate the time reference point of the first duration. , the fourth offset value is used to indicate the offset value between the end position of the first duration and the time reference point.
  • the terminal device may determine the time reference point of the first duration based on the third offset value in the second indication information. Further, the terminal device may determine the time reference point of the first duration based on the third offset value in the second indication information.
  • the fourth offset value in the second indication information determines the offset value between the end position of the first duration and the time reference point of the first duration, and then based on the time reference point of the first duration, and The offset value between the end position of the first duration and the time reference point of the first duration determines the end position of the first duration.
  • the second indication information includes one or more fields, and the one or more fields are used to carry the third offset value and the fourth offset value.
  • the third offset value is used to indicate an offset value between the time reference point of the first duration and the default reference point of the first duration.
  • the default reference point of the first duration may be the end position of the at least one PDSCH, the starting position or the end position of the basic time unit where the end position of the at least one PDSCH is located.
  • the duration of the basic time unit adopted by the third offset value is greater than the duration of the basic time unit adopted by the fourth offset value.
  • the duration of the basic time unit adopted by the third offset value is designed to be greater than the duration of the basic time unit adopted by the fourth offset value, and the end position of the first duration is relatively default.
  • the terminal device can reduce the value indicated by the second indication information through the third offset value and the fourth offset value, and further, can reduce the value indicated by the second indication information. s expenses.
  • the time after the end position of the at least one PDSCH and separated by the first duration is determined as the starting time of the first backscattering resource; or the at least one PDSCH The time after the start position or the end position of the basic time unit where the end position is located and separated by the first duration is determined as the start time of the first backscattering resource; or the at least one PDSCH The starting position of the first backscattering resource after the ending position and separated by the first duration is determined as the starting time of the first backscattering resource; or the end of the at least one PDSCH The starting position of the first backscattering resource after the starting position or the ending position of the basic time unit where the position is located and separated by the first duration is determined as the starting time of the first backscattering resource. .
  • the starting position of the first duration may be the ending position of the at least one PDSCH.
  • the starting position of the first duration may be the starting position or the ending position of the basic time unit where the ending position of the at least one PDSCH is located.
  • the at least one PDSCH may be one PDSCH, that is, the first UCI may include HARQ-ACK feedback for the one PDSCH.
  • the terminal device may be after the end position of the one PDSCH. (or after the start position or the end position of the basic time unit where the end position of one PDSCH is located) and separated by the first duration, is determined as the start time of the first backscatter resource.
  • the at least one PDSCH may be multiple PDSCHs, that is, the first UCI may include HARQ-ACK feedback for the multiple PDSCHs.
  • the terminal device may be on the multiple PDSCHs. The moment after the end position (or after the starting position or the end position of the basic time unit where the end positions of the plurality of PDSCHs are located) and separated by the first duration is determined as the first backscattering resource. Start time.
  • the number of the at least one PDSCH is indicated or configured by the network device, or the number of the at least one PDSCH is a preset value.
  • the number of the at least one PDSCH is determined by DCI, higher layer signaling, dedicated control information for backscatter communication, etc.
  • the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the first UCI when the first UCI includes HARQ feedback information of N PDSCHs, the first UCI is determined based on the end positions and first durations of the N PDSCHs.
  • the starting time of the backscatter resource the value of N is indicated or configured by the network device, or the value of N is a default value.
  • HARQ feedback information includes HARQ-ACK information and/or HARQ NACK information
  • the duration of the interval between two adjacent PDSCHs in the at least one PDSCH is less than or equal to the first duration.
  • the terminal equipment determines the value of N according to the reception situation of the PDSCH.
  • the terminal equipment receives the PDSCH according to the first time period. In this case, it is determined whether the at least one PDSCH includes a PDSCH other than the first PDSCH. For example, the terminal equipment receives the second time period within the first time period after the end position of the first PDSCH (or after the start position or the end position of the basic time unit where the end position of the first PDSCH is located). When PDSCH is performed, the terminal equipment uses the second PDSCH as the PDSCH in the at least one PDSCH.
  • the terminal equipment does not receive a message within the first time period after the end position of the first PDSCH (or after the start position or the end position of the basic time unit where the end position of the first PDSCH is located).
  • the terminal equipment only uses the first PDSCH as the PDSCH in the at least one PDSCH. Further, if the terminal equipment receives the second PDSCH, the terminal equipment is after the end position of the second PDSCH (or the starting position of the basic time unit where the end position of the second PDSCH is located).
  • the at least one PDSCH includes a PDSCH other than the first PDSCH and the second PDSCH according to the reception situation of the PDSCH until the terminal equipment No new PDSCH is received within the first period of time after the end position of the most recently received PDSCH (or after the start position or the end position of the basic time unit where the end position of the most recently received PDSCH is located).
  • all PDSCHs that have been received are determined as the at least one PDSCH.
  • the first duration is indicated or configured through a network device, or the first duration is a preset duration.
  • the S220 may include:
  • the first UCI is reported to the network device by backscattering a first signal or a first carrier.
  • the first backscatter resource is a downlink resource
  • the first signal includes at least one of the following:
  • the downlink signal sent by the network device to the terminal device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the downlink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first backscatter resource may be a downlink resource (which may include flexible resources).
  • the terminal device performs backscatter communication based on downlink signals or dedicated carriers or other smart device communication signals, thereby realizing the First UCI report.
  • the downlink signal may be a downlink signal sent by the network device to the terminal device, including but not limited to PDSCH, PDCCH, dedicated carrier (for backscattering), etc., or may be sent by the network device to other terminals.
  • Downlink signals including but not limited to PDSCH, PDCCH, etc.
  • the dedicated carrier may be a carrier generated and sent by the terminal device itself, or may be a carrier generated and sent by the first device.
  • the first device is a third-party device other than the network device and the terminal device, such as a dedicated carrier transmitting node, an intelligent terminal device, an intelligent network device, a CPE, etc.
  • the terminal equipment may perform backscattering based on the uplink signals of other terminals, such as PUSCH, PUCCH, SR, etc.
  • the terminal device can use the signal of the side-line terminal for backscattering.
  • the first backscatter resource is an uplink resource
  • the first signal includes at least one of the following:
  • the uplink signal sent by the terminal device to the network device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the uplink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first backscatter resource may be an uplink resource (which may include flexible resources).
  • the terminal device performs backscatter communication based on uplink signals or dedicated carriers or other smart device communication signals, thereby achieving all Describe the first UCI report.
  • the uplink signal may be an uplink signal sent by the terminal device to the network device, including but not limited to PUSCH, PUCCH, etc.;
  • the uplink signal may be an uplink signal sent by other terminals to the network device. , including but not limited to PUSCH, PUCCH, etc.
  • the dedicated carrier may be a carrier generated and sent by the terminal device itself, or may be a carrier generated and sent by the first device.
  • the first device is a third-party device other than the network device and the terminal device, such as a dedicated carrier transmitting node, an intelligent terminal device, an intelligent network device, a CPE, etc.
  • the terminal equipment can perform backscattering based on the downlink signals of other terminals, such as PDSCH, PDCCH, etc.
  • the terminal device can use the signal of the side-line terminal for backscattering.
  • the first UCI includes at least one of the following: hybrid automatic repeat request confirmation HARQ-ACK information, HARQ non-acknowledgment NACK information, scheduling request SR, link recovery request LRR, channel state information CSI, Radio Resource Control RRC reconfiguration signaling.
  • this application exemplarily provides the following three methods when determining the first backscattering resource:
  • Method 1 The terminal device determines the first backscattering resource through the first indication information sent by the network device.
  • Method 2 The terminal device determines the first backscattering resource based on the pre-allocated first preconfigured resource.
  • Method 3 When the first UCI includes HARQ feedback information of at least one PDSCH, the terminal device determines the starting time of the first backscattering resource based on the end position and the first duration of the at least one PDSCH.
  • the above-mentioned method 1 and method 3 can be implemented independently, or the above-mentioned method 1 and method 3 can be combined to determine the first backscattering resource.
  • the terminal device may determine the first backscattering resource based on the first indication information sent by the network device.
  • the terminal device may determine the first reverse direction based on the first indication information, the end position of the at least one PDSCH and the first duration.
  • the start time of the scatter resource may be determined the start time of the first backscatter resource based only on the end position and the first duration of the at least one PDSCH.
  • the terminal device does not receive the first indication information, it determines the starting time of the first backscattering resource based only on the end position and the first duration of the at least one PDSCH.
  • Figure 9 is an example of determining the first backscattering resource based on the first indication information provided by the embodiment of the present application.
  • D represents the basic time unit used for downlink transmission
  • U represents the basic time unit used for uplink transmission
  • F represents the flexible basic time unit.
  • the first indication information sent by the network device is used to indicate that the starting time of the first backscattering resource is the starting position of the 6th basic time unit, and the The duration of the first backscatter resource is two basic time units.
  • the terminal device determines that the first backscatter resource includes the 6th basic time unit and the 7th basic time unit, that is, the first Backscatter resources include two basic time units for downlink transmission.
  • the first indication information sent by the network device is used to indicate that the starting time of the first backscattering resource is the starting position of the 6th basic time unit, and the The duration of the first backscatter resource is two basic time units.
  • the first UCI includes HARQ-ACK feedback for one PDSCH (for example, occupying two basic time units), and the first duration includes two basic time units, then the end position of the one PDSCH is followed by the first interval
  • the position of the duration is also the starting position of the 6th basic time unit.
  • the terminal equipment can determine the starting time of the first backscattering resource based on the first indication information, the end position of one PDSCH and the first duration; that is, because the first indication information indicates The start time of a backscatter resource and the position separated by a first time period after the end position of a PDSCH are both the start position of the sixth basic time unit. Therefore, the start time of the first backscatter resource The start time is the starting position of the sixth basic time unit, that is, the first backscattering resource includes two basic time units for downlink transmission.
  • the starting time of the first backscattering resource indicated by the first indication information when the starting time of the first backscattering resource indicated by the first indication information is different from the position separated by a first duration after the end position of the one PDSCH, you may Determine the front or back position in the time domain as the starting time of the first backscattering resource, or the starting time of the first backscattering resource indicated by the first indication information. Randomly select a position as the start time of the first backscatter resource from a position separated by a first time length from the end position of the one PDSCH.
  • the start time of the first backscatter resource is determined based on the end position and the first duration of the one PDSCH. time.
  • the first indication information may indicate that the start time of the first backscatter resource is a position separated by a first duration from the end position of the one PDSCH, which is not specifically limited in this embodiment of the present application.
  • the first indication information sent by the network device is used to indicate that the starting time of the first backscattering resource is the starting position of the 9th basic time unit, and the The duration of the first backscatter resource is two basic time units.
  • the first UCI includes HARQ-ACK feedback for one PDSCH (for example, occupying 3 basic time units), and the first duration includes two basic time units, then the end position of the one PDSCH is followed by the first The position of the duration is also the starting position of the 9th basic time unit.
  • the terminal equipment can determine the starting time of the first backscattering resource based on the first indication information, the end position of one PDSCH and the first duration; that is, because the first indication information indicates The start time of a backscatter resource and the position separated by a first time period after the end position of a PDSCH are both the start position of the 9th basic time unit. Therefore, the start time of the first backscatter resource The start time is the starting position of the ninth basic time unit, that is, the first backscattering resource includes two basic time units for uplink transmission.
  • the starting time of the first backscattering resource indicated by the first indication information is different from the position separated by a first duration after the end position of the one PDSCH
  • a position is randomly selected as the starting time of the first backscattering resource from a position separated by a first time period from the end position of the one PDSCH. This embodiment of the present application does not specifically limit this.
  • Figure 10 is an example of determining the first backscattering resource for carrying HARQ-ACK based on the PDSCH resource location provided by the embodiment of the present application.
  • D represents the basic time unit used for downlink transmission
  • U represents the basic time unit used for uplink transmission
  • F represents the flexible basic time unit.
  • the terminal equipment reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 from the time interval T1 after the end time of PDSCH 1 (i.e., the starting time of the 6th basic time unit) based on the backscattering method. .
  • the terminal device reports UCI including the HARQ-ACK 1 feedback information of PDSCH 1 to the network device on the 6th basic time unit and the 7th basic time unit. That is, the terminal device reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 to the network device in two basic time units used for downlink transmission.
  • the terminal equipment reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 from the time interval T1 after the end time of PDSCH 1 (i.e., the starting time of the 9th basic time unit) based on the backscattering method. .
  • the terminal device reports UCI including the HARQ-ACK 1 feedback information of PDSCH 1 to the network device on the 9th basic time unit and the 10th basic time unit. That is, the terminal device reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 to the network device in two basic time units used for uplink transmission.
  • the terminal equipment based on In the backscattering method, the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 is reported from the time interval T1 after the end time of PDSCH 1 (i.e., the starting time of the fourth basic time unit); for example, the terminal equipment in the The UCI including the HARQ-ACK 1 feedback information of PDSCH 1 is reported to the network device on the 4 basic time units and the 5th basic time unit; that is, the terminal device reports to the network device on the two basic time units used for downlink transmission including UCI of HARQ-ACK 1 feedback information of PDSCH 1.
  • the terminal equipment will receive the new PDSCH from the PDSCH based on backscattering.
  • the UCI including the HARQ-ACK 2 feedback information of PDSCH 2 is reported at the time of interval T1 after the end time of 2 (that is, the starting time of the 9th basic time unit).
  • the terminal device reports UCI including HARQ-ACK 2 feedback information of PDSCH 2 to the network device on the 9th basic time unit and the 10th basic time unit. That is, the terminal device reports the UCI including the HARQ-ACK 2 feedback information of PDSCH 2 to the network device in two basic time units used for uplink transmission.
  • a new PDSCH 2 (for example, occupying the 3rd basic time unit) is received within the T1 duration (for example, occupying two basic time units) after the end of PDSCH 1 (for example, occupying the 1st basic time unit) basic time unit and the 4th basic time unit). Furthermore, if no new PDSCH is received within the T1 period after the end of PDSCH 2, the terminal equipment will use the backscattering method to start the interval from the end time of PDSCH 2. At the time of T1 (that is, the starting time of the 7th basic time unit), the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 and the HARQ-ACK 2 feedback information of PDSCH 2 is reported.
  • the terminal device reports UCI including HARQ-ACK 1 feedback information of PDSCH 1 and HARQ-ACK 2 feedback information of PDSCH 2 to the network device on the 7th basic time unit and the 8th basic time unit. That is, the terminal equipment reports UCI including HARQ-ACK 1 feedback information of PDSCH 1 and HARQ-ACK 2 feedback information of PDSCH 2 to the network equipment on a basic time unit for downlink transmission and a flexible basic time unit.
  • the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 is reported; for example, the terminal equipment reports to the 4th basic time unit and the 5th basic time unit.
  • the network device reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1; that is, the terminal device reports the UCI including the HARQ-ACK 1 feedback information of PDSCH 1 to the network device in two basic time units used for downlink transmission.
  • the terminal equipment reports the UCI including the HARQ-ACK 2 feedback information of PDSCH 2 from the time interval T1 after the end time of PDSCH 2 (that is, the starting time of the 7th basic time unit). For example, the terminal device reports UCI including HARQ-ACK 2 feedback information of PDSCH 2 to the network device on the 7th basic time unit and the 8th basic time unit. That is, the terminal device reports UCI including HARQ-ACK 2 feedback information of PDSCH 2 to the network device on a basic time unit used for downlink transmission and a flexible basic time unit.
  • the network device can also configure the number N of UCI reports (carrying HARQ-ACK) associated with PDSCH based on backscattering.
  • the terminal device can wait for an interval T1 after receiving the Nth PDSCH.
  • UCI HARQ-ACK carrying N PDSCHs
  • N can be a preset fixed value.
  • N may be configured by the network device, for example, through other control information or high-level signaling.
  • N can be configured explicitly or implicitly.
  • the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the terminal device determines the starting time of the first backscattering resource based on the end position and the first duration of the at least one PDSCH. Further, the network device indicates the first duration through second indication information sent to the terminal device.
  • Figure 11 is an example of the first duration provided by the embodiment of the present application.
  • the second instruction letter indicates the first duration T1 through a third offset value and a fourth offset value; wherein the third offset value is used to indicate the first duration T1 a time reference point, and the fourth offset value is used to indicate an offset value between the end position of the first duration T1 relative to the time reference point.
  • the third offset value is used to indicate an offset value between the time reference point of the first duration T1 and the default reference point of the first duration T1.
  • the default reference point of the first duration T1 may be the end position of the basic time unit where the end position of the at least one PDSCH is located.
  • the duration of the basic time unit adopted by the third offset value is longer than the duration of the basic time unit adopted by the fourth offset value.
  • the duration of the basic time unit adopted by the third offset value is designed to be greater than the duration of the basic time unit adopted by the fourth offset value, and the end position of the first duration is relatively default.
  • the terminal device can reduce the value indicated by the second indication information through the third offset value and the fourth offset value, and further, can reduce the value indicated by the second indication information. s expenses.
  • the above-mentioned method 2 and method 3 can be implemented independently, or the above-mentioned method 2 and method 3 can be combined to determine the first backscattering resource.
  • the terminal device determines the first backscatter resource based only on the pre-allocated first preconfigured resource.
  • the terminal equipment may determine the start time of the first backscatter resource based only on the end position and the first duration of the at least one PDSCH.
  • the terminal equipment may determine the starting time of the first backscattering resource based on the first preconfigured resource, the end position of the at least one PDSCH, and the first duration.
  • the terminal device when the terminal device determines to use backscatter communication, it may first determine at least one resource pattern used by the terminal device; each resource pattern in the at least one resource pattern is used to indicate the time domain resource set. Resources used for backscatter communication; then, the terminal device determines the first preconfigured resource based on each resource pattern and the time domain resource set corresponding to each resource pattern.
  • the two adjacent time domain resource sets corresponding to each resource pattern are continuous time domain resource sets in the time domain, or the time domain resource set corresponding to each resource pattern is in the time domain. It is a periodic collection of time domain resources.
  • the terminal device may use at least one resource pattern.
  • different time domain resource sets use the same resource pattern.
  • different time domain resource set usage patterns may use different resource patterns.
  • a time domain resource set may be configured periodically, that is, a time domain resource set including backscattering resources for UCI reporting may be configured periodically.
  • Figure 12 is an example of a first preconfigured resource provided by an embodiment of the present application.
  • the at least one pattern is a pattern, and all time domain resource sets use the same resource pattern.
  • time domain resource set 1 to time domain resource set 3 use the same resource pattern, that is, resource pattern 1 is used.
  • the resource pattern 1 may be 10-bit length information, where each bit corresponds to a resource unit in the time domain resource set.
  • the resource pattern 1 may be 0101010101, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 1 may be 1010101010, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the at least one pattern includes three resource patterns, namely resource pattern 1, resource pattern 2 and resource pattern 3.
  • resource pattern used by time domain resource set 1 is resource pattern 1
  • the resource pattern used by time domain resource set 2 is resource pattern 2
  • the resource pattern used by time domain resource set 3 is The resource pattern is resource pattern 3.
  • the resource pattern 1 may be 10-bit length information, where each bit corresponds to a resource unit in the time domain resource set.
  • the resource pattern 1 may be 0101010101, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 1 may be 1010101010, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 2 may be 10-bit length information, where each bit corresponds to a resource unit in the time domain resource set.
  • the resource pattern 1 may be 0110110110, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 1 may be 1001001001, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 3 may be 20-bit length information, where each bit corresponds to half of the resources of a resource unit in the time-domain resource set.
  • the resource pattern 1 may be 101010101010101010, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 1 may be 010101010101010101, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the time domain resource set can be configured periodically.
  • the period of a time domain resource set is the length of one time domain resource set, and all time domain resource sets use the same resource pattern.
  • time domain resource set 1 and time domain resource set 2 use the same resource pattern, that is, both use resource pattern 1.
  • the resource pattern 1 may be 20-bit length information, where each bit corresponds to half of the resources of a resource unit in the time-domain resource set.
  • the resource pattern 1 may be 101010101010101010, where 0 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 1 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • the resource pattern 1 may be 010101010101010101, where 1 indicates that the resource unit at the corresponding position is a resource not used for backscatter communication, and 0 indicates that the resource unit at the corresponding position is a resource used for backscatter communication.
  • FIG. 12 is only an example of the present application and should not be understood as a limitation of the present application.
  • the resource pattern may also indicate the resources used for backscatter communication in the time domain resource set in other ways.
  • the time domain may also be determined by indicating the starting time domain position of the resources used for backscatter communication in the time domain resource set, the duration and period of the resources used for backscatter communication.
  • Resources in the resource collection used for backscatter communications For example, when the resources used for backscatter communication in the time domain resource set are periodic resources, the starting time domain position of the resource used for backscatter communication in the time domain resource set can be indicated. The duration and periodicity of the resources are used to indicate the resources used for backscatter communication in the time domain resource set.
  • the network device can indicate to the terminal device: the starting point of the resource used for backscatter communication in the time domain resource set.
  • the starting time domain position is the starting position of the second resource unit; the duration of the resource used for backscatter communication is one resource unit, or half or one-third of a resource unit; and the duration of the resource used for backscatter communication is resource cycle.
  • the start position and the end position of the resources used for backscatter communication in the time domain resource set can also be indicated.
  • the time domain can be indicated by indicating the start position and end position of the resources used for backscatter communication in the time domain resource set.
  • Resources in the resource collection used for backscatter communications For example, when the resources used for backscatter communication in the time domain resource set are not periodic resources, for each resource pattern, the network device can indicate to the terminal device: the starting position of the resource used for backscatter communication is the A resource unit for backscatter communications ending in the third resource unit.
  • Figures 13 and 14 are examples in which the first backscatter resource among the candidate backscatter resources of the terminal device after the first moment related to the first UCI is used as the first backscatter resource provided by the embodiment of the present application.
  • the terminal device is in the backscatter resource shown in (a) in Figure 12, and
  • the first backscatter resource after the first moment related to the first UCI to be reported is used as the first backscatter resource for sending the first UCI. That is, the terminal device reports the first UCI to the network device on the first backscatter resource after the first time among the backscatter resources shown in (a) of FIG. 12 .
  • the first time is the time when the terminal device determines to report the first UCI.
  • the terminal device is in the backscatter resource shown in (a) of Figure 12, and
  • the first backscatter resource after the first moment related to the first UCI to be reported is used as the first backscatter resource for sending the first UCI. That is, the terminal device reports the first UCI to the network device on the first backscatter resource after the first time among the backscatter resources shown in (a) of FIG. 12 .
  • the first time may be the end time or the start time of the basic time unit where the end time of the at least one PDSCH is located, and the interval is The first moment of duration T0.
  • a second backscatter resource may also be introduced, and the second backscatter resource may be used to send PUSCH data, such as PUSCH data with a data amount less than a certain threshold, and the second backscatter resource may be used to send PUSCH data.
  • the method of determining the backscatter resource may be similar to the method of determining the first backscatter resource, and to avoid duplication, details will not be described here again.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell.
  • the first direction, “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the method for reporting UCI provided according to the embodiment of the present application is described in detail from the perspective of a terminal device with reference to Figures 8 to 14. Next, the method of reporting UCI provided according to the embodiment of the present application will be described from the perspective of a network device with reference to Figure 15. Methods.
  • Figure 15 is a schematic flowchart of a UCI reporting method 300 provided by an embodiment of the present application.
  • the method 300 may be performed by the network device 110 as shown in FIG. 1 .
  • the method 300 may include:
  • S320 Receive the first UCI reported by the terminal device based on the first backscatter resource.
  • the method 300 may further include:
  • the first indication information is used to indicate at least one of the following: a start time of the first backscatter resource, a duration of the first backscatter resource, the third The frequency domain location of a backscatter resource.
  • the first indication information indicates at least one of the following through a first resource configuration index: a starting time of the first backscatter resource, a duration of the first backscatter resource , the frequency domain position of the first backscattering resource.
  • the method 300 may further include:
  • the first resource configuration information includes at least one of the following: a correspondence between at least one resource configuration index and at least one start time, a correspondence between the at least one resource configuration index and at least one duration, Correspondence between the at least one resource configuration index and the frequency domain position of at least one backscatter resource; wherein the at least one resource configuration index includes the first resource configuration index.
  • the first indication information indicates the starting time of the first backscattering resource through a first offset value and a second offset value; wherein the first offset value is used to indicate The time reference point of the first backscatter resource, and the second offset value is used to indicate the offset value between the start time of the first backscatter resource and the time reference point.
  • the duration of the basic time unit adopted by the first offset value is greater than the duration of the basic time unit adopted by the second offset value.
  • the first indication information is carried in at least one of the following:
  • Downlink control information DCI Downlink control information DCI, high-level signaling, and dedicated control information for backscatter communication.
  • the S310 may include:
  • candidate backscatter resources for the first UCI are determined; the candidate backscatter resources include the first backscatter resources.
  • At least one resource pattern used by the terminal device is determined; each resource pattern in the at least one resource pattern is used to indicate a resource used for backscatter communication in a time domain resource set; based on the Each resource pattern and the time domain resource set corresponding to each resource pattern determine the first preconfigured resource.
  • the two adjacent time domain resource sets corresponding to each resource pattern are continuous time domain resource sets in the time domain, or the time domain resource set corresponding to each resource pattern is in the time domain.
  • the domain is a periodic collection of time domain resources.
  • the first preconfigured resource is a periodic resource in the time domain.
  • backscatter resources after a first moment related to the first UCI among the first preconfigured resources are determined as the candidate backscatter resources.
  • the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources; or the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources.
  • the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources.
  • the method 300 may further include:
  • the second resource configuration information includes configuration information of at least one preconfigured resource, and the at least one preconfigured resource includes the first preconfigured resource.
  • the S310 may include:
  • the first UCI includes hybrid automatic repeat request confirmation HARQ feedback information of at least one physical downlink shared channel PDSCH
  • the time after the end position of the at least one PDSCH and separated by the first duration is determined as the starting time of the first backscattering resource; or the at least one PDSCH The time after the start position or the end position of the basic time unit where the end position is located and separated by the first duration is determined as the start time of the first backscattering resource; or the at least one PDSCH The starting position of the first backscattering resource after the ending position and separated by the first duration is determined as the starting time of the first backscattering resource; or the end of the at least one PDSCH The starting position of the first backscattering resource after the starting position or the ending position of the basic time unit where the position is located and separated by the first duration is determined as the starting time of the first backscattering resource. .
  • the number of the at least one PDSCH is indicated or configured by the network device, or the number of the at least one PDSCH is a preset value.
  • the duration of the interval between two adjacent PDSCHs in the at least one PDSCH is less than or equal to the first duration.
  • the first duration is indicated or configured through a network device, or the first duration is a preset duration.
  • the S320 may include:
  • the receiving terminal device reports the first UCI to the network device by backscattering the first signal or the first carrier.
  • the first backscatter resource is a downlink resource
  • the first signal includes at least one of the following:
  • the downlink signal sent by the network device to the terminal device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the downlink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first backscatter resource is an uplink resource
  • the first signal includes at least one of the following:
  • the uplink signal sent by the terminal device to the network device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the uplink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first UCI includes at least one of the following: hybrid automatic repeat request confirmation HARQ-ACK information, HARQ non-acknowledgment NACK information, scheduling request SR, link recovery request LRR, channel state information CSI, Radio Resource Control RRC reconfiguration signaling.
  • Figure 16 is a schematic block diagram of the terminal device 400 according to the embodiment of the present application.
  • the terminal device 400 may include:
  • Determining unit 410 configured to determine the first backscatter resource used to report the first uplink control information UCI;
  • the reporting unit 420 is configured to report the first UCI to a network device based on the first backscatter resource.
  • the reporting unit 420 is also used to:
  • the first indication information is used to indicate at least one of the following: a start time of the first backscatter resource, a duration of the first backscatter resource, the third The frequency domain location of a backscatter resource.
  • the first indication information indicates at least one of the following through a first resource configuration index: a starting time of the first backscatter resource, a duration of the first backscatter resource , the frequency domain position of the first backscattering resource.
  • the reporting unit 420 is also used to:
  • the first resource configuration information includes at least one of the following: a correspondence between at least one resource configuration index and at least one start time, a correspondence between the at least one resource configuration index and at least one duration, Correspondence between the at least one resource configuration index and the frequency domain position of at least one backscatter resource; wherein the at least one resource configuration index includes the first resource configuration index.
  • the first indication information indicates the starting time of the first backscattering resource through a first offset value and a second offset value; wherein the first offset value is used to indicate The time reference point of the first backscatter resource, and the second offset value is used to indicate the offset value between the start time of the first backscatter resource and the time reference point.
  • the duration of the basic time unit adopted by the first offset value is greater than the duration of the basic time unit adopted by the second offset value.
  • the first indication information is carried in at least one of the following:
  • Downlink control information DCI Downlink control information DCI, high-level signaling, and dedicated control information for backscatter communication.
  • the determining unit 410 is specifically used to:
  • the first backscatter resource is determined.
  • the determining unit 410 is specifically used to:
  • each resource pattern in the at least one resource pattern is used to indicate resources used for backscatter communication in the time domain resource set;
  • the first preconfigured resource is determined based on each resource pattern and the time domain resource set corresponding to each resource pattern.
  • the two adjacent time domain resource sets corresponding to each resource pattern are continuous time domain resource sets in the time domain, or the time domain resource set corresponding to each resource pattern is in the time domain.
  • the domain is a periodic collection of time domain resources.
  • the first preconfigured resource is a periodic resource in the time domain.
  • the determining unit 410 is specifically used to:
  • the backscatter resources after the first moment related to the first UCI among the first preconfigured resources are determined as the candidate backscatter resources.
  • the determining unit 410 is specifically used to:
  • the first backscatter resource among the candidate backscatter resources is determined as the first backscatter resource.
  • the reporting unit 420 is also used to:
  • the second resource configuration information includes configuration information of at least one preconfigured resource, and the at least one preconfigured resource includes the first preconfigured resource.
  • the determining unit 410 is specifically used to:
  • the first UCI includes hybrid automatic repeat request confirmation HARQ feedback information of at least one physical downlink shared channel PDSCH
  • the determining unit 410 is specifically used to:
  • the starting position of the first backscattering resource that is after the starting position or the ending position of the basic time unit where the end position of the at least one PDSCH is located and is spaced by the first duration is determined as the first The starting time of the backscatter resource.
  • the number of the at least one PDSCH is indicated or configured by the network device, or the number of the at least one PDSCH is a preset value.
  • the duration of the interval between two adjacent PDSCHs in the at least one PDSCH is less than or equal to the first duration.
  • the first duration is indicated or configured through a network device, or the first duration is a preset duration.
  • the reporting unit 420 is specifically used to:
  • the first UCI is reported to the network device by backscattering a first signal or a first carrier.
  • the first backscatter resource is a downlink resource
  • the first signal includes at least one of the following:
  • the downlink signal sent by the network device to the terminal device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the downlink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first backscatter resource is an uplink resource
  • the first signal includes at least one of the following:
  • the uplink signal sent by the terminal device to the network device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the uplink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first UCI includes at least one of the following: hybrid automatic repeat request confirmation HARQ-ACK information, HARQ non-acknowledgment NACK information, scheduling request SR, link recovery request LRR, channel state information CSI, Radio Resource Control RRC reconfiguration signaling.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 400 shown in FIG. 16 may correspond to the corresponding subject in performing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 400 are respectively to implement the implementation of the present application.
  • the corresponding processes in each method provided in the example will not be repeated here for the sake of brevity.
  • the network device 500 may include:
  • Determining unit 510 configured to determine the first backscattering resource used to report the first uplink control information UCI;
  • the receiving unit 520 is configured to receive the first UCI reported by a terminal device based on the first backscatter resource.
  • the receiving unit 520 is also used to:
  • the first indication information is used to indicate at least one of the following: a start time of the first backscatter resource, a duration of the first backscatter resource, the third The frequency domain location of a backscatter resource.
  • the first indication information indicates at least one of the following through a first resource configuration index: a starting time of the first backscatter resource, a duration of the first backscatter resource , the frequency domain position of the first backscattering resource.
  • the receiving unit 520 is also used to:
  • the first resource configuration information includes at least one of the following: a correspondence between at least one resource configuration index and at least one start time, a correspondence between the at least one resource configuration index and at least one duration, Correspondence between the at least one resource configuration index and the frequency domain position of at least one backscatter resource; wherein the at least one resource configuration index includes the first resource configuration index.
  • the first indication information indicates the starting time of the first backscattering resource through a first offset value and a second offset value; wherein the first offset value is used to indicate The time reference point of the first backscatter resource, and the second offset value is used to indicate the offset value between the start time of the first backscatter resource and the time reference point.
  • the duration of the basic time unit adopted by the first offset value is greater than the duration of the basic time unit adopted by the second offset value.
  • the first indication information is carried in at least one of the following:
  • Downlink control information DCI Downlink control information DCI, high-level signaling, and dedicated control information for backscatter communication.
  • the determining unit 510 is specifically used to:
  • candidate backscatter resources for the first UCI are determined; the candidate backscatter resources include the first backscatter resources.
  • the determining unit 510 is specifically used to:
  • each resource pattern in the at least one resource pattern is used to indicate resources used for backscatter communication in the time domain resource set;
  • the first preconfigured resource is determined based on each resource pattern and the time domain resource set corresponding to each resource pattern.
  • the two adjacent time domain resource sets corresponding to each resource pattern are continuous time domain resource sets in the time domain, or the time domain resource set corresponding to each resource pattern is in the time domain.
  • the domain is a periodic collection of time domain resources.
  • the first preconfigured resource is a periodic resource in the time domain.
  • the determining unit 510 is specifically used to:
  • the backscatter resources after the first moment related to the first UCI among the first preconfigured resources are determined as the candidate backscatter resources.
  • the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources; or the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources.
  • the first backscatter resource is a randomly selected backscatter resource among the candidate backscatter resources.
  • the receiving unit 520 is also used to:
  • the second resource configuration information includes configuration information of at least one preconfigured resource, and the at least one preconfigured resource includes the first preconfigured resource.
  • the determining unit 510 is specifically used to:
  • the first UCI includes hybrid automatic repeat request confirmation HARQ feedback information of at least one physical downlink shared channel PDSCH
  • the determining unit 510 is specifically used to:
  • the starting position of the first backscattering resource that is after the starting position or the ending position of the basic time unit where the end position of the at least one PDSCH is located and is spaced by the first duration is determined as the first The starting time of the backscatter resource.
  • the number of the at least one PDSCH is indicated or configured by the network device, or the number of the at least one PDSCH is a preset value.
  • the duration of the interval between two adjacent PDSCHs in the at least one PDSCH is less than or equal to the first duration.
  • the first duration is indicated or configured through a network device, or the first duration is a preset duration.
  • the receiving unit 520 is specifically used to:
  • the receiving terminal device reports the first UCI to the network device by backscattering the first signal or the first carrier.
  • the first backscatter resource is a downlink resource
  • the first signal includes at least one of the following:
  • the downlink signal sent by the network device to the terminal device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the downlink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first backscatter resource is an uplink resource
  • the first signal includes at least one of the following:
  • the uplink signal sent by the terminal device to the network device
  • the signal sent by the terminal device or third-party device on the generated dedicated carrier
  • the other terminal equipment When the uplink resource is a flexible resource, the other terminal equipment sends an uplink signal, a downlink signal or a sidelink signal on the flexible resource.
  • the first UCI includes at least one of the following: hybrid automatic repeat request confirmation HARQ-ACK information, HARQ non-acknowledgment NACK information, scheduling request SR, link recovery request LRR, channel state information CSI, Radio Resource Control RRC reconfiguration signaling.
  • a method of determining the first backscattering resource for reporting the first UCI when reporting the first UCI is proposed, which can be based on Different scenarios determine the first backscattering resource, which greatly improves the reporting performance of the first UCI and reduces the reporting delay of the first UCI.
  • this application does not specifically limit the circumstances under which the first UCI is reported to the network device based on the first backscatter resource.
  • the first UCI can be reported based on the backscattering method on the downlink time domain resources through instructions from the network equipment. There is no need to wait for the arrival of the uplink time domain resources, which can greatly Reduce the reporting delay of the first UCI; for another example, when the first UCI is reported based on the PUCCH/PUSCH channel, the reporting of the first UCI is canceled due to channel conflicts or priority issues.
  • the first UCI When the first UCI is reported based on the backscattering method, the first UCI can be successfully transmitted; for another example, the time domain resources required when the first UCI is reported based on the backscattering method When a large number of required time domain resources overlap with the uplink time domain resources, it can be flexibly switched to reporting the first UCI based on the uplink time domain resources, and canceling the reporting of the first UCI to the network device based on the backscatter method.
  • One UCI can reduce the reporting delay of the first UCI; for example, two UCI reporting methods can be used at the same time to enhance the reporting performance of the first UCI.
  • the terminal device may determine the first backscattering resource based on at least one of the following information:
  • Method 1 The network device transmits the first backscattering resource to the terminal device;
  • Method 2 The network device pre-configures the first backscattering resource for the terminal device
  • Method 3 When the first UCI includes hybrid automatic repeat request confirmation HARQ feedback information of at least one physical downlink shared channel PDSCH, determine the first reverse direction based on the end position and first duration of the at least one PDSCH. The start time of the scatter resource.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 500 shown in Figure 17 may correspond to the corresponding subject in performing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 500 are respectively to implement the implementation of the present application.
  • the corresponding processes in each method provided in the example will not be repeated here for the sake of brevity.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps in the above method embodiment in combination with its hardware.
  • the determining unit 410 or the determining unit 510 mentioned above may be respectively implemented by a processor, and the reporting unit 420 or receiving unit 520 mentioned above may be implemented by a transceiver.
  • Figure 18 is a schematic structural diagram of the communication device 600 according to the embodiment of the present application.
  • the communication device 600 may include a processor 610.
  • the processor 610 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 600 may also include memory 620.
  • the memory 620 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated into the processor 610.
  • communication device 600 may also include a transceiver 630.
  • the processor 610 can control the transceiver 630 to communicate with other devices. Specifically, it can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the communication device 600 can be a terminal device in the embodiment of the present application, and the communication device 600 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. That is to say, the communication device 600 in the embodiment of the present application
  • the communication device 600 may correspond to the terminal device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application. For the sake of brevity, details will not be repeated here.
  • the communication device 600 may be a network device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 600 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 600 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip that has signal processing capabilities and can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiments of this application.
  • the chip may also be called system-on-a-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device equipped with the chip can execute the various methods, steps and logical block diagrams disclosed in the embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 710 .
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip 700 can be applied to the network equipment in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network equipment in the various methods of the embodiment of the present application, and can also implement the various methods of the embodiment of the present application.
  • the corresponding process implemented by the terminal device will not be repeated here for the sake of simplicity.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the processors mentioned above may include but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute each method, step, and logical block diagram disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memories mentioned above include but are not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the reporting provided by this application.
  • UCI method the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the UCI reporting method provided by this application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 .
  • FIG. 1 For the sake of brevity, details will not be described again here.
  • system in this article can also be called “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in the embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • the units/modules/components described above as separate/displayed components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种上报UCI的方法、终端设备和网络设备,所述方法包括:确定用于上报第一上行控制信息UCI的第一反向散射资源;基于所述第一反向散射资源,向网络设备上报所述第一UCI。本申请提供的方法不仅能够避免UCI的上报与其他信道产生资源冲突,还能够降低UCI的传输时延。

Description

上报UCI的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及上报UCI的方法、终端设备和网络设备,
背景技术
目前,终端设备通常通过物理上行信道向网络设备上报上行控制信息(Uplink Control Information,UCI),例如物理上行控制信道(Physical Uplink Control Channel,PUCCH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。但是,通过物理上行信道上报UCI时,当该物理上行信道与较低优先级索引对应的信道在时间上重叠时,会影响较低优先级索引对应的信道的传输;当与较高优先级索引对应的信道在时间上重叠时,则会取消该物理上行信道的发送,即会取消UCI上报。此外,由于UCI的上报只能在上行资源上进行,因此,对于下行资源的占比较大的时分双工(Time Division Duplexing,TDD)帧结构,取消UCI上报会使得UCI的上报产生较大的传输时延。
因此,本领域亟需一种上报UCI的方法,以避免UCI的上报与其他信道产生冲突并降低UCI的传输时延。
发明内容
本申请实施例提供了一种上报UCI的方法、终端设备和网络设备,不仅能够避免UCI的上报与其他信道产生资源冲突,还能够降低UCI的传输时延。
第一方面,本申请提供了一种上报UCI的方法,包括:
确定用于上报第一上行控制信息UCI的第一反向散射资源;
基于所述第一反向散射资源,向网络设备上报所述第一UCI。
第二方面,本申请提供了一种上报UCI的方法,包括:
确定用于上报第一上行控制信息UCI的第一反向散射资源;
基于所述第一反向散射资源,接收终端设备上报的所述第一UCI。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,通过引入用于上报第一UCI的第一反向散射资源,并基于所述第一反向散射资源,向网络设备上报所述第一UCI,一方面,由于所述第一反向散射资源可以不受上行资源的限制,相当于,所述第一反向散射资源可以是用于物理信道的上行资源或下行资源,即终端设备可以在上行资源或者下行资源上向网络设备上报所述第一UCI,降低了所述第一UCI的传输时延;另一方面,所述第一UCI基于所述第一反向散射资源进行上报时,可以将其他信道作为用于反向散射的载波,因此,终端设备基于所述第一反向散射资源上报所述第一UCI时,能够更好的与其他信道兼容,例如,即便所述第一反向散射资源与其他物理上行信道冲突,终端设备仍然可以基于所述第一反向散射资源向网络设备上报所述第一UCI,相当于,能够使得所述第一UCI的传输资源和其他信道实现资源共享,不仅能够避免由于所述第一UCI的上报与其他信道产生资源冲突所导致的所述第一UCI的传输取消的问题,还能够降低所述第一UCI的传输时延。
附图说明
图1是本申请实施例提供的通信系统示意图。
图2是本申请提供的零功耗通信系统的示意图。
图3是本申请实施例提供的能量采集原理图。
图4是本申请提供的反向散射通信原理图。
图5是本申请实施例提供的电阻负载调制的电路原理图。
图6是本申请实施例提供的副载波调制方式的示意图。
图7是本申请实施例提供的OOK调制方式的示意图。
图8是本申请实施例提供的上报UCI的方法的示意性流程图。
图9是本申请实施例提供的基于第一指示信息确定第一反向散射资源的示例。
图10是本申请实施例提供的基于PDSCH资源位置确定用于承载HARQ-ACK的第一反向散射资源的示例。
图11是本申请实施例提供的第一时长的示例。
图12是本申请实施例提供的第一配置资源的示例。
图13和图14是本申请实施例提供的终端设备在第一UCI相关的第一时刻之后的候选反向散射资源中的第一个反向散射资源作为第一反向散射资源的示例。
图15是本申请实施例提供的上报UCI的方法的另一示意性流程图。
图16是本申请实施例提供终端设备的示意性框图。
图17是本申请实施例提供的网络设备的示意性框图。
图18是本申请实施例提供的通信设备的示意性框图。
图19是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本文中的术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。本文中的术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B 之间具有关联关系。本文中的术语“预配置”或“预设值”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预配置可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例可以应用于各种通信系统,例如包括但不限于:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网、蜂窝无源物联网或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连 接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备。例如包括无源终端,甚至还包括半无源终端等。
示例性地,零功耗设备是无线射频识别(Radio Frequency Identification,RFID)标签,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID系统是一种无线通信系统。RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签包括耦合组件及芯片,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。
零功耗通信采用能量采集和反向散射通信技术。为便于理解本申请实施例的技术方案,对零功耗的相关技术进行说明。
图2为本申请提供的零功耗通信系统的示意图。
如图2所示,零功耗通信系统由网络设备和零功耗终端构成,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗通信也可称为基于零功耗终端的通信,零功耗通信的关键技术主要包括射频能量采集和反向散射通信。
1、能量采集(RF Power Harvesting)。
图3为本申请实施例提供的能量采集原理图.
如图3所示,能量采集模块可包括电容C和电阻R L,能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。电磁感应原理指只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。结合本申请来说,电容C和电阻R L可用于形成闭合电路,射频能量采集模块接收到射频(RF)后,可产生感应电流并将产生的感应电流存储在电容C中,以实现对空间电磁波能量的采集。
2、反向散射通信(Back Scattering)。
图4为本申请提供的反向散射通信原理图。
如图4所示,网络设备作为发送端(TX)时,所述网络设备通过放大器(AMP)向零功耗设备发送载波。相应的,零功耗设备接收网络发送的载波后,利用能量采集模块采集的能量,驱动逻辑处理模块对需要发送的信息进行处理,并通过可变电阻将需要发送的信息加载到接收到的载波上,以得到反射信号,最后将得到的反射信号从天线辐射出去,这种信息传输过程称之为反向散射通信。相应的,网络设备作为接收端(RX)时,可通过低噪音放大器(LNA)接收零功耗设备发送的反射信号。进一步的,在一些可能的实现方式中,AMP和LNA可以各自连接有一个电压显示灯,AMP和LNA分别连接的电 压显示灯之间可设置一个应急灯。
需要说明的是,图4所示的反向散射通信原理是通过零功耗设备和网络设备说明的,实际上,任何具有反向散射通信功能的设备都可以实现反向散射通信。
反向散射通信和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。
图5为本申请实施例提供的电阻负载调制的电路原理图。
如图5所示,在电阻负载调制中,电阻R L并联一个电阻R 3,电阻R L可称为负载调制电阻,电阻R L和电阻R 3的所在支路基于开关S的控制接通或断开,开关S可由二进制数据流进行控制,R L和电阻R 3的所在支路的通断会导致电路电压的变化。进一步的,电阻R L可通过电阻R 2与电感L 1并联,电感L 1用于和电感L 2形成谐振电路,基于此,R L和电阻R 3的所在支路的通断会导致电路电压的变化,进而会导致谐振电路的谐振频率的变化,最终实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。进一步的,电感L 2还可用于连接至电容C 2,电容C 2可用于谐振电路的谐振频率的变化转换为天线用于发送的信号。类似地,在电容负载调制中,通过电容C 1和电阻R 3的所在支路的通断可以实现谐振电路的谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
由于零功耗终端借助于负载调制的方式对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
1、终端设备不主动发射信号,通过调制来波信号实现反向散射通信。
2、终端设备不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度。
3、结合能量采集可实现免电池通信。
应当理解的是,上述终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
具体实现中,终端设备传输的数据可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
示例性地,基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1、无源零功耗终端。
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,ADC等期间,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端。
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端。
在某些场景下,使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。也即是说,有源零功耗终端通过内置电池向RFID芯片供电,以增加零功耗终端的读写距离,提高通信的可靠性。因此在一些对通 信距离,读取时延等方面要求相对较高的场景得以应用。
示例性地,零功耗终端可基于供能信号进行能量采集。
可选的,从供能信号载体上,所述供能信号可以是基站、智能手机、智能网关、充电站、微基站等。
可选的,从频段上,所述供能信号可以是低频、中频、高频信号等。
可选的,从波形上,所述供能信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述供能信号可以是3GPP标准中规定的某一信号。例如,SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等。
需要说明的是,由于上述网络设备发送的载波信号也可用于向零功耗设备提供能量,因此该载波信号也可被称为供能信号。
示例性地,零功耗终端可基于收到的触发信号进行反向散射通信。
可选的,所述触发信号可用于调度或者触发零功耗终端反向散射通信。
可选的,所述触发信号携带有网络设备的调度信息,或者,所述触发信号为所述网络设备发送的调度信令或调度信号。
可选的,从供能信号载体上,所述触发信号可以是基站、智能手机、智能网关等。
可选的,从频段上,所述触发信号可以是低频、中频、高频信号等。
可选的,从波形上,所述触发信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述触发信号可以是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
需要说明的是,所述供能信号和所述触发信号可以是一个信号,也可以是2个独立的信号,本申请对此不作具体限定。
例如,在蜂窝网络中,由于零功耗设备没有电池供电,需要通过网络设备提供供能信号,用于零功耗设备获得能量,从而进行相应的通信过程。其中,用于供能的信号(即供能信号)和用于信息传输的信号(即触发信号)可以是两个信号,也可以是一个信号。再如,在RFID技术中,所述供能信号和所述触发信号可以是一个信号,在蜂窝无源物联网技术中,所述供能信号和所述触发信号可以是两个独立的信号。这两个信号可以不在一个频段发送。例如网络设备在某个频段持续或者间歇性的发送供能信号,零功耗设备进行能量采集,零功耗设备获得能量之后,可以进行相应的通信过程,如测量、信道/信号的接收、信道/信号的发送等。
在进行信号的发送时,零功耗设备可以是在预设资源上发送,例如可以不同用户ID或者不同用户类型可以采用不同的资源,零功耗设备也可以是基于网络设备的调度进行发送,即接收触发信号,并基于触发信号的调度进行发送。
由于零功耗设备不能产生高频信号,因此在反向链路中采用副载波调制方式或通断键控(On-Off Keying,OOK)调制方式对编码后的基带编码数据流进行调制。
图6是本申请实施例提供的副载波调制方式的示意图。
如图6所示,对于副载波调制方式,零功耗设备先产生一个低频副载波,然后将编码后的基带编码数据流在所述低频副载波上进行调制,以得到调制副载波;之后,通过负载调制的方式将所述调制副载波在高频载波上进行调制,以得到调制高频副载波。
图7是本申请实施例提供的OOK调制方式的示意图。
如图7所示,对于OOK调制方式,零功耗设备将编码后的基带编码数据流在零功耗设备接收到的信号上进行调制,以得到反射信号,并将发射信号发送给网络设备。其中,零功耗设备接收到的信号可以是高频信号或者特定的载波信号。
随着5G行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗设备,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
下面对基于物理上行信道的上行控制信息(Uplink Control Information,UCI)的上报方案进行说明。
终端设备可以通过物理上行信道向网络设备上报UCI。例如终端设备可以通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向网络设备上报UCI。
作为一个示例,终端设备通过PUCCH上报UCI时,UCI可包括以下中的至少一项:混合自动重传 请求确认(Hybrid Automatic Repeat Request-ACK,HARQ-ACK)信息、HARQ非确认(NACK)信息、无线资源控制(Radio Resource Control,RRC)重配置信令、调度请求(Scheduling Request,SR)、链接恢复请求(link recovery request,LRR)、信道状态信息(Channel State Information,CSI)。可选的,网络设备可通过高层信令为终端设备配置最多4个PUCCH资源集合,其中资源集合0用于承载1~2比特UCI,资源集合1、2的负载可通过高层信令配置,而资源集合3的最大负载为1706,该数值来自于Polar编码的限制。对于PUCCH集合0(用于承载1~2比特UCI),高层信令可配置最多32个PUCCH资源;当PUCCH资源数量不大于8时,直接根据DCI中的指示确定使用的PUCCH资源;当PUCCH资源数量大于8时,则根据控制信道单元(Control Channel Element,CCE)的索引和下行控制信息(Downlink Control Information,DCI)中的3比特指示信息确定使用的PUCCH资源。对于PUCCH集合1、2、3(承载2比特以上UCI),高层信令可配置最多8个PUCCH资源,终端设备可根据DCI中的3比特指示信息确定使用的PUCCH资源。
作为另一个示例,终端设备通过PUSCH上报UCI时,网络设备可以针对UCI确定用于确定UCI的传输资源的偏移值,并通过调度PUSCH传输的DCI格式或高层信令将确定的偏移值指示给终端设备。可选的,在一个PUSCH中,终端设备可采用多路复用的方式向网络设备发送UCI,例如HARQ-ACK信息和/或CSI。
但是,通过物理上行信道上报UCI时,当该物理上行信道与较低优先级索引对应的信道在时间上重叠时,会影响较低优先级索引对应的信道的传输;当与较高优先级索引对应的信道在时间上重叠时,则会取消该物理上行信道的发送,即会取消UCI上报。此外,由于UCI的上报只能在上行资源上进行,因此,对于下行资源的占比较大的时分双工(Time Division Duplexing,TDD)帧结构,取消UCI上报会使得UCI上报产生较大的传输时延。
示例性地,不同优先级索引的PUCCH和/或PUSCH传输存在重叠的情况包括但不限于:
情况1:一个具有较大优先级索引的第一个PUCCH和一个具有较小优先级索引的第二个PUCCH或PUSCH。
情况2:配置了优先级索引较大的PUSCH和优先级索引较小的PUCCH。
情况3:携带有HARQ-ACK信息、仅用于响应一个PDSCH接收(没有相应的PDCCH)的具有较大优先级索引的第一个PUCCH,与以下中的任一项:携带有SR和/或CSI的、且具有较低优先级索引的第二个PUCCH;具有较低优先级索引的免调度PUSCH;没有相应PDCCH携带有SP-CSI上报信息的具有较低优先级索引的PUSCH。
情况4:具有SP-CSI上报信息而没有相应的PDCCH的一个具有较大优先级索引的PUSCH和携带SR、CSI、HARQ-ACK信息(仅响应没有相应PDCCH的PDSCH接收)中的至少一项的、且具有较小优先级索引的PUCCH。
情况5:在同一个小区上,一个具有较高优先级索引的免调度PUSCH和一个具有较低优先级索引的免授权调度PUSCH。
当优先级索引不同的两个物理上行信道在时间上存在重叠时,终端设备会处理优先级索引较低的物理上行信道的传输。例如,如果优先级索引较低的物理上行信道,在时间上与优先级索引较高的物理上行信道重叠,则终端设备会取消与优先级索引较高的物理上行信道发生重叠的优先级索引较低的物理上行信道的传输。进一步的,终端设备还可以取消与优先级索引较高的物理上行信道重叠的第一个符号之前的优先级索引较低的物理上行信道的传输。
当然,不同优先级的PUCCH传输(或PUSCH传输)和PUCCH的重复传输(或PUSCH的重复传输)在时域上也有可能会发生重叠。
例如,如果由DCI格式调度的优先级索引较大的PUCCH传输,在时间上与优先级索引较小的PUSCH传输(或PUCCH的重复传输)在时间上发生重叠,则终端设备取消与PUCCH传输重叠的PUSCH传输(或PUCCH的重复传输)。进一步的,终端设备还可以取消与PUCCH传输发生重叠的第一个符号之前的PUSCH传输(或PUCCH的重复传输)。再如,如果由DCI格式调度的优先级索引较大的PUSCH的传输,在时间上与优先级索引较小的PUCCH的重复传输在时间上发生重叠,则终端设备取消与PUSCH传输发生重叠的PUCCH的重复传输。进一步的,终端设备还可以取消与PUSCH传输发生重叠的第一个符号之前的PUCCH的重复传输。再如,如果优先级索引较低的PUCCH的重复传输(或PUSCH的重复传输),在时间上与优先级索引较高的PUCCH传输(或PUSCH传输)在时间上发生重叠,则终端设备取消与优先级索引较高的PUCCH传输(或PUSCH传输)发生重叠的PUCCH的重复传输(或PUSCH的重复传输)。进一步的,终端设备还可以取消与优先级索引较高的PUCCH传输(或PUSCH传输)发生重叠第一个符号之前的优先级索引较低的PUCCH的重复传输(或PUSCH的重复传输)。
综上所述,基于物理上行信道的UCI上报,例如基于PUCCH和/或PUSCH的UCI上报,会与其他信道产生冲突问题,且取消UCI上报会使得UCI上报有可能产生较大的时延。有鉴于此,本申请实施例提供了一种上报UCI的方法、终端设备和网络设备,能够避免会与其他信道产生冲突并降低传输时延。
图8是本申请实施例提供的上报UCI的方法200的示意性流程图。所述方法200可以由终端设备执行。应当理解,终端设备可以是零功耗设备,也可以是支持反向散射通信方式的终端设备,即不要求通过能量采集方式获得能量的终端设备,例如加载或集成有反向散射通信模块的传统NR终端,本申请对此不作具体限定。例如,所述方法200可以由如图1所示的终端设备120执行,再如,所述方法200可以由零功耗设备120执行。
如图8所示,所述方法200可包括:
S210,终端设备确定用于上报第一上行控制信息UCI的第一反向散射资源;
S220,所述终端设备基于所述第一反向散射资源,向网络设备上报所述第一UCI。
示例性地,终端设备确定所述第一反向散射资源后,基于所述第一反向散射资源,以反向散射的通信方式向所述网络设备上报所述第一UCI。例如,具有反向散射通信能力的终端设备在所述第一反向散射资源,向网络设备上报所述第一UCI。
本实施例中,通过引入用于上报第一UCI的第一反向散射资源,并基于所述第一反向散射资源,向网络设备上报所述第一UCI,一方面,由于所述第一反向散射资源可以不受上行资源的限制,相当于,所述第一反向散射资源可以是用于物理信道的上行资源或下行资源,即终端设备可以在上行资源或者下行资源上向网络设备上报所述第一UCI,降低了所述第一UCI的传输时延;另一方面,所述第一UCI基于所述第一反向散射资源进行上报时,可以将其他信道作为用于反向散射的载波,因此,终端设备基于所述第一反向散射资源上报所述第一UCI时,能够更好的与其他信道兼容,例如,即便所述第一反向散射资源与其他物理上行信道冲突,终端设备仍然可以基于所述第一反向散射资源向网络设备上报所述第一UCI,相当于,能够使得所述第一UCI的传输资源和其他信道实现资源共享,不仅能够避免由于所述第一UCI的上报与其他信道产生资源冲突所导致的所述第一UCI的传输取消的问题,还能够降低所述第一UCI的传输时延。
在一些实施例中,所述方法200还可包括:
终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
示例性地,终端设备通过网络设备发送的第一指示信息确定所述第一反向散射资源。
在一些实施例中,所述第一指示信息用于指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
示例性地,所述第一指示信息包括至少一个字段,所述至少一个字段携带的信息用于指示所述第一反向散射资源的起始时间和/或所述第一反向散射资源的持续时间。
在一些实施例中,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
示例性地,所述第一指示信息包括至少一个字段,所述至少一个字段中的第一字段携带的信息用于指示所述第一反向散射资源的起始时间和用于指示所述第一反向散射资源的持续时间。例如,所述第一字段用于携带所述第一资源配置索引。
示例性地,所述终端设备可将所述第一资源配置索引对应的起始位置,确定为所述第一反向散射资源的起始时间;所述终端设备可将所述第一资源配置索引对应的持续时间,确定为所述第一反向散射资源的持续时间;所述终端设备可将所述第一资源配置索引对应的频域位置,确定为所述第一反向散射资源的频域位置。
示例性地,所述第一反向散射资源的频域位置包括但不限于:所述第一反向散射资源的频域起始位置、所述第一反向散射资源的频域结束位置、所述第一反向散射资源所在的频点位置等。例如,所述第一反向散射资源的频域位置可只包括所述第一反向散射资源所在的频点。再如,所述第一反向散射资源可包括所述第一反向散射资源的频域起始位置和频域结束位置。应当理解,所述第一反向散射资源的频域起始位置和频域结束位置也可替换为所述第一反向散射资源所在的频段。类似的,所述第一反向散射资源的起始时间和所述第一反向散射资源的持续时间可替换为所述第一反向散射资源所在的时段,当然,也可替换为所述第一反向散射资源的起始时间和所述第一反向散射资源的结束时间,本申请对此做具体限定。
在一些实施例中,所述方法200还可包括:
终端设备接收所述网络设备发送的第一资源配置信息;
其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
示例性地,所述第一资源配置信息可以是表格信息,也可以是其他格式的信息。例如,所述第一资源配置信息也可称为反向散射资源配置表。网络设备可以通过所述第一资源配置信息为所述终端设备配置至少一个资源配置索引中每一个资源配置索引对应的起始时间以及所述每一个资源配置索引对应的持续时长;进一步的,网络设备可通过所述第一指示信息指示所述终端设备使用的第一资源配置索引,以便终端设备将所述第一资源配置索引对应的起始位置确定为所述第一反向散射资源的起始时间,并将所述第一资源配置索引对应的持续时间,确定为所述第一反向散射资源的持续时间。
示例性地,所述第一资源配置信息包括以下中的至少一项:多个资源配置索引和多个起始时间的对应关系、所述至少一个资源配置索引和多个持续时间之间的对应关系、所述多个资源配置索引和多个频域位置之间的对应关系;其中,所述多个资源配置索引包括所述第一资源配置索引。可选的,多个资源配置索引和多个起始时间之间存在一一对应关系,所述至少一个资源配置索引和多个持续时间之间之间存在一一对应关系,所述多个资源配置索引和多个频域位置之间之间存在一一对应关系。
示例性地,所述第一资源配置信息可以是预配置信息,例如可以是通过RRC信令配置的信息。
当然,在其他可替代实施例中,所述第一资源配置信息也可以是预定义的信息,即由协议约定的信息,本申请对此不作具体限定。
在一些实施例中,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
示例性地,终端设备收到所述第一指示信息后,可基于所述第一指示信息中的第一偏移值确定所述第一反向散射资源的时间参考点,进一步的,可基于所述第一指示信息中的第二偏移值,确定所述第一反向散射资源的起始时间相对所述第一反向散射资源的时间参考点之间的偏移值,进而基于所述第一反向散射资源的时间参考点、以及所述第一反向散射资源的起始时间相对所述第一反向散射资源的时间参考点之间的偏移值,确定所述第一反向散射资源的起始时间。
示例性地,所述第一指示信息包括至少一个字段,所述至少一个字段中的第二字段携带的信息用于指示所述第一反向散射资源的起始时间,所述第二字段为用于携带所述第一偏移值和所述第二偏移值的字段。
示例性地,所述第一偏移值用于指示所述第一反向散射资源的时间参考点相对缺省参考点之间的偏移值。可选的,所述缺省参考点可以是固定索引的基本时间单元。
在一些实施例中,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
本实施例中,将所述第一偏移值采用的基本时间单元的时长设计为大于所述第二偏移值采用的基本时间单元的时长,在所述第一反向散射资源的起始时间相对缺省参考点之间的时长较大时,能够通过所述第一偏移值和所述第二偏移值缩小所述第一指示信息指示的数值,进而,能够降低所述第一指示信息的开销。
示例性地,所述第一偏移值采用的基本时间单元或所述第二偏移值采用的基本时间单元可以是绝对时间单元,例如微秒、毫秒、秒等;可选的,所述第一偏移值采用的基本时间单元或所述第二偏移值采用的基本时间单元可以是相对时间单元,例如所述基本时间单元可以是用于反向散射通信的基本单元或者进行蜂窝通信的基本时间单元,包括但不限于符号、时隙、子时隙、子帧、帧等。
在一些实施例中,所述第一指示信息携带在以下中的至少一项:
下行控制信息(Downlink Control Information,DCI)、高层信令、用于反向散射通信的专用控制信息。
示例性地,在所述第一指示信息携带在DCI,且所述第一UCI包括对PDSCH的HARQ-ACK反馈时,所述第一指示信息所在的DCI可以与用于调度PDSCH的DCI相同,也可以区别于用于调度PDSCH的DCI。
示例性地,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令。
在一些实施例中,所述S210可包括:
确定用于反向散射通信的第一预配置资源;
基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;
基于所述候选反向散射资源,确定所述第一反向散射资源。
本实施例中,网络设备在时域上可以预先为终端设备分配用于反向散射通信的第一预配置资源。可选的,所述第一预配置资源可以是用于UCI上报的时域资源。可选的,所述第一预配置资源也可称为半静态资源或半静态配置的资源。基于此,所述终端设备在需要上报所述第一UCI时,可直接在预先分配的第一预配置资源中确定候选反向散射资源,进而在候选反向散射资源中确定第一反向散射资源。可选的,所述候选反向散射资源也可称为可用于UCI上报的反向散射资源。
在一些实施例中,终端设备确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;所述终端设备基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
示例性地,所述至少一个资源图样的数量通过DCI、高层信令、用于反向散射通信的专用控制信息等。可选的,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令。
示例性地,所述时域资源集合可以包括至少一个基本时间单元。所述基本时间单元可以是绝对时间单元,例如微秒、毫秒、秒等;可选的,所述基本时间单元可以是相对时间单元,例如所述基本时间单元可以是用于反向散射通信的基本单元或者进行蜂窝通信的基本时间单元,包括但不限于符号、时隙、子时隙、子帧、帧等。
示例性地,所述每一个资源图样可包括R个比特位,所述R个比特位中的每一个比特位可对应时域资源集合中的一个资源单元或一个资源单元的一部分。例如,所述R个比特位中的每一个比特位可对应时域资源集合中的一个资源单元或一个资源单元的一半或三分之一。所述每一个比特位的取值用于指示所述每一个比特位对应的资源单元或资源是否为用于反向散射通信的资源。例如,所述每一个比特位的取值为第一取值时,用于指示所述每一个比特位对应的资源单元或资源为用于反向散射通信的资源;所述每一个比特位的取值为第二取值时,用于指示所述每一个比特位对应的资源单元或资源不为用于反向散射通信的资源。可选的,所述第一取值为1且所述第二取值为0。可选的,所述第一取值为0且所述第二取值为1。
示例性地,假设时域资源集合包括10个资源单元,所述至少一个资源图样中的第一资源图样可以10比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元。例如,所述第一资源图样可以为0101010101,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述第一资源图样可以为1010101010,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
示例性地,假设时域资源集合包括10个资源单元,所述至少一个资源图样中的第二资源图样可以20比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元的一半。例如,所述第二资源图样可以为10101010101010101010,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述第二资源图样可以为01010101010101010101,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
示例性地,假设时域资源集合包括10个资源单元,所述至少一个资源图样中的第二资源图样可以30比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元的一半。例如,所述第二资源图样可以为101010101010101010101010101010,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述第二资源图样可以为010101010101010101010101010101,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
当然,通过资源图样指示资源集合中用于反向散射通信的资源仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,还可以通过指示时域资源集合中用于反向散射通信的资源的起始时域位置、用于反向散射通信的资源的时长以及周期,确定时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源为周期性资源时,可以通过指示时域资源集合中用于反向散射通信的资源的起始时域位置、用于反向散射通信的资源的时长以及周期的方式,来指示时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源为周期性资源时,针对每一个资源图样,网络设备可以向终端设备指示:时域资源集合中用于反向散射通信的资源的起始时域位置为第2个资源单元的起始位置;用于反向散射通信的资源的时长为一个资源单元、或一个资源单元的一半或三分之一;以及用于反向散射通信的资源的周期。
再如,在其他可替代实施例中,还可以通过指示时域资源集合中用于反向散射通信的资源的起始位置和结束位置。例如,时域资源集合中用于反向散射通信的资源不为周期性资源时,可以通过指示时域 资源集合中用于反向散射通信的资源的起始位置和结束位置,来指示时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源不为周期性资源时,针对每一个资源图样,网络设备可以向终端设备指示:用于反向散射通信的资源的起始位置为第一个资源单元,用于反向散射通信的结束位置为第三个资源单元。
示例性地,假设所述终端设备使用M个资源图样,所述终端设备可基于M个资源图样和所述M个资源图样中每一个资源图样对应的时域资源集合,确定所述第一预配置资源。例如,所述终端设备可基于第一时域资源集合的索引对所述M进行取模运算,并将运算结果对应的资源图样确定为所述第一时域资源集合使用的资源图样。
示例性地,从某一个时域资源集合的角度来说,假设所述某一个时域资源集合的索引为X,则所述所述某一个时域资源集合使用的资源图样可以是X mod M对应的资源图样。
示例性地,从整个时域资源集合的角度来说,一个系统帧包括1024个无线帧,其编号是从0-1023,假设每一个时域资源集合为一个无线帧,则终端设备可通过遍历1024个无线帧中每一个无线帧使用的资源图样,确定每一个资源图样对应的无线帧。例如,终端设备可基于每一个无线帧的编号对终端设备使用的M个图样进行取模运算,并将运算结果对应的资源图样确定为所述每一个无线帧使用的资源图样。
在一些实施例中,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
示例性地,所述每一个资源图样对应的所有的时域资源资源在时域上为连续的时域资源集合。
示例性地,所述至少一个图样为一个资源图样,所述一个资源图样对应的所有的时域资源资源在时域上为连续的时域资源集合。换言之,所述第一预配置资源包括任意一个时域资源集合中由所述一个资源图样指示的资源。
示例性地,所述至少一个图样为多个资源图样,所述多个中的每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。可选的,所述多个资源图样对应的时域资源集合为交错的时域资源集合或交织的时域资源集合。
示例性地,所述终端设备可以使用至少一个资源图样。
示例性地,在时域资源上,不同的时域资源集合使用相同的资源图样。
示例性地,在时域资源上,不同的时域资源集合使用图样可以使用不同的资源图样。
示例性地,在时域资源上,可以周期性配置时域资源集合,即可以周期性配置包括有用于UCI上报的反向散射资源的时域资源集合。
在一些实施例中,所述第一预配置资源在时域上为周期性资源。
在一些实施例中,终端设备将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
示例性地,所述第一时刻为所述终端生成所述第一UCI的时刻,或所述第一时刻为所述终端设备确定需要上报所述第一UCI的时刻。
示例性地,所述第一UCI包括对至少一个PDSCH的HARQ-ACK反馈时,所述第一时刻可以为所述至少一个PDSCH的结束时刻所在的基本时间单元的结束时刻或开始时刻之后的、且间隔第一时长的时刻。
在一些实施例中,终端设备将在所述候选反向散射资源中随机选择的反向散射资源,确定为所述第一反向散射资源;或终端设备将所述候选反向散射资源中的第一个反向散射资源,确定为所述第一反向散射资源。
示例性地,所述终端设备将在所述候选反向散射资源中随机选择的反向散射资源,确定为所述第一反向散射资源是,网络设备可以通过盲检的方式接收所述第一UCI。所述终端设备将所述候选反向散射资源中的第一个反向散射资源,确定为所述第一反向散射资源时,网络设备可以通过盲检的方式接收所述第一UCI,当然,在所述网络设备能够确定出所述候选反向散射资源的情况下,所述网络设备也可以将所述候选反向散射资源中的第一个反向散射资源确定为所述第一反向散射资源,并在所述第一反向散射资源上接收所述第一UCI。
在一些实施例中,所述方法200还可包括:
终端设备接收所述网络设备发送的第二资源配置信息;
其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
示例性地,所述至少一个预配置资源中的每一个预配置资源的配置信息可包括其使用的一个或多个资源图样,终端设备收到所述第二资源配置信息后,可通过网络设备指示终端设备使用的第一预配置资 源或所述终端设备使用的至少一个资源图样。相应的,终端设备确定出使用的至少一个资源图样后,可基于所述至少一个资源图样确定用于所述终端设备进行反向散射通信的第一预配置资源,进而确定用于上报所述第一UCI的第一反向散射资源。
在一些实施例中,所述S210可包括:
在所述第一UCI包括至少一个PDSCH的HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
示例性地,所述第一时长大于或等于常规PDSCH的处理时延。可选的,所述常规PDSCH的处理时延可包括所述常规PDSCH的接收时延和解析时延。可选的,所述常规PDSCH可以是固定长度的比特信息。
示例性地,所述第一时长可包括至少一个基本时间单元。可选的,所述基本时间单元可以是绝对时间单元,例如微秒、毫秒、秒等;可选的,所述基本时间单元可以是相对时间单元,例如所述基本时间单元可以是用于反向散射通信的基本单元或者进行蜂窝通信的基本时间单元,包括但不限于符号、时隙、子时隙、子帧、帧等。
示例性地,所述第一时长的取值可以通过网络设备指示或配置,或者所述第一时长的取值为预设值。可选的,所述第一时长的取值可通过DCI、高层信令、用于反向散射通信的专用控制信息等。可选的,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令。
示例性地,终端设备接收第二指示信息,所述第二指示信用于指示所述第一时长。
示例性地,所述第二指示信通过第三偏移值和第四偏移值指示所述第一时长;其中,所述第三偏移值用于指示所述第一时长的时间参考点,所述第四偏移值用于指示所述第一时长的结束位置相对所述时间参考点之间的偏移值。
示例性地,终端设备收到所述第二指示信息后,可基于所述第二指示信息中的第三偏移值确定所述第一时长的时间参考点,进一步的,可基于所述第二指示信息中的第四偏移值,确定所述第一时长的结束位置相对所述第一时长的时间参考点之间的偏移值,进而基于所述第一时长的时间参考点、以及所述第一时长的结束位置相对所述第一时长的时间参考点之间的偏移值,确定所述第一时长的结束位置。
示例性地,所述第二指示信息包括一个或多个字段,所述一个或多个字段用于携带所述第三偏移值和所述第四偏移值。
示例性地,所述第三偏移值用于指示所述第一时长的时间参考点相对所述第一时长的缺省参考点之间的偏移值。可选的,所述第一时长的缺省参考点可以是所述至少一个PDSCH的结束位置、所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置。
在一些实施例中,所述第三偏移值采用的基本时间单元的时长大于所述第四偏移值采用的基本时间单元的时长。
本实施例中,将所述第三偏移值采用的基本时间单元的时长设计为大于所述第四偏移值采用的基本时间单元的时长,在所述第一时长的结束位置相对缺省参考点之间的时长较大时,终端设备能够通过所述第三偏移值和所述第四偏移值缩小所述第二指示信息指示的数值,进而,能够降低所述第二指示信息的开销。
在一些实施例中,将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
示例性地,所述第一时长的起始位置可以是所述至少一个PDSCH的结束位置。
示例性地,所述第一时长的起始位置可以是所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置。
示例性地,所述至少一个PDSCH可以为一个PDSCH,即所述第一UCI可以包括对所述一个PDSCH的HARQ-ACK反馈,此时,所述终端设备可以在所述一个PDSCH的结束位置之后(或所述一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间。
示例性地,所述至少一个PDSCH可以为多个PDSCH,即所述第一UCI可以包括对所述多个PDSCH的HARQ-ACK反馈,此时,所述终端设备可以在所述多个PDSCH的结束位置之后(或所述多个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的、且间隔所述第一时长的时刻,确定为 所述第一反向散射资源的起始时间。
在一些实施例中,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
示例性地,所述至少一个PDSCH的数量通过DCI、高层信令、用于反向散射通信的专用控制信息等。可选的,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令。
示例性地,假设所述至少一个PDSCH的数量为N,则所述第一UCI包括N个PDSCH的HARQ反馈信息时,基于所述N个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。其中,N的取值为网络设备指示或配置的,或N的取值为预设值。
示例性地,HARQ反馈信息包括HARQ-ACK信息和/或HARQ NACK信息
在一些实施例中,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
示例性地,假设所述至少一个PDSCH的数量为N,则所述第一UCI包括N个PDSCH的HARQ反馈信息时,基于所述N个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。其中,所述终端设备根据PDSCH的接收情况确定N的取值。
示例性地,终端设备在第一PDSCH的结束位置之后(或所述第一PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的所述第一时长内,根据PDSCH的接收情况,确定所述至少一个PDSCH是否包括除所述第一PDSCH之外的PDSCH。例如,所述终端设备在第一PDSCH的结束位置之后(或所述第一PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的所述第一时长内,收到第二PDSCH时,所述终端设备将所述第二PDSCH作为所述至少一个PDSCH中的PDSCH。再如,所述终端设备在第一PDSCH的结束位置之后(或所述第一PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的所述第一时长内,没有收到所述第二PDSCH时,所述终端设备仅将所述第一PDSCH作为所述至少一个PDSCH中的PDSCH。进一步的,若所述终端设备收到所述第二PDSCH,则所述终端设备在所述第二PDSCH的结束位置之后(或所述第二PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的所述第一时长内,根据PDSCH的接收情况,确定所述至少一个PDSCH是否包括除所述第一PDSCH和所述第二PDSCH之外的PDSCH,直至所述终端设备在在最近收到的PDSCH的结束位置之后(或所述最近收到的PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后)的所述第一时长内,没有收到新的PDSCH时,将已经收到的所有PDSCH确定为所述至少一个PDSCH。
在一些实施例中,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
在一些实施例中,所述S220可包括:
在所述第一反向散射资源上,通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
在一些实施例中,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
所述网络设备向所述终端设备发送的下行信号;
所述网络设备向其他终端设备发送的下行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
示例性地,所述第一反向散射资源可以是下行资源(可以包含灵活资源),此时终端设备基于下行信号或者专用载波或者其他智能设备通信信号进行反向散射通信,进而实现对所述第一UCI的上报。可选的,所述下行信号可以是网络设备发送给所述终端设备的下行信号,包括但不限于PDSCH,PDCCH,专用载波(用于反向散射)等,也可以是网络设备发送给其他终端的下行信号,包括但不限于PDSCH,PDCCH等。可选的,所述专用载波可以是所述终端设备自己产生并发送的载波,也可以是第一设备产生并发送的载波。可选的,所述第一设备为网络设备与所述终端设备之外的第三方设备,例如,专用载波发射节点、智能终端设备、智能网络设备、CPE等。可选的,如果所述下行资源是灵活资源、且相对所述终端设备临时指示为用于下行传输的资源,但是其他终端使用的所述灵活资源临时指示为用于上行传输的资源,所述终端设备可以基于所述其他终端的上行信号,例如PUSCH,PUCCH,SR等进行反向散射。可选的,如果存在侧行终端,所述终端设备可以使用侧行终端的信号进行反向散射。
在一些实施例中,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
所述终端设备向所述网络设备发送的上行信号;
其他终端设备向所述网络设备发送的上行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
示例性地,所述第一反向散射资源可以是上行资源(可以包含灵活资源),此时终端设备基于上行信号或者专有载波或者其他智能设备通信信号进行反向散射通信,进而实现对所述第一UCI的上报。可选的,所述上行信号可以是所述终端设备发送给网络设备的上行信号,包括但不限于PUSCH,PUCCH等;可选的,所述上行信号可以是其他终端发送给网络设备的上行信号,包括但不限于PUSCH,PUCCH等。可选的,所述专用载波可以是所述终端设备自己产生并发送的载波,也可以是第一设备产生并发送的载波。可选的,所述第一设备为网络设备与所述终端设备之外的第三方设备,例如,专用载波发射节点、智能终端设备、智能网络设备、CPE等。可选的,如果所述上行资源是灵活资源、且相对所述终端设备临时指示为用于上行传输的资源,但是其他终端使用的所述灵活资源临时指示为用于下行传输的资源,所述终端设备可以基于其他终端的下行信号,例如PDSCH,PDCCH等进行反向散射。可选的,可选的,如果存在侧行终端,所述终端设备可以使用侧行终端的信号进行反向散射。
在一些实施例中,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
需要说明的是,如上文所述,本申请在确定所述第一反向散射资源时,示例性地给出了以下3种方式:
方式1:终端设备通过网络设备发送的第一指示信息确定所述第一反向散射资源。
方式2:终端设备基于预先分配的第一预配置资源确定所述第一反向散射资源。
方式3:终端设备在所述第一UCI包括至少一个PDSCH的HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
在具体实现中,上述3种方式可以独立实施,也可以相互结合。下面结合这3中方式对本申请的优选实施例进行示例性说明。
实施例1:
本实施例中,可以独立实施上述方式1和方式3,也可以结合上述方式1和方式3确定所述第一反向散射资源。例如,终端设备可以基于网络设备发送的第一指示信息确定所述第一反向散射资源。再如,在所述第一UCI包括至少一个PDSCH的HARQ反馈信息时,终端设备可基于所述第一指示信息、所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。再如,终端设备可以仅基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。再如,终端设备在未收到所述第一指示信息时,仅基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
图9是本申请实施例提供的基于第一指示信息确定第一反向散射资源的示例。其中,D表示用于下行传输的基本时间单元,U表示用于上行传输的基本时间单元,F表示灵活的基本时间单元。
如图9中的(a)所示,假设网络设备发送的第一指示信息用于指示所述第一反向散射资源的起始时间为第6个基本时间单元的起始位置,且所述第一反向散射资源的持续时间为两个基本时间单元,此时,终端设备确定所述第一反向散射资源包括第6个基本时间单元和第7个基本时间单元,即所述第一反向散射资源包括两个用于下行传输的基本时间单元。
如图9中的(b)所示,假设网络设备发送的第一指示信息用于指示所述第一反向散射资源的起始时间为第6个基本时间单元的起始位置,且所述第一反向散射资源的持续时间为两个基本时间单元。此外,假设所述第一UCI包括对一个PDSCH(例如占据两个基本时间单元)的HARQ-ACK反馈,且第一时长包括两个基本时间单元,则所述一个PDSCH的结束位置之后间隔第一时长的位置也同样为第6个基本时间单元的起始位置。基于此,终端设备可基于所述第一指示信息、一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间;即,由于第一指示信息指示的所述第一反向散射资源的起始时间、以及所述一个PDSCH的结束位置之后间隔第一时长的位置均为第6个基本时间单元的起始位置,因此,所述第一反向散射资源的起始时间为第6个基本时间单元的起始位置,即所述第一反向散射资源包括两个用于下行传输的基本时间单元。
当然,在其他可替代实施例中,所述第一指示信息指示的所述第一反向散射资源的起始时间和所述一个PDSCH的结束位置之后间隔第一时长的位置不相同时,可以将在时域上靠前或靠后的位置确定为所述第一反向散射资源的起始时间,也可以在所述第一指示信息指示的所述第一反向散射资源的起始时 间和所述一个PDSCH的结束位置之后间隔第一时长的位置中,随机选择一个位置作为所述第一反向散射资源的起始时间。或者,所述第一指示信息未指示所述第一反向散射资源的起始时间时,则根据所述一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。或者,所述第一指示信息可以通过指示所述第一反向散射资源的起始时间为相对所述一个PDSCH的结束位置间隔第一时长的位置,本申请实施例对此不作具体限定。
如图9中的(c)所示,假设网络设备发送的第一指示信息用于指示所述第一反向散射资源的起始时间为第9个基本时间单元的起始位置,且所述第一反向散射资源的持续时间为两个基本时间单元。此外,假设所述第一UCI包括对一个PDSCH(例如占据3个基本时间单元)的HARQ-ACK反馈,且第一时长包括两个基本时间单元,则所述一个PDSCH的结束位置之后间隔第一时长的位置也同样为第9个基本时间单元的起始位置。基于此,终端设备可基于所述第一指示信息、一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间;即,由于第一指示信息指示的所述第一反向散射资源的起始时间、以及所述一个PDSCH的结束位置之后间隔第一时长的位置均为第9个基本时间单元的起始位置,因此,所述第一反向散射资源的起始时间为第9个基本时间单元的起始位置,即所述第一反向散射资源包括两个用于上行传输的基本时间单元。
当然,在其他可替代实施例中,所述第一指示信息指示的所述第一反向散射资源的起始时间和所述一个PDSCH的结束位置之后间隔第一时长的位置不相同时,可以将在时域上靠前或靠后的位置确定为所述第一反向散射资源的起始时间,也可以在所述第一指示信息指示的所述第一反向散射资源的起始时间和所述一个PDSCH的结束位置之后间隔第一时长的位置中,随机选择一个位置作为所述第一反向散射资源的起始时间,本申请实施例对此不作具体限定。
图10是本申请实施例提供的基于PDSCH资源位置确定用于承载HARQ-ACK的第一反向散射资源的示例。其中,D表示用于下行传输的基本时间单元,U表示用于上行传输的基本时间单元,F表示灵活的基本时间单元。
如图10中的(a)所示,若PDSCH 1(例如占据第2个基本时间单元和第3个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 1的结束时刻之后间隔T1的时刻(即第6个基本时间单元的起始时刻)上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。例如,终端设备在第6个基本时间单元和第7个基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。即终端设备在两个用于下行传输的基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。
如图10中的(b)所示,若PDSCH 1(例如占据第4个基本时间单元至第6个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 1的结束时刻之后间隔T1的时刻(即第9个基本时间单元的起始时刻)上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。例如,终端设备在第9个基本时间单元和第10个基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。即终端设备在两个用于上行传输的基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。
如图10中的(c)所示,若PDSCH 1(例如占据第1个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 1的结束时刻之后间隔T1的时刻(即第4个基本时间单元的起始时刻)上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI;例如,终端设备在第4个基本时间单元和第5个基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI;即终端设备在两个用于下行传输的基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。进一步的,若PDSCH 2(例如占据第6个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 2的结束时刻之后间隔T1的时刻(即第9个基本时间单元的起始时刻)上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。例如,终端设备在第9个基本时间单元和第10个基本时间单元上向网络设备上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。即终端设备在两个用于上行传输的基本时间单元上向网络设备上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。
如图10中的(d)所示,若PDSCH 1(例如占据第1个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内收到新的PDSCH 2(例如占据第3个基本时间单元和第4个基本时间单元),进一步的,若PDSCH 2结束后的T1时长内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 2的结束时刻之后间隔T1的时刻(即第7个基本时间单元的起始时刻)上报包括PDSCH 1的HARQ-ACK 1反馈信息和PDSCH 2的HARQ-ACK 2反馈信息的UCI。例如,终端设备在第7个基本时间单元和第8个基本时间单元上,向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息和PDSCH 2的HARQ-ACK 2反馈信息的UCI。即终端设备在一个用于下行传输的基本时间单元和一个灵活的基 本时间单元上,向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息和PDSCH 2的HARQ-ACK 2反馈信息的UCI。
如图10中的(e)所示,若PDSCH 1(例如占据第1个基本时间单元)结束后的T1时长(例如占据两个基本时间单元)内收到新的PDSCH 2(例如占据第3个基本时间单元和第4个基本时间单元),进一步的,若PDSCH 2结束后的T1时长内未收到新的PDSCH,则终端设备基于反向散射的方式,从PDSCH 1的结束时刻之后间隔T1的时刻(即第4个基本时间单元的起始时刻)上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI;例如,终端设备在第4个基本时间单元和第5个基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI;即终端设备在两个用于下行传输的基本时间单元上向网络设备上报包括PDSCH 1的HARQ-ACK 1反馈信息的UCI。进一步的,终端设备基于反向散射的方式,从PDSCH 2的结束时刻之后间隔T1的时刻(即第7个基本时间单元的起始时刻)上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。例如,终端设备在第7个基本时间单元和第8个基本时间单元上向网络设备上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。即终端设备在一个用于下行传输的基本时间单元和一个灵活的基本时间单元上,向网络设备上报包括PDSCH 2的HARQ-ACK 2反馈信息的UCI。
当然,在其他可替代实施例中,网络设备也可以配置基于反向散射进行UCI上报(携带HARQ-ACK)关联PDSCH的个数N,此时,终端设备可以在第N个PDSCH接收后间隔T1时长的时刻开始基于反向散射进行UCI(携带有N个PDSCH的HARQ-ACK)的上报。可选的,N可以是一个预设的固定值。可选的,N可以是网络设备配置的,例如通过其他控制信息或者高层信令进行配置。可选的,N可以是显式配置也可以是隐式配置。可选的,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令。
实施例2:
本实施例中,在第一UCI包括至少一个PDSCH的HARQ反馈信息时,终端设备基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。进一步的,网络设备通过向终端设备发送的第二指示信息指示所述第一时长。
图11是本申请实施例提供的第一时长的示例。
如图11所示,所述第二指示信通过第三偏移值和第四偏移值指示所述第一时长T1;其中,所述第三偏移值用于指示所述第一时长T1的时间参考点,所述第四偏移值用于指示所述第一时长T1的结束位置相对所述时间参考点之间的偏移值。例如,所述第三偏移值用于指示所述第一时长T1的时间参考点相对所述第一时长T1的缺省参考点之间的偏移值。所述第一时长T1的缺省参考点可以是所述至少一个PDSCH的结束位置所在的基本时间单元的结束位置。进一步的,所述第三偏移值采用的基本时间单元的时长大于所述第四偏移值采用的基本时间单元的时长。
本实施例中,将所述第三偏移值采用的基本时间单元的时长设计为大于所述第四偏移值采用的基本时间单元的时长,在所述第一时长的结束位置相对缺省参考点之间的时长较大时,终端设备能够通过所述第三偏移值和所述第四偏移值缩小所述第二指示信息指示的数值,进而,能够降低所述第二指示信息的开销。
实施例3:
本实施例中,可以独立实施上述方式2和方式3,也可以结合上述方式2和方式3确定所述第一反向散射资源。例如,终端设备仅基于预先分配的第一预配置资源确定所述第一反向散射资源。再如,终端设备可以仅基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。再如,终端设备可基于所述第一预配置资源、所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
示例性地,终端设备确定用于反向散射通信的时,可先确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;然后,所述终端设备基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
示例性地,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
示例性地,所述终端设备可以使用至少一个资源图样。
示例性地,在时域资源上,不同的时域资源集合使用相同的资源图样。
示例性地,在时域资源上,不同的时域资源集合使用图样可以使用不同的资源图样。
示例性地,在时域资源上,可以周期性配置时域资源集合,即可以周期性配置包括有用于UCI上报的反向散射资源的时域资源集合。
图12是本申请实施例提供的第一预配置资源的示例。
如图12中的(a)所示,所述至少一个图样为一个图样,且所有的时域资源集合使用相同的资源图样。例如,时域资源集合1至时域资源集合3使用的资源图样相同,即均使用资源图样1。
示例性地,所述资源图样1可以10比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元。例如,所述资源图样1可以为0101010101,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述资源图样1可以为1010101010,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
如图12中的(b)所示,所述至少一个图样包括3个资源图样,即资源图样1、资源图样2以及资源图样3。以时域资源集合1至时域资源集合3为例,时域资源集合1使用的资源图样为资源图样1,时域资源集合2使用的资源图样为资源图样2,时域资源集合3使用的资源图样为资源图样3。
示例性地,所述资源图样1可以10比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元。例如,所述资源图样1可以为0101010101,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述资源图样1可以为1010101010,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
示例性地,所述资源图样2可以10比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元。例如,所述资源图样1可以为0110110110,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述资源图样1可以为1001001001,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
示例性地,所述资源图样3可以20比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元的一半资源。例如,所述资源图样1可以为10101010101010101010,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述资源图样1可以为01010101010101010101,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
如图12中的(c)所示,可以周期性配置时域资源集合。例如,时域资源集合的周期为一个时域资源集合的长度,且所有的时域资源集合使用相同的资源图样。例如,时域资源集合1和时域资源集合2使用的资源图样相同,即均使用资源图样1。
示例性地,所述资源图样1可以20比特长度的信息,其中每一个比特对应时域资源集合中的一个资源单元的一半资源。例如,所述资源图样1可以为10101010101010101010,其中,0表示对应位置的资源单元为不用于反向散射通信的资源,1表示对应位置的资源单元为用于反向散射通信的资源。再如,所述资源图样1可以为01010101010101010101,其中,1表示对应位置的资源单元为不用于反向散射通信的资源,0表示对应位置的资源单元为用于反向散射通信的资源。
当然,图12仅为本申请的示例,不应理解为对本申请的限制。在其他可替代实施例中,资源图样也可以通过其他的方式指示时域资源集合中用于反向散射通信的资源。
例如,在其他可替代实施例中,还可以通过指示时域资源集合中用于反向散射通信的资源的起始时域位置、用于反向散射通信的资源的时长以及周期,确定时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源为周期性资源时,可以通过指示时域资源集合中用于反向散射通信的资源的起始时域位置、用于反向散射通信的资源的时长以及周期的方式,来指示时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源为周期性资源时,针对每一个资源图样,网络设备可以向终端设备指示:时域资源集合中用于反向散射通信的资源的起始时域位置为第2个资源单元的起始位置;用于反向散射通信的资源的时长为一个资源单元、或一个资源单元的一半或三分之一;以及用于反向散射通信的资源的周期。
再如,在其他可替代实施例中,还可以通过指示时域资源集合中用于反向散射通信的资源的起始位置和结束位置。例如,时域资源集合中用于反向散射通信的资源不为周期性资源时,可以通过指示时域资源集合中用于反向散射通信的资源的起始位置和结束位置,来指示时域资源集合中用于反向散射通信的资源。例如,时域资源集合中用于反向散射通信的资源不为周期性资源时,针对每一个资源图样,网络设备可以向终端设备指示:用于反向散射通信的资源的起始位置为第一个资源单元,用于反向散射通信的结束位置为第三个资源单元。
图13和图14是本申请实施例提供的终端设备在第一UCI相关的第一时刻之后的候选反向散射资源中的第一个反向散射资源作为第一反向散射资源的示例。
如图13所示,假设第一预配置资源为图12中的(a)所示的反向散射资源,则终端设备在图12中的(a)所示的反向散射资源中的、且与待上报的第一UCI相关的第一时刻之后第一个反向散射资源,作为用于发送所述第一UCI的第一反向散射资源。即,终端设备在图12中的(a)所示的反向散射资源中的、且位于所述第一时刻之后第一个反向散射资源上,向网络设备上报所述第一UCI。其中,所述第一时刻为终端设备确定上报第一UCI的时刻。
如图14所示,假设第一预配置资源为图12中的(a)所示的反向散射资源,则终端设备在图12中的(a)所示的反向散射资源中的、且与待上报的第一UCI相关的第一时刻之后第一个反向散射资源,作为用于发送所述第一UCI的第一反向散射资源。即,终端设备在图12中的(a)所示的反向散射资源中的、且位于所述第一时刻之后第一个反向散射资源上,向网络设备上报所述第一UCI。其中,所述第一UCI包括对至少一个PDSCH的HARQ-ACK反馈时,所述第一时刻可以为所述至少一个PDSCH的结束时刻所在的基本时间单元的结束时刻或开始时刻之后的、且间隔第一时长T0的时刻。
应当理解,在其他可替代实施例中,还可以引入第二反向散射资源,所述第二反向散射资源可用于发送PUSCH数据,例如数据量小于某一阈值的PUSCH数据,所述第二反向散射资源的确定方式可以类似于所述第一反向散射资源的确定方式,为避免重复,此处不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。
上文中结合图8至图14,从终端设备的角度详细描述了根据本申请实施例提供的上报UCI的方法,下面将结合图15,从网络设备的角度描述根据本申请实施例提供的上报UCI的方法。
图15是本申请实施例提供的上报UCI的方法300的示意性流程图。所述方法300可以由如图1所示的网络设备110执行。
如图15所示,所述方法300可包括:
S310,确定用于上报第一上行控制信息UCI的第一反向散射资源;
S320,基于所述第一反向散射资源,接收终端设备上报的所述第一UCI。
在一些实施例中,所述方法300还可包括:
向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
在一些实施例中,所述第一指示信息用于指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述方法300还可包括:
向所述终端设备发送第一资源配置信息;
其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个反向散射资源的频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
在一些实施例中,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
在一些实施例中,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
在一些实施例中,所述第一指示信息携带在以下中的至少一项:
下行控制信息DCI、高层信令、用于反向散射通信的专用控制信息。
在一些实施例中,所述S310可包括:
确定用于反向散射通信的第一预配置资源;
基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;所述候选反向散射资源包括所述第一反向散射资源。
在一些实施例中,确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
在一些实施例中,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
在一些实施例中,所述第一预配置资源在时域上为周期性资源。
在一些实施例中,将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
在一些实施例中,所述第一反向散射资源为所述候选反向散射资源中随机选择的反向散射资源;或所述第一反向散射资源为所述候选反向散射资源中的第一个反向散射资源。
在一些实施例中,所述方法300还可包括:
向所述终端设备发送第二资源配置信息;
其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
在一些实施例中,所述S310可包括:
在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
在一些实施例中,将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
在一些实施例中,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
在一些实施例中,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
在一些实施例中,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
在一些实施例中,所述S320可包括:
在所述第一反向散射资源上,接收所述终端设备通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
在一些实施例中,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
所述网络设备向所述终端设备发送的下行信号;
所述网络设备向其他终端设备发送的下行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
所述终端设备向所述网络设备发送的上行信号;
其他终端设备向所述网络设备发送的上行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
应理解,上报UCI的方法300中的步骤可以参考上报UCI的方法200中的相应步骤,为了简洁,在此不再赘述。
上文结合图1至图15,详细描述了本申请的方法实施例,下文结合图16至图19,详细描述本申请的装置实施例。
图16是本申请实施例的终端设备400的示意性框图。
如图16所示,所述终端设备400可包括:
确定单元410,用于确定用于上报第一上行控制信息UCI的第一反向散射资源;
上报单元420,用于基于所述第一反向散射资源,向网络设备上报所述第一UCI。
在一些实施例中,所述上报单元420还用于:
接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
在一些实施例中,所述第一指示信息用于指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述上报单元420还用于:
接收所述网络设备发送的第一资源配置信息;
其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个反向散射资源的频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
在一些实施例中,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
在一些实施例中,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
在一些实施例中,所述第一指示信息携带在以下中的至少一项:
下行控制信息DCI、高层信令、用于反向散射通信的专用控制信息。
在一些实施例中,所述确定单元410具体用于:
确定用于反向散射通信的第一预配置资源;
基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;
基于所述候选反向散射资源,确定所述第一反向散射资源。
在一些实施例中,所述确定单元410具体用于:
确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;
基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
在一些实施例中,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
在一些实施例中,所述第一预配置资源在时域上为周期性资源。
在一些实施例中,所述确定单元410具体用于:
将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
在一些实施例中,所述确定单元410具体用于:
将在所述候选反向散射资源中随机选择的反向散射资源,确定为所述第一反向散射资源;或
将所述候选反向散射资源中的第一个反向散射资源,确定为所述第一反向散射资源。
在一些实施例中,所述上报单元420还用于:
接收所述网络设备发送的第二资源配置信息;
其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
在一些实施例中,所述确定单元410具体用于:
在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
在一些实施例中,所述确定单元410具体用于:
将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
在一些实施例中,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
在一些实施例中,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
在一些实施例中,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
在一些实施例中,所述上报单元420具体用于:
在所述第一反向散射资源上,通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
在一些实施例中,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
所述网络设备向所述终端设备发送的下行信号;
所述网络设备向其他终端设备发送的下行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
所述终端设备向所述网络设备发送的上行信号;
其他终端设备向所述网络设备发送的上行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图16所示的终端设备400可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备400中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
如图17所示,所述网络设备500可包括:
确定单元510,用于确定用于上报第一上行控制信息UCI的第一反向散射资源;
接收单元520,用于基于所述第一反向散射资源,接收终端设备上报的所述第一UCI。
在一些实施例中,所述接收单元520还用于:
向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
在一些实施例中,所述第一指示信息用于指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
在一些实施例中,所述接收单元520还用于:
向所述终端设备发送第一资源配置信息;
其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个反向散射资源的频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
在一些实施例中,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
在一些实施例中,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
在一些实施例中,所述第一指示信息携带在以下中的至少一项:
下行控制信息DCI、高层信令、用于反向散射通信的专用控制信息。
在一些实施例中,所述确定单元510具体用于:
确定用于反向散射通信的第一预配置资源;
基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;所述候选反向散射资源包括所述第一反向散射资源。
在一些实施例中,所述确定单元510具体用于:
确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;
基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
在一些实施例中,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
在一些实施例中,所述第一预配置资源在时域上为周期性资源。
在一些实施例中,所述确定单元510具体用于:
将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
在一些实施例中,所述第一反向散射资源为所述候选反向散射资源中随机选择的反向散射资源;或所述第一反向散射资源为所述候选反向散射资源中的第一个反向散射资源。
在一些实施例中,所述接收单元520还用于:
向所述终端设备发送第二资源配置信息;
其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
在一些实施例中,所述确定单元510具体用于:
在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
在一些实施例中,所述确定单元510具体用于:
将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或
将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
在一些实施例中,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
在一些实施例中,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
在一些实施例中,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
在一些实施例中,所述接收单元520具体用于:
在所述第一反向散射资源上,接收所述终端设备通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
在一些实施例中,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
所述网络设备向所述终端设备发送的下行信号;
所述网络设备向其他终端设备发送的下行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
所述终端设备向所述网络设备发送的上行信号;
其他终端设备向所述网络设备发送的上行信号;
所述其他终端设备发送的侧行信号;
所述终端设备或第三方设备在生成的专用载波上发送的信号;
所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
在一些实施例中,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
本申请实施例中,针对支持基于反向散射方式进行UCI上报的终端设备,提出了在进行第一UCI的上报时,确定用于上报第一UCI的第一反向散射资源的方式,能够根据不同的场景确定所述第一反向散射资源,极大程度上提升了所述第一UCI的上报性能、降低了所述第一UCI的上报时延。
当然,本申请对什么情况下基于第一反向散射资源向网络设备上报所述第一UCI的实现方式不作具体限定。例如,当下行资源占比比较大时,可以通过网络设备指示的方式,在下行时域资源上基于反向散射方式上报所述第一UCI,不需要等到上行时域资源的到来,能够极大降低所述第一UCI的上报时延;再例如,当基于PUCCH/PUSCH信道进行所述第一UCI的上报时,由于信道冲突或者优先级问题,导致所述第一UCI的上报被取消,此时可以通过反向散射方式进行所述第一UCI的上报,保证所述第一UCI能够成功传输;又例如,当基于反向散射方式进行所述第一UCI的上报时所需的时域资源较多且所需的时域资源与上行时域资源重叠时,可以灵活的切换为基于上行时域资源进行所述第一UCI的上报,并取消基于反向散射方式向网络设备上报所述第一UCI,能够较低所述第一UCI的上报时延;还例如,可以同时采用两种UCI上报方式,增强所述第一UCI的上报性能。
考虑到基于反向散射方式可以基于下行信号、上行信号或专用信号进行通信(即不同受限于现有的NR系统中的上下行通信资源)等进行通信的典型特点,本申请提供了各种用于确定所述第一反向散射资源的方式。具体地,终端设备可以基于以下信息中的至少一项,确定所述第一反向散射资源:
方式1:网络设备向终端设备所述第一反向散射资源;
方式2:网络设备为终端设备预配置所述第一反向散射资源;
方式3:在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
需要说明的是,上述各个方式可单独使用也可联合使用,本申请对此不作具体限定。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图17所示的网络设备500可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备500中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的确定单元410或确定单元510可分别由处理器实现,上文涉及的上报单元420或接收单元520可由收发器实现。
图18是本申请实施例的通信设备600示意性结构图。
如图18所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图18所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器 620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图18所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的终端设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的网络设备600,并可以对应于执行根据本申请实施例的方法300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图19是根据本申请实施例的芯片700的示意性结构图。
如图19所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图19所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图19所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图19所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存 储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的上报UCI的方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的上报UCI的方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (56)

  1. 一种上报UCI的方法,其特征在于,所述方法适用于终端设备,所述方法包括:
    确定用于上报第一上行控制信息UCI的第一反向散射资源;
    基于所述第一反向散射资源,向网络设备上报所述第一UCI。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息用于指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第一资源配置信息;
    其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个反向散射资源的频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述第一指示信息携带在以下中的至少一项:
    下行控制信息DCI、高层信令、用于反向散射通信的专用控制信息。
  9. 根据权利要求1所述的方法,其特征在于,所述确定用于上报第一上行控制信息UCI的第一反向散射资源,包括:
    确定用于反向散射通信的第一预配置资源;
    基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;
    基于所述候选反向散射资源,确定所述第一反向散射资源。
  10. 根据权利要求9所述的方法,其特征在于,所述确定用于反向散射通信的第一预配置资源,包括:
    确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;
    基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
  11. 根据权利要求10所述的方法,其特征在于,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一预配置资源在时域上为周期性资源。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源,包括:
    将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述基于所述候选反向散射资源,确定所述第一反向散射资源,包括:
    将在所述候选反向散射资源中随机选择的反向散射资源,确定为所述第一反向散射资源;或
    将所述候选反向散射资源中的第一个反向散射资源,确定为所述第一反向散射资源。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二资源配置信息;
    其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述确定用于上报第一上行控制信息UCI的第一反向散射资源,包括:
    在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
  17. 根据权利要求16所述的方法,其特征在于,所述基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间,包括:
    将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
  18. 根据权利要求16或17所述的方法,其特征在于,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
  19. 根据权利要求16或17所述的方法,其特征在于,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述基于所述第一反向散射资源,向网络设备上报所述第一UCI,包括:
    在所述第一反向散射资源上,通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
  22. 根据权利要求21所述的方法,其特征在于,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
    所述网络设备向所述终端设备发送的下行信号;
    所述网络设备向其他终端设备发送的下行信号;
    所述其他终端设备发送的侧行信号;
    所述终端设备或第三方设备在生成的专用载波上发送的信号;
    所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
  23. 根据权利要求21所述的方法,其特征在于,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
    所述终端设备向所述网络设备发送的上行信号;
    其他终端设备向所述网络设备发送的上行信号;
    所述其他终端设备发送的侧行信号;
    所述终端设备或第三方设备在生成的专用载波上发送的信号;
    所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
  25. 一种上报UCI的方法,其特征在于,所述方法适用于网络设备,所述方法包括:
    确定用于上报第一上行控制信息UCI的第一反向散射资源;
    基于所述第一反向散射资源,接收终端设备上报的所述第一UCI。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一反向散射资源。
  27. 根据权利要求26所述的方法,其特征在于,所述第一指示信息用于指示以下中的至少一项:
    所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一指示信息通过第一资源配置索引指示以下中的至少一项:所述第一反向散射资源的起始时间、所述第一反向散射资源的持续时间、所述第一反向散射资源的频域位置。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一资源配置信息;
    其中,所述第一资源配置信息包括以下中的至少一项:至少一个资源配置索引和至少一个起始时间的对应关系、所述至少一个资源配置索引和至少一个持续时间之间的对应关系、所述至少一个资源配置索引和至少一个反向散射资源的频域位置之间的对应关系;其中,所述至少一个资源配置索引包括所述第一资源配置索引。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述第一指示信息通过第一偏移值和第二偏移值指示所述第一反向散射资源的起始时间;其中,所述第一偏移值用于指示所述第一反向散射资源的时间参考点,所述第二偏移值用于指示所述第一反向散射资源的起始时间相对所述时间参考点之间的偏移值。
  31. 根据权利要求30所述的方法,其特征在于,所述第一偏移值采用的基本时间单元的时长大于所述第二偏移值采用的基本时间单元的时长。
  32. 根据权利要求26至31中任一项所述的方法,其特征在于,所述第一指示信息携带在以下中的至少一项:
    下行控制信息DCI、高层信令、用于反向散射通信的专用控制信息。
  33. 根据权利要求25所述的方法,其特征在于,所述确定用于上报第一上行控制信息UCI的第一反向散射资源,包括:
    确定用于反向散射通信的第一预配置资源;
    基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源;所述候选反向散射资源包括所述第一反向散射资源。
  34. 根据权利要求33所述的方法,其特征在于,所述确定用于反向散射通信的第一预配置资源,包括:
    确定所述终端设备使用的至少一个资源图样;所述至少一个资源图样中的每一个资源图样用于指示时域资源集合中用于反向散射通信的资源;
    基于所述每一个资源图样和所述每一个资源图样对应的时域资源集合,确定所述第一预配置资源。
  35. 根据权利要求34所述的方法,其特征在于,所述每一个资源图样对应的相邻的两个时域资源集合在时域上为连续的时域资源集合,或所述每一个资源图样对应的时域资源集合在时域上为周期性的时域资源集合。
  36. 根据权利要求33至35中任一项所述的方法,其特征在于,所述第一预配置资源在时域上为周期性资源。
  37. 根据权利要求33至36中任一项所述的方法,其特征在于,所述基于所述第一预配置资源,确定所述第一UCI的候选反向散射资源,包括:
    将所述第一预配置资源中与所述第一UCI相关的第一时刻之后的反向散射资源,确定为所述候选反向散射资源。
  38. 根据权利要求33至37中任一项所述的方法,其特征在于,所述第一反向散射资源为所述候选反向散射资源中随机选择的反向散射资源;或所述第一反向散射资源为所述候选反向散射资源中的第一个反向散射资源。
  39. 根据权利要求33至38中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二资源配置信息;
    其中,所述第二资源配置信息包括至少一个预配置资源的配置信息,所述至少一个预配置资源包括所述第一预配置资源。
  40. 根据权利要求25至39中任一项所述的方法,其特征在于,所述确定用于上报第一上行控制信息UCI的第一反向散射资源,包括:
    在所述第一UCI包括至少一个物理下行共享信道PDSCH的混合自动重传请求确认HARQ反馈信息时,基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间。
  41. 根据权利要求40所述的方法,其特征在于,所述基于所述至少一个PDSCH的结束位置和第一时长,确定所述第一反向散射资源的起始时间,包括:
    将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的时刻,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间;或
    将所述至少一个PDSCH的结束位置所在的基本时间单元的起始位置或结束位置之后的、且间隔所述第一时长的第一个反向散射资源的起始位置,确定为所述第一反向散射资源的起始时间。
  42. 根据权利要求40或41所述的方法,其特征在于,所述至少一个PDSCH的数量通过所述网络设备指示或配置,或者所述至少一个PDSCH的数量为预设值。
  43. 根据权利要求40或41所述的方法,其特征在于,所述至少一个PDSCH中相邻的两个PDSCH之间间隔的时长小于或等于所述第一时长。
  44. 根据权利要求40至43中任一项所述的方法,其特征在于,所述第一时长通过网络设备指示或配置,或所述第一时长为预设时长。
  45. 根据权利要求25至44中任一项所述的方法,其特征在于,所述基于所述第一反向散射资源,接收终端设备上报的所述第一UCI,包括:
    在所述第一反向散射资源上,接收所述终端设备通过反向散射第一信号或第一载波的方式,向所述网络设备上报所述第一UCI。
  46. 根据权利要求45所述的方法,其特征在于,所述第一反向散射资源为下行资源,所述第一信号包括以下中的至少一项:
    所述网络设备向所述终端设备发送的下行信号;
    所述网络设备向其他终端设备发送的下行信号;
    所述其他终端设备发送的侧行信号;
    所述终端设备或第三方设备在生成的专用载波上发送的信号;
    所述下行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
  47. 根据权利要求45所述的方法,其特征在于,所述第一反向散射资源为上行资源,所述第一信号包括以下中的至少一项:
    所述终端设备向所述网络设备发送的上行信号;
    其他终端设备向所述网络设备发送的上行信号;
    所述其他终端设备发送的侧行信号;
    所述终端设备或第三方设备在生成的专用载波上发送的信号;
    所述上行资源为灵活资源时,所述其他终端设备在所述灵活资源上发送的上行信号、下行信号或侧行信号。
  48. 根据权利要求25至47中任一项所述的方法,其特征在于,所述第一UCI包括以下中的至少一项:混合自动重传请求确认HARQ-ACK信息、HARQ非确认NACK信息、调度请求SR、链接恢复请求LRR、信道状态信息CSI、无线资源控制RRC重配置信令。
  49. 一种终端设备,其特征在于,包括:
    确定单元,用于确定用于上报第一上行控制信息UCI的第一反向散射资源;
    上报单元,用于基于所述第一反向散射资源,向网络设备上报所述第一UCI。
  50. 一种网络设备,其特征在于,包括:
    确定单元,用于确定用于上报第一上行控制信息UCI的第一反向散射资源;
    接收单元,用于基于所述第一反向散射资源,接收终端设备上报的所述第一UCI。
  51. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至24中任一项所述的方法。
  52. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求25至48中任一项所述的方法。
  53. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法或如权利要求25至48中任一项所述的方法。
  54. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法或如权利要求25至48中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法或如权利要求25至48中任一项所述的方法。
  56. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法或如权利要求25至48中任一项所述的方法。
PCT/CN2022/080366 2022-03-11 2022-03-11 上报uci的方法、终端设备和网络设备 WO2023168699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/080366 WO2023168699A1 (zh) 2022-03-11 2022-03-11 上报uci的方法、终端设备和网络设备
CN202280093193.2A CN118805412A (zh) 2022-03-11 2022-03-11 上报uci的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080366 WO2023168699A1 (zh) 2022-03-11 2022-03-11 上报uci的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023168699A1 true WO2023168699A1 (zh) 2023-09-14

Family

ID=87937024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080366 WO2023168699A1 (zh) 2022-03-11 2022-03-11 上报uci的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN118805412A (zh)
WO (1) WO2023168699A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661594A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 信道状态信息与混合式自动重传请求确认复用方法及设备
WO2021154610A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Method of network-assisted beamformed energy harvesting signaling and corresponding apparatus
US20220045796A1 (en) * 2020-08-10 2022-02-10 Huawei Technologies Co., Ltd. Low latency ack/nack transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661594A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 信道状态信息与混合式自动重传请求确认复用方法及设备
WO2021154610A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Method of network-assisted beamformed energy harvesting signaling and corresponding apparatus
US20220045796A1 (en) * 2020-08-10 2022-02-10 Huawei Technologies Co., Ltd. Low latency ack/nack transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU WEIJIE; ZUO ZHISONG; HE CHUANFENG; HU RONGYI; CUI SHENGJIANG; SHAO SHUAI; ZHANG ZHI; YANG NING: "Opportunities, challenges and feasibilities of Zero-Power IoT in 5G advanced", 2021 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), IEEE, 28 July 2021 (2021-07-28), pages 374 - 378, XP033976697, DOI: 10.1109/ICCCWorkshops52231.2021.9538925 *

Also Published As

Publication number Publication date
CN118805412A (zh) 2024-10-18

Similar Documents

Publication Publication Date Title
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
US20240160866A1 (en) Wireless communication method, terminal device and network device
US20240137194A1 (en) Method and device for wireless communication
WO2023272443A1 (zh) 无线通信方法及设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023004748A1 (zh) 无线通信方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备
WO2023201493A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023168721A1 (zh) 配置资源的方法、终端以及网络设备
WO2024168586A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2024197568A1 (zh) 无线通信的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930337

Country of ref document: EP

Kind code of ref document: A1