WO2023133840A1 - 无线通信方法、终端设备和供能节点 - Google Patents

无线通信方法、终端设备和供能节点 Download PDF

Info

Publication number
WO2023133840A1
WO2023133840A1 PCT/CN2022/072131 CN2022072131W WO2023133840A1 WO 2023133840 A1 WO2023133840 A1 WO 2023133840A1 CN 2022072131 W CN2022072131 W CN 2022072131W WO 2023133840 A1 WO2023133840 A1 WO 2023133840A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
energy supply
signal
synchronization
sequence
Prior art date
Application number
PCT/CN2022/072131
Other languages
English (en)
French (fr)
Inventor
左志松
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/072131 priority Critical patent/WO2023133840A1/zh
Publication of WO2023133840A1 publication Critical patent/WO2023133840A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, a terminal device, and an energy supply node.
  • passive IoT devices can be based on existing zero-power terminals, such as Radio Frequency Identification (RFID) technology, and extended on this basis to be applicable to cellular IoT.
  • RFID Radio Frequency Identification
  • the embodiment of the present application provides a wireless communication method, terminal equipment, and energy supply node, which not only enables zero-power consumption terminals to be applied to the cellular Internet of Things, but also enriches the types and quantities of link terminals in the network, and can truly realize all things Interconnection can also reduce the synchronization error of terminal equipment, so that terminal equipment can use accurate timing or frequency points to send and receive data, thereby improving system performance.
  • the present application provides a wireless communication method, including:
  • the energy supply signal carries synchronization information of the terminal device and/or a synchronization sequence used to determine the synchronization information
  • a reflection signal is sent to a network device based on the synchronization information.
  • the present application provides a wireless communication method, including:
  • the energy supply signal carries synchronization information of the terminal equipment and/or a synchronization sequence used to determine the synchronization information, and the synchronization information is used for the terminal equipment to send reflection Signal.
  • the present application provides a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module configured to execute the method in the foregoing first aspect or its various implementation manners.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides an energy supply node, configured to execute the method in the above second aspect or various implementations thereof.
  • the energy supply node includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • the energy supply node may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the energy supply node may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the energy supply node is a communication chip, the receiving unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides an energy supply node, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above second aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the energy supply node further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip configured to implement any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
  • the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof .
  • the present application provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the present application can enable the terminal device to send the synchronization information to the network device based on the synchronization information by carrying the synchronization information of the terminal device in the power supply signal and/or the synchronization sequence used to determine the synchronization information.
  • the reflected signal can not only enable zero-power consumption terminals to be applied to the cellular Internet of Things to enrich the types and quantities of link terminals in the network, and then truly realize the Internet of Everything, but also reduce the synchronization error of terminal equipment, so that terminal equipment can use Accurate timing or frequency to send and receive data can improve system performance.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a zero-power communication system provided by the present application.
  • Fig. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of backscatter communication provided by the present application.
  • Fig. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a subcarrier modulation method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an OOK modulation method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram obtained by measuring a timing error value of a zero-power consumption circuit provided by an embodiment of the present application.
  • FIG. 9 to FIG. 11 are schematic flowcharts of a wireless communication method provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of an energy supply signal obtained by modulating a synchronization sequence on a continuous wave according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of an energy supply node provided by an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • pre-configuration in this article can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). No limit. For example, pre-configuration may refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next generation communication system, zero power consumption communication system , cellular Internet of Things, cellular passive Internet of Things or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio
  • the cellular Internet of Things is the development product of the combination of the cellular mobile communication network and the Internet of Things.
  • the cellular passive Internet of Things is also called the passive cellular Internet of Things, which is composed of network devices and passive terminals.
  • passive terminals can communicate with other passive terminals through network devices.
  • the passive terminal can communicate in a device-to-device (D2D) communication manner, and the network device only needs to send a carrier signal, that is, an energy supply signal, to supply energy to the passive terminal.
  • D2D device-to-device
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the network equipment may be a device used to communicate with mobile equipment, and the network equipment may be an access point (Access Point, AP) in WLAN, GSM or A base station (Base Transceiver Station, BTS) in CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle-mounted devices, wearable devices, and network devices (gNB) in NR networks or network devices in PLMN networks that will evolve in the future.
  • Access Point Access Point
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB network devices
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example, The cell corresponding to the base station) can belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be referred to as a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network, or zero-power devices.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • a zero-power consumption device may be understood as a device whose power consumption is lower than a preset power consumption. For example, it includes passive terminals and even semi-passive terminals.
  • the zero-power consumption device is a radio frequency identification (Radio Frequency Identification, RFID) tag, which is a technology for realizing non-contact automatic transmission and identification of tag information by means of spatial coupling of radio frequency signals.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, means that the energy of the electronic tags is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag, which is different from the passive radio frequency activation method. Set the frequency band to send information.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • the tags When passive electronic tags are close to the reader, the tags are in the near-field range formed by the radiation of the reader antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the chip circuit of the electronic label.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price, and long service life.
  • the built-in battery When the built-in battery is not accessed by a reader, It only provides power for a few circuits in the chip, and the built-in battery supplies power to the RFID chip only when the reader is accessing, so as to increase the reading and writing distance of the tag and improve the reliability of communication.
  • An RFID system is a wireless communication system.
  • the RFID system is composed of two parts: an electronic tag (TAG) and a reader/writer (Reader/Writer).
  • Electronic tags include coupling components and chips, and each electronic tag has a unique electronic code, which is placed on the target to achieve the purpose of marking the target object.
  • the reader can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
  • Zero-power communication uses energy harvesting and backscatter communication technologies. In order to facilitate understanding of the technical solutions of the embodiments of the present application, related technologies of zero power consumption are described.
  • FIG. 2 is a schematic diagram of a zero-power communication system provided by the present application.
  • the zero-power communication system consists of network equipment and zero-power terminals.
  • the network equipment is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power consumption terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensing data such as ambient temperature and ambient humidity.
  • Zero-power communication can also be called communication based on zero-power terminals.
  • the key technologies of zero-power communication mainly include radio frequency energy harvesting and backscatter communication.
  • Fig. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • the energy harvesting module may include a capacitor C and a resistor RL .
  • the radio frequency energy harvesting module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive the zero-power terminal to work, such as for Drive low-power demodulation and modulation modules, sensors and memory reading, etc. Therefore, zero-power terminals do not require conventional batteries.
  • the principle of electromagnetic induction means that as long as the magnetic flux passing through the closed circuit changes, an induced current will be generated in the closed circuit.
  • the capacitor C and the resistor RL can be used to form a closed circuit. After the radio frequency energy harvesting module receives radio frequency (RF), it can generate an induced current and store the generated induced current in the capacitor C to realize the space Harvesting of electromagnetic energy.
  • RF radio frequency
  • FIG. 4 is a schematic diagram of backscatter communication provided by the present application.
  • a network device acts as a transmitting end (TX)
  • the network device sends a carrier wave to a zero-power consumption device through an amplifier (AMP).
  • the zero-power consumption device uses the energy collected by the energy harvesting module to drive the logic processing module and the modulation module to process and modulate the carrier wave, and load the information to be sent through the variable resistor and The modulated reflected signal is radiated from the antenna, and this information transmission process is called backscatter communication.
  • the network device serves as a receiving end (RX)
  • it can receive the reflected signal sent by the zero-power consumption device through a low-noise amplifier (LNA).
  • the AMP and the LNA may each be connected to a voltage display light, and an emergency light may be set between the voltage display lights connected to the AMP and the LNA respectively.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the magnitude and phase of the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • FIG. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
  • a resistor R L is connected in parallel with a resistor R 3 , the resistor R L can be called a load modulation resistor, the resistor R L is turned on or off based on the control of the binary data flow, and the resistance R L On-off will lead to changes in the circuit voltage. Further, resistance R L can be connected in parallel with inductance L 1 through resistance R 2 , and inductance L 1 is used to form a resonant circuit with inductance L 2.
  • the on-off of the load modulation resistor will cause The change of the circuit voltage will lead to the change of the resonant frequency of the resonant circuit, and finally realize the amplitude keying modulation (ASK), that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • ASK amplitude keying modulation
  • the inductor L 2 can also be used to connect to the capacitor C 2 , and the capacitor C 2 can be used to convert the change of the resonant frequency of the resonant circuit into a signal for the antenna to transmit.
  • the change of the resonant frequency of the resonant circuit can be realized through the on-off of the capacitor C1 , and the frequency keying modulation (FSK) can be realized, that is, by adjusting the working frequency of the backscatter signal of the zero-power consumption terminal Realize signal modulation and transmission.
  • FSK frequency keying modulation
  • zero-power terminals Since the zero-power terminal performs information modulation on the incoming signal by means of load modulation, the backscatter communication process is realized. Therefore, zero-power terminals have significant advantages:
  • the terminal equipment does not actively transmit signals, and realizes backscatter communication by modulating the incoming wave signal.
  • Terminal equipment does not rely on traditional active power amplifier transmitters, and uses low-power computing units at the same time, which greatly reduces hardware complexity.
  • the above-mentioned terminal device may be a zero-power consumption device (such as a passive terminal, or even a semi-passive terminal), and even the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
  • a zero-power consumption device such as a passive terminal, or even a semi-passive terminal
  • the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
  • the data transmitted by the terminal device may use different forms of codes to represent binary "1" and "0".
  • RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller coding and differential coding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
  • zero-power terminals can be divided into the following types based on the energy sources and usage methods of zero-power terminals:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, ADC, etc., so it has small size, light weight, and very low price. Cheap, long service life and many other advantages.
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the energy collected by the energy harvesting module. radio energy, so it is also a true zero-power consumption terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminal used can also be an active zero-power terminal, and this type of terminal can have a built-in battery.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • the active zero-power terminal supplies power to the RFID chip through a built-in battery, so as to increase the reading and writing distance of the zero-power terminal and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
  • the zero-power consumption terminal may perform energy collection based on the energy supply signal.
  • the energy supply signal may be a base station, a smart phone, an intelligent gateway, a charging station, a micro base station, and the like.
  • the energy supply signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
  • the energy supply signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
  • the energy supply signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the energy supply signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Control Channel
  • the carrier signal sent by the foregoing network device may also be used to provide energy to the zero-power consumption device, the carrier signal may also be referred to as an energy supply signal.
  • the zero-power terminal can perform backscatter communication based on the received trigger signal.
  • the trigger signal can be used to schedule or trigger the backscatter communication of the zero-power consumption terminal.
  • the trigger signal carries scheduling information of the network device, or the trigger signal is a scheduling signaling or a scheduling signal sent by the network device.
  • the trigger signal can be a base station, a smart phone, an intelligent gateway, etc.;
  • the trigger signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
  • the trigger signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
  • the trigger signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
  • the energy supply signal and the trigger signal may be one signal, or two independent signals, which are not specifically limited in this application.
  • the signal for energy supply ie, the energy supply signal
  • the signal for information transmission ie, the trigger signal
  • the energy supply signal and the trigger signal may be one signal
  • the energy supply signal and the trigger signal may be two independent signals. These two signals may not be sent in the same frequency band.
  • network devices continuously or intermittently send energy supply signals in a certain frequency band, zero-power devices collect energy, and after zero-power devices obtain energy, they can perform corresponding communication processes, such as measurement, channel/signal reception, channel / signal transmission, etc.
  • zero-power devices can send on preset resources. For example, different user IDs or different user types can use different resources. Zero-power devices can also send based on the scheduling of network devices. That is, the trigger signal is received and sent based on the scheduling of the trigger signal.
  • FIG. 6 is a schematic diagram of a subcarrier modulation method provided by an embodiment of the present application. As shown in Figure 6, for the subcarrier modulation mode, the zero-power device first generates a low-frequency subcarrier, and then modulates the encoded baseband coded data stream on the low-frequency subcarrier to obtain a modulated subcarrier; after that, The modulated sub-carrier is modulated on the high-frequency carrier by means of load modulation to obtain a modulated high-frequency sub-carrier.
  • FIG. 6 is a schematic diagram of a subcarrier modulation method provided by an embodiment of the present application. As shown in Figure 6, for the subcarrier modulation mode, the zero-power device first generates a low-frequency subcarrier, and then modulates the encoded baseband coded data stream on the low-frequency subcarrier to obtain a modulated subcarrier; after that, The modulated sub-carrier is modulated on the high-frequency carrier by means of load modulation to obtain a modulated high-frequency sub-car
  • the zero-power device modulates the encoded baseband coded data stream on the signal received by the zero-power device to obtain a reflected signal, and sends the transmitted signal to the network device.
  • the signal received by the zero-power consumption device may be a high-frequency signal or a specific carrier signal.
  • passive IoT devices can be based on existing zero-power consumption devices, such as Radio Frequency Identification (RFID) technology, and extended on this basis to be suitable for cellular IoT.
  • RFID Radio Frequency Identification
  • a technical bottleneck faced by passive zero-power communication technology is the limited coverage distance of the forward link.
  • the signal strength of the signal based on the above implementation process, a general zero-power terminal needs to consume 10 microwatts (uw) of power to drive a low-power circuit. This means that the signal power reaching the zero power terminal needs to be at least -20dBm.
  • the transmission power of network equipment should generally not be too large. For example, in the ISM frequency band where RFID works, the maximum transmission power is 30dBm. Therefore, considering the radio propagation loss in space, the transmission distance of the passive zero-power terminal is generally in the range of 10m to tens of meters.
  • the semi-passive zero-power terminal has the potential to significantly extend the communication distance, because the semi-passive zero-power terminal can use the RF energy harvesting module to collect radio waves, so it can continuously obtain radio energy and store it in the energy storage unit middle. After the energy storage unit obtains enough energy, it can drive the low power consumption circuit to work for the signal demodulation of the forward link and the signal modulation of the reverse link. Therefore, at this time, the semi-passive zero-power terminal is equivalent to an active terminal, and its downlink coverage depends on the receiver sensitivity of the downlink signal (usually much lower than the RF energy harvesting threshold). Based on the current technology, the energy harvesting module can perform energy harvesting and input electric energy to the energy storage unit when the received radio signal strength is not lower than -30dBm.
  • the coverage of the forward link of the semi-passive zero-power terminal depends on the RF energy collection threshold (such as -30dBm).
  • the received radio signal strength is relaxed from -20dBm to -30dBm, so A link budget gain of 10dB can be obtained, so the downlink coverage can be improved by more than 3 times.
  • semi-passive zero-power terminals also face the problem of reduced charging efficiency.
  • the energy that can be harvested and stored by the energy harvesting module is greatly reduced. For example, when the received signal strength is -30dBm, that is, 1 microwatt hour, the energy that can be collected and stored is far less than 1 microwatt (the efficiency of energy collection is greatly reduced).
  • the low-power circuits of a zero-power terminal may need to consume an average power of 10 microwatts ( ⁇ w).
  • the clock circuit of the zero-power terminal often uses a simplified circuit of a resistor-capacitor (RC) oscillator, but the timing, frequency, and phase errors of the simplified circuit of the RC oscillator are relatively large.
  • RC resistor-capacitor
  • FIG. 8 is a schematic diagram obtained by measuring a timing error value of a zero-power consumption circuit provided by an embodiment of the present application.
  • the terminal device continuously collects the levels of 10,000 sampling points (sampling period) according to the sampling period (Sampling Period) of 2e-8, that is, the abscissa indicates the sampling point ;
  • the vertical axis represents the voltage.
  • the index of the first sampling point is 739
  • the index of the second sampling point is 9460, that is, X:739 represents the sampling index (sample index) corresponding to the starting position of 176bit data; correspondingly, X:9460 represents 176bit The sample index corresponding to the end position of the data.
  • the transmission time (Sampling time) of 176bit data can be calculated by using the number of sampling points and the sampling period (sampling period), and the transmission time of each bit of data can be further obtained; further, each bit of data obtained by calculation can be used
  • the transmission time (Time per bit) of each bit of data is compared with the theoretical transmission time (Theoretical time per bit) of each bit of data to obtain the corresponding timing error.
  • the theoretical transmission time of each bit of data may be 1us.
  • a microcontroller can be used to further correct the timing error of the zero power device, but it is still much higher than the error of the crystal oscillator circuit.
  • the embodiment of the present application provides a method and a communication device for data transmission, which can not only apply zero-power consumption terminals to the cellular Internet of Things, but also enrich the types and numbers of link terminals in the network, and then can truly The realization of the Internet of Everything is also conducive to improving data transmission performance.
  • the solution provided by this application is not only applicable to zero-power consumption scenarios, but also applicable to non-zero power consumption scenarios, that is, it is applicable to the data transmission process between terminal devices and network devices, for example, it is suitable for terminal devices to send data The process by which a process or network device receives data.
  • FIG. 9 is a schematic flowchart of a method 200 for data transmission provided by an embodiment of the present application.
  • the method 200 may be interactively executed by a communication device, an energy supply node, and a network device.
  • the terminal device and the network device may be the terminal device 120 or the network device 110 shown in FIG. 1 respectively.
  • the energy supply node may also be the network device 110 shown in FIG. 1 .
  • the terminal device may be a zero-power consumption terminal.
  • the network device and the energy supply node involved in this embodiment may be the same device or two independent devices, which is not specifically limited in this application.
  • the energy supply node is the network equipment and the trigger signal is carried in the energy supply signal; as another example, the energy supply node is other equipment except the network equipment and The trigger signal is independent of the energizing signal.
  • an interface for coordinating links may be added between the network device and the energy supply node.
  • the method 200 may include:
  • the terminal device receives an enabling signal; wherein, the enabling signal carries synchronization information of the terminal device and/or a synchronization sequence for determining the synchronization information;
  • the terminal device sends a reflected signal to the network device based on the synchronization information.
  • the terminal device performs energy collection based on the received energy supply signal, and demodulates the synchronization information or synchronization sequence carried in the energy supply signal; after the terminal device obtains the synchronization information, based on the Synchronization messages send reflected signals to network devices. That is to say, the energy supply signal in this application is used to provide energy and synchronization information at the same time, that is, the terminal can obtain the synchronization information on the energy supply signal while receiving the energy supply signal.
  • the synchronization information is used for synchronization adjustment.
  • the synchronization information may be used for timing synchronization adjustment and/or frequency synchronization adjustment.
  • the terminal device can be made to send a reflected signal to the network device based on the synchronization information , not only can enable zero-power consumption terminals to be applied to the cellular Internet of Things, to enrich the types and quantities of link terminals in the network, and then truly realize the Internet of Everything, but also reduce the synchronization error of terminal devices, so that terminal devices can use accurate Send and receive data at regular or frequency points, which can improve system performance.
  • the present application designs the energy supply signal and the synchronization signal as the same signal, which can save time-frequency domain resources.
  • the energy supply signal may be a constant-amplitude continuous wave signal, including but not limited to a sine/cosine wave signal, a sawtooth wave signal, and a square wave signal.
  • the energy supply signal may be a continuously sent energy supply signal.
  • the energy supply signal may be a modulated continuous wave signal, such as a signal modulated by a certain amplitude or by other means.
  • the energy collected by the terminal device based on the energy supply signal can be used for functions such as demodulation of the synchronization information, reflection of the energy supply signal, and measurement.
  • the present application does not limit the modulation manner of the energy supply signal.
  • the energy supply signal may be modulated by subcarrier modulation.
  • Subcarrier modulation refers to first modulating the signal on carrier 1, and then performing another modulation, that is, using the modulated carrier of carrier 1 to modulate another carrier 2 with a higher frequency.
  • Subcarrier modulation is a modulation method used in RFID systems. Specifically, in the subcarrier modulation, the low-frequency subcarrier is first modulated with the baseband coded data signal, and the modulated subcarrier signal is used to switch the load resistance; then the subcarrier is modulated by ASK, FSK or PSK modulation method secondary modulation.
  • the S220 may include:
  • the terminal device When the synchronization information includes a timing error value of the terminal device, the terminal device sends a reflected signal and/or a frequency error value to the network device based on the timing adjusted by using the timing error value; and/or, the When the synchronization information includes the frequency error value of the terminal device, the terminal device sends a reflected signal to the network device based on the adjusted frequency point using the frequency error value.
  • the working principle of the zero-power terminal is based on radio electromagnetic/inductive coupling, and an internal oscillator is required to provide and maintain the clock, and the internal oscillator is difficult to guarantee an accurate clock from a simplified point of view, and thus, makes The timing error and/or frequency error between the terminal device and the network device is also difficult to compensate by timing adjustment, and the accumulation of timing error and/or frequency error will lead to failure of normal communication.
  • the energy supply signal directly compensates the timing error and/or frequency error of the terminal device, so that the terminal device can use accurate timing or frequency points to send and receive data, thereby improving system performance.
  • involving the synchronization information as including the timing error value of the terminal device and/or including the frequency error value of the terminal device is equivalent to controlling the timing error and/or frequency error in a closed-loop manner, which can prevent errors Diffusion or accumulation can improve system performance.
  • the timing error value of the terminal device refers to an offset relative to the timing used by the terminal device
  • the frequency error value of the terminal device may refer to an offset relative to the frequency used by the terminal device.
  • the timing error value may also be called a timing signature or similar term
  • the frequency error may also be called a frequency frequency offset or similar term, which is not specifically limited in the present application.
  • the timing error value of the terminal device may also be referred to as the compensation amount for the timing used by the terminal device, and the frequency error value of the terminal device may also be referred to as the The amount of compensation for the frequency used.
  • the timing error value of the terminal device and/or the frequency error value including the terminal device may be a positive number or a negative number, which is not specifically limited in this application.
  • the method 200 may also include:
  • the terminal device When the energy supply signal carries the synchronization sequence, the terminal device obtains the synchronization sequence by demodulating the energy supply signal;
  • the terminal device acquires the synchronization information based on an estimation result obtained by performing correlation estimation on the synchronization sequence.
  • the terminal device may acquire a timing error value of the terminal device and/or obtain a frequency error value of the terminal device based on an estimation result obtained by performing correlation estimation on the synchronization sequence.
  • the process by which the terminal device performs correlation estimation on the synchronization sequence to obtain an estimation result can also be understood as a process of measuring the synchronization sequence.
  • the terminal device may acquire a timing error value of the terminal device and/or a frequency error value including the terminal device by measuring the synchronization sequence.
  • the terminal device obtains the first timing and/or the first frequency by performing correlation estimation on the synchronization sequence and the local sequence generated by the terminal device; the terminal device combines the first timing with the An offset value between the timings used by the terminal device and/or an offset value between the first frequency and the transmission frequency used by the terminal device is determined as the synchronization information.
  • the terminal device can obtain the correlation peak position by performing correlation estimation on the synchronization sequence and the local sequence, and then obtain the first timing based on the correlation peak position;
  • the offset value from the timing used by the terminal device determines the timing error value.
  • the terminal device may obtain a correlation peak position by performing correlation estimation on the synchronization sequence and the local sequence, and then obtain a first frequency based on the correlation peak position; the terminal device combines the first frequency with the The frequency error value is determined based on an offset value between transmit frequencies used by the terminal device.
  • the present application does not specifically limit the implementation manner of the correlation estimation algorithm and determining the timing and/or frequency by using the correlation peak position. That is to say, the present application may use any known correlation estimation algorithm, any known method of determining timing and/or frequency by using the correlation peak position to calculate the first timing and/or the first frequency, which will not be repeated here.
  • the method 300 may include:
  • Fig. 10 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • the terminal device receives an enabling signal; wherein, the enabling signal carries synchronization information of the terminal device and/or a synchronization sequence for determining the synchronization information;
  • the terminal device performs correlation estimation based on a synchronization sequence obtained by demodulating the energy supply signal, to obtain a timing error value.
  • the terminal device may obtain the correlation peak position by performing correlation estimation on the synchronization sequence and the local sequence, and then obtain the first timing based on the correlation peak position; the terminal device compares the first timing with the The offset value between the timings used by the terminal devices determines the timing error value.
  • the terminal device may also obtain a frequency error value by performing correlation estimation based on a synchronization sequence obtained by demodulating the power supply signal.
  • the terminal device may obtain a correlation peak position by performing correlation estimation on the synchronization sequence and the local sequence, and then obtain a first frequency based on the correlation peak position; the terminal device may combine the first frequency with the terminal
  • the offset value between the transmit frequencies used by the device determines the frequency error value.
  • the terminal device sends a reflected signal to the network device based on the synchronization information.
  • the terminal device performs synchronization adjustment based on the synchronization information. For example, when the synchronization information includes a timing error value of the terminal device, the terminal device sends a reflected signal and/or a frequency error value to the network device based on the timing adjusted by using the timing error value; and/or , when the synchronization information includes the frequency error value of the terminal device, the terminal device sends a reflected signal to the network device based on the frequency point adjusted by using the frequency error value.
  • the method 200 may also include:
  • the terminal device When the energy supply signal carries the synchronization information, the terminal device obtains the synchronization information by demodulating the energy supply signal.
  • the terminal device acquires a timing error value of the terminal device and/or includes a frequency error value of the terminal device by demodulating the power supply signal.
  • it is equivalent to directly carrying the timing adjustment command in the energy supply signal.
  • the timing adjustment command is used to indicate the timing error value of the terminal device and/or include the frequency error value of the terminal device.
  • the terminal device may send the reflected signal based on the adjusted timing or frequency of the adjustment command.
  • the method 400 may include:
  • Fig. 11 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • the terminal device receives an enabling signal; wherein, the enabling signal carries synchronization information of the terminal device and/or a synchronization sequence for determining the synchronization information;
  • the terminal device obtains a timing error value by demodulating the energy supply signal.
  • the terminal device may also obtain the frequency error value by demodulating the energy supply signal.
  • the terminal device sends a reflected signal to the network device based on the synchronization information.
  • the terminal device performs synchronization adjustment based on the synchronization information. For example, when the synchronization information includes a timing error value of the terminal device, the terminal device sends a reflected signal and/or a frequency error value to the network device based on the timing adjusted by using the timing error value; and/or , when the synchronization information includes the frequency error value of the terminal device, the terminal device sends a reflected signal to the network device based on the frequency point adjusted by using the frequency error value.
  • the reflected signal when the energy supply signal also carries the synchronization sequence, the reflected signal carries the synchronization sequence.
  • the synchronization sequence includes at least one of the following sequences: pseudorandom sequence (Pseudorandom Noise, PN), M sequence, Gold sequence, discrete Fourier transform (Discrete Fourier Transform, DFT) sequence, constant Envelope zero autocorrelation (Const Amplitude Zero Auto-Corelation, CAZAC) sequence.
  • pseudorandom sequence Pseudorandom Noise, PN
  • M sequence Gold sequence
  • DFT discrete Fourier transform
  • CAZAC constant Envelope zero autocorrelation
  • a pseudorandom sequence means that the sequence is highly random and has good statistical properties but is not a true random number, reflecting that the PN sequence is periodic.
  • the PN sequence is realized by a linear feedback shift register, and the number of stages of the shift register determines the length of its period.
  • the PN sequence can be divided into a long PN code (long code) and a short PN code (short code).
  • Gold sequence is a code sequence based on m-sequence, which has better autocorrelation and cross-correlation characteristics, and produces more sequences.
  • Constant envelope zero autocorrelation Constant envelope zero autocorrelation (Const Amplitude Zero Auto-Corelation, CAZAC) sequence.
  • CAZAC sequences include, but are not limited to: ZC (Zadoff off) sequences, Frank sequences, Golomb heterogeneous sequences, and Chirp sequences.
  • x(n) represents the value generated by the nth cyclic shifter.
  • other forms of polynomials may also be used as the generator polynomials of the M sequence, which is not specifically limited in the present application.
  • the autocorrelation of the synchronization sequence is greater than or equal to a first threshold.
  • the energy supply signal is a signal obtained by modulating the synchronization information by at least one of the following modulation methods: amplitude modulation, frequency modulation, and phase modulation.
  • the energy supply signal is a signal obtained by modulating the synchronization information or the synchronization sequence on a continuous wave.
  • Fig. 12 is a schematic diagram of an energy supply signal obtained by modulating a synchronization sequence on a continuous wave according to an embodiment of the present application.
  • the energy supply signal may be a signal obtained by modulating the synchronization sequence in an amplitude modulation manner. For example, 0 is modulated to a low level and 1 is modulated to a high level to obtain a signal obtained by modulating the synchronization sequence on a continuous wave.
  • the energy supply signal also carries trigger information
  • the trigger information includes at least one of the following information:
  • the energy supply signal may also be used to modulate trigger information. That is to say, in addition to providing energy for the terminal device, the energy supply signal can also be used to modulate the synchronization information and the trigger information at the same time.
  • the frequency point adopted by the energy supply signal is the same as the frequency point adopted by the reflected signal.
  • the sending node of the energizing signal is different from the receiving node of the reflected signal.
  • the sending node of the energy supply signal is different from the receiving node of the reflected signal.
  • the sending node of the energy supply signal is designed to be different from the receiving node of the reflected signal, which can solve the uplink and downlink interference problem and improve the uplink and downlink frequency. Utilization of spectrum resources.
  • the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the user equipment in the cell For the first direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction from the user equipment in the cell to the station, for example, “downlink signal” indicates that the signal transmission direction is the first direction.
  • the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
  • Fig. 13 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 may include:
  • the receiving unit 510 is configured to receive an enabling signal; wherein, the enabling signal carries synchronization information of the terminal device and/or a synchronization sequence for determining the synchronization information;
  • the sending unit 520 is configured to send a reflected signal to the network device based on the synchronization information.
  • the sending unit 520 is specifically configured to:
  • the synchronization information includes a timing error value of the terminal device, sending a reflected signal and/or a frequency error value to the network device based on the timing adjusted by using the timing error value;
  • a reflected signal is sent to the network device based on the adjusted frequency point using the frequency error value.
  • the receiving unit 510 is also used for:
  • the synchronization sequence is obtained by demodulating the energy supply signal
  • the synchronization information is acquired based on an estimation result obtained by performing correlation estimation on the synchronization sequence.
  • the sending unit 520 is specifically configured to:
  • the receiving unit 510 is also used for:
  • the synchronization information is obtained by demodulating the energy supply signal.
  • the reflected signal when the energy supply signal also carries the synchronization sequence, the reflected signal carries the synchronization sequence.
  • the synchronization sequence includes at least one of the following sequences: pseudorandom sequence PN sequence, M sequence, Gold sequence, discrete Fourier transform DFT sequence, constant envelope zero autocorrelation CAZAC sequence.
  • the autocorrelation of the synchronization sequence is greater than or equal to a first threshold.
  • the energy supply signal is a signal obtained by modulating the synchronization information by at least one of the following modulation methods:
  • Amplitude modulation frequency modulation, phase modulation.
  • the energy supply signal is a signal obtained by modulating the synchronization information or the synchronization sequence on a continuous wave.
  • the energy supply signal also carries trigger information
  • the trigger information includes at least one of the following information:
  • the frequency point adopted by the energy supply signal is the same as the frequency point adopted by the reflected signal.
  • the sending node of the energizing signal is different from the receiving node of the reflected signal.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the terminal device 500 shown in FIG. 13 may correspond to the corresponding subject in each method provided in the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 500 are for realizing the present application
  • the corresponding processes in the methods provided in the embodiments of the application are not repeated here.
  • Fig. 14 is a schematic block diagram of an energy supply node 600 according to an embodiment of the present application.
  • the energy supply node 600 may include:
  • the sending unit 610 is configured to send an enabling signal to the terminal device; wherein, the enabling signal carries synchronization information of the terminal device and/or a synchronization sequence for determining the synchronization information, and the synchronization information is used for The terminal device sends a reflected signal.
  • the synchronization information includes a timing error value of the terminal device; and/or, the synchronization information includes a frequency error value of the terminal device.
  • the reflected signal when the energy supply signal also carries the synchronization sequence, the reflected signal carries the synchronization sequence.
  • the synchronization sequence includes at least one of the following sequences: pseudorandom sequence PN sequence, M sequence, Gold sequence, discrete Fourier transform DFT sequence, constant envelope zero autocorrelation CAZAC sequence.
  • the autocorrelation of the synchronization sequence is greater than or equal to a first threshold.
  • the energy supply signal is a signal obtained by modulating the synchronization information by at least one of the following modulation methods:
  • Amplitude modulation frequency modulation, phase modulation.
  • the energy supply signal is a signal obtained by modulating the synchronization information or the synchronization sequence on a continuous wave.
  • the energy supply signal also carries trigger information
  • the trigger information includes at least one of the following information:
  • the frequency point adopted by the energy supply signal is the same as the frequency point adopted by the reflected signal.
  • the sending node of the energizing signal is different from the receiving node of the reflected signal.
  • the energy supply node is a network device; the energy supply node 600 further includes:
  • the receiving unit is configured to receive the reflected signal sent by the terminal device.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the energy supply node 600 shown in FIG. 14 may correspond to the corresponding subject in each method provided by the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the energy supply node 600 are for realizing
  • the corresponding processes in the methods provided in the embodiments of the present application will not be repeated here.
  • each step of the method embodiment in the embodiment of the present application can be completed by an integrated logic circuit of the hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the embodiment of the present application can be directly embodied as hardware
  • the execution of the decoding processor is completed, or the combination of hardware and software modules in the decoding processor is used to complete the execution.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • the receiving unit 510, the sending unit 520 or the sending unit 610 mentioned above may be implemented by a transceiver.
  • FIG. 15 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may include a processor 710 .
  • the processor 710 can invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720 .
  • the memory 720 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 710 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the communication device 700 may further include a transceiver 730 .
  • the processor 710 can control the transceiver 730 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include antennas, and the number of antennas may be one or more.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • the communication device 700 can be the terminal device in the embodiment of the present application, and the communication device 700 can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application, that is, the terminal device in the embodiment of the present application
  • the communication device 700 may correspond to the terminal device 500 in the embodiment of the present application, and may correspond to a corresponding subject in performing each method provided in the embodiment of the present application, and details are not repeated here for brevity.
  • the communication device 700 may be the energy supply node in the embodiment of the present application, and the communication device 700 may implement the corresponding process implemented by the energy supply node in each method of the embodiment of the application.
  • the communication device 700 in the embodiment of the present application may correspond to the energy supply node 700 in the embodiment of the present application, and may correspond to the corresponding subject in performing each method provided in the embodiment of the present application.
  • the communication device 700 in the embodiment of the present application may correspond to the energy supply node 700 in the embodiment of the present application, and may correspond to the corresponding subject in performing each method provided in the embodiment of the present application.
  • the communication device 700 in the embodiment of the present application may correspond to the energy supply node 700 in the embodiment of the present application, and may correspond to the corresponding subject in performing each method provided in the embodiment of the present application.
  • the communication device 700 in the embodiment of the present application may correspond to the energy supply node 700 in the embodiment of the present application, and may correspond to the corresponding subject in performing each method provided in the embodiment of the present application.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a chip 800 according to an embodiment of the present application.
  • the chip 800 includes a processor 810 .
  • the processor 810 can call and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 800 may further include a memory 820 .
  • the processor 810 can call and run a computer program from the memory 820, so as to implement the method in the embodiment of the present application.
  • the memory 820 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 810 .
  • the memory 820 may be an independent device independent of the processor 810 , or may be integrated in the processor 810 .
  • the chip 800 may further include an input interface 830 .
  • the processor 810 may control the input interface 830 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840 .
  • the processor 810 can control the output interface 840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 800 can be applied to the energy supply node in the embodiment of the present application, and the chip can implement the corresponding process implemented by the energy supply node in each method of the embodiment of the application, and can also implement the energy supply node in the embodiment of the application For the sake of brevity, the corresponding processes implemented by the terminal device in each method will not be repeated here.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • Processors mentioned above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the storage mentioned above includes but is not limited to:
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions.
  • the portable electronic device can perform the wireless communication provided by the application. communication method.
  • the computer-readable storage medium can be applied to the energy supply node in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the energy supply node in each method of the embodiment of the application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the energy supply node in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the energy supply node in each method of the embodiment of the application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program can be applied to the energy supply node in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the energy supply node in each method of the embodiment of the application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device For the sake of brevity, the corresponding process will not be repeated here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1, and the network equipment can be used as an energy supply node at the same time , of course, may also include a function node independent of the network device, and for the sake of brevity, details will not be described here.
  • system and the like in this document may also be referred to as "network management architecture" or "network system”.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms .

Abstract

本申请实施例提供了一种无线通信方法、终端设备和供能节点,所述方法包括:接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;基于所述同步信息向网络设备发送反射信号。本申请提供的方法不仅能够使得零功耗终端能够应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联,还能够降低终端设备的同步误差,使得终端设备能够使用准确的定时或频点收发数据,进而能够提升系统性能。

Description

无线通信方法、终端设备和供能节点 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和供能节点。
背景技术
随着第五代移动通信技术(5-Generation,5G)行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗终端,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
因此,如何将零功耗终端应用到蜂窝物联网是本领域亟需解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和供能节点,不仅能够使得零功耗终端能够应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联,还能够降低终端设备的同步误差,使得终端设备能够使用准确的定时或频点收发数据,进而能够提升系统性能。
第一方面,本申请提供了一种无线通信方法,包括:
接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
基于所述同步信息向网络设备发送反射信号。
第二方面,本申请提供了一种无线通信方法,包括:
向终端设备发送供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,所述同步信息用于所述终端设备发送反射信号。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种供能节点,用于执行上述第二方面或其各实现方式中的方法。具体地,所述供能节点包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该供能节点可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该供能节点可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该供能节点为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种供能节点,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该供能节点还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,本申请通过在供能信号中携带所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,能够使得所述终端设备基于所述同步信息向网络设备发送反射信号,不仅能够使得零功耗终端能够应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联,还能够降低终端设备的同步误差,使得终端设备能够使用准确的定时或频点收发数据,进而能够提升系统性能。
附图说明
图1是本申请实施例提供的通信系统示意图。
图2是本申请提供的零功耗通信系统的示意图。
图3是本申请实施例提供的能量采集原理图。
图4是本申请提供的反向散射通信原理图。
图5是本申请实施例提供的电阻负载调制的电路原理图。
图6是本申请实施例提供的副载波调制方式的示意图。
图7是本申请实施例提供的OOK调制方式的示意图。
图8是本申请实施例提供的对零功耗电路的定时误差值进行测量得到的示意图。
图9至图11是本申请实施例提供的无线通信方法的示意性流程图。
图12是本申请实施例提供的在连续波上对同步序列进行调制得到的供能信号的示意图。
图13是本申请实施例提供的终端设备的示意性框图。
图14是本申请实施例提供的供能节点的示意性框图。
图15是本申请实施例提供的通信设备的示意性框图。
图16是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本文中的术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。本文中的术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。本文中的术语“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预配置可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE (LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网、蜂窝无源物联网或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备。例如包括无源终端,甚至还包括半无源终端等。
示例性地,零功耗设备是无线射频识别(Radio Frequency Identification,RFID)标签,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID系统是一种无线通信系统。RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签包括耦合组件及芯片,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。
零功耗通信采用能量采集和反向散射通信技术。为便于理解本申请实施例的技术方案,对零功耗的相关技术进行说明。
图2为本申请提供的零功耗通信系统的示意图。
如图2所示,零功耗通信系统由网络设备和零功耗终端构成,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗通信也可称为基于零功耗终端的通信,零功耗通信的关键技术主要包括射频能量采集和反向散射通信。
1、能量采集(RF Power Harvesting)。
图3为本申请实施例提供的能量采集原理图。
如图3所示,能量采集模块可包括电容C和电阻R L,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。电磁感应原理指只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。结合本申请来说,电容C和电阻R L可用于形成闭合电路,射频能量采集模块接收到射频(RF)后,可产生感应电流并将产生的感应电流存储在电容C中,以实现对空间电磁波能量的采集。
2、反向散射通信(Back Scattering)。
图4为本申请提供的反向散射通信原理图。
如图4所示,网络设备作为发送端(TX)时,所述网络设备通过放大器(AMP)向零功耗设备发送载波。相应的,零功耗设备接收网络发送的载波后,利用能量采集模块采集的能量,驱动逻辑处理模块以及调制模块对所述载波进行处理以及调制,并通过可变电阻加载需要发送的信息并将调制后的反射信号从天线辐射出去,这种信息传输过程称之为反向散射通信。相应的,网络设备作为接收端(RX)时,可通过低噪音放大器(LNA)接收零功耗设备发送的反射信号。进一步的,在一些可能的实现方式中,AMP和LNA可以各自连接有一个电压显示灯,AMP和LNA分别连接的电压显示灯之间可设置一个应急灯。
需要说明的是,图4所示的反向散射通信原理是通过零功耗设备和网络设备说明的,实际上,任何具有反向散射通信功能的设备都可以实现反向散射通信。
反向散射通信和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。
图5为本申请实施例提供的电阻负载调制的电路原理图。
如图5所示,在电阻负载调制中,电阻R L并联一个电阻R 3,电阻R L可称为负载调制电阻,电阻R L基于二进制数据流的控制接通或断开,电阻R L的通断会导致电路电压的变化,进一步的,电阻R L可通过电阻R 2与电感L 1并联,电感L 1用于和电感L 2形成谐振电路,基于此,负载调制电阻的通断会 导致电路电压的变化,进而会导致谐振电路的谐振频率的变化,最终实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。进一步的,电感L 2还可用于连接至电容C 2,电容C 2可用于谐振电路的谐振频率的变化转换为天线用于发送的信号。类似地,在电容负载调制中,通过电容C 1的通断可以实现谐振电路的谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
由于零功耗终端借助于负载调制的方式对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
1、终端设备不主动发射信号,通过调制来波信号实现反向散射通信。
2、终端设备不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度。
3、结合能量采集可实现免电池通信。
应当理解的是,上述终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
具体实现中,终端设备传输的数据可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
示例性地,基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1、无源零功耗终端。
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,ADC等期间,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端。
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端。
在某些场景下,使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。也即是说,有源零功耗终端通过内置电池向RFID芯片供电,以增加零功耗终端的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
示例性地,零功耗终端可基于供能信号进行能量采集。
可选的,从供能信号载体上,所述供能信号可以是基站、智能手机、智能网关、充电站、微基站等。
可选的,从频段上,所述供能信号可以是低频、中频、高频信号等。
可选的,从波形上,所述供能信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述供能信号可以是3GPP标准中规定的某一信号。例如,SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等。
需要说明的是,由于上述网络设备发送的载波信号也可用于向零功耗设备提供能量,因此该载波信号也可被称为供能信号。
示例性地,零功耗终端可基于收到的触发信号进行反向散射通信。可选的,所述触发信号可用于调 度或者触发零功耗终端反向散射通信。可选的,所述触发信号携带有网络设备的调度信息,或者,所述触发信号为所述网络设备发送的调度信令或调度信号。
可选的,从供能信号载体上,所述触发信号可以是基站、智能手机、智能网关等;
可选的,从频段上,所述触发信号可以是低频、中频、高频信号等。
可选的,从波形上,所述触发信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述触发信号可以是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
需要说明的是,所述供能信号和所述触发信号可以是一个信号,也可以是2个独立的信号,本申请对此不作具体限定。
例如,在蜂窝网络中,由于零功耗设备没有电池供电,需要通过网络设备提供供能信号,用于零功耗设备获得能量,从而进行相应的通信过程。其中,用于供能的信号(即供能信号)和用于信息传输的信号(即触发信号)可以是两个信号,也可以是一个信号。再如,在RFID技术中,所述供能信号和所述触发信号可以是一个信号,在蜂窝无源物联网技术中,所述供能信号和所述触发信号可以是两个独立的信号。这两个信号可以不在一个频段发送。例如网络设备在某个频段持续或者间歇性的发送供能信号,零功耗设备进行能量采集,零功耗设备获得能量之后,可以进行相应的通信过程,如测量、信道/信号的接收、信道/信号的发送等。
在进行信号的发送时,零功耗设备可以是在预设资源上发送,例如可以不同用户ID或者不同用户类型可以采用不同的资源,零功耗设备也可以是基于网络设备的调度进行发送,即接收触发信号,并基于触发信号的调度进行发送。
由于零功耗设备不能产生高频信号,因此在反向链路中采用副载波调制方式或通断键控(On-Off Keying,OOK)调制方式对编码后的基带编码数据流进行调制。图6是本申请实施例提供的副载波调制方式的示意图。如图6所示,对于副载波调制方式,零功耗设备先产生一个低频副载波,然后将编码后的基带编码数据流在所述低频副载波上进行调制,以得到调制副载波;之后,通过负载调制的方式将所述调制副载波在高频载波上进行调制,以得到调制高频副载波。图7是本申请实施例提供的OOK调制方式的示意图。如图7所示,对于OOK调制方式,零功耗设备将编码后的基带编码数据流在零功耗设备接收到的信号上进行调制,以得到反射信号,并将发射信号发送给网络设备。其中,零功耗设备接收到的信号可以是高频信号或者特定的载波信号。
随着5G行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗设备,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
在实际网络部署中,无源零功耗通信技术面临的一个技术瓶颈是前向链路的覆盖距离受限,主要原因在于前向链路的通信距离受限于到达零功耗终端处的无线信号的信号强度,基于上述实现工艺,一般零功耗终端需要消耗10微瓦(uw)的功率以驱动低功耗电路。这意味着到达零功耗终端的信号功率至少需要为-20dBm。受限于无线电监管的要求,网络设备的发射功率一般不能太大,例如在RFID工作的ISM频段,最大发射功率为30dBm。因此,考虑到空间的无线电传播损耗,无源零功耗终端的传输距离一般在10m至几十米的范围。
而半无源零功耗终端具有显著扩展通信距离的潜力,这是由于,半无源零功耗终端可以使用RF能量采集模块收集无线电波,因此可以源源不断获取无线电能量并储存于储能单元中。储能单元获得足够的能量后,可以驱动低功耗电路工作用于前向链路的信号解调以及反向链路的信号调制等操作。因此,此时,半无源零功耗终端就等效于一个有源终端,其下行的覆盖取决于下行信号的接收机灵敏度(通常远低于RF能量采集门限)。基于目前的工艺,能量采集模块可以在接收的无线电信号强度不低于-30dBm时可以进行能量采集并将电能输入到储能单元。因此,半无源零功耗终端的前向链路的覆盖取决于RF能量采集门限(如-30dBm),相对无源零功耗终端,接收的无线电信号强度从-20dBm放松到-30dBm,因此可以获得10dB的链路预算增益,因此可以提升多于3倍的下行覆盖。然而,在提升前向链路覆盖的同时,半无源零功耗终端也面临充电效率下降的问题。随着接收信号强度的下降,能量采集模块可采集并储存的能量大幅降低。如,在接收信号强度为-30dBm时,也即1微瓦时,可采集并存储的能量远不及1微瓦(能量采集效率大幅下降)。
另一方面,如前所述,零功耗终端的低功耗电路可能需要消耗10微瓦特(μw)的平均功率。
综合两方面可知,由于零功耗终端需要进行能量采集,而零功耗终端距离网络设备的距离较远时, 通过能量采集的方式获得并储存能量速度非常缓慢。此外,针对距离网络设备较近的零功耗终端,即使其以较高的速率进行反向散射通信,也能保证其数据传输的性能;但是,针对距离网络设备较远的零功耗终端,如果其同样以较高的速率进行反向散射通信,会导致误块率(block error rate,BLER)过大,进而,增加了混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)传输次数,最终降低了数据传输的性能。
此外,零功耗终端的时钟电路往往采用电阻电容(RC)振荡器的简化电路,但是RC振荡器的简化电路的定时,频率以及相位等误差都比较大。
图8是本申请实施例提供的对零功耗电路的定时误差值进行测量得到的示意图。
如图8所示,假设发送的数据总共是176bit,终端设备按照2e-8的采样周期(Sampling Period)连续的对10000个采样点(sampling period)的电平进行采集,即横坐标表示采样点;纵坐标代表电压。其中,第一个采样点的索引为739,第二个采样点的索引为9460,即X:739代表176bit数据的起始位置对应的采样索引(sample index);相应的,X:9460代表176bit数据的结束位置对应的采样索引。基于此,可利用采样点的个数和采样周期(sampling period)可以计算176bit数据的传输时间(Sampling time),进一步得到每个比特数据的传输时间;进一步的,利用计算得到的每个比特数据的传输时间(Time per bit)与每个比特数据的理论传输时间(Theoretical time per bit)进行比较得到相应的定时误差。可选的,每个比特数据的理论传输时间可以为1us。
示例性地,图8所采样的参数和计算得到的参数如表1所示。
表1
采样周期 2e-8(s)
比特数 176
采样时间 (9460-739)*2e-8=1.7442e-4
每比特数据的时间 1.7442e-4/176=9.9102e-7(s)
每比特数据的理论时间 1us
误差(error) 8.98‰
如表1所示,176bit数据的对应的采样点时间(Sampling time)为:(9460-739)*2e-8=1.7442e-4;进而,可通过计算得到每一个比特数据的传输时间(Time per bit)为:1.7442e-4/176=9.9102e-7(s),相应的,RC振荡器的简化电路的定时的偏移量为:1us-9.9102e-7(s);相应的,RC振荡器的的平均定时误差约在0.89%。
在一些实施例中,可以采用微控制器来进一步修正零功耗设备的定时误差,但其还是要远高于晶体振荡器电路的误差。
有鉴于此,本申请实施例提供了一种用于数据传输的方法和通信设备,不仅能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联,还有利于在提升数据传输性能。需要说明的是,本申请提供的方案不仅适用于零功耗场景,还适用于非零功耗场景,即适用于终端设备和网络设备之间的数据传输过程,例如适用于终端设备发送数据的过程或网络设备接收数据的过程。
图9是本申请实施例提供的用于数据传输的方法200的示意性流程图。所述方法200可以由通信设备、供能节点和网络设备交互执行。例如,所述终端设备和网络设备可以分别是图1所示的终端设备120或网络设备110。再如所述供能节点也可以是图1所示网络设备110。所述终端设备可以是零功耗终端。需要说明的是,本实施例中涉及的网络设备和供能节点可以是同一个设备,也可以是两个独立的设备,本申请对此不作具体限定。作为一个示例,所述供能节点为所述网络设备且所述触发信号携带在所述供能信号中;作为另一个示例,所述供能节点为除所述网络设备之外的其他设备且所述触发信号独立于所述供能信号。示例性地,所述供能节点和网络设备为两个独立的设备时,所述网络设备和所述供能节点之间可以增加用于协调链路的接口。
如图9所示,所述方法200可包括:
S210,终端设备接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
S220,所述终端设备基于所述同步信息向网络设备发送反射信号。
示例性地,所述终端设备基于接收到的供能信号进行能量采集,并解调所述供能信号中携带的同步信息或同步序列;所述终端设备获取所述同步信息后,基于所述同步信息向网络设备发送反射信号。也即是说,本申请中的供能信号同时用于提供能量和同步信息,即所述终端接收供能信号的同时可以获取供能信号上的同步信息。可选的,所述同步信息用于同步调整。例如所述同步信息可用于定时同步调整和/或频率同步调整。
本实施例中,通过在供能信号中携带所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,能够使得所述终端设备基于所述同步信息向网络设备发送反射信号,不仅能够使得零功耗终端能够应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联,还能够降低终端设备的同步误差,使得终端设备能够使用准确的定时或频点收发数据,进而能够提升系统性能。
此外,本申请将供能信号和同步信号设计为同一个信号,能够节省时频域资源。
需要说明的是,本申请对所述供能信号的具体实现方式不作限定。
例如,所述供能信号可以为恒幅连续波信号,包括但不限于正/余弦波信号,锯齿波信号以及方波信号等。再如,所述供能信号可以是连续的发送的供能信号。再如,所述供能信号可以为调制过的连续波信号,如经过一定的幅度调制或其他方式调制的信号。所述终端设备基于所述供能信号采集到的能量可用于解调所述同步信息、反射所述供能信号以及测量等功能。
另外,本申请对所述供能信号进行调制的调制方式不作限定。
例如,可以采用副载波调制对所述供能信号进行调制。副载波调制是指首先把信号调制在载波1上,然后再进行一次调制,即用载波1的调制载波再去调制另外一个频率更高的载波2。副载波调制是RFID系统采用的一种调制方式。具体而言,在副载波调制中,首先用基带编码的数据信号调制低频率的副载波,已调的副载波信号用于切换负载电阻;然后采用ASK、FSK或PSK调制方法,对副载波进行二次调制。
在一些实施例中,所述S220可包括:
所述同步信息包括所述终端设备的定时误差值时,所述终端设备基于利用所述定时误差值调整后的定时向所述网络设备发送反射信号和/或频率误差值;和/或,所述同步信息包括所述终端设备的频率误差值时,所述终端设备基于利用所述频率误差值调整后的频点,向所述网络设备发送反射信号。
考虑到零功耗的终端的工作原理是基于无线电的电磁/电感耦合进行工作的,并且内部需要有振荡器提供和维持时钟,而内部的振荡器从简化的角度难以保证精确时钟,进而,使得终端设备和网络设备之间的定时误差和/或频率误差也难以用定时调整的方式进行补偿,而定时误差和/或频率误差的累计会导致无法正常通信。本实施例中,通过供能信号中携带的同步信息,并将所述同步信息涉及为包括所述终端设备的定时误差值和/或包括所述终端设备的频率误差值,相当于,可以通过供能信号直接对所述终端设备的定时误差和/或频率误差进行补偿,使得终端设备能够使用准确的定时或频点收发数据,进而能够提升系统性能。
此外,将所述同步信息涉及为包括所述终端设备的定时误差值和/或包括所述终端设备的频率误差值,相当于采用采用闭环的方式控制定时误差和/或频率误差,能够防止误差的扩散或累计,能够提升系统性能。
示例性地,所述终端设备的定时误差值指相对所述终端设备使用的定时的偏移量,所述终端设备的频率误差值可以指相对所述终端设备使用的频率的偏移量。当然,在其他可替代实施例中,所述定时误差值还可称为定时签名等类似术语,所述频率误差也可称为频率频偏等类似术语,本申请对此不作具体限定。
当然,在其他可替代实施例中,所述终端设备的定时误差值也可称为针对所述终端设备使用的定时的补偿量,所述终端设备的频率误差值也可称为所述终端设备使用的频率的补偿量。可选的,所述终端设备的定时误差值和/或包括所述终端设备的频率误差值可以是正数,也可以是负数,本申请对此不作具体限定。
在一些实施例中,所述方法200还可包括:
所述供能信号携带有所述同步序列时,终端设备通过解调所述供能信号得到所述同步序列;
所述终端设备基于对所述同步序列进行相关估计得到的估计结果,获取所述同步信息。
示例性地,终端设备可基于对所述同步序列进行相关估计得到的估计结果,获取所述终端设备的定时误差值和/或包括所述终端设备的频率误差值。
应当理解,所述终端设备对所述同步序列进行相关估计得到的估计结果的过程也可以理解为对所述同步序列进行测量的过程。换言之,所述终端设备可通过测量所述同步序列获取所述终端设备的定时误差值和/或包括所述终端设备的频率误差值。
在一些实施例中,终端设备通过对所述同步序列和所述终端设备生成的本地序列进行相关估计,得到第一定时和/或第一频率;所述终端设备将所述第一定时与所述终端设备使用的定时之间的偏移值和/或所述第一频率与所述终端设备使用的发射频率之间的偏移值,确定为所述同步信息。
示例性地,所述终端设备可通过对所述同步序列和所述本地序列进行相关估计得到相关峰值位置,进而基于相关峰值位置得到所述第一定时;所述终端设备将所述第一定时与所述终端设备使用的定时之间的偏移值确定时误差值。
示例性地,所述终端设备可通过对所述同步序列和所述本地序列进行相关估计得到相关峰值位置,进而基于相关峰值位置得到第一频率;所述终端设备将所述第一频率与所述终端设备使用的发射频率之间的偏移值确定频率误差值。
应当理解,本申请对相关估计算法、利用相关峰值位置确定定时和/或频率的实现方式不作具体限定。也即是说,本申请可采用任意一种已知的相关估计算法、任意一种已知的利用相关峰值位置确定定时和/或频率的方法计算所述第一定时和/或所述第一频率,此处对其不再赘述。
如图10所示,所述方法300可包括:
图10是本申请实施例提供的无线通信方法的示意性流程图。
S310,终端设备接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
S320,所述终端设备基于所述供能信号进行解调得到的同步序列进行相关估计,得到定时误差值。例如,所述终端设备可通过对所述同步序列和所述本地序列进行相关估计得到相关峰值位置,进而基于相关峰值位置得到所述第一定时;所述终端设备将所述第一定时与所述终端设备使用的定时之间的偏移值确定时误差值。当然,在其他可替代实施例中,所述终端设备基于所述供能信号进行解调得到的同步序列进行相关估计,也可以得到频率误差值。例如,所述终端设备可通过对所述同步序列和所述本地序列进行相关估计得到相关峰值位置,进而基于相关峰值位置得到第一频率;所述终端设备将所述第一频率与所述终端设备使用的发射频率之间的偏移值确定频率误差值。
S330,所述终端设备基于所述同步信息向网络设备发送反射信号。
示例性地,所述终端设备基于所述同步信息进行同步调整。例如,所述同步信息包括所述终端设备的定时误差值时,所述终端设备基于利用所述定时误差值调整后的定时向所述网络设备发送反射信号和/或频率误差值;和/或,所述同步信息包括所述终端设备的频率误差值时,所述终端设备基于利用所述频率误差值调整后的频点,向所述网络设备发送反射信号。
在一些实施例中,所述方法200还可包括:
所述供能信号携带有所述同步信息时,终端设备通过解调所述供能信号得到所述同步信息。
示例性地,所述终端设备通过解调所述供能信号获取所述终端设备的定时误差值和/或包括所述终端设备的频率误差值。本实施例中,相当于直接在所述供能信号中携带定时调整命令。所述定时调整命令用于指示所述终端设备的定时误差值和/或包括所述终端设备的频率误差值。相应的,所述终端设备获取所述调整命令后,可基于所述调整命令调整后的定时或频率发送反射信号。
如图11所示,所述方法400可包括:
图11是本申请实施例提供的无线通信方法的示意性流程图。
S410,终端设备接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
S420,所述终端设备通过解调所述供能信号得到定时误差值。
当然,在其他可替代实施例中,所述终端设备也可以通过解调所述供能信号得到频率误差值。
S430,所述终端设备基于所述同步信息向网络设备发送反射信号。
示例性地,所述终端设备基于所述同步信息进行同步调整。例如,所述同步信息包括所述终端设备的定时误差值时,所述终端设备基于利用所述定时误差值调整后的定时向所述网络设备发送反射信号和/或频率误差值;和/或,所述同步信息包括所述终端设备的频率误差值时,所述终端设备基于利用所述频率误差值调整后的频点,向所述网络设备发送反射信号。
在一些实施例中,所述供能信号还携带有所述同步序列时,所述反射信号携带有所述同步序列。
在一些实施例中,所述同步序列包括以下序列中的至少一项:伪随机序列(Pseudorandom Noise,PN),M序列,Gold序列,离散傅里叶变换(Discrete Fourier Transform,DFT)序列、恒包络零自相关(Const Amplitude Zero Auto-Corelation,CAZAC)序列。
示例性地,伪随机序列(Pseudorandom Noise,PN)就是说这个序列随机性很强,统计特性很好但并不是真正的随机数,体现PN序列具有周期性。PN序列是由通过线性反馈移位寄存器实现的,移位寄存器的级数决定了其周期性的长短。PN序列可以分为长PN码(长码)和短PN码(短码)。Gold序列是一种基于m序列的码序列,具有较优良的自相关和互相关特性,产生的序列数多。恒包络零自相关(Const Amplitude Zero Auto-Corelation,CAZAC)序列。CAZAC序列包括但不限于:ZC(Zadoff off)序列、Frank序列、Golomb多相序列和Chirp序列。示例性地,M序列的生成多项式为:x(n+8)=(x(n+7)+x(n+3)+x(n))mod2。其中,x(n)表示第n个循环移位器产生的数值。当然,在其他可替代实施例中,也可以采用其他形式的多项式作为M序列的生成多项式,本申请对此不作具体限定。
在一些实施例中,所述同步序列的自相关性大于或等于第一阈值。
在一些实施例中,所述供能信号为通过以下调制方式中的至少一项对所述同步信息进行调制得到的信号:幅度调制、频率调制、相位调制。
在一些实施例中,所述供能信号为在连续波上对所述同步信息或所述同步序列进行调制得到的信号。
图12是本申请实施例提供的在连续波上对同步序列进行调制得到的供能信号的示意图。
如图12所示,假设同步序列为101010,此时所述供能信号可以利用幅度调制的方式对所述同步序列进行调制得到的信号。例如,将0调制到低电平并将1调制到高电平,以得到在连续波上对所述同步序列进行调制得到的信号。
在一些实施例中,所述供能信号还携带有触发信息,所述触发信息包括以下信息中的至少一项:
用于触发所述终端设备接收下行数据的信息;
用于触发所述终端设备发送所述反射信号的信息;
用于触发所述终端设备接入网络的信息。
本实施例中,所述供能信号还可以用于调制触发信息。也即是说,所述供能信号用于为所述终端设备提供能量之外,所述供能信号还可以同时用于调制所述同步信息和所述触发信息。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点相同。
在一些实施例中,所述供能信号的发送节点不同于和所述反射信号的接收节点。
示例性地,所述供能信号采用的频点和所述反射信号采用的频点相同时,所述供能信号的发送节点不同于和所述反射信号的接收节点。本实施例中,终端设备采用同样的上下行频点时,将所述供能信号的发送节点设计为不同于所述反射信号的接收节点,能够解决上下行的干扰问题,可以提升上下行的频谱资源的利用率。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点存在偏移。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图12详细描述了本申请的方法实施例,下文结合图13至图16,详细描述本申请的装置实施例。
图13是本申请实施例的终端设备500的示意性框图。
如图13所示,所述终端设备500可包括:
接收单元510,用于接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
发送单元520,用于基于所述同步信息向网络设备发送反射信号。
在一些实施例中,所述发送单元520具体用于:
所述同步信息包括所述终端设备的定时误差值时,基于利用所述定时误差值调整后的定时向所述网络设备发送反射信号和/或频率误差值;和/或
所述同步信息包括所述终端设备的频率误差值时,基于利用所述频率误差值调整后的频点,向所述网络设备发送反射信号。
在一些实施例中,所述接收单元510还用于:
所述供能信号携带有所述同步序列时,通过解调所述供能信号得到所述同步序列;
基于对所述同步序列进行相关估计得到的估计结果,获取所述同步信息。
在一些实施例中,所述发送单元520具体用于:
通过对所述同步序列和所述终端设备生成的本地序列进行相关估计,得到第一定时和/或第一频率;
将所述第一定时与所述终端设备使用的定时之间的偏移值和/或所述第一频率与所述终端设备使用的发射频率之间的偏移值,确定为所述同步信息。
在一些实施例中,所述接收单元510还用于:
所述供能信号携带有所述同步信息时,通过解调所述供能信号得到所述同步信息。
在一些实施例中,所述供能信号还携带有所述同步序列时,所述反射信号携带有所述同步序列。
在一些实施例中,所述同步序列包括以下序列中的至少一项:伪随机序列PN序列,M序列,Gold序列,离散傅里叶变换DFT序列、恒包络零自相关CAZAC序列。
在一些实施例中,所述同步序列的自相关性大于或等于第一阈值。
在一些实施例中,所述供能信号为通过以下调制方式中的至少一项对所述同步信息进行调制得到的信号:
幅度调制、频率调制、相位调制。
在一些实施例中,所述供能信号为在连续波上对所述同步信息或所述同步序列进行调制得到的信号。
在一些实施例中,所述供能信号还携带有触发信息,所述触发信息包括以下信息中的至少一项:
用于触发所述终端设备接收下行数据的信息;
用于触发所述终端设备发送所述反射信号的信息;
用于触发所述终端设备接入网络的信息。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点相同。
在一些实施例中,所述供能信号的发送节点不同于和所述反射信号的接收节点。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点存在偏移。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图13所示的终端设备500可以对应于执行本申请实施例的提供的各个方法中的相应主体,并且终端设备500中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的供能节点600的示意性框图。
如图14所示,所述供能节点600可包括:
发送单元610,用于向终端设备发送供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,所述同步信息用于所述终端设备发送反射信号。
在一些实施例中,所述同步信息包括所述终端设备的定时误差值;和/或,所述同步信息包括所述终端设备的频率误差值。
在一些实施例中,所述供能信号还携带有所述同步序列时,所述反射信号携带有所述同步序列。
在一些实施例中,所述同步序列包括以下序列中的至少一项:伪随机序列PN序列,M序列,Gold序列,离散傅里叶变换DFT序列、恒包络零自相关CAZAC序列。
在一些实施例中,所述同步序列的自相关性大于或等于第一阈值。
在一些实施例中,所述供能信号为通过以下调制方式中的至少一项对所述同步信息进行调制得到的信号:
幅度调制、频率调制、相位调制。
在一些实施例中,所述供能信号为在连续波上对所述同步信息或所述同步序列进行调制得到的信号。
在一些实施例中,所述供能信号还携带有触发信息,所述触发信息包括以下信息中的至少一项:
用于触发所述终端设备接收下行数据的信息;
用于触发所述终端设备发送所述反射信号的信息;
用于触发所述终端设备接入网络的信息。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点相同。
在一些实施例中,所述供能信号的发送节点不同于和所述反射信号的接收节点。
在一些实施例中,所述供能信号采用的频点和所述反射信号采用的频点存在偏移。
在一些实施例中,所述供能节点为网络设备;所述供能节点600还包括:
接收单元,用于接收所述终端设备发送的反射信号。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图14所示的供能节点600可以对应于执行本申请实施例提供的各个方法中的相应主体,并且供能节点600中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的接收单元510、发送单元520或发送单元610可由收发器实现。
图15是本申请实施例的通信设备700示意性结构图。
如图15所示,所述通信设备700可包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图15所示,通信设备700还可以包括存储器720。
其中,该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图15所示,通信设备700还可以包括收发器730。
其中,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备700可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备700可对应于本申请实施例中的终端设备500,并可以对应于执行根据本申请实施例提供的各个方法中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备700可为本申请实施例的供能节点,并且该通信设备700可以实现本申请实施例的各个方法中由供能节点实现的相应流程。也就是说,本申请实施例的通信设备700可对应于本申请实施例中的供能节点700,并可以对应于执行根据本申请实施例提供的各个方法中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图16是根据本申请实施例的芯片800的示意性结构图。
如图16所示,所述芯片800包括处理器810。
其中,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图16所示,所述芯片800还可以包括存储器820。
其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器820可以用于存储指示信息,还可以用于存储处理器810执行的代码、指令等。存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
如图16所示,所述芯片800还可以包括输入接口830。
其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图16所示,所述芯片800还可以包括输出接口840。
其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片800可应用于本申请实施例中的供能节点,并且该芯片可以实现本申请实施例的各个方法中由供能节点实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片800中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的供能节点,并且该计算机程序使得计算机执行本申请实施例的各个方法中由供能节点实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的供能节点,并且该计算机程序使得计算机执行本申请实施例的各个方法中由供能节点实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的供能节点,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由供能节点实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,所述网络设备可同时作为供能节点使用,当然,也可包括独立于所述网络设备的功能节点,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存 储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种无线通信方法,其特征在于,所述方法适用于终端设备,所述方法包括:
    接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
    基于所述同步信息向网络设备发送反射信号。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述同步信息向所述网络设备发送反射信号,包括:
    所述同步信息包括所述终端设备的定时误差值时,基于利用所述定时误差值调整后的定时向所述网络设备发送反射信号和/或频率误差值;和/或
    所述同步信息包括所述终端设备的频率误差值时,基于利用所述频率误差值调整后的频点,向所述网络设备发送反射信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述供能信号携带有所述同步序列时,通过解调所述供能信号得到所述同步序列;
    基于对所述同步序列进行相关估计得到的估计结果,获取所述同步信息。
  4. 根据权利要求3所述的方法,其特征在于,所述基于对所述同步序列进行相关估计得到的估计结果,获取所述同步信息,包括:
    通过对所述同步序列和所述终端设备生成的本地序列进行相关估计,得到第一定时和/或第一频率;
    将所述第一定时与所述终端设备使用的定时之间的偏移值和/或所述第一频率与所述终端设备使用的发射频率之间的偏移值,确定为所述同步信息。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述供能信号携带有所述同步信息时,通过解调所述供能信号得到所述同步信息。
  6. 根据权利要求5所述的方法,其特征在于,所述供能信号还携带有所述同步序列时,所述反射信号携带有所述同步序列。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述同步序列包括以下序列中的至少一项:伪随机序列PN序列,M序列,Gold序列,离散傅里叶变换DFT序列、恒包络零自相关CAZAC序列。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述同步序列的自相关性大于或等于第一阈值。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述供能信号为通过以下调制方式中的至少一项对所述同步信息进行调制得到的信号:
    幅度调制、频率调制、相位调制。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述供能信号为在连续波上对所述同步信息或所述同步序列进行调制得到的信号。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述供能信号还携带有触发信息,所述触发信息包括以下信息中的至少一项:
    用于触发所述终端设备接收下行数据的信息;
    用于触发所述终端设备发送所述反射信号的信息;
    用于触发所述终端设备接入网络的信息。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述供能信号采用的频点和所述反射信号采用的频点相同。
  13. 根据权利要求12所述的方法,其特征在于,所述供能信号的发送节点不同于和所述反射信号的接收节点。
  14. 根据权利要求1至11中任一项所述的方法,其特征在于,所述供能信号采用的频点和所述反射信号采用的频点存在偏移。
  15. 一种无线通信方法,其特征在于,所述方法适用于供能节点,所述方法包括:
    向终端设备发送供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,所述同步信息用于所述终端设备发送反射信号。
  16. 根据权利要求15所述的方法,其特征在于,所述同步信息包括所述终端设备的定时误差值;和/或,所述同步信息包括所述终端设备的频率误差值。
  17. 根据权利要求15或16所述的方法,其特征在于,所述供能信号还携带有所述同步序列时,所述反射信号携带有所述同步序列。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述同步序列包括以下序列中的至少一项:伪随机序列PN序列,M序列,Gold序列,离散傅里叶变换DFT序列、恒包络零自相关CAZAC序列。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述同步序列的自相关性大于或等于第一阈值。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述供能信号为通过以下调制方式中的至少一项对所述同步信息进行调制得到的信号:
    幅度调制、频率调制、相位调制。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述供能信号为在连续波上对所述同步信息或所述同步序列进行调制得到的信号。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,所述供能信号还携带有触发信息,所述触发信息包括以下信息中的至少一项:
    用于触发所述终端设备接收下行数据的信息;
    用于触发所述终端设备发送所述反射信号的信息;
    用于触发所述终端设备接入网络的信息。
  23. 根据权利要求15至22中任一项所述的方法,其特征在于,所述供能信号采用的频点和所述反射信号采用的频点相同。
  24. 根据权利要求23所述的方法,其特征在于,所述供能信号的发送节点不同于和所述反射信号的接收节点。
  25. 根据权利要求15至22中任一项所述的方法,其特征在于,所述供能信号采用的频点和所述反射信号采用的频点存在偏移。
  26. 根据权利要求15至25中任一项所述的方法,其特征在于,所述供能节点为网络设备;所述方法还包括:
    接收所述终端设备发送的反射信号。
  27. 一种终端设备,其特征在于,包括:
    接收单元,用于接收供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列;
    发送单元,用于基于所述同步信息向网络设备发送反射信号。
  28. 一种供能节点,其特征在于,包括:
    发送单元,用于向终端设备发送供能信号;其中,所述供能信号携带有所述终端设备的同步信息和/或用于确定所述同步信息的同步序列,所述同步信息用于所述终端设备发送反射信号。
  29. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至14中任一项所述的方法。
  30. 一种供能节点,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求15至26中任一项所述的方法。
  31. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法或如权利要求15至26中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法或如权利要求15至26中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法或如权利要求15至26中任一项所述的方法。
  34. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法或如权利要求15至26中任一项所述的方法。
PCT/CN2022/072131 2022-01-14 2022-01-14 无线通信方法、终端设备和供能节点 WO2023133840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072131 WO2023133840A1 (zh) 2022-01-14 2022-01-14 无线通信方法、终端设备和供能节点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072131 WO2023133840A1 (zh) 2022-01-14 2022-01-14 无线通信方法、终端设备和供能节点

Publications (1)

Publication Number Publication Date
WO2023133840A1 true WO2023133840A1 (zh) 2023-07-20

Family

ID=87279903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072131 WO2023133840A1 (zh) 2022-01-14 2022-01-14 无线通信方法、终端设备和供能节点

Country Status (1)

Country Link
WO (1) WO2023133840A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053755A1 (en) * 2007-10-25 2009-04-29 Commissariat A L'energie Atomique Method of and apparatus for synchronisation
CN112118086A (zh) * 2019-06-19 2020-12-22 成都华为技术有限公司 一种同步方法及装置
WO2021119941A1 (zh) * 2019-12-16 2021-06-24 华为技术有限公司 反射通信的方法和通信装置
WO2021163971A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种反向散射通信方法、电子设备及存储介质
CN113315729A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 一种通信方法及装置
CN113810069A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 用于传输信号的通信装置及信号传输方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053755A1 (en) * 2007-10-25 2009-04-29 Commissariat A L'energie Atomique Method of and apparatus for synchronisation
CN112118086A (zh) * 2019-06-19 2020-12-22 成都华为技术有限公司 一种同步方法及装置
WO2021119941A1 (zh) * 2019-12-16 2021-06-24 华为技术有限公司 反射通信的方法和通信装置
WO2021163971A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种反向散射通信方法、电子设备及存储介质
CN113315729A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 一种通信方法及装置
CN113810069A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 用于传输信号的通信装置及信号传输方法

Similar Documents

Publication Publication Date Title
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2022206503A1 (zh) 用于网络设备中数据信号传输的方法和装置
WO2023004714A1 (zh) 无线通信方法及设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023010321A1 (zh) 一种无线通信方法及装置、通信设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023004747A1 (zh) 无线通信方法、终端设备和网络设备
US20240160866A1 (en) Wireless communication method, terminal device and network device
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023004748A1 (zh) 无线通信方法、终端设备和网络设备
WO2023279335A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
US20240163004A1 (en) Wireless communication method, terminal device and network device
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023283820A1 (zh) 无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919490

Country of ref document: EP

Kind code of ref document: A1