WO2023279335A1 - 无线通信方法、终端设备和网络设备 - Google Patents
无线通信方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2023279335A1 WO2023279335A1 PCT/CN2021/105284 CN2021105284W WO2023279335A1 WO 2023279335 A1 WO2023279335 A1 WO 2023279335A1 CN 2021105284 W CN2021105284 W CN 2021105284W WO 2023279335 A1 WO2023279335 A1 WO 2023279335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- indication information
- signal
- terminal device
- values
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 149
- 230000006854 communication Effects 0.000 title claims abstract description 113
- 238000004891 communication Methods 0.000 title claims abstract description 110
- 230000015654 memory Effects 0.000 claims description 59
- 238000004590 computer program Methods 0.000 claims description 42
- 238000013507 mapping Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 20
- 238000003306 harvesting Methods 0.000 claims description 19
- 230000007423 decrease Effects 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 14
- 230000001174 ascending effect Effects 0.000 claims description 2
- 230000001413 cellular effect Effects 0.000 abstract description 22
- 238000010586 diagram Methods 0.000 description 22
- 230000006870 function Effects 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, a terminal device, and a network device.
- passive IoT devices can be based on existing zero-power terminals, such as Radio Frequency Identification (RFID) technology, and extended on this basis to be applicable to cellular IoT.
- RFID Radio Frequency Identification
- Embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can apply zero-power consumption terminals to the cellular Internet of Things, so as to enrich the types and quantities of connected terminals in the network, and thus truly realize the Internet of Everything.
- the present application provides a wireless communication method, including:
- a backscatter signal is sent based on the first TA value.
- the present application provides a wireless communication method, including:
- Sending first indication information where the TA value indicated by the first indication information is used by the terminal device to determine the first TA value, and the first TA value is used by the terminal device to send a backscatter signal.
- the present application provides a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
- the terminal device includes a functional module configured to execute the method in the foregoing first aspect or its various implementation manners.
- the terminal device may include a processing unit configured to perform functions related to information processing.
- the processing unit may be a processor.
- the terminal device may include a sending unit and/or a receiving unit.
- the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
- the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
- the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
- the present application provides a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
- the network device includes a functional module configured to execute the method in the above second aspect or each implementation manner thereof.
- the network device may include a processing unit configured to perform functions related to information processing.
- the processing unit may be a processor.
- the network device may include a sending unit and/or a receiving unit.
- the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
- the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
- the network device is a communication chip, the receiving unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
- the present application provides a terminal device, including a processor and a memory.
- the memory is used to store a computer program
- the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
- processors there are one or more processors, and one or more memories.
- the memory may be integrated with the processor, or the memory may be separated from the processor.
- the terminal device further includes a transmitter (transmitter) and a receiver (receiver).
- the present application provides a network device, including a processor and a memory.
- the memory is used to store a computer program
- the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above second aspect or each implementation manner thereof.
- processors there are one or more processors, and one or more memories.
- the memory may be integrated with the processor, or the memory may be separated from the processor.
- the network device further includes a transmitter (transmitter) and a receiver (receiver).
- the present application provides a chip configured to implement any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
- the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
- the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof .
- the present application provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
- the present application provides a computer program, which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
- the backscatter signal is sent based on the first TA value, that is, the uplink frame is sent in advance, so that the downlink frame and the uplink frame where the backscatter signal received by the network device is aligned in time, Furthermore, zero-power consumption terminals can be applied to the cellular Internet of Things to enrich the types and quantities of link terminals in the network, and thus truly realize the Internet of Everything.
- FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of a zero-power communication system provided by the present application.
- Fig. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
- FIG. 4 is a schematic diagram of backscatter communication provided by the present application.
- FIG. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
- Fig. 6 is a schematic block diagram of a wireless communication method provided by an embodiment of the present application.
- Fig. 7 is another schematic block diagram of a wireless communication method provided by an embodiment of the present application.
- FIG. 8 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
- Fig. 9 is a schematic block diagram of a network device provided by an embodiment of the present application.
- Fig. 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
- Fig. 11 is a schematic block diagram of a chip provided by an embodiment of the present application.
- the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
- Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next generation communication system, zero power consumption communication system , cellular Internet of Things, cellular passive Internet of Things or other communication systems, etc.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio
- the cellular Internet of Things is the development product of the combination of the cellular mobile communication network and the Internet of Things.
- the cellular passive Internet of Things is also called the passive cellular Internet of Things, which is composed of network devices and passive terminals.
- passive terminals can communicate with other passive terminals through network devices.
- the passive terminal can communicate in a device-to-device (D2D) communication manner, and the network device only needs to send a carrier signal, that is, an energy supply signal, to supply energy to the passive terminal.
- D2D device-to-device
- the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
- Carrier Aggregation, CA Carrier Aggregation
- DC Dual Connectivity
- SA independent deployment Web scene
- the embodiment of the present application does not limit the applied frequency spectrum.
- the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
- the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
- the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
- FIG. 1 exemplarily shows one network device and two terminal devices.
- the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
- the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
- network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
- a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
- the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
- the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
- the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
- the network equipment may be a device for communicating with mobile equipment, and the network equipment may be an access point (Access Point, AP) in WLAN, GSM or A base station (Base Transceiver Station, BTS) in CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle-mounted devices, wearable devices, and network devices (gNB) in NR networks or network devices in PLMN networks that will evolve in the future.
- Access Point Access Point
- BTS Base Transceiver Station
- NodeB, NB base station
- Evolutional Node B, eNB or eNodeB evolved base station
- gNB network devices
- the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
- the cell may be a network device (for example, The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
- the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
- a terminal device may also be referred to as a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device, etc.
- UE User Equipment
- the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network, or zero-power devices.
- STAION, ST Session Initiation Protocol
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- the terminal device may also be a wearable device.
- Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
- Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
- a zero-power consumption device may be understood as a device whose power consumption is lower than a preset power consumption. For example, it includes passive terminals and even semi-passive terminals.
- the zero-power consumption device is a radio frequency identification (Radio Frequency Identification, RFID) tag, which is a technology for realizing non-contact automatic transmission and identification of tag information by means of spatial coupling of radio frequency signals.
- RFID tags are also called “radio frequency tags” or “electronic tags”.
- the types of electronic tags can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
- Active electronic tags also known as active electronic tags, means that the energy of the electronic tags is provided by the battery.
- the battery, memory and antenna together constitute an active electronic tag, which is different from the passive radio frequency activation method. Set the frequency band to send information.
- Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
- the tags When passive electronic tags are close to the reader, the tags are in the near-field range formed by the radiation of the reader antenna.
- the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the chip circuit of the electronic label.
- the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
- Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price, and long service life.
- the built-in battery When the built-in battery is not accessed by a reader, It only provides power for a few circuits in the chip, and the built-in battery supplies power to the RFID chip only when the reader is accessing, so as to increase the reading and writing distance of the tag and improve the reliability of communication.
- An RFID system is a wireless communication system.
- the RFID system is composed of two parts: an electronic tag (TAG) and a reader (Reader/Writer).
- Electronic tags include coupling components and chips, and each electronic tag has a unique electronic code, which is placed on the target to achieve the purpose of marking the target object.
- the reader can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
- Zero-power communication uses energy harvesting and backscatter communication technologies. In order to facilitate understanding of the technical solutions of the embodiments of the present application, related technologies of zero power consumption are described.
- FIG. 2 is a schematic diagram of a zero-power communication system provided by the present application.
- the zero-power communication system consists of network equipment and zero-power terminals.
- the network equipment is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
- a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
- the zero-power consumption terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensing data such as ambient temperature and ambient humidity.
- Zero-power communication can also be called communication based on zero-power terminals.
- the key technologies of zero-power communication mainly include radio frequency energy harvesting and backscatter communication.
- FIG. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
- the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors and memory read, etc. Therefore, zero-power terminals do not require traditional batteries.
- FIG. 4 is a schematic diagram of backscatter communication provided by the present application.
- the zero-power communication terminal receives the wireless signal sent by the network, modulates the wireless signal, loads the information to be sent, and radiates the modulated signal from the antenna. This information transmission process is called for backscatter communication.
- Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the magnitude and phase of the impedance of the zero-power device change accordingly, thereby completing the modulation process.
- the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
- FIG. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
- a resistor is connected in parallel with the load, which is called a load modulation resistor.
- the resistor is turned on or off based on the control of the binary data flow.
- Amplitude keying modulation (ASK) that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattered signal of the zero-power terminal.
- ASK Amplitude keying modulation
- FSK frequency keying modulation
- zero-power consumption terminal Since the zero-power consumption terminal performs information modulation on the incoming wave signal by means of load modulation, the backscatter communication process is realized. Therefore, zero-power terminals have significant advantages:
- the terminal equipment does not actively transmit signals, and realizes backscatter communication by modulating the incoming wave signal.
- Terminal equipment does not rely on traditional active power amplifier transmitters, and uses low-power computing units at the same time, which greatly reduces hardware complexity.
- the above-mentioned terminal device may be a zero-power consumption device (such as a passive terminal, or even a semi-passive terminal), and even the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
- a zero-power consumption device such as a passive terminal, or even a semi-passive terminal
- the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
- the data transmitted by the terminal device may use different forms of codes to represent binary "1" and "0".
- RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller coding and differential coding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
- zero-power terminals can be divided into the following types based on the energy sources and usage methods of zero-power terminals:
- the zero-power terminal does not need a built-in battery.
- the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
- the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
- Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, ADC, etc., so it has small size, light weight, and very low price. Cheap, long service life and many other advantages.
- the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
- the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
- the energy stored in the capacitor is used in the work, the energy comes from the energy collected by the energy harvesting module. radio energy, so it is also a true zero-power consumption terminal.
- Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
- the zero-power terminal used can also be an active zero-power terminal, and this type of terminal can have a built-in battery.
- the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
- the active zero-power terminal supplies power to the RFID chip through a built-in battery, so as to increase the reading and writing distance of the zero-power terminal and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
- the zero-power consumption terminal may perform energy collection based on the energy supply signal.
- the energy supply signal may be a base station, a smart phone, an intelligent gateway, a charging station, a micro base station, and the like.
- the energy supply signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
- the energy supply signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
- the energy supply signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
- the energy supply signal may be a certain signal specified in the 3GPP standard.
- SRS PUSCH
- PRACH Physical Uplink Control Channel
- PUCCH Physical Downlink Control Channel
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Control Channel
- PBCH Physical Broadcast Control Channel
- the carrier signal sent by the foregoing network device can also be used to provide energy to the zero-power consumption device, the carrier signal may also be referred to as an energy supply signal.
- the zero-power terminal can perform backscatter communication based on the received trigger signal.
- the trigger signal may be used to schedule or trigger backscatter communication of the zero-power terminal.
- the trigger signal carries scheduling information of the network device, or the trigger signal is a scheduling signaling or a scheduling signal sent by the network device.
- the trigger signal can be a base station, a smart phone, an intelligent gateway, etc.;
- the trigger signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
- the trigger signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
- the trigger signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
- the trigger signal may be a certain signal specified in the 3GPP standard.
- SRS PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
- the energy supply signal and the trigger signal may be one signal, or two independent signals, which are not specifically limited in this application.
- passive IoT devices can be based on existing zero-power consumption devices, such as Radio Frequency Identification (RFID) technology, and extended on this basis to be suitable for cellular IoT.
- RFID Radio Frequency Identification
- the present application provides a wireless communication method, terminal equipment, and network equipment, which can apply zero-power consumption terminals to the cellular Internet of Things, so as to enrich the types and quantities of link terminals in the network, and then truly realize the Internet of Everything.
- Fig. 6 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 can be executed by a terminal device.
- Terminal device 120 as shown in FIG. 1 .
- Another example is the zero-power consumption terminal.
- the method 200 may include part or all of the following:
- Timing advance (timing advance, TA) of the terminal device.
- the terminal device may adjust the transmission time of the backscatter signal based on the first TA value. For example, the uplink frame in which the backscatter signal is located by the terminal device needs to be earlier than the corresponding downlink frame by the first TA value.
- zero-power terminals are not powered by batteries
- network devices need to provide energy supply signals for zero-power devices to obtain energy for corresponding communication processes.
- the zero-power device needs to monitor the trigger signal sent by the network device.
- the trigger signal is used to schedule the zero-power device to perform backscatter communication, and contains necessary scheduling and indication information.
- the zero-power consumption device performs time-advanced transmission of the backscatter signal based on a TA value (that is, the first TA value).
- the energy supply signal used for energy supply and the trigger signal used for information transmission may be two signals or one signal, which is not specifically limited in this application.
- the energy supply signal and the trigger signal are one signal, however, from the perspective of cellular passive Internet of Things technology, the energy supply signal and the trigger signal are two independent
- These two signals may not be sent in the same frequency band; for example, network devices continuously or intermittently send energy supply signals in a certain frequency band, zero-power devices collect energy, and after zero-power devices obtain energy, they can perform corresponding A communication process; such as measurement, reception of a channel/signal, transmission of a channel/signal, etc.
- the backscatter signal is sent based on the first TA value, that is, the uplink frame is sent in advance, so that the downlink frame and the uplink frame where the backscatter signal received by the network device is aligned in time, Furthermore, zero-power consumption terminals can be applied to the cellular Internet of Things to enrich the types and quantities of link terminals in the network, and thus truly realize the Internet of Everything.
- the S210 may include:
- indication involved in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
- a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
- A may be the first indication information involved in this application, and B may be the TA value indicated by the first indication information.
- the first TA value is a TA value selected from multiple preset TA values.
- the TA value indicated by the first indication information is a TA value selected from a plurality of preset TA values.
- the network device instructs the terminal device which TA value among the multiple preset TA values to use by sending the first indication information.
- the TA value indicated by the first indication information is stored or the stored TA value is updated by using the TA value indicated by the first indication information; when energy collection is completed or charging is completed, the latest stored TA is determined as The first TA value.
- the first indication information is acquired during energy harvesting or charging of the terminal device.
- the first indication information is carried in an energy supply signal.
- the first indication information in the energy supply signal is acquired.
- the first indication information may be carried by an enabling signal, where the first indication information is used to indicate the TA value.
- the network device may encode and modulate the TA value indicated by the first indication information accordingly, so as to obtain the energy supply signal.
- the radio frequency carrier is modulated by using the coded first indication information to obtain a modulated signal (that is, the power supply signal), and the power supply signal is sent to the zero-power consumption terminal, correspondingly, the
- the terminal device receives the energy supply signal for energy collection, it can demodulate and decode the carried first indication information, so that the energy supply signal carries the first indication information while supplying energy for the zero-power consumption terminal. Instructions.
- the energy supply signal may be a wireless radio frequency carrier signal
- the network device modulates the radio frequency carrier to bear the first indication information.
- modulation methods include, but are not limited to: amplitude keying ASK, frequency shift keying FSK, and phase shift keying PSK.
- ASK includes but is not limited to: double-sideband amplitude shift keying (double-sideband amplitude shift keying, DSB-ASK), single-sideband amplitude shift keying (single-sideband amplitude shift keying, SSB-ASK), or inverse amplitude Mobile keying (phase-reversal amplitude shift keying, PR-ASK).
- Signal encoding adopts pulse-interval encoding (pulse-interval encoding, PIE) or other encoding methods, such as the encoding method described above.
- the TA value indicated by the first indication information is determined as the first TA value.
- the first indication information is acquired when energy collection is completed or charging is completed.
- the first indication information is carried in a trigger signal.
- the first indication information in the trigger signal is acquired.
- the first indication information may be carried by a trigger signal, where the first indication information is used to indicate the TA value.
- the network device may encode and modulate the TA value indicated by the first indication information accordingly, so as to obtain the trigger signal.
- the radio frequency carrier is modulated by using the coded first indication information to obtain a modulated signal (that is, the trigger signal), and the trigger signal is sent to the zero-power terminal to schedule or trigger the
- the zero-power consumption terminal carries the first indication information while performing data transmission.
- the terminal device performs corresponding data transmission after receiving the trigger signal using encoding.
- the trigger signal may be a wireless radio frequency carrier signal
- the network device modulates the radio frequency carrier to bear the first indication information.
- modulation methods include, but are not limited to: amplitude keying ASK, frequency shift keying FSK, and phase shift keying PSK.
- ASK includes but is not limited to: double-sideband amplitude shift keying (double-sideband amplitude shift keying, DSB-ASK), single-sideband amplitude shift keying (single-sideband amplitude shift keying, SSB-ASK), or inverse amplitude Mobile keying (phase-reversal amplitude shift keying, PR-ASK).
- Signal encoding adopts pulse-interval encoding (pulse-interval encoding, PIE) or other encoding methods, such as the encoding method described above.
- the radio frequency carrier is modulated by using the coded first indication information to obtain a modulated signal (that is, the trigger signal), and the trigger signal is sent to the zero power consumption terminal to schedule or trigger the zero power consumption terminal.
- the power consumption terminal carries the first indication information while performing data transmission.
- the first indication information is information sent periodically or aperiodically.
- the sending period of the first indication information is preset.
- the sending period of the first indication information is a period selected from multiple preset periods.
- the first indication information is carried in multiple time units, and the first indication information carried in the multiple time units is respectively used to indicate multiple TA values.
- the first indication information is carried in an energy supply signal.
- the multiple TA values carried by the energy supply signal are respectively sent in multiple time units.
- the terminal device obtains the first indication information during energy collection, and may determine the first TA value; for example, determining any TA value indicated by the first indication information as the first TA value.
- the terminal device acquires the first indication information during energy collection, stores the TA value indicated by the first indication information or uses the TA value indicated by the first indication information The TA value updates the stored TA value; further, when energy harvesting or charging is completed, the latest stored TA is determined as the first TA value.
- the first indication information is carried in a trigger signal.
- the multiple trigger signals carrying the multiple TA values are respectively sent in multiple time units.
- the terminal device acquires the trigger signal when energy harvesting or charging is completed, and may determine the first TA value according to the TA value indicated by the first indication information; for example, The TA value indicated by the first indication information is determined as the first TA value.
- the terminal device acquires the trigger signal when energy harvesting or charging is completed, and may determine the first TA value according to the TA value indicated by the first indication information; for example Determining the TA value indicated by the first indication information as the first TA value; in this case, different terminal devices may obtain different trigger signals at different times, and furthermore, the TA values obtained by different terminal devices may also be different.
- the multiple TA values are different, partly the same or the same.
- the multiple TA values carried by the energy supply signal are respectively sent in multiple time units, the multiple TA values are different from each other, partly the same, or identical.
- the multiple trigger signals carrying the multiple TA values are respectively sent in multiple time units, the multiple TA values are different from each other, partially identical or identical.
- the multiple TA values are sorted in ascending order or descending order in the time domain.
- the TA value carried by the energy supply signal becomes larger or smaller.
- the multiple TA values are uniformly distributed in the time domain.
- the different TA values may be evenly distributed over the multiple time units.
- the TA value carried in the energy supply signal or the trigger signal may include TA1, TA1, TA2, TA2, TA3, TA3, ... in the time domain; in other words, each TA value is in the same number of time units sent.
- the multiple TA values are unevenly distributed in the time domain.
- the distribution of different TA values may be non-uniform.
- the TA value carried in the energy supply signal or the trigger signal may include TA1, TA2, TA2, TA3, TA3, TA3, . . . in the time domain.
- the number of time units sent by each TA value is not exactly the same.
- the first indication information is the number of preambles in the enabling signal, and if the number of preambles in the enabling signal is a first value, the first indication information is used to indicate that the The first TA value is a TA value corresponding to the first value.
- the terminal device may determine the TA value corresponding to the first value as the first TA value based on at least one value and the TA value corresponding to each value, and the at least one value includes the first value . It should be understood that the present application does not specifically limit the value range of the at least one numerical value.
- the S210 may include:
- the first TA value is determined based on the strength of the first signal measured by the terminal device.
- the corresponding TA value should also be larger.
- different TA values may be determined based on different signal strengths.
- multiple TA values can be preset, and energy supply signals with different signal strengths are associated with different TA values.
- the terminal device may detect the signal strength of the first signal, and determine a corresponding TA value as the first TA value based on the strength of the first signal.
- the first signal involved in this application may be an energy supply signal or a trigger signal, which is not specifically limited in this application.
- the first TA value decreases as the intensity of the first signal increases; or the first TA value increases as the intensity of the first signal decreases.
- the first intensity classification based on the first intensity classification to which the intensity of the first signal belongs; based on a first mapping relationship, determining a TA value corresponding to the first intensity classification as the first TA value, and the first mapping
- the relationship includes at least one intensity classification and a TA value corresponding to each intensity classification, and the at least one intensity classification includes the first intensity classification.
- the strength of the first signal may be graded, and each grade corresponds to a TA value.
- the signal whose intensity is between P1 and P2 is the first-level signal, and its signal intensity is the lowest, and the first-level signal corresponds to the largest TA value
- the signal whose intensity is between P2 and P3 is the second-level signal , the signal strength of which is the second lowest, the second-level signal is associated with the second largest TA value, and so on until it is associated with the smallest TA value.
- the value is determined as the first TA value
- the second mapping relationship includes at least one ratio range and a TA value corresponding to each ratio range
- the at least one ratio range includes the first ratio range.
- the ratio between k1 and k2 belongs to the first-order ratio range, the signal strength of the first signal is the lowest, and the first-order ratio range corresponds to the largest TA value, the ratio between k2 and k3 is the second-level ratio range, the signal strength of the first signal is the second lowest, and the second-level ratio range is associated with the second largest TA value, and so on until it is associated with the smallest TA value.
- the S210 may include:
- the first TA value is determined based on a first length of energy collection time or charging time of the terminal device.
- the signal strength gradually weakens; the weaker the signal strength is, the longer it takes for the terminal device to collect energy and complete charging.
- the corresponding TA value should be larger.
- different TA values may be determined based on different charging time lengths.
- multiple TA values can be preset, and different lengths of charging time are associated with different TA values.
- the first TA value increases as the first length increases; or the first TA value decreases as the first length decreases.
- the TA value corresponding to the first length class is determined based on the first length class to which the first length belongs; based on a third mapping relationship, determining the TA value corresponding to the first length class as the first TA value, the third mapping relationship including At least one length classification and a TA value corresponding to each length classification, the at least one length classification including the first length classification.
- the energy harvesting time or charging time of the terminal device can be graded, and each grade corresponds to a TA value: for example, the length between t1 and t2 is the length of the first grade, and the charging speed is the fastest at this time. Fast, the level 1 signal corresponds to the smallest TA value. The length between t2 and t3 is the second-level length. At this time, the charging speed is second fastest, and the second-level length is associated with the second smallest TA value, and so on until the smallest TA value is associated.
- determining a second ratio of the first length to a preset length based on a fourth mapping relationship, determining a TA value corresponding to a second ratio range to which the second ratio belongs as the first TA value,
- the fourth mapping relationship includes at least one ratio range and a TA value corresponding to each ratio range, and the at least one ratio range includes the second ratio range.
- a ratio may be made according to the time when the terminal device finishes charging and a preset charging time, and different ratios are associated with different TA values.
- the ratio less than or equal to k1 belongs to the first-level ratio range, and the charging speed is the fastest at this time, and the first-level ratio range corresponds to the smallest TA value.
- the ratio between k1 and k2 belongs to the second-level ratio range, at this time, the charging speed is the second fastest, and the second-level ratio range is associated with the second smallest TA value, and so on until it is associated with the smallest TA value.
- the first TA value is preset.
- all terminal devices perform early transmission of backscatter communication based on a fixed TA value.
- the first TA value used by the terminal device for sending backscatter signals provides a TA value determination mechanism for applying zero-power technology in a cellular system. Based on this, zero-power devices can pass this technical solution
- the determined first TA value advances the time for backscatter communication, which can solve the technical problem of aligning the backscatter information sent by the zero-power device in the uplink frame in the cellular system with the downlink frame on the network device side.
- the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
- the implementation of the examples constitutes no limitation.
- the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the user equipment in the cell For the first direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction from the user equipment in the cell to the station, for example, “downlink signal” indicates that the signal transmission direction is the first direction.
- the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
- the wireless communication method according to the embodiment of the present application is described in detail from the perspective of the terminal device above in conjunction with FIG. 6 .
- the wireless communication method according to the embodiment of the present application is described below from the perspective of the network device in conjunction with FIG. 7 .
- Fig. 7 shows a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
- the method 300 may be executed by a network device, such as the network device shown in FIG. 1 .
- the method 300 may include:
- S310 Send first indication information, where the TA value indicated by the first indication information is used by a terminal device to determine the first TA value, and the first TA value is used by the terminal device to send a backscatter signal.
- the first TA value is a TA value selected from a plurality of preset TA values.
- the first indication information is carried in an energy supply signal.
- the first indication information is carried in a trigger signal.
- the first indication information is information sent periodically or aperiodically.
- the sending period of the first indication information is preset.
- the sending period of the first indication information is a period selected from multiple preset periods.
- the first indication information is carried in multiple time units, and the first indication information carried in the multiple time units are respectively used to indicate multiple TA values.
- the plurality of TA values are different from each other, partially the same or the same.
- the multiple TA values are sorted from small to large or from large to small in the time domain; or the multiple TA values are uniformly distributed in the time domain; or the multiple TA values Unevenly distributed in the time domain.
- the first indication information is the number of preambles in the enabling signal. If the number of preambles in the enabling signal is a first value, the first indication information is used to indicate the number of preambles in the enabling signal.
- the first TA value is a TA value corresponding to the first value.
- Fig. 8 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
- the terminal device 400 may include:
- An obtaining unit 410 configured to obtain a first timing advance TA value of the terminal device
- a sending unit 420 configured to send a backscatter signal based on the first TA value.
- the acquiring unit 410 is specifically configured to:
- the first TA value is a TA value selected from a plurality of preset TA values.
- the acquiring unit 410 is specifically configured to:
- the latest stored TA is determined as the first TA value.
- the acquiring unit 410 is specifically configured to:
- the first indication information is acquired.
- the first indication information is carried in an energy supply signal.
- the acquiring unit 410 is specifically configured to:
- the acquiring unit 410 is specifically configured to:
- the first indication information is acquired.
- the first indication information is carried in a trigger signal.
- the first indication information is information sent periodically or aperiodically.
- the sending period of the first indication information is preset.
- the sending period of the first indication information is a period selected from multiple preset periods.
- the first indication information is carried in multiple time units, and the first indication information carried in the multiple time units are respectively used to indicate multiple TA values.
- the plurality of TA values are different from each other, partially the same or the same.
- the multiple TA values are sorted from small to large or from large to small in the time domain; or the multiple TA values are uniformly distributed in the time domain; or the multiple TA values Unevenly distributed in the time domain.
- the first indication information is the number of preambles in the enabling signal. If the number of preambles in the enabling signal is a first value, the first indication information is used to indicate the number of preambles in the enabling signal.
- the first TA value is a TA value corresponding to the first value.
- the acquiring unit 410 is specifically configured to:
- the first TA value is determined based on the strength of the first signal measured by the terminal device.
- the first TA value decreases as the strength of the first signal increases; or the first TA value increases as the strength of the first signal decreases.
- the acquiring unit 410 is specifically configured to:
- the TA value corresponding to the first intensity level is determined as the first TA value
- the first mapping relationship includes at least one intensity level and the TA value corresponding to each intensity level
- the at least An intensity rating includes said first intensity rating
- the acquiring unit 410 is specifically configured to:
- the TA value corresponding to the first ratio range to which the first ratio belongs is determined as the first TA value, and the second mapping relationship includes at least one ratio range and the TA corresponding to each ratio range value, the at least one range of ratios includes the first range of ratios.
- the acquiring unit 410 is specifically configured to:
- the first TA value is determined based on a first length of energy collection time or charging time of the terminal device.
- the first TA value increases as the first length increases; or the first TA value decreases as the first length decreases.
- the acquiring unit 410 is specifically configured to:
- the third mapping relationship includes at least one length classification and a TA value corresponding to each length classification, and the at least A length classification includes said first length classification.
- the acquiring unit 410 is specifically configured to:
- the TA value corresponding to the second ratio range to which the second ratio belongs is determined as the first TA value, and the fourth mapping relationship includes at least one ratio range and the TA corresponding to each ratio range value, said at least one range of ratios includes said second range of ratios.
- the first TA value is preset.
- the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
- the terminal device 400 shown in FIG. 8 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the For the sake of brevity, the corresponding processes in each method are not repeated here.
- Fig. 9 is a schematic block diagram of a network device 500 according to an embodiment of the present application.
- the network device 500 may include:
- the sending unit 510 is configured to send first indication information, the TA value indicated by the first indication information is used by the terminal device to determine the first TA value, and the first TA value is used by the terminal device to send backscatter Signal.
- the first TA value is a TA value selected from a plurality of preset TA values.
- the first indication information is carried in an energy supply signal.
- the first indication information is carried in a trigger signal.
- the first indication information is information sent periodically or aperiodically.
- the sending period of the first indication information is preset.
- the sending period of the first indication information is a period selected from multiple preset periods.
- the first indication information is carried in multiple time units, and the first indication information carried in the multiple time units are respectively used to indicate multiple TA values.
- the plurality of TA values are different from each other, partially the same or the same.
- the multiple TA values are sorted from small to large or from large to small in the time domain; or the multiple TA values are uniformly distributed in the time domain; or the multiple TA values Unevenly distributed in the time domain.
- the first indication information is the number of preambles in the enabling signal. If the number of preambles in the enabling signal is a first value, the first indication information is used to indicate the number of preambles in the enabling signal.
- the first TA value is a TA value corresponding to the first value.
- the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
- the network device 500 shown in FIG. 9 may correspond to the corresponding subject in executing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 500 are for realizing the For the sake of brevity, the corresponding processes in each method are not repeated here.
- the functional modules may be implemented in the form of hardware, may also be implemented by instructions in the form of software, and may also be implemented by a combination of hardware and software modules.
- each step of the method embodiment in the embodiment of the present application can be completed by an integrated logic circuit of the hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the embodiment of the present application can be directly embodied as hardware
- the decoding processor is executed, or the combination of hardware and software modules in the decoding processor is used to complete the execution.
- the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
- the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
- the acquisition unit 410 mentioned above may be implemented by a processor, and the sending unit 410 and the sending unit 510 mentioned above may be implemented by a transceiver.
- Fig. 10 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
- the communication device 600 may include a processor 610 .
- processor 610 may invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
- the communication device 600 may further include a memory 620 .
- the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
- the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
- the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
- the communication device 600 may further include a transceiver 630 .
- the processor 610 can control the transceiver 630 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
- Transceiver 630 may include a transmitter and a receiver.
- the transceiver 630 may further include antennas, and the number of antennas may be one or more.
- bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
- the communication device 600 may be the terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, that is, the terminal device in the embodiment of the present application
- the communication device 600 may correspond to the terminal device 400 in the embodiment of the present application, and may correspond to a corresponding subject in performing the method 200 according to the embodiment of the present application. For the sake of brevity, details are not repeated here.
- the communication device 600 may be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
- the communication device 600 in the embodiment of the present application may correspond to the network device 500 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
- the communication device 600 in the embodiment of the present application may correspond to the network device 500 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
- no further repeat may be provided.
- a chip is also provided in the embodiment of the present application.
- the chip may be an integrated circuit chip, which has signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
- the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
- the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
- FIG. 11 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
- the chip 700 includes a processor 710 .
- the processor 710 can invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
- the chip 700 may further include a memory 720 .
- the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
- the memory 720 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 710 .
- the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
- the chip 700 may further include an input interface 730 .
- the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
- the chip 700 may further include an output interface 740 .
- the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
- the chip 700 can be applied to the network device in the embodiment of the present application, and the chip can realize the corresponding process implemented by the network device in the various methods of the embodiment of the present application, and can also realize the various methods of the embodiment of the present application For the sake of brevity, the corresponding process implemented by the terminal device in , will not be repeated here.
- bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
- Processors mentioned above may include, but are not limited to:
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
- the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
- the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
- the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
- the storage mentioned above includes but is not limited to:
- non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
- the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
- RAM Static Random Access Memory
- SRAM Static Random Access Memory
- DRAM Dynamic Random Access Memory
- Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
- SDRAM double data rate synchronous dynamic random access memory
- Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
- Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous connection dynamic random access memory
- Direct Rambus RAM Direct Rambus RAM
- Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
- the computer-readable storage medium stores one or more programs, and the one or more programs include instructions.
- the portable electronic device can perform the wireless communication provided by the application. communication method.
- the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, here No longer.
- the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
- the embodiment of the present application also provides a computer program product, including a computer program.
- the computer program product can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the repeat can be applied to the computer program product in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
- the embodiment of the present application also provides a computer program.
- the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
- the computer program can be applied to the network device in the embodiment of the present application.
- the computer program When the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the network device in the methods of the embodiment of the present application. For the sake of brevity , which will not be repeated here.
- the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
- the computer executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device For the sake of brevity, the corresponding process will not be repeated here.
- An embodiment of the present application also provides a communication system, which may include the above-mentioned terminal device and network device to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
- a communication system which may include the above-mentioned terminal device and network device to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
- system and the like in this document may also be referred to as “network management architecture” or “network system”.
- the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
- the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
- the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
- the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种无线通信方法、终端设备和网络设备,所述方法包括:获取终端设备的第一定时提前TA值;基于所述第一TA值发送反向散射信号。本申请中,基于所述第一TA值发送反向散射信号,即提前发送上行帧,由此能够使得下行帧和网络设备接收的反向散射信号所在的上行帧在时间上是对齐的,进而,能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联。
Description
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
随着第五代移动通信技术(5-Generation,5G)行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗终端,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
因此,如何将零功耗终端应用到蜂窝物联网是本领域亟需解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联。
第一方面,本申请提供了一种无线通信方法,包括:
获取终端设备的第一定时提前TA值;
基于所述第一TA值发送反向散射信号。
第二方面,本申请提供了一种无线通信方法,包括:
发送第一指示信息,所述第一指示信息指示的TA值用于终端设备确定所述第一TA值,所述第一TA值用于所述终端设备发送反向散射信号。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所 述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,基于所述第一TA值发送反向散射信号,即提前发送上行帧,由此能够使得下行帧和网络设备接收的反向散射信号所在的上行帧在时间上是对齐的,进而,能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联。
图1为本申请实施例提供的通信系统示意图。
图2为本申请提供的零功耗通信系统的示意图。
图3为本申请实施例提供的能量采集原理图。
图4为本申请提供的反向散射通信原理图。
图5为本申请实施例提供的电阻负载调制的电路原理图。
图6是本申请实施例提供的无线通信方法的示意性框图。
图7是本申请实施例提供的无线通信方法的另一示意性框图。
图8是本申请实施例提供的终端设备的示意性框图。
图9是本申请实施例提供的网络设备的示意性框图。
图10是本申请实施例提供的通信设备的另一示意性框图。
图11是本申请实施例提供的芯片的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网、蜂窝无源物联网或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备。例如包括无源终端,甚至还包括半无源终端等。
示例性地,零功耗设备是无线射频识别(Radio Frequency Identification,RFID)标签,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID系统是一种无线通信系统。RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构 成。电子标签包括耦合组件及芯片,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。
零功耗通信采用能量采集和反向散射通信技术。为便于理解本申请实施例的技术方案,对零功耗的相关技术进行说明。
图2为本申请提供的零功耗通信系统的示意图。
如图2所示,零功耗通信系统由网络设备和零功耗终端构成,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗通信也可称为基于零功耗终端的通信,零功耗通信的关键技术主要包括射频能量采集和反向散射通信。
1、能量采集(RF Power Harvesting)。
图3为本申请实施例提供的能量采集原理图.
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)。
图4为本申请提供的反向散射通信原理图。
如图4所示,零功耗通信终端接收网络发送的无线信号,并对所述无线信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。
需要说明的是,图4所示的反向散射通信原理是通过零功耗设备和网络设备说明的,实际上,任何具有反向散射通信功能的设备都可以实现反向散射通信。
反向散射通信和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。
图5为本申请实施例提供的电阻负载调制的电路原理图。
如图5所示,在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻基于二进制数据流的控制接通或断开,电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
由于零功耗终端借助于负载调制的方式对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
1、终端设备不主动发射信号,通过调制来波信号实现反向散射通信。
2、终端设备不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度。
3、结合能量采集可实现免电池通信。
应当理解的是,上述终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
具体实现中,终端设备传输的数据可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
示例性地,基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1、无源零功耗终端。
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,ADC等期间,因此具有体积小、重量轻、价格非常便宜、使用寿 命长等诸多优点。
2、半无源零功耗终端。
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端。
在某些场景下,使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。也即是说,有源零功耗终端通过内置电池向RFID芯片供电,以增加零功耗终端的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
示例性地,零功耗终端可基于供能信号进行能量采集。
可选的,从供能信号载体上,所述供能信号可以是基站、智能手机、智能网关、充电站、微基站等。
可选的,从频段上,所述供能信号可以是低频、中频、高频信号等。
可选的,从波形上,所述供能信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述供能信号可以是3GPP标准中规定的某一信号。例如,SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等。
需要说明的是,由于上述网络设备发送的载波信号也可用于向零功耗设备提供能量,因此该载波信号也可被称为供能信号。
示例性地,零功耗终端可基于收到的触发信号进行反向散射通信。可选的,所述触发信号可用于调度或者触发零功耗终端反向散射通信。可选的,所述触发信号携带有网络设备的调度信息,或者,所述触发信号为所述网络设备发送的调度信令或调度信号。
可选的,从供能信号载体上,所述触发信号可以是基站、智能手机、智能网关等;
可选的,从频段上,所述触发信号可以是低频、中频、高频信号等。
可选的,从波形上,所述触发信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述触发信号可以是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
需要说明的是,所述供能信号和所述触发信号可以是一个信号,也可以是2个独立的信号,本申请对此不作具体限定。
随着5G行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗设备,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
本申请提供了一种无线通信方法、终端设备和网络设备,能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联。
图6示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备执行。如图1所示的终端设备120。再如零功耗终端。
如图6所示,所述方法200可包括以下部分或全部内容:
S210,获取终端设备的第一定时提前(timing advance,TA)。
S220,基于所述第一TA值发送反向散射信号。
换言之,所述终端设备可基于所述第一TA值调整反向散射信号的传输时间。例如,所述终端设备将所述反向散射信号所在的上行帧需要比相应的下行帧提前所述第一TA值。
在蜂窝网络中,由于零功耗终端没有电池供电,需要通过网络设备提供供能信号,用于零功耗设备 获得能量,从而进行相应的通信过程。具体而言,零功耗设备经过能量采集之后,需要监听网络设备发送的触发信号,所述触发信号用于调度零功耗设备进行反向散射通信,含有必要的调度和指示信息。之后零功耗设备基于一个TA值(即所述第一TA值)进行反向散射信号的时间提前发送。
其中,用于供能的供能信号和用于信息传输的触发信号,可以是两个信号,也可以是一个信号,本申请对此不作具体限定。例如,从RFID技术的角度出发,所述供能信号和所述触发信号是一个信号,然而,从蜂窝无源物联网技术的角度出发,所述供能信号和所述触发信号是两个独立的信号,这两个信号可以不在一个频段发送;例如网络设备在某个频段持续或者间歇性的发送供能信号,零功耗设备进行能量采集,零功耗设备获得能量之后,可以进行相应的通信过程;例如测量、信道/信号的接收、信道/信号的发送等。
本实施例中,基于所述第一TA值发送反向散射信号,即提前发送上行帧,由此能够使得下行帧和网络设备接收的反向散射信号所在的上行帧在时间上是对齐的,进而,能够将零功耗终端应用到蜂窝物联网,以充实网络中的链接终端的类型和数量,进而能够真正实现万物互联。
在一些实施例中,所述S210可包括:
获取第一指示信息;
基于所述第一指示信息指示的TA值确定所述第一TA值。
需要说明的是,本申请实施例中涉及的术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。可选的,A可以是本申请涉及的所述第一指示信息,B可以是所述第一指示信息指示的TA值。
在一些实现方式中,所述第一TA值为在多个预设TA值中选择的TA值。
换言之,所述第一指示信息指示的TA值为在多个预设TA值中选择的TA值。或者说,在提前预设的多个预设TA值中,网络设备通过发送的所述第一指示信息,指示终端设备使用所述多个预设TA值中的哪一个TA值。
在一些实现方式中,存储所述第一指示信息指示的TA值或利用所述第一指示信息指示的TA值更新已存储TA值;完成能量采集或充电完成时,将最新存储的TA确定为所述第一TA值。
可选的,在对所述终端设备进行能量采集或充电的过程中,获取所述第一指示信息。
可选的,所述第一指示信息携带在供能信号中。
换言之,在对所述终端设备进行能量采集或充电的过程中,获取所述供能信号中的所述第一指示信息。
作为一个示例,可以通过供能信号携带所述第一指示信息,所述第一指示信息用于指示TA值。在具体实现中,网络设备可以将所述第一指示信息指示的TA值进行相应的编码、调制,以得到所述供能信号。例如利用编码后的所述第一指示信息对射频载波进行调制,以得到调制后的信号(即所述供能信号),并将所述供能信号发送给零功耗终端,相应的,所述终端设备在接收所述供能信号进行能量采集时,可以解调译码出携带的所述第一指示信息,使得所述供能信号为零功耗终端供能的同时携带所述第一指示信息。
其中,所述供能信号可以是一种无线射频载波信号,网络设备通过对射频载波进行调制,以承载所述第一指示信息。常用的调制方式包括但不限于:振幅键控ASK、频移键控FSK和相移键控PSK等。其中ASK包括但不限于:双边带振幅移动键控(double-sideband amplitude shift keying,DSB-ASK),单边带振幅移动键控(single-sideband amplitude shift keying,SSB-ASK),或者反相振幅移动键控(phase-reversal amplitude shift keying,PR-ASK)。信号编码采用脉冲间隙编码(pulse-interval encoding,PIE)或者其他编码方式,例如上文描述的编码方式。
在一些实现方式中,将所述第一指示信息所指示的TA值,确定为所述第一TA值。
可选的,完成能量采集或充电完成时,获取所述第一指示信息。
可选的,所述第一指示信息携带在触发信号中。
换言之,完成能量采集或充电完成时,获取所述触发信号中的所述第一指示信息。
作为一个示例,可以通过触发信号携带所述第一指示信息,所述第一指示信息用于指示TA值。在具体实现中,网络设备可以将所述第一指示信息指示的TA值进行相应的编码、调制,以得到所述触发信号。例如利用编码后的所述第一指示信息对射频载波进行调制,以得到调制后的信号(即所述触发信号),并将所述触发信号发送给零功耗终端,以调度或触发所述零功耗终端进行数据传输的同时携带所述第一指示信息。相应的,所述终端设备在接收到所述触发信号利用编码后,进行相应的数据传输。
其中,所述触发信号可以是一种无线射频载波信号,网络设备通过对射频载波进行调制,以承载所述第一指示信息。常用的调制方式包括但不限于:振幅键控ASK、频移键控FSK和相移键控PSK等。 其中ASK包括但不限于:双边带振幅移动键控(double-sideband amplitude shift keying,DSB-ASK),单边带振幅移动键控(single-sideband amplitude shift keying,SSB-ASK),或者反相振幅移动键控(phase-reversal amplitude shift keying,PR-ASK)。信号编码采用脉冲间隙编码(pulse-interval encoding,PIE)或者其他编码方式,例如上文描述的编码方式。利用编码后的所述第一指示信息对射频载波进行调制,以得到调制后的信号(即所述触发信号),并将所述触发信号发送给零功耗终端,以调度或触发所述零功耗终端进行数据传输的同时携带所述第一指示信息。
在一些实现方式中,所述第一指示信息为周期性的或非周期性的发送的信息。
可选的,所述第一指示信息的发送周期为预设的。
可选的,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
在一些实现方式中,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
可选的,所述第一指示信息携带在供能信号中。
作为一个示例,所述供能信号携带的多个TA值分别在多个时间单元上进行发送。当所述多个TA值相同时,所述终端设备在进行能量采集过程中获取所述第一指示信息,并可根据获取的任意一个所述第一指示信息指示的TA值确定所述第一TA值;例如将任意一个所述第一指示信息指示的TA值确定为所述第一TA值。当所述多个TA值不相同时,所述终端设备在进行能量采集过程中获取所述第一指示信息,存储所述第一指示信息指示的TA值或利用所述第一指示信息指示的TA值更新已存储TA值;进一步的,完成能量采集或充电完成时,将最新存储的TA确定为所述第一TA值。
可选的,所述第一指示信息携带在触发信号中。
作为一个示例,携带有所述多个TA值的多个触发信号分别在多个时间单元上进行发送。当所述多个TA值相同时,所述终端设备完成能量采集或充电完成时获取所述触发信号,并可根据所述第一指示信息指示的TA值确定所述第一TA值;例如将所述第一指示信息指示的TA值确定为所述第一TA值。当所述多个TA值不相同时,所述终端设备完成能量采集或充电完成时获取所述触发信号,并可根据所述第一指示信息指示的TA值确定所述第一TA值;例如将所述第一指示信息指示的TA值确定为所述第一TA值;这种情况下,不同的终端设备获取的触发信号的时间有可能不同,进而,不同终端设备获取的TA值也有可能不同。
可选的,所述多个TA值互不相同、部分相同或相同。
作为一个示例,所述供能信号携带的多个TA值分别在多个时间单元上进行发送时,所述多个TA值互不相同、部分相同或相同。
作为另一个示例,携带有所述多个TA值的多个触发信号分别在多个时间单元上进行发送时,所述多个TA值互不相同、部分相同或相同。
可选的,所述多个TA值在时域上按照从小到大或从大到小的顺序排序。
换言之,在所述多个时间单元上,供能信号携带的TA值是越来越大或越来越小。
可选的,所述多个TA值在时域上均匀分布。
换言之,在所述多个时间单元上,不同的TA值可以是均匀分布的。作为一个示例,所述供能信号或所述触发信号中携带的TA值的在时域上可包括TA1,TA1,TA2,TA2,TA3,TA3,…;换言之,每个TA值都是在相同个数的时间单元上发送。
可选的,所述多个TA值在时域上不均匀分布。
换言之,在所述多个时间单元上,不同的TA值的分布可以是不均匀的。作为一个示例,所述供能信号或所述触发信号中携带的TA值的在时域上可包括TA1,TA2,TA2,TA3,TA3,TA3,…,。换言之,每个TA值发送的时间单元个数不完全相同。
在一些实现方式中,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
换言之,所述终端设备可基于至少一个数值和每一个数值对应的TA值,将所述第一数值对应的TA值确定为所述第一TA值,所述至少一个数值包括所述第一数值。应当理解,本申请对所述至少一个数值的取值范围不作具体限定。
在一些实施例中,所述S210可包括:
基于终端设备测量的第一信号的强度,确定所述第一TA值。
针对网络设备发送的第一信号,随着距离的变大,所述第一信号的强度逐渐减弱;同时,距离网络设备越远的终端设备,其相应的TA值也应该越大。本实施例中,可以基于不同的信号强度,确定不同的TA值。具体实现中,可以预设多个TA值,不同信号强度的供能信号关联不同的TA值。相应的,终端设备在接收到第一信号时,可以检测第一信号的信号强度,并基于所述第一信号的强度将相应的 TA值确定为所述第一TA值。
需要说明的是,本申请涉及的第一信号可以是供能信号,也可以是触发信号,本申请对此不作具体限定。
可选的,所述第一TA值随所述第一信号的强度的增大而减小;或所述第一TA值随所述第一信号的强度的减小而增大。
可选的,基于所述第一信号的强度所属的第一强度分级;基于第一映射关系,将所述第一强度分级对应的TA值确定为所述第一TA值,所述第一映射关系包括至少一个强度分级和每一个强度分级对应的TA值,所述至少一个强度分级包括所述第一强度分级。
换言之,可以对所述第一信号的强度进行分级,每一级对应一个TA值。例如,强度介于P1和P2之间的信号为第一级信号,其信号强度最低,所述第一级信号对应最大的TA值,强度介于P2和P3之间的信号是第2级信号,其信号强度次低,所述第2级信号关联次大的TA值,以此类推,直至关联至最小的TA值。
可选的,确定所述第一信号的强度与网络设备发送所述第一信号时的强度的第一比值;基于第二映射关系,将所述第一比值所属的第一比值范围对应的TA值确定为所述第一TA值,所述第二映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第一比值范围。
换言之,可以根据终端设备接收到的第一信号的强度与网络设备发送所述第一信号时的强度作比值,不同的比值范围关联不同的TA值。例如,介于k1和k2之间的比值属于第1级比值范围,所述第一信号的信号强度最低,所述第1级比值范围对应最大的TA值,介于k2和k3之间的比值是第2级比值范围,所述第一信号的信号强度次低,所述第2级比值范围关联次大的TA值,以此类推,直至关联至最小的TA值。
在一些实施例中,所述S210可包括:
基于终端设备的能量采集时间或充电时间的第一长度,确定所述第一TA值。
针对网络设备发送的供能信号,随着距离的变大,信号强度逐渐减弱;信号强度越弱,终端设备进行能量采集,完成充电所需时间越长。同时,距离网络设备越远的终端设备,其相应的TA值也应该越大。本实施例中,可以基于不同的充电时间长度,确定不同的TA值。具体实现中,可以预设多个TA值,不同长度的充电时间关联了不同的TA值,终端设备在接收到供能信号时,可以进行能量采集,并计算从开始能量采集到完成充电所需的时间,从开始能量采集到完成充电所需的时间越长,则关联的TA值越大。
可选的,所述第一TA值随所述第一长度的增大而增大;或所述第一TA值随所述第一长度的减小而减小。
可选的,基于所述第一长度所属的第一长度分级;基于第三映射关系,将所述第一长度分级对应的TA值确定为所述第一TA值,所述第三映射关系包括至少一个长度分级和每一个长度分级对应的TA值,所述至少一个长度分级包括所述第一长度分级。
换言之,可以对所述终端设备的能量采集时间或充电时间的长度进行分级,每一级对应一个TA值:例如,介于t1和t2之间的长度为第1级长度,此时充电速度最快,所述第1级信号对应最小的TA值。介于t2和t3之间的长度是第2级长度,此时充电速度次快,所述第2级长度关联次小的TA值,以此类推,直至关联至最小的TA值。
可选的,确定所述第一长度与预设长度的第二比值;基于第四映射关系,将所述第二比值所属的第二比值范围对应的TA值确定为所述第一TA值,所述第四映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第二比值范围。
换言之,可以根据终端设备完成充电的时间与预设的一个充电时间作比值,不同的比值关联不同的TA值。例如,小于等于k1的比值属于第1级比值范围,此时充电速度最快,所述第1级比值范围对应最小的TA值。介于,k1和k2之间的比值属于第2级比值范围,此时充电速度次快,所述第2级比值范围关联次小的TA值,以此类推,直至关联至最小的TA值。
在一些实施例中,所述第一TA值是预设的。
换言之,所有终端设备基于一个固定的TA值进行反向散射通信的提前发送。
基于以上方案,通过所述第一指示信息指示的TA值、基于所述第一信号的强度确定的TA值、基于所述第一长度确定的TA值或一个预设的TA值,可以确定出所述终端设备用于发送反向散射信号时采用的所述第一TA值,给出了蜂窝系统下应用零功耗技术的TA值确定机制,基于此,零功耗设备可通过本技术方案确定的所述第一TA值,进行反向散射通信的时间提前,能够解决零功耗设备在蜂窝系统中上行帧发送的反向散射信息在网络设备侧与下行帧对齐的技术问题。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图6,从终端设备的角度详细描述了根据本申请实施例的无线通信方法,下面将结合图7,从网络设备的角度描述根据本申请实施例的无线通信方法。
图7示出了根据本申请实施例的无线通信方法300的示意性流程图。所述方法300可以由网络设备执行,例如如图1所示的网络设备。
如图7所示,所述方法300可包括:
S310,发送第一指示信息,所述第一指示信息指示的TA值用于终端设备确定所述第一TA值,所述第一TA值用于所述终端设备发送反向散射信号。
在一些实施例中,所述第一TA值为在多个预设TA值中选择的TA值。
在一些实施例中,所述第一指示信息携带在供能信号中。
在一些实施例中,所述第一指示信息携带在触发信号中。
在一些实施例中,所述第一指示信息为周期性的或非周期性的发送的信息。
在一些实施例中,所述第一指示信息的发送周期为预设的。
在一些实施例中,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
在一些实施例中,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
在一些实施例中,所述多个TA值互不相同、部分相同或相同。
在一些实施例中,所述多个TA值在时域上按照从小到大或从大到小的顺序排序;或所述多个TA值在时域上均匀分布;或所述多个TA值在时域上不均匀分布。
在一些实施例中,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
应理解,方法300中的步骤可以参考方法200中的相应步骤,为了简洁,在此不再赘述。
上文结合图1至图7,详细描述了本申请的方法实施例,下文结合图8至图11,详细描述本申请的装置实施例。
图8是本申请实施例的终端设备400的示意性框图。
如图8所示,所述终端设备400可包括:
获取单元410,用于获取终端设备的第一定时提前TA值;
发送单元420,用于基于所述第一TA值发送反向散射信号。
在一些实施例中,所述获取单元410具体用于:
获取第一指示信息;
基于所述第一指示信息指示的TA值确定所述第一TA值。
在一些实施例中,所述第一TA值为在多个预设TA值中选择的TA值。
在一些实施例中,所述获取单元410具体用于:
存储所述第一指示信息指示的TA值或利用所述第一指示信息指示的TA值更新已存储TA值;
完成能量采集或充电完成时,将最新存储的TA确定为所述第一TA值。
在一些实施例中,所述获取单元410具体用于:
在对所述终端设备进行能量采集或充电的过程中,获取所述第一指示信息。
在一些实施例中,所述第一指示信息携带在供能信号中。
在一些实施例中,所述获取单元410具体用于:
将所述第一指示信息所指示的TA值,确定为所述第一TA值。
在一些实施例中,所述获取单元410具体用于:
完成能量采集或充电完成时,获取所述第一指示信息。
在一些实施例中,所述第一指示信息携带在触发信号中。
在一些实施例中,所述第一指示信息为周期性的或非周期性的发送的信息。
在一些实施例中,所述第一指示信息的发送周期为预设的。
在一些实施例中,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
在一些实施例中,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
在一些实施例中,所述多个TA值互不相同、部分相同或相同。
在一些实施例中,所述多个TA值在时域上按照从小到大或从大到小的顺序排序;或所述多个TA值在时域上均匀分布;或所述多个TA值在时域上不均匀分布。
在一些实施例中,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
在一些实施例中,所述获取单元410具体用于:
基于终端设备测量的第一信号的强度,确定所述第一TA值。
在一些实施例中,所述第一TA值随所述第一信号的强度的增大而减小;或所述第一TA值随所述第一信号的强度的减小而增大。
在一些实施例中,所述获取单元410具体用于:
基于所述第一信号的强度所属的第一强度分级;
基于第一映射关系,将所述第一强度分级对应的TA值确定为所述第一TA值,所述第一映射关系包括至少一个强度分级和每一个强度分级对应的TA值,所述至少一个强度分级包括所述第一强度分级。
在一些实施例中,所述获取单元410具体用于:
确定所述第一信号的强度与网络设备发送所述第一信号时的强度的第一比值;
基于第二映射关系,将所述第一比值所属的第一比值范围对应的TA值确定为所述第一TA值,所述第二映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第一比值范围。
在一些实施例中,所述获取单元410具体用于:
基于终端设备的能量采集时间或充电时间的第一长度,确定所述第一TA值。
在一些实施例中,所述第一TA值随所述第一长度的增大而增大;或所述第一TA值随所述第一长度的减小而减小。
在一些实施例中,所述获取单元410具体用于:
基于所述第一长度所属的第一长度分级;
基于第三映射关系,将所述第一长度分级对应的TA值确定为所述第一TA值,所述第三映射关系包括至少一个长度分级和每一个长度分级对应的TA值,所述至少一个长度分级包括所述第一长度分级。
在一些实施例中,所述获取单元410具体用于:
确定所述第一长度与预设长度的第二比值;
基于第四映射关系,将所述第二比值所属的第二比值范围对应的TA值确定为所述第一TA值,所述第四映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第二比值范围。
在一些实施例中,所述第一TA值是预设的。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图8所示的终端设备400可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备400中的各个单元的前述和其它操作和/或功能分别为了实现图6中的各个方法中的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的网络设备500的示意性框图。
如图9所示,所述网络设备500可包括:
发送单元510,用于发送第一指示信息,所述第一指示信息指示的TA值用于终端设备确定所述第一TA值,所述第一TA值用于所述终端设备发送反向散射信号。
在一些实施例中,所述第一TA值为在多个预设TA值中选择的TA值。
在一些实施例中,所述第一指示信息携带在供能信号中。
在一些实施例中,所述第一指示信息携带在触发信号中。
在一些实施例中,所述第一指示信息为周期性的或非周期性的发送的信息。
在一些实施例中,所述第一指示信息的发送周期为预设的。
在一些实施例中,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
在一些实施例中,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
在一些实施例中,所述多个TA值互不相同、部分相同或相同。
在一些实施例中,所述多个TA值在时域上按照从小到大或从大到小的顺序排序;或所述多个TA值在时域上均匀分布;或所述多个TA值在时域上不均匀分布。
在一些实施例中,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图9所示的网络设备500可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备500中的各个单元的前述和其它操作和/或功能分别为了实现图7中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的获取单元410可通过处理器实现,上文涉及的发送单元410和发送单元510可通过收发器实现。
图10是本申请实施例的通信设备600示意性结构图。
如图10所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图10所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图10所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的终端设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的网络设备500,并可以对应于执行根据本申请实施例的方法300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图11是根据本申请实施例的芯片700的示意性结构图。
如图11所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图11所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图11所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图11所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计 算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。
Claims (44)
- 一种无线通信方法,其特征在于,包括:获取终端设备的第一定时提前TA值;基于所述第一TA值发送反向散射信号。
- 根据权利要求1所述的方法,其特征在于,所述获取终端设备的第一定时提前TA值,包括:获取第一指示信息;基于所述第一指示信息指示的TA值确定所述第一TA值。
- 根据权利要求2所述的方法,其特征在于,所述第一TA值为在多个预设TA值中选择的TA值。
- 根据权利要求2或3所述的方法,其特征在于,所述基于所述第一指示信息指示的TA值确定所述第一TA值,包括:存储所述第一指示信息指示的TA值或利用所述第一指示信息指示的TA值更新已存储TA值;完成能量采集或充电完成时,将最新存储的TA确定为所述第一TA值。
- 根据权利要求4所述的方法,其特征在于,所述获取第一指示信息,包括:在对所述终端设备进行能量采集或充电的过程中,获取所述第一指示信息。
- 根据权利要求4所述的方法,其特征在于,所述第一指示信息携带在供能信号中。
- 根据权利要求2或3所述的方法,其特征在于,所述基于所述第一指示信息指示的TA值确定所述第一TA值,包括:将所述第一指示信息所指示的TA值,确定为所述第一TA值。
- 根据权利要求7所述的方法,其特征在于,所述获取第一指示信息,包括:完成能量采集或充电完成时,获取所述第一指示信息。
- 根据权利要求7所述的方法,其特征在于,所述第一指示信息携带在触发信号中。
- 根据权利要求2至9中任一项所述的方法,其特征在于,所述第一指示信息为周期性的或非周期性的发送的信息。
- 根据权利要求10所述的方法,其特征在于,所述第一指示信息的发送周期为预设的。
- 根据权利要求10所述的方法,其特征在于,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
- 根据权利要求2至9中任一项所述的方法,其特征在于,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
- 根据权利要求13所述的方法,其特征在于,所述多个TA值互不相同、部分相同或相同。
- 根据权利要求13所述的方法,其特征在于,所述多个TA值在时域上按照从小到大或从大到小的顺序排序;或所述多个TA值在时域上均匀分布;或所述多个TA值在时域上不均匀分布。
- 根据权利要求2或3所述的方法,其特征在于,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
- 根据权利要求1所述的方法,其特征在于,所述获取终端设备的第一定时提前TA值,包括:基于终端设备测量的第一信号的强度,确定所述第一TA值。
- 根据权利要求17所述的方法,其特征在于,所述第一TA值随所述第一信号的强度的增大而减小;或所述第一TA值随所述第一信号的强度的减小而增大。
- 根据权利要求17或18所述的方法,其特征在于,所述基于终端设备测量的第一信号的强度,确定所述第一TA值,包括:基于所述第一信号的强度所属的第一强度分级;基于第一映射关系,将所述第一强度分级对应的TA值确定为所述第一TA值,所述第一映射关系包括至少一个强度分级和每一个强度分级对应的TA值,所述至少一个强度分级包括所述第一强度分级。
- 根据权利要求17至19中任一项所述的方法,其特征在于,所述基于终端设备测量的第一信号的强度,确定所述第一TA值,包括:确定所述第一信号的强度与网络设备发送所述第一信号时的强度的第一比值;基于第二映射关系,将所述第一比值所属的第一比值范围对应的TA值确定为所述第一TA值,所述第二映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第一比值范围。
- 根据权利要求1所述的方法,其特征在于,所述获取终端设备的第一定时提前TA值,包括:基于终端设备的能量采集时间或充电时间的第一长度,确定所述第一TA值。
- 根据权利要求21所述的方法,其特征在于,所述第一TA值随所述第一长度的增大而增大;或所述第一TA值随所述第一长度的减小而减小。
- 根据权利要求21或22所述的方法,其特征在于,所述基于终端设备的能量采集时间或充电时间的第一长度,确定所述第一TA值,包括:基于所述第一长度所属的第一长度分级;基于第三映射关系,将所述第一长度分级对应的TA值确定为所述第一TA值,所述第三映射关系包括至少一个长度分级和每一个长度分级对应的TA值,所述至少一个长度分级包括所述第一长度分级。
- 根据权利要求21至23中任一项所述的方法,其特征在于,所述基于终端设备的能量采集时间或充电时间的第一长度,确定所述第一TA值,包括:确定所述第一长度与预设长度的第二比值;基于第四映射关系,将所述第二比值所属的第二比值范围对应的TA值确定为所述第一TA值,所述第四映射关系包括至少一个比值范围和每一个比值范围对应的TA值,所述至少一个比值范围包括所述第二比值范围。
- 根据权利要求1所述的方法,其特征在于,所述第一TA值是预设的。
- 一种无线通信方法,其特征在于,包括:发送第一指示信息,所述第一指示信息指示的TA值用于终端设备确定所述第一TA值,所述第一TA值用于所述终端设备发送反向散射信号。
- 根据权利要求26所述的方法,其特征在于,所述第一TA值为在多个预设TA值中选择的TA值。
- 根据权利要求26或27所述的方法,其特征在于,所述第一指示信息携带在供能信号中。
- 根据权利要求26或27所述的方法,其特征在于,所述第一指示信息携带在触发信号中。
- 根据权利要求26至29中任一项所述的方法,其特征在于,所述第一指示信息为周期性的或非周期性的发送的信息。
- 根据权利要求30所述的方法,其特征在于,所述第一指示信息的发送周期为预设的。
- 根据权利要求30所述的方法,其特征在于,所述第一指示信息的发送周期为在多个预设周期中选择的周期。
- 根据权利要求26至32中任一项所述的方法,其特征在于,所述第一指示信息携带在多个时间单元上,所述多个时间单元上携带的所述第一指示信息分别用于指示多个TA值。
- 根据权利要求33所述的方法,其特征在于,所述多个TA值互不相同、部分相同或相同。
- 根据权利要求33所述的方法,其特征在于,所述多个TA值在时域上按照从小到大或从大到小的顺序排序;或所述多个TA值在时域上均匀分布;或所述多个TA值在时域上不均匀分布。
- 根据权利要求26或27所述的方法,其特征在于,所述第一指示信息为供能信号中的前导码的数量,若所述供能信号中的前导码的数量为第一数值,所述第一指示信息用于指示所述第一TA值为所述第一数值对应的TA值。
- 一种终端设备,其特征在于,包括:获取单元,用于获取终端设备的第一定时提前TA值;发送单元,用于基于所述第一TA值发送反向散射信号。
- 一种网络设备,其特征在于,包括:获取单元,用于获取终端设备的第一定时提前TA值;接收单元,用于基于所述第一TA值接收反向散射信号。
- 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至25中任一项所述的方法。
- 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求26至36中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法或如权利要求26至36中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执 行如权利要求1至25中任一项所述的方法或如权利要求26至36中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至36中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至36中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/105284 WO2023279335A1 (zh) | 2021-07-08 | 2021-07-08 | 无线通信方法、终端设备和网络设备 |
CN202180097184.6A CN117178614A (zh) | 2021-07-08 | 2021-07-08 | 无线通信方法、终端设备和网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/105284 WO2023279335A1 (zh) | 2021-07-08 | 2021-07-08 | 无线通信方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023279335A1 true WO2023279335A1 (zh) | 2023-01-12 |
Family
ID=84800160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/105284 WO2023279335A1 (zh) | 2021-07-08 | 2021-07-08 | 无线通信方法、终端设备和网络设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117178614A (zh) |
WO (1) | WO2023279335A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024168844A1 (zh) * | 2023-02-17 | 2024-08-22 | Oppo广东移动通信有限公司 | 一种信息指示方法及装置、通信设备 |
WO2024192606A1 (zh) * | 2023-03-20 | 2024-09-26 | Oppo广东移动通信有限公司 | 无线通信的方法和设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109547183A (zh) * | 2018-12-06 | 2019-03-29 | 电子科技大学 | 一种全双工环境反向散射通信系统、传输方法及资源分配方法 |
WO2019178824A1 (zh) * | 2018-03-23 | 2019-09-26 | 华为技术有限公司 | 一种背向散射通信方法及装置 |
CN112567847A (zh) * | 2018-08-09 | 2021-03-26 | Lg 电子株式会社 | 在无线通信系统中通过使用pur发送和接收上行链路数据的方法及其装置 |
CN113055328A (zh) * | 2021-02-08 | 2021-06-29 | 西安电子科技大学 | 一种基于低功耗反向散射放大标签的bpsk调制电路及其方法 |
US20210204213A1 (en) * | 2019-12-30 | 2021-07-01 | Research & Business Foundation Sungkyunkwan University | Wake-up radio systems and methods based on backscatter wake-up radio |
-
2021
- 2021-07-08 CN CN202180097184.6A patent/CN117178614A/zh active Pending
- 2021-07-08 WO PCT/CN2021/105284 patent/WO2023279335A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178824A1 (zh) * | 2018-03-23 | 2019-09-26 | 华为技术有限公司 | 一种背向散射通信方法及装置 |
CN112567847A (zh) * | 2018-08-09 | 2021-03-26 | Lg 电子株式会社 | 在无线通信系统中通过使用pur发送和接收上行链路数据的方法及其装置 |
CN109547183A (zh) * | 2018-12-06 | 2019-03-29 | 电子科技大学 | 一种全双工环境反向散射通信系统、传输方法及资源分配方法 |
US20210204213A1 (en) * | 2019-12-30 | 2021-07-01 | Research & Business Foundation Sungkyunkwan University | Wake-up radio systems and methods based on backscatter wake-up radio |
CN113055328A (zh) * | 2021-02-08 | 2021-06-29 | 西安电子科技大学 | 一种基于低功耗反向散射放大标签的bpsk调制电路及其方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024168844A1 (zh) * | 2023-02-17 | 2024-08-22 | Oppo广东移动通信有限公司 | 一种信息指示方法及装置、通信设备 |
WO2024192606A1 (zh) * | 2023-03-20 | 2024-09-26 | Oppo广东移动通信有限公司 | 无线通信的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN117178614A (zh) | 2023-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023000209A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2023279335A1 (zh) | 无线通信方法、终端设备和网络设备 | |
US20240160866A1 (en) | Wireless communication method, terminal device and network device | |
US20240129868A1 (en) | Method for wireless communication, terminal device, and communication device | |
WO2023004714A1 (zh) | 无线通信方法及设备 | |
US20240155565A1 (en) | Wireless communication method, terminal device and communication device | |
WO2023279325A1 (zh) | 一种通信方法及装置、终端设备、网络设备 | |
WO2023004748A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2023000175A1 (zh) | 无线通信方法、第一设备和第二设备 | |
EP4383581A1 (en) | Wireless communication method and apparatus, and communication device | |
WO2023000231A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2023010341A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2023133840A1 (zh) | 无线通信方法、终端设备和供能节点 | |
WO2023044781A1 (zh) | 无线通信方法及设备 | |
WO2023283758A1 (zh) | 无线通信方法、终端设备和通信设备 | |
WO2023070453A1 (zh) | 无线通信方法、第一设备和第二设备 | |
WO2023122909A1 (zh) | 用于数据传输的方法和通信设备 | |
EP4407828A1 (en) | Wireless communication method and device | |
WO2023122912A1 (zh) | 用于数据传输的方法和通信设备 | |
WO2023283820A1 (zh) | 无线通信方法及设备 | |
US20240224224A1 (en) | Wireless communication method, and device | |
WO2024065267A1 (zh) | 无线通信的方法和设备 | |
WO2024187384A1 (zh) | 无线通信的方法、环境能amp设备和网络设备 | |
WO2023168698A1 (zh) | 信息传输方法、终端设备和网络设备 | |
WO2024164168A1 (zh) | 无线通信的方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21948831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21948831 Country of ref document: EP Kind code of ref document: A1 |