WO2019178824A1 - 一种背向散射通信方法及装置 - Google Patents

一种背向散射通信方法及装置 Download PDF

Info

Publication number
WO2019178824A1
WO2019178824A1 PCT/CN2018/080133 CN2018080133W WO2019178824A1 WO 2019178824 A1 WO2019178824 A1 WO 2019178824A1 CN 2018080133 W CN2018080133 W CN 2018080133W WO 2019178824 A1 WO2019178824 A1 WO 2019178824A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
energy
excitation signal
time interval
Prior art date
Application number
PCT/CN2018/080133
Other languages
English (en)
French (fr)
Inventor
甄斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/080133 priority Critical patent/WO2019178824A1/zh
Priority to CN201880091571.7A priority patent/CN111886806B/zh
Publication of WO2019178824A1 publication Critical patent/WO2019178824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a backscatter communication method and apparatus.
  • Radio frequency identification (RFID) technology is a non-contact automatic identification technology that automatically identifies target objects and acquires relevant data through radio frequency signals. It is used as a key technology for constructing Internet of Things (IoT) in recent years. It has received wide attention from people.
  • the RFID communication system includes a reader and a tag.
  • the way RFID works is divided into inductive coupling and backscatter (also known as "backscattering").
  • the inductive coupling method is generally suitable for short-distance sensing of medium and low frequency operation
  • the backscattering method is generally suitable for long-distance sensing of high frequency operation.
  • the process of automatic recognition by backscattering is as follows: the reader transmits a radio frequency signal (also referred to as an excitation signal) in an area, and after the tag enters the area, the antenna impedance is changed according to its own coding information, thereby backscattering the radio frequency signal.
  • a scatter signal is generated, and the reader obtains the coded information of the tag according to the received scatter signal, and verifies the accuracy of the coded information for identification purposes.
  • the backscatter communication method is to obtain energy for a label that is far away, and the reader needs to generate a high frequency radio frequency signal, and the high frequency radio frequency signal causes a large energy consumption, thereby reducing the working life of the reader, or It is necessary to replace the power supply frequently, which is inconvenient to use.
  • the present application provides a backscatter communication method and apparatus for solving the problem of large energy consumption in the existing backscatter communication method.
  • the present application provides a backscatter communication method, which may include the following steps: a transmitting device receives a wakeup wakeup signal sent by a base station; and the sending device determines, according to the wakeup signal, a sending start of data to be sent.
  • the transmitting device scatters the excitation signal sent by the base station according to the kth bit value in the to-be-sent data in the kth transmission time interval from the transmission start time.
  • the transmitting device of the present application may perform corresponding scatter processing on the excitation signal sent by the base station according to the bit value to be transmitted, so that the receiving device determines the corresponding bit value according to the energy of the signal received in the transmission time interval, thereby transmitting by using the base station.
  • the excitation signal completes low power or zero power backscatter communication.
  • the kth transmission time interval includes at least one symbol, and a start time and an end time of the kth transmission time interval are both located at a boundary of a symbol. At the office.
  • the start time and the end time of the transmission time interval are both located at the boundary of the symbol, and the energy of the received signal in each transmission time interval can be compared. Stable so that the receiving device accurately determines the bit value based on the energy of the received signal.
  • the sending by the sending device, determining, according to the wakeup signal, a sending start time of the to-be-sent data, including: determining, by the sending device, the monitoring according to the wakeup signal a starting time; the transmitting device detects energy of a signal received during an ith transmission time interval from the monitoring start time, the signal being the excitation signal or a combination of the excitation signal and the scatter signal
  • the energy of the received signal in the transmission time interval is the same, and the end time of the mth transmission time interval is determined as the transmission start time of the data to be transmitted.
  • the sending start time and the sending end time of the to-be-sent data are both in the same time unit, and the sending end time of the to-be-sent data is not Located at the boundary of the time unit, the energy of the excitation signal transmitted by the base station in each symbol in the time unit is the same.
  • the present application further provides a backscatter communication device, which may include: a receiving unit, a processing unit, and a transmitting unit.
  • the receiving unit is configured to receive a wake-up wakeup signal sent by the base station, and a processing unit, configured to determine, according to the wakeup signal, a sending start time of the to-be-sent data, and a sending unit, configured to start from the sending start time
  • the excitation signal sent by the base station is scattered according to the kth bit value in the to-be-transmitted data, and the scatter processing is to scatter the excitation signal or non-scattering signal sent by the base station.
  • the kth transmission time interval includes at least one symbol, and a start time and an end time of the kth transmission time interval are both located at a boundary of a symbol. At the office.
  • the processing unit is specifically configured to: determine a monitoring start time according to the wakeup signal; and detect an ith transmission from the monitoring start time
  • the sending start time and the sending end time of the to-be-sent data are both located in the same time unit, and the sending end time of the to-be-sent data is not Located at the boundary of the time unit, the energy of the excitation signal transmitted by the base station in each symbol in the time unit is the same.
  • the present application further provides a backscatter communication method, where the method may include the following steps: the receiving device receives a wakeup wakeup signal sent by the base station; and the receiving device determines a detection start time according to the wakeup signal; The receiving device sequentially determines energy values of signals received during each detection time interval from the detection start time, and determines a bit value according to each of the energy values, the signal is sent by the base station.
  • the excitation signal is either a combination of the excitation signal and the scatter signal, the scatter signal is a signal generated by the transmitting device scattering the excitation signal; the receiving device obtains the same consecutive p bit values as the preset preamble Determining target data, where the target data includes the p bit values, when a consecutive q bit values identical to the preset address information are obtained within the first preset time period after the p bit values are obtained
  • the q bit values, and consecutive s bit values after the q bit values, wherein p, q, and s are both positive integers.
  • the transmitting device of the present application may perform corresponding scattering processing on the excitation signal sent by the base station according to the to-be-transmitted bit value, so that the receiving device determines the corresponding bit value according to the energy of the signal received in the transmission time interval, thereby transmitting by using the base station.
  • the excitation signal completes low power or zero power backscatter communication.
  • determining the bit value according to each of the energy values includes: determining, by comparing each of the energy values with a reference value, determining each of the energy values a bit value, wherein the reference value is an energy value of a wakeup signal received by the receiving device during the detecting time interval.
  • the detection time interval includes at least one symbol, and the start time and the end time of the detection time interval are both located at a boundary of the symbol.
  • the method further includes: the receiving device does not obtain the preset preamble in the second preset time period after receiving the wakeup signal Terminate each detection time interval when the same consecutive p bit values are obtained, or when the same consecutive q bit values as the preset address information are not obtained within the first preset time period after the p bit values are obtained. The energy value of the received signal, and terminating the bit value obtained during each of the detection time intervals based on the energy value.
  • the present application also provides a backscatter communication device, which may include a receiving unit and a processing unit.
  • the receiving unit is configured to receive a wake wakeup signal sent by the base station, and the processing unit is configured to determine a detection start time according to the wakeup signal, where the receiving unit is further configured to sequentially determine that the detection start time is The energy value of the received signal in each detection time interval, and determining a bit value according to each of the energy values, the signal being an excitation signal sent by the base station or a combination of the excitation signal and the scattering signal,
  • the scatter signal is a signal generated by the transmitting device after scattering the excitation signal;
  • the processing unit is further configured to obtain the same consecutive p bit values as the preset preamble, and obtain the p bits Determining target data when the same consecutive q bit values as the preset address information are obtained in the first preset time period after the value, the target data including the p bit values, the q bit values, and the The consecutive s bit values after q bit
  • the receiving unit is configured to: determine, by using a comparison between each of the energy values and a reference value, a bit value corresponding to each of the energy values, where The reference value is an energy value of a wakeup signal received by the receiving device during the detecting time interval.
  • the detection time interval includes at least one symbol, and the start time and the end time of the detection time interval are both located at a boundary of the symbol.
  • the processing unit is further configured to: when the receiving device does not obtain the pre-predetermined time period after receiving the wakeup signal When the consecutive p bit values of the same preamble are set, or when the same consecutive q bit values are not obtained in the first preset time period after the p bit values are obtained, the determination is terminated. Detecting an energy value of the received signal during the time interval, and terminating determining a bit value obtained during each of the detection time intervals based on the energy value.
  • n is the number of bits included in the data to be transmitted; the receiving device sequentially determines the energy value of the signal received in each detection time interval from the detection start time, and Determining a bit value according to each of the energy values, the signal being an excitation signal sent by the base station or a combination of the excitation signal and the scatter signal
  • the scatter signal is a signal generated after the transmitting device scatters the excitation signal; the receiving device obtains the same consecutive p bit values as the preset preamble, and after obtaining the p bit values Determining target data when the same consecutive q bit values are obtained in the first preset time period, the target data including the p bit values, the q bit values, and the q Successive s bit values after the bit value, the p, q and s are both positive integers.
  • the present application further provides a communication system comprising the apparatus of the second aspect and the apparatus of the fourth aspect.
  • the present application further provides a backscatter communication device, the device comprising: a processor, a memory and a transceiver.
  • the storage area is configured to store a computer execution instruction; the processor is coupled to the memory and the transceiver, and when the random access device is in operation, the processor executes a computer execution instruction stored in the memory to implement the first aspect and The random access method of the various implementations of the first aspect, or the backscatter communication method of implementing the third aspect and various implementations of the third aspect.
  • the present application also provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above aspects.
  • the present application further provides a chip, the chip comprising a processor and/or program instructions, when the chip is running, implementing the method of the first aspect of the application or implementing the third aspect of the application The method described.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a flow chart of an embodiment of a backscatter communication method provided by the present application.
  • FIG. 3 is a schematic structural diagram of a frame of data to be sent according to the present application.
  • FIG. 4 is a flow chart of another embodiment of a backscatter communication method provided by the present application.
  • FIG. 5 is a flowchart of another embodiment of a backscatter communication method provided by the present application.
  • FIG. 6 is a structural block diagram of an embodiment of a backscatter communication device provided by the present application.
  • FIG. 7 is a structural block diagram of another embodiment of a backscatter communication device provided by the present application.
  • FIG. 8 is a structural block diagram of another embodiment of a backscatter communication device provided by the present application.
  • the backscatter communication method provided by the present application can be applied to a long term evolution (LTE) system, LTE advanced (LTE-A), or other wireless communication systems using various radio access technologies, for example, A system using access technology such as code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access.
  • LTE long term evolution
  • LTE advanced LTE advanced
  • a system using access technology such as code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access.
  • it can also be applied to the subsequent evolution system using the LTE system, such as the fifth generation 5G system and the like.
  • the backscatter communication method provided by the present application can be applied to a communication system including a base station (BS), a terminal device, and an IoT device.
  • the base station is configured to provide an excitation signal, and the backscatter communication is performed between the terminal device and the IoT device through the excitation signal.
  • IoT devices can be either active or passive. In the present application, both the terminal device and the IoT device can function as a transmitting device or a receiving device.
  • the IoT device when the IoT device sends a signal to the terminal device, the IoT device is a transmitting device, and the terminal device is a receiving device; and when the terminal device sends an ACK (acknowledgement) response signal to the IoT device, the terminal device is a transmitting device, and the IoT device is Receiving device.
  • the terminal device sends an ACK (acknowledgement) response signal to the IoT device
  • the terminal device is a transmitting device
  • the IoT device is Receiving device.
  • the terminal device involved in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, household appliances, medical devices, industrial devices, Communication nodes on agricultural devices, or aeronautical devices, and the like, as well as various forms of user equipment (UE), mobile stations (MS), terminals, terminal equipment, and the like.
  • UE user equipment
  • MS mobile stations
  • terminals terminal equipment
  • the IoT device to which the present application relates may include any device that has an addressable interface in an IoT application and that can communicate information to one or more terminal devices.
  • the IoT device in a logistics transportation application, can be a tracker; in a remote monitoring application, the IoT device can be a monitor; in a security monitoring application, the IoT device can also be an alarm or the like.
  • the base station involved in the present application may be a device deployed in the radio access network to provide wireless communication functions for the terminal device, and may be, for example, various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the third generation.
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • 3G network it is called a Node B, or a communication node used in a fifth-generation communication system or used for D2D communication, and the like, and may be other similar base stations.
  • the base station may also be a transmission and reception point (TRP), and the structure of the TRP may include a remote radio unit (RRU), a indoor baseband unit (BBU), and an antenna.
  • TRP transmission and reception point
  • RRU remote radio unit
  • BBU indoor baseband unit
  • the structure of the system can also include only the structure of the radio frequency and antenna system.
  • a flowchart of an embodiment of a backscatter communication method of the present application may be included, and the method may include the following steps.
  • Step 201 The sending device receives the wake wakeup signal sent by the base station.
  • the downlink signal sent by the base station may be used as an excitation signal for backscatter communication.
  • the base station needs to send a wakeup signal to the transmitting device and the receiving device before communicating between the transmitting device and the receiving device.
  • the wake-up signal includes communication parameters of the data to be sent, and specifically includes frame structure indication information, communication start and stop time, signal modulation mode, and the like.
  • the start and end time of the communication refers to the period from the transmission start time of the data to be transmitted to the reception end time of the ACK response signal.
  • the communication start and stop time may be located in the same time unit, and the transmission end time of the to-be-sent data is not located at a boundary of the time unit, and the excitation sent by the base station in each symbol in the time unit is The energy of the signal is the same.
  • the time unit can be an LTE frame.
  • Step 202 The sending device determines, according to the wakeup signal, a sending start time of data to be sent.
  • the transmitting device When the transmitting device wants to send information to the receiving device, it needs to determine the data to be sent. When determining the data to be sent, the determination may be performed according to the frame format indication information in the wake-up signal sent by the base station.
  • the data to be transmitted may include a preamble, a delimiter, a frame header, a payload, and a cyclic redundancy check (CRC).
  • the frame header includes the target ID address, the transmission rate, and the frame length of the data to be transmitted.
  • the data to be sent may be less than 140 bits long, and the CRC may be an 8-bit check code.
  • the transmission rate in the frame header can be used to indicate the duration of each transmission time interval. It should be noted that the frame structure of the data to be transmitted shown in FIG. 3 is an exemplary description, and the frame structure of the data to be transmitted is not specifically limited in this application.
  • the transmission start time is located at the boundary of the symbol.
  • the transmitting device can determine the start time and the end time of each symbol according to the time at which the wakeup signal is received or according to the communication parameters in the wakeup signal.
  • the symbol in the present application may be an orthogonal frequency division multiplexing (OFDM) symbol in an LTE frame structure used when a base station transmits an excitation signal.
  • the LTE frame structure may be: a frame length of 10 ms, each frame includes 10 subframes, each subframe includes two slots, and each slot includes 7 OFDM symbols.
  • the LTE frame structure in this application is an exemplary description. In a specific implementation, the LTE frame structure may be set according to specific requirements or requirements, and is not specifically limited herein.
  • Step 203 The transmitting device performs a scattering process on the excitation signal sent by the base station according to the kth bit value in the to-be-sent data in the kth transmission time interval from the sending start time.
  • the excitation signal is a signal transmitted by the base station.
  • the base station transmitting the excitation signal and the base station transmitting the wakeup signal may be the same device or different devices.
  • the application can implement data transmission by scattering processing of the excitation signal.
  • the transmitting device may preset a scattering processing method corresponding to different bit values before transmitting the data. For example, a bit value of 0 may correspond to a manner in which the scattered excitation signal is processed, and a bit value of 1 may correspond to a manner in which the excitation signal is not scattered.
  • the transmitting device can realize the scattering processing of the excitation signal by changing the antenna impedance of the receiving loop. Further, the size of the antenna impedance can be changed by changing the opening and closing state of the switch that controls the size of the access impedance. Therefore, in a specific implementation, a switch opening and closing state corresponding to different bit values may be set in advance.
  • the bit value 0 may correspond to an open state
  • the bit value 1 may correspond to a closed state.
  • the transmitting device wants to send a bit value whose content is 0, the switch can be turned on, the antenna impedance is adjusted to a size capable of scattering the excitation signal, and the switching state is maintained during the transmission time interval of the bit value 0, thereby completing the bit. The value 0 is sent.
  • the transmitting device scatters the excitation signal
  • a scatter signal is generated, and the receiving device can simultaneously receive the excitation signal and the scatter information.
  • the transmitting device does not scatter the excitation signal
  • the scatter signal is not generated, and the receiving device only receives the excitation signal due to the transmission.
  • the device sends different bit values
  • the received device has different energy of the signal received in the corresponding transmission time interval, so the receiving device can determine the corresponding bit value according to the energy of the received signal, that is, the bit value sent by the transmitting device.
  • the transmitting device of the present application can perform corresponding scattering processing on the excitation signal sent by the base station according to the bit value to be transmitted, so that the receiving device determines the corresponding bit value according to the energy of the signal received in the transmission time interval, thereby utilizing The excitation signal sent by the base station performs low-power or zero-power backscatter communication.
  • the sending time interval includes at least one symbol, and the starting time and the ending time of the sending time interval are both located at a boundary of the symbol. Since the energy of the excitation signal received by the receiving device in each symbol is equal, the start time and the end time of the transmission time interval are both located at the boundary of the symbol, and the energy of the received signal in each transmission time interval can be compared. Stable so that the receiving device accurately determines the bit value based on the energy of the received signal. If the transmission interval is less than one symbol, the energy of the excitation signals received during each transmission time interval may be unequal due to the peak to average power ratio (PAPR). It is impossible to accurately determine the bit value based on the energy of the received signal. Therefore, the transmission time interval needs to include at least one symbol, and the start time and the end time of the transmission time interval are both located at the boundary of the symbol.
  • PAPR peak to average power ratio
  • the sending start time and the sending end time of the to-be-sent data are both located in the same time unit, and the sending end time of the to-be-sent data is not located at the boundary of the time unit.
  • the sending device may perform a carrier sense (LBT) to determine whether the channel is idle, that is, whether other transmitting devices in the vicinity of the transmitting device are transmitting information, thereby avoiding mutual interaction between the transmitting devices. interference.
  • the transmitting device of the data to be transmitted receives the excitation signal and the scattered signal from time to time. When combined, only the excitation signal is received, and the energy of the received signal changes. Therefore, it is possible to determine whether the channel is idle by monitoring the energy of the signal received during each transmission time interval. When the transmitting device detects that the channel is busy, a Random backoff operation is performed, that is, after a Random backoff time is delayed, the LBT operation is performed again.
  • the listening period and the Random backoff time may each include at least one sending time interval.
  • the process of receiving data by the receiving device is specifically described below.
  • FIG. 4 it is a flowchart of another embodiment of a backscatter communication method of the present application, which may include the following steps.
  • Step 401 The receiving device receives a wakeup signal sent by the base station.
  • the wakeup signal received by the receiving device may be the same as the wakeup signal received by the transmitting device.
  • Step 402 The receiving device determines a detection start time according to the wakeup signal.
  • the detection start time also needs to be located at the boundary of the symbol, thereby ensuring accurate reception of data.
  • the receiving device can determine the start time and the end time of each symbol based on the time at which the wakeup signal is received or based on the communication parameters in the wakeup signal.
  • Step 403 The receiving device sequentially determines energy values of signals received in each detection time interval from the detection start time, and determines a bit value according to each of the energy values, where the signal is The excitation signal sent by the base station is either a combination of the excitation signal and the scatter signal, and the scatter signal is a signal generated by the transmitting device after scattering the excitation signal.
  • the bit value corresponding to each energy value may be determined by comparing the energy value of the signal received in each detection time interval with a reference value.
  • the reference value is an energy value of an excitation signal received by the receiving device during a detection time interval.
  • the receiving device receives the data transmitted by the transmitting device, and needs to continuously receive signals, thereby determining the bit value obtained in each detecting time interval by detecting the energy of the signal received in each detecting time interval.
  • Each detection time interval includes at least one symbol, and the start time and the end time of each detection time interval are both located at the boundary of the symbol.
  • the detection time interval is equal to the transmission time interval used by the transmitting device to transmit data, and each transmission time interval is synchronized with one detection time interval, thereby ensuring that the receiving device accurately receives each bit value sent by the transmitting device.
  • the power of the wakeup signal sent by the base station is the same as the power of the transmit excitation signal.
  • the reference value may be determined by detecting an energy value of the wakeup signal received in the at least one detection detection time interval, where the reference value is a detection interval.
  • the reference value may also be determined by detecting the energy of the received signal during at least one detection time interval after receiving the wakeup signal. Specifically, when the energy values of the signals received in the preset number of detection detection time intervals are equal, the energy value may be determined as the reference value. Therefore, if the power of the excitation signal transmitted by the base station changes, the wakeup signal needs to be retransmitted.
  • the correspondence between the comparison result of the different energy values and the reference value and the bit value may be set in advance. For example, if the energy value is equal or approximate to the reference value, it may correspond to a bit value of 1, otherwise the corresponding bit value is zero. Further, the corresponding bit value can also be determined by comparing the difference between the energy value and the reference value with a threshold. When the difference is greater than the threshold, it indicates that the received signal includes a scatter signal, and when the difference is not greater than the threshold, the received signal does not include the scatter signal.
  • the threshold size may be set correspondingly according to the specific situation, so the size of the threshold is not specifically limited in this application.
  • bit value corresponding to the processing manner of the non-scattering excitation signal is the same as the bit value corresponding to when the energy value is equal to or similar to the reference value, and the bit value corresponding to the processing mode of the scattered excitation signal and the energy value are When the reference values are not equal or not approximate, the corresponding bit values are the same, so that the obtained bit values correspond to the transmitted bit values, so as to achieve accurate transmission of data.
  • Step 404 The receiving device obtains the same consecutive p bit values as the preset preamble, and obtains the same continuous q with the preset address information in the first preset time period after the p bit values are obtained. Determining target data, the target data including the p bit values, the q bit values, and consecutive s bit values after the q bit values, the p, q, and s Both are positive integers.
  • the preset preamble and the preset address information in the receiving device may be determined according to the communication parameters in the wakeup signal, or may be determined according to other pre-stored information.
  • the preset address information is also the address information of the receiving device itself to determine whether the received data is the target data.
  • the transmitting device When the transmitting device does not send data, the bit value obtained by the receiving device does not change, and the obtained bit value is always 0 or 1.
  • the p bit values included in the preamble are continuously transmitted first.
  • the receiving device receives consecutive p bit values and is the same as the preset preamble, it indicates that the data sent by the transmitting device is being received.
  • the transmitting device After transmitting the preamble, the transmitting device continuously transmits the q bit values included in the target address field. When the receiving device receives consecutive q bit values identical to the preset address information, it indicates that the target data is being received.
  • the sending device after sending the target address field and the transmission rate field, the sending device continuously sends each bit value included in the frame length field, and the receiving device can determine the target according to the obtained frame length information.
  • the number of bits contained in the data which in turn determines the number of bit values that need to be determined later.
  • the base station may transmit the wakeup signal according to a preset period.
  • the receiving device does not obtain the same consecutive p bit values as the preset preamble in the second preset time period after receiving the wakeup signal, or the first pre-after obtaining the p bit values If the consecutive q bit values that are the same as the preset address information are not obtained within the time period, determining the energy value of the received signal in each detection time interval is terminated, and terminating each of the detection times according to the energy value is terminated. The bit value obtained during the interval.
  • a receiver in the receiving device for backscattering communication with the transmitting device may be turned off, thereby reducing power consumption.
  • the receiver is configured to implement steps 402 through 404. When the receiver is in the off state, if the receiving device receives the wakeup signal again, the receiver is turned back on.
  • the transmission start time and the transmission end time of the data to be transmitted are also located in the same time unit, and each detection time interval that can be used for the reception target data is located in the same time unit. If the respective detection time intervals for receiving the target data are located in two consecutive time units, and the energy of the excitation signal changes in the two time units, a misjudgment of the bit value is caused. Further, after receiving the data sent by the sending device, the receiving device sends an ACK response signal to the sending device. To ensure that the ACK response signal is accurately transmitted to the sending device, it is required to ensure that the ACK response signal is sent during the sending process.
  • the energy of the excitation signal transmitted by the base station is equal in each transmission time interval during the transmission of the transmission data. Since the energy of the excitation signal may change in two consecutive time units, the transmission start time of the data to be transmitted and the reception end time of the ACK response signal may both be in the same time unit.
  • the receiving device may transmit the target data to the base station to cause the base station to transmit the target data to the target receiving device.
  • the IoT device can use the above communication method to send the target data to the terminal device closer to the terminal device. The device then transmits the target data to the base station, so that the base station transmits the target data to the target terminal device.
  • the base station wants to send information to the IoT device, it may first send the information to the terminal device to send the information to the IoT device through the terminal device.
  • the transmitting device of the present application may perform corresponding scatter processing on the excitation signal according to the bit value to be transmitted, so that the receiving device determines the corresponding bit value according to the energy of the signal received in the transmission time interval, thereby completing the excitation signal sent by the base station.
  • Low-power or zero-power backscatter communication may be performed.
  • a flow chart of another embodiment of the backscatter communication method of the present application may include the following steps.
  • Step 501 The sending device receives the wake wakeup signal sent by the base station.
  • Step 502 The receiving device receives the wake wakeup signal sent by the base station.
  • Step 501 and step 502 may be performed simultaneously or may not be performed at the same time.
  • the step 501 may be performed first, or the step 502 may be performed first.
  • Step 503 The sending device determines, according to the wakeup signal, a sending start time of data to be sent.
  • Step 504 The receiving device determines a detection start time according to the wakeup signal.
  • Step 503 and step 504 may be performed simultaneously or may not be performed at the same time.
  • step 503 may be performed differently than step 504, step 503 may be performed first, or step 504 may be performed first.
  • Step 505 The transmitting device performs a scattering process on the excitation signal sent by the base station according to the kth bit value in the to-be-sent data, in a kth transmission time interval from the sending start time.
  • Step 506 The receiving device sequentially determines energy values of signals received in each detection time interval from the detection start time, and determines a bit value according to each of the energy values, where the signal is The excitation signal sent by the base station is either a combination of the excitation signal and the scatter signal, and the scatter signal is a signal generated by the transmitting device after scattering the excitation signal.
  • the receiving device can start receiving signals from step 505 and calculate the energy value of the received signal.
  • Step 507 The receiving device obtains the same consecutive p bit values as the preset preamble, and obtains the same continuous q with the preset address information in the first preset time period after the p bit values are obtained. Determining target data, the target data including the p bit values, the q bit values, and consecutive s bit values after the q bit values, the p, q, and s Both are positive integers.
  • FIG. 5 is a combination of the embodiment shown in FIG. 2 and the embodiment shown in FIG. 4, the same or similar parts can refer to the embodiment shown in FIG. 2 and the embodiment shown in FIG. , will not repeat them here.
  • a structural block diagram of an embodiment of a backscatter communication device provided by the present application may be provided in a transmitting device, or may be a transmitting device itself.
  • the backscatter communication device may include a receiving unit 601, a processing unit 602, and a transmitting unit 603.
  • the receiving unit 601 is configured to receive a wake wakeup signal sent by the base station.
  • the processing unit 602 is configured to determine, according to the wakeup signal, a sending start time of data to be sent.
  • the sending unit 603 is configured to perform scatter processing on the excitation signal sent by the base station according to the kth bit value in the to-be-sent data in the kth transmission time interval from the sending start time.
  • the kth transmission time interval includes at least one symbol, and a start time and an end time of the kth transmission time interval are both located at a boundary of a symbol.
  • processing unit 602 is specifically configured to:
  • the end time of the mth transmission time interval is determined as the transmission start time of the data to be transmitted.
  • the sending start time and the sending end time of the to-be-sent data are both located in the same time unit, and the sending end time of the to-be-sent data is not located at the boundary of the time unit, in the time unit
  • the energy of the excitation signal transmitted by the base station in each symbol is the same.
  • a structural block diagram of another embodiment of a backscatter communication device provided by the present application may be provided in a receiving device, or may be a receiving device itself.
  • the backscatter communication device may include a receiving unit 701 and a processing unit 702.
  • the receiving unit 701 is configured to receive a wake-up wakeup signal sent by the base station.
  • the processing unit 702 is configured to determine a detection start time according to the wakeup signal.
  • the receiving unit 701 is further configured to sequentially determine energy values of signals received in each detection time interval from the detection start time, and determine a bit value according to each of the energy values, the signal
  • the excitation signal sent by the base station is a combination of the excitation signal and the scatter signal, and the scatter signal is a signal generated by the transmitting device after scattering the excitation signal;
  • the processing unit 702 is further configured to obtain the same consecutive p bit values as the preset preamble, and obtain the same preset address information in the first preset time period after the p bit values are obtained. Determining target data when consecutive q bit values, the target data including the p bit values, the q bit values, and consecutive s bit values after the q bit values, the p, q Both are positive integers with s.
  • the receiving unit 701 is specifically configured to:
  • Determining a bit value corresponding to each of the energy values by comparing each of the energy values with a reference value, wherein the reference value is an energy of a wakeup signal received by the receiving device during the detecting time interval value.
  • the detection time interval includes at least one symbol, and both the start time and the end time of the detection time interval are located at a boundary of the symbol.
  • processing unit 702 is further configured to:
  • the receiving device does not obtain the same consecutive p bit values as the preset preamble within the second preset time period after receiving the wakeup signal, or after obtaining the p bit values
  • the consecutive q bit values that are the same as the preset address information are not obtained within the preset time period, determining the energy value of the received signal in each detection time interval is terminated, and terminating each of the detections according to the energy value is terminated. The bit value obtained during the time interval.
  • the present application also provides a communication system that can include the apparatus shown in FIG. 6 and the apparatus shown in FIG.
  • FIG. 8 is a schematic structural diagram of another embodiment of a backscatter communication device provided by the present application.
  • the device may include: a processor 801, a memory 802, and a transceiver 803.
  • the processor 801 is a control center for backscatter communication, connecting various parts of the entire deployment device with various interfaces and lines, by running or executing software programs and/or modules stored in the memory, and calling stored in the memory. Data to perform various functions of the backscatter communication device and/or process data.
  • the processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 802 may include a volatile memory, such as a random access memory (RAM), and may also include a non-volatile memory, such as a flash memory.
  • RAM random access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • a program or code may be stored in the memory, and the processor in the network element may implement the function of the network element by executing the program or code.
  • the transceiver 803 can be used to implement communication between the device and other devices.
  • the transceiver 803 is configured to receive a wake wakeup signal sent by the base station, and the processor 801 is configured to determine, according to the wakeup signal a sending start time of the data to be transmitted; the processor 801 is further configured to: according to the kth bit value in the to-be-sent data, the base station in a kth transmission time interval from the sending start time
  • the transceiver 803 is configured to receive a wake wakeup signal sent by the base station, and the processor 801 is configured to use the wakeup signal according to the wakeup signal.
  • the transceiver 803 is further configured to sequentially determine energy values of signals received in each detection time interval from the detection start time, and determine a bit value according to each of the energy values,
  • the signal is an excitation signal sent by the base station or a combination of the excitation signal and the scatter signal, and the scatter signal is a scatter signal sent by the sending device;
  • the processor 801 is further configured to obtain the same as the preset preamble Determining target data, the target data includes the consecutive p bit values, and obtaining the same consecutive q bit values as the preset address information within the first preset time period after the p bit values are obtained
  • the present application also provides a computer readable storage medium, wherein the computer readable storage medium can store instructions that, when executed on a computer, cause the computer to perform portions of the various embodiments of the method provided by the present invention or All steps.
  • the readable storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the present application also provides a computer program product comprising instructions which, when executed on a computer, cause the computer to perform some or all of the steps of the various embodiments of the method provided herein.
  • the present application also provides a chip including a processor and/or program instructions, when the chip is running, implementing the method in the embodiment shown in FIG. 2 of the present application or implementing the embodiment shown in FIG. Methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种背向散射通信方法及装置,该方法包括:发送设备接收基站发送的唤醒wakeup信号;所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻;所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。本申请的发送设备可以根据待发送比特值对基站发送的激励信号进行相应地散射处理,以使接收设备根据该发送时间间隔内接收到的信号的能量确定相应的比特值,从而利用基站发送的激励信号完成低功耗或零功耗的背向散射通信。本实施例提供的方法提高了网络的覆盖能力,可以应用于物联网,例如MTC、IoT、LTE-M,M2M等。

Description

一种背向散射通信方法及装置 技术领域
本申请涉及移动通信领域,尤其涉及一种背向散射通信方法及装置。
背景技术
射频识别(radio frequency identification,RFID)技术是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,其作为构建物联网(internet of things,IoT)的关键技术近年来受到人们的广泛关注。RFID通信系统包括阅读器(reader)和标签(tag)。
RFID的工作方式分为电感耦合以及背向散射(backscatter,也称为“反向散射”)两种方式。电感耦合方式一般适合于中、低频工作的近距离感应,背向散射方式一般适合于高频工作的远距离感应。通过背向散射方式实现自动识别的过程为:阅读器在一个区域发射射频信号(也可以称为激励信号),标签进入该区域后根据自身的编码信息改变天线阻抗,从而背向散射该射频信号,产生散射信号,阅读器根据接收到的散射信号获取标签的编码信息,并校验该编码信息的准确性以达到识别的目的。
但是背向散射通信方式为使距离较远的标签获得能量,阅读器需要产生高频的射频信号,而产生高频的射频信号会造成较大的能耗,从而减少阅读器的工作寿命,或者需要频繁地更换电源,使用不方便。
发明内容
本申请提供了一种背向散射通信方法及装置,用于解决现有背向散射通信方式能耗较大的问题。
第一方面,本申请提供了一种背向散射通信方法,该方法可以包括以下步骤:发送设备接收基站发送的唤醒wakeup信号;所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻;所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
本申请的发送设备可以根据待发送比特值对基站发送的激励信号进行相应地散射处理,以使接收设备根据该发送时间间隔内接收到的信号的能量确定相应的比特值,从而利用基站发送的激励信号完成低功耗或零功耗的背向散射通信。
结合第一方面,在第一方面的一种实现方式中,所述第k个发送时间间隔包括至少一个符号,并且所述第k个发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
由于接收设备在每个符号内接收到的激励信号的能量相等,所以发送时间间隔的起始时刻与结束时刻均位于符号的边界处,能够使每个发送时间间隔内接收到的信号的能量比较稳定,从而使接收设备根据接收到的信号的能量准确地确定比特值。
结合第一方面,在第一方面的另一种实现方式中,所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻,包括:所述发送设备根据所述wakeup信号确定监听起始时刻;所述发送设备从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的其他发送设备散射激励信号后生成的信号,i=1,2,……m,m为正整数;如果所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同,则将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
结合第一方面,在第一方面的另一种实现方式中,所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于所述时间单元的边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。
第二方面,本申请还提供了一种背向散射通信装置,该装置可以包括:接收单元,处理单元以及发送单元。其中,接收单元,用于接收基站发送的唤醒wakeup信号;处理单元,用于根据所述wakeup信号确定待发送数据的发送起始时刻;发送单元,用于在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
结合第二方面,在第二方面的一种实现方式中,所述第k个发送时间间隔包括至少一个符号,并且所述第k个发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
结合第二方面,在第二方面的另一种实现方式中,所述处理单元具体用于:根据所述wakeup信号确定监听起始时刻;从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的其他发送设备散射激励信号后生成的信号,i=1,2,……m,m为正整数;当所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同时,将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
结合第二方面,在第二方面的另一种实现方式中,所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于所述时间单元的边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。
第三方面,本申请还提供了一种背向散射通信方法,该方法可以包括以下步骤:接收设备接收基站发送的唤醒wakeup信号;所述接收设备根据所述wakeup信号确定检测起始时刻;所述接收设备依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号生成的信号;所述接收设备在得到与预设前导码相同的连续p个 比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
本申请的发送设备可以根据待发送比特值对基站发送的激励信号的进行相应地散射处理,以使接收设备根据该发送时间间隔内接收到的信号的能量确定相应的比特值,从而利用基站发送的激励信号完成低功耗或零功耗的背向散射通信。
结合第三方面,在第三方面的一种实现方式中,根据每个所述能量值确定比特值,包括:通过每个所述能量值与基准值的对比,确定每个所述能量值对应的比特值,其中,所述基准值为一个所述检测时间间隔内所述接收设备接收到的wakeup信号的能量值。
结合第三方面,在第三方面的另一种实现方式中,所述检测时间间隔包括至少一个符号,并且所述检测时间间隔的起始时刻与结束时刻均位于符号的边界处。
结合第三方面,在第三方面的另一种实现方式中,所述方法进一步包括:所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。
第四方面,本申请还提供了一种背向散射通信装置,该装置可以包括接收单元以及处理单元。其中,接收单元,用于接收基站发送的唤醒wakeup信号;处理单元,用于根据所述wakeup信号确定检测起始时刻;所述接收单元,还用于依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号;所述处理单元,还用于在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
结合第四方面,在第四方面的一种实现方式中,所述接收单元具体用于:通过每个所述能量值与基准值的对比,确定每个所述能量值对应的比特值,其中,所述基准值为一个所述检测时间间隔内所述接收设备接收到的wakeup信号的能量值。
结合第四方面,在第四方面的另一种实现方式中,所述检测时间间隔包括至少一个符号,并且所述检测时间间隔的起始时刻与结束时刻均位于符号的边界处。
结合第四方面,在第四方面的另一种实现方式中,所述处理单元还用于:当所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。
第五方面,本申请还提供了一种背向散射通信方法,该方法可以包括以下步骤: 发送设备接收基站发送的唤醒wakeup信号;接收设备接收基站发送的唤醒wakeup信号;所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻;所述接收设备根据所述wakeup信号确定检测起始时刻;所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量;所述接收设备依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号;所述接收设备在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
第六方面,本申请还提供了一种通信系统,该系统包括第二方面所述的装置以及第四方面所述的装置。
第七方面,本申请还提供了一种背向散射通信装置,该装置包括:处理器,存储器及收发器。该存储区,用于存储计算机执行指令;该处理器与该存储器和收发器连接,当该随机接入装置运行时,该处理器执行该存储器中存储的计算机执行指令,以实现第一方面以及第一方面的各种实现方式所述的随机接入方法,或者以实现第三方面以及第三方面的各种实现方式所述的背向散射通信方法。
第八方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第九方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,本申请还提供了一种芯片,所述芯片包括处理器和/或程序指令,当所述芯片运行时,实现本申请第一方面所述的方法或者实现本申请第三方面所述的方法。
附图说明
图1为本申请提供的一种通信系统的结构示意图;
图2为本申请提供的一种背向散射通信方法的一个实施例的流程图;
图3为本申请提供的一种待发送数据的帧结构示意图;
图4为本申请提供的一种背向散射通信方法的另一个实施例的流程图;
图5为本申请提供的一种背向散射通信方法的另一个实施例的流程图;
图6为本申请提供的一种背向散射通信装置的一个实施例的结构框图;
图7为本申请提供的一种背向散射通信装置的另一个实施例的结构框图;
图8为本申请提供的一种背向散射通信装置的另一个实施例的结构框图。
具体实施方式
本申请提供的背向散射通信方法可以适用于长期演进(long term evolution,LTE)系统,高级长期演进(LTE advanced,LTE-A),或其他采用各种无线接入技术的无线 通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
如图1所示,本申请提供的背向散射通信方法可以应用于包括基站(base station,BS)、终端设备以及IoT设备的通信系统中。基站用于提供激励信号,终端设备以及IoT设备之间通过激励信号进行背向散射通信。IoT设备可以为有源设备也可以为无源设备。在本申请中,终端设备与IoT设备均可以作为发送设备或接收设备。例如,当IoT设备向终端设备发送信号时,IoT设备为发送设备,终端设备为接收设备;而当终端设备向IoT设备发送ACK(确认字符)应答信号时,终端设备为发送设备,IoT设备为接收设备。
其中,本申请所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,家用电器、医疗设备、工业器件、农业器件、或航空设备等上的通信节点,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等。
本申请所涉及到的IoT设备可以包括在物联网应用中具有可寻址接口并且能向一个或多个终端设备传送信息的任何设备。例如,在物流运输应用中,IoT设备可以为追踪器;在远程监控应用中,IoT设备可以为监控器;在安全监控应用中,IoT设备还可以为报警器等等。
本申请所涉及到的基站可以是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,例如可以是各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B),或者应用于第五代通信系统中或用于D2D通讯的通信节点等等,也可以是其他类似的基站。基站还可以是发送和接收节点(transmission and reception point,TRP),该TRP的结构可以是包括远端射频模块(remote radio unit,RRU)、室内基带处理单元(building baseband unit,BBU)以及天馈系统的结构,也可以只包括射频和天线系统的结构。
参见图2,为本申请背向散射通信方法的一个实施例的流程图,该方法可以包括如下步骤。
步骤201,发送设备接收基站发送的唤醒wakeup信号。
当发送设备与接收设备位于基站的覆盖区域中时,可以将该基站发送的下行信号作为激励信号进行背向散射通信。为使发送设备与接收设备能够完成通信,该基站需要在发送设备与接收设备之间进行通信之前,将唤醒(wakeup)信号发送至发送设备与接收设备。该唤醒信号包括待发送数据的通信参数,具体可以包括帧结构指示信息,通信起止时间,信号调制方式等。其中,通信起止时间是指从待发送数据的发送起始时刻至ACK应答信号的接收结束时刻止的这段时间。在具体应用中,该通信起止时间可以位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于时间单元的 边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。该时间单元可以为一个LTE帧。
步骤202,所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻。
当发送设备欲向接收设备发送信息时,需要确定待发送数据。在确定待发送数据时,可以根据基站发送的唤醒信号中的帧格式指示信息进行确定。如图3所述,待发送数据可以包括前导码(preamble),分隔符(delimiter),帧头(frame header),有效载荷(payload)和循环冗余校验码(cyclic redundancy check,CRC)。帧头包括目标ID地址,传输速率以及待发送数据的帧长。其中,待发送数据长可以小于140bits,CRC可以为8bit的校验码。帧头中的传输速率可以用于指示每个发送时间间隔的时长。需要说明的是,图3所示的待发送数据的帧结构为示例性说明,本申请不对待发送数据的帧结构进行具体限定。
所述发送起始时刻位于符号的边界处。为保证发送起始时刻位于符号的边界处,发送设备可以根据接收到wakeup信号的时刻或者根据wakeup信号中的通信参数确定每个符号的起始时刻以及结束时刻。本申请中的符号可以为基站发送激励信号时所采用的LTE帧结构中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。例如,LTE帧结构可以为:帧长为10ms,每帧包含10个子帧,每个子帧包含两个时隙,每个时隙包含7个OFDM符号。需要说明的是,本申请中的LTE帧结构为示例性说明,在具体实现中LTE帧结构可以根据具体要求或需求进行设置,在此不做具体限制。
步骤203,所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
激励信号为基站发送的信号。发送激励信号的基站与发送wakeup信号的基站可以是同一个设备,也可以是不同的设备。本申请可以通过对激励信号的散射处理实现数据的发送。发送设备在发送数据之前可以预先设置不同的比特值对应的散射处理方式。例如,比特值0可以对应散射激励信号的处理方式,比特值1可以对应不散射激励信号的处理方式。
在本申请中,发送设备可以通过改变接收回路的天线阻抗,实现对激励信号的散射处理,进一步地,可以通过改变控制接入阻抗大小的开关开闭状态,改变天线阻抗的大小。所以,在具体实现中,也可以预先设置不同的比特值对应的开关开闭状态,例如,比特值0可以对应打开状态,比特值1可以对应闭合状态。再例如,发送设备欲发送内容为0的比特值时,可以打开开关,将天线阻抗调整至能够散射激励信号的大小,并在该比特值0的发送时间间隔内保持该开关状态,从而完成比特值0的发送。
当发送设备散射激励信号时,会产生散射信号,接收设备可以同时接收到激励信号和散射信息,当发送设备不散射激励信号时,不会产生散射信号,接收设备只接收到激励信号,由于发送设备发送不同的比特值时,接收设备在相应的发送时间间隔内接收到的信号的能量不同,所以接收设备可以根据接收到的信号的能量确定相应的比特值,即发送设备发送的比特值。所以,本申请的发送设备可以根据待发送比特值对 基站发送的激励信号的进行相应地散射处理,以使接收设备根据该发送时间间隔内接收到的信号的能量确定相应的比特值,从而利用基站发送的激励信号完成低功耗或零功耗的背向散射通信。
在具体实现中,所述发送时间间隔包括至少一个符号,并且所述发送时间间隔的起始时刻与结束时刻均位于符号的边界处。由于接收设备在每个符号内接收到的激励信号的能量相等,所以发送时间间隔的起始时刻与结束时刻均位于符号的边界处,能够使每个发送时间间隔内接收到的信号的能量比较稳定,从而使接收设备根据接收到的信号的能量准确地确定比特值。而如果发送时间间隔小于一个符号,会可能由于峰值平均功率比(peak to average power ratio,PAPR,简称峰均比)的原因导致在各个发送时间间隔内接收到的激励信号的能量不相等,也就无法根据接收到的信号的能量准确地确定比特值。所以,所述发送时间间隔需要包括至少一个符号,并且所述发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于时间单元的边界处。
发送设备在向接收设备发送数据之前,可以进行载波监听(listen before talk,LBT)确定信道是否空闲,也就是确定该发送设备附近是否有其他发送设备正在发送信息,从而避免发送设备之间的相互干扰。该载波监听的具体过程可以为:所述发送设备根据所述wakeup信号确定监听起始时刻;所述发送设备从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的其他发送设备散射激励信号后生成的信号,i=1,2,……m,m为整数;如果所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同,则将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
若有其他发送设备正在发送信息,由于对激励信号的散射处理的不断调整,会时而产生散射信号,时而没有散射信号,相应地,待发送数据的发送设备会时而接收到激励信号及散射信号的组合,时而只接收到激励信号,接收到的信号的能量会发生变化。所以,可以通过监听每个发送时间间隔内接收到的信号的能量,确定信道是否空闲。当发送设备检测到信道忙时,则进行Random backoff(随机退避)操作,即延迟一个Random backoff时间后,再次进行LBT操作。在具体实现中,该监听时段以及Random backoff时间均可以包括至少一个发送时间间隔。
以下具体说明接收设备接收数据的过程。
参见图4,为本申请背向散射通信方法另一个实施例的流程图,该方法可以包括如下步骤。
步骤401,接收设备接收基站发送的wakeup信号。
接收设备接收到的wakeup信号可以与发送设备接收到的wakeup信号相同。
步骤402,所述接收设备根据所述wakeup信号确定检测起始时刻。
由于发送设备发送数据的发送起始时刻位于符号的边界处,所述检测起始时刻也需要位于符号的边界处,从而保证准确接收数据。为保证检测起始时刻位于符号的边 界处,接收设备可以根据接收到wakeup信号的时刻或者根据wakeup信号中的通信参数确定每个符号的起始时刻以及结束时刻。
步骤403,所述接收设备依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号。
在具体实现中,可以通过将每个检测时间间隔内接收到的信号的能量值与基准值进行对比,确定每个能量值对应的比特值。该基准值为一个检测时间间隔内所述接收设备接收到的激励信号的能量值。
接收设备为接收发送设备发送的数据,需要不断地接收信号,从而通过检测每个检测时间间隔内接收到的信号的能量,确定各个检测时间间隔内得到的比特值。每个检测时间间隔包括至少一个符号,并且每个检测时间间隔的起始时刻与结束时刻均位于符号的边界处。具体地,检测时间间隔与发送设备发送数据采用的发送时间间隔等长,并且每个发送时间间隔均与一个检测时间间隔同步,从而保证接收设备准确接收发送设备发送的每个比特值。
由于基站发送wakeup信号的功率与发送激励信号的功率相同,在具体实现中,可以通过检测至少一个检测检测时间间隔内接收到的wakeup信号的能量值确定基准值,该基准值为一个检测时间间隔内接收到的wakeup信号的能量。该基准值还可以在接收到wakeup信号之后,通过检测至少一个检测时间间隔内接收到的信号的能量进行确定。具体的,当在预设数量的检测检测时间间隔内接收到的信号的能量值均相等时,可以确定该能量值即为基准值。所以,如果基站发送的激励信号的功率发生改变,需要重新发送wakeup信号。
在具体实现中,可以预先设置不同的能量值与基准值的对比结果与比特值的对应关系。例如,如果能量值与基准值相等或近似,可以对应比特值1,否则对应比特值0。进一步地,也可以通过将能量值与基准值的差值与阈值进行对比,确定相应的比特值。当该差值大于该阈值时,说明接收到的信号包括散射信号,当差值不大于该阈值时,说明接收到的信号不包括散射信号。该阈值大小可以根据具体情况进行相应地设置,所以本申请不对该阈值的大小进行具体限定。需要说明的是,上述不散射激励信号的处理方式对应的比特值与当能量值与基准值相等或近似时对应的比特值相同,上述散射激励信号的处理方式对应的比特值与当能量值与基准值不相等或不近似时对应的比特值相同,从而使得到的比特值与发送的比特值相对应,以实现数据的准确传输。
步骤404,所述接收设备在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
接收设备中的预设前导码以及预设地址信息可以根据wakeup信号中的通信参数进行确定,也可以根据其他预存信息进行确定。该预设地址信息也就是接收设备本身的地址信息,用以确定接收到的数据是否为目标数据。
当发送设备没有发送数据时,接收设备得到的比特值不会发生变化,得到的比特 值一直是0,或者是1。如图3所示,当发送设备开始发送数据时,首先连续发送前导码所包含的p个比特值。当接收设备接收到连续的p个比特值与预设前导码相同时,说明正在接收发送设备发送的数据。发送设备在发送完前导码之后,会连续发送目标地址字段所包含的q个比特值。当接收设备接收到连续的q个比特值与预设地址信息相同时,说明正在接收目标数据。然后根据目标数据所包含的比特数量,确定后续需要确定的比特值的数量s,s值为目标数据所包含的比特数量减去p以及q之后的值。在具体实现中,如图3所示,发送设备在发送完目标地址字段以及传输速率字段之后,会连续发送帧长字段所包含的各个比特值,接收设备可以根据得到的帧长信息,确定目标数据所包含的比特数量,进而确定后续需要确定的比特值的数量。
为使发送时间间隔的起始时刻与结束时刻保持与符号的边界对齐,以及检测时间间隔的起始时刻与结束时刻保持与符号的边界对齐,基站可以按照预设的周期发送wakeup信号。
所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。在具体实现中,可以关闭所述接收设备中用于与发送设备进行背向散射通信的接收机,从而减少能耗。该接收机用于实现步骤402至步骤404。当该接收机处于关闭状态时,如果接收设备再次接收到wakeup信号,则重新开启该接收机。
待发送数据的发送起始时刻与发送结束时刻也均位于同一个时间单元内,能够使用于接收目标数据的各个检测时间间隔均位于同一个时间单元内。如果用于接收目标数据的各个检测时间间隔位于连续的两个时间单元内,并且在这两个时间单元内激励信号的能量发生变化,会导致对比特值的误判。进一步地,由于接收设备接收到发送设备发送的数据后,会向该发送设备发送ACK应答信号,为保证ACK应答信号准确地传输至该发送设备,需要保证在ACK应答信号的发送过程中与待发送数据的发送过程中的各个发送时间间隔内,基站发送的激励信号的能量均相等。由于连续的两个时间单元内激励信号的能量可能会发生变化,所以待发送数据的发送起始时刻与ACK应答信号的接收结束时刻可以均位于同一个时间单元内。
当该接收设备不是目标接收设备时,所述接收设备可以向基站发送所述目标数据,以使所述基站将所述目标数据发送至目标接收设备。在一种应用场景中,当IoT设备与目标终端设备距离较远,无法通过背向散射方式进行通信时,IoT设备可以利用上述通信方式将目标数据发送至距离其较近的终端设备,该终端设备再将该目标数据发送至基站,以使基站将该目标数据发送至目标终端设备。同样地,当基站欲向IoT设备发送信息时,可以先将该信息发送至终端设备,以通过终端设备将信息发送至IoT设备。
本申请的发送设备可以根据待发送比特值对激励信号进行相应地散射处理,以使接收设备根据该发送时间间隔内接收到的信号的能量确定相应的比特值,从而利用基站发送的激励信号完成低功耗或零功耗的背向散射通信。
参见图5,为本申请背向散射通信方法另一个实施例的流程图,该方法可以包括 如下步骤。
步骤501,发送设备接收基站发送的唤醒wakeup信号。
步骤502,接收设备接收基站发送的唤醒wakeup信号。
步骤501与步骤502可以同时执行,也可以不同时执行。当步骤501与步骤502不同时执行时,可以先执行步骤501,也可以先执行步骤502。
步骤503,所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻。
步骤504,所述接收设备根据所述wakeup信号确定检测起始时刻。
步骤503与步骤504可以同时执行,也可以不同时执行。当步骤503与步骤504不同时执行时,可以先执行步骤503,也可以先执行步骤504。
步骤505,所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
步骤506,所述接收设备依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号。
需要说明的是,接收设备可以从步骤505之前开始接收信号,并计算接收到的信号的能量值。
步骤507,所述接收设备在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
由于图5所示的实施例为图2所示的实施例以及图4所示的实施例的组合,所以相同或相似的部分可以参考图2所示的实施例以及图4所示的实施例,在此不再赘述。
参见图6,为本申请提供的一种背向散射通信装置的一个实施例的结构框图,该装置可以设置于发送设备中,或者也可以为发送设备本身。所述背向散射通信装置可以包括:接收单元601,处理单元602以及发送单元603。
其中,接收单元601,用于接收基站发送的唤醒wakeup信号。
处理单元602,用于根据所述wakeup信号确定待发送数据的发送起始时刻。
发送单元603,用于在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
优选地,所述第k个发送时间间隔包括至少一个符号,并且所述第k个发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
优选地,所述处理单元602具体用于:
根据所述wakeup信号确定监听起始时刻;
从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的发送设备散射激励信号后生成的信号,i=1,2,……m,m为正整数;
当所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同时,将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
优选地,所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于所述时间单元的边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。
参见图7,为本申请提供的一种背向散射通信装置的另一个实施例的结构框图,该装置可以设置于接收设备中,或者也可以为接收设备本身。所述背向散射通信装置可以包括:接收单元701以及处理单元702。
其中,接收单元701,用于接收基站发送的唤醒wakeup信号。
处理单元702,用于根据所述wakeup信号确定检测起始时刻。
所述接收单元701,还用于依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号;
所述处理单元702,还用于在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
优选地,所述接收单元701具体用于:
通过每个所述能量值与基准值的对比,确定每个所述能量值对应的比特值,其中,所述基准值为一个所述检测时间间隔内所述接收设备接收到的wakeup信号的能量值。
优选地,所述检测时间间隔包括至少一个符号,并且所述检测时间间隔的起始时刻与结束时刻均位于符号的边界处。
优选地,所述处理单元702还用于:
当所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。
本申请还提供了一种通信系统,该系统可以包括图6所示的装置以及图7所示的装置。
参见图8,为本申请提供的一种背向散射通信装置的另一个实施例的结构示意图,该装置可以包括:处理器801、存储器802及收发器803。
所述处理器801为背向散射通信的控制中心,利用各种接口和线路连接整个部署设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存 储在存储器内的数据,以执行背向散射通信装置的各种功能和/或处理数据。所述处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。
所述存储器802可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。所述存储器中可以存储有程序或代码,网元中的处理器通过执行所述程序或代码可以实现所述网元的功能。
所述收发器803可以用于实现所述设备与其他设备之间的通信。
与图2所示的背向散射通信方法相对应,在一种可选的实施方式中,收发器803,用于接收基站发送的唤醒wakeup信号;处理器801,用于根据所述wakeup信号确定待发送数据的发送起始时刻;处理器801,还用于在从所述发送起始时刻起第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
与图4所示的背向散射通信方法相对应,在另一种可选的实施方式中,收发器803,用于接收基站发送的唤醒wakeup信号;处理器801,用于根据所述wakeup信号确定检测起始时刻;收发器803,还用于依次确定在从所述检测起始时刻起每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为发送设备发送的散射信号;处理器801,还用于当得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
本申请还提供了一种计算机可读存储介质,其中,该计算机可读存储介质可存储有指令,当其在计算机上运行时,使得计算机执行包括本发明提供的方法各实施例中的部分或全部步骤。所述的可读存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述包括本发明提供的方法各实施例中的部分或全部步骤。
本申请还提供了一种芯片,该芯片包括处理器和/或程序指令,当所述芯片运行时,实现本申请图2所示的实施例中的方法或者实现图4所示的实施例中的方法。
本领域的技术人员可以清楚地了解到本申请中的技术可借助软件加必需的通用硬 件平台的方式来实现。基于这样的理解,本申请中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,例如上述装置或设备的描述可以参照对应的方法实施例。以上所述的本发明实施方式,并不构成对本发明保护范围的限定。

Claims (17)

  1. 一种背向散射通信方法,其特征在于,包括:
    发送设备接收基站发送的唤醒wakeup信号;
    所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻;
    所述发送设备在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
  2. 根据权利要求1所述的方法,其特征在于,所述第k个发送时间间隔包括至少一个符号,并且所述第k个发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送设备根据所述wakeup信号确定待发送数据的发送起始时刻,包括:
    所述发送设备根据所述wakeup信号确定监听起始时刻;
    所述发送设备从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的其他发送设备散射激励信号后生成的信号,i=1,2,……m,m为正整数;
    如果所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同,则将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
  4. 根据权利要求1、2或3所述的方法,其特征在于,所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于所述时间单元的边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。
  5. 一种背向散射通信方法,其特征在于,包括:
    接收设备接收基站发送的唤醒wakeup信号;
    所述接收设备根据所述wakeup信号确定检测起始时刻;
    所述接收设备依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号;
    所述接收设备在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
  6. 根据权利要求5所述的方法,其特征在于,根据每个所述能量值确定比特值,包括:
    通过每个所述能量值与基准值的对比,确定每个所述能量值对应的比特值,其中,所述基准值为一个所述检测时间间隔内所述接收设备接收到的wakeup信号的能量值。
  7. 根据权利要求5或6所述的方法,其特征在于,所述检测时间间隔包括至少一 个符号,并且所述检测时间间隔的起始时刻与结束时刻均位于符号的边界处。
  8. 根据权利要求5、6或7所述的方法,其特征在于,所述方法进一步包括:
    所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。
  9. 一种背向散射通信装置,其特征在于,包括:
    接收单元,用于接收基站发送的唤醒wakeup信号;
    处理单元,用于根据所述wakeup信号确定待发送数据的发送起始时刻;
    发送单元,用于在从所述发送起始时刻起的第k个发送时间间隔内,根据所述待发送数据中第k个比特值,对所述基站发送的激励信号进行散射处理,所述散射处理为散射所述基站发送的激励信号或者不散射所述激励信号,k=1,2,……n,n为所述待发送数据所包含的比特数量。
  10. 根据权利要求9所述的装置,其特征在于,所述第k个发送时间间隔包括至少一个符号,并且所述第k个发送时间间隔的起始时刻与结束时刻均位于符号的边界处。
  11. 根据权利要求9或10所述的装置,其特征在于,所述处理单元具体用于:
    根据所述wakeup信号确定监听起始时刻;
    从所述监听起始时刻起检测在第i个发送时间间隔内接收到的信号的能量,所述信号为所述激励信号或者为所述激励信号及散射信号的组合,所述散射信号为除所述发送设备之外的其他发送设备散射激励信号后生成的信号,i=1,2,……m,m为正整数;
    当所述发送设备在所述m个发送时间间隔内接收到的信号的能量均相同时,将第m个发送时间间隔的结束时刻确定为待发送数据的发送起始时刻。
  12. 根据权利要求9、10或11所述的装置,其特征在于,所述待发送数据的发送起始时刻与发送结束时刻均位于同一个时间单元内,并且所述待发送数据的发送结束时刻不位于所述时间单元的边界处,在所述时间单元中各个符号内所述基站发送的激励信号的能量相同。
  13. 一种背向散射通信装置,其特征在于,包括:
    接收单元,用于接收基站发送的唤醒wakeup信号;
    处理单元,用于根据所述wakeup信号确定检测起始时刻;
    所述接收单元,还用于依次确定在从所述检测起始时刻起的每个检测时间间隔内接收到的信号的能量值,并根据每个所述能量值确定比特值,所述信号为所述基站发送的激励信号或者为所述激励信号及散射信号的组合,所述散射信号为所述发送设备散射所述激励信号后生成的信号;
    所述处理单元,还用于在得到与预设前导码相同的连续p个比特值,并且在得到所述p个比特值之后的第一预设时间段内得到与预设地址信息相同的连续q个比特值时,确定目标数据,所述目标数据包括所述p个比特值,所述q个比特值,以及所述q个比特值之后的连续s个比特值,所述p、q与s均为正整数。
  14. 根据权利要求13所述的装置,其特征在于,所述接收单元具体用于:
    通过每个所述能量值与基准值的对比,确定每个所述能量值对应的比特值,其中,所述基准值为一个所述检测时间间隔内所述接收设备接收到的wakeup信号的能量值。
  15. 根据权利要求13或14所述的装置,其特征在于,所述检测时间间隔包括至少一个符号,并且所述检测时间间隔的起始时刻与结束时刻均位于符号的边界处。
  16. 根据权利要求13、14或15所述的装置,其特征在于,所述处理单元还用于:
    当所述接收设备在接收到所述wakeup信号之后的第二预设时间段内没有得到与预设前导码相同的连续p个比特值时,或者在得到所述p个比特值之后的第一预设时间段内没有得到与预设地址信息相同的连续q个比特值时,终止确定每个检测时间间隔内接收到的信号的能量值,以及终止根据所述能量值确定每个所述检测时间间隔内得到的比特值。
  17. 一种通信系统,其特征在于,包括权利要求9-12任一项所述的装置以及权利要求13-16任一项所述的装置。
PCT/CN2018/080133 2018-03-23 2018-03-23 一种背向散射通信方法及装置 WO2019178824A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/080133 WO2019178824A1 (zh) 2018-03-23 2018-03-23 一种背向散射通信方法及装置
CN201880091571.7A CN111886806B (zh) 2018-03-23 2018-03-23 一种背向散射通信方法、装置、通信系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080133 WO2019178824A1 (zh) 2018-03-23 2018-03-23 一种背向散射通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019178824A1 true WO2019178824A1 (zh) 2019-09-26

Family

ID=67988108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080133 WO2019178824A1 (zh) 2018-03-23 2018-03-23 一种背向散射通信方法及装置

Country Status (2)

Country Link
CN (1) CN111886806B (zh)
WO (1) WO2019178824A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210204213A1 (en) * 2019-12-30 2021-07-01 Research & Business Foundation Sungkyunkwan University Wake-up radio systems and methods based on backscatter wake-up radio
CN114600547A (zh) * 2019-10-02 2022-06-07 Idac控股公司 联合通信与感测辅助随机接入信道
CN114730358A (zh) * 2020-02-20 2022-07-08 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质
WO2022222627A1 (zh) * 2021-04-20 2022-10-27 Oppo广东移动通信有限公司 蜂窝通信和侧行通信的零功耗通信方法及装置
WO2023279335A1 (zh) * 2021-07-08 2023-01-12 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996166A (zh) * 2021-10-19 2023-04-21 华为技术有限公司 数能同传方法及装置
CN114024619B (zh) * 2021-10-26 2023-02-10 华中科技大学 一种基于脉冲间隔调制的背向散射通信方法、装置及系统
WO2023173438A1 (zh) * 2022-03-18 2023-09-21 Oppo广东移动通信有限公司 数据传输方法、第一设备和第二设备
CN117354099A (zh) * 2022-06-24 2024-01-05 维沃移动通信有限公司 信息发送方法、接收方法、装置、设备及可读存储介质
CN117395297A (zh) * 2022-07-04 2024-01-12 维沃移动通信有限公司 消息收发方法及设备
CN117082608A (zh) * 2023-10-16 2023-11-17 中国科学技术大学 支持寻呼的lte反向散射节能通信方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278169A (ja) * 2007-04-27 2008-11-13 Hitachi Ltd 無線通信システム
CN103843416A (zh) * 2011-08-09 2014-06-04 李在植 用于在无线传感器网络中无线广播上电序列的方法和设备
CN106471749A (zh) * 2014-09-30 2017-03-01 X开发有限责任公司 用于反向散射通信的装置
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031054B2 (en) * 2007-03-27 2011-10-04 Round Rock Research, Llc Multi-antenna element systems and related methods
CN101673195B (zh) * 2009-09-25 2012-06-13 中兴通讯股份有限公司 一种射频识别中的信息传输方法、系统和装置
CN105303137B (zh) * 2015-10-29 2018-06-26 北京交通大学 一种环境反向散射系统的读写器的门限值的确定方法
CN106506426B (zh) * 2016-10-11 2019-03-29 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN106685538B (zh) * 2016-11-01 2020-05-01 清华大学 一种环境反向散射系统及其信号传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278169A (ja) * 2007-04-27 2008-11-13 Hitachi Ltd 無線通信システム
CN103843416A (zh) * 2011-08-09 2014-06-04 李在植 用于在无线传感器网络中无线广播上电序列的方法和设备
CN106471749A (zh) * 2014-09-30 2017-03-01 X开发有限责任公司 用于反向散射通信的装置
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600547A (zh) * 2019-10-02 2022-06-07 Idac控股公司 联合通信与感测辅助随机接入信道
US20210204213A1 (en) * 2019-12-30 2021-07-01 Research & Business Foundation Sungkyunkwan University Wake-up radio systems and methods based on backscatter wake-up radio
US11641624B2 (en) * 2019-12-30 2023-05-02 Research & Business Foundation Sungkyunkwan University Wake-up radio systems and methods based on backscatter wake-up radio
CN114730358A (zh) * 2020-02-20 2022-07-08 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质
WO2022222627A1 (zh) * 2021-04-20 2022-10-27 Oppo广东移动通信有限公司 蜂窝通信和侧行通信的零功耗通信方法及装置
WO2023279335A1 (zh) * 2021-07-08 2023-01-12 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN111886806A (zh) 2020-11-03
CN111886806B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2019178824A1 (zh) 一种背向散射通信方法及装置
TWI785033B (zh) 提供能量高效無線電資源管理的技術
US11297676B2 (en) Beam recovery in connected discontinuous reception
US10667159B2 (en) Method, user equipment, base station, and system for enhancing reliability of wireless communication
US20190007941A1 (en) Device, Method and System to Implement Preemptive Transmission of a Wireless Time Sensitive Network Frame
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
EP3566511A1 (en) Methods and apparatuses for conveying paging group information through control channel transmissions
EP3036950A2 (en) Paging in coverage extension mode
WO2018082675A1 (zh) 一种无线通信的方法和装置
US11889337B2 (en) Data transmission method and data transmission apparatus
CN110557184B (zh) 一种基于中继设备的通信、终端与基站的通信方法和装置
JP7158505B2 (ja) モバイルデバイス、ネットワークノード及び方法
JP2018513657A5 (zh)
US20200383100A1 (en) Support for receive-limited user equipment in wireless environments
CN113692060B (zh) 多天线mimo场景下随机接入资源的配置与更新方法
CN107409422A (zh) 无线通信网络中的设备、节点和方法
CN106797280A (zh) 一种数据传输方法、系统及终端
US20220150869A1 (en) Assignment of a second ue identity to adjust paging timing for ue for wireless network
CN114616870B (zh) 非连续接收周期期间的唤醒信令
US10855410B2 (en) Adaptive wait in data communications
CN112399625A (zh) Csi的上报方法、触发方法、装置、终端及网络侧设备
US10602449B2 (en) Methods and stations for power saving in radio communication
CN112399439B (zh) 一种信号传输的方法、终端设备以及网络设备
WO2024032596A1 (zh) 一种数据传输的方法及通信装置
WO2024125390A1 (zh) 传输方法、装置、网络侧设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910286

Country of ref document: EP

Kind code of ref document: A1