WO2023173438A1 - 数据传输方法、第一设备和第二设备 - Google Patents

数据传输方法、第一设备和第二设备 Download PDF

Info

Publication number
WO2023173438A1
WO2023173438A1 PCT/CN2022/081817 CN2022081817W WO2023173438A1 WO 2023173438 A1 WO2023173438 A1 WO 2023173438A1 CN 2022081817 W CN2022081817 W CN 2022081817W WO 2023173438 A1 WO2023173438 A1 WO 2023173438A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
zero
occupancy time
channel occupancy
Prior art date
Application number
PCT/CN2022/081817
Other languages
English (en)
French (fr)
Inventor
贺传峰
张治�
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/081817 priority Critical patent/WO2023173438A1/zh
Publication of WO2023173438A1 publication Critical patent/WO2023173438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communications, and more specifically, to a data transmission method, a first device and a second device.
  • Zero-power devices are widely used in cellular communication systems due to their low cost, low complexity, and low power consumption.
  • the use of unlicensed frequency bands is also an important deployment scenario in cellular communication systems. How to achieve data transmission based on zero-power devices when using license-free spectrum is a problem that needs to be solved.
  • Embodiments of the present application provide a data transmission method, a first device, and a second device, which can realize data transmission based on zero-power consumption devices while using unlicensed spectrum.
  • An embodiment of the present application provides a data transmission method, applied to a first device, including:
  • the first device performs channel listening, and when the channel listening result is that the channel is idle, it occupies the channel;
  • the first device sends a first signal to the second device during the first channel occupancy time; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • An embodiment of the present application provides a data transmission method, applied to a second device, including:
  • the second device receives the first signal sent by the first device
  • the second device obtains a second signal according to the first signal during the first channel occupancy time; the second device is a zero-power consumption device.
  • the embodiment of the present application provides a first device, including:
  • the first processing unit is used for channel listening, and the channel is occupied when the channel listening result is that the channel is idle;
  • the first sending unit is configured to send a first signal to a second device during the first channel occupancy time; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • This embodiment of the present application provides a second device, including:
  • a third receiving unit configured to receive the first signal sent by the first device
  • the second processing unit is configured to obtain a second signal according to the first signal during the first channel occupancy time; the second device is a zero-power consumption device.
  • An embodiment of the present application provides a first device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory, so that the first device executes the method described in the above embodiments of the present application.
  • This embodiment of the present application provides a second device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory, so that the second device executes the method described in the above embodiments of the present application.
  • the embodiment of the present application provides a chip for implementing the method described in the above embodiment of the present application.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the method described in the above embodiments of the present application.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, the device performs the method described in the above embodiments of the present application.
  • Embodiments of the present application provide a computer program product, which includes computer program instructions.
  • the computer program instructions cause a computer to execute the method described in the above embodiments of the present application.
  • An embodiment of the present application provides a computer program, which when run on a computer causes the computer to execute the above method described in the embodiment of the present application.
  • the first device performs channel listening. If the channel listening result is that the channel is idle, the channel can be occupied.
  • the first device sends a first signal to the second device during the first channel occupation time.
  • the first signal The second device is used to generate the second signal.
  • the second device is a zero-power device.
  • the channel is occupied if the channel is idle.
  • the first device is a zero-power device that does not require battery power.
  • the power-consuming device can realize data transmission between the first device and the second device through backscatter communication, thereby realizing data transmission based on the zero-power device while using unlicensed spectrum.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a cellular-based zero-power consumption system according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a zero-power system using auxiliary power supply cellular direct connection according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of backscattering based on a passive electronic tag according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of another implementation of backscattering based on passive electronic tags according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of energy harvesting based on passive electronic tags according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a resistive load modulation circuit of a passive electronic tag according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of an application scenario for implementing zero-power communication between a base station and a zero-power device according to a data transmission method according to an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 12 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 13 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 14 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 15 is a communication schematic diagram of an example of a data transmission method according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of a zero-power communication system according to an example of a data transmission method according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of a zero-power communication system according to an example of a data transmission method according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of communication implemented based on multiple carrier sending devices according to an example of a data transmission method according to an embodiment of the present application.
  • Figure 19 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • Figure 20 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • Figure 21 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a first device according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a second device according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 25 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 26 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where, Licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a session initiation system (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1 illustrates a communication system 100.
  • the communication system 100 includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a Mobility Management Entity (MME), an Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbre
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • IoT scenarios in harsh communication environments may face extreme environments such as high temperature, extremely low temperature, high humidity, high pressure, high radiation, or high-speed movement, such as ultra-high-voltage power stations, high-speed train track monitoring, and alpine zones.
  • extreme environments such as high temperature, extremely low temperature, high humidity, high pressure, high radiation, or high-speed movement, such as ultra-high-voltage power stations, high-speed train track monitoring, and alpine zones.
  • existing IoT terminals will not be able to work due to the working environment limitations of conventional power supplies.
  • IoT maintenance such as battery replacement.
  • IoT terminals used for commodity management in the circulation process usually use electronic tags, which need to be embedded in commodity packaging in a very small form; for example, lightweight wearable devices can meet user needs while improving the user experience. , Wearable devices need to be designed to be smaller and lighter.
  • IoT scenarios that meet the requirements for extremely low-cost IoT communication, such as logistics or warehousing scenarios.
  • the IoT terminal can be attached to each item to communicate with the logistics network through the terminal. The communication between them completes the entire logistics process and precise management of the entire cycle.
  • the cost of the IoT terminal needs to be low enough to enhance the competitiveness relative to other alternative technologies.
  • the IoT communication scenario represented by the above scenario requires the support of IoT communication terminals with battery-free, ultra-low power consumption, extremely small size and extremely low cost.
  • Existing IoT communication technology is difficult to meet these needs, and zero-power communication technology using energy harvesting and backscattering is expected to become a new generation of communication technology due to its excellent performance such as extremely low power consumption, extremely small size, and extremely low cost.
  • IoT communication technology to solve the communication needs of IoT-related application scenarios.
  • FIG. 2 exemplarily shows a cellular-based zero-power communication system 200.
  • the zero-power communication system 200 includes: a network device and cellular users located in different cells. For example, in cell 1, there are two cellular users (such as terminal device 220-terminal device 230) evenly distributed around the network device 210 (such as a base station). , and there are also 2 cellular users (such as terminal equipment 240-terminal equipment 250) evenly distributed around the network device 210 (such as a base station) in cell 2.
  • the zero-power communication system 200 may also include multiple network devices, and the coverage of each network device may include other numbers of multiple terminal devices, which is not limited in this embodiment of the present application.
  • the terminal equipment 220, the terminal equipment 230, the terminal equipment 240, and the terminal equipment 250 can be zero-power consumption equipment.
  • the zero-power consumption equipment itself does not need to carry a battery.
  • the terminal equipment 220 and the terminal equipment 230 can directly adopt radio frequency identification (Radio Frequency)-based Identification (RFID) technology tags, RFID tags are also called “radio frequency tags” or “electronic tags”. Specifically, they use passive electronic tags (or called passive electronic tags). Because they support backscattering, they can also be called Backscatter label.
  • RFID radio frequency identification
  • RFID tags are also called “radio frequency tags” or "electronic tags”. Specifically, they use passive electronic tags (or called passive electronic tags). Because they support backscattering, they can also be called Backscatter label.
  • the terminal equipment 240 and the terminal equipment 250 may be zero-power consumption equipment including passive electronic tags.
  • the passive electronic tags may be set inside the terminal equipment 240 and the terminal equipment 250, or the passive electronic tags may be affixed to the terminal equipment. 240 and the exterior of the terminal device 250 and so on.
  • the terminal device 240 and the terminal device 250 can be a mobile phone, and at least one of the terminal device 240 and the terminal device 250 can also be a signal receiver. They are not limited to the types of these terminal devices, as long as they can realize backscattering. within the protection scope of this application.
  • the zero-power communication system 200 adopts a cellular direct connection communication method, that is, the network device and the zero-power device communicate directly.
  • the zero-power device needs to receive wireless power signals to collect energy to obtain the energy required for work.
  • the network device sends wireless power signals and trigger signals to the zero-power device.
  • the wireless power supply signal is used to provide energy to zero-power consumption devices and can be a carrier signal sent by network equipment; the trigger signal can use the same carrier signal as the wireless power supply signal, and can be carried in the carrier signal and sent to the zero-power device.
  • Control information or data information of power-consuming devices, etc. the zero-power device modulates the carrier signal to obtain a backscattered signal, and transmits the reflected scattering signal to the network device through backscattering.
  • FIG. 3 exemplarily shows another cellular-based zero-power communication system 300.
  • the zero-power communication system 300 includes: a network device, cellular users located in different cells, and third-party devices used for power supply. For example, in cell 1, there is a cellular user (such as a base station) distributed around the network device 310 (such as a base station). terminal device 320), and there are 2 cellular users (such as terminal device 330-terminal device 340) evenly distributed around the network device 210 (such as base station) in cell 2.
  • the zero-power communication system 300 may also include multiple network devices, and the coverage of each network device may include other numbers of multiple terminal devices, one or more third-party devices, such as terminals.
  • the energy supply node 350 that supplies energy to the device 320 and the terminal device 330, and the energy supply node 360 that supplies energy to the terminal device 340 are not limited in this embodiment of the present application.
  • Terminal equipment 320, terminal equipment 330, and terminal equipment 340 can be zero-power consumption equipment.
  • the zero-power consumption equipment itself does not need to carry a battery.
  • terminal equipment 320 can directly use RFID tags.
  • RFID tags are also called “radio frequency tags” or “radio frequency tags”.
  • "Electronic tag” specifically, uses a passive electronic tag (or called a passive electronic tag). Since it supports backscattering, it can also be called a backscattering tag.
  • the terminal device 330 and the terminal device 340 may be zero-power consumption devices including passive electronic tags.
  • the passive electronic tags may be set inside the terminal device 330 and the terminal device 340, or the passive electronic tag may be affixed to the terminal device.
  • the terminal device 330 can be a mobile phone, and the terminal device 340 can be a signal receiver. They are not limited to the types of these terminal devices. As long as the terminal devices can achieve backscattering, they are within the protection scope of this application.
  • the third-party equipment When the third-party equipment is an energy supply node, it can be a base station, a mobile phone, a relay node (Relay Node), a customer premise equipment (CPE), etc. in the network. If necessary, dedicated energy supply nodes can also be deployed.
  • the wireless communication signals (such as synchronization signals, broadcast signals, data channels, etc.) sent by these energy supply nodes can be used to provide wireless energy supply for zero-power devices, or, based on reasonable scheduling methods, these energy supply nodes can also send dedicated wireless power supply signal.
  • the zero-power communication system 300 adopts a cellular direct connection communication method with auxiliary power supply, that is, the zero-power device can obtain wireless power not only from the network device with which it communicates, but also from third-party devices. Energy Supply. Before communication, zero-power devices need to receive wireless power signals sent by third-party devices, obtain energy through wireless power supply, and perform energy harvesting to obtain the energy required for work. Considering that the intensity of the energy supply signal reaching the terminal equipment needs to meet a certain threshold, such as -20dBm or -30dBm, this results in the coverage range of the energy supply signal transmitted by the network equipment being limited when the energy supply signal transmission power is limited. Small, generally in the range of tens to 100 meters.
  • Wireless power supply needs to be achieved through more power supply nodes to significantly increase the coverage of wireless power supply, thereby improving the cell coverage of zero-power communication as much as possible.
  • other nodes in the network other than network equipment such as base stations
  • the energy supply nodes that can be used include mobile phones, Relay nodes, CPE, etc. in the network. If necessary, dedicated energy supply nodes can also be deployed. These energy supply nodes send wireless energy supply signals to zero-power devices, and network devices send trigger signals to zero-power devices.
  • the wireless power supply signal is used to provide energy to zero-power consumption devices and can be a carrier signal;
  • the trigger signal can use a different carrier signal from the wireless power supply signal, and can be carried in the carrier signal and sent to the zero-power consumption device.
  • Control information or data information, etc. the zero-power device modulates the carrier signal to obtain a backscattered signal, and transmits the reflected scattering signal to the network device through backscattering.
  • the zero-power consumption device is the above-mentioned passive electronic tag, or the zero-power consumption device may include the above-mentioned passive electronic tag.
  • the passive electronic tag includes an energy collection module (for energy collection), a backscatter communication module (for backscatter communication), a low-power computing module (for low-power computing) and a sensor module (for data Collection and reporting), in which the low-power computing module and the sensor module are optional modules.
  • the network device including but not limited to setting the reader/writer in the network device, or the network device supports the read and write processing performed by the reader/writer) sends an energy supply signal (such as radio wave) to the zero-power device, which can be zero-power. Consuming equipment provides the energy required for work.
  • the zero-power device can collect the energy carried by the radio waves in the space through the energy collection module, so as to drive the backscatter communication module, low-power computing module and sensor module to work through the energy collection module, and finally Implement backscatter communication.
  • the zero-power device obtains the energy required for work and can also receive trigger signals sent by the network device (such as control commands sent through the set reader/writer).
  • the zero-power device responds to the trigger signal and interacts with the device in a backscattering manner.
  • the network device establishes backscatter communication. For example, it can receive downlink data sent by the network device, and can also send uplink data requested by the network device.
  • the uplink data sent can come from the data stored in the zero-power device itself (such as Identity mark or pre-written information, such as product production date, brand, manufacturer, etc.).
  • the zero-power consumption device is the above-mentioned passive electronic tag, or the zero-power consumption device may include the above-mentioned passive electronic tag.
  • the passive electronic tag receives the carrier signal, collects energy through the energy collection module, supplies energy to the low-power computing module through the energy collection module, modulates the carrier signal and performs backscatter communication.
  • the zero-power consumption device is the above-mentioned passive electronic tag, or the zero-power consumption device may include the above-mentioned passive electronic tag.
  • the passive electronic tag uses an energy collection module (denoted as RF module) to collect space electromagnetic wave energy through electromagnetic induction, and then drives the load circuit (a load circuit composed of capacitors and resistors) to pass the energy.
  • the acquisition module drives the backscatter communication module, low-power computing module and sensor module to work, and finally realizes backscatter communication.
  • load modulation is an adjustment method for the passive electronic tag to transmit data to the reader.
  • the load modulation mainly adjusts the electrical parameters of the passive electronic tag oscillation circuit according to the rhythm of the data flow. The size and phase of the impedance of the passive electronic tag are changed accordingly, thereby completing the modulation process.
  • the load modulation mainly includes two adjustment methods: resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, called the load modulation resistor.
  • the resistor is turned on and off according to the clock of the data flow.
  • the on and off of the switch S is controlled by binary data encoding.
  • capacitive load modulation compared to resistive load modulation, the load is connected in parallel with a capacitor, replacing the load modulation resistor controlled by binary data encoding in Figure 7.
  • Wireless RFID systems can use one of the following encoding methods: Reverse Non-Return to Zero (NRZ) encoding, Manchester encoding, Unipolar RZ encoding, Differential Bi-Phase (DBP) encoding, Meter Miller coding spread dynamic coding.
  • NRZ Reverse Non-Return to Zero
  • Manchester encoding Manchester encoding
  • Unipolar RZ encoding Unipolar RZ encoding
  • DBP Differential Bi-Phase
  • Meter Miller coding Spread dynamic coding.
  • zero-power devices can be divided into the following types based on their energy sources and usage methods:
  • Zero-power devices do not require built-in batteries.
  • a zero-power device When a zero-power device is close to a network device (such as a reader/writer of an RFID system), the zero-power device is within the near field range formed by the antenna radiation of the network device. Therefore, the zero-power device antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power devices use backscatter for data transmission.
  • the passive zero-power device does not require a built-in battery to drive whether it is a forward link or a reverse link. It is a truly zero-power device. Passive zero-power devices do not require batteries, and the RF circuit and baseband circuit are very simple, such as low noise amplifier (LNA), power amplifier (Power Amplifier, PA), crystal oscillator, and digital-to-analog converter (Analog to DigitalConverter, ADC), etc., so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low noise amplifier
  • PA Power Amplifier
  • PA crystal oscillator
  • ADC digital-to-analog converter
  • Semi-passive zero-power devices do not install conventional batteries themselves, but can use energy harvesting modules to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power devices use backscatter for data transmission.
  • the semi-passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link. Although the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy collection module. energy, and is therefore a truly zero-power device.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power devices used in certain scenarios can also be active zero-power devices, and such zero-power devices can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power devices. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. But for backscatter links, zero-power devices use backscatter for data transmission. Therefore, this type of zero-power device is mainly reflected in the fact that the signal transmission in the reverse link does not require the device's own power, but uses backscattering.
  • Active zero-power devices are powered by built-in batteries to increase the communication distance of zero-power devices and improve communication reliability. It is used in some scenarios that have relatively high requirements on communication distance, read latency, etc.
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communications. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government. In order to allow various communication systems that use unlicensed spectrum for wireless communications to coexist amicably on this spectrum, some countries or regions have stipulated regulatory requirements that must be met when using unlicensed spectrum. For example, in Europe, communication equipment follows the "Listen Before Talk" (LBT) principle, that is, before the communication equipment transmits signals on the channel of the unlicensed spectrum, it needs to listen to the channel first.
  • LBT Listen Before Talk
  • the communication device can send signals; if the communication device is on a license-free spectrum channel and the channel listening result is "channel busy", the communication device cannot send signals. And in order to ensure fairness, in one transmission, the duration of signal transmission by communication equipment using the license-free spectrum channel cannot exceed the Maximum Channel Occupation Time (MCOT).
  • MCOT Maximum Channel Occupation Time
  • the above-mentioned unlicensed spectrum technologies can be used in cellular communication systems.
  • the NR-U technology of 3GPP Rel-16 uses unlicensed frequency bands below 7GHz.
  • higher frequency bands such as Rel-U
  • 52.6GHz-71GHz discussed in the 17 standards uses this license-free spectrum technology.
  • Zero-power devices have excellent properties such as low cost, low complexity, and low power consumption. Combining this license-free spectrum technology with zero-power devices to achieve data transmission based on zero-power devices can solve these problems. It is necessary to realize data transmission based on zero-power devices using unlicensed spectrum in the Internet of Things based on cellular communication systems (such as passive Internet of Things).
  • FIG. 8 is a schematic diagram of another application scenario according to an embodiment of the present application, illustrating the data transmission method 800 of the embodiment of the present application.
  • the base station 811 communicates with the mobile phone 821, the mobile phone 831 and the mobile phone 841.
  • the mobile phones 821, 831 and 841 are mobile phones including passive electronic tags.
  • the The data transfer process includes some or all of the following steps:
  • the base station 811 performs channel sensing.
  • the channel sensing result is that the channel is idle and the channel is occupied.
  • the base station 811 sends a carrier signal to the mobile phone 841 during the channel occupancy time.
  • the carrier signal is used by the mobile phone 841 to backscatter according to the carrier signal to generate a backscatter signal.
  • the carrier signal sent by the base station 811 includes: a trigger signal used to trigger backscatter communication (the trigger signal carries the terminal identification), and an energy supply signal, so that the mobile phone 841 receives the energy supply signal to obtain the necessary energy for operation.
  • the mobile phone 841 receives the trigger signal and obtains the terminal identifier carried in the trigger signal.
  • the mobile phone 841 recognizes the terminal identifier as the terminal device's own identifier, triggering backscatter communication.
  • the mobile phone 841 receives the carrier signal sent by the base station 811.
  • the mobile phone 841 performs backscattering according to the carrier signal during the channel occupancy time to generate a backscatter signal, and sends the backscatter signal to the base station 811.
  • steps S810-S840 There is no necessary sequence relationship between steps S810-S840. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • the above-mentioned data transmission based on backscattering between the base station and the mobile phone is only an example.
  • the embodiments of the present application are not limited to this example. It can be data transmission between multiple devices in other scenarios of the Internet of Things, such as in the warehousing scenario of the Internet of Things. Data transmission between an intelligent control center and multiple terminal devices, etc.
  • Figure 9 is a schematic flow chart of a data transmission method 900 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device performs channel listening and occupies the channel when the channel listening result is that the channel is idle.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the first device may be a carrier sending device.
  • the carrier sending device Before transmitting signals on a channel in a license-free spectrum, the carrier sending device needs to perform channel sensing first. If the carrier sending device listens on a channel in a license-free spectrum, If the result is "channel free", the carrier sending device can send the following first signal; if the channel listening result of the carrier sending device on the license-free spectrum channel is "channel busy", the carrier sending device cannot send the following first signal of sending.
  • the first device sends the first signal to the second device during the first channel occupancy time; the first signal is used by the second device to generate the second signal, and the second device is a zero-power consumption device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • steps S910-S920 There is no necessary sequence relationship between steps S910-S920. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • the first device is a zero-power device that does not require battery power, and can communicate between the first device and the second device through backscatter communication. Data transmission is achieved between devices, thus enabling data transmission based on zero-power devices using unlicensed spectrum.
  • Figure 10 is a schematic flow chart of a data transmission method 1000 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device performs channel sensing, and occupies the channel when the channel sensing result is that the channel is idle.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the first device may be a carrier sending device.
  • the carrier sending device Before transmitting signals on a channel in a license-free spectrum, the carrier sending device needs to perform channel sensing first. If the carrier sending device listens on a channel in a license-free spectrum, If the result is "channel free", the carrier sending device can send the following first signal; if the channel listening result of the carrier sending device on the license-free spectrum channel is "channel busy", the carrier sending device cannot send the following first signal of sending.
  • the first device sends a first signal to the second device during the first channel occupancy time; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the first channel occupancy time is a channel occupancy time obtained based on channel sensing of the first device or periodic channel sensing.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • the first device receives the second signal during the first channel occupation time.
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device.
  • the carrier sending device and the zero power consumption device are on the same channel (such as the first channel), and the zero power consumption device does not need to be a channel Listening only requires the carrier sending device to perform channel listening on the channel of the license-free spectrum.
  • the channel listening result is "channel free”
  • the carrier sending device occupies the first channel and sends the first signal during the first channel occupation time. to the second device, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, it can obtain the second signal according to the first signal during the first channel occupancy time.
  • the second signal is a backscattered signal modulated on the basis of the carrier signal, and the backscattered signal is transmitted on the same channel as the carrier signal, that is: Both the backscattered signal and the carrier signal are transmitted on the first channel, so that the carrier sending device receives the backscattered signal during the first channel occupancy time.
  • steps S1010-S1030 There is no necessary sequential relationship between steps S1010-S1030. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • Figure 11 is a schematic flow chart of a data transmission method 1100 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device performs channel listening. When the channel listening result is that the channel is idle, the first device occupies the channel.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the first device may be a carrier sending device.
  • the carrier sending device Before transmitting signals on a channel in a license-free spectrum, the carrier sending device needs to perform channel sensing first. If the carrier sending device listens on a channel in a license-free spectrum, If the result is "channel free", the carrier sending device can send the following first signal; if the channel listening result of the carrier sending device on the license-free spectrum channel is "channel busy", the carrier sending device cannot send the following first signal of sending.
  • the first device sends a first signal to the second device during the first channel occupancy time; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • the first channel occupancy time is a channel occupancy time obtained based on channel sensing of the first device or periodic channel sensing.
  • the second device performs channel sensing, and occupies the channel when the channel sensing result is that the channel is idle.
  • the first device receives the second signal during the second channel occupancy time.
  • the second channel occupancy time is the channel occupancy time obtained by the second device performing channel listening.
  • the second channel occupancy time is a channel occupancy time obtained based on channel sensing of the second device or periodic channel sensing.
  • the first device may be a carrier sending device
  • the second device may be a zero-power consumption device.
  • the carrier sending device performs channel sensing on a channel of the unlicensed spectrum. When the channel sensing result is "channel idle", the carrier The sending device occupies the first channel, and sends the first signal to the second device during the first channel occupancy time, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, the first channel occupancy time is based on the first signal.
  • signal gets a second signal.
  • the first signal is a carrier signal
  • the second signal is a backscattered signal obtained after modulation on the basis of the carrier signal.
  • the zero-power device In the process of generating the backscattered signal by the zero-power device, the backscattered signal To a second channel different from the first channel, the zero-power device also needs channel listening. When the channel listening result is "channel idle", the zero-power device occupies the second channel, that is, the backscatter The signal is transmitted on a different channel from the carrier signal, the carrier signal is transmitted on the first channel, and the backscattered signal is transmitted on the second channel, so that the carrier sending device receives the backscattered signal during the second channel occupancy time .
  • steps S1110-S1140 There is no necessary sequence relationship between steps S1110-S1140. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • the method further includes: the first device sending first information related to the first channel occupancy time to the second device.
  • the first information includes: at least one of a type of channel sensing, a channel priority, a total length of the channel occupancy time, and a remaining length of the channel occupancy time.
  • the first information may be channel occupancy time (COT) information
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device
  • the carrier sending device sends the COT
  • the zero-power device needs to ensure that the second signal (such as the backscatter signal) sent by backscattering according to the first signal (such as the carrier signal) needs to be completed within the COT, then according to the COT Information to facilitate zero-power devices to send the backscattered signal through backscattering, such as selecting the transmission time interval, determining the data block size, modulation method, data rate, etc.
  • the second signal includes request information reported by the second device.
  • the request information includes: at least one of: scheduling request, transmission duration, data amount, data cache status, and power control information of the first signal.
  • the first device can be a carrier sending device
  • the second device can be a zero-power consumption device.
  • the carrier sending device listens on the channel periodically and occupies the channel regularly to receive
  • the zero-power consumption device sends the request information to the carrier sending device.
  • the first signal carries control information
  • the control information includes at least one of: terminal identification, terminal group identification information, and first device identification.
  • the first device may be a carrier sending device, and there may be one or more carrier sending devices. Considering that there are multiple carrier sending devices, the zero-power device needs to be able to identify multiple first signals, such as the target carrier signal that needs to be responded to among the multiple carrier signals. That is, the zero-power device needs to be able to identify multiple first signals according to the control information. Compare with the device's own identification to identify the target carrier signal from multiple carrier signals sent by multiple carrier sending devices, and then obtain the backscattered signal based on the target carrier signal.
  • Figure 12 is a schematic flow chart of a data transmission method 1200 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device receives the first signal sent by the first device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device
  • the first signal may be a carrier signal
  • the carrier sending device sends the carrier signal to the zero power consumption device, so that the zero power consumption device After receiving the carrier signal, the consuming device can obtain the backscattered signal based on the carrier signal.
  • the second device obtains the second signal according to the first signal during the first channel occupancy time; the second device is a zero-power consumption device.
  • the first device may be a carrier sending device
  • the second device may be a zero-power consumption device.
  • the carrier sending device performs channel sensing on a channel of the unlicensed spectrum. When the channel sensing result is "channel idle", the carrier The sending device occupies the first channel, and sends the first signal to the second device during the first channel occupancy time, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, the first channel occupancy time is based on the first signal.
  • signal gets a second signal.
  • the first signal is a carrier signal
  • the second signal is a backscattered signal modulated on the basis of the carrier signal.
  • the first device is a zero-power device that does not require battery power, and can communicate between the first device and the second device through backscatter communication. Data transmission is achieved between devices, thus enabling data transmission based on zero-power devices using unlicensed spectrum.
  • Figure 13 is a schematic flow chart of a data transmission method 1300 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device receives the first signal sent by the first device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device
  • the first signal may be a carrier signal
  • the carrier sending device sends the carrier signal to the zero power consumption device, so that the zero power consumption device After receiving the carrier signal, the consuming device can obtain the backscattered signal based on the carrier signal.
  • the second device obtains the second signal according to the first signal during the first channel occupancy time; the second device is a zero-power consumption device.
  • the first device may be a carrier sending device
  • the second device may be a zero-power consumption device.
  • the carrier sending device performs channel sensing on a channel of the unlicensed spectrum. When the channel sensing result is "channel idle", the carrier The sending device occupies the first channel, and sends the first signal to the second device during the first channel occupancy time, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, the first channel occupancy time is based on the first signal.
  • signal gets a second signal.
  • the first signal is a carrier signal
  • the second signal is a backscattered signal modulated on the basis of the carrier signal.
  • the first channel occupancy time is a channel occupancy time obtained based on channel sensing of the first device or periodic channel sensing.
  • the second device sends the second signal to the first device during the first channel occupation time.
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device.
  • the carrier sending device and the zero power consumption device are on the same channel (such as the first channel), and the zero power consumption device does not need to be a channel Listening only requires the carrier sending device to perform channel listening on the channel of the license-free spectrum.
  • the channel listening result is "channel free”
  • the carrier sending device occupies the first channel and sends the first signal during the first channel occupation time. to the second device, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, it obtains the second signal according to the first signal during the first channel occupancy time, so that the zero-power consumption device occupies the first channel during the first channel occupancy time.
  • the second signal is a backscattered signal modulated on the basis of the carrier signal, and the backscattered signal is transmitted on the same channel as the carrier signal, that is: Both the backscattered signal and the carrier signal are transmitted on the first channel, and the zero-power consumption device sends the backscattered signal to the carrier transmitting device during the first channel occupancy time.
  • steps S1310-S1330 There is no necessary sequence relationship between steps S1310-S1330. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • Figure 14 is a schematic flow chart of a data transmission method 1400 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device receives the first signal sent by the first device.
  • the first device may be a carrier sending device, such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • a carrier sending device such as at least one of a network device that sends a carrier signal (such as a base station), a terminal device that sends a carrier signal (such as a mobile phone), or a device specifically used to generate a carrier signal.
  • the second device can be a zero-power consumption device.
  • the zero-power consumption device includes a passive electronic tag, or the passive electronic tag can be used as a zero-power consumption device.
  • Source electronic tags and zero-power devices can not only realize data transmission based on backscatter communication with carrier transmitting devices on license-free spectrum channels, but also meet zero-power data transmission requirements.
  • the first device may be a carrier sending device
  • the second device may be a zero power consumption device
  • the first signal may be a carrier signal
  • the carrier sending device sends the carrier signal to the zero power consumption device, so that the zero power consumption device After receiving the carrier signal, the consuming device can obtain the backscattered signal based on the carrier signal.
  • the second device obtains the second signal according to the first signal during the first channel occupancy time; the second device is a zero-power consumption device.
  • the first device may be a carrier sending device
  • the second device may be a zero-power consumption device.
  • the carrier sending device performs channel sensing on a channel of the unlicensed spectrum. When the channel sensing result is "channel idle", the carrier The sending device occupies the first channel, and sends the first signal to the second device during the first channel occupancy time, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, the first channel occupancy time is based on the first signal.
  • signal gets a second signal.
  • the first signal is a carrier signal
  • the second signal is a backscattered signal modulated on the basis of the carrier signal.
  • the second device performs channel sensing, and occupies the channel when the channel sensing result is that the channel is idle.
  • the second device sends the second signal to the first device during the second channel occupancy time; the second channel occupancy time is the channel occupancy time obtained by the second device performing channel listening.
  • the second channel occupancy time is a channel occupancy time obtained based on channel sensing of the second device or periodic channel sensing.
  • the first device may be a carrier sending device
  • the second device may be a zero-power consumption device.
  • the carrier sending device performs channel sensing on a channel of the unlicensed spectrum. When the channel sensing result is "channel idle", the carrier The sending device occupies the first channel, and sends the first signal to the second device during the first channel occupancy time, so that after the zero-power consumption device receives the first signal sent by the carrier sending device, the first channel occupancy time is based on the first signal.
  • signal gets a second signal.
  • the first signal is a carrier signal
  • the second signal is a backscattered signal obtained after modulation on the basis of the carrier signal.
  • the zero-power device In the process of generating the backscattered signal by the zero-power device, the backscattered signal To a second channel different from the first channel, the zero-power device also needs channel listening. When the channel listening result is "channel idle", the zero-power device occupies the second channel, that is, the backscatter The signal is transmitted on a channel different from the carrier signal. The carrier signal is transmitted on the first channel, and the backscattered signal is transmitted on the second channel. The zero-power device sends the backscattered signal to the carrier during the second channel occupancy time. sending device.
  • steps S1410-S1440 There is no necessary sequence relationship between steps S1410-S1440. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • the method further includes: the second device receiving first information related to the first channel occupancy time sent by the first device; the first information includes: channel listening type, channel priority, channel occupancy At least one of the total length of time and the remaining length of channel occupied time.
  • the first information can be COT information
  • the first device can be a carrier sending device
  • the second device can be a zero power consumption device
  • the carrier sending device sends the COT information to the zero power consumption device.
  • the zero-power device needs to ensure that the second signal (such as the backscatter signal) sent by backscattering according to the first signal (such as the carrier signal) needs to be completed within the COT, then the zero-power device receives the COT
  • the zero-power device After receiving the information, based on the COT information, it is convenient for the zero-power device to send the backscatter signal through backscattering, such as selecting the transmission time interval, determining the data block size, modulation method, data rate, etc.
  • the method further includes: determining second information according to the first information;
  • the second information includes: at least one of selecting a transmission time interval, determining a data block size, a modulation method, and a data rate.
  • the first device can be a carrier sending device
  • the second device can be a zero power consumption device
  • the first information can be a COT sent by the carrier sending device to the zero power consumption device.
  • the second signal includes request information reported by the second device.
  • the request information includes: at least one of: scheduling request, transmission duration, data amount, data cache status, and power control information of the first signal.
  • the first device can be a carrier sending device
  • the second device can be a zero-power consumption device.
  • the carrier sending device listens on the channel periodically and occupies the channel regularly to receive
  • the zero-power consumption device sends the request information to the carrier sending device.
  • the second device obtains the second signal according to the first signal during the first channel occupancy time, including: the second device obtains control information from the received first signal, and the second device identifies the control information If it matches the second device itself, the first signal is determined to be the target signal. The second device obtains the second signal according to the target signal.
  • control information includes: at least one of terminal identification, terminal group identification information, and first device identification.
  • the first device may be a carrier sending device, and there may be one or more carrier sending devices.
  • the zero-power device needs to be able to identify multiple first signals, such as the target carrier signal that needs to be responded to among the multiple carrier signals. That is, the zero-power device needs to be able to identify multiple first signals according to the control information. Compare with the device's own identification to identify the target carrier signal from multiple carrier signals sent by multiple carrier sending devices, and then obtain the backscattered signal based on the target carrier signal.
  • Figure 15 is a communication schematic diagram of an example of a data transmission method according to an embodiment of the present application. As shown in Figure 15, it includes: the carrier sending device uses the LBT mechanism to perform channel listening. The LBT is successful, that is, the channel listening result is that the channel is idle. In this case, the channel is occupied.
  • the carrier sending device sends a carrier signal to the zero-power device during the channel occupancy time.
  • the zero-power device adjusts the carrier signal to obtain a backscattered signal.
  • the zero-power device sends a reverse signal to the carrier sending device during the channel occupancy time. Scatter the signal so that the carrier sending device receives the backscattered signal during the channel occupancy time.
  • the above-mentioned carrier sending device can be a device that communicates with a zero-power consumption device.
  • the carrier sending device can be: a base station, a mobile phone, a device specifically used to generate carrier signals in the network, etc.
  • the carrier sending device can also be: an access point (AccessPoint, AP), a station (Station, STA), or a device specifically used to generate carrier signals in the WLAN network.
  • AP refers to the wireless access point.
  • a wireless router generally used in homes or offices is an AP; each terminal device connected to the WLAN network (such as laptops, PDAs, and other user devices that can connect to the Internet) can be called a STA.
  • a zero-power device can store a certain amount of information.
  • the zero-power device receives a carrier signal, is triggered, and sends the stored information out through backscattering (i.e., modulates the carrier signal and modulates the The backscattered signal is obtained and sent to the carrier sending device), thereby realizing communication based on zero power consumption devices and realizing data transmission between the carrier sending device and the zero power consumption device.
  • the above-mentioned LBT mechanism refers to the need to comply with the LBT mechanism when using unlicensed spectrum, that is: listen first and talk later.
  • the carrier sending device needs to perform channel listening before sending the carrier signal on the channel of unlicensed spectrum. Only When the channel sensing result is that the channel is idle, the carrier sending device can send the carrier signal.
  • zero-power devices do not perform LBT, and the carrier sending device performs LBT. That is, zero-power devices do not perform channel sensing, and the carrier sending device performs channel sensing. Only if the zero-power device backscatters to another channel different from the channel where the carrier signal is located, the zero-power device is required to perform LBT. At this time, the zero-power device also needs to perform channel sensing. Among them, zero-power devices do not need to perform LBT before backscattering.
  • the carrier signal and the backscattered signal are on the same channel, and the backscattered signal is modulated based on the carrier signal.
  • the backscattered signal can be regarded as part of the carrier signal, and the carrier signal and the backscattered signal are The scattered signals can be considered as the same signal.
  • the carrier sending device performs LBT. If the LBT is successful, the carrier sending device seizes the first channel and sends the carrier signal to the zero-power device during the first channel occupancy time. The carrier sending device receives the reverse signal during the first channel occupancy time. Scattered signal. Zero power devices do not perform LBT.
  • the carrier signal and the backscattered signal are on different channels, and the carrier signal and the backscattered signal can be regarded as different signals.
  • the carrier sending device performs LBT. If the LBT is successful, the carrier sending device seizes the first channel and sends the carrier signal to the zero-power device during the first channel occupancy time. After the carrier sending device uses the first channel for a period of time, The first channel can be shared with the zero-power consumption device for use, thereby realizing channel sharing between the carrier sending device and the zero-power consumption device. Although they are different devices and different signals, after the carrier sending device seizes the first channel, it can share the occupied time of the first channel with the zero-power device. Then the transmission of the backscattered signal by the zero-power device is actually The channel occupancy time obtained by the carrier sending device through LBT is shared, and the zero-power device does not perform LBT.
  • the carrier sending device is a base station
  • the zero-power consumption device is a zero-power consumption device including a passive electronic tag.
  • the base station initiates channel sharing, in addition to using the resources within the channel occupied time It is used for downlink transmission, and the resources within the occupied time of the channel can also be shared with the zero-power device for uplink transmission.
  • the channel access methods that the zero-power device can use include at least one of Type2A channel access, Type2B channel access, or Type2C channel access. one.
  • the zero-power device does not need LBT and directly performs backscattering.
  • the zero-power device can directly transmit.
  • the NR-U system defines: under the shared channel, if LBT is not performed, there is a transmission duration limit of 584 seconds, then the gap size between the starting position of the transmission and the end position of the previous transmission is: Less than or equal to 16 ⁇ s, the length of the transmission does not exceed 584 ⁇ s.
  • the embodiment of the present application is not limited by the Type2C channel access method. Since backscattering relies on the transmission of the carrier signal, if the carrier signal is not interrupted, the reverse scattering The transmission duration of scattering is not limited by the Type2C channel access method. As long as the channel occupation time has not expired, transmission can continue.
  • Figure 16 is a schematic diagram of a zero-power communication system according to an example of a data transmission method according to an embodiment of the present application.
  • the carrier sending device is a base station
  • the zero-power device is a zero-power device including a passive electronic tag, as shown in Figure 16 , including the following three options:
  • (1) Cellular direct connection In Case 1, the base station communicates directly with the zero-power device. In addition to being used to trigger backscatter (also called a trigger signal), the carrier signal can also be used to supply energy to provide zero-power devices with the energy required to operate. At this time, the carrier signal and the energy supply signal are the same signal.
  • the base station sends a carrier signal to the zero-power device.
  • the carrier signal can carry control information sent to the zero-power device.
  • the zero-power device transmits the information to the base station through backscattering.
  • Zero-power wake-up In Case 2, the zero-power device completes some low-power operations as part of the traditional terminal, thereby assisting in achieving energy saving of the traditional terminal. For example, the zero-power device can be used as a wake-up call for the traditional terminal. Receiver (Wake-Up Radio, WUR).
  • FIG 17 is a schematic diagram of a zero-power communication system according to an example of a data transmission method according to an embodiment of the present application.
  • zero-power communication based on sidelink communication can realize zero-power devices and other types of Side-line communication between smart devices (such as smartphones, CPE or other IoT terminal devices).
  • Side-link communication can carry out direct communication without relying on the cellular network, including the following communication methods:
  • Zero-power consumption devices and smart devices use smart devices as carrier sending devices directly communicate with each other in side-link.
  • the carrier signal can also be used to supply energy to provide zero-power devices with the energy required to operate.
  • the carrier signal and the energy supply signal are the same signal.
  • the smart device sends a carrier signal to the zero-power device, and the zero-power device transmits information to the smart device through backscattering to achieve side-link communication.
  • the smart device can be a mobile phone in Case 1-1 or a control node (such as CPE) in Case 1-2.
  • FIG. 18 is a schematic diagram of communication based on multiple carrier sending devices according to an example of a data transmission method according to an embodiment of the present application.
  • the zero-power device includes: 3 carrier sending devices (such as carrier sending device 1 - carrier sending device 3) With 1 zero-power consumption device, 3 carrier sending devices can all send carrier signals. Not all of these carrier signals are related to zero-power consumption devices, nor are the channel occupancy times obtained after these carrier sending devices seize the channel.
  • the zero-power device can use the channel occupancy time, so the zero-power device needs to determine which carrier signal to respond to in order to achieve backscatter. In other words, it is necessary to determine the target carrier signal corresponding to the backscatter. For example, the zero-power device identifies the carrier of the carrier sending device 1 as the target carrier, and performs backscattering through the target carrier.
  • the carrier signals corresponding to different zero-power consumption devices may be different in at least one of time domain or frequency domain resources. Zero-power devices only need to backscatter according to the carrier signal on the corresponding time-frequency resource.
  • the carrier signal may carry control information, such as identification information, identification information, detection information, etc., where the identification information may be at least one of terminal identification, terminal group identification information, or the identification of the carrier sending device.
  • the zero-power device can identify the target from multiple carrier signals sent by multiple carrier sending devices based on the comparison of the control information and the device's own identity. carrier signal, and then obtain the backscattered signal based on the target carrier signal.
  • the carrier signal is modulated to carry control information, and the zero-power device determines the target carrier signal through the control information received on the carrier signal, such as the terminal identification.
  • control information can also be carried on a channel or signal other than the carrier signal.
  • the zero-power device receives the control information through the channel or signal other than the carrier signal, such as the identification of the target carrier signal. target carrier signal.
  • FIG 19 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • a zero-power consumption device can determine backscattered channel occupancy time (COT) information.
  • COT channel occupancy time
  • Zero-power devices send data through backscattering, and can also be triggered by other devices, such as the scheduling of carrier signal sending devices, which can also be initiated by zero-power devices. Either way, a zero-power device sending data via backscatter needs to be done within the COT.
  • the COT relies on the LBT mechanism of the carrier signal sending device.
  • the COT information includes: at least one of the type of channel sensing, the channel priority, the total length of the channel occupancy time, and the remaining length of the channel occupancy time.
  • the type of channel listening and channel priority can determine the length of the COT.
  • the carrier signal sending device can send the obtained COT information to the zero-power device, so that the zero-power device can send data through backscattering, such as selecting the transmission time interval, determining the data block size, modulation method, data rate, etc.
  • FIG 20 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • a zero-power consumption device can send request information, and the request information is included in the backscattered signal.
  • Zero-power devices send data through backscattering, which can be triggered by other devices, such as the scheduling of carrier signal sending devices, or initiated by zero-power devices.
  • the scheduling device can control the transmission of carrier signals and provide the energy, carrier signals and channel occupancy time required for zero-power consumption devices to work.
  • the carrier sending device needs to initiate LBT regularly and perform channel listening periodically.
  • the LBT After the LBT is successful, it occupies the channel, obtains the channel occupancy time, and sends the carrier signal during the channel occupancy time.
  • the zero-power device receives the backscattered signal including the request information sent by the zero-power device during the channel occupation time.
  • the request information includes: at least one of: scheduling request, transmission duration, data amount, data cache status, and power control information of the first signal.
  • the request information can be sent to the carrier sending device, so that the carrier sending device can decide on candidate channel sensing and carrier signal sending.
  • Figure 21 is a communication schematic diagram of another example of a data transmission method according to an embodiment of the present application.
  • the carrier sending device initiates LBT and performs channel listening. After the LBT succeeds, it occupies the channel and obtains the channel occupancy time.
  • the carrier signal is sent to the zero-power consumption device, and during the channel occupancy time, the backscattered signal including the request information sent by the zero-power consumption device is received.
  • the request information includes: at least one of: scheduling request, transmission duration, data amount, data cache status, and power control information of the first signal.
  • the request information can be sent to the carrier sending device, so that the carrier sending device can decide on candidate channel sensing and carrier signal sending.
  • Figure 22 is a schematic block diagram of a first device 2200 according to an embodiment of the present application.
  • the first device 2200 may include: a first processing unit 2210, used for channel listening, and channel occupation when the channel listening result is that the channel is idle; a first sending unit 2220, used for sending during the first channel occupation time
  • the first signal is given to the second device; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • the method further includes a first receiving unit configured to receive the second signal during the first channel occupancy time.
  • a second receiving unit is further included, configured to receive the second signal during a second channel occupancy time; the second channel occupancy time is the time required for the second device to perform channel listening. Obtained channel occupancy time.
  • a second sending unit is further included, configured to send first information related to the first channel occupancy time to the second device; the first information includes: a type of channel listening, At least one of the channel priority, the total length of the channel occupancy time, and the remaining length of the channel occupancy time.
  • the first sending unit is configured to obtain the first channel occupancy time based on channel listening or periodic channel listening of the first device; in the first The channel occupancy time is used to send the first signal to the second device.
  • the second signal includes request information reported by the second device; the request information includes: scheduling request, transmission duration, data amount, data cache status, and power of the first signal. At least one of the control information.
  • the first signal carries control information; the control information includes: at least one of terminal identification, terminal group identification information, and first device identification.
  • the first signal includes: a carrier signal
  • the first device includes: at least one of a network device that sends the carrier signal, a terminal device that sends the carrier signal, and a device that is used to specifically generate the carrier signal.
  • the first device 2200 in the embodiment of the present application can implement the corresponding functions of the first device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the first device 2200 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the first device 2200 in the embodiment of the application can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • FIG. 23 is a schematic block diagram of a second device 2300 according to an embodiment of the present application.
  • the second device 2300 may include: a third receiving unit 2310, used to receive the first signal sent by the first device; a second processing unit 2320, used to obtain a second signal according to the first signal during the first channel occupancy time ;
  • the second device is a zero-power consumption device.
  • a fourth receiving unit is further included, configured to receive first information related to the first channel occupancy time sent by the first device; the first information includes: channel listening At least one of the type, channel priority, total length of channel occupation time, and remaining length of channel occupation time.
  • a third sending unit is further included, configured to send the second signal to the first device during the first channel occupancy time.
  • a fourth sending unit is further included, configured to send the second signal to the first device during the second channel occupancy time; the second channel occupancy time is the second channel occupancy time of the second device.
  • the channel occupancy time obtained by performing channel listening.
  • a third processing unit is also included, configured to determine second information based on the first information; the second information includes: selecting a transmission time interval, determining the data block size, modulation mode, data At least one of the rates.
  • the second signal includes: request information reported by the second device to the first device; the request information includes: scheduling request, transmission duration, data amount, data cache At least one of the status and the power control information of the first signal.
  • the second processing unit is configured to obtain control information from the received first signal; when identifying that the control information matches the second device itself, determine the The first signal is a target signal; the second signal is obtained according to the target signal.
  • control information includes: at least one of terminal identification, terminal group identification information, and first device identification.
  • the second device 2300 in the embodiment of the present application can implement the corresponding functions of the second device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the second device 2300 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the second device 2300 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 24 is a schematic structural diagram of a communication device 2400 according to an embodiment of the present application.
  • the communication device 2400 includes a processor 2410, and the processor 2410 can call and run a computer program from the memory, so that the communication device 2400 implements the method in the embodiment of the present application.
  • communication device 2400 may also include memory 2420.
  • the processor 2410 can call and run the computer program from the memory 2420, so that the communication device 2400 implements the method in the embodiment of the present application.
  • the memory 2420 may be a separate device independent of the processor 2410, or may be integrated into the processor 2410.
  • the communication device 2400 may also include a transceiver 2430, and the processor 2410 may control the transceiver 2430 to communicate with other devices. Specifically, the communication device 2400 may send information or data to other devices, or receive information or data sent by other devices. .
  • the transceiver 2430 may include a transmitter and a receiver.
  • the transceiver 2430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2400 can be the first device in the embodiment of the present application, and the communication device 2400 can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • the communication device 2400 can be the second device in the embodiment of the present application, and the communication device 2400 can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • FIG 25 is a schematic structural diagram of a chip 2500 according to an embodiment of the present application.
  • the chip 2500 includes a processor 2510, and the processor 2510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 2500 may also include a memory 2520.
  • the processor 2510 can call and run the computer program from the memory 2520 to implement the method executed by the first device or the second device in the embodiment of the present application.
  • the memory 2520 may be a separate device independent of the processor 2510, or may be integrated into the processor 2510.
  • the chip 2500 may also include an input interface 2530.
  • the processor 2510 can control the input interface 2530 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2500 may also include an output interface 2540.
  • the processor 2510 can control the output interface 2540 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chips applied to the first device and the second device may be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 26 is a schematic block diagram of a communication system 2600 according to an embodiment of the present application.
  • the communication system 2600 includes a first device 2610 and a second device 2620, which will not be described again.
  • the first device 2610 may be a carrier sending device, and may include: a first processing unit, used for channel sensing, and channel occupation when the channel sensing result is that the channel is idle; a first sending unit, used for The first channel takes time to send a first signal to the second device; the first signal is used by the second device to generate a second signal, and the second device is a zero-power consumption device.
  • the second device 2620 may be a zero-power consumption device and may include: a third receiving unit configured to receive the first signal sent by the first device; a second processing unit configured to perform the first channel occupancy time according to the first signal. The second signal is obtained from the signal; the second device is a zero-power consumption device.
  • a third receiving unit configured to receive the first signal sent by the first device
  • a second processing unit configured to perform the first channel occupancy time according to the first signal.
  • the second signal is obtained from the signal; the second device is a zero-power consumption device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据传输方法、第一设备和第二设备,其中,所述方法包括:所述第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;所述第一设备在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。采用本申请,在使用免授权频谱的情况下实现了基于零功耗设备的数据传输。

Description

数据传输方法、第一设备和第二设备 技术领域
本申请涉及通信领域,更具体地,涉及一种数据传输方法、第一设备和第二设备。
背景技术
零功耗设备由于其低成本、低复杂度、低功耗的特点,在蜂窝通信系统中有广泛的应用,免授权频段的使用也是蜂窝通信系统中的一个重要的部署场景。在使用免授权频谱的情况下如何实现基于零功耗设备的数据传输,是需要解决的问题。
发明内容
本申请实施例提供一种数据传输方法、第一设备和第二设备,可以在使用免授权频谱的情况下实现了基于零功耗设备的数据传输。
本申请实施例提供一种数据传输方法,应用于第一设备,包括:
所述第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;
所述第一设备在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。
本申请实施例提供一种数据传输方法,应用于第二设备,包括:
所述第二设备接收第一设备发送的第一信号;
所述第二设备在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。
本申请实施例提供一种第一设备,包括:
第一处理单元,用于进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;
第一发送单元,用于在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。
本申请实施例提供一种第二设备,包括:
第三接收单元,用于接收第一设备发送的第一信号;
第二处理单元,用于在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。
本申请实施例提供一种第一设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该第一设备执行上述本申请实施例所述的方法。
本申请实施例提供一种第二设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该第二设备执行上述本申请实施例所述的方法。
本申请实施例提供一种芯片,用于实现上述本申请实施例所述的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述本申请实施例所述的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述本申请实施例所述的方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的本申请实施例所述的方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的本申请实施例所述的方法。
本申请实施例,第一设备进行信道侦听,信道侦听结果为信道空闲的情况下可以进行信道占用,第一设备在第一信道占用时间发送第一信号给第二设备,该第一信号用于第二设备产生第二信号,第二设备为零功耗设备,采用本申请实施例,使用免授权频谱的情况下,若信道空闲则进行信道占用,第一设备为无需电池供电的零功耗设备,可以通过反向散射通信在第一设备与第二设备之间实现数据传输,从而,在使用免授权频谱的情况下实现了基于零功耗设备的数据传输。
附图说明
图1是根据本申请实施例的一应用场景的示意图。
图2是根据本申请实施例的基于蜂窝的零功耗系统的示意图。
图3是根据本申请实施例的采用辅助供能蜂窝直连的零功耗系统的示意图。
图4是根据本申请一实施例的一基于无源电子标签实现反向散射的示意图。
图5是根据本申请一实施例的另一基于无源电子标签实现反向散射的示意图。
图6是根据本申请一实施例的一基于无源电子标签实现能量采集的示意图。
图7是根据本申请一实施例的无源电子标签的电阻负载调制电路的示意图。
图8是根据本申请一实施例的数据传输方法的基站与零功耗设备间实现零功耗通信一应用场景的示意图。
图9是根据本申请一实施例的数据传输方法的示意性流程图。
图10是根据本申请一实施例的数据传输方法的示意性流程图。
图11是根据本申请一实施例的数据传输方法的示意性流程图。
图12是根据本申请一实施例的数据传输方法的示意性流程图。
图13是根据本申请一实施例的数据传输方法的示意性流程图。
图14是根据本申请一实施例的数据传输方法的示意性流程图。
图15是根据本申请一实施例的数据传输方法一示例的通信示意图。
图16是根据本申请一实施例的数据传输方法一示例的零功耗通信系统示意图。
图17是根据本申请一实施例的数据传输方法一示例的零功耗通信系统示意图。
图18是根据本申请一实施例的数据传输方法一示例的基于多个载波发送设备实现的通信示意图。
图19是根据本申请一实施例的数据传输方法另一示例的通信示意图。
图20是根据本申请一实施例的数据传输方法另一示例的通信示意图。
图21是根据本申请一实施例的数据传输方法另一示例的通信示意图。
图22是根据本申请一实施例的第一设备的示意性框图。
图23是根据本申请一实施例的第二设备的示意性框图。
图24是根据本申请实施例的通信设备示意性框图。
图25是根据本申请实施例的芯片的示意性框图。
图26是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动系统(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的 无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统100包括一个网络设备110和两个终端设备120。可选地,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施 例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
随着通信技术的快速发展,涌现了与多种物联网通信技术适配的相关行业应用,但仍有大量应用场景的相关需求没有得到很好的满足,包括但不限于如下场景:
(1)一些严苛通信环境下的物联网场景,可能面临高温、极低温、高湿、高压、高辐射或高速运动等极端环境,如超高压电站、高速运动的列车车轨监测、高寒地带环境监测、工业产线等。在这些场景中,受限于常规电源的工作环境限制,现有物联网终端将无法工作。另外,极端的工作环境也不利于物联网的维护,如更换电池。
(2)极小尺寸的终端形态要求的物联网场景,如食品溯源、商品流通以及智能可穿戴等要求终端具备极小的尺寸,以方便在这些场景下使用。比如,用于流通环节上商品管理的物联网终端通常使用电子标签的形式,需要以非常小巧的形态嵌入到商品包装中;比如,轻巧的可穿戴设备可以在满足用户需求的同时提升用户使用体验,需要将可穿戴设备的尺寸设计的体积更小、重量更轻。
(3)符合极低成本物联网通信需求的物联网场景,如物流或仓储场景,为了便于管理大量流通的物品,可以将物联网终端附着在每一件物品上,从而通过该终端与物流网络之间的通信完成物流全过程、及全周期的精确管理,需要物联网终端的成本足够低廉,从而提升相对于其他可替代的技术的竞争力。
以上述场景为代表的物联网通信场景要求支持具备免电池、超低功耗、极小尺寸和极低成本特性的物联网通信终端。现有的物联网通信技术难以满足这些需求,而使用能量采集和反向散射的零功耗通信技术由于其出色的极低功耗、极小尺寸、极低成本等优良性能,有望成为新一代物联网通信技术,从而解决物联网相关应用场景的通信需求。
图2示例性地示出了一种基于蜂窝的零功耗通信系统200。零功耗通信系统200包括:一个网络设备和位于不同小区的蜂窝用户,比如,小区1中存在围绕网络设备210(如基站)均匀分布的2个蜂窝用户(如终端设备220-终端设备230),以及小区2中也存在围绕网络设备210(如基站)均匀分布的2个蜂窝用户(如终端设备240-终端设备250)。可选地,该零功耗通信系统200还可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的多个终端设备,本申请实施例对此不做限定。
终端设备220、终端设备230、终端设备240、终端设备250可以为零功耗设备,零功耗设备自身不需携带电池,其中,终端设备220和终端设备230可以直接采用基于射频识别(Radio Frequency Identification,RFID)技术的标签,RFID标签又称为“射频标签”或“电子标签”,具体的,采用无源 电子标签(或称为被动式电子标签),由于支持反向散射,还可以称为反向散射标签。终端设备240和终端设备250可以为包括无源电子标签的零功耗设备,比如,在终端设备240和终端设备250内部设置该无源电子标签,也可以将该无源电子标签贴在终端设备240和终端设备250的外部等等。其中,终端设备240和终端设备250可以为手机,终端设备240和终端设备250中的至少之一也可以为信号接收机,不限于这些终端设备的类型,只要可以实现反向散射的终端设备都在本申请的保护范围之内。
如图2所示,零功耗通信系统200采用蜂窝直连的通信方式,即网络设备和零功耗设备直接进行通信。在通信之前,零功耗设备需要接收无线供能信号进行能量采集以获取工作所需要的能量,相应的,网络设备向零功耗设备发送无线供能信号和触发信号。其中,该无线供能信号用于向零功耗设备提供能量,可以为网络设备发送的载波信号;该触发信号可以与该无线供能信号采用同一载波信号,在载波信号中可以携带发给零功耗设备的控制信息或数据信息等,零功耗设备对载波信号调制后得到反向散射信号,通过反向散射的方式将该反射散射信号传输给网络设备。
图3示例性地示出了另一种基于蜂窝的零功耗通信系统300。零功耗通信系统300包括:一个网络设备、位于不同小区的蜂窝用户及用于供能的第三方设备,比如,小区1中存在围绕网络设备310(如基站)分布的1个蜂窝用户(如终端设备320),以及小区2中存在围绕网络设备210(如基站)均匀分布的2个蜂窝用户(如终端设备330-终端设备340),。可选地,该零功耗通信系统300还可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的多个终端设备,第三方设备为一个或多个,比如为终端设备320和终端设备330供能的供能节点350,及为终端设备340供能的供能节点360,本申请实施例对此不做限定。
终端设备320、终端设备330、终端设备340可以为零功耗设备,零功耗设备自身不需携带电池,其中,终端设备320可以直接采用RFID标签,RFID标签又称为“射频标签”或“电子标签”,具体的,采用无源电子标签(或称为被动式电子标签),由于支持反向散射,还可以称为反向散射标签。终端设备330和终端设备340可以为包括无源电子标签的零功耗设备,比如,在终端设备330和终端设备340内部设置该无源电子标签,也可以将该无源电子标签贴在终端设备330和终端设备340的外部等等。其中,终端设备330可以为手机,终端设备340可以为信号接收机,不限于这些终端设备的类型,只要可以实现反向散射的终端设备都在本申请的保护范围之内。
第三方设备为供能节点的情况下,可以为网络中的基站、手机、中继节点(Relay Node)、用户前置设备(Customer Premise Equipment,CPE)等。在必要的情况下,也可以部署专用的供能节点。这些供能节点发送的无线通信信号(如同步信号、广播信号、数据信道等)可以用于为零功耗设备提供无线供能,或者,基于合理的调度方式,这些供能节点也可以发送专用的无线供能信号。
如图3所示,零功耗通信系统300采用辅助供能的蜂窝直连的通信方式,即:零功耗设备不仅可以从与其通信的网络设备获得无线供能,也可以从第三方设备获得供能。在通信之前,零功耗设备需要接收第三方设备发送的无线供能信号,通过无线供能的方式获得能量,以进行能量采集,从而获取工作所需要的能量。考虑到供能信号到达终端设备的强度需要满足一定的门限,如-20dBm或-30dBm,这就造成了在供能信号发射功率受限的情况下,网络设备发射的供能信号覆盖的范围较小,一般在几十米到100米的范围。从蜂窝小区的覆盖来看,无线供能的覆盖范围远小于数据传输信号的覆盖范围。需要通过更多的供能节点来实现无线供能,以显著提高无线供能的覆盖范围,从而尽可能提升零功耗通信的小区覆盖。为此,可以使用网络中除网络设备(如基站)之外的其他节点用于无线供能,比如,可以使用 的供能节点包括网络中的手机、Relay节点、CPE等。在必要的情况下,也可以部署专用供能节点。这些供能节点向零功耗设备发送无线供能信号,网络设备向零功耗设备发送触发信号。其中,该无线供能信号用于向零功耗设备提供能量,可以为载波信号;该触发信号可以与该无线供能信号采用不同的载波信号,在载波信号中可以携带发给零功耗设备的控制信息或数据信息等,零功耗设备对载波信号调制后得到反向散射信号,通过反向散射的方式将该反射散射信号传输给网络设备。
如图4所示,零功耗设备为上述无源电子标签,或者零功耗设备可以包括上述无源电子标签。该无源电子标签包括能量采集模块(用于能量采集)、反向散射通信模块(用于反向散射通信)、低功耗计算模块(用于低功耗计算)及传感器模块(用于数据采集及上报),其中,该低功耗计算模块及该传感器模块是可选的模块。网络设备(包括但不限于将读写器设置于网络设备中,或者网络设备支持读写器所执行的读写处理)向零功耗设备发送供能信号(如无线电波),可以为零功耗设备提供工作所需的能量。具体的,该零功耗设备可以通过该能量采集模块采集空间中该无线电波所携带的能量,以便通过该能量采集模块驱动反向散射通信模块、低功耗计算模块及传感器模块进行工作,最终实现反向散射通信。零功耗设备获得工作所需的能量,还可以接收网络设备发送的触发信号(如通过设置的读写器发送的控制命令),零功耗设备响应该触发信号,以反向散射的方式与网络设备建立反向散射通信,比如,可以接收网络设备发送的下行数据,也可以发送网络设备所请求的上行数据,其中,所发送的上行数据可以来自于零功耗设备自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。
如图5所示,零功耗设备为上述无源电子标签,或者零功耗设备可以包括上述无源电子标签。该无源电子标签接收载波信号,通过能量采集模块来采集能量,以通过该能量采集模块对低功耗计算模块进行供能,对载波信号进行调制后执行反向散射通信。
如图6所示,零功耗设备为上述无源电子标签,或者零功耗设备可以包括上述无源电子标签。该无源电子标签利用能量采集模块(记为RF模块)通过电磁感应,来实现对空间电磁波能量的采集,进而实现对负载电路(由电容和电阻构成的负载电路)的驱动,以便通过该能量采集模块驱动反向散射通信模块、低功耗计算模块及传感器模块进行工作,最终实现反向散射通信。
如图7所示,负载调制是该无源电子标签向读写器传输数据的调整方法,具体的,该负载调制主要通过对无源电子标签振荡回路的电参数按照数据流的节拍进行调节,使该无源电子标签阻抗的大小和相位随之改变,从而完成调制的过程。该负载调制主要有电阻负载调制和电容负载调制两种调整方式。其中,在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。在电容负载调制中,相比于该电阻负载调制,是负载并联一个电容,取代了图7中由二进制数据编码控制的负载调制电阻。
需要指出的是,上述零功耗设备在进行数据传输时,编码可以用不同形式的代码来表示二进制的“1”和“0”(或者说,用不同的脉冲信号表示0和1),无线射频识别系统可以使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。
针对零功耗设备的分类而言,基于零功耗设备的能量来源以及使用方式可以将零功耗设备分为如下类型:
(1)无源零功耗设备
零功耗设备不需要内装电池,零功耗设备接近网络设备(如RFID系统的读写器)时,零功耗设备处于网络设备天线辐射形成的近场范围内。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射方式进行数据传输。
可以看出:无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗设备。无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(Low Noise Amplifier,LNA)、功放(Power Amplifier,PA)、晶振、数模转换器(Analog to DigitalConverter,ADC)等,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(2)半无源零功耗设备
半无源零功耗设备自身也不安装常规电池,但可使用能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射方式进行数据传输。
可以看出:半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗设备。半无源零功耗设备继承了无源零功耗设备的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(3)有源零功耗设备
某些场景下使用的零功耗设备也可以为有源零功耗设备,这类零功耗设备可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射方式进行数据传输。因此,这类零功耗设备主要体现于反向链路的信号传输不需要设备自身功率,而是使用反向散射的方式。
有源零功耗设备,内置电池进行供电,以增加零功耗设备的通信距离,提高通信的可靠性。在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
综上所述,考虑到物联网中连接物的种类及应用场景越来越多,为了实现万物互联,规避在蜂窝网络中传统的终端设备需要电池供电导致功耗高的问题,在蜂窝网络中根据物联网相关应用的通信需求选择上述各类零功耗设备中的至少之一,由于不依赖传统的有源功放发射机,可以通过能量采集模块进行能量采集,利用采集的能量来驱动低功耗芯片电路,极大降低了硬件的复杂度,而且该零功耗设备不主动发射信号,通过对接收的载波信号进行调整来实现反向散射通信,从而,采用免电池的该零功耗设备,可以实现免电池、零功耗的反向散射通信,既满足了物联网相关应用场景的通信需求,又降低了物联网相关通信系统的投入成本。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循“先听后说”(Listen Before Talk,LBT)原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为“信道空闲”,该通信设备才能进行信号发送;如果通信 设备在免授权频谱的信道上的信道侦听结果为“信道忙”,该通信设备不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
在蜂窝通信系统中可以使用上述免授权频谱的技术,如3GPP Rel-16的NR-U技术使用7GHz以下的非授权频段,在后续的技术演进中,会考虑在更高的频段(如Rel-17标准中讨论的52.6GHz-71GHz)使用该免授权频谱的技术。
考虑到若在更高的频段上使用该免授权频谱的技术,存在成本高、复杂度高、功耗高等问题。而零功耗设备具备成本低、复杂度低、功耗低等优良性能,将该免授权频谱的技术与零功耗设备相结合来实现基于零功耗设备的数据传输,可以解决这些问题,需要在基于蜂窝通信系统的物联网中(如无源物联网),使用免授权频谱的情况下实现基于零功耗设备的数据传输。
图8是根据本申请实施例的另一应用场景的示意图,示例性地示出了本申请实施例的数据传输方法800。以载波发送设备为基站,零功耗设备为手机为例,基站811与手机821、手机831及手机841之间进行通信。手机821、手机831及手机841中的一部或多部手机为包括无源电子标签的手机,以基站811与及手机841(即:包括无源电子标签的手机)的数据传输为例,该数据传输的过程包括下面的部分步骤或全部步骤:
S810、基站811进行信道侦听,信道侦听结果为信道空闲,进行信道占用。
S820、基站811在信道占用时间发送载波信号给手机841,该载波信号用于手机841根据该载波信号进行反向散射以产生反向散射信号。
一些示例中,基站811发送的载波信号包括:用于触发反向散射通信的触发信号(该触发信号携带终端标识),以及供能信号,以便手机841接收该供能信号以得到工作所需的能量,手机841接收该触发信号,得到该触发信号中携带的终端标识,手机841识别出该终端标识为终端设备自身标识,触发反向散射通信。
S830、手机841接收基站811发送的载波信号。
S840、手机841在该信道占用时间根据该载波信号进行反向散射以产生反向散射信号,向基站811发送反向散射信号。
步骤S810-S840不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
上述基站与及手机之间基于反向散射实现的数据传输仅为示例,本申请实施例不限于该示例,可以是物联网其他场景中多个设备之间的数据传输,如物联网仓储场景中的一个智能控制中心与多个终端设备之间的数据传输等等。
图9是根据本申请一实施例的数据传输方法900的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S910、第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第一设备可以为载波发送设备,在免授权频谱的信道上进行信号发送前,载波发送设备需要先进行信道侦听,如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道空闲”,载 波发送设备才能进行如下第一信号的发送;如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道忙”,载波发送设备不能进行如下第一信号的发送。
S920、第一设备在第一信道占用时间发送第一信号给第二设备;第一信号用于第二设备产生第二信号,第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
步骤S910-S920不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
采用本申请实施例,使用免授权频谱的情况下,若信道空闲则进行信道占用,第一设备为无需电池供电的零功耗设备,可以通过反向散射通信在第一设备与第二设备之间实现数据传输,从而,在使用免授权频谱的情况下实现了基于零功耗设备的数据传输。
图10是根据本申请一实施例的数据传输方法1000的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1010、第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第一设备可以为载波发送设备,在免授权频谱的信道上进行信号发送前,载波发送设备需要先进行信道侦听,如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道空闲”,载波发送设备才能进行如下第一信号的发送;如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道忙”,载波发送设备不能进行如下第一信号的发送。
S1020、第一设备在第一信道占用时间发送第一信号给第二设备;第一信号用于第二设备产生第二信号,第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第一信道占用时间,是基于第一设备的信道侦听、或周期性的信道侦听获取到的信道占用时间。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
S1030、第一设备在第一信道占用时间接收到第二信号。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备和零功耗设备在同一个信道(如第一信道),零功耗设备不需要做信道侦听,只需要载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信 道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号,该反向散射信号在与该载波信号相同的信道传输,即:反向散射信号和该载波信号都在第一信道传输,以使得载波发送设备在第一信道占用时间接收到该反向散射信号。
步骤S1010-S1030不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
图11是根据本申请一实施例的数据传输方法1100的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1110、第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第一设备可以为载波发送设备,在免授权频谱的信道上进行信号发送前,载波发送设备需要先进行信道侦听,如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道空闲”,载波发送设备才能进行如下第一信号的发送;如果载波发送设备在免授权频谱的信道上的信道侦听结果为“信道忙”,载波发送设备不能进行如下第一信号的发送。
S1120、第一设备在第一信道占用时间发送第一信号给第二设备;第一信号用于第二设备产生第二信号,第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
一些示例中,第一信道占用时间,是基于第一设备的信道侦听、或周期性的信道侦听获取到的信道占用时间。
S1130、第二设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用。
S1140、第一设备在第二信道占用时间接收到第二信号,第二信道占用时间为第二设备进行信道侦听所获得的信道占用时间。
一些示例中,第二信道占用时间,是基于第二设备的信道侦听、或周期性的信道侦听获取到的信道占用时间。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号,零功耗设备产生该反向散射信号的过程中,反向散射到与该第一信道不同的第二信道上,零功耗设备也需要信道侦听,信道侦听结果为“信道空闲”时,零功耗设备占用该第二信道,即:该反向散射信号在与该载波信号不同的信道传输,该载波信号在第一信道传输,而该反向散射信号在第二信道传输,以使得载波发送设备在第二信道占用时间接收到该反向 散射信号。
步骤S1110-S1140不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第一设备发送与第一信道占用时间相关的第一信息给第二设备。其中,该第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
比如,基于图9示例的数据传输方法,该第一信息可以为信道占用时间(COT)信息,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备发送该COT信息给零功耗设备后,零功耗设备需要确保根据第一信号(如载波信号)进行反向散射发送的第二信号(如反向散射信号)需要在该COT内完成,则根据该COT信息,便于零功耗设备通过反向散射发送该反向散射信号,例如选择传输时间间隔、决定数据块大小、调制方式、数据速率等。
在一种可能的实现方式中,第二信号包括第二设备上报的请求信息。其中,该请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
比如,基于图9或图10示例的数据传输方法,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备通过周期性的信道侦听,定期占用信道,以接收该请求信息,零功耗设备将该请求信息发送给载波发送设备。
在一种可能的实现方式中,第一信号携带控制信息,该控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
第一设备可以为载波发送设备,载波发送设备可以为一个或多个。考虑到存在多个载波发送设备的情况下,零功耗设备需要能够识别出多个第一信号,如多个载波信号中需要予以响应的目标载波信号,即零功耗设备需要根据该控制信息与设备自身标识的比对,以从多个载波发送设备所发送的多个载波信号中识别出目标载波信号,之后根据该目标载波信号得到反向散射信号。
图12是根据本申请一实施例的数据传输方法1200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1210、第二设备接收第一设备发送的第一信号。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,第一信号可以为载波信号,该载波发送设备向该零功耗设备发送该载波信号,以使零功耗设备接收到该载波信号后可以根据该载波信号得到反向散射信号。
S1220、第二设备在第一信道占用时间根据第一信号得到第二信号;第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第 一信道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号。
采用本申请实施例,使用免授权频谱的情况下,若信道空闲则进行信道占用,第一设备为无需电池供电的零功耗设备,可以通过反向散射通信在第一设备与第二设备之间实现数据传输,从而,在使用免授权频谱的情况下实现了基于零功耗设备的数据传输。
图13是根据本申请一实施例的数据传输方法1300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1310、第二设备接收第一设备发送的第一信号。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,第一信号可以为载波信号,该载波发送设备向该零功耗设备发送该载波信号,以使零功耗设备接收到该载波信号后可以根据该载波信号得到反向散射信号。
S1320、第二设备在第一信道占用时间根据第一信号得到第二信号;第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号。
一些示例中,第一信道占用时间,是基于第一设备的信道侦听、或周期性的信道侦听获取到的信道占用时间。
S1330、第二设备在第一信道占用时间发送第二信号给第一设备。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备和零功耗设备在同一个信道(如第一信道),零功耗设备不需要做信道侦听,只需要载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信道占用时间根据该第一信号得到第二信号,以使得零功耗设备在该第一信道占用时间发送第二信号给第一设备。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号,该反向散射信号在与该载波信号相同的信道传输,即:反向散射信号和该载波信号都在第一信道传输,零功耗设备在第一信道占用时间发送该反向散射信号给载波发送设备。
步骤S1310-S1330不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
图14是根据本申请一实施例的数据传输方法1400的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1410、第二设备接收第一设备发送的第一信号。
一些示例中,第一设备可以为载波发送设备,如发送载波信号的网络设备(如基站)、发送载波信号的终端设备(如手机)、用于专门生成载波信号的设备中的至少之一。
一些示例中,第二设备可以为零功耗设备,以应用于无源物联网为例,零功耗设备包括无源电子标签,或者,将无源电子标签作为零功耗设备,通过该无源电子标签,零功耗设备不仅可以在免授权频谱的信道上与载波发送设备基于反向散射通信实现数据传输,而且,还能满足零功耗的数据传输需求。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,第一信号可以为载波信号,该载波发送设备向该零功耗设备发送该载波信号,以使零功耗设备接收到该载波信号后可以根据该载波信号得到反向散射信号。
S1420、第二设备在第一信道占用时间根据第一信号得到第二信号;第二设备为零功耗设备。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号。
S1430、第二设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用。
S1440、第二设备在第二信道占用时间发送第二信号给第一设备;第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
一些示例中,第二信道占用时间,是基于第二设备的信道侦听、或周期性的信道侦听获取到的信道占用时间。
一些示例中,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备在免授权频谱的信道上进行信道侦听,信道侦听结果为“信道空闲”时,载波发送设备占用该第一信道,在第一信道占用时间发送第一信号给第二设备,以使得零功耗设备接收载波发送设备发送的第一信号后,在第一信道占用时间根据该第一信号得到第二信号。其中,第一信号为载波信号的情况下,第二信号为在该载波信号的基础上进行调制后得到的反向散射信号,零功耗设备产生该反向散射信号的过程中,反向散射到与该第一信道不同的第二信道上,零功耗设备也需要信道侦听,信道侦听结果为“信道空闲”时,零功耗设备占用该第二信道,即:该反向散射信号在与该载波信号不同的信道传输,该载波信号在第一信道传输,而该反向散射信号在第二信道传输,零功耗设备在第二信道占用时间发送该反向散射信号给载波发送设备。
步骤S1410-S1440不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第二设备接收第一设备发送的与第一信道占用时间相关的第一信息;第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
比如,基于图13示例的数据传输方法,该第一信息可以为COT信息,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备发送该COT信息给零功耗设备后,零功耗设备需要确保根据第一信号(如载波信号)进行反向散射发送的第二信号(如反向散射信号)需要在该COT内完 成,则零功耗设备接收到该COT信息后,根据该COT信息,便于零功耗设备通过反向散射发送该反向散射信号,例如选择传输时间间隔、决定数据块大小、调制方式、数据速率等。
在一种可能的实现方式中,还包括:根据所述第一信息确定第二信息;
所述第二信息包括:选择传输时间间隔、决定数据块大小、调制方式、数据速率中的至少之一。
比如,基于图13或图14示例的数据传输方法,第一设备可以为载波发送设备,第二设备可以为零功耗设备,该第一信息可以为载波发送设备发送给零功耗设备的COT信息,零功耗设备接收到该COT信息后,可以根据该COT信息确定该第二信息,该第二信息可以包括在反向散射信号中。
在一种可能的实现方式中,第二信号包括第二设备上报的请求信息。其中,该请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
比如,基于图13或图14示例的数据传输方法,第一设备可以为载波发送设备,第二设备可以为零功耗设备,载波发送设备通过周期性的信道侦听,定期占用信道,以接收该请求信息,零功耗设备将该请求信息发送给载波发送设备。
在一种可能的实现方式中,第二设备在第一信道占用时间根据第一信号得到第二信号,包括:第二设备从接收的第一信号中得到控制信息,第二设备识别出控制信息与第二设备自身匹配的情况下,确定第一信号为目标信号。第二设备根据目标信号得到第二信号。
一些示例中,该控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
一些示例中,第一设备可以为载波发送设备,载波发送设备可以为一个或多个。考虑到存在多个载波发送设备的情况下,零功耗设备需要能够识别出多个第一信号,如多个载波信号中需要予以响应的目标载波信号,即零功耗设备需要根据该控制信息与设备自身标识的比对,以从多个载波发送设备所发送的多个载波信号中识别出目标载波信号,之后根据该目标载波信号得到反向散射信号。
下面对上述本申请实施例提供的数据传输方法进行详细说明。
图15是根据本申请一实施例的数据传输方法一示例的通信示意图,如图15所示,包括:载波发送设备采用LBT机制进行信道侦听,LBT成功,即信道侦听结果为信道空闲的情况下进行信道占用。载波发送设备在信道占用时间发送载波信号给零功耗设备,零功耗设备在载波信号的基础上进行调整得到反向散射信号,零功耗设备在该信道占用时间向载波发送设备发送反向散射信号,以使载波发送设备在该信道占用时间接收到该反向散射信号。
上述载波发送设备可以为与零功耗设备进行通信的设备,在蜂窝通信系统中,载波发送设备可以是:基站、手机、网络中专门用于产生载波信号的设备等。在非蜂窝通信系统,如无线局域网(WLAN)中,载波发送设备还可以是:接入点(AccessPoint,AP)、站点(Station,STA)、WLAN网络中专门用于产生载波信号的设备。其中,AP指无线接入点,作为WLAN的创建者,是WLAN网络的中心节点。一般家庭或办公室使用的无线路由器即为一个AP;每一个连接到WLAN网络中的终端设备(如笔记本电脑、PDA及其它可以联网的用户设备)都可称为一个STA。
上述零功耗设备具有省电、低复杂度、低成本的特点。零功耗设备可以存储一定的信息,零功耗设备接收到载波信号,受到触发,通过反向散射的方式将存储的信息发送出去(即:在载波信号的基础上进行调制,并将调制后得到反向散射信号发送给载波发送设备),从而实现基于零功耗设备的通信,在载波发送设备与零功耗设备之间实现数据传输。
上述LBT机制,是指:使用免授权频谱的情况下需要遵守LBT机制,即:先听后说,载波发送设 备在免授权频谱的信道上发送载波信号发送之前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该载波发送设备才能进行载波信号的发送。
一般来说,零功耗设备不进行LBT,由载波发送设备进行LBT,即:零功耗设备不进行信道侦听,由载波发送设备进行信道侦听即可。若零功耗设备反向散射到与载波信号所在信道不同的另一个信道上,才需要零功耗设备进行LBT,此时,零功耗设备也需要进行信道侦听。其中,零功耗设备在反向散射之前并不需要进行LBT。
一种情况下,载波信号和反向散射信号由于在同一个信道上,且反向散射信号是基于载波信号调制后得到的,反向散射信号可以视为载波信号的一部分,载波信号和反向散射信号可以看做是同一信号。此种情况下,由载波发送设备进行LBT,LBT成功,载波发送设备抢占第一信道,在第一信道占用时间发送载波信号给零功耗设备,载波发送设备在第一信道占用时间接收反向散射信号。零功耗设备不进行LBT。
另一种情况下,载波信号和反向散射信号在不同信道上,载波信号和反向散射信号可以看做是不同信号。此种情况下,由载波发送设备进行LBT,LBT成功,载波发送设备抢占第一信道,在第一信道占用时间发送载波信号给零功耗设备,载波发送设备使用该第一信道一段时间后,可以把该第一信道共享给零功耗设备来使用,在载波发送设备与零功耗设备之间实现信道共享。虽然是不同设备、不同信号,但是,载波发送设备抢占了该第一信道后,可以共享该第一信道占用时间给零功耗设备,那么零功耗设备的反向散射信号的发送,实际是共享了载波发送设备通过LBT获得的信道占用时间,零功耗设备不进行LBT。
针对在载波发送设备与零功耗设备之间实现信道共享而言,可以采用类似于Type2C信道接入方式。具体的,在NR-U技术中,比如,载波发送设备为基站,零功耗设备为包括无源电子标签的零功耗设备,当基站发起信道共享后,除了可以将信道占用时间内的资源用于下行传输,还可以将该信道占用时间内的资源共享给该零功耗设备进行上行传输。该信道占用时间内的资源共享给该零功耗设备进行上行传输时,该零功耗设备可以使用的信道接入方式包括Type2A信道接入、Type2B信道接入或Type2C信道接入中的至少之一。其中,在Type2C信道接入的情况下,该零功耗设备不需要LBT,直接进行反向散射,该零功耗设备可以直接进行传输。考虑到NR-U系统中定义了:在共享信道下,如果不做LBT,有传输时长584每秒的限制,则该传输的起始位置距离上一次传输的结束位置之间的空隙大小为:小于或等于16μs,该传输的长度不超过584μs,但是,本申请实施例不受该Type2C信道接入方式的限制,由于反向散射依赖于载波信号的发送,如果载波信号没有中断,则反向散射的传输时长可以不受Type2C信道接入方式的限制,只要该信道占用时间没到,就可以继续传输。
图16是根据本申请一实施例的数据传输方法一示例的零功耗通信系统示意图,载波发送设备为基站,零功耗设备为包括无源电子标签的零功耗设备,如图16所示,包括如下三种方案:
(1)蜂窝直连:在Case1中,该基站和该零功耗设备直接进行通信。载波信号除了用于触发反向散射(也称之为触发信号),还可以用于供能,以为零功耗设备提供工作所需的能量。此时,载波信号与供能信号为同一个信号。基站向该零功耗设备发送载波信号,载波信号可以携带发给零功耗设备的控制信息,零功耗设备通过反向散射的方式将信息传输给基站。
(2)零功耗唤醒:在Case2中,该零功耗设备作为传统终端的一部分完成一些低功耗操作,从而辅助实现传统终端的节能,比如,可以将零功耗设备作为传统终端的唤醒接收机(Wake-Up Radio,WUR)。
(3)辅助功能的蜂窝直连:在Case3中,使用网络中除基站之外的其他供能节点用于供能,为零功耗设备提供工作所需的能量。此时,载波信号与供能信号为不同信号。除基站之外的其他供能节点,可以包括网络中的智能手机、Relay节点、CPE等。在必要的情况下,也可以部署专用供能节点。这些供能节点发送的传统无线通信信号(如同步信号、广播信号、数据信道等)可以用于为零功耗设备提供工作所需的能量,或者,基于合理的调度方式,这些供能节点也可以发送专用的供能信号。
图17是根据本申请一实施例的数据传输方法一示例的零功耗通信系统示意图,如图17所示,基于侧行通信(Sidelink)的零功耗通信可以实现零功耗设备与其他类型的智能设备(如智能手机、CPE或其他IoT终端设备)之间的侧行通信。侧行通信可以不依赖于蜂窝网络而进行直连通信,包括以下通信方式:
(1)侧行通信的直连:零功耗设备与智能设备(将智能设备作为载波发送设备)直接进行侧行通信。载波信号除了用于触发反向散射(也称之为触发信号),还可以用于供能,以为零功耗设备提供工作所需的能量。此时,载波信号与供能信号为同一个信号。智能设备向零功耗设备发送载波信号,零功耗设备通过反向散射的方式将信息传输给智能设备以实现侧行通信。其中,智能设备可以是Case1-1中的手机、或者Case1-2中的控制节点(如CPE)。
(2)辅助提供载波的侧行通信的直连:为了实现零功耗设备与智能设备的侧行通信直连,使用网络中除手机之外的其他供能节点用于供能,为零功耗设备提供工作所需的能量。此时,载波信号与供能信号为不同信号,供能信号可以不直接来源于智能设备(智能设备可以是Case2中的手机),而是来源于第三方设备,如Case2所示,零功耗设备与智能设备的侧行通信直连所需要的供能信号,可以来源于控制节点(如CPE),零功耗设备接收智能设备发送的载波信号并通过反向散射的方式将信息传输给智能设备。
当载波发送设备LBT成功后,抢占了信道,在信道共享时间发送载波信号给载波信号,零功耗设备的反向散射是基于该载波信号的。也就是说,对于零功耗设备来说,其反向散射依赖于载波信号进行供能和产生反向散射信号。但是,存在多个载波发送设备的情况,零功耗设备并不是只会收到与其通信的目标载波发送设备发送的目标载波信号,还会接收到除该目标载波发送设备之前的其他载波发送设备发送的其他载波信号。图18是根据本申请一实施例的数据传输方法一示例的基于多个载波发送设备实现的通信示意图,如图18所示,包括:3个载波发送设备(如载波发送设备1-载波发送设备3)及1个零功耗设备,3个载波发送设备都可以发送载波信号,并不是这些载波信号都与零功耗设备相关,这些载波发送设备抢占信道后得到的信道占用时间也不都是该零功耗设备可以使用的信道占用时间,因此,零功耗设备需要确定对哪个载波信号进行响应,以实现反向散射。换言之,需要确定反向散射对应的目标载波信号,比如零功耗设备识别载波发送设备1的载波为目标载波,通过该目标载波进行反向散射。
一些示例中,不同的零功耗设备对应的载波信号可以在时域或频域资源上的至少一个是不同的。零功耗设备只需要根据相应时频资源上的载波信号进行反向散射。
一些示例中,载波信号可以承载控制信息,例如标识信息、识别信息、探测信息等,其中,该标识信息可以是终端标识、终端组标识信息、或者载波发送设备的标识中的至少之一。比如,确定反向散射对应的目标载波信号的过程中,零功耗设备可以根据该控制信息与设备自身标识的比对,以从多个载波发送设备所发送的多个载波信号中识别出目标载波信号,之后根据该目标载波信号得到反向散射信号。可选的,通过对载波信号进行调制以承载控制信息,零功耗设备通过载波信号上接收的控制信息,如终 端标识,确定目标载波信号。
一些示例中,控制信息还可以承载在除载波信号之外的信道或信号上,零功耗设备通过该除载波信号之外的信道或信号上收到的控制信息,如目标载波信号的标识确定目标载波信号。
图19是根据本申请一实施例的数据传输方法另一示例的通信示意图,如图19所示,零功耗设备可以确定反向散射的信道占用时间(COT)信息。零功耗设备通过反向散射发送数据,也可以由其他设备触发,如载波信号发送设备的调度,也可以零功耗设备发起。无论哪种方式,零功耗设备通过反向散射发送数据都需要在COT内完成。而COT依赖于载波信号发送设备的LBT机制,具体的,COT信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。其中,信道侦听的类型、信道优先级可以决定COT的长度。载波信号发送设备可以将获得的COT信息发送给零功耗设备,便于零功耗设备通过反向散射发送数据,例如选择传输时间间隔、决定数据块大小、调制方式、数据速率等。
图20是根据本申请一实施例的数据传输方法另一示例的通信示意图,如图20所示,零功耗设备可以发送请求信息,请求信息包括在反向散射信号中。零功耗设备通过反向散射发送数据,可以由其他设备触发,如载波信号发送设备的调度,也可以零功耗设备发起。其中,对于其他设备调度的反向散射传输,调度设备可以控制载波信号的发送,为零功耗设备提供工作所需的能量、载波信号和信道占用时间。其中,对于零功耗设备主动发起的传输,需要载波发送设备定期的发起LBT,周期性的进行信道侦听,LBT成功后占用信道,获取到信道占用时间,在该信道占用时间发送载波信号给零功耗设备,在该信道占用时间接收零功耗设备发送的包括请求信息的反向散射信号。其中,该请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。可选的,在该信道占用时间结束之前,可以将该请求信息发送给载波发送设备,便于载波发送设备决定候选的信道侦听和载波信号的发送。
图21是根据本申请一实施例的数据传输方法另一示例的通信示意图,如图21所示,载波发送设备发起LBT,进行信道侦听,LBT成功后占用信道,获取到信道占用时间,在该信道占用时间发送载波信号给零功耗设备,在该信道占用时间接收零功耗设备发送的包括请求信息的反向散射信号。其中,该请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。可选的,在该信道占用时间结束之前,可以将该请求信息发送给载波发送设备,便于载波发送设备决定候选的信道侦听和载波信号的发送。
需要指出的是,上面这些示例可以结合上述本申请实施例中的各种可能性,此处不做赘述。
图22是根据本申请一实施例的第一设备2200的示意性框图。该第一设备2200可以包括:第一处理单元2210,用于进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;第一发送单元2220,用于在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。
在一种可能的实现方式中,还包括第一接收单元,用于在所述第一信道占用时间接收到所述第二信号。
在一种可能的实现方式中,还包括第二接收单元,用于在第二信道占用时间接收到所述第二信号;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
在一种可能的实现方式中,还包括第二发送单元,用于发送与所述第一信道占用时间相关的第一信 息给第二设备;所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
在一种可能的实现方式中,所述第一发送单元,用于基于所述第一设备的信道侦听或周期性的信道侦听获取到所述第一信道占用时间;在所述第一信道占用时间发送所述第一信号给所述第二设备。
在一种可能的实现方式中,所述第二信号包括所述第二设备上报的请求信息;所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
在一种可能的实现方式中,所述第一信号携带控制信息;所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
在一种可能的实现方式中,所述第一信号包括:载波信号;
所述第一设备包括:发送所述载波信号的网络设备、发送所述载波信号的终端设备、用于专门生成所述载波信号的设备中的至少之一。
本申请实施例的第一设备2200能够实现前述的方法实施例中的第一设备的对应功能。该第一设备2200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备2200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图23是根据本申请一实施例的第二设备2300的示意性框图。该第二设备2300可以包括:第三接收单元2310,用于接收第一设备发送的第一信号;第二处理单元2320,用于在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。
在一种可能的实现方式中,还包括第四接收单元,用于接收所述第一设备发送的与所述第一信道占用时间相关的第一信息;所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
在一种可能的实现方式中,还包括第三发送单元,用于在所述第一信道占用时间发送所述第二信号给所述第一设备。
在一种可能的实现方式中,还包括第四发送单元,用于在第二信道占用时间发送所述第二信号给所述第一设备;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
在一种可能的实现方式中,还包括第三处理单元,用于根据所述第一信息确定第二信息;所述第二信息包括:选择传输时间间隔、决定数据块大小、调制方式、数据速率中的至少之一。
在一种可能的实现方式中,所述第二信号包括:所述第二设备上报给所述第一设备的请求信息;所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
在一种可能的实现方式中,所述第二处理单元,用于从接收的所述第一信号中得到控制信息;识别出所述控制信息与第二设备自身匹配的情况下,确定所述第一信号为目标信号;根据所述目标信号得到所述第二信号。
在一种可能的实现方式中,所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
本申请实施例的第二设备2300能够实现前述的方法实施例中的第二设备的对应功能。该第二设备 2300中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备2300中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图24是根据本申请实施例的通信设备2400示意性结构图。该通信设备2400包括处理器2410,处理器2410可以从存储器中调用并运行计算机程序,以使通信设备2400实现本申请实施例中的方法。
可选地,通信设备2400还可以包括存储器2420。其中,处理器2410可以从存储器2420中调用并运行计算机程序,以使通信设备2400实现本申请实施例中的方法。
其中,存储器2420可以是独立于处理器2410的一个单独的器件,也可以集成在处理器2410中。
可选地,通信设备2400还可以包括收发器2430,处理器2410可以控制该收发器2430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2430可以包括发射机和接收机。收发器2430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2400可为本申请实施例的第一设备,并且该通信设备2400可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备2400可为本申请实施例的第二设备,并且该通信设备2400可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图25是根据本申请实施例的芯片2500的示意性结构图。该芯片2500包括处理器2510,处理器2510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片2500还可以包括存储器2520。其中,处理器2510可以从存储器2520中调用并运行计算机程序,以实现本申请实施例中由第一设备或者第二设备执行的方法。
其中,存储器2520可以是独立于处理器2510的一个单独的器件,也可以集成在处理器2510中。
可选地,该芯片2500还可以包括输入接口2530。其中,处理器2510可以控制该输入接口2530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2500还可以包括输出接口2540。其中,处理器2510可以控制该输出接口2540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应用于第一设备和第二设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。 其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图26是根据本申请实施例的通信系统2600的示意性框图。该通信系统2600包括第一设备2610和第二设备2620,不做赘述。其中,该第一设备2610可以为载波发送设备,可以包括:第一处理单元,用于进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;第一发送单元,用于在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。该第二设备2620可以为零功耗设备,可以包括:第三接收单元,用于接收第一设备发送的第一信号;第二处理单元,用于在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (43)

  1. 一种数据传输方法,应用于第一设备,所述方法包括:
    所述第一设备进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;
    所述第一设备在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。
  2. 根据权利要求1所述的方法,还包括:
    所述第一设备在所述第一信道占用时间接收到所述第二信号。
  3. 根据权利要求1所述的方法,还包括:
    所述第一设备在第二信道占用时间接收到所述第二信号;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
  4. 根据权利要求1或2所述的方法,还包括:
    所述第一设备发送与所述第一信道占用时间相关的第一信息给第二设备;
    所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述第一设备在第一信道占用时间发送第一信号给第二设备,包括:
    基于所述第一设备的信道侦听或周期性的信道侦听获取到所述第一信道占用时间;
    在所述第一信道占用时间发送所述第一信号给所述第二设备。
  6. 根据权利要求1-3中任一项所述的方法,其中,所述第二信号包括所述第二设备上报的请求信息;
    所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述第一信号携带控制信息;
    所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述第一信号包括:载波信号;
    所述第一设备包括:发送所述载波信号的网络设备、发送所述载波信号的终端设备、用于专门生成所述载波信号的设备中的至少之一。
  9. 一种数据传输方法,应用于第二设备,所述方法包括:
    所述第二设备接收第一设备发送的第一信号;
    所述第二设备在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。
  10. 根据权利要求9所述的方法,还包括:
    所述第二设备接收所述第一设备发送的与所述第一信道占用时间相关的第一信息;
    所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
  11. 根据权利要求9或10所述的方法,还包括:
    所述第二设备在所述第一信道占用时间发送所述第二信号给所述第一设备。
  12. 根据权利要求9或10所述的方法,还包括:
    所述第二设备在第二信道占用时间发送所述第二信号给所述第一设备;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
  13. 根据权利要求9-12中任一项所述的方法,还包括:
    根据所述第一信息确定第二信息;
    所述第二信息包括:选择传输时间间隔、决定数据块大小、调制方式、数据速率中的至少之一。
  14. 根据权利要求9-12中任一项所述的方法,所述第二信号包括:所述第二设备上报给所述第一设备的请求信息;
    所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
  15. 根据权利要求14所述的方法,其中,所述第二设备在第一信道占用时间根据所述第一信号得到第二信号,包括:
    所述第二设备从接收的所述第一信号中得到控制信息;
    所述第二设备识别出所述控制信息与第二设备自身匹配的情况下,确定所述第一信号为目标信号;
    所述第二设备根据所述目标信号得到所述第二信号。
  16. 根据权利要求15所述的方法,其中,所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
  17. 一种第一设备,包括:
    第一处理单元,用于进行信道侦听,信道侦听结果为信道空闲的情况下进行信道占用;
    第一发送单元,用于在第一信道占用时间发送第一信号给第二设备;所述第一信号用于所述第二设备产生第二信号,所述第二设备为零功耗设备。
  18. 根据权利要求17所述的设备,还包括第一接收单元,用于:
    在所述第一信道占用时间接收到所述第二信号。
  19. 根据权利要求17所述的设备,还包括第二接收单元,用于:
    在第二信道占用时间接收到所述第二信号;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
  20. 根据权利要求17或18所述的设备,还包括第二发送单元,用于:
    发送与所述第一信道占用时间相关的第一信息给第二设备;
    所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
  21. 根据权利要求17-20中任一项所述的设备,其中,所述第一发送单元,用于:
    基于所述第一设备的信道侦听或周期性的信道侦听获取到所述第一信道占用时间;
    在所述第一信道占用时间发送所述第一信号给所述第二设备。
  22. 根据权利要求17-19中任一项所述的设备,其中,所述第二信号包括所述第二设备上报的请求信息;
    所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
  23. 根据权利要求17-22中任一项所述的设备,其中,所述第一信号携带控制信息;
    所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
  24. 根据权利要求17-23中任一项所述的设备,其中,所述第一信号包括:载波信号;
    所述第一设备包括:发送所述载波信号的网络设备、发送所述载波信号的终端设备、用于专门生成所述载波信号的设备中的至少之一。
  25. 一种第二设备,包括:
    第三接收单元,用于接收第一设备发送的第一信号;
    第二处理单元,用于在第一信道占用时间根据所述第一信号得到第二信号;所述第二设备为零功耗设备。
  26. 根据权利要求25所述的设备,还包括第四接收单元,用于:
    接收所述第一设备发送的与所述第一信道占用时间相关的第一信息;
    所述第一信息包括:信道侦听的类型、信道优先级、信道占用时间的总长度、信道占用时间的剩余长度中的至少之一。
  27. 根据权利要求25或26所述的设备,还包括第三发送单元,用于:
    在所述第一信道占用时间发送所述第二信号给所述第一设备。
  28. 根据权利要求25或26所述的设备,还包括第四发送单元,用于:
    在第二信道占用时间发送所述第二信号给所述第一设备;所述第二信道占用时间为所述第二设备进行信道侦听所获得的信道占用时间。
  29. 根据权利要求25-28中任一项所述的设备,还包括第三处理单元,用于:
    根据所述第一信息确定第二信息;
    所述第二信息包括:选择传输时间间隔、决定数据块大小、调制方式、数据速率中的至少之一。
  30. 根据权利要求25-28中任一项所述的设备,所述第二信号包括:所述第二设备上报给所述第一设备的请求信息;
    所述请求信息,包括:调度请求、传输时长、数据量、数据缓存状态、第一信号的功率控制信息中的至少之一。
  31. 根据权利要求30所述的设备,其中,所述第二处理单元,用于:
    从接收的所述第一信号中得到控制信息;
    识别出所述控制信息与第二设备自身匹配的情况下,确定所述第一信号为目标信号;
    根据所述目标信号得到所述第二信号。
  32. 根据权利要求31所述的设备,其中,所述控制信息包括:终端标识、终端组标识信息、第一设备标识中的至少之一。
  33. 一种第一设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述第一设备执行如权利要求1至8中任一项所述的方法。
  34. 一种第二设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述第二设备执行如权利要求9至16中任一项所述的方法。
  35. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设 备执行如权利要求1至8中任一项所述的方法。
  36. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求9至16中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至8中任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求9至16中任一项所述的方法。
  39. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至8中任一项所述的方法。
  40. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求9至16中任一项所述的方法。
  41. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求9至16中任一项所述的方法。
  43. 一种通信系统,包括:
    第一设备,用于执行如权利要求1至8中任一项所述的方法;
    第二设备,用于执行如权利要求9至16中任一项所述的方法。
PCT/CN2022/081817 2022-03-18 2022-03-18 数据传输方法、第一设备和第二设备 WO2023173438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081817 WO2023173438A1 (zh) 2022-03-18 2022-03-18 数据传输方法、第一设备和第二设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081817 WO2023173438A1 (zh) 2022-03-18 2022-03-18 数据传输方法、第一设备和第二设备

Publications (1)

Publication Number Publication Date
WO2023173438A1 true WO2023173438A1 (zh) 2023-09-21

Family

ID=88021969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081817 WO2023173438A1 (zh) 2022-03-18 2022-03-18 数据传输方法、第一设备和第二设备

Country Status (1)

Country Link
WO (1) WO2023173438A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236841A1 (en) * 2014-01-30 2015-08-20 Purdue Research Foundation Communicating data using backscatter modulation
CN109413757A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 一种应用于非授权频段的信道侦听方法及装置
CN111742527A (zh) * 2017-12-22 2020-10-02 瑞典爱立信有限公司 用于低功率反向散射操作的系统、网络节点、无线设备、方法和计算机程序
CN111886806A (zh) * 2018-03-23 2020-11-03 华为技术有限公司 一种背向散射通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236841A1 (en) * 2014-01-30 2015-08-20 Purdue Research Foundation Communicating data using backscatter modulation
CN109413757A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 一种应用于非授权频段的信道侦听方法及装置
CN111742527A (zh) * 2017-12-22 2020-10-02 瑞典爱立信有限公司 用于低功率反向散射操作的系统、网络节点、无线设备、方法和计算机程序
CN111886806A (zh) * 2018-03-23 2020-11-03 华为技术有限公司 一种背向散射通信方法及装置

Similar Documents

Publication Publication Date Title
WO2020102972A1 (zh) 监听或发送唤醒信号的方法和装置及通信设备
WO2019238007A1 (zh) 检测波束的方法和装置
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023173379A1 (zh) 数据传输方法、第一设备和第二设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023279236A1 (zh) 无线通信的方法和设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2024082267A1 (zh) 无线通信的方法和设备
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931469

Country of ref document: EP

Kind code of ref document: A1