WO2023193255A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023193255A1
WO2023193255A1 PCT/CN2022/085901 CN2022085901W WO2023193255A1 WO 2023193255 A1 WO2023193255 A1 WO 2023193255A1 CN 2022085901 W CN2022085901 W CN 2022085901W WO 2023193255 A1 WO2023193255 A1 WO 2023193255A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
devices
sent
pilot
target
Prior art date
Application number
PCT/CN2022/085901
Other languages
English (en)
French (fr)
Inventor
徐伟杰
左志松
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/085901 priority Critical patent/WO2023193255A1/zh
Publication of WO2023193255A1 publication Critical patent/WO2023193255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a wireless communication method and device.
  • the zero-power device receives the carrier signal sent by the network device, modulates the carrier signal, loads the information that needs to be sent, and radiates the modulated signal from the antenna. This information transmission process is called It's called backscatter communication.
  • This application provides a wireless communication method and device, which is beneficial to reducing interference between carrier signals and backscattered signals.
  • a wireless communication method including: a first device sending a first signal to a second device, where the first signal is backscattered and sent by the first device based on the second signal, so The symbol length corresponding to the first signal is N times the symbol length corresponding to the second signal.
  • the second signal is sent by the third device, and N is a positive integer greater than 1.
  • a wireless communication method including: a second device receiving a first signal sent by at least one first device, wherein the first signal is backscattered and sent based on the second signal, so The symbol length corresponding to the first signal is N times the symbol length corresponding to the second signal, and N is a positive integer greater than 1.
  • a wireless communication method including: a third device sending a second signal to a second device, wherein the second signal is used by the first device to backscatter to obtain the first signal, and the The symbol length corresponding to the first signal is N times the symbol length corresponding to the second signal, and N is a positive integer greater than 1.
  • a fourth aspect provides a communication device for performing the method in the above first aspect or its respective implementations.
  • the communication device includes a functional module for executing any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • a communication device including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and execute any one of the above-mentioned first to third aspects or the methods in their respective implementations.
  • a sixth aspect provides a chip for implementing any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to third aspects or implementations thereof. method.
  • a seventh aspect provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to third aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that enable a computer to execute any one of the above-mentioned first to third aspects or the method in each implementation thereof.
  • a ninth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to third aspects or the method in each implementation thereof.
  • the symbol length of the backscattered signal is N times the symbol length of the carrier signal, it is beneficial to convert the interference of the backscattered signal to the carrier signal into a multipath effect, thereby improving system performance.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • Figure 5 is a circuit schematic diagram of resistive load modulation according to an embodiment of the present application.
  • Figure 6 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • Figure 7 is a system model diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 8 is a system frame design diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 9 is another system model diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 10 is a system frame design diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 11 is a comparison diagram of the reachable rates of the third device according to the two access schemes according to the embodiment of the present application.
  • Figure 12 is a comparison chart of the reachable rates of reflection devices according to two access schemes according to embodiments of the present application.
  • Figure 13 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 14 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • Figure 15 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 16 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), wireless fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system, cellular Internet of Things system, cellular passive Internet of Things system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where, Licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network Network equipment (gNB) or network equipment in the cellular Internet of Things, or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB in LTE
  • gNB NR network Network equipment
  • network equipment in the cellular Internet of Things or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • Key technologies for zero-power communication include energy harvesting, backscatter communication and low-power technology.
  • a typical zero-power communication system (such as an RFID system) includes network equipment and zero-power devices (such as electronic tags).
  • Network equipment is used to send wireless power supply signals and downlink communication signals to zero-power devices and receive backscattered signals from zero-power devices.
  • a basic zero-power device includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • zero-power devices can also have a memory or sensor to store some basic information (such as item identification, etc.) or sensing data such as ambient temperature and ambient humidity.
  • the energy harvesting module can collect the energy carried by radio waves in space (shown as radio waves emitted by network devices in Figure 2), and is used to drive low-power computing modules of zero-power devices and implement backscatter communications.
  • the zero-power consumption device After the zero-power consumption device obtains energy, it can receive control commands from the network device and send data to the network device in a backscattering manner based on control signaling.
  • the data sent can be data stored by the zero-power device itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power consumption devices can also be loaded with various sensors, so that the data collected by various sensors can be reported based on the zero-power consumption mechanism.
  • the RF energy collection module collects space electromagnetic wave energy based on the principle of electromagnetic induction, thereby obtaining the energy required to drive zero-power devices, such as driving low-power demodulation and modulation modules, sensors, and Memory reading, etc. Therefore, zero-power devices do not require traditional batteries.
  • the zero-power device receives the carrier signal sent by the network device, modulates the carrier signal, loads the information that needs to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communications.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power device according to the rhythm of the data flow, so that the parameters such as the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, which is turned on or off based on control of a binary data stream, as shown in Figure 5.
  • the switching of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is implemented, that is, the signal is modulated and transmitted by adjusting the amplitude of the backscattered signal from the zero-power device.
  • ASK amplitude keying modulation
  • capacitive load modulation the resonant frequency of the circuit can be changed by turning the capacitor on and off, achieving frequency keying modulation (FSK), that is, modulating the signal by adjusting the operating frequency of the backscattered signal of the zero-power device and transmission.
  • FSK frequency keying modulation
  • zero-power device uses load modulation to modulate the information of the incoming signal, thereby realizing the backscattering communication process. Therefore, zero-power devices have significant advantages:
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero encoding, differential biphase (DBP) encoding, differential encoding, Pulse interval encoding (PIE), bidirectional spatial encoding (FM0), Miller encoding, differential dynamic encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential biphase
  • PIE Pulse interval encoding
  • FM0 bidirectional spatial encoding
  • Miller encoding differential dynamic encoding
  • zero-power devices can be divided into the following types:
  • Zero-power devices do not require built-in batteries. When zero-power devices are close to network devices (such as readers and writers in RFID systems), the zero-power devices are within the near field range formed by the antenna radiation of the network device. . Therefore, the zero-power device antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link (or reflection link). For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power device.
  • RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). and other devices, so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • Semi-passive zero-power devices do not install conventional batteries themselves, but can use RF energy harvesting modules to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the semi-passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy harvesting module. energy, and is therefore a truly zero-power device.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power devices used in some scenarios can also be active zero-power devices, and such devices can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power devices. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. But for backscatter links, zero-power devices use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of equipment is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • the energy supply signal, scheduling signal and carrier signal related to zero-power communication are described.
  • the energy supply signal is the energy source for energy harvesting by zero-power devices.
  • the energy supply signal carrier From the energy supply signal carrier, it can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.
  • the frequency bands of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the energy supply signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard.
  • Sounding Reference Signal SRS
  • Physical Uplink Shared Channel PUSCH
  • Physical Random Access Channel PRACH
  • Physical Uplink Control Channel PUCCH
  • Physical Downlink Control Channel PUCCH
  • Physical Downlink Shared Channel PDSCH
  • Physical Broadcast Channel PBCH
  • the energy supply signal can also be implemented by adding a new signal, for example, adding a signal dedicated to energy supply.
  • Trigger signals are used to trigger or schedule zero-power devices for data transmission.
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for triggering or scheduling can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard.
  • SRS Session Detection
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the trigger signal can also be implemented by adding a new signal, for example, adding a new signal dedicated to triggering or scheduling.
  • the carrier signal is used by the zero-power device to generate a backscatter signal.
  • the zero-power device can modulate the received carrier signal to form a backscatter signal according to the information that needs to be sent.
  • the carrier signal carrier From the carrier signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as carrier signals can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the carrier signal can also be implemented by adding a new signal, for example, adding a carrier signal dedicated to generating a backscatter signal.
  • the energy supply signal, the scheduling signal and the carrier signal can be the same signal, or they can be different signals.
  • the energy supply signal can be used as the carrier signal
  • the scheduling signal can also be used. as carrier signal, etc.
  • Figure 6 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 6, the method 200 includes at least part of the following content:
  • At least one first device sends a first signal to a second device respectively;
  • the second device receives the first signal respectively sent by at least one first device.
  • the third device sends the second signal
  • the second device receives the second signal.
  • the first device obtains energy for communication through energy harvesting.
  • the first device may be a zero-power consumption device, such as an electronic tag.
  • the first device is also called a backscatter device (BD).
  • BD backscatter device
  • the first device can obtain energy through energy supply signals, solar energy, environmental radio waves, etc.
  • the energy supply signal is sent by a third device, or may be sent by a second device, or may be sent by a dedicated energy supply node.
  • the energy supply signal may be sent continuously or intermittently.
  • the first device collects energy based on the energy supply signal. After obtaining sufficient energy, it may perform a corresponding communication process, for example, a pilot signal. Sending and data transmission, etc.
  • the first device is configured with an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc., and further stores the obtained energy in an energy storage unit. After the energy storage unit obtains sufficient energy, it can drive the chip circuit inside the first device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc.
  • the energy storage unit After the energy storage unit obtains sufficient energy, it can drive the chip circuit inside the first device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • the second device may be a terminal device, such as a respective implementation of terminal device 120 in the communication system shown in FIG. 1 .
  • the third device may be a network device, such as various implementations in the network device 110 in the communication system shown in Figure 1, as an example, a base station, an AP or a router, etc., or it may also be a network device.
  • Relay nodes user front-end equipment (Customer Premise Equipment, CPE), readers and writers, etc.
  • CPE Customer Premise Equipment
  • the first device may communicate with other devices through backscatter.
  • the first signal may be sent by backscattering based on the second signal sent by the third device.
  • the first device may load the information to be sent onto the second signal and perform backscattering to obtain the first signal.
  • the first signal can be considered as the backscattered signal of the second signal, and the second signal is the carrier signal of the first signal.
  • the signal sent by the third device may be considered a main link signal, that is, the second signal may be a main link signal.
  • the first device, the second device and the third device interact with each other through symbiotic communication (Symbiotic radio, SR).
  • SR symbiotic communication
  • the first device and the third device use overlapping time domain resources and/or frequency domain resources for information exchange, and the signal sent by the first device can be used as a multipath of the signal sent by the third device instead of Interference is helpful to improve system performance.
  • the symbol length corresponding to the first signal is N times the symbol length corresponding to the second signal, and N is a positive integer greater than 1. That is, the symbol period of the first signal is N times the symbol period of the second signal.
  • the symbol period of the backscattered signal is N times the symbol period of the carrier signal.
  • the relationship between the symbol period of the backscattered signal and the symbol period of the carrier signal is N times, it is beneficial to convert the interference of the backscattered signal to the main link signal (i.e., the carrier signal) into multipath effect, thereby improving system performance.
  • the first signal and the second signal at least partially overlap in the time domain.
  • the time domain resources occupied by the first signal may include part or all of the time domain resources occupied by the second signal.
  • the second signal occupies 10 time slots
  • the first device may backscatter the second signal on the first time slot of the 10 time slots.
  • the first signal and the second signal at least partially overlap in the frequency domain.
  • the frequency domain resources occupied by the first signal may include part or all of the frequency domain resources occupied by the second signal.
  • the second signal occupies 20 MHz, and the first device can backscatter the second signal on 1 MHz of the 20 MHz.
  • the first signal includes a pilot signal and/or a data signal.
  • the pilot signal can be used by the receiving end device (ie, the second device) to perform channel estimation to determine the channel state information (Channel State Information, CSI) of the reflection link corresponding to the first device.
  • CSI Channel State Information
  • the data signal is used to carry information sent by the first device to the second device.
  • the signal compositions of the first signals sent by different first devices may be the same or may be different, which is not limited by this application.
  • the first signals sent by all first devices may include pilot signals and data signals, or the first signals sent by some first devices may only include pilot signals, and the first signals sent by some first devices may It includes a pilot signal and a data signal, and the first signal sent by some first devices only includes a data signal.
  • the first signal includes a pilot signal and a data signal
  • this application does not limit the sending order of the pilot signal and the data signal.
  • the pilot signal is located before the data signal.
  • the pilot signal is located after the data signal, or the pilot signal is located in the data signal (that is, the pilot signal is interspersed in the data signal).
  • the second signal includes a pilot signal and/or a data signal.
  • the pilot signal may be used by the receiving end device (ie, the second device) to perform channel estimation to determine the CSI of the main link (or direct link) corresponding to the third device.
  • the data signal is used to carry information sent by the third device to the second device.
  • the second signal includes a pilot signal and a data signal
  • this application does not limit the sending order of the pilot signal and the data signal.
  • the pilot signal is located before the data signal.
  • the pilot signal is located after the data signal, or the pilot signal is located in the data signal (that is, the pilot signal is interspersed in the data signal).
  • the at least one first device sends a first signal to the second device respectively, including:
  • Multiple first devices respectively send first signals to the second device.
  • the first signal is sent based on backscattering of the second signal, which may mean that the second signal is sent based on the main link signal.
  • the first signal sent is A signal may be backscattered and transmitted based on the same second signal, or may be backscattered and transmitted based on a different second signal, which is not limited in this application.
  • the first signal sent by each first device includes a pilot signal and a data signal.
  • each first device among the plurality of first devices performs data transmission.
  • This situation can be considered as a simultaneous access solution for multiple reflection devices. It should be understood that simultaneous access here does not refer to multiple reflective devices transmitting data at the same time, but refers to the multiple reflective devices all transmitting data. This application does not limit the timing of data transmission by the reflective devices.
  • the first signal sent by the target first device among the plurality of first devices includes a pilot signal and a data signal
  • the first signals sent by other first devices among the plurality of first devices include a pilot signal. frequency signal.
  • the CSI of the reflection link corresponding to the target first device is the strongest among the plurality of first devices.
  • the target first device may be determined by a third device among the plurality of first devices.
  • the second device may perform channel estimation based on pilot signals sent by the plurality of first devices, and determine the CSI of the reflection link corresponding to each of the plurality of first devices.
  • the second device may send the CSI of the plurality of first devices to the third device.
  • the third device may determine the target first device among the plurality of first devices according to the CSI of the plurality of first devices. For example, the first device with the strongest CSI is determined as the target first device.
  • the third device may send first instruction information to the target first device to instruct the first device to perform data transmission.
  • the target first device can perform data transmission.
  • Method 2 The target first device is determined by the second device among the plurality of first devices.
  • the second device may perform channel estimation based on pilot signals sent by the plurality of first devices, and determine the CSI of the reflection link corresponding to each of the plurality of first devices.
  • the second device may determine the target first device among the plurality of first devices according to the CSI of the plurality of first devices. For example, the first device with the strongest CSI is determined as the target first device.
  • Method 2-1 The second device may send second instruction information to the target first device to instruct the target first device to perform data transmission.
  • the second device may send third instruction information to the third device, used to instruct the third device to notify the target first device to perform data transmission and/or the target first device performs data transmission on multiple devices.
  • the corresponding CSI of the first device is the strongest.
  • the third indication information may be used to indicate identification information of the target first device.
  • the third device may determine to notify the target first device to perform data transmission, or determine that the target first device is the plurality of first devices.
  • the first device with the strongest CSI among the devices can further notify the target first device to perform data transmission.
  • the third device may send first indication information to the target first device to instruct the target first device to perform data transmission.
  • the target first device can perform data transmission.
  • the second device after the second device receives the second signal from the third device and the first signal sent by at least one first device, it needs to demodulate the second signal and at least one first signal to Obtain the main link information and the information of at least one reflection device.
  • Embodiment 1 Simultaneous access solution of multiple reflecting devices, that is, multiple transmitting devices all perform data transmission.
  • Figure 7 is a schematic diagram of a system model of a simultaneous access solution for multiple reflection devices provided by an embodiment of the present application.
  • the third device sends the second signal, that is, the main link signal.
  • multiple reflecting devices load their own information to be sent onto the main link signal and send it to the second device through backscattering.
  • the symbol period of the backscattered signal is N times the symbol period of the main link signal.
  • multiple reflective devices are accessed using symbiotic communication.
  • Figure 8 is a frame structure design diagram based on the system model shown in Figure 7.
  • the third device and the reflection device can first send a pilot signal, and the second device can perform channel estimation based on the pilot signal to determine the CSI of the main link corresponding to the third device and the CSI of the multiple transmitting devices.
  • the third device and multiple transmitting devices can perform data transmission.
  • the frames sent by the reflective devices may include pilot signals respectively sent by multiple reflective devices and data signals sent respectively by multiple reflective devices.
  • the pilot signals sent by the multiple reflection devices may precede the data signals sent by the multiple reflection devices.
  • the reflecting device and the second device all configured with a single antenna as an example to illustrate the system performance based on the simultaneous access solution of multiple reflecting devices, the situation with multiple antennas is similar and will not be described again here.
  • the second signal sent by the third device be denoted as s(n)
  • the first signal sent by the reflecting device i be denoted as c i .
  • the second device can receive two signals: the main link signal from the third device and the reflection link signal of K reflection devices.
  • the received signal y(n) can be expressed as:
  • h 0 is the channel attenuation coefficient between the third device and the second device, obeying the distribution h 0 ⁇ CN (0, ⁇ 1 )
  • h i is the third device and the reflection device i
  • the channel attenuation coefficient between them follows h i ⁇ CN (0, ⁇ h )
  • g i is the channel attenuation coefficient between the reflection device i and the second device
  • g i is the reflection coefficient of reflection device i
  • the second device utilizes maximum likelihood (ML) to jointly demodulate s(n) and
  • the signal-to-noise ratio contains The reachable rate R s of the information sent by the third device is:
  • the achievable rate R s of the information sent by the third device can be further expressed as:
  • the second device uses serial interference cancellation (SIC) to demodulate c 1 ,...,c K to obtain the signal-to-noise ratio of the information reflected by device j for:
  • SIC serial interference cancellation
  • Embodiment 2 Multi-reflection device diversity access solution, that is, some of the reflection devices among multiple transmitting devices all perform data transmission.
  • Embodiment 2 only the reflection device with the strongest reflection link performs access, or in other words, the reflection device corresponding to the strongest CSI performs data transmission.
  • Figure 9 is a schematic diagram of a system model of a multi-reflection device diversity access solution provided by an embodiment of the present application.
  • the third device and the reflection device first send the pilot signal, that is, the main link signal.
  • multiple reflection devices transmit pilot signals based on backscattering on the main link signal.
  • the symbol period of the pilot signal sent by the first device is N times the symbol period of the pilot signal sent by the third device.
  • the second device performs channel estimation based on the pilot signal sent by the third device and the pilot signal sent by the reflection device, and determines the CSI of the main link corresponding to the third device and the reflection of each transmitting device in the plurality of transmitting devices. CSI corresponding to the link.
  • the second device may send the CSI of the multiple transmitting devices to the third device.
  • the third device determines the target reflective device according to the CSI of the multiple reflective devices. Then, first instruction information is sent to the target reflective device for instructing the target reflective device to perform data transmission.
  • Case 2 The second device determines the target reflective device according to the CSI of the multiple reflective devices.
  • the second device may send second instruction information to the target reflective device to instruct the target reflective device to perform data transmission.
  • the second device may send third indication information to the third device to instruct the target reflection device to perform data transmission and/or the target reflection device is the corresponding CSI with the highest value among multiple reflection devices. Strong reflective equipment.
  • the third indication information may be used to indicate identification information of the target reflective device.
  • the third device that receives the third indication information may further send first indication information to the target reflective device to instruct the target reflective device to perform data transmission.
  • Figure 10 is a frame structure design diagram based on the system model shown in Figure 9.
  • the third device and the reflection device can first send a pilot signal, and the second device can perform channel estimation based on the pilot signal to determine the CSI of the main link corresponding to the third device and the number of transmitting devices.
  • Each reflection device corresponds to the CSI of the reflection link.
  • the target reflection device is selected based on the CSI of the multiple reflection devices. For example, select the reflection device with the strongest CSI as the target reflection device. The target reflective device then performs data transmission.
  • the frame sent by the reflective device may include pilot signals sent by multiple reflective devices and data signals sent by the target reflective device.
  • the reflecting device and the second device all configured with a single antenna as an example to illustrate the system performance based on the multi-reflecting device diversity access solution, the situation with multiple antennas is similar and will not be described again here.
  • the second signal sent by the third device be denoted as s(n)
  • the first signal sent by the reflecting device i be denoted as c i .
  • the achievable rate R s of the information sent by the third device can be further expressed as:
  • the sum rate of the information sent by the transmitting device (i.e., the sum of the reachable rates) R c,sum is expressed as:
  • Figure 11 is a comparison chart of the achievable rate of information sent by the third device based on the simulation of the above two access schemes.
  • Figure 6 is a comparison chart of the achievable rate of the information sent by the reflection device based on the simulation of the above two access schemes.
  • the achievable rate of the information sent by the third device and the achievable rate of the information sent by the reflective device both increase with the rate of the reflective device. increases as the number increases.
  • the performance loss caused by multi-reflecting device diversity access to the achievable rate of the information sent by the third device is about 9.7%
  • the performance loss caused by the achievable rate of the information sent by the reflecting device is about 9.7%. is 13.4%, that is, only accessing the reflection device with the strongest link can achieve performance of accessing 90% and 85% or more at the same time.
  • the second device needs to demodulate the main link information and multiple reflection devices at the same time.
  • Information In the second access scheme, only the reflection device with the strongest reflection link is selected for access, and the second device simultaneously demodulates the information from the main link and the reflection device.
  • the access method of diversity access with the strongest CSI reflection equipment is simple to operate and has low complexity, and the achievable rate can reach more than 80% of the achievable rate of the simultaneous access scheme, which is conducive to the realization of extremely limited spectrum and energy.
  • the large-scale connection of IoT devices under the situation can be used as an effective alternative for future large-scale IoT access.
  • the backscatter signal can be used to the main chain.
  • the interference of channel signals is converted into multipath effect, which is beneficial to improving system performance.
  • reflective device access based on backscattering can achieve lower energy consumption.
  • Figure 13 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes:
  • the communication unit 410 sends a first signal to the second device.
  • the first signal is backscattered and sent by the communication device based on the second signal.
  • the symbol length corresponding to the first signal is the symbol length corresponding to the second signal.
  • N times the symbol length, the second signal is sent by the third device, and N is a positive integer greater than 1.
  • the first signal includes a pilot signal and/or a data signal.
  • the pilot signal is located before the data signal, or the pilot signal is located after the data signal, or , the pilot signal is located in the data signal.
  • the communication unit 410 is also used to:
  • the first signal is sent when the communication device receives the first indication information.
  • the communication unit 410 is also used to:
  • the communication device receives second instruction information sent by the second device, and the second instruction information is used to instruct the communication device to perform data transmission.
  • the first signal is sent when the communication device receives the second indication information.
  • the first signal and the second signal at least partially overlap in the time domain.
  • the first signal and the second signal at least partially overlap in the frequency domain.
  • the second device and the third device are the same device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 400 may correspond to the first device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 400 are respectively to implement FIG. 6 to FIG.
  • the corresponding process of the first device in the method embodiment shown in 12 will not be described again for the sake of simplicity.
  • Figure 14 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes:
  • the communication unit 510 is configured to receive a first signal sent by at least one first device, wherein the first signal is backscattered and sent based on a second signal, and the symbol length corresponding to the first signal is the third signal. N times the symbol length corresponding to the second signal, where N is a positive integer greater than 1.
  • the first signal includes a pilot signal and/or a data signal.
  • the pilot signal is located before the data signal, or the pilot signal is located after the data signal, or , the pilot signal is located in the data signal.
  • the second signal includes a pilot signal and/or a data signal.
  • the pilot signal is located before the data signal, or the pilot signal is located after the data signal, or , the pilot signal is located in the data signal.
  • the communication unit 510 is also used to:
  • the channel state information CSI corresponding to the target first device is the strongest among multiple first devices.
  • the communication unit 510 is also used to:
  • Channel state information CSI is the strongest.
  • the third indication information is identification information of the target first device.
  • the communication unit 510 is also used to:
  • the CSI of the plurality of first devices is used by the third device to determine the target first device among the plurality of first devices.
  • the CSI of the plurality of first devices is obtained by the communication device performing channel estimation based on pilot signals sent by the plurality of first devices.
  • the first signal sent by the target first device among the plurality of first devices includes a pilot signal and a data signal, and the first signal sent by other first devices among the plurality of first devices Only pilot signals are included.
  • the first signal and the second signal at least partially overlap in the time domain.
  • the first signal and the second signal at least partially overlap in the frequency domain.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 500 may correspond to the second device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 500 are respectively to implement FIG. 6 to FIG.
  • the corresponding process of the second device in the method embodiment shown in 12 will not be described again for the sake of simplicity.
  • Figure 15 shows a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 includes:
  • the communication unit 810 is configured to send a second signal to the second device, wherein the second signal is used by the first device to backscatter to obtain a first signal, and the symbol length corresponding to the first signal is the second signal. N times the symbol length corresponding to the signal, where N is a positive integer greater than 1.
  • the communication unit 810 is also used to:
  • Receive third instruction information sent by the second device the third instruction information is used to instruct the communication device to notify the target first device to perform data transmission and/or the target first device corresponds to multiple first devices.
  • the channel state information CSI is the strongest.
  • the third indication information is identification information of the target first device.
  • the communication unit 810 is further configured to receive CSI of multiple first devices sent by the second device.
  • the communication device 800 further includes:
  • a processing unit configured to determine a target first device among the plurality of first devices according to the CSI of the plurality of first devices.
  • the communication unit 810 is also used to:
  • the channel state information CSI corresponding to the target first device is the strongest among the plurality of first devices.
  • the first signal and the second signal at least partially overlap in the time domain.
  • the first signal and the second signal at least partially overlap in the frequency domain.
  • the first signal includes a pilot signal and/or a data signal.
  • the pilot signal is located before the data signal, or the pilot signal is located after the data signal, or , the pilot signal is located in the data signal.
  • the second signal includes a pilot signal and/or a data signal.
  • the pilot signal is located before the data signal, or the pilot signal is located after the data signal, or , the pilot signal is located in the data signal.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 800 may correspond to the third device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 800 are respectively to implement FIG. 6 to FIG.
  • the corresponding process of the third device in the method embodiment shown in 12 will not be described again for the sake of simplicity.
  • Figure 16 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 16 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630.
  • the processor 610 may control the transceiver 630 to communicate with other devices.
  • the communication device 600 may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • the communication device 600 may specifically be the second device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • the communication device 600 may specifically be a third device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the third device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • Figure 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 17 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the third device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the third device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 18 is a schematic block diagram of a communication system 900 provided by an embodiment of this application. As shown in FIG. 18 , the communication system 900 includes a first device 910 , a second device 920 and a third device 930 .
  • the first device 910 can be used to implement the corresponding functions implemented by the first device in the above method
  • the second device 920 can be used to implement the corresponding functions implemented by the second device in the above method
  • the third device 920 can be used to implement the corresponding functions implemented by the second device in the above method.
  • the device 930 may be used to implement the corresponding functions implemented by the third device in the above method, which will not be described again for the sake of brevity.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the second device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the third device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the third device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the third device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the third device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the computer program can be applied to the second device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the computer program can be applied to the third device in the embodiment of the present application.
  • the computer program executes the corresponding processes implemented by the third device in the various methods of the embodiment of the present application.
  • the computer program executes the corresponding processes implemented by the third device in the various methods of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一设备向第二设备发送第一信号,所述第一信号是所述第一设备基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述第二信号是第三设备发送的,所述N为大于1的正整数。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在零功耗通信中,零功耗设备接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。
由于载波信号和反向散射信号之间互为干扰,在零功耗设备大规模接入系统时,干扰问题更为严重,因此,如何降低大规模部署零功耗设备时带来的干扰是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,有利于降低载波信号和反向散射信号之间的干扰。
第一方面,提供了一种无线通信的方法,包括:第一设备向第二设备发送第一信号,所述第一信号是所述第一设备基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述第二信号是第三设备发送的,所述N为大于1的正整数。
第二方面,提供了一种无线通信的方法,包括:第二设备接收至少一个第一设备发送的第一信号,其中,所述第一信号是基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
第三方面,提供了一种无线通信的方法,包括:第三设备向第二设备发送第二信号,其中,所述第二信号用于第一设备进行反向散射得到第一信号,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
第四方面,提供了一种通信设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该通信设备包括用于执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,通过设计反向散射信号的符号长度和载波信号的符号长度为N倍关系,有利于将反向散射信号对载波信号的干扰转化为多径效应,从而提升系统性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个示例的零功耗通信系统的示意图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是根据本申请实施例提供的一种无线通信的方法的示意性交互图。
图7是根据本申请实施例的无线通信的方法的一种系统模型图。
图8是根据本申请实施例的无线通信的方法的一种系统帧设计图。
图9是根据本申请实施例的无线通信的方法的另一种系统模型图。
图10是根据本申请实施例的无线通信的方法的一种系统帧设计图。
图11是根据本申请实施例的两种接入方案的第三设备可达速率对比图。
图12是根据本申请实施例的两种接入方案的反射设备可达速率对比图。
图13是根据本申请实施例提供的一种通信设备的示意性框图。
图14是根据本申请实施例提供的另一种通信设备的示意性框图。
图15是根据本申请实施例提供的又一种通信设备的示意性框图。
图16是根据本申请实施例提供的再一种通信设备的示意性框图。
图17是根据本申请实施例提供的一种芯片的示意性框图。
图18是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统,蜂窝物联网系统,蜂窝无源物联网系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数 字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信的关键技术包括能量采集、反向散射通信以及低功耗技术。
如图2所示,一种典型的零功耗通信系统(例如RFID系统)包括网络设备和零功耗设备(例如如电子标签)。网络设备用于向零功耗设备发送无线供能信号,下行通信信号以及接收零功耗设备的反向散射信号。一个基本的零功耗设备包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗设备还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或环境温度、环境湿度等传感数据。
例如,能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为网络设备发射的无线电波),用于驱动零功耗设备的低功耗计算模块和实现反向散射通信。零功耗设备获得能量后,可以接收网络设备的控制命令并基于控制信令基于反向散射的方式向网络设备发送数据。所发送的数据可以为零功耗设备自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗设备也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗设备工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗设备无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗设备接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗设备的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗设备的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗设备的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗设备借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗设备具有显著的优点:
(1)不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
零功耗设备传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗设备的能量来源以及使用方式,可以将零功耗设备分为如下类型:
1、无源零功耗设备
零功耗设备(如RFID系统的电子标签)不需要内装电池,零功耗设备接近网络设备(如RFID系统的读写器)时,零功耗设备处于网络设备天线辐射形成的近场范围内。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路(或称反射链路)的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗设备。
无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗设备
半无源零功耗设备自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗设备。
半无源零功耗设备继承了无源零功耗设备的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗设备
有些场景下使用的零功耗设备也可以为有源零功耗设备,此类设备可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。因此,这类设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗设备进行能量采集的能量来源。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新增信号实现,例如新增专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗设备进行数据传输。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新增信号实现,例如新增专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗设备产生反向散射信号,例如,零功耗设备可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从载波信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,载波信号也可以通过新增信号实现,例如新增专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
由于载波信号和反向散射信号之间互为干扰,在零功耗设备大规模接入系统时,干扰问题更为严重,因此,如何降低大规模部署零功耗设备时带来的干扰是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是根据本申请实施例的无线通信的方法200的示意性交互图,如图6所示,该方法200包括如下至少部分内容:
S210,至少一个第一设备分别向第二设备发送第一信号;
对应的,第二设备接收至少一个第一设备分别发送的第一信号。
S201,第三设备发送第二信号;
对应的,第二设备接收所述第二信号。
在一些实施例中,所述第一设备通过能量采集获得用于通信的能量。
在一些实施例中,第一设备可以为零功耗设备,比如电子标签。
在一些实施例中,所述第一设备或称反射设备(Backscatter device,BD)。
应理解,本申请并不限定第一设备获得能量的具体方式。作为示例而非限定,第一设备可以通过供能信号,太阳能,环境无线电波等方式获得能量。
在一些实施例中,该供能信号是第三设备发送的,或者,也可以是第二设备发送的,或者,也可以是专用供能节点发送的。
可选地,该供能信号可以是持续地或间歇性地发送的,第一设备基于该供能信号进行能量采集,在获得足够能量之后,可以执行相应的通信过程,例如,导频信号的发送和数据的传输等。
在一些实施例中,该第一设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动第一设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作。
在一些实施例中,所述第二设备可以是终端设备,例如图1所示通信系统中的终端设备120的各自实现。
在一些实施例中,所述第三设备可以为网络设备,例如图1所示通信系统中的网络设备110中的各种实现,作为示例,基站,AP或路由器等,或者,也可以为中继节点,用户前端设备(Customer Premise Equipment,CPE),读写器等。
在一些实施例中,所述第一设备可以通过反向散射方式与其他设备进行通信。
例如,所述第一信号可以是基于第三设备发送的第二信号进行反向散射发送的。
具体例如,第一设备可以将待发送信息加载到第二信号上进行反向散射得到第一信号。
即,第一信号可以认为是第二信号的反向散射信号,第二信号为第一信号的载波信号。
在一些实施例中,所述第三设备发送的信号可以认为是主链路信号,即第二信号可以是主链路信号。
在一些实施例中,第一设备、第二设备和第三设备通过共生通信(Symbiotic radio,SR)方式进行信息交互。例如,第一设备和第三设备使用重叠的时域资源和/或频域资源进行信息交互,并且所述第一设备发送的信号可以作为所述第三设备发送的信号的一条多径而非干扰,有利于提升系统性能。
在一些实施例中,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。即,第一信号的符号周期为第二信号的符号周期的N倍。
换言之,反向散射信号的符号周期为载波信号的符号周期的N倍。
因此,在本申请实施例中,通过设计反向散射信号的符号周期和载波信号的符号周期为N倍关系,有利于将反向散射信号对主链路信号(即载波信号)的干扰转化为多径效应,从而提升系统性能。
在一些实施例中,所述第一信号和所述第二信号在时域上至少部分重叠。
例如,所述第一信号所占的时域资源可以包括所述第二信号所占的部分或全部时域资源。
作为一个示例,所述第二信号占10个时隙,所述第一设备可以对该10个时隙中的第一个时隙上的第二信号进行反向散射。
在一些实施例中,所述第一信号和所述第二信号在频域上至少部分重叠。
例如,所述第一信号所占的频域资源可以包括所述第二信号所占的部分或全部频域资源。
作为一个示例,所述第二信号占20MHz,所述第一设备可以对该20MHz中的1MHz上的第二信号进行反向散射。
在一些实施例中,所述第一信号包括导频信号和/或数据信号。
可选地,所述导频信号可以用于接收端设备(即第二设备)进行信道估计确定第一设备对应的反射链路的信道状态信息(Channel State Information,CSI)。
可选地,所述数据信号用于承载第一设备发送给第二设备的信息。
应理解,在本申请实施例中,不同的第一设备发送的第一信号的信号组成可以相同,或也可以不同不同,本申请对此不作限定。
例如,所有的第一设备发送的第一信号均可以包括导频信号和数据信号,或者,有的第一设备发送的第一信号仅包括导频信号,有的第一设备发送的第一信号包括导频信号和数据信号,有的第一设备发送的第一信号仅包括数据信号。
应理解,在所述第一信号包括导频信号和数据信号的情况下,本申请并不限定所述导频信号和数据信号的发送顺序,例如,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中(即导频信号穿插在数据信号中)。
在一些实施例中,所述第二信号包括导频信号和/或数据信号。
可选地,所述导频信号可以用于接收端设备(即第二设备)进行信道估计确定第三设备对应的主链路(或者说,直接链路)的CSI。
可选地,所述数据信号用于承载第三设备发送给第二设备的信息。
应理解,在所述第二信号包括导频信号和数据信号的情况下,本申请并不限定所述导频信号和数据信号的发送顺序,例如,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中(即导频信号穿插在数据信号中)。
在一些实施例中,所述至少一个第一设备分别向第二设备发送第一信号,包括:
多个第一设备分别向第二设备发送第一信号。
应理解,在本申请实施例中,第一信号是基于第二信号进行反向散射发送的,可以指第二信号是基于主链路信号发送的,对于不同的第一设备,其发送的第一信号可以是基于相同的第二信号进行反向散射发送的,或者,也可以是基于不同的第二信号进行反向散射发送的,本申请对此不作限定。
可选地,每个第一设备发送的第一信号均包括导频信号和数据信号。
即,所述多个第一设备中的每个第一设备均进行数据传输。此情况可以认为是一种多反射设备同时接入方案。应理解,这里的同时接入并不指代多个反射设备同时进行数据传输,而是指该多个反射设备均进行数据传输,本申请对于反射设备进行数据传输的时机不作限定。
可选地,所述多个第一设备中的目标第一设备发送的第一信号包括导频信号和数据信号,所述多个第一设备中的其他第一设备发送的第一信号包括导频信号。
即,所述多个第一设备中仅目标第一设备进行数据传输。此情况可以认为是一种多反射设备分集接入方案。
在一些实施例中,在所述多个第一设备中所述目标第一设备对应的反射链路的CSI最强。
方式1:所述目标第一设备可以是第三设备在所述多个第一设备中确定的。
例如,所述第二设备可以根据所述多个第一设备发送的导频信号进行信道估计,确定所述多个第一设备中的每个第一设备对应的反射链路的CSI。
可选地,所述第二设备可以向所述第三设备发送所述多个第一设备的CSI。
可选地,所述第三设备可以根据所述多个第一设备的CSI,在所述多个第一设备中确定目标第一设备。例如,将CSI最强的第一设备确定为目标第一设备。
可选地,所述第三设备可以向所述目标第一设备发送第一指示信息,用于指示所述第一设备进行数据传输。
进一步地,所述目标第一设备可以进行数据传输。
方式2:所述目标第一设备是第二设备在所述多个第一设备中确定的。
例如,所述第二设备可以根据所述多个第一设备发送的导频信号进行信道估计,确定所述多个第一设备中的每个第一设备对应的反射链路的CSI。
可选地,所述第二设备可以根据所述多个第一设备的CSI,在所述多个第一设备中确定目标第一设备。例如,将CSI最强的第一设备确定为目标第一设备。
方式2-1:所述第二设备可以向所述目标第一设备发送第二指示信息,用于指示所述目标第一设备进行数据传输。
方式2-2:所述第二设备可以向所述第三设备发送第三指示信息,用于指示所述第三设备通知目标第一设备进行数据传输和/或所述目标第一设备在多个第一设备中对应的CSI最强。
可选地,所述第三指示信息可以用于指示所述目标第一设备的标识信息。
所述第三设备接收到第二设备发送的所述目标第一设备的标识信息之后,可以确定通知所述目标第一设备进行数据传输,或者,确定目标第一设备为所述多个第一设备中CSI最强的第一设备,进一步地,可以通知所述目标第一设备进行数据传输。
可选地,所述第三设备接收到所述第三指示信息之后,可以向所述目标第一设备发送第一指示信息,用于指示所述目标第一设备进行数据传输。
进一步地,所述目标第一设备可以进行数据传输。
在一些实施例中,所述第二设备接收到第三设备的第二信号和至少一个第一设备发送的第一信号之后,需要对所述第二信号和至少一个第一信号进行解调以获取其中的主链路信息与至少一个反射设备的信息。
以下,结合图7至图10,对本申请实施例的无线通信的方法进行说明。
实施例一:多反射设备同时接入方案,即多个发射设备均进行数据传输。
图7是本申请实施例提供的多反射设备同时接入方案的系统模型示意图。
具体地,第三设备发送第二信号,即主链路信号。
具体地,多个反射设备将自身的待发送信息加载到主链路信号上,通过反向散射方式发送给第二设备。其中,反向散射信号的符号周期是主链路信号的符号周期的N倍。
在一些实施例中,多个反射设备利用共生通信方式进行接入。
图8是基于图7所示系统模型的一种帧结构设计图。
如图8所示,第三设备和反射设备可以先发送导频信号,第二设备可以根据导频信号进行信道估计确定所述第三设备对应的主链路的CSI以及多个发射设备中的每个反射设备对应的反射链路的CSI。
进一步地,第三设备和是多个发射设备可以进行数据传输。
即,基于多反射设备同时接入方案,反射设备发送的帧可以包括多个反射设备分别发送的导频信号以及多个反射设备分别发送的数据信号。
可选地,所述多个反射设备发送的导频信号可以在所述多个反射设备发送的数据信号之前。
以第三设备,反射设备和第二设备都配置单天线为例阐述基于多反射设备同时接入方案的系统性能,多天线情况类似,这里不再赘述。将第三设备发送的第二信号记为s(n),将反射设备i发送的第一信号记为c i
则第二设备可以接收到两种信号:来自第三设备的主链路信号和K个反射设备的反射链路信号,接收信号y(n)可以表示为:
Figure PCTCN2022085901-appb-000001
其中p为第三设备的发送功率,h 0为第三设备与第二设备之间的信道衰减系数,服从分布h 0~CN(0,λ 1),h i为第三设备与反射设备i之间的信道衰减系数,服从h i~CN(0,λ h),g i为反射设备i与第二设备之间的信道衰减系数,服从g i~CN(0,λ g),α i是反射设备i的反射系数,这里不失一般性地假设
Figure PCTCN2022085901-appb-000002
u(n)服从均值为0,功率为σ 2的循环对称复高斯分布,即u(n)~CN(0,σ 2)。
可选地,第二设备利用最大似然法(ML)来联合解调s(n)和
Figure PCTCN2022085901-appb-000003
对于给定
Figure PCTCN2022085901-appb-000004
解得s(n)的信噪比γ s为:
Figure PCTCN2022085901-appb-000005
信噪比中含有
Figure PCTCN2022085901-appb-000006
第三设备所发送信息的可达速率R s为:
Figure PCTCN2022085901-appb-000007
在高信噪比情况下,第三设备所发送信息的可达速率R s可以进一步表示为:
Figure PCTCN2022085901-appb-000008
对于给定s(n),第二设备利用串行干扰消除(SIC)来解调c 1,...,c K,解得反射设备j信息的信噪比
Figure PCTCN2022085901-appb-000009
为:
Figure PCTCN2022085901-appb-000010
则反射设备所发送信息的和速率(即可达速率之和)R c,sum可以表达为:
Figure PCTCN2022085901-appb-000011
实施例二:多反射设备分集接入方案,即多个发射设备中部分反射设备均进行数据传输。
可选地,在实施例二中,只有反射链路最强的反射设备进行接入,或者说,对应最强CSI的反射设备进行数据传输。
图9是本申请实施例提供的多反射设备分集接入方案的系统模型示意图。
具体地,第三设备和反射设备先发送导频信号,即主链路信号。
例如,多个反射设备基于主链路信号上进行反向散射发送导频信号。其中,第一设备发送的导频信号的符号周期是第三设备发送的导频信号的符号周期的N倍。
第二设备基于第三设备发送的导频信号和反射设备发送的导频信号进行信道估计,确定所述第三设备对应的主链路的CSI以及多个发射设备中的每个发射设备的反射链路对应的CSI。
情况1:所述第二设备可以将所述多个发射设备的CSI发送给第三设备。
进一步地,所述第三设备根据所述多个反射设备的CSI确定目标反射设备。然后向目标反射设备发送第一指示信息,用于指示所述目标反射设备进行数据传输。
情况2:所述第二设备根据所述多个反射设备的CSI确定目标反射设备。
情况2-1,所述第二设备可以向目标反射设备发送第二指示信息,用于指示所述目标反射设备进行数据传输。
情况2-2,所述第二设备可以向第三设备发送第三指示信息,用于指示通知所述目标反射设备进行数据传输和/或所述目标反射设备为多个反射设备中对应CSI最强的反射设备。
例如,所述第三指示信息可以用于指示目标反射设备的标识信息。
接收到所述第三指示信息的第三设备,进一步可以向目标反射设备发送第一指示信息,用于指示所述目标反射设备进行数据传输。
图10是基于图9所示系统模型的一种帧结构设计图。
如图10所示,第三设备和反射设备可以先发送导频信号,第二设备可以根据导频信号进行信道估计,确定所述第三设备对应的主链路的CSI以及多个发射设备中的每个反射设备对应的反射链路的CSI。
进一步地,基于所述多个反射设备的CSI进行目标反射设备的选择。例如选择CSI最强的反射设备作为目标反射设备。然后目标反射设备进行数据传输。
即,反射设备发送的帧可以包括多个反射设备发送的导频信号以及目标反射设备发送的数据信号。
以第三设备,反射设备和第二设备都配置单天线为例阐述基于多反射设备分集接入方案的系统性能,多天线情况类似,这里不再赘述。将第三设备发送的第二信号记为s(n),将反射设备i发送的第一信号记为c i
则第二设备接收到的信号y(n)可以表示为:
Figure PCTCN2022085901-appb-000012
其中,
Figure PCTCN2022085901-appb-000013
类似地,可以解得第三设备所发送信息的可达速率R s表达式为:
Figure PCTCN2022085901-appb-000014
在高信噪比情况下,第三设备所发送信息的可达速率R s可以进一步表示为:
Figure PCTCN2022085901-appb-000015
发射设备所发送信息的和速率(即可达速率之和)R c,sum表示为:
Figure PCTCN2022085901-appb-000016
图11是基于上述两种接入方案仿真得到的第三设备所发送信息的可达速率对比图,图6是基于 上述两种接入方案仿真得到的反射设备所发送信息的可达速率对比图。在仿真中,参数设置为:N=64,σ 2=1,p=100,α=0.5,λ 1=λ h=λ g=1。
由图11和图12可以看出,对于多反射设备同时接入和多反射设备分集接入,第三设备所发送信息的可达速率与反射设备所发送信息的可达速率均随着反射设备数的增加而增加。当反射设备数为16时,多反射设备分集接入对第三设备所发送信息的可达速率带来的性能损失约为9.7%,对反射设备所发送信息的可达速率带来的性能损失为13.4%,即只接入链路最强的反射设备可以达到同时接入90%和85%以上的性能。
综上,在第一种接入方案中,多个反射设备同时将待发送信息加载到主链路信号上发送给第二设备,第二设备需要同时解调主链路信息与多个反射设备的信息。在第二种接入方案中,只选择反射链路最强的反射设备进行接入,第二设备同时解调来自主链路信息与该反射设备的信息。特别地,CSI最强的反射设备分集接入的接入方式操作简单、复杂度低,且可达速率能达到同时接入方案的可达速率的80%以上,有利于实现频谱与能量极为有限的情况下的物联网设备大规模连接,可以作为未来大规模物联网接入的有效备选方案。
并且通过设计反向散射信号对于主链路信息的符号周期之间满足N倍关系,相较于传统环境反向散射通信(Ambient backscatter,AmBC)方式接入,能够将反向散射信号对主链路信号的干扰转化为多径效应,有利于提升系统性能。
并且,相较于主动式设备接入,反射设备基于反向散射方式进行接入能够实现更低的能量消耗。
上文结合图6至图12,详细描述了本申请的方法实施例,下文结合图13至图18,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图13示出了根据本申请实施例的通信设备400的示意性框图。如图13所示,该通信设备400包括:
通信单元410,向第二设备发送第一信号,所述第一信号是所述通信设备基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述第二信号是第三设备发送的,所述N为大于1的正整数。
在一些实施例中,所述第一信号包括导频信号和/或数据信号。
在一些实施例中,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
在一些实施例中,所述通信单元410还用于:
接收所述第三设备发送的第一指示信息,所述第一指示信息用于指示所述通信设备进行数据传输。
在一些实施例中,所述第一信号是所述通信设备接收到所述第一指示信息的情况下发送的。
在一些实施例中,所述通信单元410还用于:
所述通信设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示所述通信设备进行数据传输。
在一些实施例中,所述第一信号是所述通信设备接收到所述第二指示信息的情况下发送的。
在一些实施例中,所述第一信号和所述第二信号在时域上至少部分重叠。
在一些实施例中,所述第一信号和所述第二信号在频域上至少部分重叠。
在一些实施例中,所述第二设备和所述第三设备为同一设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的第一设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法实施例中第一设备的相应流程,为了简洁,在此不再赘述。
图14示出了根据本申请实施例的通信设备400的示意性框图。如图14所示,该通信设备400包括:
通信单元510,用于接收至少一个第一设备发送的第一信号,其中,所述第一信号是基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
在一些实施例中,所述第一信号包括导频信号和/或数据信号。
在一些实施例中,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
在一些实施例中,所述第二信号包括导频信号和/或数据信号。
在一些实施例中,在所述第二信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
在一些实施例中,所述通信单元510还用于:
向目标第一设备发送第二指示信息,所述第二指示信息用于指示所述目标第一设备进行数据传输。
在一些实施例中,所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
在一些实施例中,所述通信单元510还用于:
向第三设备发送第三指示信息,所述第三指示信息用于指示所述第三设备通知目标第一设备进行数据传输和/或所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
在一些实施例中,所述第三指示信息为所述目标第一设备的标识信息。
在一些实施例中,所述通信单元510还用于:
向所述第三设备发送多个第一设备的CSI。
在一些实施例中,所述多个第一设备的CSI用于所述第三设备在所述多个第一设备中确定目标第一设备。
在一些实施例中,所述多个第一设备的CSI是所述通信设备根据所述多个第一设备发送的导频信号进行信道估计得到的。
在一些实施例中,所述多个第一设备中的目标第一设备发送的第一信号包括导频信号和数据信号,所述多个第一设备中的其他第一设备发送的第一信号仅包括导频信号。
在一些实施例中,所述第一信号和所述第二信号在时域上至少部分重叠。
在一些实施例中,所述第一信号和所述第二信号在频域上至少部分重叠。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备500可对应于本申请方法实施例中的第二设备,并且通信设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法实施例中第二设备的相应流程,为了简洁,在此不再赘述。
图15示出了根据本申请实施例的通信设备800的示意性框图。如图15所示,该通信设备800包括:
通信单元810,用于向第二设备发送第二信号,其中,所述第二信号用于第一设备进行反向散射得到第一信号,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
在一些实施例中,所述通信单元810还用于:
接收所述第二设备发送第三指示信息,所述第三指示信息用于指示所述通信设备通知目标第一设备进行数据传输和/或所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
在一些实施例中,所述第三指示信息为所述目标第一设备的标识信息。
在一些实施例中,所述通信单元810还用于:接收所述第二设备发送的多个第一设备的CSI。
在一些实施例中,所述通信设备800还包括:
处理单元,用于根据所述多个第一设备的CSI,在所述多个第一设备中确定目标第一设备。
在一些实施例中,所述通信单元810还用于:
向所述多个第一设备中的目标第一设备发送第一指示信息,所述第一指示信息用于指示所述目标第一设备进行数据传输。
在一些实施例中,所述目标第一设备在所述多个第一设备中对应的信道状态信息CSI最强。
在一些实施例中,所述第一信号和所述第二信号在时域上至少部分重叠。
在一些实施例中,所述第一信号和所述第二信号在频域上至少部分重叠。
在一些实施例中,所述第一信号包括导频信号和/或数据信号。
在一些实施例中,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
在一些实施例中,所述第二信号包括导频信号和/或数据信号。
在一些实施例中,在所述第二信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备800可对应于本申请方法实施例中的第三设备,并且通信 设备800中的各个单元的上述和其它操作和/或功能分别为了实现图6至图12所示方法实施例中第三设备的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例提供的一种通信设备600示意性结构图。图16所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图16所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第三设备,并且该通信设备600可以实现本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的芯片的示意性结构图。图17所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第三设备,并且该芯片可以实现本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图18本申请实施例提供的一种通信系统900的示意性框图。如图18所示,该通信系统900包括第一设备910、第二设备920和第三设备930。
其中,该第一设备910可以用于实现上述方法中由第一设备实现的相应的功能,该第二设备920可以用于实现上述方法中由第二设备实现的相应的功能,以及该第三设备930可以用于实现上述方法中由第三设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、 电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第三设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第三设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第三设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第三设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (46)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备向第二设备发送第一信号,所述第一信号是所述第一设备基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述第二信号是第三设备发送的,所述N为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号包括导频信号和/或数据信号。
  3. 根据权利要求2所述的方法,其特征在于,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第三设备发送的第一指示信息,所述第一指示信息用于指示所述第一设备进行数据传输。
  5. 根据权利要求4所述的方法,所述第一信号是所述第一设备接收到所述第一指示信息的情况下发送的。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一设备进行数据传输。
  7. 根据权利要求6所述的方法,所述第一信号是所述第一设备接收到所述第二指示信息的情况下发送的。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一信号和所述第二信号在时域上至少部分重叠。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信号和所述第二信号在频域上至少部分重叠。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第二设备和所述第三设备为同一设备。
  11. 一种无线通信的方法,其特征在于,包括:
    第二设备接收至少一个第一设备发送的第一信号,其中,所述第一信号是基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信号包括导频信号和/或数据信号。
  13. 根据权利要求12所述的方法,其特征在于,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述第二信号包括导频信号和/或数据信号。
  15. 根据权利要求14所述的方法,其特征在于,在所述第二信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向目标第一设备发送第二指示信息,所述第二指示信息用于指示所述目标第一设备进行数据传输。
  17. 根据权利要求16所述的方法,其特征在于,所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
  18. 根据权利要求11-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向第三设备发送第三指示信息,所述第三指示信息用于指示所述第三设备通知目标第一设备进行数据传输和/或所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
  19. 根据权利要求18所述的方法,其特征在于,所述第三指示信息为所述目标第一设备的标识信息。
  20. 根据权利要求11-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向第三设备发送多个第一设备的CSI。
  21. 根据权利要求20所述的方法,其特征在于,所述多个第一设备的CSI用于所述第三设备在所述多个第一设备中确定目标第一设备。
  22. 根据权利要求17、18或20所述的方法,其特征在于,所述多个第一设备的CSI是所述第二设备根据所述多个第一设备发送的导频信号进行信道估计得到的。
  23. 根据权利要求17-22中任一项所述的方法,其特征在于,所述多个第一设备中的目标第一设备发送的第一信号包括导频信号和数据信号,所述多个第一设备中的其他第一设备发送的第一信号仅包括导频信号。
  24. 根据权利要求11-23中任一项所述的方法,其特征在于,所述第一信号和所述第二信号在时域上至少部分重叠。
  25. 根据权利要求11-24中任一项所述的方法,其特征在于,所述第一信号和所述第二信号在频域上至少部分重叠。
  26. 一种无线通信的方法,其特征在于,包括:
    第三设备向第二设备发送第二信号,其中,所述第二信号用于第一设备进行反向散射得到第一信号,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述第三设备接收所述第二设备发送第三指示信息,所述第三指示信息用于指示所述第三设备通知目标第一设备进行数据传输和/或所述目标第一设备在多个第一设备中对应的信道状态信息CSI最强。
  28. 根据权利要求27所述的方法,其特征在于,所述第三指示信息为所述目标第一设备的标识信息。
  29. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述第三设备接收所述第二设备发送的多个第一设备的CSI。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第三设备根据所述多个第一设备的CSI,在所述多个第一设备中确定目标第一设备。
  31. 根据权利要求27或30所述的方法,其特征在于,所述方法还包括:
    所述第三设备向所述多个第一设备中的目标第一设备发送第一指示信息,所述第一指示信息用于指示所述目标第一设备进行数据传输。
  32. 根据权利要求27、30或31所述的方法,其特征在于,所述目标第一设备在所述多个第一设备中对应的信道状态信息CSI最强。
  33. 根据权利要求26-32中任一项所述的方法,其特征在于,所述第一信号和所述第二信号在时域上至少部分重叠。
  34. 根据权利要求26-33中任一项所述的方法,其特征在于,所述第一信号和所述第二信号在频域上至少部分重叠。
  35. 根据权利要求26-34中任一项所述的方法,其特征在于,所述第一信号包括导频信号和/或数据信号。
  36. 根据权利要求35所述的方法,其特征在于,在所述第一信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
  37. 根据权利要求26-36中任一项所述的方法,其特征在于,所述第二信号包括导频信号和/或数据信号。
  38. 根据权利要求37所述的方法,其特征在于,在所述第二信号包括导频信号和数据信号的情况下,所述导频信号位于所述数据信号之前,或者,所述导频信号位于所述数据信号之后,或者,所述导频信号位于所述数据信号中。
  39. 一种通信设备,其特征在于,包括:
    通信单元,用于向第二设备发送第一信号,所述第一信号是所述通信设备基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述第二信号是第三设备发送的,所述N为大于1的正整数。
  40. 一种通信设备,其特征在于,包括:
    通信单元,用于接收至少一个第一设备发送的第一信号,其中,所述第一信号是基于第二信号进行反向散射发送的,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
  41. 一种通信设备,其特征在于,包括:
    通信单元,用于向第二设备发送第二信号,其中,所述第二信号用于第一设备进行反向散射得到 第一信号,所述第一信号对应的符号长度为所述第二信号对应的符号长度的N倍,所述N为大于1的正整数。
  42. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法,或如权利要求11至25中任一项所述的方法,或如权利要求26至38中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法,或如权利要求11至25中任一项所述的方法,或如权利要求26至38中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法,或如权利要求11至25中任一项所述的方法,或如权利要求26至38中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法,或如权利要求11至25中任一项所述的方法,或如权利要求26至38中任一项所述的方法。
  46. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法,或如权利要求11至25中任一项所述的方法,或如权利要求26至38中任一项所述的方法。
PCT/CN2022/085901 2022-04-08 2022-04-08 无线通信的方法和设备 WO2023193255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085901 WO2023193255A1 (zh) 2022-04-08 2022-04-08 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085901 WO2023193255A1 (zh) 2022-04-08 2022-04-08 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023193255A1 true WO2023193255A1 (zh) 2023-10-12

Family

ID=88243889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085901 WO2023193255A1 (zh) 2022-04-08 2022-04-08 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2023193255A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451591A (zh) * 2018-12-27 2019-03-08 电子科技大学 融合蜂窝网-物联网的共生系统传输方法
CN110266618A (zh) * 2019-07-03 2019-09-20 电子科技大学 一种低速率被动式物联网设备的活跃度检测方法
CN110545128A (zh) * 2019-08-23 2019-12-06 东南大学 一种环境反向散射阵列通信系统中的协作传输优化方法
CN110601738A (zh) * 2019-08-23 2019-12-20 东南大学 一种基于频谱共享的环境反向散射阵列通信系统速率分析方法
WO2021119941A1 (zh) * 2019-12-16 2021-06-24 华为技术有限公司 反射通信的方法和通信装置
US20220077886A1 (en) * 2019-05-22 2022-03-10 Huawei Technologies Co., Ltd. Backscatter Communication Method, Excitation Device, Backscatter Device, and Receiving Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451591A (zh) * 2018-12-27 2019-03-08 电子科技大学 融合蜂窝网-物联网的共生系统传输方法
US20220077886A1 (en) * 2019-05-22 2022-03-10 Huawei Technologies Co., Ltd. Backscatter Communication Method, Excitation Device, Backscatter Device, and Receiving Device
CN110266618A (zh) * 2019-07-03 2019-09-20 电子科技大学 一种低速率被动式物联网设备的活跃度检测方法
CN110545128A (zh) * 2019-08-23 2019-12-06 东南大学 一种环境反向散射阵列通信系统中的协作传输优化方法
CN110601738A (zh) * 2019-08-23 2019-12-20 东南大学 一种基于频谱共享的环境反向散射阵列通信系统速率分析方法
WO2021119941A1 (zh) * 2019-12-16 2021-06-24 华为技术有限公司 反射通信的方法和通信装置

Similar Documents

Publication Publication Date Title
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023015572A1 (zh) 无线通信的方法和设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2024040402A1 (zh) 无线通信的方法和设备
US20240137194A1 (en) Method and device for wireless communication
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
EP4366178A1 (en) Wireless communication method and devices
US20240178700A1 (en) Wireless communication method and apparatus, and communication device
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024082267A1 (zh) 无线通信的方法和设备
US20240155566A1 (en) Wireless communication method, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936193

Country of ref document: EP

Kind code of ref document: A1