WO2024098404A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2024098404A1
WO2024098404A1 PCT/CN2022/131483 CN2022131483W WO2024098404A1 WO 2024098404 A1 WO2024098404 A1 WO 2024098404A1 CN 2022131483 W CN2022131483 W CN 2022131483W WO 2024098404 A1 WO2024098404 A1 WO 2024098404A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target signal
time
frequency resources
transmit
Prior art date
Application number
PCT/CN2022/131483
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/131483 priority Critical patent/WO2024098404A1/zh
Publication of WO2024098404A1 publication Critical patent/WO2024098404A1/zh

Links

Images

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically to a method and device for wireless communications.
  • signals received through low-order modulation methods such as amplitude shift keying (ASK)
  • envelope detection-based methods such as wake-up signals (WUS)
  • WUR wake-up receivers
  • the present application provides a wireless communication method and device, which are beneficial to improving the resource utilization of the system.
  • a method for wireless communication including: a first device sends a first target signal and a second target signal, wherein the first target signal is used to carry information to be sent, the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal, and there is overlap between the time-frequency resources of the first target signal and the time-frequency resources of the second target signal.
  • a method for wireless communication including: a second device receives a first target signal sent by a first device, wherein the first target signal is used to carry information to be sent; there is overlap between the time-frequency resources of the first target signal and the time-frequency resources of the second target signal sent by the first device, and the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal.
  • a communication device for executing the method in the first aspect or its various implementations.
  • the communication device includes a functional module for executing the method in the above-mentioned first aspect or its various implementation modes.
  • a communication device for executing the method in the second aspect or its respective implementation manners.
  • the communication device includes a functional module for executing the method in the above-mentioned second aspect or its various implementation modes.
  • a communication device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or its implementation manners.
  • a communication device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manner.
  • a chip is provided for implementing the method in any one of the first to second aspects or in each of their implementations.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the device executes a method as described in any one of the first to second aspects or their respective implementations.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method of any one of the first to second aspects or any of their implementations.
  • a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in any one of the first to second aspects or any of their implementations.
  • a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to second aspects or in each of their implementations.
  • the first device when the first device needs to transmit a first target signal for carrying information to be sent and a second target signal received based on envelope detection or amplitude modulated, the first device can multiplex the time-frequency resources of the first target signal and the second target signal, that is, the time-frequency resources of the first target signal and the time-frequency resources of the second target signal can overlap, thereby improving the resource utilization of the system.
  • FIG1 is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • FIG. 5 is a circuit diagram of resistive load modulation according to an embodiment of the present application.
  • FIG6 is a diagram showing the working principle of the wake-up receiver.
  • Figure 7 is a schematic diagram of the information composition of the WUR PDDU frame.
  • FIG8 is a schematic diagram of OOK modulation.
  • FIG. 9 is a schematic diagram of an MC-OOK signal generated by multiple carriers.
  • FIG. 10 is a schematic diagram of transmitting a WUS and a data signal through multiple carriers.
  • FIG11 is a constellation point distribution diagram of 256QAM modulation.
  • FIG12 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of modulation depths of an on signal and an off signal according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a second target signal according to an embodiment of the present application.
  • FIG15 is a diagram showing the distribution of constellation points in QPSK modulation.
  • FIG16 is a schematic diagram of a mapping method on time domain symbols occupied by the first signal.
  • FIG17 is a schematic diagram of a mapping method on time domain symbols occupied by the second signal.
  • FIG. 18 is an example of time-frequency resources for transmitting WUS according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of transmitting a data signal using the time-frequency resources used to transmit an off signal of a WUS.
  • FIG. 20 is a transmission diagram of a WUS and data signal according to an embodiment of the present application.
  • FIG. 21 is a transmission diagram of another WUS and data signal according to an embodiment of the present application.
  • FIG. 22 is a transmission diagram of another WUS and data signal according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 25 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 26 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 27 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR system evolution system unlicensed spectrum
  • LTE-based access to unlicensed spectrum LTE-U
  • NR-based access to unlicensed spectrum NR-U
  • NTN non-terrestrial communication network
  • UMTS universal mobile communication system
  • WLAN wireless local area network
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • cellular Internet of Things system cellular passive Internet of Things system or other communication systems.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, or a standalone (SA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, wherein the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to an authorized spectrum, wherein the authorized spectrum can also be considered as an unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a network device (gNB) in a vehicle-mounted device, a wearable device, and a NR network, or a network device in a cellular Internet of Things, or a network device in a cellular passive Internet of Things, or a network device in a future evolved PLMN network or a network device in an NTN network, etc.
  • AP access point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB network device in a vehicle-mounted device
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, a terminal device in a cellular Internet of Things, a terminal device in a cellular passive Internet of Things, etc.
  • ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, or a wireless terminal device in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include another number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between the two, or an association relationship between the two, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • the key technologies of zero-power communication include energy harvesting, backscatter communication and low-power technology.
  • a typical zero-power communication system (such as an RFID system) includes a network device (such as a reader/writer of an RFID system) and a zero-power device (such as an electronic tag).
  • the network device is used to send wireless power supply signals, downlink communication signals, and receive backscattered signals from the zero-power device to the zero-power device.
  • a basic zero-power device includes an energy collection module, a backscatter communication module, and a low-power computing module.
  • the zero-power device may also have a memory or sensor for storing some basic information (such as item identification, etc.) or sensor data such as ambient temperature and ambient humidity.
  • the energy collection module can collect energy carried by radio waves in space (radio waves emitted by network devices are shown in Figure 2) to drive the low-power computing module of the zero-power device and realize backscatter communication.
  • the zero-power device After the zero-power device obtains energy, it can receive control commands from the network device and send data to the network device based on the control signaling based on backscattering.
  • the data sent can be data stored in the zero-power device itself (such as identity identification or pre-written information, such as the production date, brand, manufacturer, etc. of the product).
  • the zero-power device can also be loaded with various sensors, so as to report the data collected by various sensors based on the zero-power mechanism.
  • the RF energy harvesting module harvests electromagnetic wave energy in space based on the principle of electromagnetic induction, and then obtains the energy required to drive the zero-power device to work, such as driving low-power demodulation and modulation modules, sensors, and memory reading, etc. Therefore, zero-power devices do not require traditional batteries.
  • the zero-power device receives the carrier signal sent by the network device, modulates the carrier signal, loads the information to be sent and radiates the modulated signal from the antenna.
  • This information transmission process is called backscatter communication.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power device according to the beat of the data stream, so that the parameters such as the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • a resistor In resistive load modulation, a resistor is connected in parallel to the load, and the resistor is turned on or off based on the control of the binary data stream, as shown in FIG5 .
  • the on-off of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is realized, that is, the amplitude of the backscatter signal of the zero-power device is adjusted to achieve signal modulation and transmission.
  • ASK amplitude keying modulation
  • FSK frequency keying modulation
  • the zero-power device uses load modulation to modulate the incoming signal, thereby realizing the backscatter communication process. Therefore, the zero-power device has significant advantages:
  • the data transmitted by the zero-power device can be represented by different forms of codes to represent binary "1" and "0".
  • the wireless radio frequency identification system usually uses one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero encoding, differential bi-phase (DBP) encoding, differential encoding, pulse interval encoding (PIE), bidirectional space encoding (FM0), Miller encoding, differential encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential bi-phase
  • PIE pulse interval encoding
  • FM0 bidirectional space encoding
  • Miller encoding differential encoding
  • Zero-power devices do not need internal batteries.
  • a zero-power device When a zero-power device is close to a network device (such as a reader/writer in an RFID system), it is within the near field formed by the radiation of the network device antenna. Therefore, the antenna of the zero-power device generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. This realizes the demodulation of the forward link signal and the modulation of the reverse link (or reflection link) signal.
  • the zero-power device uses the backscatter implementation method to transmit the signal.
  • the passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link, and is a truly zero-power device.
  • Passive zero-power devices do not require batteries, and the RF circuit and baseband circuit are very simple. For example, they do not require low-noise amplifiers (LNA), power amplifiers (PA), crystal oscillators, analog-to-digital converters (ADC) and other devices. Therefore, they have many advantages such as small size, light weight, very low price and long service life.
  • LNA low-noise amplifiers
  • PA power amplifiers
  • ADC analog-to-digital converters
  • Semi-passive zero-power devices do not have conventional batteries installed on them, but can use RF energy harvesting modules to harvest radio wave energy and store the harvested energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. It can realize the demodulation of the forward link signal and the modulation of the reverse link signal. For the backscatter link, the zero-power device uses the backscatter implementation method to transmit the signal.
  • the semi-passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio energy collected by the energy harvesting module. Therefore, it is also a truly zero-power device.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, so they have many advantages such as small size, light weight, very cheap price and long service life.
  • Zero-power devices used in some scenarios can also be active zero-power devices, which can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power device. It can demodulate the forward link signal and modulate the reverse link signal.
  • the zero-power device uses the backscatter implementation method to transmit the signal. Therefore, the zero power consumption of this type of device is mainly reflected in the fact that the signal transmission of the reverse link does not require the terminal's own power, but uses the backscatter method.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • the energy supply signal is the energy source for the zero-power device to harvest energy.
  • the energy supply signal carrier can be a base station, a smart phone, a smart gateway, a charging station, a micro base station, etc.
  • the frequency band of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for power supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the power supply signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard, such as a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), a physical random access channel (PRACH), a physical uplink control channel (PUCCH), a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), etc., or may be a WIFI signal or a Bluetooth signal.
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • the energy supply signal may also be implemented by adding a new signal, for example, adding a signal dedicated to energy supply.
  • the trigger signal is used to trigger or schedule the zero-power device to transmit data.
  • the trigger signal carrier can be a base station, a smart phone, a smart gateway, etc.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used for triggering or scheduling can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, or a WIFI signal or a Bluetooth signal.
  • the trigger signal may also be implemented by adding a new signal, such as adding a signal dedicated to triggering or scheduling.
  • the carrier signal is used by the zero-power device to generate a backscatter signal.
  • the zero-power device can modulate the received carrier signal according to the information to be sent to form a backscatter signal.
  • the carrier signal carrier it can be a base station, a smart phone, a smart gateway, etc.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used as a carrier signal can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, or a WIFI signal or a Bluetooth signal.
  • the carrier signal may also be implemented by adding a new signal, for example, adding a carrier signal dedicated to generating a backscatter signal.
  • the power supply signal, the scheduling signal and the carrier signal can be the same signal, or can be different signals.
  • the power supply signal can be used as a carrier signal
  • the scheduling signal can also be used as a carrier signal, etc.
  • the wake-up receiver has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives the wake-up signal (WUS) based on envelope detection. Therefore, the WUS received by the wake-up receiver is different from the modulation method and waveform of the signal carried by the physical downlink control channel (PDCCH).
  • the wake-up signal is mainly an envelope signal modulated by amplitude shift keying (ASK) of the carrier signal.
  • the demodulation of the envelope signal is also mainly based on the energy provided by the wireless radio frequency signal to drive the low-power circuit, so it can be passive.
  • the wake-up receiver can also be powered by the terminal. Regardless of the power supply method, the wake-up receiver greatly reduces the power consumption compared with the traditional receiver of the UE.
  • the wake-up receiver can be combined with the UE as an additional module of the UE receiver, or it can be used as a wake-up function module of the UE alone.
  • the block diagram of the receiver system based on the wake-up signal is shown in FIG6 .
  • the wake-up receiver receives the wake-up signal and can instruct the UE to turn on the main receiver if the UE needs to turn on the main receiver. Otherwise, the main receiver of the UE can be in a turned-off state.
  • wake-up radio (WUR) signals are used to achieve energy saving of devices.
  • WUR AP notifies WUR non-AP STA of energy saving operations through WUR wake-up frames.
  • the wake-up frame is carried in the WUR physical layer protocol data unit (PPDU) frame.
  • PPDU physical layer protocol data unit
  • a WUR PPDU frame contains three parts: legacy preamble, WUR synchronization (WUR-Sync) and WUR data (WUR-Data).
  • legacy preamble is to protect WUR-Sync and WUR-Data parts. It is a non-WUR part reserved for compatibility considerations. It uses traditional orthogonal frequency-division multiplexing (OFDM) modulation and 20MHz bandwidth.
  • WUR-Sync is used to help identify and demodulate the WUR-data part
  • the WUR-Data part is used to carry WUR PSDU.
  • the WUR-Sync part and the WUR-data part use On-Off Keying (OOK) modulation and 4MHz in the 20MHz channel bandwidth.
  • OOK On-Off Keying
  • the modulation principle of OOK is to modulate the amplitude of the carrier signal to non-zero and zero values, corresponding to On and Off, respectively, to represent information bits.
  • OOK is also known as binary amplitude keying (2ASK).
  • Figure 8 shows the principle diagram of OOK modulation.
  • the WUR-data part carries user information. After the user information is encoded, OOK modulation is used to form MC-OOK symbols of corresponding length.
  • the above OOK signal is generated by multi-carrier (MC), so the OOK signal is called MC-OOK signal.
  • the MC-OOK signal can be an OOK signal generated by multi-carrier modulation such as OFDM modulation, which can maintain good compatibility with the OFDM system and reduce the transmitter complexity introduced by implementing the WUR signal.
  • Figure 9 is a schematic diagram of the MC-OOK signal generated by multi-carrier. By mapping the corresponding amplitude values to multiple subcarriers in the frequency domain, the waveform of the time domain signal converted to the inverse discrete Fourier transform (IDFT) is similar to the waveform formed by ASK modulation, where bit 1 is represented by the high level of the signal and bit 0 is represented by the low level of the signal.
  • IDFT inverse discrete Fourier transform
  • the WUS in the NR system and the wake-up radio WUR signal in the WIFI system are collectively referred to as WUS. That is, the WUS in the following text can be a wake-up signal or a wake-up radio WUR signal, or it can also refer to a signal with similar functions in future communication systems.
  • the receiving end of the WUS detects the WUS by means of envelope detection.
  • the wake-up receiver for detecting the WUS by means of envelope detection has low complexity and power consumption.
  • the wake-up receiver can demodulate the WUS by means of envelope detection for signals modulated by ASK, OOK and FSK.
  • the corresponding on time domain waveform can be generated after IDFT transformation of the transmitter. If no value is assigned to the corresponding subcarrier, the corresponding off time domain waveform can be generated, thus realizing OOK modulation based on multi-carrier.
  • the WUR signal in the 802.11ba technology uses the 13 subcarriers at the center of the 64-point IDFT to generate the on waveform within a 20MHz bandwidth.
  • the device can map WUS and data signals to different subcarriers, and further process and transmit them through the OFDM transmitter.
  • the assignment of the subcarrier carrying the signal needs to satisfy the amplitude of the generated signal to meet the modulation depth requirement, and the amplitude of the signal in the time domain symbol is as flat as possible.
  • the amplitude of the off signal is as low as possible compared to the amplitude of the on signal to meet the modulation depth requirement.
  • 256QAM modulation as an example, different constellation points (or modulation symbols) are mapped on the subcarrier to meet the above requirements.
  • the constellation point distribution diagram of 256QAM modulation can be mapped to the subcarrier to generate the on signal, and the constellation point with a smaller amplitude can be mapped to the subcarrier to generate the off signal.
  • the corresponding subcarrier can also be set to a null subcarrier to achieve it.
  • the modulation symbols mapped on the subcarriers occupied by the off signal only need to ensure that the time domain waveform meets the low level, and even no modulation symbols may be mapped on these subcarriers. If WUS is not sent for a long time on a certain time-frequency resource, this part of the subcarriers may not be mapped with modulation symbols, which will cause a great waste of this part of the time-frequency resources.
  • receivers with extremely low power consumption and complexity are used to save power or reduce the complexity and cost of the terminal, such as the aforementioned wake-up receiver.
  • the WUS sent by the network device is expected to be compatible with the existing OFDM transmitter, and it is expected to be multiplexed with the existing NR signal within the frequency band, rather than using a separate frequency band resource for WUS.
  • the WUR signal in WiFi technology uses the center 4MHz of the 20MHz channel bandwidth, other frequency domain resources within the channel bandwidth during the WUR signal transmission are not used for signal transmission. Therefore, how to send such signals to improve the utilization of spectrum resources is an urgent problem to be solved.
  • FIG. 12 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 12 , the method 200 includes at least part of the following contents:
  • the first device sends a first target signal and a second target signal, wherein the first target signal is used to carry information to be sent, the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal, and the time-frequency resources of the first target signal and the time-frequency resources of the second target signal overlap.
  • the receiving device of the first target signal and the receiving device of the second target signal may be the same device, or may be different devices.
  • the receiving end devices of the first target signal and the second target signal are both the second device.
  • the receiving end device of the first target signal is the second device, and the receiving end device of the second target signal is the third device.
  • the first device may be a network device in a communication system, such as a base station in a cellular network, or an AP in a WIFI system, or may be a traditional terminal in a communication system, such as a UE in a cellular network, or a STA in a WIFI system, etc.
  • the first target signal may be a data signal or a control signal, for example, a downlink data signal or a downlink control signal sent by a network device to a terminal device, or a sideline data signal or a sideline control signal sent by one terminal device to another terminal device.
  • the first target signal may be a downlink data channel, such as PDSCH, or a downlink control channel, such as PDCCH, or a downlink reference signal, such as a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), etc.
  • a downlink data channel such as PDSCH
  • a downlink control channel such as PDCCH
  • a downlink reference signal such as a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), etc.
  • CSI-RS Channel State Information Reference Signal
  • the first target signal may be a sidelink data channel, such as a PSSCH, or a sidelink control channel, such as a PSCCH, or a sidelink reference signal, etc.
  • the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal, that is, the second target signal is a signal that carries information through amplitude changes.
  • the second target signal may be WUS.
  • the second target signal is a 2ASK modulated (ie, OOK modulated) signal.
  • the second target signal may include an on signal and an off signal.
  • the second target signal may be received based on the first receiver, wherein the first receiver may be a low power consumption and/or low complexity receiver, for example, the first receiver may be a wake-up receiver.
  • the receiving device of the second target signal has a first receiver.
  • the receiving device of the second target signal has a first receiver and a second receiver, wherein the power consumption of the second receiver is higher than that of the first receiver, and/or the complexity of the second receiver is higher than that of the first receiver.
  • the first receiver is a wake-up receiver and the second receiver is a legacy receiver.
  • the second receiver is turned off, and the first receiver receives WUS to wake up the second receiver, then the first receiver may be kept turned on all the time to receive WUS, or may be turned on periodically to receive WUS.
  • the receiving device of the first target signal may be a terminal device in a communication system, such as a UE in a cellular network, or a STA in a WIFI system.
  • the time-frequency resources of the first target signal include time domain resources and/or frequency domain resources of the first target signal
  • the time-frequency resources of the second target signal include time domain resources and/or frequency domain resources of the second target signal
  • the time-frequency resources of the first target signal and the time-frequency resources of the second target signal overlap may include:
  • time domain resources eg. time domain symbols
  • time domain resources e.g. time domain symbols
  • the overlap between the time domain resources of the first target signal and the time domain resources of the second target signal may include:
  • the time domain resources of the first target signal and the time domain resources of the second target signal partially overlap or completely overlap.
  • the frequency domain resources of the first target signal and the frequency domain resources of the second target signal overlap may include:
  • the frequency domain resources of the first target signal and the frequency domain resources of the second target signal partially overlap or completely overlap.
  • the first device may multiplex the second target signal and the first target signal within a frequency band.
  • the second target signal includes a first signal and a second signal, and the level of the first signal is higher than the level of the second signal, that is, the first signal is a high-level signal, and the second signal is a low-level signal.
  • the second target signal is WUS
  • the first signal may be an on signal
  • the second signal may be an off signal
  • the time domain resources of the second target signal include:
  • the time domain symbols occupied by the first signal and/or the time domain symbols occupied by the second signal are not limited to the first signal and/or the time domain symbols occupied by the second signal.
  • the frequency domain resources of the second target signal include:
  • the subcarriers occupied by the first signal and/or the subcarriers occupied by the second signal are not limited to the subcarriers occupied by the first signal and/or the subcarriers occupied by the second signal.
  • the amplitudes of the first signal and the second signal need to reach a certain modulation depth so that the receiving end can correctly demodulate the signal when receiving the signal based on the envelope detection method.
  • a ratio of the amplitude of the first signal to the amplitude of the second signal is greater than a first threshold, and/or a difference between the amplitude of the first signal and the amplitude of the second signal is greater than a second threshold.
  • the second target signal is a MC-OOK signal in a WIFI system
  • the on signal and the off signal need to reach a certain modulation depth, for example, the ratio of the average power of the on signal to the average power of the off signal needs to be at least 20 dB.
  • the second target signal is an equivalent amplitude modulated signal in the time domain generated by mapping the modulation symbol to the subcarrier occupied by the second target signal.
  • a high level represents the first signal, which is used to carry bit 1
  • a low level represents the second signal, which is used to carry bit 0.
  • the modulation symbol mapped to the subcarrier occupied by the first signal needs to have a higher amplitude.
  • the constellation points in area A in the constellation point distribution diagram corresponding to 256QAM modulation shown in FIG. 11 are used.
  • the modulation symbol mapped to the subcarrier occupied by the second signal needs to meet the low level and meet the aforementioned modulation depth.
  • the modulation symbol mapped to the subcarrier occupied by the second signal can be the constellation point in area B in the constellation point distribution diagram corresponding to the 256QAM modulation shown in Figure 11, or the constellation point in the QPSK modulation shown in Figure 15.
  • a first modulation symbol is mapped to a subcarrier occupied by the first signal to obtain the first signal
  • a second modulation symbol is mapped to a subcarrier occupied by the second signal to obtain a second signal
  • the first modulation symbol is obtained based on a first modulation method
  • the second modulation method is obtained based on a second modulation method, wherein the modulation order of the first modulation method is higher than or equal to the modulation order of the second modulation method.
  • the first modulation symbol may be a constellation point with a larger amplitude under the first modulation mode
  • the second modulation symbol may be a constellation point with a smaller amplitude under the second modulation mode
  • the first modulation mode may be 64QAM, 256QAM, 1024QAM, etc.
  • the second modulation mode may be BPSK, QPSK, 16QAM, 64QAM, etc.
  • the second modulation mode is determined according to a modulation order of the first modulation mode and a constellation point corresponding to the first modulation mode.
  • the following describes a method for multiplexing resources of the first target signal and the second target signal in conjunction with a specific embodiment.
  • Embodiment 1 The time-frequency resources of the second signal overlap with the time-frequency resources of the first target signal.
  • the transmission of the first target signal multiplexes the time-frequency resources of the second signal.
  • time domain symbols occupied by the second signal overlap with time domain symbols occupied by the first target signal.
  • the first device may multiplex the time domain symbols occupied by the second signal to transmit part or all of the information to be sent. For example, on the time domain symbols occupied by the second signal, modulated symbols obtained by modulating part or all of the information to be sent are mapped to the subcarriers occupied by the second signal as the second signal.
  • the modulation symbols mapped on the subcarriers occupied by the second signal only need to ensure that the time domain waveform meets the low level, and even the modulation symbols may not be mapped on these subcarriers.
  • the first device may carry the first target signal meeting the low-level characteristic through the time-frequency resources occupied by the second signal.
  • the first information in the information to be sent is modulated to obtain a second modulation symbol, and the first information includes part or all of the information to be sent. Further, on the time domain symbol occupied by the second signal, the second modulation symbol is mapped to the subcarrier occupied by the second signal as the second signal.
  • Figure 15 is a constellation point distribution diagram corresponding to the QPSK modulation method
  • the modulation symbols generated by modulating the first information are mapped on the subcarrier occupied by the second signal.
  • the generated time domain signal can be used to carry the first information and meet the low-level requirements, that is, meet the characteristics of the second signal, thereby ensuring that the receiving end can correctly demodulate the second signal.
  • the first device may map modulation symbols based on the methods shown in FIGS. 16 and 17 .
  • the modulation symbol corresponding to the data to be sent obtained based on constellation diagram 2 is mapped to the subcarrier occupied by the data signal
  • the modulation symbol corresponding to the first signal obtained based on constellation diagram 1 is mapped to the subcarrier occupied by the first signal.
  • the modulation symbol corresponding to the data to be sent obtained based on the constellation diagram 2 is mapped to the subcarrier occupied by the second signal.
  • constellation diagram 1 corresponds to the first modulation mode
  • constellation diagram 2 corresponds to the second modulation mode
  • the modulation order of the first modulation mode is lower than the modulation order of the second modulation mode.
  • the time-frequency resource configuration used to transmit the second target signal may be predefined or configured by the first device.
  • the time-frequency resource configuration used to transmit the second target signal is periodic, and this period is also called a duty cycle.
  • the time domain resource configuration for transmitting the second target signal includes but is not limited to at least one of the following:
  • Duration of the time domain resources, frequency domain bandwidth, and duty cycle used to transmit the second target signal is not limited
  • FIG18 is an example of time-frequency resources for transmitting WUS.
  • the relative position of the first signal and the second signal in the second target signal is fixed.
  • the second target signal is a fixed sequence.
  • the time-frequency resource position of the second target signal is known, the time-frequency resource position of the first signal and the time-frequency resource position of the second signal can be determined.
  • the relative positions of the first signal and the second signal in the second target signal are not fixed. In this case, determining the time-frequency resource position of the first signal and the time-frequency resource position of the second signal is also not fixed.
  • the scheduled time-frequency resources of the first target signal may include part or all of the time-frequency resources of the second target signal.
  • the first device sends first configuration information to the second device, and the first configuration information is used to configure time-frequency resources for transmitting the first target signal, wherein the time-frequency resources for transmitting the first target signal include part or all of the time-frequency resources for transmitting the second target signal, and the second device is a receiving device of the first target signal.
  • the scheduled time-frequency resources of the first target signal include all of the time-frequency resources of the second target signal.
  • the scheduled time-frequency resources of the first target signal include time-frequency resources used to transmit the first signal and time-frequency resources used to transmit the second signal.
  • the time-frequency resources of the scheduled first target signal include part of the time-frequency resources of the second target signal.
  • the time-frequency resources of the scheduled first target signal include the time-frequency resources used to transmit the second signal.
  • the first device when the first device transmits part of the information to be sent using the time-frequency resources used to transmit the second signal, the first device is required to modulate the part of the information using a lower modulation order.
  • the time-frequency resources used by the signal transmitting the first information include the time-frequency resources used to transmit the second signal, but do not include the subcarriers on the time domain symbols used to transmit the first signal that do not carry the second target signal.
  • the time-frequency resources used to transmit the data signal include the time-frequency resources used to transmit the off signal of WUS, but do not include the subcarrier that does not carry WUS on the time domain symbol used to transmit the on signal of WUS.
  • the second device when the time-frequency resources scheduled for transmitting a first target signal include time-frequency resources for transmitting a first signal, the second device needs to know the specific time-frequency resource location of the first signal, and/or whether the first device sends the first signal on the time-frequency resources used to transmit the first signal (or whether to perform rate matching).
  • Mode 1 It is pre-agreed that the second device performs rate matching on the time-frequency resources used to transmit the first signal. That is, the second device punctures the time-frequency resources where the first signal is located and does not use them as time-frequency resources that carry the first target signal.
  • the second device performs rate matching on the time-frequency resources used to transmit the first signal by default.
  • the information transmitted in the second target signal is fixed, for example, the second target signal is a fixed sequence. If the first device transmits the second target signal in the time-frequency resource used to transmit the second target signal, the time-frequency resource where the first signal is located is fixed, and the second device can determine the time-frequency resource position where the first signal is located according to the time-frequency resource position used to transmit the second target signal, and further perform rate matching on the time-frequency resource where the first signal is located.
  • the time-frequency resources used to transmit the second target signal are periodic time-frequency resources, and the first device periodically sends the second target signal.
  • the second device can perform rate matching on the time-frequency resources used to send the first signal.
  • Mode 2 The second device performs rate matching on the time-frequency resources used for transmitting the first signal based on the instruction of the first device.
  • the first device may send first indication information to the second device, where the first indication information is used to indicate whether to perform rate matching on the time-frequency resources used to transmit the first signal, or whether the first device sends the first signal on the time-frequency resources used to transmit the first signal.
  • the first indication information may be 1 bit, used to indicate whether rate matching is performed on the time-frequency resources used to transmit the first signal.
  • the second device performs rate matching on the time-frequency resources used to transmit the first signal; otherwise, rate matching is not performed on the time-frequency resources used to transmit the first signal.
  • the time-frequency resource position of the second target signal may be predefined, and correspondingly, the time-frequency resource position of the first signal is also predefined, or the time-frequency resource position of the first signal is indicated by the first device, for example, when scheduling the time-frequency resource of the first target signal.
  • the first indication information may be carried in the first configuration information. For example, when the time-frequency resources of the scheduled first target signal include time-frequency resources for transmitting the first signal, the first device also indicates whether to perform rate matching on the time-frequency resources for transmitting the first signal.
  • the first indication information is carried by at least one of the following signaling:
  • Radio Resource Control signaling
  • Media Access Control Element Media Access Control Element
  • DCI downlink control information
  • the time-frequency resources scheduled for transmitting the data signal include the time-frequency resources for transmitting the WUS.
  • the receiving end of the data signal can perform rate matching on the time-frequency resources occupied by the on signal in the WUS signal, thereby receiving the data signal through the time-frequency resources in the scheduled time-frequency resources except the time-frequency resources occupied by the on signal.
  • Embodiment 2 The frequency domain resources of the second target signal overlap with the frequency domain resources of the first target signal.
  • the transmission of the first target signal at least multiplexes the frequency domain resources of the second target signal.
  • the first device maps the modulation symbols obtained by modulating the information to be transmitted to the subcarriers occupied by the second target signal on the time domain symbols where the second target signal is not transmitted.
  • Example 2-1 The time domain resources of the second target signal and the time domain resources of the first target signal do not overlap.
  • the transmission of the first target signal only multiplexes the frequency domain resources of the second target signal, and does not multiplex the time domain resources of the second target signal.
  • the frequency domain resources of the scheduled data signal may overlap with the frequency domain resources of WUS, but the time domain resources of the scheduled data signal and the time domain resources of WUS do not overlap.
  • Example 2-2 The time domain resources of the second target signal overlap with the time domain resources of the first target signal.
  • the transmission of the first target signal multiplexes the frequency domain resources and time domain resources of the second target signal.
  • the frequency domain resources of the scheduled data signal may overlap with the frequency domain resources of WUS, and the time domain resources of the scheduled data signal and the time domain resources of WUS also overlap.
  • the second device when the time-frequency resources scheduled for transmitting the first target signal include time-frequency resources for transmitting WUS, the second device may perform rate matching on the time-frequency resources used for transmitting the second target signal, or may perform rate matching on the time-frequency resources used for transmitting the second target signal according to the instructions of the first device.
  • Mode 1 It is pre-agreed that the second device performs rate matching on the time-frequency resources used to transmit the second target signal, that is, the second device punctures the time-frequency resources where the second target signal is located.
  • the second device performs rate matching on the time-frequency resources used for transmitting the second target signal by default.
  • the first device may decide whether to send the second target signal, and when the first device does not send the second target signal, the preset time-frequency resource may be used to transmit the first target signal.
  • the time-frequency resource scheduled for transmitting the first target signal includes the time-frequency resource for transmitting the second target signal
  • the second device is required to perform rate matching on the time-frequency resource for transmitting the second target signal.
  • Mode 2 The second device performs rate matching on the time-frequency resources used for transmitting the second target signal based on the instruction of the first device.
  • the first device may send second indication information to the second device, where the second indication information is used to indicate whether rate matching is performed on the time-frequency resources used to transmit the second target signal, or whether the first device sends the second target signal on the time-frequency resources used to transmit the second target signal.
  • the second indication information is used to indicate whether rate matching is performed on the time-frequency resources used to transmit the second target signal, or whether the first device sends the second target signal on the time-frequency resources used to transmit the second target signal.
  • the second indication information may be 1 bit, used to indicate whether rate matching is performed on the time-frequency resources used to transmit the second target signal.
  • the second device performs rate matching on the time-frequency resources used to transmit the second target signal; otherwise, rate matching is not performed on the time-frequency resources used to transmit the second target signal.
  • the second indication information may be carried in the second configuration information, and the second configuration information is used to configure the time-frequency resources for transmitting the first target signal. For example, when the time-frequency resources of the first target signal scheduled by the first device include the time-frequency resources for transmitting the second target signal, the first device also indicates whether to perform rate matching on the time-frequency resources for transmitting the second target signal.
  • the second indication information is carried through at least one of the following signaling: RRC signaling, MAC CE, DCI.
  • the second device when the second device determines to perform rate matching on the time-frequency resources of the second target signal, the second device may perform rate matching only on the time-frequency resources used to transmit the first signal.
  • the first device may multiplex the time-frequency resources used to transmit the second signal in the manner described in Embodiment 1 to transmit the first target signal.
  • the second device when the second device determines to perform rate matching on the time-frequency resources of the second target signal, the second device may perform rate matching on both the time-frequency resources used to transmit the first signal and the time-frequency resources used to transmit the second signal. In this case, the first device may not use the time-frequency resources used to transmit the second signal to transmit the first target signal.
  • embodiment 1 can realize the multiplexing of the first target signal and the second target signal at the time domain symbol granularity of the second signal
  • embodiment 2 can realize the multiplexing of the time-frequency resource granularity of the second target signal.
  • the above only takes the first target signal as a data signal as an example, but does not exclude the multiplexing of the second target signal with other signals, such as a control signal, a reference signal, etc.
  • the second target signal can also be other signals received by envelope detection, such as Internet of Things (IoT) devices with extremely low power consumption and complexity in zero-power communication, such as Ambient Powered IoT (AMP IoT) devices.
  • IoT Internet of Things
  • AMP IoT Ambient Powered IoT
  • the signals received by this type of device are mainly based on ASK modulation signals, such as OOK signals, etc.
  • the signals received by such devices are not only signals for wake-up, but also signals for transmitting user data.
  • the embodiments of the present application can be applicable to the multiplexing of WUS and NR signals in the NR system, and are also applicable to the multiplexing of WUS and non-WUS signals in other communication systems such as WIFI that use multi-carrier modulation air interface technology.
  • the embodiments of the present application only use the OOK signal as an example to illustrate the signal received by envelope detection.
  • Signals generated by other modulation methods such as ASK, FSK modulation, etc., can also be used.
  • the receiving end needs to detect the high and low levels of the signal through envelope detection for demodulation.
  • the time-frequency resources of the second target signal can be multiplexed to transmit the second target signal, which is beneficial to improving the resource utilization of the system.
  • the first target signal is transmitted by multiplexing the time domain symbols of the second signal.
  • the first target signal is transmitted by multiplexing the frequency domain resources of the second target signal.
  • FIG38 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is used to send a first target signal and a second target signal, wherein the first target signal is used to carry information to be sent, the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal, and the time-frequency resources of the first target signal and the time-frequency resources of the second target signal overlap.
  • the second target signal includes a first signal and a second signal, and a level of the first signal is higher than a level of the second signal.
  • a ratio of the amplitude of the first signal to the amplitude of the second signal is greater than a first threshold, and/or a difference between the amplitude of the first signal and the amplitude of the second signal is greater than a second threshold.
  • the time domain resource of the second target signal includes at least one of the following:
  • the frequency domain resource of the second target signal includes at least one of the following:
  • the subcarrier occupied by the second signal is the subcarrier occupied by the second signal.
  • the time-frequency resources of the second signal overlap with the time-frequency resources of the first target signal.
  • time domain symbols occupied by the second signal overlap with time domain symbols occupied by the first target signal.
  • a first modulation symbol is mapped to a subcarrier occupied by the first signal to obtain the first signal
  • a second modulation symbol is mapped to the subcarrier occupied by the second signal to obtain a second signal, wherein the second modulation symbol is modulated by first information in the information to be sent, and the first information includes part or all of the information to be sent.
  • the first modulation symbol is obtained based on a first modulation method
  • the second modulation symbol is obtained based on a second modulation method, wherein the modulation order of the first modulation method is higher than or equal to the modulation order of the second modulation method.
  • the second modulation mode is determined according to the modulation order of the first modulation mode and the constellation point corresponding to the first modulation mode.
  • the communication number 410 is also used to:
  • first configuration information is used to configure time-frequency resources for transmitting the first target signal, wherein the time-frequency resources for transmitting the first target signal include part or all of the time-frequency resources for transmitting the second target signal, and the second device is a receiving device of the first target signal.
  • the time-frequency resources used to transmit the first target signal include all of the time-frequency resources used to transmit the second target signal, including:
  • the time-frequency resources used to transmit the first target signal include time-frequency resources used to transmit the first signal and time-frequency resources used to transmit the second signal.
  • the time-frequency resources used to transmit the first target signal include a portion of the time-frequency resources used to transmit the second target signal, including:
  • the time-frequency resources used to transmit the first target signal include the time-frequency resources used to transmit the second signal.
  • the communication single number 410 is also used to: send first indication information to the second device, where the first indication information is used to indicate whether rate matching is performed on the time-frequency resources used to transmit the first signal.
  • the first indication information is carried by at least one of the following signalings:
  • Radio resource control RRC signaling media access control element MAC CE, downlink control information DCI.
  • the frequency domain resources of the second target signal overlap with the frequency domain resources of the first target signal.
  • the time domain resources of the second target signal and the time domain resources of the first target signal do not overlap.
  • the time domain resources of the second target signal overlap with the time domain resources of the first target signal.
  • the communication single number 410 is also used to: send second indication information to the second device, and the second indication information is used to indicate whether to perform rate matching on the time-frequency resources of the second target signal.
  • the second indication information is carried by at least one of the following signaling: RRC signaling, MAC CE, DCI.
  • the second target signal includes a wake-up signal WUS.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the communication device 400 may correspond to the communication device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 500 are respectively for realizing the corresponding processes of the communication device in the method shown in Figures 12 to 22, which will not be repeated here for the sake of brevity.
  • Figure 24 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 includes: a communication unit 510, configured to receive a first target signal sent by a first device, wherein the first target signal is used to carry information to be sent, and the time-frequency resources of the first target signal overlap with the time-frequency resources of the second target signal sent by the first device, and the second target signal is a signal received based on an envelope detection method or an amplitude modulated signal.
  • the second target signal includes a first signal and a second signal, and a level of the first signal is higher than a level of the second signal.
  • a ratio of the amplitude of the first signal to the amplitude of the second signal is greater than a first threshold, and/or a difference between the amplitude of the first signal and the amplitude of the second signal is greater than a second threshold.
  • the time domain resource of the second target signal includes at least one of the following:
  • the frequency domain resource of the second target signal includes at least one of the following:
  • the subcarriers occupied by the first signal and the subcarriers occupied by the second signal are the subcarriers occupied by the first signal and the subcarriers occupied by the second signal.
  • the time-frequency resources of the second signal overlap with the time-frequency resources of the first target signal.
  • time domain symbols occupied by the second signal overlap with time domain symbols occupied by the first target signal.
  • a first modulation symbol is mapped to a subcarrier occupied by the first signal to obtain the first signal
  • a second modulation symbol is mapped to the subcarrier occupied by the second signal to obtain a second signal, wherein the second modulation symbol is modulated by first information in the information to be sent, and the first information includes part or all of the information to be sent.
  • the first modulation symbol is obtained based on a first modulation method
  • the second modulation symbol is obtained based on a second modulation method, wherein the modulation order of the first modulation method is higher than or equal to the modulation order of the second modulation method.
  • the second modulation mode is determined according to the modulation order of the first modulation mode and the constellation point corresponding to the first modulation mode.
  • the communication unit 510 is also used to: receive first configuration information sent by the first device, the first configuration information is used to configure time-frequency resources for transmitting the first target signal, wherein the time-frequency resources used to transmit the first target signal include part or all of the time-frequency resources used to transmit the second target signal, and the communication device is a receiving device of the first target signal.
  • the time-frequency resources used to transmit the first target signal include all of the time-frequency resources used to transmit the second target signal, including:
  • the time-frequency resources used to transmit the first target signal include time-frequency resources used to transmit the first signal and time-frequency resources used to transmit the second signal.
  • the time-frequency resources used to transmit the first target signal include a portion of the time-frequency resources used to transmit the second target signal, including:
  • the time-frequency resources used to transmit the first target signal include the time-frequency resources used to transmit the second signal.
  • the communication unit 500 further includes:
  • a processing unit is used to perform rate matching on the time-frequency resources used to transmit the first signal.
  • the communication unit 500 further includes:
  • a processing unit used to determine whether to perform rate matching on the time-frequency resources used to transmit the first signal based on first indication information sent by the first device, wherein the first indication information is used to indicate whether to perform rate matching on the time-frequency resources used to transmit the first signal.
  • the first indication information is carried by at least one of the following signalings:
  • Radio resource control RRC signaling media access control element MAC CE, downlink control information DCI.
  • the frequency domain resources of the second target signal overlap with the frequency domain resources of the first target signal.
  • the time domain resources of the second target signal and the time domain resources of the first target signal do not overlap.
  • the time domain resources of the second target signal overlap with the time domain resources of the first target signal.
  • the communication unit 500 further includes:
  • a processing unit is used to perform rate matching on the time-frequency resources of the second target signal.
  • the communication unit 500 also includes: a processing unit, used to determine whether to perform rate matching on the time-frequency resources of the second target signal based on second indication information sent by the first device, wherein the second indication information is used to indicate whether to perform rate matching on the time-frequency resources of the second target signal.
  • the second indication information is carried by at least one of the following signaling:
  • the communication device performs rate matching on the time-frequency resources of the second target signal, including:
  • the communication device performs rate matching on the time-frequency resources used to transmit the first signal
  • the communication device performs rate matching on the time-frequency resources used to transmit the first signal and the time-frequency resources used to transmit the second signal.
  • the second target signal includes a wake-up signal WUS.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the communication device 500 may correspond to the second device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 500 are respectively for implementing the corresponding processes of the second device in the method shown in Figures 12 to 22. For the sake of brevity, they will not be repeated here.
  • Fig. 25 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 shown in Fig. 25 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may further include a transceiver 630 , and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the first device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 600 may specifically be the second device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the second device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • Fig. 26 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Fig. 26 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in each method of the embodiment of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • FIG27 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a first device 910 and a second device 920 .
  • the first device 910 can be used to implement the corresponding functions implemented by the first device in the above method
  • the second device 920 can be used to implement the corresponding functions implemented by the second device in the above method.
  • the sake of brevity they are not repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the first device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the second device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the second device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the first device in the various methods in the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program can be applied to the second device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the second device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一设备发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在一些场景中,对于通过低阶调制方式(例如幅度键控调制(ASK))或基于包络检测方式接收的信号,例如,唤醒信号(Wake up signal,WUS),可以通过低功耗和低复杂度的接收机(例如,唤醒接收机(Wake Up Receiver,WUR))接收,以降低终端的功耗、复杂度和成本。
通信系统中的传统信号通常是采用高阶调制方式(例如正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制)得到的,当通信系统中存在上述两种信号时,如何进行信号的发送以提升系统的资源利用率是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,有利于提升系统的资源利用率。
第一方面,提供了一种无线通信的方法,包括:第一设备发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。
第二方面,提供了一种无线通信的方法,包括:第二设备接收第一设备发送的第一目标信号,其中,所述第一目标信号用于承载待发送信息;所述第一目标信号的时频资源和所述第一设备发送的第二目标信号的时频资源存在重叠,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号。
第三方面,提供了一种通信设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该通信设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种通信设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该通信设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在第一设备需要传输用于承载待发送信息的第一目标信号和基于包络检测方式接收的或经幅度调制的第二目标信号时,第一设备可以进行第一目标信号和第二目标信号的时频资源的复用,即第一目标信号的时频资源和第二目标信号的时频资源可以存在重叠,从而能够提升系统的资源利用率。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个示例的零功耗通信系统的示意图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是唤醒接收机的工作原理图。
图7是WUR PDDU帧的信息组成的示意性图。
图8是OOK调制的原理图。
图9是通过多载波产生的MC-OOK信号的示意图。
图10是通过多载波发送WUS和数据信号的示意性图。
图11是256QAM调制的星座点分布图。
图12是根据本申请实施例提供的一种无线通信的方法的示意性图。
图13是根据本申请实施例的on信号和off信号的调制深度的示意性图。
图14是根据本申请实施例的第二目标信号的示意性图。
图15是QPSK调制中的星座点分布图。
图16是在所述第一信号所占的时域符号上的映射方式的示意性图。
图17是在所述第二信号所占的时域符号上的映射方式的示意性图。
图18是根据本申请实施例的一种用于传输WUS的时频资源的示例。
图19是通过用于传输WUS的off信号的时频资源传输数据信号的示意性图。
图20是根据本申请实施例的一种WUS和数据信号的传输示意图。
图21是根据本申请实施例的又一种WUS和数据信号的传输示意图。
图22是根据本申请实施例的另一种WUS和数据信号的传输示意图。
图23是根据本申请实施例提供的一种通信设备的示意性框图。
图24是根据本申请实施例提供的一种通信设备的示意性框图。
图25是根据本申请实施例提供的一种通信设备的示意性框图。
图26是根据本申请实施例提供的一种芯片的示意性框图。
图27是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统,蜂窝物联网系统,蜂窝无源物联网系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物 联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以 表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信的关键技术包括能量采集、反向散射通信以及低功耗技术。
如图2所示,一种典型的零功耗通信系统(例如RFID系统)包括网络设备(如RFID系统的读写器)和零功耗设备(例如如电子标签)。网络设备用于向零功耗设备发送无线供能信号,下行通信信号以及接收零功耗设备的反向散射信号。一种基本的零功耗设备包括能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗设备还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或环境温度、环境湿度等传感数据。
例如,能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为网络设备发射的无线电波),用于驱动零功耗设备的低功耗计算模块和实现反向散射通信。零功耗设备获得能量后,可以接收网络设备的控制命令并基于控制信令基于反向散射的方式向网络设备发送数据。所发送的数据可以为零功耗设备自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗设备也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗设备工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗设备无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗设备接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗设备的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗设备的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗设备的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗设备借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗设备具有显著的优点:
(1)不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
零功耗设备传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗设备的能量来源以及使用方式,可以将零功耗设备分为如下类型:
1、无源零功耗设备
零功耗设备(如RFID系统的电子标签)不需要内装电池,零功耗设备接近网络设备(如RFID系统的读写器)时,零功耗设备处于网络设备天线辐射形成的近场范围内。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路(或称反射链路)的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正 意义的零功耗设备。
无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗设备
半无源零功耗设备自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗设备。
半无源零功耗设备继承了无源零功耗设备的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗设备
有些场景下使用的零功耗设备也可以为有源零功耗设备,此类设备可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。因此,这类设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗设备进行能量采集的能量来源。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新增信号实现,例如新增专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗设备进行数据传输。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新增信号实现,例如新增专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗设备产生反向散射信号,例如,零功耗设备可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从载波信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,载波信号也可以通过新增信号实现,例如新增专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
为了终端设备的进一步节电,考虑引入唤醒接收机(Wake Up Receiver,WUR)接收唤醒信号。唤醒接收机具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收唤醒信号(Wake up signal,WUS)。因此,唤醒接收机接收的WUS与基于物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的信号的调制方式、波形等不同。唤醒信号主要是通过对载波信号进行幅度键控(Amplitude shift keying,ASK)调制的包络信号。包络信号的解调也主要基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。唤醒接收机也可以通过终端进行供电,无论哪种供电方式,该唤醒接收机相比UE的传统接收机极大的降低了功耗。唤醒接收机可以和UE结合在一起,作为UE接收机的一个附加模块,也可以单独作为一个UE的唤醒功能模块。
基于唤醒信号的接收机系统框图如图6所示,唤醒接收机接收唤醒信号,如果需要UE打开主接收机,可以指示UE开启主接收机。否则,UE的主接收机可以处于关闭状态。
在一些场景中,唤醒无线电(wake-up radio,WUR)信号用于实现设备的节能。WUR AP通过WUR唤醒帧(wake-up frame)通知WUR non-AP STA的节能操作。wake-up frame承载于WUR物理层协议数据单元(Physical layer Protocol Data Unit,PPDU)帧中,如图7所示,一个WUR PPDU帧包含传统前导(legacy preamble)、WUR同步(WUR-Sync)和WUR数据(WUR-Data)三部分,其中,legacy preamble的作用是用于保护WUR-Sync和WUR-Data部分,是为了兼容性的考虑而保留的非WUR部分,它使用传统的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制和20MHz带宽。WUR-Sync是用于帮助识别、解调WUR-data部分,WUR-Data部分用于承载WUR PSDU。
WUR-Sync部分和WUR-data部分采用了开关键控(On-Off Keying,OOK)调制和20MHz信道带宽中的4MHz。OOK的调制原理是用来将载波信号的幅度调制为非零值和零值,分别对应On和Off,用来表示信息比特,OOK又名二进制幅度键控(2ASK),如图8所示是OOK调制的原理图,WUR-data部分承载用户信息,用户信息进行编码后,采用了OOK调制后形成相应长度的MC-OOK符号。
上述OOK信号是通过多载波(Multi-carrier,MC)产生的,因此该OOK信号称为MC-OOK信号。MC-OOK信号可以是采用多载波调制如OFDM调制产生的OOK信号,可以与OFDM系统保持良好的兼容性,减少实现WUR信号而引入的发射机复杂度。图9为通过多载波产生的MC-OOK信号的示意图。通过在频域上的多个子载波映射相应的幅度值,通过离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)转到到时域信号的波形近似于ASK调制形成的波形,其中,比特1通过信号的高电平表示,比特0通过信号的低电平表示。
为便于描述,将NR系统中的WUS和WIFI系统中的唤醒无线电WUR信号统称为WUS,也就是下文中的WUS可以是唤醒信号,也可以是唤醒无线电WUR信号,或者,也可以指代未来通信系统中的具有类似功能的信号。
WUS的接收端通过包络检测的方式检测该WUS的。对于通过包络检测的方式检测WUS的唤醒接收机具有低复杂度和功耗。通过ASK、OOK和FSK调制的信号,唤醒接收机都可以通过包络检测的方式解调WUS。
以MC-OOK信号为例,通过对多个子载波设置一定的非零幅值,经过发射机的IDFT变换,可以产生相应的on时域波形。而不对相应的子载波赋值,则可以产生相应的off时域波形,从而实现基于多载波的OOK调制。
例如,802.11ba技术中的WUR信号,在20MHz带宽内,使用了64-point IDFT中心的13个子载波产生on波形。对于2μs符号长度,13个子载波中的子载波索引为k=(-6,-4,-2,2,4,6)的6个子载波进行非零赋值,其他子载波不赋值。对于4μs符号长度,13个子载波中的子载波索引为k=(-6,-5,…-1,1,2,…6)的12个子载波进行非零赋值,其他子载波不赋值。
当设备既需要发送WUS,又需要发送数据信号时,如图10所示,该设备可以将WUS和数据信号可以映射到不同的子载波上,进一步通过OFDM发射机进行处理并发射。在产生WUS中的on信 号时,对于承载信号的子载波的赋值,需要满足产生的信号的幅度满足调制深度的要求,并且在时域符号内信号的幅度尽量平坦。相应的,off信号的幅度相比on信号的幅度来说尽量低,以满足调制深度的要求。以256QAM调制为例,通过在子载波上映射不同的星座点(或称,调制符号)以满足上述要求。如图11所示是256QAM调制的星座点分布图,在映射时可以将幅值较大的星座点映射到子载波以产生on信号,将幅值较小的星座点映射到子载波以产生off信号。对于off信号,还可以将相应的子载波设置为空子载波来实现。
因此,在off信号所在的时域符号,off信号所占的子载波上映射的调制符号只要保证时域波形满足低电平即可,甚至在这些子载波上可以不映射调制符号。如果在一定的时频资源上长时间不发送WUS,这部分子载波可以不映射调制符号,会对这部分时频资源造成很大的浪费。
在相关技术中,极低功耗和复杂度的接收机被用来节电或者降低终端的复杂度和成本,如前述唤醒接收机。为了与已有系统兼容和资源的充分利用,以NR系统为例,当终端设备采用唤醒接收机接收WUS,网络设备所发送的WUS希望是与已有的OFDM发射机兼容的,并且希望与已有的NR信号进行频带内的复用,而不是为WUS单独使用一个频带资源。虽然WiFi技术中的WUR信号使用20MHz信道带宽中的中心4MHz,但是WUR信号发送期间的信道带宽内的其他频域资源并没有被用于信号传输。因此,如何进行此类信号的发送以提高频谱资源利用率是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图12是根据本申请实施例的无线通信的方法200的示意性图,如图12所示,该方法200包括如下至少部分内容:
S210,第一设备发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。
在一些实施例中,第一目标信号和第二目标信号的接收端设备可以是同一设备,或者,也可以是不同设备。
例如,第一目标信号和第二目标信号的接收端设备均为第二设备。
又例如,第一目标信号的接收端设备为第二设备,第二目标信号的接收端设备为第三设备。
在一些实施例中,第一设备可以是通信系统中的网络设备,例如蜂窝网络中的基站,或者,WIFI系统中的AP等,或者,也可以是通信系统中的传统终端,例如蜂窝网络中的UE,或者,WIFI系统中的STA等。
在一些实施例中,第一目标信号可以是数据信号或控制信号,例如,网络设备发送终端设备的下行数据信号或下行控制信号,或者,一个终端设备发送给另一终端设备的侧行数据信号或侧行控制信号等。
作为示例,第一目标信号可以是下行数据信道,例如PDSCH,或者,下行控制信道,例如PDCCH,或者,也可以是下行参考信号,例如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等。
作为示例,第一目标信号可以是侧行数据信道,例如PSSCH,或者,侧行控制信道,例如PSCCH,或者,也可以是侧行参考信号等。
在一些实施例中,第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,也就是说,第二目标信号是通过幅度变化携带信息的信号。
作为示例,第二目标信号可以是WUS。
可选地,第二目标信号是经2ASK调制(即OOK调制)的信号。
例如,第二目标信号可以包括on信号和off信号。
在一些实施例中,第二目标信号可以是基于第一接收机接收的,其中,第一接收机可以是低功耗和/或低复杂度的接收机,例如,第一接收机可以是唤醒接收机。
在一些实施例中,第二目标信号的接收端设备具有第一接收机。
在另一些实施例中,第二目标信号的接收端设备具有第一接收机和第二接收机,其中,第二接收机的功耗高于第一接收机的功耗,和/或,第二接收机的复杂度高于第一接收机的复杂度。
例如,第一接收机是唤醒接收机,第二接收机是传统接收机。
可选地,第二接收机是关闭的,通过第一接收机接收WUS来唤醒第二接收机,则第一接收机可以是一直保持开启以接收WUS,或者,也可以是周期性地开启来接收WUS。
在一些实施例中,第一目标信号的接收端设备可以是通信系统中的终端设备,例如蜂窝网络中的 UE,或者,WIFI系统中的STA等。
在一些实施例中,所述第一目标信号的时频资源包括所述第一目标信号的时域资源和/或频域资源,所述第二目标信号的时频资源包括所述第二目标信号的时域资源和/或频域资源。
在一些实施例中,第一目标信号的时频资源和第二目标信号的时频资源存在重叠,可以包括:
第一目标信号的时域资源(例如时域符号)和第二目标信号的时域资源(例如时域符号)存在重叠;和/或
第一目标信号的频域资源(例如子载波)和第二目标信号的频域资源(例如子载波)存在重叠。
在一些实施例中,第一目标信号的时域资源和第二目标信号的时域资源存在重叠可以包括:
第一目标信号的时域资源和第二目标信号的时域资源部分重叠或全部重叠。
在一些实施例中,第一目标信号的频域资源和第二目标信号的频域资源存在重叠可以包括:
第一目标信号的频域资源和第二目标信号的频域资源部分重叠或全部重叠。
例如,第一设备可以将第二目标信号与第一目标信号进行频带内的复用。
在一些实施例中,所述第二目标信号包括第一信号和第二信号,所述第一信号的电平高于所述第二信号的电平。即,第一信号是高电平信号,第二信号是低电平信号。
在一具体实施例中,第二目标信号是WUS,第一信号可以是on信号,第二信号可以是off信号。
在一些实施例中,所述第二目标信号的时域资源包括:
所述第一信号所占的时域符号,和/或,所述第二信号所占的时域符号。
在一些实施例中,所述第二目标信号的频域资源包括:
所述第一信号所占的子载波,和/或,所述第二信号所占的子载波。
在一些实施例中,第一信号和第二信号的幅度需要达到一定的调制深度,以便接收端基于包络检波方式接收信号时,能够对信号进行正确的解调。
例如,所述第一信号的幅度和所述第二信号的幅度的比值大于第一阈值,和/或,所述第一信号的幅度和所述第二信号的幅度的差值大于第二阈值。
可选地,如图13所示,第二目标信号是WIFI系统中的MC-OOK信号,on信号和off信号需要达到一定的调制深度,例如on信号和off信号的平均功率的比值需要至少20dB。
在一些实施例中,第二目标信号是将调制符号映射到第二目标信号所占的子载波,从而产生的时域上等效的调幅信号。如图14所示,以高电平表示第一信号,用于承载比特1,低电平表示第二信号,用于承载比特0。
在一些实施例中,为了产生第一信号,映射到第一信号所占的子载波上的调制符号需要具有较高的幅值。例如,采用图11所示的256QAM调制对应的星座点分布图中区域A中的星座点。
在一些实施例中,为了产生第二信号,映射到第二信号所占的子载波上的调制符号需要满足低电平,且满足前述的调制深度。例如,映射到第二信号所占子载波上的调制符号可以是图11所示的256QAM调制对应的星座点分布图中区域B中的星座点,或图15所示QPSK调制中的星座点。
在一些实施例中,在第一信号所占的时域符号上,将第一调制符号映射到所述第一信号所占的子载波上得到所述第一信号,在第二信号所占的时域符号上,将第二调制符号映射到所述第二信号所占的子载波上得到第二信号;
其中,第一调制符号是基于第一调制方式得到的,第二调制方式是基于第二调制方式得到的,其中,第一调制方式的调制阶数高于或等于第二调制方式的调制阶数。
例如,第一调制符号可以是第一调制方式下的幅值较大的星座点,第二调制符号可以是第二调制方式下的幅值较小的星座点。
作为示例而非限定,第一调制方式可以是64QAM,256QAM,1024QAM等。
作为示例而非限定,第二调制方式可以是BPSK,QPSK,16QAM,64QAM等。
可选地,所述第二调制方式是根据所述第一调制方式的调制阶数和所述第一调制方式对应的星座点确定的。
以下,结合具体实施例,说明第一目标信号和第二目标信号的资源的复用方式。
实施例1:第二信号的时频资源和第一目标信号的时频资源存在重叠。
在该实施例1中,第一目标信号的传输复用第二信号的时频资源。
在一个实施例中,第二信号所占的时域符号和第一目标信号的所占的时域符号存在重叠。
在一个实施例中,第一设备可以复用第二信号所占的时域符号传输待发送信息中的部分或全部。例如,在第二信号所占的时域符号上,将待发送信息中的部分或全部进行调制得到的调制符号,映射到第二信号所占的子载波上用作第二信号。
如前所述,在第二信号所在的时域符号,第二信号所占的子载波上映射的调制符号只要保证时域 波形满足低电平即可,甚至在这些子载波上可以不映射调制符号。
因此,在一些实施例中,第一设备可以通过第二信号所占的时频资源承载满足低电平特性的第一目标信号。
例如,对所述待发送信息中的第一信息调制得到第二调制符号,所述第一信息包括所述待发送信息中的部分或全部,进一步在第二信号所占的时域符号上,将第二调制符号映射到第二信号所占的子载波上作为第二信号。
当采用低调制阶数的调制方式对第一信息进行调制产生调制符号时,如图15所示是QPSK调制方式对应的星座点分布图,可以看出其幅度是相对较低的,在第二信号所占的子载波上映射对第一信息进行调制产生的调制符号,则产生的时域信号既可以用于承载第一信息,又可以满足低电平的要求,即满足第二信号的特征,从而能够保证接收端能够正确解调出第二信号。
在一些实施例中,对于图10中的数据信号和WUS共存的场景,第一设备可以基于图16和图17中所示的方式进行调制符号的映射。
如图16所示,在所述第一信号所占的时域符号上,将基于星座图2得到的待发送数据对应的调制符号映射到数据信号所占的子载波上,将基于星座图1得到的第一信号对应的调制符号映射到第一信号所占的子载波上。
如图17所示,在所述第二信号所占的时域符号上,将基于星座图2得到的待发送数据对应的调制符号映射到第二信号所占的子载波上。
其中,星座图1对应第一调制方式,星座图2对应第二调制方式,第一调制方式的调制阶数低于第二调制方式的调制阶数。
在一些实施例中,用于传输第二目标信号的时频资源配置可以是预定义的,或者,第一设备配置的。
在一些实施例中,用于传输第二目标信号的时频资源配置是周期性的,该周期或称工作周期(duty cycle)。
可选地,用于传输第二目标信号的时域资源配置包括但不限于以下中的至少一项:
用于传输第二目标信号的时域资源的持续时间,频域带宽,工作周期。
以第一目标信号为WUS为例,图18是一种用于传输WUS的时频资源的示例。
在一些实施例中,第二目标信号中的第一信号和第二信号的相对位置是固定的,例如第二目标信号是固定序列,则在获知第二目标信号的时频资源位置时,可以确定第一信号的时频资源位置和第二信号的时频资源位置。
在另一些实施例中,第二目标信号中的第一信号和第二信号的相对位置是不固定的,此情况下,确定第一信号的时频资源位置和第二信号的时频资源位置也是不固定的。
在一些实施例中,调度的第一目标信号的时频资源可以包括第二目标信号的时频资源中的部分或全部。
例如,所述第一设备向第二设备发送第一配置信息,所述第一配置信息用于配置用于传输所述第一目标信号的时频资源,其中,用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分或全部,所述第二设备为所述第一目标信号的接收端设备。
在一些实施例中,调度的第一目标信号的时频资源包括第二目标信号的时频资源的全部。
例如,调度的第一目标信号的时频资源包括用于传输第一信号的时频资源以及用于传输第二信号的时频资源。
在另一些实施例中,调度的第一目标信号的时频资源包括第二目标信号的时频资源的部分。例如,调度的第一目标信号的时频资源包括用于传输第二信号的时频资源。
在一些实施例中,当第一设备利用用于传输第二信号的时频资源传输待发送信息中的部分信息时,则需要第一设备使用较低的调制阶数对该部分信息进行调制。对于在用于传输第二信号的时频资源上采用较低的调制阶数传输的信息,记为第一信息,则传输第一信息的信号所使用的时频资源包含用于传输第二信号的时频资源,但是不包含用于传输第一信号的时域符号上的不承载第二目标信号的子载波。
以第一目标信号是数据信号,第二目标信号是WUS为例,图19所示,传输数据信号所使用的时频资源包括用于传输WUS的off信号的时频资源,但不包括用于传输WUS的on信号的时域符号上不承载WUS的子载波。
在一些实施例中,当调度的用于传输第一目标信号的时频资源包括用于传输第一信号的时频资源时,第二设备需要获知第一信号的具体时频资源位置,和/或,第一设备是否在用于传输第一信号的时频资源上发送第一信号(或者,是否进行速率匹配)。
方式1:预先约定第二设备在用于传输第一信号的时频资源进行速率匹配。即第二设备将第一信号所在的时频资源进行打孔,不作为承载第一目标信号的时频资源。
也即,第二设备默认在用于传输第一信号的时频资源进行速率匹配。
在一种实现方式中,第二目标信号中传输的信息是固定的,例如第二目标信号是一个固定的序列。那么如果第一设备在用于传输第二目标信号的时频资源传输第二目标信号,则第一信号所在的时频资源是固定的,则第二设备可以根据用于传输第二目标信号的时频资源位置确定第一信号所在的时频资源位置,进一步对第一信号所在的时频资源进行速率匹配。
可选地,在该实现方式中,用于传输第二目标信号的时频资源是周期性的时频资源,第一设备周期性的发送第二目标信号,则第二设备可以在用于发送第一信号的时频资源上进行速率匹配。
方式2:第二设备基于第一设备的指示在用于传输第一信号的时频资源进行速率匹配。
例如,第一设备可以向第二设备发送第一指示信息,第一指示信息用于指示是否在用于传输所述第一信号的时频资源上进行速率匹配,或者,第一设备是否在用于传输第一信号的时频资源上发送第一信号。
在一些实施例中,第一指示信息可以是1比特,用于指示是否在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,如果第一设备指示在用于传输所述第一信号的时频资源上进行速率匹配,则第二设备在用于传输所述第一信号的时频资源上进行速率匹配,否则,不在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,第二目标信号的时频资源位置可以是预定义的,相应地,第一信号的时频资源位置也是预定义的,或者,第一信号的时频资源位置是第一设备指示的。例如在调度第一目标信号的时频资源时指示的。
在一些实施例中,第一指示信息可以携带在第一配置信息中,例如,第一设备在调度的第一目标信号的时频资源包括用于传输第一信号的时频资源时,同时指示是否在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,所述第一指示信息通过以下信令中的至少之一承载:
无线资源控制(Radio Resource Control,RRC)信令,媒体接入控制控制元素(Media Access Control Control Element,MAC CE),下行控制信息(Downlink Control Information,DCI)。
以第一目标信号为数据信号,第二目标信号为WUS为例,如图20所示,调度的用于传输数据信号的时频资源包括用于传输WUS的时频资源。数据信号的接收端可以在WUS信号中的on信号占用的时频资源上进行速率匹配,从而通过调度的时频资源中除了on信号占用的时频资源之外的时频资源接收数据信号。
实施例2:第二目标信号的频域资源和第一目标信号的频域资源存在重叠。
在该实施例2中,第一目标信号的传输至少复用第二目标信号的频域资源。
在一些实施例中,第一设备将对待发送信息进行调制得到的调制符号映射到在不发送第二目标信号的时域符号上的第二目标信号所占的子载波上。
实施例2-1:第二目标信号的时域资源和所述第一目标信号的时域资源不重叠。
即第一目标信号的传输仅复用第二目标信号的频域资源,不复用第二目标信号的时域资源。
以第一目标信号为数据信号,第二目标信号为WUS为例,如图21所示,调度的数据信号的频域资源可以与WUS的频域资源存在重叠,但是调度的数据信号的时域资源和WUS的时域资源不重叠。
实施例2-2:第二目标信号的时域资源和所述第一目标信号的时域资源存在重叠。
即第一目标信号的传输复用第二目标信号的频域资源以及时域资源。
以第一目标信号为数据信号,第二目标信号为WUS为例,如图22所示,调度的数据信号的频域资源可以与WUS的频域资源存在重叠,并且调度的数据信号的时域资源和WUS的时域资源也存在重叠。
在一些实施例中,当调度的用于传输第一目标信号的时频资源包括用于传输WUS的时频资源时,第二设备可以在用于传输第二目标信号的时频资源进行速率匹配,或者,也可以根据第一设备的指示在用于传输第二目标信号的时频资源进行速率匹配。
方式1:预先约定第二设备在用于传输第二目标信号的时频资源进行速率匹配。即第二设备将第二目标信号所在的时频资源进行打孔。
也即,第二设备默认在用于传输第二目标信号的时频资源进行速率匹配。
在一些实施例中,在用于传输第二目标信号的时频资源是预设的时频资源时,第一设备可以决定是否发送第二目标信号,当第一设备不发送第二目标信号时,该预设的时频资源可以用于传输第一目 标信号。当调度的用于传输第一目标信号的时频资源包括用于传输第二目标信号的时频资源时,则需要第二设备对该用于传输第二目标信号的时频资源进行速率匹配。
方式2:第二设备基于第一设备的指示在用于传输第二目标信号的时频资源进行速率匹配。
例如,第一设备可以向第二设备发送第二指示信息,第二指示信息用于指示是否在用于传输所述第二目标信号的时频资源上进行速率匹配,或者,第一设备是否在用于传输第二目标信号的时频资源上发送第二目标信号。
在一些实施例中,第二指示信息可以是1比特,用于指示是否在用于传输所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,如果第一设备指示在用于传输所述第二目标信号的时频资源上进行速率匹配,则第二设备在用于传输所述第二目标信号的时频资源上进行速率匹配,否则,不在用于传输所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,第二指示信息可以携带在第二配置信息中,第二配置信息用于配置用于传输第一目标信号的时频资源。例如,第一设备在调度的第一目标信号的时频资源包括用于传输第二目标信号的时频资源时,同时指示是否在是否在用于传输所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,第二指示信息通过以下信令中的至少之一承载:RRC信令,MAC CE,DCI。
在一些实施例中,所述第二设备确定在所述第二目标信号的时频资源上进行速率匹配时,第二设备可以仅在用于传输所述第一信号的时频资源上进行速率匹配。此情况下,第一设备可以采用实施例1中所述的方式复用用于传输第二信号的时频资源传输所述第一目标信号。
在一些实施例中,所述第二设备确定在所述第二目标信号的时频资源上进行速率匹配时,第二设备可以在用于传输所述第一信号的时频资源以及用于传输所述第二信号的时频资源上都进行速率匹配。此情况下,第一设备可以不利用用于传输第二信号的时频资源传输所述第一目标信号。
综上,该实施例1可以实现第二信号的时域符号粒度的第一目标信号和第二目标信号的复用,实施例2可以实现第二目标信号的时频资源粒度的复用。
需要说明的是,以上仅以第一目标信号为数据信号为例,但并不排除第二目标信号与其他信号的复用,例如,控制信号,参考信号等。
还需要说明的是,以上仅以第二目标信号为WUS为例,但并不排除第一目标信号与非WUS信号的复用,例如第二目标信号还可以是采用包络检波方式接收的其他信号,例如在零功耗通信中具有极低功耗和复杂度的物联网(Internet of Things,IoT)设备,如环境使能IoT(Ambient Powered IoT,AMP IoT)设备,该类型设备接收的信号主要是基于ASK调制的信号,如OOK信号等。对于这类设备接收的信号,不仅是用于唤醒的信号,也可以是用于传输用户数据的信号。
应理解,本申请实施例可以适用于NR系统中的WUS和NR信号的复用,也同样适用于WIFI等使用多载波调制空口技术的其他通信系统中的WUS和非WUS信号的复用。
还需要说明的是,本申请实施例仅以OOK信号为例说明采用包络检测方式接收的信号,还可以采用其他调制方式产生的信号,如ASK、FSK调制等,本质上都需要接收端通过包络检测的方式检测信号的高、低电平进行解调。
因此,在本申请实施例中,在第一设备需要传输第一目标信号和第二目标信号时,可以复用第二目标信号的时频资源传输第二目标信号,有利于提升系统的资源利用率。
在一些实现方式中,复用第二信号的时域符号传输第一目标信号。
在另一些实现方式中,复用第二目标信号的频域资源传输第一目标信号。
上文结合图12至图22,详细描述了本申请的方法实施例,下文结合图23至图42,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图38示出了根据本申请实施例的终端设备400的示意性框图。如图38所示,该终端设备400包括:
通信单元410,用于发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。
在一些实施例中,所述第二目标信号包括第一信号和第二信号,所述第一信号的电平高于所述第二信号的电平。
在一些实施例中,所述第一信号的幅度和所述第二信号的幅度的比值大于第一阈值,和/或,所述第一信号的幅度和所述第二信号的幅度的差值大于第二阈值。
在一些实施例中,所述第二目标信号的时域资源包括以下中的至少之一:
所述第一信号所占的时域符号;
所述第二信号所占的时域符号。
在一些实施例中,所述第二目标信号的频域资源包括以下中的至少之一:
所述第一信号所占的子载波;
所述第二信号所占的子载波。
在一些实施例中,所述第二信号的时频资源和所述第一目标信号的时频资源存在重叠。
在一些实施例中,所述第二信号所占的时域符号和所述第一目标信号的所占的时域符号存在重叠。
在一些实施例中,在所述第一信号所占的时域符号上,将第一调制符号映射到所述第一信号所占的子载波上得到所述第一信号;
在所述第二信号所占的时域符号上,将第二调制符号映射到所述第二信号所占的子载波上得到第二信号,其中,所述第二调制符号是对所述待发送信息中的第一信息调制得到的,所述第一信息包括所述待发送信息中的部分或全部。
在一些实施例中,所述第一调制符号是基于第一调制方式得到的,所述第二调制符号是基于第二调制方式得到的,其中,所述第一调制方式的调制阶数高于或等于所述第二调制方式的调制阶数。
在一些实施例中,所述第二调制方式是根据所述第一调制方式的调制阶数和所述第一调制方式对应的星座点确定的。
在一些实施例中,所述通信单号410还用于:
向第二设备发送第一配置信息,所述第一配置信息用于配置用于传输所述第一目标信号的时频资源,其中,用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分或全部,所述第二设备为所述第一目标信号的接收端设备。
在一些实施例中,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的全部,包括:
所述用于传输所述第一目标信号的时频资源包括用于传输所述第一信号的时频资源以及用于传输所述第二信号的时频资源。
在一些实施例中,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分,包括:
所述用于传输所述第一目标信号的时频资源包括用于传输所述第二信号的时频资源。
在一些实施例中,所述通信单号410还用于:向所述第二设备发送第一指示信息,所述第一指示信息用于指示是否在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,所述第一指示信息通过以下信令中的至少之一承载:
无线资源控制RRC信令,媒体接入控制控制元素MAC CE,下行控制信息DCI。
在一些实施例中,所述第二目标信号的频域资源和所述第一目标信号的频域资源存在重叠。
在一些实施例中,所述第二目标信号的时域资源和所述第一目标信号的时域资源不重叠。
在一些实施例中,所述第二目标信号的时域资源和所述第一目标信号的时域资源存在重叠。
在一些实施例中,所述通信单号410还用于:向第二设备发送第二指示信息,所述第二指示信息用于指示是否在所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,所述第二指示信息通过以下信令中的至少之一承载:RRC信令,MAC CE,DCI。
在一些实施例中,所述第二目标信号包括唤醒信号WUS。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的通信设备,并且通信设备500中的各个单元的上述和其它操作和/或功能分别为了实现图12至图22所示方法中通信设备的相应流程,为了简洁,在此不再赘述。
图24示出了根据本申请实施例的通信设备500的示意性框图。如图24所示,该通信设备500包括:通信单元510,用于接收第一设备发送的第一目标信号,其中,所述第一目标信号用于承载待发送信息,所述第一目标信号的时频资源和所述第一设备发送的第二目标信号的时频资源存在重叠,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号。
在一些实施例中,所述第二目标信号包括第一信号和第二信号,所述第一信号的电平高于所述第二信号的电平。
在一些实施例中,所述第一信号的幅度和所述第二信号的幅度的比值大于第一阈值,和/或,所述第一信号的幅度和所述第二信号的幅度的差值大于第二阈值。
在一些实施例中,所述第二目标信号的时域资源包括以下中的至少之一:
所述第一信号所占的时域符号、所述第二信号所占的时域符号。
在一些实施例中,所述第二目标信号的频域资源包括以下中的至少之一:
所述第一信号所占的子载波、所述第二信号所占的子载波。
在一些实施例中,所述第二信号的时频资源和所述第一目标信号的时频资源存在重叠。
在一些实施例中,所述第二信号所占的时域符号和所述第一目标信号的所占的时域符号存在重叠。
在一些实施例中,在所述第一信号所占的时域符号上,将第一调制符号映射到所述第一信号所占的子载波上得到所述第一信号;
在所述第二信号所占的时域符号上,将第二调制符号映射到所述第二信号所占的子载波上得到第二信号,其中,所述第二调制符号是对所述待发送信息中的第一信息调制得到的,所述第一信息包括所述待发送信息中的部分或全部。
在一些实施例中,所述第一调制符号是基于第一调制方式得到的,所述第二调制符号是基于第二调制方式得到的,其中,所述第一调制方式的调制阶数高于或等于所述第二调制方式的调制阶数。
在一些实施例中,所述第二调制方式是根据所述第一调制方式的调制阶数和所述第一调制方式对应的星座点确定的。
在一些实施例中,所述通信单元510还用于:接收所述第一设备发送的第一配置信息,所述第一配置信息用于配置用于传输所述第一目标信号的时频资源,其中,用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分或全部,所述通信设备为所述第一目标信号的接收端设备。
在一些实施例中,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的全部,包括:
所述用于传输所述第一目标信号的时频资源包括用于传输所述第一信号的时频资源以及用于传输所述第二信号的时频资源。
在一些实施例中,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分,包括:
所述用于传输所述第一目标信号的时频资源包括用于传输所述第二信号的时频资源。
在一些实施例中,所述通信单元500还包括:
处理单元,用于在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,所述通信单元500还包括:
处理单元,用于根据所述第一设备发送的第一指示信息,确定是否在用于传输所述第一信号的时频资源上进行速率匹配,其中,所述第一指示信息用于指示是否在用于传输所述第一信号的时频资源上进行速率匹配。
在一些实施例中,所述第一指示信息通过以下信令中的至少之一承载:
无线资源控制RRC信令,媒体接入控制控制元素MAC CE,下行控制信息DCI。
在一些实施例中,所述第二目标信号的频域资源和所述第一目标信号的频域资源存在重叠。
在一些实施例中,所述第二目标信号的时域资源和所述第一目标信号的时域资源不重叠。
在一些实施例中,所述第二目标信号的时域资源和所述第一目标信号的时域资源存在重叠。
在一些实施例中,所述通信单元500还包括:
处理单元,用于在所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,所述通信单元500还包括:处理单元,用于根据所述第一设备发送的第二指示信息,确定是否在所述第二目标信号的时频资源上进行速率匹配,其中,所述第二指示信息用于指示是否在所述第二目标信号的时频资源上进行速率匹配。
在一些实施例中,所述第二指示信息通过以下信令中的至少之一承载:
RRC信令,MAC CE,DCI。
在一些实施例中,所述通信设备在所述第二目标信号的时频资源上进行速率匹配,包括:
所述通信设备在用于传输所述第一信号的时频资源上进行速率匹配;或
所述通信设备在用于传输所述第一信号的时频资源以及用于传输所述第二信号的时频资源上进行速率匹配。
在一些实施例中,所述第二目标信号包括唤醒信号WUS。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备500可对应于本申请方法实施例中的第二设备,并且通信设备500中的各个单元的上述和其它操作和/或功能分别为了实现图12至图22所示方法中第二设备的相应流程,为了简洁,在此不再赘述。
图25是本申请实施例提供的一种通信设备600示意性结构图。图25所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图25所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图25所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备,,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备,实现的相应流程,为了简洁,在此不再赘述。
图26是本申请实施例的芯片的示意性结构图。图26所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图26所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第二设备,,并且该芯片可以实现本申请实施例的各个方法中由第二设备,实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图27是本申请实施例提供的一种通信系统900的示意性框图。如图42所示,该通信系统900包括第一设备910和第二设备920。
其中,该第一设备910可以用于实现上述方法中由第一设备实现的相应的功能,以及该第二设备920可以用于实现上述方法中由第二设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据 速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备,实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二设备,,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备,实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备,实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。
  2. 根据权利要求1所述的方法,其特征在于,所述第二目标信号包括第一信号和第二信号,所述第一信号的电平高于所述第二信号的电平。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信号的幅度和所述第二信号的幅度的比值大于第一阈值,和/或,所述第一信号的幅度和所述第二信号的幅度的差值大于第二阈值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二目标信号的时域资源包括以下中的至少之一:
    所述第一信号所占的时域符号;
    所述第二信号所占的时域符号。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第二目标信号的频域资源包括以下中的至少之一:
    所述第一信号所占的子载波;
    所述第二信号所占的子载波。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述第二信号的时频资源和所述第一目标信号的时频资源存在重叠。
  7. 根据权利要求6所述的方法,其特征在于,所述第二信号所占的时域符号和所述第一目标信号的所占的时域符号存在重叠。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,在所述第一信号所占的时域符号上,将第一调制符号映射到所述第一信号所占的子载波上得到所述第一信号;
    在所述第二信号所占的时域符号上,将第二调制符号映射到所述第二信号所占的子载波上得到第二信号,其中,所述第二调制符号是对所述待发送信息中的第一信息调制得到的,所述第一信息包括所述待发送信息中的部分或全部。
  9. 根据权利要求8所述的方法,其特征在于,所述第一调制符号是基于第一调制方式得到的,所述第二调制符号是基于第二调制方式得到的,其中,所述第一调制方式的调制阶数高于或等于所述第二调制方式的调制阶数。
  10. 根据权利要求9所述的方法,其特征在于,所述第二调制方式是根据所述第一调制方式的调制阶数和所述第一调制方式对应的星座点确定的。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向第二设备发送第一配置信息,所述第一配置信息用于配置用于传输所述第一目标信号的时频资源,其中,用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分或全部,所述第二设备为所述第一目标信号的接收端设备。
  12. 根据权利要求11所述的方法,其特征在于,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的全部,包括:
    所述用于传输所述第一目标信号的时频资源包括用于传输第一信号的时频资源以及用于传输第二信号的时频资源。
  13. 根据权利要求11所述的方法,其特征在于,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分,包括:
    所述用于传输所述第一目标信号的时频资源包括用于传输第二信号的时频资源。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息用于指示是否在用于传输第一信号的时频资源上进行速率匹配。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息通过以下信令中的至少之一承载:
    无线资源控制RRC信令,媒体接入控制控制元素MAC CE,下行控制信息DCI。
  16. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二目标信号的频域资源和所述第一目标信号的频域资源存在重叠。
  17. 根据权利要求16所述的方法,其特征在于,所述第二目标信号的时域资源和所述第一目标信号的时域资源不重叠。
  18. 根据权利要求16所述的方法,其特征在于,所述第二目标信号的时域资源和所述第一目标信号的时域资源存在重叠。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向第二设备发送第二指示信息,所述第二指示信息用于指示是否在所述第二目标信号的时频资源上进行速率匹配。
  20. 根据权利要求19所述的方法,其特征在于,所述第二指示信息通过以下信令中的至少之一承载:
    RRC信令,MAC CE,DCI。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述第二目标信号包括唤醒信号WUS。
  22. 一种无线通信的方法,其特征在于,包括:
    第二设备接收第一设备发送的第一目标信号,其中,所述第一目标信号用于承载待发送信息;
    所述第一目标信号的时频资源和所述第一设备发送的第二目标信号的时频资源存在重叠,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第二目标信号包括第一信号和第二信号,所述第一信号的电平高于所述第二信号的电平。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信号的幅度和所述第二信号的幅度的比值大于第一阈值,和/或,所述第一信号的幅度和所述第二信号的幅度的差值大于第二阈值。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第二目标信号的时域资源包括以下中的至少之一:
    所述第一信号所占的时域符号;
    所述第二信号所占的时域符号。
  26. 根据权利要求23-25中任一项所述的方法,其特征在于,所述第二目标信号的频域资源包括以下中的至少之一:
    所述第一信号所占的子载波;
    所述第二信号所占的子载波。
  27. 根据权利要求23-26中任一项所述的方法,其特征在于,所述第二信号的时频资源和所述第一目标信号的时频资源存在重叠。
  28. 根据权利要求27所述的方法,其特征在于,所述第二信号所占的时域符号和所述第一目标信号的所占的时域符号存在重叠。
  29. 根据权利要求23-28中任一项所述的方法,其特征在于,在所述第一信号所占的时域符号上,将第一调制符号映射到所述第一信号所占的子载波上得到所述第一信号;
    在所述第二信号所占的时域符号上,将第二调制符号映射到所述第二信号所占的子载波上得到第二信号,其中,所述第二调制符号是对所述待发送信息中的第一信息调制得到的,所述第一信息包括所述待发送信息中的部分或全部。
  30. 根据权利要求29所述的方法,其特征在于,所述第一调制符号是基于第一调制方式得到的,所述第二调制符号是基于第二调制方式得到的,其中,所述第一调制方式的调制阶数高于或等于所述第二调制方式的调制阶数。
  31. 根据权利要求30所述的方法,其特征在于,所述第二调制方式是根据所述第一调制方式的调制阶数和所述第一调制方式对应的星座点确定的。
  32. 根据权利要求22-31中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的第一配置信息,所述第一配置信息用于配置用于传输所述第一目标信号的时频资源,其中,用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分或全部,所述第二设备为所述第一目标信号的接收端设备。
  33. 根据权利要求32所述的方法,其特征在于,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的全部,包括:
    所述用于传输所述第一目标信号的时频资源包括用于传输第一信号的时频资源以及用于传输第二信号的时频资源。
  34. 根据权利要求32所述的方法,其特征在于,所述用于传输所述第一目标信号的时频资源包括用于传输所述第二目标信号的时频资源中的部分,包括:
    所述用于传输所述第一目标信号的时频资源包括用于传输第二信号的时频资源。
  35. 根据权利要求32-34中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备在用于传输所述第一信号的时频资源上进行速率匹配。
  36. 根据权利要求32-34中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一设备发送的第一指示信息,确定是否在用于传输第一信号的时频资源上进行速率匹配,其中,所述第一指示信息用于指示是否在用于传输所述第一信号的时频资源上进行速率匹配。
  37. 根据权利要求36所述的方法,其特征在于,所述第一指示信息通过以下信令中的至少之一承载:
    无线资源控制RRC信令,媒体接入控制控制元素MAC CE,下行控制信息DCI。
  38. 根据权利要求22-26中任一项所述的方法,其特征在于,所述第二目标信号的频域资源和所述第一目标信号的频域资源存在重叠。
  39. 根据权利要求38所述的方法,其特征在于,所述第二目标信号的时域资源和所述第一目标信号的时域资源不重叠。
  40. 根据权利要求38所述的方法,其特征在于,所述第二目标信号的时域资源和所述第一目标信号的时域资源存在重叠。
  41. 根据权利要求38-40中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述第二目标信号的时频资源上进行速率匹配。
  42. 根据权利要求38-40中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一设备发送的第二指示信息,确定是否在所述第二目标信号的时频资源上进行速率匹配,其中,所述第二指示信息用于指示是否在所述第二目标信号的时频资源上进行速率匹配。
  43. 根据权利要求42所述的方法,其特征在于,所述第二指示信息通过以下信令中的至少之一承载:RRC信令,MAC CE,DCI。
  44. 根据权利要求41-43中任一项所述的方法,其特征在于,所述第二设备在所述第二目标信号的时频资源上进行速率匹配,包括:
    所述第二设备在用于传输第一信号的时频资源上进行速率匹配;或
    所述第二设备在用于传输第一信号的时频资源以及用于传输所述第二信号的时频资源上进行速率匹配。
  45. 根据权利要求22-44中任一项所述的方法,其特征在于,所述第二目标信号包括唤醒信号WUS。
  46. 一种通信设备,其特征在于,包括:
    通信单元,用于发送第一目标信号和第二目标信号,其中,所述第一目标信号用于承载待发送信息,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号,所述第一目标信号的时频资源和所述第二目标信号的时频资源存在重叠。
  47. 一种通信设备,其特征在于,包括:
    通信单元,用于接收第一设备发送的第一目标信号,其中,所述第一目标信号用于承载待发送信息,所述第一目标信号的时频资源和所述第一设备发送的第二目标信号的时频资源存在重叠,所述第二目标信号是基于包络检波方式接收的信号或者经幅度调制的信号。
  48. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  49. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求22至45中任一项所述的方法。
  50. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法,或如权利要求22至45中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法,或如权利要求22至45中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法,或如权利要求22至45中任一项所述的方法。
  53. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法,或如权利要求22至45中任一项所述的方法。
PCT/CN2022/131483 2022-11-11 2022-11-11 无线通信的方法和设备 WO2024098404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131483 WO2024098404A1 (zh) 2022-11-11 2022-11-11 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131483 WO2024098404A1 (zh) 2022-11-11 2022-11-11 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2024098404A1 true WO2024098404A1 (zh) 2024-05-16

Family

ID=91031743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131483 WO2024098404A1 (zh) 2022-11-11 2022-11-11 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2024098404A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892770A (zh) * 2018-07-26 2020-03-17 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN111132280A (zh) * 2018-11-09 2020-05-08 维沃移动通信有限公司 信号传输方法及设备
CN112292891A (zh) * 2018-06-27 2021-01-29 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN113875181A (zh) * 2019-05-14 2021-12-31 瑞典爱立信有限公司 Wus信号设计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292891A (zh) * 2018-06-27 2021-01-29 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN113316233A (zh) * 2018-06-27 2021-08-27 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN110892770A (zh) * 2018-07-26 2020-03-17 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN111132280A (zh) * 2018-11-09 2020-05-08 维沃移动通信有限公司 信号传输方法及设备
CN113875181A (zh) * 2019-05-14 2021-12-31 瑞典爱立信有限公司 Wus信号设计

Similar Documents

Publication Publication Date Title
WO2023071864A1 (zh) 发送信号的方法和装置
US20240171269A1 (en) Wireless communication method and apparatus, and communication device
WO2023078358A1 (zh) 通信的方法和装置
WO2024098404A1 (zh) 无线通信的方法和设备
WO2024098403A1 (zh) 无线通信的方法及设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2023173300A1 (zh) 无线通信的方法和设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2024065267A1 (zh) 无线通信的方法和设备
US20240137194A1 (en) Method and device for wireless communication
US20240178700A1 (en) Wireless communication method and apparatus, and communication device
WO2024040402A1 (zh) 无线通信的方法和设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
US20240137930A1 (en) Wireless communication method, terminal device, and communication device
WO2023240502A1 (zh) 无线通信的方法、终端设备和网络设备
US20240163004A1 (en) Wireless communication method, terminal device and network device
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质