WO2023193192A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2023193192A1
WO2023193192A1 PCT/CN2022/085566 CN2022085566W WO2023193192A1 WO 2023193192 A1 WO2023193192 A1 WO 2023193192A1 CN 2022085566 W CN2022085566 W CN 2022085566W WO 2023193192 A1 WO2023193192 A1 WO 2023193192A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
frequency band
communication
backscattered
Prior art date
Application number
PCT/CN2022/085566
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/085566 priority Critical patent/WO2023193192A1/zh
Publication of WO2023193192A1 publication Critical patent/WO2023193192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method and device.
  • zero-power terminals In zero-power communication, zero-power terminals need to collect radio waves to obtain energy before they can drive themselves to work. For scenarios such as logistics warehousing management and supermarket shopping, there are many zero-power terminals that need to be connected. At present, it is necessary to expand the communication mechanism of zero-power devices.
  • the embodiments of this application provide a wireless communication method and device, which can realize a zero-power device communication mechanism under a full-duplex communication architecture and expand practical application deployment.
  • a wireless communication method which method includes:
  • the first communication device sends the first backscattered signal to the second communication device
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in a full-duplex mode in the operating frequency band of the first backscattered signal.
  • a wireless communication method which method includes:
  • the second communication device receives the first backscattered signal sent by the first communication device
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in a full-duplex mode in the operating frequency band of the first backscattered signal.
  • a wireless communication method which method includes:
  • the first communication device receives the downlink signal of the first frequency band sent by the second communication device;
  • the first communication device sends the uplink signal of the first frequency band and the backscatter signal of the second frequency band to the second communication device;
  • the first communication device obtains energy through energy collection for communication, information collection and processing, and the second communication device operates in full-duplex mode in the first frequency band.
  • a wireless communication method which method includes:
  • the second communication device sends a downlink signal of the first frequency band to the first communication device
  • the second communication device receives the uplink signal of the first frequency band and the backscattered signal of the second frequency band sent by the first communication device;
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in full-duplex mode in the first frequency band.
  • a fifth aspect provides a communication device for performing the method in the first aspect.
  • the communication device includes a functional module for performing the method in the above-mentioned first aspect.
  • a sixth aspect provides a communication device for performing the method in the above second aspect.
  • the communication device includes a functional module for executing the method in the above second aspect.
  • a seventh aspect provides a communication device for performing the method in the above third aspect.
  • the communication device includes a functional module for performing the method in the above third aspect.
  • An eighth aspect provides a communication device for performing the method in the fourth aspect.
  • the communication device includes a functional module for performing the method in the fourth aspect above.
  • a communication device including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the above-mentioned first aspect to A method in any of the fourth aspects.
  • a device for implementing the method in any one of the above-mentioned first to fourth aspects.
  • the device includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the device executes the method in any one of the above-mentioned first to fourth aspects.
  • An eleventh aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to fourth aspects.
  • a computer program product including computer program instructions, which cause a computer to execute the method in any one of the above-mentioned first to fourth aspects.
  • a thirteenth aspect provides a computer program that, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to fourth aspects.
  • the full-duplex communication device as a receiving device for the backscattered signal of the zero-power device, can work in the full-duplex mode in the working frequency band of the backscattered signal, and/or in the energy supply/wake-up signal.
  • the working frequency band operates in full-duplex mode, realizing a zero-power device communication mechanism under a full-duplex communication architecture and expanding practical application deployment.
  • Figure 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Figure 2 is a schematic diagram of a zero-power communication provided by this application.
  • FIG. 3 is a schematic diagram of backscatter communication provided by this application.
  • FIG. 4 is a schematic diagram of energy harvesting provided by this application.
  • Figure 5 is a schematic diagram of a resistive load modulation circuit provided by this application.
  • Figure 6 is a schematic diagram of low power consumption provided by this application.
  • FIG. 7 is a schematic diagram of an envelope detection provided by this application.
  • Figure 8 is a schematic diagram of the radio frequency index requirements of a receiver provided by this application.
  • Figure 9 is a schematic diagram of receiver blocking provided by this application.
  • Figure 10 is a schematic flow chart of a wireless communication method provided according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of a full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of another full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of another full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of another full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of backscattering provided by this application.
  • Figure 16 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of another full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of another full-duplex communication architecture provided according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • IoT Internet of Things
  • WiT wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) network deployment scenario, or applied to Non-Standalone (NSA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • NSA Non-Standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, Among them, licensed spectrum can also be considered as unshared spectrum.
  • the communication system in the embodiment of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range 410MHz to 7.125GHz), can also be applied to the FR2 frequency band (corresponding to the frequency band range 24.25GHz to 52.6GHz), and can also be applied to The new frequency band, for example, corresponds to the frequency band range of 52.6 GHz to 71 GHz or the high frequency band corresponding to the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), vehicle-mounted communication equipment, wireless communication chip/application specific integrated circuit (ASIC)/system on chip (System on Chip, SoC), etc.
  • ASIC application specific integrated circuit
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment or base station (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB base station
  • gNB NR network network equipment or base station
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network devices may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and other numbers of terminal devices may be included within the coverage of each network device. The embodiments of the present application do not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the first communication device may be a terminal device, such as a mobile phone, a machine facility, a Customer Premise Equipment (CPE), industrial equipment, a vehicle, etc.; the second communication device The device may be a peer communication device of the first communication device, such as a network device, a mobile phone, an industrial device, a vehicle, etc.
  • CPE Customer Premise Equipment
  • This article takes the first communication device as a terminal device and the second communication device as a network device as a specific example for description.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • a typical zero-power device is Radio Frequency Identification (RFID), which is a technology that uses the spatial coupling of radio frequency signals to achieve contactless automatic transmission and identification of tag information.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags classified according to different power supply methods can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, mean that the energy for the operation of the electronic tag is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag. Different from the passive radio frequency activation method, it passes through the battery until the battery is replaced.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • the electronic tag antenna When a passive electronic tag is close to a reader, the tag is within the near field range formed by the radiation of the reader's antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of passive electronic tags such as small size, light weight, low price and long service life.
  • the built-in battery only provides power for a few circuits in the chip when there is no reader/writer access. When the reader is accessing, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • RFID is a wireless communication technology.
  • the most basic RFID system is composed of two parts: electronic tag (TAG) and reader/writer (Reader/Writer).
  • Electronic tag It is composed of coupling components and chips. Each electronic tag has a unique electronic code and is placed on the measured target to achieve the purpose of marking the target object.
  • Reader/writer It can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication. as shown in picture 2.
  • the passive electronic tag or passive electronic tag uses the energy obtained from the electromagnetic field generated in the space to transmit the information stored in the electronic tag.
  • the reader reads the information and performs the processing. Decode to identify the electronic tag.
  • a typical zero-power communication system includes a reader/writer and a zero-power terminal.
  • the reader emits radio waves that are used to provide energy to zero-power terminals.
  • the energy collection module installed in the zero-power terminal can collect the energy carried by radio waves in space (shown in Figure 2 is the radio wave emitted by the reader), and is used to drive the low-power computing module of the zero-power terminal and Implement backscatter communication.
  • the zero-power terminal After the zero-power terminal obtains energy, it can receive control commands from the reader and send data to the reader in a backscattering manner based on control signaling.
  • the data sent can come from the data stored in the zero-power terminal itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power terminals can also be loaded with various sensors to report data collected by various sensors based on a zero-power mechanism.
  • the zero-power device receives the carrier signal sent by the backscatter reader and collects energy through a radio frequency (Radio Frequency, RF) energy collection module. Then, the low-power processing module (logic processing module in Figure 3) is powered, the incoming signal is modulated, and backscattered.
  • RF Radio Frequency
  • the terminal does not actively transmit signals and achieves backscattering communication by modulating the incoming wave signal
  • the terminal does not rely on traditional active power amplifier transmitters and uses low-power computing units to greatly reduce hardware complexity;
  • the RF module is used to collect space electromagnetic wave energy through electromagnetic induction, and then to drive the load circuit (low-power computing, sensors, etc.), which can be battery-free.
  • Load modulation is a method often used by electronic tags to transmit data to readers. Load modulation adjusts the electrical parameters of the electronic tag's oscillation circuit according to the rhythm of the data flow, so that the size and phase of the electronic tag's impedance change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes resistive load modulation and capacitive load modulation. In resistive load modulation, the load is connected in parallel with a resistor, called the load modulation resistor, which is turned on and off according to the clock of the data flow. The on and off of the switch S is controlled by binary data encoding.
  • the circuit schematic diagram of resistive load modulation is shown in Figure 5.
  • a capacitor is connected in parallel with the load, replacing the load modulation resistor controlled by a binary data encoding in Figure 5.
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller encoding spread dynamic encoding. In layman's terms, different pulse signals are used to represent 0 and 1.
  • the energy supply signal carrier From the energy supply signal carrier, it can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.
  • the radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the radio waves used for power supply can be continuous waves or discontinuous waves (that is, allowing a certain time interruption).
  • the power supply signal may be a certain signal specified in the 3rd Generation Partnership Project (3GPP) standard. For example, Sounding Reference Signal (SRS), Physical Uplink Shared Channel (PUSCH), Physical Random Access Channel (PRACH), Physical Uplink Control Channel (PUCCH) ), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Physical Broadcast Channel (PBCH), etc.
  • 3GPP 3rd Generation Partnership Project
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used as triggers can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as triggers can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the radio wave used as a trigger can be a continuous wave or a discontinuous wave (that is, allowing a certain time interruption).
  • the trigger signal may be a certain signal specified in the 3GPP standard. For example, SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
  • zero-power terminals can be divided into the following types:
  • a zero-power terminal does not need a built-in battery.
  • a zero-power terminal When a zero-power terminal is close to a network device (such as a reader/writer of an RFID system), the zero-power terminal is within the near field range formed by the antenna radiation of the network device. Therefore, the zero-power terminal antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power terminal.
  • RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). and other devices, so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use an RF energy collection module to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power terminals use backscatter implementations to transmit signals.
  • the semi-passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy collection module. energy, so it is also a truly zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such terminals can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power terminals. Realizes the demodulation of the forward link signal and the signal modulation of the backward link. But for backscatter links, zero-power terminals use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering.
  • Active zero-power terminal has a built-in battery that supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication. Therefore, it can be used in some scenarios that have relatively high requirements on communication distance, read latency, etc.
  • passive IoT devices can be based on existing zero-power devices, such as RFID technology, and extended on this basis to be suitable for cellular IoT.
  • NR idle state (NR Idle): the radio frequency and baseband are still working; low power consumption (very low power): the main radio frequency module sleeps or is turned off; almost zero power consumption (almost zero power): through
  • the envelope detection of the activation or wake-up signal (slave RF module) is used to determine the switch main RF and baseband modules.
  • the envelope detection can be shown in Figure 7; zero power consumption (zero power): Collect external RF or other energy to Meet circuit consumption and communication needs.
  • zero-power terminals or A-IoT and NR may also have three system coexistence methods: in-band deployment, protection band deployment and independent deployment mode. Since the receiver sensitivity of traditional 4G/5G terminals is much lower than that of zero-power terminals, it is necessary to study the coexistence interference problem between zero-power communication systems and existing 4G/5G cellular communication networks.
  • the downlink signal sent to the zero-power terminal or the reflected signal of the zero-power terminal may also fall into the adjacent band or in-band of the 4G/5G terminal. , forming adjacent band interference or in-band blocking, as shown in Figure 9.
  • the interference signal should meet the receiver radio frequency index requirements of the 4G/5G terminal, otherwise it will reduce the receiver performance and cause the receiver sensitivity to fall back (MSD).
  • the in-band mode it is first necessary to avoid co-channel interference between systems, that is, in-band interference.
  • Current research has found that the input power of wireless energy collected by zero-power terminals is generally at least -20dBm. Will the transmitted signal and backscattered signal of the energy source cause any harm to other 4G/5G terminals in the same frequency band? Co-channel interference needs to be assessed.
  • the network needs to send strong signals so that the receiving power of zero-power terminals is above -20dBm. Such strong signals may affect the performance of existing terminals when deployed in-band.
  • the maximum input power such as the maximum input power required by the existing protocol is -15dBm. Therefore, it is necessary to evaluate the impact on existing terminals and how to avoid related impacts.
  • zero-power devices are deployed in the same equipment as 4G/5G terminals, the coexistence problem will be more complicated. It is also necessary to consider the additional interference caused by signals such as harmonics and intermodulation, and the impact on the performance of both receivers. In addition, there are coexistence issues with other WiFi, Bluetooth, Beidou Global Positioning System (GPS) and other systems, which also require more detailed analysis based on actual operating frequency bands and modes. If zero-power devices exist in the form of independent devices, the above-mentioned coexistence issues will be much simpler. They only need to meet the above-mentioned radio frequency index requirements for adjacent band and out-of-band spurious radiation of the transmitter/receiver.
  • GPS Global Positioning System
  • the full-duplex communication device as a receiving device for the backscattered signal of the zero-power device, can work in the full-duplex mode in the working frequency band of the backscattered signal. And/or work in the full-duplex mode in the working frequency band of the energy supply/wake-up signal, realizing the zero-power device communication mechanism under the full-duplex communication architecture and expanding practical application deployment.
  • FIG 10 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the wireless communication method 200 may include at least part of the following content:
  • the first communication device sends a first backscattered signal to the second communication device; wherein the first communication device obtains energy through energy collection for communication, information collection and processing, and the second communication device obtains energy during the first communication device.
  • the working frequency band of the backscattered signal operates in full-duplex mode, that is, it supports full-duplex.
  • S220 The second communication device receives the first backscattered signal sent by the first communication device.
  • the second communication device operates in full-duplex mode in the working frequency band of the first backscattered signal, that is, the second communication device supports simultaneous transmission and reception of signals in the working frequency band of the first backscattered signal, This enables the realization of a zero-power device communication mechanism under a full-duplex communication architecture and expands practical application deployment.
  • the transmitting antenna and the receiving antenna of the second communication device can be physically isolated, for example, the transmitting antenna and the receiving antenna of the same frequency band are respectively arranged at two farther physical locations on the antenna panel. to realize that the second communication device operates in full-duplex mode on this frequency band.
  • the first communication device may operate in a full-duplex mode or a half-duplex mode in the operating frequency band of the first backscattered signal, without limitation.
  • the first communication device may be a zero-power consumption device or a tag device based on radio frequency energy collection.
  • the first communication device may only have a backscatter transmitter (Tx) and a simple receiver (Rx), such as an A-IoT device; it may also be a backscatter transmitter (Tx) and a simple receiver (Rx).
  • Rx) functions or modules are attached to normal transceiver terminals, such as A-IoT assisted UE (A-IoT assisted UE). That is, the first communication device may be a UE or IoT device, and may have a wake up radio/receiver, a normal receiver, a backscatter transmitter and a normal transmitter. at least one of normal transmitter).
  • the first backscattered signal is transmitted by the backscattered transmitter in the first communication device.
  • the second communication device may be a receiving device for the backscattered signal of the tag device, and may also be a signal source (power supply device) of the tag device, such as a CPE/base station/WiFi AP, etc. .
  • This application mainly considers zero-power devices or tag devices that use RF energy collection to drive backscattering to send signals.
  • Other energy supply methods such as heat energy, pressure, light energy, etc. are not excluded; energy supply signals and tag devices
  • the energy supply signal and the carrier signal can be the same, and can be a same-frequency signal or a different-frequency signal, depending on the radio frequency capability of the tag device (the number of supported radio frequency channels or antennas).
  • backscatter communication may be communication between the first communication device and the second communication device.
  • the first communication device is a terminal device and the second communication device is a network device. That is, the communication between the first communication device and the second communication device may be uplink and downlink communication.
  • the first communication device is a terminal device, and the second communication device is another terminal device. That is, the communication between the first communication device and the second communication device may be side communication.
  • zero-power devices do not have battery power and need to obtain energy for communication through energy collection.
  • they can collect energy from environmental energy such as thermal energy, light energy, kinetic energy, etc.; on the other hand, they can collect radio frequency energy.
  • the signal is energy harvested to obtain the energy used for communication, and then the corresponding communication process is performed based on backscattering.
  • signals for energy harvesting ie, energy supply signals
  • networks can be provided through network devices or dedicated energy nodes.
  • network equipment is required to provide control information and schedule information transmission, which can be called a scheduling signal/trigger signal.
  • the trigger signal and the energy supply signal can be the same signal, or they can be two independent signals.
  • zero-power devices communicate they need a carrier that can carry the communication.
  • the carrier can be a signal that is independent of the energy supply signal and trigger signal, or it can be the same signal as the energy supply signal, or it can be the same signal as the trigger signal.
  • the frequency bands of the energy supply signal, carrier signal, and trigger signal may be completely different, completely identical, or partially identical.
  • the energy supply device continuously or intermittently sends energy supply signals in a certain frequency band, and the zero-power consumption device collects energy. After the zero-power consumption device obtains energy, it can perform corresponding communication processes, such as measurement, channel/signal reception, channel /Signal sending, etc.
  • the first communication device also receives a first carrier signal sent by the second communication device; wherein the first backscattered signal is generated by modulating the first carrier signal.
  • the second communication device while receiving the first backscattered signal, the second communication device also supports sending the first carrier signal in the same frequency band as the first backscattered signal.
  • the first carrier signal can also be used as an energy supply signal.
  • the zero-power device includes energy harvesting, a simple receiver and a reverse Scattering transmitter, the simple receiver is an OOK/FSK receiver, for example.
  • the full-duplex base station transmits signals in the F2 frequency band at the same time and on the same frequency.
  • the downlink (DL) signal is used as the energy supply/carrier signal
  • the uplink (UL) signal is the backscattered signal after modulating the received carrier signal.
  • the frequency point of the UL signal is F2 ⁇ offset.
  • backscattering can support binary on-off keying (OOK) amplitude modulation, frequency shift keying (Frequency-shift keying, FSK) frequency modulation or phase-shift keying (phase-shift keying). PSK) phase modulation.
  • OOK binary on-off keying
  • FSK frequency shift keying
  • PSK phase-shift keying
  • the above-mentioned first communication device also receives a first energy supply signal sent by the second communication device, wherein the first energy supply signal has a different operating frequency band from the first backscatter signal.
  • the first energy supply signal is a signal in the F1 frequency band
  • the first backscattered signal is a signal in the F2 frequency band.
  • the zero-power consumption device includes energy harvesting, a simple receiver and a reverse Scattering transmitter, the simple receiver is an OOK/FSK receiver, for example.
  • the full-duplex base station transmits signals in the F2 frequency band at the same time and on the same frequency.
  • the DL signal in the F1 frequency band is used as a power supply signal (the DL signal in the F1 frequency band can only be used as a power supply signal), and the DL signal in the F2 frequency band is used as a carrier signal, that is, the downlink
  • the energy supply signal and the carrier signal are separated; the UL signal is the backscattered signal after modulating the received carrier signal, and the frequency point of the UL signal is F2 ⁇ offset.
  • modulation methods please refer to the description above.
  • the first communication device also receives a second carrier signal sent by the second communication device; and the first communication device sends a second backscattered signal to the second communication device.
  • the second backscattered signal is generated by modulating the second carrier signal, and the working frequency band of the second backscattered signal is different from that of the first backscattered signal.
  • the second carrier signal is a signal in the F1 frequency band
  • the first carrier signal is a signal in the F2 frequency band.
  • the second carrier signal has the same operating frequency band as the above-mentioned first energy supply signal.
  • the second carrier signal and the first energy supply signal are the same signal, that is, the signal serves as the energy supply signal and the carrier signal at the same time.
  • the first communication device is a zero-power consumption device
  • the second communication device is a base station that operates in full-duplex mode at least in the F1 frequency band and the F2 frequency band.
  • the zero-power consumption device includes energy collection, simple reception
  • a simple receiver such as an OOK/FSK receiver and a backscatter transmitter.
  • a full-duplex base station transmits signals on multiple frequency bands (such as F1 frequency band and F2 frequency band) at the same time.
  • At least one DL signal is used as a power supply signal, carrier signal (or wake-up signal), and other DL signals are used as carrier signals.
  • the DL signal in the F1 frequency band is used as the energy supply/carrier signal, and the DL signal in the F2 frequency band is used as the carrier signal;
  • the UL signal is the backscattered signal after modulating the received carrier signal, and the frequency points of the UL signal are F2 ⁇ offset. Shift 1 (offset1), F1 ⁇ offset2.
  • For optional modulation methods please refer to the description above.
  • the first backscattered signal and the second backscattered signal may be sent by carrier aggregation (CA), and/or the first carrier signal and the second carrier signal may be Sent via CA to improve spectrum efficiency.
  • CA carrier aggregation
  • the CA can be a continuous CA or a non-continuous CA, without limitation.
  • the second communication device serves as a signal source, and the transmitted energy supply or carrier signal may cause huge interference to the backscattered signal itself, that is, the second communication device's self-interference, causing the reception of the backscattered signal to In-band/out-of-band blocking or adjacent-band interference causes the second communication device to be unable to demodulate the backscattered signal, or to demodulate a weak backscattered signal.
  • the present application can use the full-duplex capability of the second communication device to use the self-interference signal of the second communication device as the carrier signal of the backscattered signal, which can solve the problem between the backscattered signal and the energy supply/carrier signal.
  • the interference problem effectively resolves the in-band/out-of-band blocking or adjacent band interference of the backscattered signal, thereby enabling better demodulation of the backscattered signal.
  • the above-mentioned first communication device also receives a second energy supply signal sent by the second communication device, wherein the operating frequency of the first backscattered signal is determined based on the operating frequency of the second energy supply signal.
  • the second energy supply signal may also be an energy supply/carrier signal, and the first backscattered signal is generated by modulating the energy supply/carrier signal); and the first communication device sends the second communication device to the second communication device.
  • the carrier of the third backscattered signal includes a harmonic signal of the first energy supply signal, that is, a harmonic signal of the second energy supply signal as a reflected carrier wave.
  • the harmonic signal may be a self-interference signal generated when the second communication device sends the first energy supply signal.
  • the harmonic signal may be a first harmonic signal, a second harmonic signal or a multiple harmonic signal, without limitation.
  • the second energy supply signal is a signal in the F1 frequency band
  • the first backscattered signal is a signal in the F1 frequency band
  • the third backscattered signal is a signal in the F2 frequency band
  • F2 N*F1
  • N is a positive integer And N>1.
  • F1 800Mhz
  • the second communication device operates in a half-duplex mode in the operating frequency band of the third backscattered signal.
  • the second communication device supports Time Division Duplex (TDD) in the F2 frequency band
  • the F2 frequency band may be, for example, a Super Uplink (SUL) frequency band.
  • the second communication device supports Frequency Division Duplex (FDD) in the F2 frequency band.
  • TDD Time Division Duplex
  • SUL Super Uplink
  • FDD Frequency Division Duplex
  • the zero-power consumption device includes energy harvesting, a simple receiver and a reverse Scattering transmitter, the simple receiver is an OOK/FSK receiver, for example.
  • the full-duplex base station transmits signals on the F1 band at the same time and on the same frequency.
  • the DL signal in the F1 frequency band is used as a power supply signal (the DL signal in the F1 frequency band can only be used as a power supply signal); UL receives backscattered signals in the F1 frequency band and F2 frequency band, and the frequency points of the UL signal are F1 ⁇ offset3 and F2 respectively. ⁇ offset4.
  • the backscattered signal in the F2 frequency band is the multiple (Nth) harmonic signal of the energy supply signal frequency point.
  • the full-duplex base station can work in half-duplex mode in the F2 frequency band, such as TDD, and the F2 frequency band is the SUL frequency band.
  • modulation methods please refer to the description above.
  • this application can utilize the full-duplex capability of the second communication device and use the self-interference signal of the second communication device as the carrier signal of the backscattered signal, which can solve the interference between the backscattered signal and the energy supply/carrier signal. problem, effectively solving the receiving in-band/out-of-band blocking or adjacent band interference of backscattered signals.
  • the coverage of backscatter communications is smaller than the downlink coverage.
  • the receiving device of the backscattered signal of the tag device such as CPE/base station/WiFi AP, etc.
  • the signal source of the tag device such as CPE/base station/WiFi AP, etc.
  • the sensitivity of the carrier signal is much lower than the minimum power threshold (ie sensitivity) requirement of the energy supply signal, resulting in the downlink transmission distance of the energy supply signal or carrier signal and the uplink reflection of the backscattered signal of the tag device
  • the distance is unbalanced (for example, the downlink transmission distance is 5m, while the uplink reflection distance is only 2m).
  • the transmission signal reaching the receiving side such as CPE/base station/WiFi AP, etc.
  • the energy supply signal or carrier signal reaching the receiving side such as CPE/base station/WiFi AP, etc.
  • the self-interference signal of the second communication device is used as the carrier signal of the backscattered signal, which effectively resolves the receiving in-band/out-of-band blocking or adjacent band interference of the backscattered signal.
  • the second communication device It can better demodulate the backscattered signal, and thus this application can enhance the uplink reflection distance of the backscattered signal and expand practical application deployment.
  • FIG 16 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in Figure 16, the wireless communication method 300 may include at least part of the following content:
  • the second communication device sends a downlink signal of the first frequency band to the first communication device.
  • the first communication device obtains energy through energy collection for communication, information collection and processing, and the second communication device operates in full-duplex mode in the first frequency band.
  • the downlink signal includes an energy supply signal and/or a wake-up signal.
  • S320 The first communication device receives the downlink signal of the first frequency band sent by the second communication device.
  • the first communication device sends the uplink signal of the first frequency band and the backscattering signal of the second frequency band to the second communication device.
  • the second communication device receives the uplink signal of the first frequency band and the backscattering signal of the second frequency band sent by the first communication device.
  • the second communication device operates in the full-duplex mode in the first frequency band, that is, the second communication device supports sending downlink signals and uplink signals simultaneously in the first frequency band, thereby enabling zero-password transmission under the full-duplex communication architecture.
  • the first communication device may operate in a full-duplex mode or a half-duplex mode in the first frequency band, without limitation.
  • the first communication device may be a zero-power consumption device or a tag device based on radio frequency energy collection
  • the second communication device may be a receiving device for backscattered signals of the tag device, and may also be the The signal source of the tag device, such as CPE/base station/WiFi AP, etc.
  • the first communication device includes a normal transmitter, wherein the carrier of the backscattered signal includes a modulated signal transmitted by the normal transmitter.
  • the carrier of the backscattered signal includes an interference signal (such as a self-interference signal) generated by the downlink signal in the first communication device (such as an internal circuit).
  • an interference signal such as a self-interference signal
  • the terminal device is an A-IoT assisted terminal (A-IoT assisted mobile).
  • Phone/UE which may include energy harvesting, a simple receiver, and a backscatter transmitter.
  • the simple receiver is, for example, an OOK/FSK receiver.
  • the terminal equipment may also include a normal receiver and a normal transmitter.
  • the full-duplex base station transmits signals in the F1 frequency band at the same time.
  • the DL signal in the F1 frequency band is used as a power supply signal and/or a wake-up signal.
  • the power supply signal provides the charging function of the terminal, and the wake-up signal provides the wake-up function of the terminal. Function.
  • the terminal equipment provides the UL signal in the F2 frequency band as a carrier signal backscattered and sent to the base station, and the corresponding base station receives the backscattered signal. The frequency point of this backscattered signal is F2 ⁇ offset5.
  • the terminal equipment also provides UL signals on the F1 frequency band, and its frequency point is F1 ⁇ offset6.
  • the backscattered signal may be an interference signal generated by the DL signal in the F1 frequency band in the terminal device (such as an internal circuit).
  • the interfering signals include harmonic signals.
  • a passive filter can be added on the side of the first communication device (such as UE) to filter and collect multi-order harmonics corresponding to the reflection frequency.
  • the multi-order harmonics fall on the backscattered signal.
  • the frequency band such as F2 band.
  • the multi-order harmonics can be used as carriers of backscattered signals, carrying information and reflected to the second communication device.
  • the backscattered signal may be a modulated signal transmitted by a normal transmitter after the terminal device wakes up.
  • the modulation method can be FSK modulation.
  • the F2 frequency band is the same frequency band as the harmonic signal of the DL signal of the F1 frequency band.
  • the F2 frequency band may be the same frequency band as the intermodulation signal of the F1 frequency band and the F2 frequency band.
  • the above-mentioned first communication device also receives a carrier signal in the second frequency band sent by the second communication device, wherein the backscattered signal is generated by modulating the carrier signal, and the carrier signal includes the above-mentioned downlink signal interference signal.
  • the above-mentioned first frequency band may be the F1 frequency band
  • the second frequency band may be the F2 frequency band.
  • the interference signal may be a self-interference signal, such as a harmonic signal.
  • the backscatter signal is emitted by a backscatter transmitter.
  • the first communication device as a terminal device and the second communication device as a base station operating in full-duplex mode at least in the F1 frequency band and the F2 frequency band
  • the terminal device is an A-IoT-assisted terminal (A- IoT assisted mobile Phone/UE)
  • A- IoT assisted mobile Phone/UE may include energy harvesting, a simple receiver, such as an OOK/FSK receiver, and a backscatter transmitter.
  • the terminal equipment may also include a normal receiver and a normal transmitter.
  • the full-duplex base station transmits signals in the F1 frequency band at the same time.
  • the DL signal in the F1 frequency band is used as a power supply signal and/or a wake-up signal.
  • the power supply signal provides the charging function of the terminal, and the wake-up signal provides the wake-up function of the terminal. Function.
  • the self-interference signal (such as harmonic signal) of the DL signal in the F1 frequency band is also sent to the terminal equipment as a carrier signal. This self-interference signal is in the F2 frequency band.
  • the terminal equipment can perform FSK modulation on the carrier signal and send the frequency-offset backscattered signal to the base station.
  • the base station receives the backscattered signal.
  • the frequency point of this backscattered signal is F2 ⁇ offset7.
  • the terminal equipment also provides UL signals on the F1 frequency band, and its frequency point is F1 ⁇ offset8.
  • the frequency offset there is a frequency offset between the backscattered signal and the interference signal.
  • the ability of the second communications device to cancel interference from the backscattered signal is related to the frequency offset.
  • the second communication device moves the carrier signal frequency to the adjacent band through FSK modulation, and there is a certain frequency offset or interval between the backscattered signal and the useful received signal of the second communication device, thereby achieving the purpose of avoiding interference.
  • the frequency offset is greater than or equal to a unit frequency guard band or an occupied channel bandwidth, such as 5MHz.
  • this application can use the full-duplex capability of the second communication device to use the self-interference signal of the second communication device or the self-interference signal of the first communication device as the carrier signal of the backscatter signal, which can solve the problem of backscattering.
  • the interference problem between the signal and the power supply/carrier signal effectively resolves the receiving in-band/out-of-band blocking or adjacent band interference of the backscattered signal.
  • the self-interference signal of the second communication device or the self-interference signal of the first communication device is used as the carrier signal of the backscattered signal to effectively resolve the receiving in-band/out-of-band blocking or adjacent band interference of the backscattered signal.
  • the second communication device can better demodulate the backscattered signal, and thus the present application can enhance the uplink reflection distance of the backscattered signal and expand practical application deployment.
  • the backscattering communication mechanism under the full-duplex communication system is as follows:
  • the self-interference signal (F2 frequency band, harmonic signal) of the UL signal in the F1 frequency band is used as the carrier of the backscattered signal; when OOK modulation is used, the carrier of the backscattered signal is the F2 frequency band, using FSL modulation
  • the carrier wave of the backscattered signal is F2 ⁇ offset/1CBW.
  • CBW refers to the channel bandwidth (Channel bandwidth) on the UE side.
  • the DL time slot Use the DL signal (such as the F2 frequency band in a specific frequency band combination) as the carrier of the backscattered signal; when OOK modulation is used, the carrier of the backscattered signal is the F2 frequency band, and when FSL modulation is used, the backscattered signal is The carrier of the scattered signal is F2 ⁇ offset/1CBW.
  • the DL signal such as the F2 frequency band in a specific frequency band combination
  • the full-duplex base station realizes full duplex on the same frequency at the same time, has the CA capability or simultaneous reception capability of the F1+F2 frequency band combination, and has the downlink transmission capability of the F2 frequency band.
  • the F1+F2 frequency band can be SUL(F1)+TDD(OOK, F2)/FDDband(FSK, such as F2DL, F2 ⁇ offset/1CBW UL):
  • Half-duplex UE carries backscatter transmitter or reflection function:
  • F2UL or (F2 ⁇ offset) can be sent by a normal transmitter or a backscatter transmitter.
  • FIG. 19 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes a communication unit 410.
  • the communication device 400 is a first communication device, and the communication unit 410 is configured to send a first backscattered signal to a second communication device.
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in a full-duplex mode in the operating frequency band of the first backscattered signal.
  • the communication unit 410 is also configured to receive a first carrier signal sent by the second communication device; wherein the first backscattered signal is generated by modulating the first carrier signal.
  • the communication unit 410 is also configured to receive a first energy supply signal sent by the second communication device, where the first energy supply signal has a different operating frequency band from the first backscatter signal.
  • the communication unit 410 is also used to receive the second carrier signal sent by the second communication device.
  • the scattered signals are different.
  • the first backscattered signal and the second backscattered signal are sent through carrier aggregation.
  • the first carrier signal and the second carrier signal are sent through carrier aggregation.
  • the second carrier signal has the same operating frequency band as the first energy supply signal.
  • the communication unit 410 is also configured to receive a second energy supply signal sent by the second communication device, wherein the operating frequency of the first backscattered signal is determined based on the operating frequency of the second energy supply signal. ;as well as
  • a third backscattered signal is sent to the second communication device, wherein a carrier of the third backscattered signal includes a harmonic signal of the first power supply signal.
  • the second communication device operates in a half-duplex mode in the operating frequency band of the third backscattered signal.
  • the first communication device includes a backscatter transmitter, wherein the first backscatter signal is transmitted by the backscatter transmitter.
  • the communication device 400 in this embodiment may correspond to the first communication device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the communication device 400 are respectively to implement the method shown in Figure 10
  • the corresponding process of the first communication device in 200 will not be repeated here for the sake of simplicity.
  • the communication device 400 is a second communication device, and the communication unit 410 is configured to receive the first backscattered signal sent by the first communication device;
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in a full-duplex mode in the operating frequency band of the first backscattered signal.
  • the communication unit 410 is also configured to send a first carrier signal to the first communication device; wherein the first backscattered signal is generated by modulating the first carrier signal.
  • the communication unit 410 is also configured to send a first energy supply signal to the first communication device, where the first energy supply signal has a different operating frequency band from the first backscatter signal.
  • the communication unit 410 is also used to send a second carrier signal to the first communication device.
  • the first backscattered signal and the second backscattered signal are sent through carrier aggregation.
  • the first carrier signal and the second carrier signal are sent through carrier aggregation.
  • the second carrier signal has the same operating frequency band as the first energy supply signal.
  • the communication unit 410 is also configured to send a second energy supply signal to the first communication device, wherein the operating frequency of the first backscattered signal is determined based on the operating frequency of the second energy supply signal. ;as well as
  • a third backscattered signal sent by the first communication device is received, wherein a carrier of the third backscattered signal includes a harmonic signal of the first energy supply signal.
  • the second communication device operates in a half-duplex mode in the operating frequency band of the third backscattered signal.
  • the first communication device includes a backscatter transmitter, wherein the first backscatter signal is transmitted by the backscatter transmitter.
  • the communication device 400 in this embodiment may correspond to the second communication device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the communication device 400 are respectively to implement the method shown in Figure 10
  • the corresponding process of the second communication device in 200 will not be described again for the sake of simplicity.
  • the communication device 400 is a first communication device, and the communication unit 410 is configured to receive a downlink signal of the first frequency band sent by the second communication device;
  • the first communication device obtains energy through energy harvesting for communication, information collection and processing, and the second communication device operates in full-duplex mode in the first frequency band.
  • the first communication device includes a normal transmitter, wherein the carrier of the backscattered signal includes a modulated signal transmitted by the normal transmitter.
  • the carrier of the backscattered signal includes an interference signal generated by the downlink signal at the first communication device.
  • the communication unit 410 is also configured to receive a carrier signal of the second frequency band sent by the second communication device, wherein the backscattered signal is generated by modulating the carrier signal, and the carrier signal includes the downlink signal interference signal.
  • the frequency offset is greater than or equal to a unit frequency guard band or a bandwidth of an occupied channel.
  • the first communication device includes a backscatter transmitter, wherein the backscatter signal is transmitted by the backscatter transmitter.
  • the interference signal includes harmonic signals.
  • the downlink signal includes an energy supply signal and/or a wake-up signal.
  • the communication device 400 in this embodiment may correspond to the first communication device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the communication device 400 are respectively to implement the method shown in Figure 16
  • the corresponding process of the first communication device in 300 will not be described again for the sake of simplicity.
  • the communication device 400 is a second communication device, and the communication unit 410 is used to send a downlink signal of the first frequency band to the first communication device;
  • the first communication device obtains energy through energy collection for communication, information collection and processing, and the second communication device operates in full-duplex mode in the first frequency band.
  • the first communication device includes a normal transmitter, wherein the carrier of the backscattered signal includes a modulated signal transmitted by the normal transmitter.
  • the carrier of the backscattered signal includes an interference signal generated by the downlink signal at the first communication device.
  • the communication unit 410 is also configured to send the carrier signal of the second frequency band to the first communication device, wherein the backscattered signal is generated by modulating the carrier signal, and the carrier signal includes the downlink signal. interference signal.
  • the frequency offset is greater than or equal to a unit frequency guard band or a bandwidth of an occupied channel.
  • the first communication device includes a backscatter transmitter, wherein the backscatter signal is transmitted by the backscatter transmitter.
  • the interference signal includes harmonic signals.
  • the downlink signal includes an energy supply signal and/or a wake-up signal.
  • the communication device 400 in this embodiment may correspond to the second communication device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the communication device 400 are respectively to implement the method shown in Figure 16
  • the corresponding process of the second communication device in 300 will not be described again for the sake of simplicity.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • Figure 20 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in Figure 20 includes a processor 510.
  • the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 500 may also include memory 520.
  • the processor 510 can call and run the computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the communication device 500 may also include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the first communication device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application. For the sake of simplicity , which will not be described in detail here.
  • the communication device 500 can specifically be the second communication device in the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application. For the sake of simplicity , which will not be described in detail here.
  • Figure 21 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the device 600 shown in Figure 21 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • device 600 may also include memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the device 600 may also include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the device 600 may also include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the device can be applied to the first communication device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the device can be applied to the second communication device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the devices mentioned in the embodiments of this application may also be chips.
  • it can be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip or a system-on-a-chip, etc.
  • Figure 22 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 22 , the communication system 700 includes a first communication device 710 and a second communication device 720 .
  • the first communication device 710 can be used to implement the corresponding functions implemented by the first communication device in the above method
  • the second communication device 720 can be used to implement the corresponding functions implemented by the second communication device in the above method
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the computer-readable storage medium can be applied to the second communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • the computer program product can be applied to the second communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform various methods implemented by the first communication device in the embodiment of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the second communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform various methods implemented by the second communication device in the embodiment of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备。该无线通信的方法,包括:第一通信设备向第二通信设备发送第一反向散射信号;其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一反向散射信号的工作频段工作在全双工模式。本申请实施例中,通过全双工通信设备作为零功耗设备的反向散射信号的接收设备,可以实现全双工通信架构下零功耗设备通信机制,拓展实际应用部署。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
在零功耗通信中,零功耗终端需要采集无线电波获得能量后才可以驱动自身进行工作。对于物流仓储管理、超市购物等场景,需要接入的零功耗终端较多。目前,拓展零功耗设备的通信机制十分必要。
发明内容
本申请实施例提供了一种无线通信的方法及设备,能够实现全双工通信架构下零功耗设备通信机制,拓展实际应用部署。
第一方面,提供了一种无线通信的方法,该方法包括:
第一通信设备向第二通信设备发送第一反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一反向散射信号的工作频段工作在全双工模式。
第二方面,提供了一种无线通信的方法,该方法包括:
第二通信设备接收第一通信设备发送的第一反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一反向散射信号的工作频段工作在全双工模式。
第三方面,提供了一种无线通信的方法,该方法包括:
第一通信设备接收第二通信设备发送的第一频段的下行信号;
该第一通信设备向该第二通信设备发送该第一频段的上行信号,以及第二频段的反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一频段工作在全双工模式。
第四方面,提供了一种无线通信的方法,该方法包括:
第二通信设备向第一通信设备发送第一频段的下行信号;
该第二通信设备接收该第一通信设备发送的该第一频段的上行信号,以及第二频段的反向散射信号;
其中,该述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一频段工作在全双工模式。
第五方面,提供了一种通信设备,用于执行上述第一方面中的方法。
具体地,该通信设备包括用于执行上述第一方面中的方法的功能模块。
第六方面,提供了一种通信设备,用于执行上述第二方面中的方法。
具体地,该通信设备包括用于执行上述第二方面中的方法的功能模块。
第七方面,提供了一种通信设备,用于执行上述第三方面中的方法。
具体地,该通信设备包括用于执行上述第三方面中的方法的功能模块。
第八方面,提供了一种通信设备,用于执行上述第四方面中的方法。
具体地,该通信设备包括用于执行上述第四方面中的方法的功能模块。
第九方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第一方面至第四方面中任一方面中的方法。
第十方面,提供了一种装置,用于实现上述第一方面至第四方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第四方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面中的方法。
通过上述技术方案,全双工通信设备作为零功耗设备的反向散射信号的接收设备,可以在反向散 射信号的工作频段工作在全双工模式,和/或在供能/唤醒信号的工作频段工作在全双工模式,实现了全双工通信架构下零功耗设备通信机制,拓展实际应用部署。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种零功耗通信的原理图。
图3是本申请提供的一种反向散射通信原理图。
图4是本申请提供的一种能量采集原理图。
图5是本申请提供的一种电阻负载调制的电路原理图。
图6是本申请提供的一种低功耗的示意性图。
图7是本申请提供的一种包络检测的示意性图。
图8是本申请提供的一种接收机射频指标要求的示意性图。
图9是本申请提供的一种接收机阻塞的示意性图。
图10是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图11是根据本申请实施例提供的一种全双工通信架构的示意图。
图12是根据本申请实施例提供的另一种全双工通信架构的示意图。
图13是根据本申请实施例提供的另一种全双工通信架构的示意图。
图14是根据本申请实施例提供的另一种全双工通信架构的示意图。
图15是本申请提供的一种反向散射的示意性图。
图16是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图17是根据本申请实施例提供的另一种全双工通信架构的示意图。
图18是根据本申请实施例提供的另一种全双工通信架构的示意图。
图19是根据本申请实施例提供的一种通信设备的示意性框图。
图20是根据本申请实施例提供的再一种通信设备的示意性框图。
图21是根据本申请实施例提供的一种装置的示意性框图。
图22是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到 7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备, 例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。本文中以第一通信设备是终端设备和第二通信设备是网络设备为具体实例进行描述。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
近年来,零功耗设备(Ambient based IoT,A-IoT)的应用越来越广泛。一种典型的零功耗设备是无线射频识别(Radio Frequency Identification,RFID),它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID是一种无线通信技术。最基本的RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签:它由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器:不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。如图2所示。电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
零功耗通信的关键技术包括能量采集和反向散射通信以及低功耗计算,如图2所示,一个典型的零功耗通信系统包括读写器和零功耗终端。读写器发射无线电波,用于向零功耗终端提供能量。安装在零功耗终端的能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为读写器发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收读写器的控制命令并基于控制信令基于后向散射的方式向读写器发送数据。所发送的数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
为便于更好的理解本申请实施例,对本申请相关的反向散射通信(Back Scattering)进行说明。
如图3所示,零功耗设备(图3中的反向散射标签)接收反向散射读写器发送的载波信号,通过无线射频(Radio Frequency,RF)能量采集模块采集能量。进而对低功耗处理模块(图3中的逻辑处理模块)进行供能,对来波信号进行调制,并进行反向散射。
反向散射通信主要特征如下:
(1)终端不主动发射信号,通过调制来波信号实现反向散射通信;
(2)终端不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
为便于更好的理解本申请实施例,对本申请相关的RF能量采集(Power Harvesting)进行说明。
如图4所示,利用RF模块通过电磁感应实现对空间电磁波能量的采集,进而实现对负载电路的驱动(低功耗运算、传感器等),可以实现免电池。
为便于更好的理解本申请实施例,对本申请相关的负载调制进行说明。
负载调制是电子标签经常使用的向读写器传输数据的方法。负载调制通过对电子标签振荡回路的电参数按照数据流的节拍进行调节,使电子标签阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理图如图5所示。
在电容负载调制中,负载并联一个电容,取代了图5中由二进制数据编码控制的负载调制电阻。
为便于更好的理解本申请实施例,对本申请相关的编码技术进行说明。
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的供能信号进行说明。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作供能的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
供能信号可能是第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)标准中规定的某一信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的触发信号进行说明。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发的无线电波可以是低频、中频、高频等。
从波形上,用作触发的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作触发的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
触发信号可能是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
为便于更好的理解本申请实施例,对本申请相关的零功耗终端的分类进行说明。
基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1)无源零功耗终端
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2)半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3)有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端,内置电池向RFID芯片供电,以增加标签的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
为便于更好的理解本申请实施例,对本申请相关的蜂窝无源物联网进行说明。
随着5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于现有的零功耗设备,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。如图6所示,NR空闲态(NR Idle):射频和基带仍在工作;低功耗(very low power):主要的射频模块休眠或关断;几乎零功耗(almost zero power):通过激活或唤醒信号(从射频模块)的包络检测来判断开关主射频和基带模块,其中,包络检测可以如图7所示;零功耗(zero power):收集外界的射频或其他能量来满足电路消耗和通信需求。
为便于更好的理解本申请实施例,对本申请相关的零功耗终端(或Ambient based IoT,A-IoT)与传统通信的共存进行说明。
参考窄带物联网的系统共存方式,零功耗终端(或A-IoT)与NR也可能有三种系统共存的方式:带内部署、保护带部署和独立部署模式。由于传统4G/5G终端的接收机灵敏度相对零功耗终端要低很多,研究零功耗通信系统与现有4G/5G蜂窝通信网络的共存干扰问题十分必要。
由前述零功耗设备能量采集和反向散射等特性可以发现,零功耗通信系统与现有4G/5G系统共存研究,最重要地是分析共存对二者接收机性能的影响,包括接带内灵敏度(in channel sensitivity,ICS)、最大输入功率(Maximum input level)、邻带选择性(Adjacent channel selectivity,ACS)、阻塞(带内(In-band),带外(out-of-band)and narrow-band blocking)以及杂散(Spurious response)等指标要求。图8示出了基本接收机射频指标要求的一个示意图。
不论零功耗设备部署在带内,保护带或独立模式,向零功耗终端的发送的下行信号或零功耗终端的反射信号,也可能会落到4G/5G终端的邻带或者带内,形成邻带干扰或带内阻塞,如图9所示。此时干扰信号应满足4G/5G终端的接收机射频指标要求,否则将降低接收机性能,导致接收机灵敏度的回退(MSD)。
特别地,若采用采用带内模式,首先需要避免系统间的同频干扰,也即带内干扰。目前的研究发现,零功耗终端采集无线能量的入射功率(input power)一般在至少-20dBm,能量源的发射信号和反向散射的信号,是否会对同频段上的其他4G/5G终端造成同频干扰需要评估。例如,从无线供能的角度,网络需要发送较强的信号以使得零功耗终端的接收功率在-20dBm以上,如此强的信号可能导致在使用带内部署时,可能会影响现有终端的最大输入功率,如现有协议要求的最大输入功率为-15dBm。因此需要评估对现有终端的影响以及如何规避相关影响。
如果零功耗设备与4G/5G终端共设备部署,那么共存问题会更加复杂,还需要考虑谐波和互调等信号带来的额外干扰,对二者接收机性能的影响。此外,还有与其他WiFi、蓝牙、北斗全球定位系统(Global Positioning System,GPS)等系统的共存问题,也需要更根据实际工作频段和模式具体分析。如果零功耗设备以独立设备的形式存在,那么上述共存问题会简单很多,只需要满足上述发射机/接收机邻带和带外杂散辐射的射频指标要求即可。
目前,拓展零功耗设备的通信机制十分必要。基于此,本申请提供了一种无线通信的技术方案,全双工通信设备作为零功耗设备的反向散射信号的接收设备,可以在反向散射信号的工作频段工作在 全双工模式,和/或在供能/唤醒信号的工作频段工作在全双工模式,实现了全双工通信架构下零功耗设备通信机制,拓展实际应用部署。
以下通过具体实施例详述本申请的技术方案。
图10是根据本申请实施例的无线通信的方法200的示意性流程图,如图10所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第一通信设备向第二通信设备发送第一反向散射信号;其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一反向散射信号的工作频段工作在全双工(full-duplex)模式,即支持全双工。
S220,第二通信设备接收第一通信设备发送的第一反向散射信号。
在本申请实施例中,第二通信设备在第一反向散射信号的工作频段工作在全双工模式,即第二通信设备在第一反向散射信号的工作频段支持同时发送和接收信号,从而能够实现全双工通信架构下零功耗设备通信机制,拓展实际应用部署。
作为一种可能的实现方式,可以对第二通信设备的发射天线和接收天线之间进行物理隔离,例如将同一频段的发射天线和接收天线分别设置在天线面板上的较远的两个物理位置上,以实现第二通信设备在该频段上工作在全双工模式。
可选的,第一通信设备在该第一反向散射信号的工作频段可以工作在全双工模式,或半双工模式,不做限定。
在本申请实施例中,该第一通信设备可以是基于射频能量采集的零功耗设备或标签设备。示例性的,第一通信设备可以只有反向散射发射机(Tx)和简单的接收机(Rx),比如A-IoT设备;也可以是反向散射发射机(Tx)和简单的接收机(Rx)功能或模块依附在正常的收发器终端,比如A-IoT辅助的UE(A-IoT assisted UE)。即,第一通信设备可以为UE或IoT设备,可以具备唤醒无线电/接收机(wake up radio/receiver)、正常接收机(normal receiver)、反向散射发射机(backscatter transmitter)和正常发射机(normal transmitter)中的至少一种。
在一些实施例中,上述第一反向散射信号是该第一通信设备中的反向散射发射机发射的。
在本申请实施例中,该第二通信设备可以是标签设备的反向散射信号的接收设备,同时还可以是该标签设备的信号源(供能设备),例如为CPE/基站/WiFi AP等。
本申请主要考虑零功耗设备或标签设备通过RF能量采集来驱动反向散射发送信号,除此之外的供能方式如热能、压力、光能等形式也不排除;供能信号与标签设备的射频能力有关,有最低入射功率要求。供能信号和载波信号可以是同一个,可以是同频信号,也可以是异频信号,取决于标签设备的射频能力(能支持的射频通道或天线数)。
在本申请实施例中,反向散射通信可以是第一通信设备与第二通信设备之间的通信。例如,该第一通信设备为终端设备,该第二通信设备为网络设备,也即,该第一通信设备与该第二通信设备之间的通信可以是上下行通信。又例如,该第一通信设备为一个终端设备,该第二通信设备为另一个终端设备,也即,该第一通信设备与该第二通信设备之间的通信可以是侧行通信。
在蜂窝网络中,零功耗设备由于没有电池供电,需要通过能量采集获得用于通信的能量,一方面可以对环境能量例如热能、光能、动能等进行能量采集,另一方面,可以对射频信号进行能量采集,获得用于通信的能量,然后基于反向散射进行相应的通信过程。典型的,可以通过网络设备或者专用能量节点提供用于能量采集的信号(即供能信号)。在基于调度进行通信时,需要网络设备提供控制信息,进行信息传输的调度,可以称为调度信号/触发信号。触发信号与供能信号可以是同一个信号,也可以是两个独立的信号。在零功耗设备进行通信时,需要有能够承载通信的载波,载波可以是一个独立于供能信号、触发信号的信号,也可以与供能信号是一个信号,或者与触发信号是一个信号。
在本申请实施例中,供能信号、载波信号、触发信号的频段可以完全不同,或者完全相同,或者部分相同。供能设备在某个频段持续或者间歇性的发送供能信号,零功耗设备进行能量采集,零功耗设备获得能量之后,可以进行相应的通信过程,如测量、信道/信号的接收、信道/信号的发送等。
在一些实施例中,上述第一通信设备还接收第二通信设备发送的第一载波信号;其中,上述第一反向散射信号是对该第一载波信号进行调制生成的。
即,第二通信设备在接收第一反向散射信号的同时,还支持发送与该第一反向散射信号同频段的第一载波信号。可选的,该第一载波信号还可以作为供能信号。参见图11,以第一通信设备为零功耗设备,第二通信设备为至少在F2频段工作在全双工模式的基站为例,其中该零功耗设备包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。全双工基站同时同频发送F2频段上的信号,下行(downlink,DL)信号作为供能/载波信号,上行(uplink,UL)信号为对接收的载波信号进行调制后的反向散射信号,UL信号的频点为F2±偏移(offset)。
示例性的,反向散射可以支持二进制启闭键控(On-Off Keying,OOK)幅度调制、频移键控(Frequency-shift keying,FSK)频率调制或相移键控(phase-shift keying,PSK)相位调制中的至少一种。
在一些实施例中,上述第一通信设备还接收第二通信设备发送的第一供能信号,其中,该第一供能信号与第一反向散射信号的工作频段不同。例如,第一供能信号为F1频段上的信号,第一反向散射信号为F2频段上的信号。
参见图12,以第一通信设备为零功耗设备,第二通信设备为至少在F2频段工作在全双工模式的基站为例,其中该零功耗设备包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。全双工基站同时同频发送F2频段上的信号,在F1频段的DL信号作为供能信号(F1频段的DL信号可以仅作为供能信号),F2频段的DL信号作为载波信号,即下行的供能信号和载波信号分开;UL信号为对接收的载波信号进行调制后的反向散射信号,UL信号的频点为F2±偏移(offset)。可选的,调制方式可以参见上文的描述。
在一些实施例中,上述第一通信设备还接收第二通信设备发送的第二载波信号;以及该第一通信设备向第二通信设备发送第二反向散射信号。其中,该第二反向散射信号是对第二载波信号进行调制生成的,第二反向散射信号的工作频段与第一反向散射信号不同。例如,第二载波信号为F1频段上的信号,第一载波信号为F2频段上的信号。
可选的,该第二载波信号与上述第一供能信号的工作频段相同。作为一个示例,该第二载波信号与该第一供能信号为同一个信号,即该信号同时作为供能信号和载波信号。
参见图13,以第一通信设备为零功耗设备,第二通信设备为至少在F1频段和F2频段工作在全双工模式的基站为例,其中该零功耗设备包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。全双工基站同时同频发送多个频段(比如F1频段和F2频段)上的信号,其中至少一个DL信号作为供能信号、载波信号(或唤醒信号),其他DL信号作为载波信号。例如在F1频段的DL信号作为供能/载波信号,F2频段的DL信号作为载波信号;UL信号为对接收的载波信号进行调制后的反向散射信号,UL信号的频点分别为F2±偏移1(offset1)、F1±offset2。可选的,调制方式可以参见上文的描述。
可选的,上述第一反向散射信号和第二反向散射信号可以是通过载波聚合(Carrier Aggregation,CA)的方式发送的,和/或,上述第一载波信号和第二载波信号可以是通过CA的方式发送的,以提升频谱效率。其中,该CA可以为连续CA,或非连续CA,不做限定。
在一些实施例中,第二通信设备作为信号源,发射的供能或载波信号可能对反向散射信号本身形成巨大的干扰,即第二通信设备的自干扰,使得反向散射信号的接收形成带内/带外阻塞或邻带干扰,导致第二通信设备无法解调出反向散射信号,或解调出较弱的反向散射信号。
基于此,本申请可以利用第二通信设备的全双工能力,将第二通信设备的自干扰信号作为反向散射信号的载波信号,能够解决反向散射信号与供能/载波信号之间的干扰问题,有效化解了反向散射信号的接收带内/带外阻塞或邻带干扰,从而能够更好的解调反向散射信号。
在一些实施例中,上述第一通信设备还接收第二通信设备发送的第二供能信号,其中,该第一反向散射信号的工作频率是根据该第二供能信号的工作频率确定的(例如第二供能信号还可以为供能/载波信号,该第一反向散射信号是对该供能/载波信号进行调制生成的);以及该第一通信设备向第二通信设备发送第三反向散射信号,其中,该第三反向散射信号的载波包括所述第一供能信号的谐波信号,即第二供能信号的谐波信号作为反射载波。这里,该谐波信号可以为该第二通信设备发送该第一供能信号时产生的自干扰信号。示例性的,该谐波信号可以为一次谐波信号、二次谐波信号或多次谐波信号,不做限定。
例如,第二供能信号为F1频段上的信号,第一反向散射信号为F1频段上的信号,第三反向散射信号为F2频段上的信号,F2=N*F1,N为正整数且N>1。例如,当F1=800Mhz时,F2=1600MHz,即第三反向散射信号为第二供能信号的二次谐波信号。
可选的,该第二通信设备在该第三反向散射信号的工作频段工作在半双工模式。例如该第二通信设备在F2频段支持时分双工(Time Division Duplex,TDD),F2频段例如可以为超级上行(Super Uplink,SUL)频段。又例如该第二通信设备在F2频段支持频分双工(Frequency Division Duplex,FDD)。
参见图14,以第一通信设备为零功耗设备,第二通信设备为至少在F1频段工作在全双工模式的基站为例,其中该零功耗设备包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。全双工基站同时同频发送F1频段上的信号。例如在F1频段的DL信号作为供能信号(F1频段的DL信号可以仅作为供能信号);UL接收F1频段和F2频段的反向散射信号,UL 信号的频点分别为F1±offset3、F2±offset4。其中,F2频段的反向散射信号为供能信号频点的多次(N次)谐波信号。可选的,全双工基站可以在F2频段工作在半双工模式,例如TDD,F2频段为SUL频段。可选的,调制方式可以参见上文的描述。
因此,本申请可以利用第二通信设备的全双工能力,将第二通信设备的自干扰信号作为反向散射信号的载波信号,能够解决反向散射信号与供能/载波信号之间的干扰问题,有效化解了反向散射信号的接收带内/带外阻塞或邻带干扰。
通常,反向散射通信的覆盖范围小于下行覆盖范围。参见图15,标签设备的反向散射信号的接收设备(如CPE/基站/WiFi AP等)与标签设备的信号源(如CPE/基站/WiFi AP等)放于同一位置或是同一个设备时,因为对于标签设备而言,载波信号的灵敏度比供能信号的最低功率门限(即灵敏度)要求低很多,导致供能信号或载波信号的下行发射距离和标签设备的反向散射信号的上行反射距离不平衡(如下行发射距离为5m,而上行反射距离只有2m),到达接收侧(如CPE/基站/WiFi AP等)的发射信号远远小于供能信号或载波信号到达该接收侧(如CPE/基站/WiFi AP等)的信号。
在本申请实施例中,将第二通信设备的自干扰信号作为反向散射信号的载波信号,有效化解反向散射信号的接收带内/带外阻塞或邻带干扰的同时,第二通信设备能够更好的解调反向散射信号,进而本申请能够增强反向散射信号的上行反射距离,拓展实际应用部署。
图16是根据本申请实施例的无线通信的方法300的示意性流程图,如图16所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,第二通信设备向第一通信设备发送第一频段的下行信号。其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一频段工作在全双工模式。示例性的,该下行信号包括供能信号和/或唤醒信号。
S320,第一通信设备接收第二通信设备发送的该第一频段的下行信号。
S330,第一通信设备向所述第二通信设备发送该第一频段的上行信号,以及第二频段的反向散射信号。
S340,第二通信设备接收第一通信设备发送的该第一频段的上行信号,以及该第二频段的反向散射信号。
本申请实施例中,第二通信设备在第一频段工作在全双工模式,即第二通信设备在该第一频段支持同时发送下行信号和上行信号,从而能够实现全双工通信架构下零功耗设备通信机制,拓展实际应用部署。
可选的,第一通信设备在该第一频段可以工作在全双工模式,或半双工模式,不做限定。
在本申请实施例中,该第一通信设备可以是基于射频能量采集的零功耗设备或标签设备,该第二通信设备可以是标签设备的反向散射信号的接收设备,同时还可以是该标签设备的信号源,例如为CPE/基站/WiFi AP等。具体可以参见图10中的相关描述,这里不再赘述。
在一些实施例中,上述第一通信设备包括正常发射机,其中,该反向散射信号的载波包括所述正常发射机发射的经调制的信号。
在一些实施例中,上述反向散射信号的载波包括该下行信号在该第一通信设备(如内部电路)生成的干扰信号(如自干扰信号)。
参见图17,以第一通信设备为终端设备,第二通信设备为至少在F1频段工作在全双工模式的基站为例,其中该终端设备为A-IoT辅助的终端(A-IoT assisted mobile Phone/UE),可以包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。可选的,该终端设备还可以包括正常接收机和正常发射机。全双工基站同时同频发送F1频段上的信号,在F1频段的DL信号作为供能信号和/或唤醒(wake up)信号,其中供能信号提供终端的充电功能,唤醒信号提供终端的唤醒功能。终端设备提供F2频段上的UL信号作为载波信号反向散射发送给基站,对应的基站接收该反向散射信号。该反向散射信号的频点为F2±offset5。终端设备还提供F1频段上的UL信号,其频点为F1±offset6。
可选的,该反向散射信号可以是F1频段的DL信号在终端设备(如内部电路)生成的干扰信号。作为示例,该干扰信号包括谐波信号。
作为一种可能的实现方式,在第一通信设备(如UE)侧可以增加一个无源滤波器,过滤收集对应反射频率的多阶谐波,该多阶谐波落在反向散射信号的工作频段(例如F2频段)内。该多阶谐波可以用作反向散射信号的载波,携带信息反射给第二通信设备。
可选的,该反向散射信号可以是终端设备在被唤醒后,由正常发射机发射的经调制的信号。可选的,调制方式可以为FSK调制,具体可以参见上文的描述。
作为一个示例,F2频段与F1频段的DL信号的谐波信号的频段相同。作为一个示例,F2频段可 以与F1频段和F2频段的互调信号的频段相同。
在一些实施例中,上述第一通信设备还接收第二通信设备发送的第二频段的载波信号,其中,该反向散射信号是对该载波信号进行调制生成的,该载波信号包括上述下行信号的干扰信号。作为示例,上述第一频段可以为F1频段,第二频段可以为F2频段。作为示例,该干扰信号可以为自干扰信号,比如谐波信号。示例性的,该反向散射信号是反向散射发射机发射的。
参见图18,以第一通信设备为终端设备,第二通信设备为至少在F1频段和F2频段工作在全双工模式的基站为例,其中该终端设备为A-IoT辅助的终端(A-IoT assisted mobile Phone/UE),可以包括能量收集、简单接收机和反向散射发射机,该简单接收机例如为OOK/FSK接收机。可选的,该终端设备还可以包括正常接收机和正常发射机。全双工基站同时同频发送F1频段上的信号,在F1频段的DL信号作为供能信号和/或唤醒(wake up)信号,其中供能信号提供终端的充电功能,唤醒信号提供终端的唤醒功能。该F1频段的DL信号的自干扰信号(如谐波信号)作为载波信号同时也发送给终端设备。该自干扰信号为F2频段。终端设备可以对该载波信号进行FSK调制,并向基站发送频率偏移后的反向散射信号。对应的,基站接收该反向散射信号。该反向散射信号的频点为F2±offset7。终端设备还提供F1频段上的UL信号,其频点为F1±offset8。
在一些实施例中,上述反向散射信号与干扰信号之间具有频率偏移。该第二通信设备消除该反向散射信号的干扰的能力与该频率偏移相关。示例性的,第二通信设备通过FSK调制将载波信号频率搬移到邻带,反向散射信号与第二通信设备的有用接收信号之间存在一定的频率偏移或间隔,从而实现避免干扰的目的,该频率偏移大于或等于一个单位的频率保护带或一个占用信道的带宽,比如5MHz。
因此,本申请可以利用第二通信设备的全双工能力,将第二通信设备的自干扰信号,或第一通信设备的自干扰信号,作为反向散射信号的载波信号,能够解决反向散射信号与供能/载波信号之间的干扰问题,有效化解了反向散射信号的接收带内/带外阻塞或邻带干扰。
进一步的,将第二通信设备的自干扰信号或第一通信设备的自干扰信号,作为反向散射信号的载波信号,有效化解反向散射信号的接收带内/带外阻塞或邻带干扰的同时,第二通信设备能够更好的解调反向散射信号,进而本申请能够增强反向散射信号的上行反射距离,拓展实际应用部署。
以第二通信设备为全双工基站、第一通信设备为工作在半双工模式的UE(即半双工UE)为例,全双工通信系统下的反向散射通信机制如下:
UL时隙:利用F1频段的UL信号的自干扰信号(F2频段,谐波信号)作为反向散射信号的载波;其中采用OOK调制时,该反向散射信号的载波为F2频段,采用FSL调制时,该反向散射信号的载波为F2±offset/1CBW。其中,CBW指UE侧的信道带宽(Channel bandwidth)。
DL时隙:利用DL信号(如特定频段组合中的F2频段)作为反向散射信号的载波;其中采用OOK调制时,该反向散射信号的载波为F2频段,采用FSL调制时,该反向散射信号的载波为F2±offset/1CBW。
另外,全双工基站实现同时同频的全双工,具备F1+F2频段组合的CA能力或同时接收能力,具备F2频段的下行发射能力。其中,F1+F2频段可以为SUL(F1)+TDD(OOK,F2)/FDDband(FSK,如F2DL,F2±offset/1CBW UL):
F1SUL+F2TDD;
F1SUL+(F2±offset)FDD。
半双工UE携带反向散射发射机或反射功能:
F2DL,F2UL,F1UL;
F2UL或(F2±offset),可以有正常发射机或反向散射发射机发送。
上文结合图10至图18,详细描述了本申请的方法实施例,下文结合图19至图22,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图19示出了根据本申请实施例的通信设备400的示意性框图,该通信设备400包括通信单元410。
一些实施例中,该通信设备400为第一通信设备,该通信单元410,用于向第二通信设备发送第一反向散射信号。其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
可选的,该通信单元410还用于接收该第二通信设备发送的第一载波信号;其中,该第一反向散射信号是对该第一载波信号进行调制生成的。
可选的,该通信单元410还用于接收该第二通信设备发送的第一供能信号,其中,该第一供能信号与该第一反向散射信号的工作频段不同。
可选的,该通信单元410还用于接收该第二通信设备发送的第二载波信号;以及
向该第二通信设备发送第二反向散射信号,其中,该第二反向散射信号是对该第二载波信号进行调制生成的,该第二反向散射信号的工作频段与该第一反向散射信号不同。
可选的,该第一反向散射信号和第二反向散射信号是通过载波聚合的方式发送的。
可选的,该第一载波信号和第二载波信号是通过载波聚合的方式发送的。
可选的,该第二载波信号与该第一供能信号的工作频段相同。
可选的,该通信单元410还用于接收该第二通信设备发送的第二供能信号,其中,该第一反向散射信号的工作频率是根据该第二供能信号的工作频率确定的;以及
向该第二通信设备发送第三反向散射信号,其中,该第三反向散射信号的载波包括该第一供能信号的谐波信号。
可选的,该第二通信设备在该第三反向散射信号的工作频段工作在半双工模式。
可选的,该第一通信设备包括反向散射发射机,其中,该第一反向散射信号是该反向散射发射机发射的。
应理解,该实施例中通信设备400可对应于本申请方法实施例中的第一通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法200中第一通信设备的相应流程,为了简洁,在此不再赘述。
一些实施例中,该通信设备400为第二通信设备,该通信单元410,用于接收第一通信设备发送的第一反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
可选的,该通信单元410还用于向该第一通信设备发送第一载波信号;其中,该第一反向散射信号是对该第一载波信号进行调制生成的。
可选的,该通信单元410还用于向该第一通信设备发送第一供能信号,其中,该第一供能信号与该第一反向散射信号的工作频段不同。
可选的,该通信单元410还用于向该第一通信设备发送第二载波信号;以及
接收该第一通信设备发送的第二反向散射信号,其中,该第二反向散射信号是对该第二载波信号进行调制生成的,该第二反向散射信号的工作频段与该第一反向散射信号不同。
可选的,该第一反向散射信号和第二反向散射信号是通过载波聚合的方式发送的。
可选的,该第一载波信号和该第二载波信号是通过载波聚合的方式发送的。
可选的,该第二载波信号与该第一供能信号的工作频段相同。
可选的,该通信单元410还用于向所述第一通信设备发送第二供能信号,其中,该第一反向散射信号的工作频率是根据该第二供能信号的工作频率确定的;以及
接收该第一通信设备发送的第三反向散射信号,其中,该第三反向散射信号的载波包括该第一供能信号的谐波信号。
可选的,该第二通信设备在该第三反向散射信号的工作频段工作在半双工模式。
可选的,该第一通信设备包括反向散射发射机,其中,该第一反向散射信号是所述反向散射发射机发射的。
应理解,该实施例中通信设备400可对应于本申请方法实施例中的第二通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法200中第二通信设备的相应流程,为了简洁,在此不再赘述。
一些实施例中,该通信设备400为第一通信设备,该通信单元410,用于接收第二通信设备发送的第一频段的下行信号;以及
向该第二通信设备发送该第一频段的上行信号,以及第二频段的反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在所述第一频段工作在全双工模式。
可选的,该第一通信设备包括正常发射机,其中,该反向散射信号的载波包括该正常发射机发射的经调制的信号。
可选的,该反向散射信号的载波包括该下行信号在该第一通信设备生成的干扰信号。
可选的,该通信单元410还用于接收该第二通信设备发送的该第二频段的载波信号,其中,该反向散射信号是对该载波信号进行调制生成的,该载波信号包括该下行信号的干扰信号。
可选的,该反向散射信号与该干扰信号之间具有频率偏移。
可选的,该频率偏移大于或等于一个单位的频率保护带或一个占用信道的带宽。
可选的,该第一通信设备包括反向散射发射机,其中,该反向散射信号是该反向散射发射机发射 的。
可选的,该干扰信号包括谐波信号。
可选的,该下行信号包括供能信号和/或唤醒信号。
应理解,该实施例中通信设备400可对应于本申请方法实施例中的第一通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图16所示方法300中第一通信设备的相应流程,为了简洁,在此不再赘述。
一些实施例中,该通信设备400为第二通信设备,该通信单元410,用于向第一通信设备发送第一频段的下行信号;以及
接收该第一通信设备发送的该第一频段的上行信号,以及第二频段的反向散射信号;
其中,该第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,该第二通信设备在该第一频段工作在全双工模式。
可选的,该第一通信设备包括正常发射机,其中,该反向散射信号的载波包括该正常发射机发射的经调制的信号。
可选的,该反向散射信号的载波包括该下行信号在该第一通信设备生成的干扰信号。
可选的,该通信单元410还用于向该第一通信设备发送该第二频段的载波信号,其中,该反向散射信号是对该载波信号进行调制生成的,该载波信号包括该下行信号的干扰信号。
可选的,该反向散射信号与该干扰信号之间具有频率偏移。
可选的,该频率偏移大于或等于一个单位的频率保护带或一个占用信道的带宽。
可选的,该第一通信设备包括反向散射发射机,其中,该反向散射信号是该反向散射发射机发射的。
可选的,该干扰信号包括谐波信号。
可选的,该下行信号包括供能信号和/或唤醒信号。
应理解,该实施例中通信设备400可对应于本申请方法实施例中的第二通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图16所示方法300中第二通信设备的相应流程,为了简洁,在此不再赘述。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
图20是本申请实施例提供的一种通信设备500示意性结构图。图20所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图20所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图20所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的第一通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的第二通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例的装置的示意性结构图。图21所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图21所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的第一通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的第二通信设备,并且该装置可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图22是本申请实施例提供的一种通信系统700的示意性框图。如图22所示,该通信系统700包括第一通信设备710和第二通信设备720。
其中,该第一通信设备710可以用于实现上述方法中由第一通信设备实现的相应的功能,该第二通信设备720可以用于实现上述方法中由第二通信设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第二通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第二通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一通信设备,当该计算机程序在计 算机上运行时,使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第二通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (62)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信设备向第二通信设备发送第一反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述第二通信设备发送的第一载波信号;
    其中,所述第一反向散射信号是对所述第一载波信号进行调制生成的。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述第二通信设备发送的第一供能信号,其中,所述第一供能信号与所述第一反向散射信号的工作频段不同。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述第二通信设备发送的第二载波信号;
    所述第一通信设备向所述第二通信设备发送第二反向散射信号,其中,所述第二反向散射信号是对所述第二载波信号进行调制生成的,所述第二反向散射信号的工作频段与所述第一反向散射信号不同。
  5. 根据权利要求4所述的方法,其特征在于,所述第一反向散射信号和所述第二反向散射信号是通过载波聚合的方式发送的。
  6. 根据权利要求4所述的方法,其特征在于,所述第一载波信号和所述第二载波信号是通过载波聚合的方式发送的。
  7. 根据权利要求4所述的方法,其特征在于,所述第二载波信号与所述第一供能信号的工作频段相同。
  8. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述第二通信设备发送的第二供能信号,其中,所述第一反向散射信号的工作频率是根据所述第二供能信号的工作频率确定的;
    所述第一通信设备向所述第二通信设备发送第三反向散射信号,其中,所述第三反向散射信号的载波包括所述第一供能信号的谐波信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第二通信设备在所述第三反向散射信号的工作频段工作在半双工模式。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一通信设备包括反向散射发射机,其中,所述第一反向散射信号是所述反向散射发射机发射的。
  11. 一种无线通信的方法,其特征在于,包括:
    第二通信设备接收第一通信设备发送的第一反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    所述第二通信设备向所述第一通信设备发送第一载波信号;
    其中,所述第一反向散射信号是对所述第一载波信号进行调制生成的。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    所述第二通信设备向所述第一通信设备发送第一供能信号,其中,所述第一供能信号与所述第一反向散射信号的工作频段不同。
  14. 根据权利要求13所述的方法,其特征在于,还包括:
    所述第二通信设备向所述第一通信设备发送第二载波信号;
    所述第二通信设备接收所述第一通信设备发送的第二反向散射信号,其中,所述第二反向散射信号是对所述第二载波信号进行调制生成的,所述第二反向散射信号的工作频段与所述第一反向散射信号不同。
  15. 根据权利要求14所述的方法,其特征在于,所述第一反向散射信号和所述第二反向散射信号是通过载波聚合的方式发送的。
  16. 根据权利要求14所述的方法,其特征在于,所述第一载波信号和所述第二载波信号是通过载波聚合的方式发送的。
  17. 根据权利要求14所述的方法,其特征在于,所述第二载波信号与所述第一供能信号的工作频段相同。
  18. 根据权利要求11所述的方法,其特征在于,还包括:
    所述第二通信设备向所述第一通信设备发送第二供能信号,其中,所述第一反向散射信号的工作频率是根据所述第二供能信号的工作频率确定的;
    所述第二通信设备接收所述第一通信设备发送的第三反向散射信号,其中,所述第三反向散射信号的载波包括所述第一供能信号的谐波信号。
  19. 根据权利要求18所述的方法,其特征在于,所述第二通信设备在所述第三反向散射信号的工作频段工作在半双工模式。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述第一通信设备包括反向散射发射机,其中,所述第一反向散射信号是所述反向散射发射机发射的。
  21. 一种无线通信的方法,其特征在于,包括:
    第一通信设备接收第二通信设备发送的第一频段的下行信号;
    所述第一通信设备向所述第二通信设备发送所述第一频段的上行信号,以及第二频段的反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一频段工作在全双工模式。
  22. 根据权利要求21所述的方法,其特征在于,所述第一通信设备包括正常发射机,其中,所述反向散射信号的载波包括所述正常发射机发射的经调制的信号。
  23. 根据权利要求21所述的方法,其特征在于,所述反向散射信号的载波包括所述下行信号在所述第一通信设备生成的干扰信号。
  24. 根据权利要求21所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述第二通信设备发送的所述第二频段的载波信号,其中,所述反向散射信号是对所述载波信号进行调制生成的,所述载波信号包括所述下行信号的干扰信号。
  25. 根据权利要求24所述的方法,其特征在于,所述反向散射信号与所述干扰信号之间具有频率偏移。
  26. 根据权利要求25所述的方法,其特征在于,所述频率偏移大于或等于一个单位的频率保护带或一个占用信道的带宽。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,所述第一通信设备包括反向散射发射机,其中,所述反向散射信号是所述反向散射发射机发射的。
  28. 根据权利要求23-25任一项所述的方法,其特征在于,所述干扰信号包括谐波信号。
  29. 根据权利要求21-28任一项所述的方法,其特征在于,所述下行信号包括供能信号和/或唤醒信号。
  30. 一种无线通信的方法,其特征在于,包括:
    第二通信设备向第一通信设备发送第一频段的下行信号;
    所述第二通信设备接收所述第一通信设备发送的所述第一频段的上行信号,以及第二频段的反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一频段工作在全双工模式。
  31. 根据权利要求30所述的方法,其特征在于,所述第一通信设备包括正常发射机,其中,所述反向散射信号的载波包括所述正常发射机发射的经调制的信号。
  32. 根据权利要求30所述的方法,其特征在于,所述反向散射信号的载波包括所述下行信号在所述第一通信设备生成的干扰信号。
  33. 根据权利要求30所述的方法,其特征在于,还包括:
    所述第二通信设备向所述第一通信设备发送所述第二频段的载波信号,其中,所述反向散射信号是对所述载波信号进行调制生成的,所述载波信号包括所述下行信号的干扰信号。
  34. 根据权利要求33所述的方法,其特征在于,所述反向散射信号与所述干扰信号之间具有频率偏移。
  35. 根据权利要求34所述的方法,其特征在于,所述频率偏移大于或等于一个单位的频率保护带或一个占用信道的带宽。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,所述第一通信设备包括反向散射发射机,其中,所述反向散射信号是所述反向散射发射机发射的。
  37. 根据权利要求32-34任一项所述的方法,其特征在于,所述干扰信号包括谐波信号。
  38. 根据权利要求30-37任一项所述的方法,其特征在于,所述下行信号包括供能信号和/或唤醒 信号。
  39. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:
    通信单元,用于向第二通信设备发送第一反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
  40. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述通信设备包括:
    通信单元,用于接收第一通信设备发送的第一反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一反向散射信号的工作频段工作在全双工模式。
  41. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:
    通信单元,用于接收第二通信设备发送的第一频段的下行信号;以及
    向所述第二通信设备发送所述第一频段的上行信号,以及第二频段的反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一频段工作在全双工模式。
  42. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述通信设备包括:
    通信单元,用于向第一通信设备发送第一频段的下行信号;以及
    接收所述第一通信设备发送的所述第一频段的上行信号,以及第二频段的反向散射信号;
    其中,所述第一通信设备通过能量采集获得能量以用于通信、信息采集及处理,所述第二通信设备在所述第一频段工作在全双工模式。
  43. 一种通信设备,其特征在于,包括:收发器、处理器和存储器,所述收发器用于收发信号,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求1至10中任一项所述的方法。
  44. 一种通信设备,其特征在于,包括:收发器、处理器和存储器,所述收发器用于收发信号,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求11至20中任一项所述的方法。
  45. 一种通信设备,其特征在于,包括:收发器、处理器和存储器,所述收发器用于收发信号,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求21至29中任一项所述的方法。
  46. 一种通信设备,其特征在于,包括:收发器、处理器和存储器,所述收发器用于收发信号,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求30至38中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至20中任一项所述的方法。
  49. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至29中任一项所述的方法。
  50. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求30至38中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
  53. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求21至29中任一项所述的方法。
  54. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求30至38中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至20中任一项所述的方法。
  57. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执 行如权利要求21至29中任一项所述的方法。
  58. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求30至38中任一项所述的方法。
  59. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  60. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
  61. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求21至29中任一项所述的方法。
  62. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求30至38中任一项所述的方法。
PCT/CN2022/085566 2022-04-07 2022-04-07 无线通信的方法及设备 WO2023193192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085566 WO2023193192A1 (zh) 2022-04-07 2022-04-07 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085566 WO2023193192A1 (zh) 2022-04-07 2022-04-07 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2023193192A1 true WO2023193192A1 (zh) 2023-10-12

Family

ID=88243782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085566 WO2023193192A1 (zh) 2022-04-07 2022-04-07 无线通信的方法及设备

Country Status (1)

Country Link
WO (1) WO2023193192A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062905A1 (en) * 2016-08-26 2018-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for enhancing performance in backscatter systems or load systems
CN109194364A (zh) * 2018-09-25 2019-01-11 河南科技大学 基于BackFi的环境反向散射通信多跳传输方法
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法
CN112468225A (zh) * 2020-11-12 2021-03-09 清华大学 一种LoRa反向散射通信方法及系统
WO2021163955A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062905A1 (en) * 2016-08-26 2018-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for enhancing performance in backscatter systems or load systems
CN109194364A (zh) * 2018-09-25 2019-01-11 河南科技大学 基于BackFi的环境反向散射通信多跳传输方法
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法
WO2021163955A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质
CN112468225A (zh) * 2020-11-12 2021-03-09 清华大学 一种LoRa反向散射通信方法及系统

Similar Documents

Publication Publication Date Title
US20240137194A1 (en) Method and device for wireless communication
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023193192A1 (zh) 无线通信的方法及设备
CN117813874A (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024164169A1 (zh) 无线通信的方法及设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2024148511A1 (zh) 无线通信的方法和设备
US20240214957A1 (en) Wireless communication method, terminal device and network device
WO2024040403A1 (zh) 无线通信的方法和设备
WO2024178597A1 (zh) 无线通信的方法、环境能amp设备和网络设备
WO2024164168A1 (zh) 无线通信的方法及设备
WO2024192606A1 (zh) 无线通信的方法和设备
WO2024040402A1 (zh) 无线通信的方法和设备
WO2024168586A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2024065700A1 (zh) 无线通信的方法和设备
EP4391661A1 (en) Wireless communication method, and device
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936135

Country of ref document: EP

Kind code of ref document: A1