WO2023173300A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023173300A1
WO2023173300A1 PCT/CN2022/081025 CN2022081025W WO2023173300A1 WO 2023173300 A1 WO2023173300 A1 WO 2023173300A1 CN 2022081025 W CN2022081025 W CN 2022081025W WO 2023173300 A1 WO2023173300 A1 WO 2023173300A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
zero
power
preamble
channel
Prior art date
Application number
PCT/CN2022/081025
Other languages
English (en)
French (fr)
Inventor
贺传峰
徐伟杰
胡荣贻
张治�
黄磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/081025 priority Critical patent/WO2023173300A1/zh
Publication of WO2023173300A1 publication Critical patent/WO2023173300A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a wireless communication method and device.
  • LBT listen-before-talk
  • WIFI devices use a carrier sensing mechanism to determine whether the channel is idle. For example, a WIFI device determines whether the channel is idle by listening to a special sequence signal on the channel (such as a preamble).
  • zero-power terminals are widely used in cellular communication systems, such as passive Internet of Things systems. Unlicensed spectrum is an important deployment scenario in cellular communication systems. When zero-power devices are used in WIFI systems, how to achieve compatibility with WIFI devices is an urgent problem that needs to be solved.
  • This application provides a wireless communication method and device, which is beneficial to realizing compatibility between zero-power consumption devices and traditional WIFI devices in the WIFI system.
  • a wireless communication method including: an access point device transmits a first signal, the first signal includes a first part signal and a second part signal, and the first part signal is transmitted through a traditional 802.11 wireless interface , the second part of the signal is transmitted through a zero-power wireless interface, wherein the first part of the signal includes a first preamble signal.
  • a wireless communication method including: a zero-power consumption device receiving a second part of a first signal through a zero-power wireless interface, wherein the first signal includes the first part of the signal and the The second part of the signal is transmitted through a traditional 802.11 wireless interface, and the first part of the signal includes a first preamble signal.
  • a wireless communication method including: a first device sending a second signal, the second signal including a third preamble signal and a carrier signal, the second signal being used by a zero-power consumption device to generate a feedback signal. scattering signal.
  • a wireless communication method including: a zero-power consumption device receiving a second signal, the second signal including a third preamble signal and a carrier signal; the zero-power consumption device receiving the second signal according to the second signal. Produce backscattered signals.
  • a fifth aspect provides an access point device for performing the method in the above first aspect or its respective implementations.
  • the access point device includes a functional module for performing the method in the above first aspect or its respective implementations.
  • a sixth aspect provides a zero-power consumption device for performing the method in the above-mentioned second aspect or its respective implementations.
  • the zero-power consumption device includes a functional module for executing the method in the above-mentioned second aspect or its respective implementations.
  • a seventh aspect provides a communication device for performing the method in the above third aspect or its respective implementations.
  • the communication device includes a functional module for performing the method in the above third aspect or its respective implementations.
  • An eighth aspect provides a zero-power consumption device for performing the method in the above-mentioned fourth aspect or its respective implementations.
  • the zero-power consumption device includes a functional module for executing the method in the above-mentioned fourth aspect or its respective implementations.
  • a communication device including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and execute any one of the above-mentioned first to fourth aspects or the methods in their respective implementations.
  • a tenth aspect provides a chip for implementing any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to fourth aspects or implementations thereof. method.
  • An eleventh aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • a thirteenth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • the access point device can send a first signal, where the first signal includes a first part of the signal and a second part of the signal, and the first part of the signal and the second part of the signal are transmitted through the traditional 802.11 wireless interface and the zero-power wireless interface respectively.
  • the interface sends, so that the non-zero power consumption device and the zero power consumption device can receive the corresponding signal through the corresponding interface, thereby achieving compatibility between the two terminals in one communication signal.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of zero-power communication according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • Figure 5 is a circuit schematic diagram of resistive load modulation according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a frame format of an 802.11 data frame.
  • Figure 7 is a schematic diagram of another frame format of the 802.11 data frame.
  • Figure 8 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of the frame format of a PPDU frame provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the frame format of another PPDU frame provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the frame format of another PPDU frame provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the frame format of yet another PPDU frame provided by an embodiment of the present application.
  • Figure 13 is a schematic interaction diagram of another wireless communication method provided according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of the frame format of a PPDU frame provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of backscattering according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of backscattering according to another embodiment of the present application.
  • Figure 17 is a schematic block diagram of an access point device provided according to an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a zero-power consumption device provided according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 20 is a schematic block diagram of a zero-power consumption device provided by an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • other communication systems such as: Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in Figure 1 .
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 that accesses the network through the access point 110.
  • Access Point Access Point
  • STA station
  • the communication system 100 may also include a zero-power device 130 .
  • AP is also called AP STA, that is, in a certain sense, AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • Communication in the communication system 100 may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA It can refer to the device that communicates peer-to-peer with the STA.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device with a WiFi chip (such as a mobile phone) or a network device (such as a router).
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes. and sensors in smart cities, etc.
  • IoT Internet of Things
  • the non-AP STA may support 802.11 technologies, which may include but are not limited to: 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a, and many other current and future technologies.
  • 802.11 family of wireless local area networks (WLAN) technology.
  • the AP may be a device that supports 802.11 technology, which may include but is not limited to: 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future technologies.
  • 802.11 family of wireless local area networks (WLAN) technology.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device that supports WLAN or WiFi technology, Wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, and wireless equipment in smart grid , wireless equipment in transportation safety, wireless equipment in smart city (smart city) or wireless equipment in smart home (smart home), wireless communication chips/ASIC/SOC/, etc.
  • the frequency bands that WLAN technology can support may include, but are not limited to: low frequency bands (such as 2.4GHz, 5GHz, 6GHz) and high frequency bands (such as 60GHz).
  • Figure 1 exemplarily shows one AP STA, two non-AP STAs and one zero-power consumption device.
  • the communication system 100 may include multiple AP STAs, other numbers of non-AP STAs, and other numbers.
  • a zero-power consumption device which is not limited in the embodiments of this application.
  • devices with communication functions in the network/system may be called communication devices.
  • the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in the embodiments of the present application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including access points and sites).
  • This application is specific to its The implementation method is not limited.
  • predefined can refer to what is defined in the protocol.
  • Zero-power communication uses energy harvesting and backscatter communication technology.
  • a zero-power communication network consists of network equipment and zero-power devices.
  • network devices such as access point devices are used to send wireless power signals, downlink communication signals to zero-power devices, and receive backscattered signals from zero-power devices.
  • a basic zero-power device includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • zero-power devices can also have a memory or sensor to store some basic information (such as item identification, etc.) or obtain sensing data such as ambient temperature and ambient humidity.
  • the RF energy collection module collects space electromagnetic wave energy based on the principle of electromagnetic induction, thereby obtaining the energy required to drive zero-power devices, such as driving low-power demodulation and modulation modules, sensors, and Memory reading, etc. Therefore, zero-power devices do not require traditional batteries.
  • the zero-power device receives the carrier signal sent by the network device, modulates the carrier signal, loads the information that needs to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communications.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power device according to the rhythm of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, which is turned on or off based on control of a binary data stream, as shown in Figure 5.
  • the switching of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is implemented, that is, the signal is modulated and transmitted by adjusting the amplitude of the backscattered signal from the zero-power device.
  • ASK amplitude keying modulation
  • capacitive load modulation the resonant frequency of the circuit can be changed by turning the capacitor on and off, achieving frequency keying modulation (FSK), that is, modulating the signal by adjusting the operating frequency of the backscattered signal of the zero-power device and transmission.
  • FSK frequency keying modulation
  • zero-power device uses load modulation to modulate the information of the incoming signal, thereby realizing the backscattering communication process. Therefore, zero-power devices have significant advantages:
  • the device does not actively transmit signals, so complex RF links such as PA, RF filters, etc. are not required;
  • the device does not need to actively generate high-frequency signals, so there is no need for a high-frequency crystal oscillator;
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero encoding, differential biphase (DBP) encoding, differential encoding, Pulse interval encoding (PIE), bidirectional spatial encoding (FM0), Miller encoding, differential dynamic encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential biphase
  • PIE Pulse interval encoding
  • FM0 bidirectional spatial encoding
  • Miller encoding differential dynamic encoding
  • zero-power devices can be divided into the following types:
  • Zero-power devices do not need built-in batteries. When zero-power devices are close to network devices (such as readers and writers in RFID systems), the zero-power devices are within the near field range formed by the antenna radiation of the network device. Therefore, the zero-power device antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power device.
  • RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). and other devices, so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • Semi-passive zero-power devices do not install conventional batteries themselves, but can use RF energy harvesting modules to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the semi-passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy harvesting module. energy, and is therefore a truly zero-power device.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power devices used in some scenarios can also be active zero-power devices, and such terminals can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power devices. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. But for backscatter links, zero-power devices use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • the energy supply signal, scheduling signal and carrier signal related to zero-power communication are described.
  • the energy supply signal is the energy source for energy harvesting by zero-power devices.
  • From the energy supply signal carrier it can be a base station, smartphone, smart gateway, charging station, micro base station, AP, etc.
  • the frequency bands of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the energy supply signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard.
  • Sounding Reference Signal SRS
  • Physical Uplink Shared Channel PUSCH
  • Physical Random Access Channel PRACH
  • Physical Uplink Control Channel PUCCH
  • Physical Downlink Control Channel PUCCH
  • Physical Downlink Shared Channel PDSCH
  • Physical Broadcast Channel PBCH
  • the energy supply signal can also be implemented by adding a new signal, for example, adding a signal dedicated to energy supply.
  • Trigger signals are used to trigger or schedule zero-power devices for data transmission.
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, a micro base station, an AP, etc.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for triggering or scheduling can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard.
  • SRS Session Detection
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the trigger signal can also be implemented by adding a new signal, for example, adding a new signal dedicated to triggering or scheduling.
  • the carrier signal is used by the zero-power device to generate a backscatter signal.
  • the zero-power device can modulate the received carrier signal to form a backscatter signal according to the information that needs to be sent.
  • the carrier signal carrier From the carrier signal carrier, it can be a base station, a smartphone, a smart gateway, a micro base station, an AP, etc.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as carrier signals can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the carrier signal can also be implemented by adding a new signal, for example, adding a carrier signal dedicated to generating a backscatter signal.
  • the energy supply signal, the scheduling signal and the carrier signal can be the same signal, or they can be different signals.
  • the energy supply signal can be used as the carrier signal
  • the scheduling signal can also be used. as carrier signal, etc.
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communications. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government. In order to allow various communication systems that use unlicensed spectrum for wireless communications to coexist amicably on this spectrum, some countries or regions have stipulated regulatory requirements that must be met when using unlicensed spectrum. For example, in Europe, communication equipment follows the "listen-before-talk (LBT)" principle, that is, communication equipment needs to listen to the channel before sending signals on the unlicensed spectrum channel.
  • LBT listen-before-talk
  • the communication device can send signals only when the channel listening result is that the channel is idle; if the channel listening result of the communication device on a channel in the unlicensed spectrum is that the channel is busy, the communication device cannot send signals. And in order to ensure fairness, in one transmission, the duration of signal transmission by communication equipment using the license-free spectrum channel cannot exceed the Maximum Channel Occupation Time (MCOT).
  • MCOT Maximum Channel Occupation Time
  • the principle of channel monitoring is that the communication equipment performs LBT on the carrier of the unlicensed spectrum after the service arrives, and starts transmitting signals on the carrier after the LBT is successful.
  • Different communication systems that use unlicensed spectrum use different channel listening technologies. They must also ensure that they meet regulatory requirements to ensure fairness when each communication system uses unlicensed spectrum.
  • channel sensing uses a carrier sensing mechanism, including physical carrier sensing and virtual carrier sensing. If the indicator of any carrier sensing mechanism indicates that the channel is busy, it is determined that the channel is busy.
  • physical carrier sensing uses three channel idle detection methods: energy detection, carrier detection and energy-carrier hybrid detection, collectively called clear channel assessment (CCA).
  • CCA clear channel assessment
  • ED Energy Detection: Judge the energy of the received signal. When the power of the received signal is greater than the threshold (ED_threshold) specified by the physical layer, the channel is considered occupied. If the power of the received signal is less than ED_threshold, the channel is considered idle.
  • the ED_threshold setting is related to the transmit power.
  • Carrier sense is used to identify the preamble part in the physical layer header (PLCP header) of the 802.11 data frame.
  • PLCP header physical layer header
  • the preamble part of the data frame adopts a specific sequence structure, which is known to both the sender and the receiver and is used for frame synchronization and symbol synchronization.
  • the node will continuously sample the channel signal and perform autocorrelation or cross-correlation operations based on the channel signal.
  • autocorrelation is commonly used in 802.11 technologies (such as 802.11a) based on Orthogonal Frequency Division Multiplexing (OFDM), while cross-correlation is commonly used in 802.11 technologies based on Direct Sequence Spread Spectrum (DSSS). (such as 802.11b).
  • OFDM Orthogonal Frequency Division Multiplexing
  • DSSS Direct Sequence Spread Spectrum
  • the relevant calculated value needs to be compared with a threshold. If it is greater than the threshold, a signal is considered to be detected. If it is less than the threshold, it is considered that no signal is detected.
  • Energy and carrier mixed detection In 802.11, the detection technology used is determined based on the technology used in the physical layer. DSSS technology combines energy detection and carrier detection, while Frequency-Hopping Spread Spectrum (FHSS) technology only uses carrier detection technology. In hybrid detection, if the indicator of any detection technology is detected to exceed the limit, the channel is considered to be occupied.
  • FHSS Frequency-Hopping Spread Spectrum
  • Zero-power devices are widely used in cellular communication systems, such as passive Internet of Things, due to their low cost, low complexity, and low power consumption. The use of unlicensed frequency bands is also an important deployment scenario in cellular communication systems. When zero-power devices are used in WIFI systems, how to maintain compatibility with traditional WIFI devices is an urgent problem that needs to be solved.
  • zero-power devices may not be able to receive existing WIFI signals in the WIFI system, and due to the limited processing capabilities of zero-power devices, they cannot generate WIFI signals. Therefore, when a new type of device is used in a WIFI system, compatibility with traditional WIFI devices is an issue that needs to be considered.
  • the carrier detection mechanism used in channel sensing of traditional WIFI devices is based on the preamble signal part in the physical layer header of the 802.11 data frame (such as the Physical Layer Convergence Protocol (Physical Layer Convergence Protocol, PLCP) Protocol Data Unit (PLCP Protocol Data Unit, PPDU)) , whereas backscatter from a zero-power device cannot produce this signal. If the backscatter of the zero-power device cannot send the preamble signal, the traditional WIFI terminal cannot detect that the zero-power device is using the channel by detecting the preamble signal, and may also use this channel for transmission, causing interference.
  • the physical layer Convergence Protocol Physical Layer Convergence Protocol
  • PLCP Physical Layer Convergence Protocol
  • PPDU Protocol Data Unit
  • the PPDU frame includes a physical layer header, and the physical layer header may include a preamble.
  • Figure 6 and Figure 7 show the format diagram of two typical PPDU frames. As shown in Figure 6, for 802.11a/g PPDU
  • the physical layer header of the frame includes: Short Training Field (STF), Long Training Field (Long Training Field, LTF) and Signal (SIGNAL) field.
  • STF Short Training Field
  • LTF Long Training Field
  • SIGNAL Signal
  • STF is mainly composed of 10 short symbols (t1-t10), each of which is 0.8us. It implements multiple functions, including frame synchronization and coarse frequency synchronization.
  • the main functions implemented by t1-t7 include signal detection (Signal Detect), automatic gain control (Auto gain control, AGC), diversity selection (Diversity Selection), and the functions implemented by t8-t10 include coarse frequency (Coarse Freq), offset Offset Estimation and Timing Synchronize functions.
  • LTF is mainly used to achieve fine frequency synchronization and channel estimation.
  • WIFI devices can use STF as a preamble and perform autocorrelation or cross-correlation calculations on it to complete carrier detection.
  • the physical layer header of the 802.11b PPDU frame includes: a preamble part and a header part.
  • the preamble part contains two parts, synchronization (sync) and SFD, where sync is used For frame synchronization, SFD is used as the frame start identifier.
  • the 802.11b PPDU frame also includes a data part, such as a PLCP Service Data Unit (PSDU) or a Media Access Control (MAC) Protocol Data Unit (MAC Protocol Data Unit). , MPDU).
  • PSDU PLCP Service Data Unit
  • MAC Media Access Control Protocol Data Unit
  • MPDU MPDU
  • FIG 8 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 8, the method 200 includes at least part of the following content:
  • the access point device sends a first signal.
  • the first signal includes a first part signal and a second part signal.
  • the first part signal is transmitted through a traditional 802.11 wireless interface, and the second part signal is transmitted through a zero-power wireless interface. Transmission, wherein the first portion of the signal includes a first preamble signal.
  • the site device receives the first part of the signal through a traditional 802.11 wireless interface
  • the zero-power consumption device receives the second part of the signal through a zero-power wireless interface.
  • zero-power consumption devices can be classified based on the complexity of the device, energy supply mode, communication mode, modulation mode and other characteristics.
  • a zero-power device may be a device with at least one of the following characteristics: low complexity, support for ambient power supply, support for power supply by other devices, backscattering, new waveforms (or simple waveforms).
  • zero-power consumption devices do not limit the naming of zero-power consumption devices.
  • they may also be called zero-power consumption terminals, low-power consumption devices, low-power consumption terminals, environmentally powered terminals, energy collection-based terminals, etc.
  • the embodiments of the present application do not limit the source of the energy of the zero-power consumption device.
  • the zero-power consumption device may come from the external environment.
  • the zero-power consumption device may have zero power consumption or low power consumption, or zero power consumption.
  • the energy required for the operation of the power-consuming device comes from the power supply of the zero-power device itself.
  • the zero-power device can be a low-power terminal, or the energy of the zero-power device can also be supplied by the network.
  • the device for example, in a WIFI system, it can be provided by an access point device, or it can be provided by a terminal device, for example, in a WIFI system, it can be provided by a site device, or it can also be provided by a dedicated provided by the energy supply node, this application is not limited to this.
  • the zero-power device is equipped with an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc., and further stores the obtained energy in an energy storage unit. After the energy storage unit obtains sufficient energy, it can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc.
  • the energy storage unit can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • the technical solutions in the embodiments of this application can be applied to unlicensed spectrum, or can also be applied to licensed spectrum.
  • the network equipment in the communication system can include two parts of the signal in the signal sent.
  • the first part of the signal passes through the traditional communication interface (such as Uu) between the network equipment and the terminal equipment. interface) transmission, the second part of the signal is transmitted through the zero-power wireless interface.
  • the terminal equipment in the communication system can receive the first part of the signal through the traditional communication interface, and the zero-power consumption device can receive the second part of the signal through the zero-power wireless interface, thereby enabling communication between the two types of terminals in the communication system. compatible.
  • the communication system may include but is not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity) , WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband
  • the network device may be an AP in a WLAN system or a WIFI system, or it may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB, NB) in WCDMA, It can also be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, a network device (gNB) in an NR network, or a future evolved public land mobile Network equipment in the Public Land Mobile Network (PLMN) network or network equipment in the Non-Terrestrial Networks (NTN) network, etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • NB base station
  • NTN Non-Terrestrial Networks
  • the terminal device may be a STA in a WLAN system or a WIFI system, or may also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, or a Wireless Local Loop (Wireless Local Loop) , WLL) station, Personal Digital Assistant (Personal Digital Assistant, PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, next-generation communication system such as NR Terminal equipment in the network, or terminal equipment in the future evolved PLMN network, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the access point device may be a device supporting 802.11 technology.
  • the site device may be a device supporting 802.11 technology, such as a WIFI device.
  • the 802.11 technology may include, but is not limited to: 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future 802.11 family WLAN technologies.
  • the legacy 802.11 wireless interface may include an interface for access point devices and site devices to communicate. That is, site devices and access point devices can communicate over traditional 802.11 wireless interfaces.
  • the traditional 802.11 wireless interface may refer to a communication interface that supports 802.11 technology.
  • the zero-power wireless interface may refer to a communication interface used for zero-power communication, or in other words, a communication interface used for communication between a zero-power device and other devices.
  • the zero-power wireless interface can be used to carry information sent by a zero-power device to other devices, or to carry information sent by other devices to a zero-power device.
  • the zero-power communication may be related to characteristics such as the modulation method of the signal, the transmission method of the signal, the complexity of the device, the energy supply method of the device, or the power consumption of the device.
  • the signal to achieve zero-power communication can use a low-complexity modulation method, such as ASK, or the reverse link of the device that performs zero-power communication uses backscattering to send the signal.
  • the device that performs zero-power communication is Low-complexity or low-cost devices. Devices that perform zero-power communication support environmental energy supply or power supply from other devices. Devices that perform zero-power communication are low-power or zero-power devices, etc.
  • the zero-power communication may include backscatter communication, or may also include other passive or semi-passive communication methods.
  • Backscatter communication is used as an example for description below, but this application does not Limited to this.
  • the traditional 802.11 wireless interface may refer to the interface through which the access point device and the traditional site device communicate before the zero-power device is introduced. After the zero-power device is introduced, the zero-power device also It can be considered as a site device. In this case, the communication interface between the zero-power device and the access point device (ie, the zero-power wireless interface) can be considered as an extended 802.11 wireless interface.
  • the first part of the signal and the second part of the signal adopt different waveforms.
  • the first preamble signal may adopt a signal waveform supported by a traditional 802.11 wireless interface, such as an OFDM modulated waveform.
  • the second part of the signal adopts a signal waveform supported by a zero-power wireless interface, such as an amplitude shift keying (ASK) modulated waveform.
  • ASK amplitude shift keying
  • zero-power devices since zero-power devices have low complexity characteristics and only support simple modulation methods, such as ASK modulation, zero-power devices may not be able to implement OFDM modulation supported by WIFI devices. Therefore, the waveforms used in zero-power communication are different from OFDM-based waveforms.
  • the first preamble signal may be used for carrier detection.
  • the first preamble signal may include the STF of the physical layer header of 802.11a/g, or the STF and LTF of the physical layer header of 802.11a/g, or the physical layer header of 802.11a/g. STF, LTF and SIGNAL in the layer header.
  • the first preamble signal may include a preamble of a physical layer header of 802.11b, or a preamble and header of a physical layer header of 802.11b.
  • the first portion of the signal may also include a header signal and/or a data signal.
  • the second portion of the signal includes at least one of the following:
  • the second preamble signal, the header signal, and the data (paload) signal are the first preamble signal, the header signal, and the data (paload) signal.
  • the zero-power consumption device may determine the resource location of the first part of the signal based on the resource location of the second part of the signal.
  • the zero-power consumption device may determine the time domain position of the first part of the signal based on the time domain position of the second part of the signal.
  • the zero-power consumption device may determine the time domain position of the first preamble signal based on the time domain position of the second preamble signal.
  • the second part of the signal includes first indication information, and the first indication information is used to indicate the resource location of the first part of the signal.
  • the zero-power consumption device can determine the resource location of the first part of the signal based on the first indication information in the second part of the signal, and then can determine the resource location of the first part of the signal based on the first part of the signal.
  • the first part of the signal is received at the resource location.
  • the zero-power device can perform backscattering based on the received first part of the signal.
  • the backscattered signal of the zero-power device can also include a preamble signal, so that the non-zero-power device (for example, traditional WIFI devices) can detect that a zero-power device is using the channel based on the preamble signal.
  • the positional relationship between the resource location of the first part of the signal and the resource location of the second part of the signal may be predefined or configured by the access point device. That is, the access point device and the zero-power consumption device have a consistent understanding of the positional relationship between the first part of the signal and the second part of the signal.
  • the resource location of the first part of the signal and the resource location of the second part of the signal have a first offset.
  • the time domain position of the first pilot signal and the time domain position of the second pilot signal have a first offset.
  • the first offset is predefined or configured by the access point device.
  • the second portion of the signal is earlier in the time domain than the first portion of the signal.
  • the second preamble signal is earlier than the first preamble signal in the time domain.
  • the first signal is a PPDU frame.
  • the first signal is a PPDU frame
  • the frame structure of the PPDU frame may include a second preamble signal transmitted through a zero-power wireless interface, and a first preamble signal transmitted through a traditional 802.11 wireless interface, As well as headers and payloads transmitted through zero-power wireless interfaces.
  • the first signal is a PPDU frame.
  • the frame structure of the PPDU frame may include a first preamble signal transmitted through a traditional 802.11 wireless interface, a second preamble signal transmitted through a zero-power wireless interface, header and payload.
  • the first signal is a PPDU frame.
  • the frame structure of the PPDU frame may include a second preamble signal, header and payload transmitted through a zero-power wireless interface, and a second preamble signal, header and payload transmitted through a traditional 802.11 wireless interface.
  • First pilot signal may be included in the PPDU frame.
  • the first signal is a PPDU frame.
  • the frame structure of the PPDU frame may include a second preamble signal and a header transmitted through a zero-power wireless interface, and a first preamble transmitted through a traditional 802.11 wireless interface. signal, as well as the data portion transmitted over a zero-power wireless interface.
  • the access point device can send a first signal, where the first signal includes a first part of the signal and a second part of the signal, and the first part of the signal and the second part of the signal are transmitted through the traditional 802.11 wireless interface and
  • the zero-power wireless interface is used to send signals, so that non-zero-power devices and zero-power devices can receive corresponding signals through corresponding interfaces, thereby achieving compatibility between two terminals in a communication system.
  • Figure 13 is a schematic interaction diagram of another wireless communication method provided by an embodiment of the present application. As shown in Figure 13, the method 300 may include at least part of the following content:
  • the first device (or carrier sending device) sends a second signal, where the second signal includes a third preamble signal and a carrier signal;
  • the zero-power device receives the second signal.
  • S320 The zero-power consumption device generates a backscatter signal according to the second signal.
  • zero-power consumption devices can be classified based on the complexity of the device, energy supply mode, communication mode, modulation mode and other characteristics.
  • a zero-power device may be a device with at least one of the following characteristics: low complexity, support for ambient power supply, support for power supply by other devices, backscattering, new waveforms (or simple waveforms).
  • zero-power consumption devices do not limit the naming of zero-power consumption devices.
  • they may also be called zero-power consumption terminals, low-power consumption devices, low-power consumption terminals, environmentally powered terminals, energy collection-based terminals, etc.
  • the embodiments of the present application do not limit the source of the energy of the zero-power consumption device.
  • the zero-power consumption device may come from the external environment.
  • the zero-power consumption device may have zero power consumption or low power consumption, or zero power consumption.
  • the energy required for the operation of the power-consuming device comes from the power supply of the zero-power device itself.
  • the zero-power device can be a low-power terminal, or the energy of the zero-power device can also be supplied by the network.
  • the device for example, in a WIFI system, it can be provided by an access point device, or it can be provided by a terminal device, for example, in a WIFI system, it can be provided by a site device, or it can also be provided by a dedicated provided by the energy supply node, this application is not limited to this.
  • the zero-power device is equipped with an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc., and further stores the obtained energy in an energy storage unit. After the energy storage unit obtains sufficient energy, it can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • an energy collection module for energy collection, such as energy collection from radio waves, solar energy, etc.
  • the energy storage unit can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link.
  • the technical solutions in the embodiments of this application can be applied to unlicensed spectrum, or can also be applied to licensed spectrum.
  • the first device may be any device capable of actively transmitting signals.
  • the first device may be a network device, such as a base station in a cellular communication system, or an access point device in a WLAN system.
  • the first device may be a terminal device, such as a UE in a cellular communication system, a site device in a WLAN, or it may be a dedicated carrier sending device, which is not limited in this application.
  • the third preamble signal may adopt a signal waveform supported by a traditional 802.11 wireless interface, such as OFDM.
  • the legacy 802.11 wireless interface may include an interface for access point devices and site devices to communicate.
  • the traditional 802.11 wireless interface may refer to a communication interface that supports 802.11 technology.
  • the backscattered signal includes a fourth preamble signal and a zero power wireless frame.
  • the fourth preamble signal is obtained by backscattering the third preamble signal.
  • the zero-power consumption device may directly reflect the third preamble signal without modulating it to obtain the fourth preamble signal.
  • the zero-power wireless frame is obtained by backscattering the carrier signal.
  • the zero-power consumption device may modulate the carrier signal to carry information sent to a target device (such as an access point device or a station device, etc.) to obtain the zero-power wireless frame.
  • a target device such as an access point device or a station device, etc.
  • the zero-power wireless frame is transmitted through a zero-power radio interface.
  • the zero-power wireless interface may refer to a communication interface used for zero-power communication, or a communication interface used for communication between a zero-power device and other devices, that is, the zero-power wireless interface.
  • the interface can be used to carry information sent by a zero-power device to other devices, or to carry information sent by other devices to a zero-power device.
  • the zero-power communication may be related to characteristics such as the modulation method of the signal, the transmission method of the signal, the complexity of the device, the energy supply method of the device, or the power consumption of the device.
  • the signal to achieve zero-power communication can use a low-complexity modulation method, such as ASK, or the reverse link of the device that performs zero-power communication uses backscattering to send the signal.
  • the device that performs zero-power communication is Low-complexity or low-cost devices. Devices that perform zero-power communication support environmental energy supply or power supply from other devices. Devices that perform zero-power communication are low-power or zero-power devices, etc.
  • the traditional 802.11 wireless interface may refer to the interface through which the access point device and the traditional site device communicate before the zero-power device is introduced. After the zero-power device is introduced, the zero-power device also It can be considered as a site device. In this case, the communication interface between the zero-power device and the access point device (ie, the zero-power wireless interface) can be considered as an extended 802.11 wireless interface.
  • the fourth preamble signal may be used for carrier detection.
  • the fourth preamble signal adopts a signal waveform supported by a traditional 802.11 wireless interface, such as an OFDM modulated waveform.
  • the zero-power consumption device can use the preamble signal of the physical layer part of the 802.11 data frame sent by the carrier sending device to perform backscattering.
  • the backscattering signal of the zero-power consumption device can also include The signal waveform supported by the traditional 802.11 wireless interface, so that non-zero power consumption devices (such as WIFI devices) can perform carrier detection based on the preamble signal.
  • the zero-power wireless frame adopts a signal waveform supported by a zero-power wireless interface, such as an ASK modulated waveform.
  • the zero-power wireless frame includes at least one of the following signals: a preamble signal (denoted as the fifth preamble signal), a header signal, and a data signal.
  • the backscattered signal may be a PPDU frame.
  • the backscattered signal is a PPDU frame
  • the frame structure of the PPDU frame may include a fourth preamble signal, a fifth preamble signal, a header and a data part.
  • the fourth preamble signal may be obtained by directly backscattering the third preamble signal
  • the fifth preamble signal, header and data parts may be obtained by modulating the carrier signal and then performing backscattering.
  • the position of the third preamble signal and/or the carrier signal in the second signal may be indicated by the first device, or may be predefined, or the network Device configuration.
  • the network device may indicate the position of the third preamble signal and the carrier signal in the second signal to the first device and the zero-power consumption device.
  • the second signal includes second indication information, and the second indication information is used to indicate the position of the third pilot signal or the carrier signal in the second signal.
  • the time domain position of the third pilot signal and the time domain position of the carrier signal may have a second offset, and the second offset may be predefined or configured by a network device. of.
  • the time domain position of the third pilot signal is earlier than the time domain position of the carrier signal, or the time domain position of the third pilot signal is later than the time domain position of the carrier signal.
  • the third preamble signal may correspond to the first preamble signal in method 200, and the carrier signal may correspond to the second part of the signal in method 200.
  • the frame structure design of the second signal may refer to FIG. 9 to PPDU frame structure design in Figure 12.
  • the method 300 further includes:
  • the zero-power consumption device determines whether to backscatter the third preamble signal based on whether the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth.
  • the zero-power consumption device when the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth, the zero-power consumption device does not backscatter the third preamble signal.
  • the zero-power consumption device Backscatter may be used without channel sensing.
  • the second signal includes a preamble signal and a carrier signal.
  • the zero-power device may not backscatter the preamble signal, but only modulate the carrier signal in the second signal to generate a backscatter signal. That is, the backscatter signal may only Includes zero-power wireless frames.
  • the second signal includes the preamble signal, and the second signal and the backscattered signal belong to the same channel bandwidth, it is equivalent to the backscattered signal on the channel where the backscattered signal is located also including the preamble signal.
  • the device performs carrier detection based on the backscattered signal and can also determine that the channel is being used, thereby ensuring the accuracy of carrier detection.
  • Figure 15 is a schematic diagram of the signal composition of the backscattered signal when the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth.
  • the zero-power consumption device when the channel where the second signal is located and the channel where the backscattered signal is located do not belong to the same channel bandwidth, the zero-power consumption device performs backscattering on the third preamble signal. .
  • the zero-power device Listening needs to be performed on the channel where the backscattered signal is present, such as energy detection based listening. After determining that the channel is free, the channel is used to send backscattered signals. In this case, the zero-power device needs to backscatter the preamble signal in the second signal, so that the backscattered signal on the channel where the backscattered signal is located also includes the preamble part. In this case, the non-zero power consumption The device performs carrier detection based on the backscattered signal and can determine that the channel is being used, thus ensuring the accuracy of carrier detection.
  • Figure 16 is a schematic diagram of the signal composition of the backscattered signal when the channel where the second signal is located and the channel where the backscattered signal is located belong to different channel bandwidths.
  • the backscattered signal includes a zero-power wireless frame
  • the backscattered signal includes a fourth preamble signal and a zero-power wireless frame.
  • the zero-power consumption device may determine whether to backscatter the third preamble signal according to third indication information of the access point device, wherein the third indication information is used to indicate whether to backscatter the third preamble signal.
  • the third pilot signal is backscattered.
  • the third indication information is carried in the second signal.
  • the first device is the access point device.
  • the carrier sending device can send a second signal.
  • the second signal includes a preamble signal and a carrier signal.
  • the zero power consumption device can perform backscattering based on the second signal, which is equivalent to zero power consumption.
  • the backscattered signal of the device also includes the preamble signal. Therefore, non-zero power consumption devices (such as WIFI devices) can perform carrier detection based on the preamble signal, which is beneficial to ensuring the accuracy of carrier detection.
  • FIG 17 shows a schematic block diagram of an access point device 1000 according to an embodiment of the present application.
  • the access point device 1000 includes:
  • the Communication unit 1010 configured to send a first signal.
  • the first signal includes a first part signal and a second part signal.
  • the first part signal is transmitted through a traditional 802.11 wireless interface, and the second part signal is transmitted through a zero-power wireless interface. Transmission, wherein the first portion of the signal includes a first preamble signal.
  • the second portion of the signal includes at least one of the following:
  • Second preamble signal header signal, data signal.
  • the second part of the signal includes first indication information, and the first indication information is used to indicate the resource location of the first part of the signal.
  • the resource location of the first portion of the signal and the resource location of the second portion of the signal have a first offset.
  • the first offset is predefined or configured by the access point device.
  • the second portion of the signal is earlier in the time domain than the first portion of the signal.
  • the first preamble signal is used for carrier detection.
  • the first preamble signal adopts a signal waveform supported by a traditional 802.11 wireless interface.
  • the second part of the signal adopts a signal waveform supported by a zero-power wireless interface.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the access point device 1000 may correspond to the access point device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the access point device 1000 are respectively for The corresponding processes for implementing the access point device in the methods shown in Figures 8 to 12 will not be described again for the sake of simplicity.
  • Figure 18 shows a schematic block diagram of a zero-power consumption device 1100 according to an embodiment of the present application. As shown in Figure 18, the zero-power device 1100 includes:
  • the communication unit 1110 is configured to receive the second part of the first signal through a zero-power wireless interface, where the first signal includes the first part of the signal and the second part of the signal, and the first part of the signal passes through the traditional 802.11
  • the wireless interface transmits, and the first part of the signal includes a first preamble signal.
  • the second portion of the signal includes at least one of the following:
  • Second preamble signal header signal, data signal.
  • the second part of the signal includes first indication information, and the first indication information is used to indicate the resource location of the first part of the signal.
  • the resource location of the first portion of the signal has a first offset relative to the resource location of the second portion of the signal.
  • the first offset is predefined or configured by the access point device.
  • the second portion of the signal is earlier in the time domain than the first portion of the signal.
  • the first preamble signal is used for carrier detection.
  • the first preamble signal adopts a signal waveform supported by a traditional 802.11 wireless interface.
  • the second part of the signal adopts a signal waveform supported by a zero-power wireless interface.
  • the first signal is sent by an access point device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the zero-power consumption device 1100 may correspond to the zero-power consumption device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the zero-power consumption device 1100 are respectively for The corresponding process for implementing the zero-power device in the methods shown in Figures 13 to 16 will not be described again for the sake of simplicity.
  • Figure 19 shows a schematic block diagram of a communication device 1200 according to an embodiment of the present application. As shown in Figure 19, the communication device 1200 includes:
  • the communication unit 1210 is configured to send a second signal, where the second signal includes a third preamble signal and a carrier signal, where the second signal is used by a zero-power consumption device to generate a backscatter signal.
  • the second signal includes second indication information, and the second indication information is used to indicate the positions of the third preamble signal and the carrier signal in the second signal.
  • the backscattered signal includes a fourth preamble signal and a zero-power wireless frame; alternatively, the backscattered signal includes a zero-power wireless frame.
  • the fourth preamble signal is obtained by backscattering the third preamble signal
  • the zero-power wireless frame is obtained by backscattering the carrier signal
  • the zero-power wireless frame includes at least one of the following signals:
  • Preamble signal header signal, data signal.
  • the third preamble signal adopts a signal waveform supported by a traditional 802.11 wireless interface.
  • the zero-power wireless frame adopts a signal waveform supported by a zero-power wireless interface.
  • the zero-power wireless frame is sent over a zero-power wireless interface.
  • the communication device is an access point device or a site device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 1200 may correspond to the first device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 1200 are respectively to implement Figures 13 to 16
  • the corresponding process of the first device in the method shown is not repeated here for the sake of simplicity.
  • Figure 20 shows a schematic block diagram of a zero-power consumption device 1300 according to an embodiment of the present application. As shown in Figure 20, the zero-power device 1300 includes:
  • Communication unit 1310 configured to receive a second signal, where the second signal includes a third pilot signal and a carrier signal;
  • the processing unit 1320 is configured to generate a backscatter signal according to the second signal.
  • the second signal includes second indication information, and the second indication information is used to indicate the positions of the third preamble signal and the carrier signal in the second signal.
  • the backscattered signal includes a fourth preamble signal and a zero-power wireless frame; alternatively, the backscattered signal includes a zero-power wireless frame.
  • the fourth preamble signal is obtained by backscattering the third preamble signal
  • the zero-power wireless frame is obtained by backscattering the carrier signal
  • the zero-power wireless frame includes at least one of the following signals: a preamble signal, a header signal, and a data signal.
  • the backscattered signal when the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth, the backscattered signal includes a zero-power wireless frame;
  • the backscattered signal includes a fourth preamble signal and a zero-power wireless frame.
  • the zero-power device 1300 further includes:
  • a processing unit configured to determine whether to backscatter the third preamble signal based on whether the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth.
  • the processing unit is also used to:
  • the channel where the second signal is located and the channel where the backscattered signal is located belong to the same channel bandwidth, it is determined not to backscatter the third preamble signal;
  • the channel where the second signal is located and the channel where the backscattered signal is located do not belong to the same channel bandwidth, it is determined to backscatter the third preamble signal.
  • the third preamble signal adopts a signal waveform supported by a traditional 802.11 wireless interface.
  • the zero-power wireless frame is sent over a zero-power wireless interface.
  • the second signal is sent by an access point device or a station device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the zero power consumption device 1300 may correspond to the zero power consumption device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the zero power consumption device 1300 are respectively for The corresponding process for implementing the zero-power device in the methods shown in Figures 13 to 16 will not be described again for the sake of simplicity.
  • Figure 21 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 21 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 can be a zero-power device according to the embodiment of the present application, and the communication device 600 can implement the corresponding processes implemented by the zero-power device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the communication device 600 may specifically be an access point device according to the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the access point device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • the communication device 600 may specifically be the first device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • FIG 22 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 22 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the zero-power consumption device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the zero-power consumption device in the various methods of the embodiment of the present application. For the sake of brevity, it will not be described here. Repeat.
  • the chip can be applied to the access point device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the access point device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 23 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 23 , the communication system 900 includes a zero-power consumption device 910 and a communication device 920 .
  • the zero-power consumption device 910 can be used to implement the corresponding functions implemented by zero power consumption in the above method
  • the communication device 920 can be used to implement the corresponding functions implemented by the access point device or the first device in the above method.
  • the functions will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the zero-power device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the zero-power device in the various methods of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the computer-readable storage medium can be applied to the access point device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the access point device in each method of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the computer-readable storage medium can be applied to the first device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the zero-power device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the zero-power device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the zero-power device in the various methods of the embodiment of the present application.
  • the computer program product can be applied to the access point device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the access point device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the access point device in each method of the embodiment of the present application.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the zero-power device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding steps implemented by the zero-power device in each method of the embodiment of the present application. The process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the access point device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform the corresponding steps implemented by the access point device in each method of the embodiment of the present application. The process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the first device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:接入点设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在免授权频谱上,通信设备需要遵循“先听后说(listen-before-talk,LBT)”原则。即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。
在无线保真(Wireless Fidelity,WIFI)系统中,WIFI设备采用载波侦听机制,确定信道是否空闲。例如,WIFI设备通过侦听信道上的特殊序列信号(例如前导信号(preamble))确定信道是否空闲。
零功耗终端由于其低成本、低复杂度、低功耗的特点,在蜂窝通信系统中有广泛的应用,如无源物联网系统。免授权频谱是蜂窝通信系统中的一种重要的部署场景,当零功耗设备应用于WIFI系统中时,如何实现与WIFI设备的兼容是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,有利于实现WIFI系统中的零功耗设备和传统WIFI设备的兼容。
第一方面,提供了一种无线通信的方法,包括:接入点设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。
第二方面,提供了一种无线通信的方法,包括:零功耗设备通过零功耗无线接口接收第一信号中的第二部分信号,其中,所述第一信号包括第一部分信号和所述第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第一部分信号包括第一前导信号。
第三方面,提供了一种无线通信的方法,包括:第一设备发送第二信号,所述第二信号包括第三前导信号和载波信号,所述第二信号用于零功耗设备产生反向散射信号。
第四方面,提供了一种无线通信的方法,包括:零功耗设备接收第二信号,所述第二信号包括第三前导信号和载波信号;所述零功耗设备根据所述第二信号产生反向散射信号。
第五方面,提供了一种接入点设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该接入点设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种零功耗设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该零功耗设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种通信设备,用于执行上述第三方面或其各实现方式中的方法。
具体地,该通信设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第八方面,提供了一种零功耗设备,用于执行上述第四方面或其各实现方式中的方法。
具体地,该零功耗设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,接入点设备可以发送第一信号,其中,第一信号包括第一部分信号和第二部分信号,第一部分信号和第二部分信号分别通过通过传统802.11无线接口和零功耗无线接口发送,从而非零功耗设备和零功耗设备可以通过对应的接口接收对应的信号,从而能够实现一个通信信号中 的两种终端之间的兼容。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个实施例的零功耗通信的示意性图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是802.11数据帧的一种帧格式示意图。
图7是802.11数据帧的另一种帧格式示意图。
图8是根据本申请实施例提供的一种无线通信的方法的示意性交互图。
图9是本申请实施例提供的一种PPDU帧的帧格式示意图。
图10是本申请实施例提供的另一种PPDU帧的帧格式示意图。
图11是本申请实施例提供的又一种PPDU帧的帧格式示意图。
图12是本申请实施例提供的再一种PPDU帧的帧格式示意图。
图13是根据本申请实施例提供的另一种无线通信的方法的示意性交互图。
图14是本申请实施例提供的一种PPDU帧的帧格式示意图。
图15是根据本申请一个实施例的反向散射示意图。
图16是根据本申请另一实施例的反向散射示意图。
图17是根据本申请实施例提供的一种接入点设备的示意性框图。
图18是根据本申请实施例提供的一种零功耗设备的示意性框图。
图19是本申请实施例提供的一种通信设备的示意性框图。
图20是本申请实施例提供的一种零功耗设备的示意性框图。
图21是根据本申请实施例提供的一种通信设备的示意性框图。
图22是根据本申请实施例提供的一种芯片的示意性框图。
图23是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些实施例中,所述通信系统100还可以包括零功耗设备130。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对等通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是带有WiFi芯片的终端设备(如手机)或者网络设备(如路由器)。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11技术,该802.11技术可以包括但不限于:802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)技术。
在一些实施例中,AP可以为支持802.11技术的设备,该802.11技术可以包括但不限于:802.11be、 802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)技术。
在本申请实施例中,STA可以是支持WLAN或WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA、两个non-AP STA和一个零功耗设备,可选地,该通信系统100可以包括多个AP STA、其它数量的non-AP STA以及其他数量的零功耗设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备还可包括通信系统100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括接入点和站点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
为便于理解本申请实施例的技术方案,对本申请的零功耗相关技术进行说明。
一、零功耗通信
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由网络设备和零功耗设备构成。
如图2所示,网络设备(例如接入点设备)用于向零功耗设备发送无线供能信号,下行通信信号以及接收零功耗设备的反向散射信号。一个基本的零功耗设备包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗设备还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗设备工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗设备无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗设备接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗设备的振荡回路的电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗设备的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗设备的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗设备借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗设备具有显著的优点:
(1)设备不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)设备不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗设备的能量来源以及使用方式,可以将零功耗设备分为如下类型:
1、无源零功耗设备
零功耗设备(如RFID系统的标签)不需要内装电池,零功耗设备接近网络设备(如RFID系统的读写器)时,零功耗设备处于网络设备天线辐射形成的近场范围内。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗设备。
无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗设备
半无源零功耗设备自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗设备。
半无源零功耗设备继承了无源零功耗设备的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗设备
有些场景下使用的零功耗设备也可以为有源零功耗设备,此类终端可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗设备进行能量采集的能量来源。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站,AP等。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者 也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新增信号实现,例如新增专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗设备进行数据传输。
从触发信号载体上,可以是基站、智能手机、智能网关,微基站,AP等。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新增信号实现,例如新增专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗设备产生反向散射信号,例如,零功耗设备可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从载波信号载体上,可以是基站、智能手机、智能网关,微基站,AP等。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,载波信号也可以通过新增信号实现,例如新增专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
为便于理解本申请实施例,对本申请相关的免授权频谱进行说明。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循“先听后说(listen-before-talk,LBT)”原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。并且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
目前使用免授权频谱进行通信的系统包括了WIFI,和3GPP的非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)技术等。
为便于理解本申请实施例,对本申请相关的信道侦听技术进行说明。
信道监听原则是通信设备在业务到达后进行免授权频谱的载波上的LBT,并在LBT成功后在该载波上开始信号的发送。在使用免授权频谱的不同的通信系统分别采用了不同的信道侦听技术,它们同时要保证满足法规的要求,以保证各个通信系统在使用免授权频谱时的公平性。
例如,对于WIFI系统,信道侦听采用了载波侦听机制,包括物理载波侦听和虚拟载波侦听,任意一种载波监听机制的指标指示信道繁忙,则确定信道繁忙。其中,物理载波侦听采用三种信道空闲检测方式:能量检测、载波检测和能量载波混合检测,统称为空闲信道评估(clear channel assessment,CCA)。
1、能量检测(Energy Detection,ED):对接收信号的能量大小进行判断,当接收信号的功率大于物理层规定的阈值(ED_threshold)时,认为信道被占用。若接收信号的功率小于ED_threshold,则认为信道空闲。该ED_threshold的设置与发送功率有关。
2、载波检测(Carrier Sense,CS):载波检测用于识别802.11数据帧的物理层头部(PLCP header)中的前导(preamble)部分。其中,在802.11中,数据帧的preamble部分采用特定的序列构造,该序列对于发送方和接收方都是已知的,用来做帧同步以及符号同步。在实际检测过程中,节点会不断采样信道信号,根据该信道信号进行自相关或者互相关运算。其中,自相关在基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的802.11技术(比如802.11a)中常用,而互相关在基于直接序列扩频(Direct Se quence Spread Spectrum,DSSS)技术(比如802.11b)中常用。 与能量检测类似,相关计算值需要与一个阈值进行比较,若大于阈值,则认为检测到了一个信号。若小于阈值,则认为没有检测到信号。
3、能量和载波混合检测(ED&CS):在802.11中,根据物理层使用的技术来决定采用的检测技术。DSSS技术结合了能量检测和载波检测,而跳频扩频(Frequency-Hopping Spread Spectrum,FHSS)技术则仅采用载波检测技术。混合检测中,任意一种检测技术的指标被检测到超限,就认为信道正在被占用。
零功耗设备由于其低成本、低复杂度、低功耗的特点,在蜂窝通信系统中具有广泛的应用,如无源物联网。而免授权频段的使用也是蜂窝通信系统中的一个重要的部署场景。当零功耗设备应用于WIFI系统中时,如何保持与传统WIFI设备的兼容性是一项亟需解决的问题。
为便于理解本申请实施例,对本申请解决的技术问题进行说明。
由于零功耗设备和传统WIFI设备的通信接口不同,WIFI系统中的已有WIFI信号,零功耗设备可能无法接收,并且由于零功耗设备的处理能力有限,也无法产生WIFI信号。因此当一个新类型的设备应用于在WIFI系统中时,与传统WIFI设备的兼容性是需要考虑的问题。
例如,传统WIFI设备的信道侦听采用的载波检测机制。WIFI设备对于信道的载波检测基于802.11数据帧(例如物理层汇聚协议(Physical Layer Convergence Protocol,PLCP)协议数据单元(PLCP Protocol Data Unit,PPDU))的物理层头部中的前导(preamble)信号部分,而零功耗设备的反向散射无法产生此信号。如果零功耗设备的反向散射不能发送preamble信号,传统WIFI终端就无法通过检测preamble信号检测到零功耗设备在使用信道,从而可能也使用此信道进行传输,造成干扰。
具体地,PPDU帧包括物理层头部,物理层头部可以包括preamble,图6和图7示出了两种典型的PPDU帧的格式图,如图6所示,对于802.11a/g的PPDU帧的物理层头部包括:短训练字段(Short Training Field,STF),长训练字段(Long Training Field,LTF)和信号(SIGNAL)字段。
其中,STF主要是由10个短的符号(symbol)组成(t1-t10),其每一个symbol是0.8us,其实现了多个功能,主要包括帧同步和粗频率同步。其中t1-t7主要实现的功能包括信号检测(Signal Detect),自动增益控制(Auto gain control,AGC),分集选择(Diversity Selection),t8-t10实现的功能包括粗频率(Coarse Freq),偏移量估算(Offset Estimation),定时同步(Timing Synchronize)功能。LTF主要用于实现细频率同步和信道估计。对于载波检测,WIFI设备可以将STF作为preamble,对其进行自相关或者互相关计算来完成载波检测。
如图7所示,对于802.11b的PPDU帧的物理层头部包括:前导(preamble)部分和头(header)部分,在preamble部分包含两个部分,同步(sync)和SFD,其中sync是用来做帧同步的,SFD是作为帧起始标识的。
如图7所示,该802.11b的PPDU帧还包括数据部分,例如PLCP服务数据单元(PLCP Service Data Unit,PSDU)或媒体接入控制(Media Access Control,MAC)协议数据单元(MAC Protocol Data Unit,MPDU)。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图8是根据本申请实施例的无线通信的方法200的示意性交互图,如图8所示,该方法200包括如下至少部分内容:
S210,接入点设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。
可选地,站点设备通过传统802.11无线接口接收所述第一部分信号,零功耗设备通过零功耗无线接口接收所述第二部分信号。
需要说明的是,本申请对于零功耗设备的具体划分方式不作限定,例如零功耗设备可以是基于设备的复杂度,供能方式,通信方式,调制方式等特征划分的。例如,零功耗设备可以是具有如下特征中的至少之一的设备:低复杂度、支持环境供能、支持其他设备供能,反向散射、新的波形(或简单波形)。
应理解,本申请实施例对于零功耗设备的命名不作限定,例如也可以称为零功耗终端,低功耗设备,低功耗终端,环境供能的终端、基于能量收集的终端等。
还需要说明的是,本申请实施例并不限定零功耗设备的能量的来源,例如可以来自外部环境,这种情况下,零功耗设备可以是零功耗或低功耗,或者,零功耗设备工作所需要的能量来源于零功耗设备本身的供电,这种情况下,零功耗设备可以是一种低功耗的终端,或者,零功耗设备的能量也可以 是由网络设备提供的,例如在WIFI系统中,可以是由接入点设备提供的,或者,可以是终端设备提供的,例如在WIFI系统中,可以是由站点设备提供的,或者也可以是由专用的供能节点提供的,本申请并不限于此。
在一些实施例中,该零功耗设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动终端设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作。
可选地,本申请实施例的技术方案可以应用于免授权频谱,或者,也可以应用于授权频谱。
应理解,本申请实施例的技术方案可以应用于WIFI系统或WLAN系统,或者,也可以应用于需要考虑零功耗设备和传统终端的兼容性的其他通信系统,本申请并不限于此。
例如,当零功耗设备引入某一通信系统后,该通信系统中的网络设备可以在发送的信号中包括两部分信号,第一部分信号通过网络设备和终端设备之间的传统通信接口(例如Uu接口)传输,第二部分信号通过零功耗无线接口传输。
对应地,该通信系统中的终端设备可以通过传统通信接口接收所述第一部分信号,零功耗设备可以通过零功耗无线接口接收第二部分信号,从而能够实现通信系统中两类终端之间的兼容。
可选地,所述通信系统可以包括但不限于:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统。
可选地,所述网络设备可以WLAN系统或WIFI系统中的AP,或者,也可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备或者非地面通信网络(Non-Terrestrial Networks,NTN)网络中的网络设备等。
可选地,所述终端设备可以是WLAN系统或WIFI系统中的STA,或者,也可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的PLMN网络中的终端设备等。
以下,以将零功耗设备应用于WIFI系统为例进行说明,当零功耗设备应用于其他通信系统时,实现方式类似,这里不再赘述。
在一些实施例中,接入点设备可以为支持802.11技术的设备。
在一些实施例中,站点设备可以为支持802.11技术的设备,例如WIFI设备。
可选地,该802.11技术可以包括但不限于:802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN技术。
在一些实施例中,所述传统802.11无线接口可以包括用于接入点设备和站点设备进行通信的接口。即,站点设备和接入点设备可以通过传统802.11无线接口进行通信。
在一些实施例中,所述传统802.11无线接口可以指支持802.11技术的通信接口。
在一些实施例中,所述零功耗无线接口(zero-power radio)可以指用于零功耗通信的通信接口,或者说,零功耗设备和其他设备之间进行通信所使用的通信接口。例如,该零功耗无线接口可以用于承载零功耗设备发送给其他设备的信息,或者,承载其他设备发送给零功耗设备的信息。
在一些实施例中,所述零功耗通信可以与信号的调制方式,信号的发送方式,设备的复杂度,设备的供能方式或设备的功耗等特征相关。例如实现零功耗通信的信号可以采用低复杂度的调制方式,如ASK,或者,执行零功耗通信的设备的反向链路采用反向散射方式发送信号,执行零功耗通信的设备为低复杂度或低成本设备,执行零功耗通信的设备支持环境供能或其他设备供能,执行零功耗通信的设备为低功耗或零功耗的设备等。
在一些实施例中,所述零功耗通信可以包括反向散射通信,或者也可以包括其他无源或半无源的 通信方式,以下以反向散射通信为例进行说明,但本申请并不限于此。
应理解,在本申请实施例中,所述传统802.11无线接口可以指引入零功耗设备之前接入点设备和传统站点设备进行通信的接口,在引入零功耗设备之后,零功耗设备也可以认为是一种站点设备,此情况下,零功耗设备和接入点设备之间的通信接口(即零功耗无线接口)可以认为是一种扩展的802.11无线接口。
在一些实施例中,所述第一部分信号和所述第二部分信号采用的波形不同。
例如,所述第一前导信号可以采用传统802.11无线接口支持的信号波形,例如OFDM调制的波形。
例如,所述第二部分信号采用零功耗无线接口支持的信号波形,例如幅度键控(Amplitude Shift Keying,ASK)调制的波形。
具体地,由于零功耗设备具有低复杂度的特征,只支持简单的调制方式,例如ASK调制,零功耗设备可能无法实现WIFI设备所支持的OFDM调制。因此,零功耗通信采用的波形与基于OFDM的波形不同。
在一些实施例中,所述第一前导信号可以用于载波检测。
在一些实施例中,所述第一前导信号可以包括802.11a/g的物理层头部的STF,或者,802.11a/g的物理层头部的STF和LTF,或者,802.11a/g的物理层头部的STF、LTF和SIGNAL。
在一些实施例中,所述第一前导信号可以包括802.11b的物理层头部的preamble,或者,802.11b的物理层头部的preamble和header。
在一些实施例中,所述第一部分信号还可以包括头信号和/或数据信号。
在一些实施例中,所述第二部分信号包括以下中的至少一项:
第二前导信号,头(header)信号,数据(paload)信号。
在一些实施例中,所述零功耗设备可以根据所述第二部分信号的资源位置确定所述第一部分信号的资源位置。
例如,所述零功耗设备可以根据所述第二部分信号的时域位置确定所述第一部分信号的时域位置。
又例如,所述零功耗设备可以根据所述第二前导信号的时域位置确定所述第一前导信号的时域位置。
在一些实施例中,所述第二部分信号包括第一指示信息,所述第一指示信息用于指示所述第一部分信号的资源位置。
因此,所述零功耗设备在接收所述第二部分信号之后,可以根据所述第二部分信号中的第一指示信息确定所述第一部分信号的资源位置,然后可以根据所述第一部分信号的资源位置进行第一部分信号的接收。
在一些实施例中,所述零功耗设备可以基于接收的第一部分信号进行反向散射,这样,零功耗设备的反向散射信号中也可以包括前导信号,从而,非零功耗设备(例如传统WIFI设备)可以基于该前导信号检测到零功耗设备正在使用信道。
在一些实施例中,所述第一部分信号的资源位置和所述第二部分信号的资源位置的位置关系可以是预定义的,或者是接入点设备配置的。即,接入点设备和零功耗设备对于第一部分信号和第二部分信号之间的位置关系的理解一致。
在一些实施例中,所述第一部分信号的资源位置和第二部分信号的资源位置具有第一偏移量。
例如,第一前导信号的时域位置和第二前导信号的时域位置具有第一偏移量。
在一些实施例中,所述第一偏移量是预定义的或所述接入点设备配置的。
在一些实施例中,所述第二部分信号在时域上早于所述第一部分信号。例如,第二前导信号在时域上早于第一前导信号。
应理解,在本申请实施例并不限定所述第一信号的具体信号组成和信号结构,只要该第一信号的发送端和接收端对于所述第一信号的信号组成和信号结构的理解一致即可。
在一些实施例中,所述第一信号为PPDU帧。
结合图9至12,说明根据本申请实施例的第一信号的帧结构的典型实现,但本申请并不限于此。
如图9所示,所述第一信号为一个PPDU帧,所述PPDU帧的帧结构可以包括通过零功耗无线接口传输的第二前导信号,通过传统802.11无线接口传输的第一前导信号,以及通过零功耗无线接口传输的header和payload。
如图10所示,所述第一信号为一个PPDU帧,所述PPDU帧的帧结构可以包括通过传统802.11无线接口传输的第一前导信号,通过零功耗无线接口传输的第二前导信号、header和payload。
如图11所示,所述第一信号为一个PPDU帧,所述PPDU帧的帧结构可以包括通过零功耗无线接口传输的第二前导信号、header和payload,以及通过传统802.11无线接口传输的第一前导信号。
如图12所示,所述第一信号为一个PPDU帧,所述PPDU帧的帧结构可以包括通过零功耗无线接口传输的第二前导信号和header,通过传统802.11无线接口传输的第一前导信号,以及通过零功耗无线接口传输的数据部分。
综上,在本申请实施例中,接入点设备可以发送第一信号,其中,第一信号包括第一部分信号和第二部分信号,第一部分信号和第二部分信号分别通过传统802.11无线接口和零功耗无线接口发送,从而非零功耗设备和零功耗设备可以通过对应的接口接收对应的信号,从而能够实现一个通信系统中的两种终端之间的兼容。
图13是本申请实施例提供的另一种无线通信的方法的示意性交互图。如图13所示,该方法300可以包括如下至少部分内容:
S310,第一设备(或称载波发送设备)发送第二信号,所述第二信号包括第三前导信号和载波信号;
对应地,零功耗设备接收第二信号。
S320,所述零功耗设备根据所述第二信号产生反向散射信号。
需要说明的是,本申请对于零功耗设备的具体划分方式不作限定,例如零功耗设备可以是基于设备的复杂度,供能方式,通信方式,调制方式等特征划分的。例如,零功耗设备可以是具有如下特征中的至少之一的设备:低复杂度、支持环境供能、支持其他设备供能,反向散射、新的波形(或简单波形)。
应理解,本申请实施例对于零功耗设备的命名不作限定,例如也可以称为零功耗终端,低功耗设备,低功耗终端,环境供能的终端、基于能量收集的终端等。
还需要说明的是,本申请实施例并不限定零功耗设备的能量的来源,例如可以来自外部环境,这种情况下,零功耗设备可以是零功耗或低功耗,或者,零功耗设备工作所需要的能量来源于零功耗设备本身的供电,这种情况下,零功耗设备可以是一种低功耗的终端,或者,零功耗设备的能量也可以是由网络设备提供的,例如在WIFI系统中,可以是由接入点设备提供的,或者,可以是终端设备提供的,例如在WIFI系统中,可以是由站点设备提供的,或者也可以是由专用的供能节点提供的,本申请并不限于此。
在一些实施例中,该零功耗设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动终端设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作。
应理解,本申请实施例的技术方案可以应用于WIFI系统或WLAN系统,或者,也可以应用于其他通信系统,例如,NR系统,LTE系统等,本申请并不限于此。
可选地,本申请实施例的技术方案可以应用于免授权频谱,或者,也可以应用于授权频谱。
在一些实施例中,所述第一设备可以为任意能够主动发射信号的设备,例如,所述第一设备可以是网络设备,例如蜂窝通信系统中的基站,或者WLAN系统中的接入点设备,或者,也可以是终端设备,例如蜂窝通信系统中的UE、WLAN中的站点设备,或者,也可以是专用的载波发送设备,本申请对此不作限定。
在一些实施例中,所述第三前导信号可以采用传统802.11无线接口支持的信号波形,例如OFDM。
在一些实施例中,所述传统802.11无线接口可以包括用于接入点设备和站点设备进行通信的接口。
在一些实施例中,所述传统802.11无线接口可以指支持802.11技术的通信接口。
在一些实施例中,所述反向散射信号包括第四前导信号和零功耗无线帧。
在一些实施例中,所述第四前导信号是对所述第三前导信号进行反向散射得到的。
例如,所述零功耗设备可以对所述第三前导信号不进行调制,直接进行反射,得到所述第四前导信号。
在一些实施例中,所述零功耗无线帧是对所述载波信号进行反向散射得到的。
例如,所述零功耗设备可以对所述载波信号进行调制携带发送给目标设备(例如接入点设备或站点设备等)的信息,得到所述零功耗无线帧。
在一些实施例中,所述零功耗无线帧通过零功耗无线接口(zero-power radio)传输。
在一些实施例中,所述零功耗无线接口可以指用于零功耗通信的通信接口,或者,零功耗设备和其他设备之间进行通信所使用的通信接口,即该零功耗无线接口可以用于承载零功耗设备发送给其他 设备的信息,或者,承载其他设备发送给零功耗设备的信息。
在一些实施例中,所述零功耗通信可以与信号的调制方式,信号的发送方式,设备的复杂度,设备的供能方式或设备的功耗等特征相关。例如实现零功耗通信的信号可以采用低复杂度的调制方式,如ASK,或者,执行零功耗通信的设备的反向链路采用反向散射方式发送信号,执行零功耗通信的设备为低复杂度或低成本设备,执行零功耗通信的设备支持环境供能或其他设备供能,执行零功耗通信的设备为低功耗或零功耗的设备等。
应理解,在本申请实施例中,所述传统802.11无线接口可以指引入零功耗设备之前接入点设备和传统站点设备进行通信的接口,在引入零功耗设备之后,零功耗设备也可以认为是一种站点设备,此情况下,零功耗设备和接入点设备之间的通信接口(即零功耗无线接口)可以认为是一种扩展的802.11无线接口。
在一些实施例中,所述第四前导信号可以用于载波检测。
在一些实施例中,所述第四前导信号采用传统802.11无线接口支持的信号波形,例如OFDM调制的波形。
因此,在本申请实施例中,零功耗设备可以利用载波发送设备发送的802.11数据帧的物理层部分的preamble信号进行反向散射,这样,零功耗设备的反向散射信号中也可以包括传统802.11无线接口支持的信号波形,这样,非零功耗设备(例如WIFI设备)可以基于该preamble信号进行载波检测。
在一些实施例中,所述零功耗无线帧采用零功耗无线接口支持的信号波形,例如ASK调制的波形。
在一些实施例中,所述零功耗无线帧包括以下信号中的至少一种:前导信号(记为第五前导信号),头信号,数据信号。
在一些实施例中,所述反向散射信号可以为PPDU帧。
结合图14,说明根据本申请实施例的反向散射信号的帧结构的典型实现,但本申请并不限于此。
如图14所示,所述反向散射信号为一个PPDU帧,所述PPDU帧的帧结构可以包括第四前导信号,第五前导信号,头和数据部分。其中,第四前导信号可以是对第三前导信号直接进行反向散射得到的,第五前导信号,头和数据部分可以是对载波信号进行调制后再进行反向散射得到的。
应理解,本申请并不限定第三前导信号和载波信号在第二信号中的位置的具体确定方式,只要第一设备和零功耗设备对于第三前导信号和载波信号在第二信号中的位置理解一致即可。
在一些实施例中,所述第三前导信号和/或所述载波信号在所述第二信号中的位置可以是所述第一设备指示的,或者,也可以是预定义的,或者,网络设备配置的。例如,网络设备可以向第一设备和零功耗设备指示第三前导信号和载波信号在第二信号中的位置。
在一些实施例中,所述第二信号包括第二指示信息,所述第二指示信息用于指示所述第三前导信号或所述载波信号在所述第二信号中的位置。
在一些实施例中,所述第三前导信号的时域位置和所述载波信号的时域位置可以具有第二偏移量,所述第二偏移量可以是预定义的,或网络设备配置的。
在一些实施例中,所述第三前导信号的时域位置早于所述载波信号的时域位置,或者,所述第三前导信号的时域位置晚于所述载波信号的时域位置。
在一些实施例中,所述第三前导信号可以对应于方法200中的第一前导信号,所述载波信号可以对应于方法200中的第二部分信号,第二信号的帧结构设计可以参考图9至图12中的PPDU的帧结构设计。
在本申请一些实施例中,所述方法300还包括:
所述零功耗设备根据所述第二信号所在的信道和所述反向散射信号所在的信道是否属于同一信道带宽,确定是否对所述第三前导信号进行反向散射。
在一些实施例中,在所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽的情况下,零功耗设备不对所述第三前导信号进行反向散射。
具体地,由于载波发送设备在发送第二信号时,需要进行信道侦听并获得信道占用权,若第二信号和反向散射信号所在的频域资源位置属于同一信道带宽,零功耗设备的反向散射可以是不需要进行信道侦听的。第二信号包括preamble信号和载波信号,零功耗设备可以不对该preamble信号进行反向散射,而只对第二信号中的载波信号进行调制来产生反向散射信号,即反向散射信号可以只包括零功耗无线帧。由于第二信号包括preamble信号,并且第二信号和反向散射信号属于同一信道带宽,相当于在反向散射信号所在信道上的反向散射信号也包括preamble信号,此情况下,非零功耗设备基于该反向散射信号进行载波检测,也可以确定信道正在被使用,从而保证载波检测的准确性。
图15是第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽的情况下,反向散射信号的信号组成示意图。
在另一些实施例中,在所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽的情况下,零功耗设备对所述第三前导信号进行反向散射。
具体地,由于载波发送设备在发送第二信号时,需要进行信道侦听并获得信道占用权,若第二信号和反向散射信号所在的频域资源位置属于不同的信道带宽,零功耗设备需要在反向散射信号所在的信道上进行侦听,例如基于能量检测的侦听。在确定信道空闲之后,使用信道发送反向散射信号。此情况下,零功耗设备需要对第二信号中的preamble信号进行反向散射,从而在反向散射信号所在的信道上的反向散射信号也包括preamble部分,此情况下,非零功耗设备基于该反向散射信号进行载波检测,可以确定信道正在被使用,从而保证载波检测的准确性。
图16是第二信号所在的信道和所述反向散射信号所在的信道属于不同信道带宽的情况下,反向散射信号的信号组成示意图。
也即,在所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽的情况下,所述反向散射信号包括零功耗无线帧;或者
在所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽的情况下,所述反向散射信号包括第四前导信号和零功耗无线帧。
在一些实施例中,所述零功耗设备可以根据接入点设备的第三指示信息确定是否对所述第三前导信号进行反向散射,其中,所述第三指示信息用于指示是否对第三前导信号进行反向散射。
在一些实施例中,所述第三指示信息携带在所述第二信号中。
在一些实施例中,所述第一设备为所述接入点设备。
因此,在本申请实施例中,载波发送设备可以发送第二信号,第二信号包括前导信号和载波信号,进一步地,零功耗设备可以基于第二信号进行反向散射,相当于零功耗设备的反向散射信号也包括前导信号,因此,非零功耗设备(例如WIFI设备)可以基于该前导信号进行载波检测,有利于保证载波检测的准确性。
上文结合图8至图16,详细描述了本申请的方法实施例,下文结合图17至图23,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图17示出了根据本申请实施例的接入点设备1000的示意性框图。如图17所示,该接入点设备1000包括:
通信单元1010,用于发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。
在一些实施例中,所述第二部分信号包括以下中的至少一项:
第二前导信号,头信号,数据信号。
在一些实施例中,所述第二部分信号包括第一指示信息,所述第一指示信息用于指示所述第一部分信号的资源位置。
在一些实施例中,所述第一部分信号的资源位置和所述第二部分信号的资源位置具有第一偏移量。
在一些实施例中,所述第一偏移量是预定义的或所述接入点设备配置的。
在一些实施例中,所述第二部分信号在时域上早于所述第一部分信号。
在一些实施例中,所述第一前导信号用于载波检测。
在一些实施例中,所述第一前导信号采用传统802.11无线接口支持的信号波形。
在一些实施例中,所述第二部分信号采用零功耗无线接口支持的信号波形。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的接入点设备1000可对应于本申请方法实施例中的接入点设备,并且接入点设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图8至12所示方法中接入点设备的相应流程,为了简洁,在此不再赘述。
图18示出了根据本申请实施例的零功耗设备1100的示意性框图。如图18所示,该零功耗设备1100包括:
通信单元1110,用于通过零功耗无线接口接收第一信号中的第二部分信号,其中,所述第一信号包括第一部分信号和所述第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第一部分信号包括第一前导信号。
在一些实施例中,所述第二部分信号包括以下中的至少一项:
第二前导信号,头信号,数据信号。
在一些实施例中,所述第二部分信号包括第一指示信息,所述第一指示信息用于指示所述第一部分信号的资源位置。
在一些实施例中,所述第一部分信号的资源位置相对于所述第二部分信号的资源位置具有第一偏移量。
在一些实施例中,所述第一偏移量是预定义的或所述接入点设备配置的。
在一些实施例中,所述第二部分信号在时域上早于所述第一部分信号。
在一些实施例中,所述第一前导信号用于载波检测。
在一些实施例中,所述第一前导信号采用传统802.11无线接口支持的信号波形。
在一些实施例中,所述第二部分信号采用零功耗无线接口支持的信号波形。
在一些实施例中,所述第一信号是接入点设备发送的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的零功耗设备1100可对应于本申请方法实施例中的零功耗设备,并且零功耗设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图13至16所示方法中零功耗设备的相应流程,为了简洁,在此不再赘述。
图19示出了根据本申请实施例的通信设备1200的示意性框图。如图19所示,该通信设备1200包括:
通信单元1210,用于发送第二信号,所述第二信号包括第三前导信号和载波信号,所述第二信号用于零功耗设备产生反向散射信号。
在一些实施例中,所述第二信号包括第二指示信息,所述第二指示信息用于指示所述第三前导信号和所述载波信号在所述第二信号中的位置。
在一些实施例中,所述反向散射信号包括第四前导信号和零功耗无线帧;或者,所述反向散射信号包括零功耗无线帧。
在一些实施例中,所述第四前导信号是对所述第三前导信号进行反向散射得到的,所述零功耗无线帧是对所述载波信号进行反向散射得到的。
在一些实施例中,所述零功耗无线帧包括以下信号中的至少一种:
前导信号,头信号,数据信号。
在一些实施例中,所述第三前导信号采用传统802.11无线接口支持的信号波形。
在一些实施例中,所述零功耗无线帧采用零功耗无线接口支持的信号波形。
在一些实施例中,所述零功耗无线帧通过零功耗无线接口发送。
在一些实施例中,所述通信设备为接入点设备或站点设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备1200可对应于本申请方法实施例中的第一设备,并且通信设备1200中的各个单元的上述和其它操作和/或功能分别为了实现图13至16所示方法中第一设备的相应流程,为了简洁,在此不再赘述。
图20示出了根据本申请实施例的零功耗设备1300的示意性框图。如图20所示,该零功耗设备1300包括:
通信单元1310,用于接收第二信号,所述第二信号包括第三前导信号和载波信号;
处理单元1320,用于根据所述第二信号产生反向散射信号。
在一些实施例中,所述第二信号包括第二指示信息,所述第二指示信息用于指示所述第三前导信号和所述载波信号在所述第二信号中的位置。
在一些实施例中,所述反向散射信号包括第四前导信号和零功耗无线帧;或者,所述反向散射信号包括零功耗无线帧。
在一些实施例中,所述第四前导信号是对所述第三前导信号进行反向散射得到的,所述零功耗无线帧是对所述载波信号进行反向散射得到的。
在一些实施例中,所述零功耗无线帧包括以下信号中的至少一种:前导信号,头信号,数据信号。
在一些实施例中,在所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽的情况下,所述反向散射信号包括零功耗无线帧;或者
在所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽的情况下,所述 反向散射信号包括第四前导信号和零功耗无线帧。
在一些实施例中,所述零功耗设备1300还包括:
处理单元,用于根据所述第二信号所在的信道和所述反向散射信号所在的信道是否属于同一信道带宽,确定是否对所述第三前导信号进行反向散射。
在一些实施例中,所述处理单元还用于:
若所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽,确定不对所述第三前导信号进行反向散射;或者
若所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽,确定对所述第三前导信号进行反向散射。
在一些实施例中,所述第三前导信号采用传统802.11无线接口支持的信号波形。
在一些实施例中,所述零功耗无线帧通过零功耗无线接口发送。
在一些实施例中,所述第二信号是接入点设备或站点设备发送的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的零功耗设备1300可对应于本申请方法实施例中的零功耗设备,并且零功耗设备1300中的各个单元的上述和其它操作和/或功能分别为了实现图13至16所示方法中零功耗设备的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例提供的一种通信设备600示意性结构图。图21所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图21所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的零功耗设备,并且该通信设备600可以实现本申请实施例的各个方法中由零功耗设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的接入点设备,并且该通信设备600可以实现本申请实施例的各个方法中由接入点设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
图22是本申请实施例的芯片的示意性结构图。图22所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图22所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的零功耗设备,并且该芯片可以实现本申请实施例的各个方法中由零功耗设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的接入点设备,并且该芯片可以实现本申请实施例的各个方法中由接入点设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图23是本申请实施例提供的一种通信系统900的示意性框图。如图23所示,该通信系统900包括零功耗设备910和通信设备920。
其中,该零功耗设备910可以用于实现上述方法中由零功耗实现的相应的功能,以及该通信设备 920可以用于实现上述方法中由接入点设备或第一设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的零功耗设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由零功耗设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的接入点设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由接入点设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的零功耗设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由零功耗设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的接入点设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由接入点设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的零功耗设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由零功耗设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的接入点设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由接入点设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种无线通信的方法,其特征在于,包括:
    接入点设备发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二部分信号包括以下中的至少一项:
    第二前导信号,头信号,数据信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二部分信号包括第一指示信息,所述第一指示信息用于指示所述第一部分信号的资源位置。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一部分信号的资源位置和所述第二部分信号的资源位置具有第一偏移量。
  5. 根据权利要求4所述的方法,其特征在于,所述第一偏移量是预定义的或所述接入点设备配置的。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二部分信号在时域上早于所述第一部分信号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一前导信号用于载波检测。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一前导信号采用传统802.11无线接口支持的信号波形。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第二部分信号采用零功耗无线接口支持的信号波形。
  10. 一种无线通信的方法,其特征在于,包括:
    零功耗设备通过零功耗无线接口接收第一信号中的第二部分信号,其中,所述第一信号包括第一部分信号和所述第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第一部分信号包括第一前导信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第二部分信号包括以下中的至少一项:
    第二前导信号,头信号,数据信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二部分信号包括第一指示信息,所述第一指示信息用于指示所述第一部分信号的资源位置。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第一部分信号的资源位置相对于所述第二部分信号的资源位置具有第一偏移量。
  14. 根据权利要求13所述的方法,其特征在于,所述第一偏移量是预定义的或接入点设备配置的。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,所述第二部分信号在时域上早于所述第一部分信号。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,所述第一前导信号用于载波检测。
  17. 根据权利要求10-16中任一项所述的方法,其特征在于,所述第一前导信号采用传统802.11无线接口支持的信号波形。
  18. 根据权利要求10-17中任一项所述的方法,其特征在于,所述第二部分信号采用零功耗无线接口支持的信号波形。
  19. 根据权利要求10-18中任一项所述的方法,其特征在于,所述第一信号是接入点设备发送的。
  20. 一种无线通信的方法,其特征在于,包括:
    第一设备发送第二信号,所述第二信号包括第三前导信号和载波信号,所述第二信号用于零功耗设备产生反向散射信号。
  21. 根据权利要求20所述的方法,其特征在于,所述第二信号包括第二指示信息,所述第二指示信息用于指示所述第三前导信号和所述载波信号在所述第二信号中的位置。
  22. 根据权利要求20或21所述的方法,其特征在于,所述反向散射信号包括第四前导信号和零功耗无线帧;或者,所述反向散射信号包括零功耗无线帧。
  23. 根据权利要求22所述的方法,其特征在于,所述第四前导信号是对所述第三前导信号进行反向散射得到的,所述零功耗无线帧是对所述载波信号进行反向散射得到的。
  24. 根据权利要求22或23所述的方法,其特征在于,所述零功耗无线帧包括以下信号中的至少一种:前导信号,头信号,数据信号。
  25. 根据权利要求20-24中任一项所述的方法,其特征在于,所述第三前导信号采用传统802.11 无线接口支持的信号波形。
  26. 根据权利要求22-24中任一项所述的方法,其特征在于,所述零功耗无线帧通过零功耗无线接口发送。
  27. 根据权利要求20-26中任一项所述的方法,其特征在于,所述第一设备为接入点设备或站点设备。
  28. 一种无线通信的方法,其特征在于,包括:
    零功耗设备接收第二信号,所述第二信号包括第三前导信号和载波信号;
    所述零功耗设备根据所述第二信号产生反向散射信号。
  29. 根据权利要求28所述的方法,其特征在于,所述第二信号包括第二指示信息,所述第二指示信息用于指示所述第三前导信号和所述载波信号在所述第二信号中的位置。
  30. 根据权利要求28或29所述的方法,其特征在于,所述反向散射信号包括第四前导信号和零功耗无线帧;或者,所述反向散射信号包括零功耗无线帧。
  31. 根据权利要求30所述的方法,其特征在于,所述第四前导信号是对所述第三前导信号进行反向散射得到的,所述零功耗无线帧是对所述载波信号进行反向散射得到的。
  32. 根据权利要求30或31所述的方法,其特征在于,所述零功耗无线帧包括以下信号中的至少一种:前导信号,头信号,数据信号。
  33. 根据权利要求30-32中任一项所述的方法,其特征在于,在所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽的情况下,所述反向散射信号包括零功耗无线帧;或者
    在所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽的情况下,所述反向散射信号包括第四前导信号和零功耗无线帧。
  34. 根据权利要求28-33中任一项所述的方法,其特征在于,所述方法还包括:
    所述零功耗设备根据所述第二信号所在的信道和所述反向散射信号所在的信道是否属于同一信道带宽,确定是否对所述第三前导信号进行反向散射。
  35. 根据权利要求34所述的方法,其特征在于,所述零功耗设备根据所述第二信号所在的信道和所述反向散射信号所在的信道是否属于同一信道带宽,确定是否对所述第三前导信号进行反向散射,包括:
    若所述第二信号所在的信道和所述反向散射信号所在的信道属于同一信道带宽,确定不对所述第三前导信号进行反向散射;或者
    若所述第二信号所在的信道和所述反向散射信号所在的信道不属于同一信道带宽,确定对所述第三前导信号进行反向散射。
  36. 根据权利要求28-35中任一项所述的方法,其特征在于,所述第三前导信号采用传统802.11无线接口支持的信号波形。
  37. 根据权利要求30-33中任一项所述的方法,其特征在于,所述零功耗无线帧通过零功耗无线接口发送。
  38. 根据权利要求28-37中任一项所述的方法,其特征在于,所述第二信号是接入点设备或站点设备发送的。
  39. 一种接入点设备,其特征在于,包括:
    通信单元,用于发送第一信号,所述第一信号包括第一部分信号和第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第二部分信号通过零功耗无线接口传输,其中,所述第一部分信号包括第一前导信号。
  40. 一种零功耗设备,其特征在于,包括:
    通信单元,用于通过零功耗无线接口接收第一信号中的第二部分信号,其中,所述第一信号包括第一部分信号和所述第二部分信号,所述第一部分信号通过传统802.11无线接口传输,所述第一部分信号包括第一前导信号。
  41. 一种通信设备,其特征在于,包括:
    通信单元,用于发送第二信号,所述第二信号包括第三前导信号和载波信号,所述第二信号用于零功耗设备产生反向散射信号。
  42. 一种零功耗设备,其特征在于,包括:
    通信单元,用于接收第二信号,所述第二信号包括第三前导信号和载波信号;
    处理单元,用于根据所述第二信号产生反向散射信号。
  43. 一种接入点设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方 法。
  44. 一种零功耗设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求10至19中任一项所述的方法。
  45. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求20至27中任一项所述的方法。
  46. 一种零功耗设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求28至38中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至9中任一项所述的方法,或如权利要求10至19中任一项所述的方法,或如权利要求20至27中任一项所述的方法,或如权利要求28至38中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法,或如权利要求10至19中任一项所述的方法,或如权利要求20至27中任一项所述的方法,或如权利要求28至38中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至9中任一项所述的方法,或如权利要求10至19中任一项所述的方法,或如权利要求20至27中任一项所述的方法,或如权利要求28至38中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法,或如权利要求10至19中任一项所述的方法,或如权利要求20至27中任一项所述的方法,或如权利要求28至38中任一项所述的方法。
PCT/CN2022/081025 2022-03-15 2022-03-15 无线通信的方法和设备 WO2023173300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081025 WO2023173300A1 (zh) 2022-03-15 2022-03-15 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081025 WO2023173300A1 (zh) 2022-03-15 2022-03-15 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023173300A1 true WO2023173300A1 (zh) 2023-09-21

Family

ID=88022071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081025 WO2023173300A1 (zh) 2022-03-15 2022-03-15 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2023173300A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003119A1 (en) * 2013-07-05 2015-01-08 Qualcomm Incorporated High efficiency wlan preamble structure
CN105379216A (zh) * 2013-04-15 2016-03-02 高通股份有限公司 用于多址wlan通信系统的后向兼容前置码格式的装置和方法
US20160142227A1 (en) * 2014-11-19 2016-05-19 Qinghua Li Systems and methods for carrier frequency offset estimation for long training fields
CN106059977A (zh) * 2016-05-22 2016-10-26 上海大学 一种正交频分复用无源光网络的同步帧与符号同步方法
CN108496094A (zh) * 2016-01-26 2018-09-04 华盛顿大学 包含单边带操作的实例的反向散射装置
CN111742527A (zh) * 2017-12-22 2020-10-02 瑞典爱立信有限公司 用于低功率反向散射操作的系统、网络节点、无线设备、方法和计算机程序

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105379216A (zh) * 2013-04-15 2016-03-02 高通股份有限公司 用于多址wlan通信系统的后向兼容前置码格式的装置和方法
WO2015003119A1 (en) * 2013-07-05 2015-01-08 Qualcomm Incorporated High efficiency wlan preamble structure
US20160142227A1 (en) * 2014-11-19 2016-05-19 Qinghua Li Systems and methods for carrier frequency offset estimation for long training fields
CN108496094A (zh) * 2016-01-26 2018-09-04 华盛顿大学 包含单边带操作的实例的反向散射装置
CN106059977A (zh) * 2016-05-22 2016-10-26 上海大学 一种正交频分复用无源光网络的同步帧与符号同步方法
CN111742527A (zh) * 2017-12-22 2020-10-02 瑞典爱立信有限公司 用于低功率反向散射操作的系统、网络节点、无线设备、方法和计算机程序

Similar Documents

Publication Publication Date Title
CN111630903B (zh) 网络发起的按需零能量寻呼方法及装置
US10142821B2 (en) Wireless communication between devices that use different wireless protocols
US20160301238A1 (en) Managing presence and long beacon extension pulses
US20180115952A1 (en) Physical layer design for wakeup radio
US20180184435A1 (en) Apparatus, system, and method for transitioning between wireless access points based on a received signal strength indicator value of a low-power wake-up packet
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023173300A1 (zh) 无线通信的方法和设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
CN118661457A (zh) 反向散射通信的方法及设备
GB2499445A (en) Inter device interference measurement and transmission power control (TPC) for devices operating in unlicensed frequency bands
CN117795860A (zh) 一种无线通信方法及装置、通信设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024098404A1 (zh) 无线通信的方法和设备
WO2024168586A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023193192A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931339

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024018487

Country of ref document: BR