WO2023168687A1 - 无线通信方法、终端设备及载波发送设备 - Google Patents

无线通信方法、终端设备及载波发送设备 Download PDF

Info

Publication number
WO2023168687A1
WO2023168687A1 PCT/CN2022/080323 CN2022080323W WO2023168687A1 WO 2023168687 A1 WO2023168687 A1 WO 2023168687A1 CN 2022080323 W CN2022080323 W CN 2022080323W WO 2023168687 A1 WO2023168687 A1 WO 2023168687A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
signal
frequency domain
carrier signal
backscattered
Prior art date
Application number
PCT/CN2022/080323
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/080323 priority Critical patent/WO2023168687A1/zh
Publication of WO2023168687A1 publication Critical patent/WO2023168687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method, terminal equipment, and carrier transmission equipment.
  • zero-power terminals are widely used in cellular communication systems, such as passive Internet of Things.
  • the use of unlicensed frequency bands is an important deployment in cellular communication systems.
  • the design of unlicensed spectrum should meet the Occupied Channel Bandwidth , OCB) related requirements, that is, the signal transmission bandwidth must occupy a certain preset proportion of the channel bandwidth. For example, the signal transmission bandwidth occupies 80% of the 5GHz frequency band or the signal transmission bandwidth occupies 70% of the 60GHz frequency band. So for zero-power terminals, how to make the backscattered signal meet the OCB requirements is an urgent technical problem to be solved in this application.
  • OCB Occupied Channel Bandwidth
  • Embodiments of the present application provide a wireless communication method, terminal equipment and carrier sending equipment. Considering that the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal, the terminal equipment does not need to judge whether the backscattered signal satisfies OCB requires that the carrier sending equipment only needs to reasonably set the frequency domain resources occupied by the carrier signal, that is, the bandwidth occupied by the carrier signal, so that the backscattered signal can meet the OCB requirements.
  • a wireless communication method including: receiving a carrier signal sent by a carrier sending device; sending a backscattered signal to the carrier sending device according to the carrier signal; wherein the frequency domain resource characteristics of the backscattered signal are consistent with the carrier signal. related to frequency domain resources.
  • a wireless communication method including: sending a carrier signal to a terminal device, so that the terminal device sends a backscatter signal to the carrier sending device according to the carrier signal; wherein the frequency domain resource characteristics of the backscatter signal are consistent with the carrier signal. It is related to the frequency domain resources of the signal.
  • a terminal device including: a communication unit, configured to: receive a carrier signal sent by a carrier sending device; send a backscattered signal to the carrier sending device according to the carrier signal; wherein the frequency domain resource of the backscattered signal The characteristics are related to the frequency domain resources of the carrier signal.
  • a carrier sending device including: a communication unit configured to send a carrier signal to a terminal device, so that the terminal device sends a backscattered signal to the carrier sending device according to the carrier signal; wherein the frequency of the backscattered signal is The domain resource characteristics are related to the frequency domain resources of the carrier signal.
  • a terminal device including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its implementations.
  • a carrier sending device including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and execute the method in the above second aspect or its respective implementations.
  • a seventh aspect provides an apparatus for implementing any one of the above first to second aspects or the method in each implementation thereof.
  • the device includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes the method in any one of the above-mentioned first to second aspects or implementations thereof. .
  • An eighth aspect provides a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the above-mentioned first to second aspects or implementations thereof.
  • a computer program product including computer program instructions.
  • the computer program instructions enable a computer to execute the method in any one of the above-mentioned first to second aspects or their respective implementations.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to second aspects or implementations thereof.
  • the terminal equipment since the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal, the terminal equipment does not need to judge whether the backscattered signal meets the OCB requirements.
  • the carrier sending equipment only needs to If the occupied frequency domain resources, that is, the bandwidth occupied by the carrier signal, are properly set, the backscattered signal can meet the OCB requirements, thereby reducing the power consumption of the terminal equipment.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the zero-power communication system provided by this application.
  • FIG. 3 is a schematic diagram of backscatter communication provided by this application.
  • Figure 4 is a schematic diagram of energy collection provided by an embodiment of the present application.
  • Figure 5 is a schematic circuit diagram of resistive load modulation provided by an embodiment of the present application.
  • Figure 6 is a flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the transmission of a carrier signal and a backscattered signal provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the transmission of another carrier signal and backscattered signal provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the comb structure of a carrier signal provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the transmission of yet another carrier signal and backscattered signal provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of transmission of yet another carrier signal and backscattered signal provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a terminal device 1200 provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a carrier sending device 1300 provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of the device according to the embodiment of the present application.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication system, zero-power communication system , cellular Internet of Things, cellular passive Internet of Things, or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • cellular Internet of Things is the development product of the combination of cellular mobile communication network and Internet of Things.
  • Cellular passive IoT also known as passive cellular IoT or passive IoT
  • passive terminals can communicate with other passive devices through network devices.
  • the source terminal communicates, or the passive terminal can communicate using Device to Device (D2D) communication, and the network device only needs to send a carrier signal, that is, an energy supply signal, to supply energy to the passive terminal.
  • D2D Device to Device
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system 100 may include a carrier sending device 110, which may be a device that communicates with a terminal device 120 (also known as a communication terminal or terminal).
  • the carrier sending device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one carrier sending device and two terminal devices.
  • the communication system 100 may include multiple carrier sending devices and other numbers of terminal devices may be included within the coverage of each carrier sending device. , the embodiment of the present application does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the communication device may include a carrier sending device 110 and a terminal device 120 with communication functions.
  • the carrier sending device 110 and the terminal device 120 may be the specific devices described above, which are not included here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the carrier sending device may be a network device, which may be a device used to communicate with a mobile device, and the carrier sending device may be an access point in a WLAN (Access Point, AP), a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB), or relay stations or access points, or vehicle-mounted devices, wearable devices, network devices (gNB) in NR networks or network devices in future evolved PLMN networks, etc.
  • the carrier sending device may also be a terminal device in a cellular network, a station (Station, STA) in a WLAN, or any other device with a carrier sending function.
  • network equipment provides services for a cell
  • terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment (for example, base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell (Pico) Cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment may also be called user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, or zero-power terminals, etc.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the terminal device requires other equipment, such as a carrier sending device, to supply energy to it. Therefore, in the embodiment of the present application, the terminal device can be a zero-power terminal, and of course it can also be other devices that need to be powered. Any terminal equipment, this application does not limit this.
  • the terminal device mainly supplies energy through the carrier sending device.
  • the following will describe the relevant technologies of zero-power communication technology:
  • zero-power terminals can be divided into the following types:
  • Passive zero-power terminals do not need to have built-in batteries.
  • the passive zero-power terminal When the passive zero-power terminal is close to the carrier sending device, the passive zero-power terminal is within the near field range formed by the antenna radiation of the carrier sending device. Therefore, the passive zero-power terminal
  • the antenna of the consumption terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power consumption chip circuit of the passive zero-power consumption terminal to realize the signal demodulation of the forward link and the signal modulation of the backscatter link.
  • the passive zero-power terminal uses backscatter implementation for signal transmission.
  • passive zero-power terminals do not require low noise amplifier (LNA), power amplifier (Power Amplifier, PA), crystal oscillator, analog-digital Analog-to-Digital Converter (ADC) and other devices, so passive zero-power terminals have many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low noise amplifier
  • PA power amplifier
  • ADC analog-digital Analog-to-Digital Converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use a radio frequency (Radio Frequency, RF) energy collection module to collect radio energy and store the collected energy in an energy storage unit, such as a capacitor. After the energy storage unit obtains energy, it can drive the low-power chip circuit of the semi-passive zero-power terminal to achieve demodulation of the forward link signal and signal modulation of the backscatter link.
  • RF Radio Frequency
  • semi-passive zero-power terminals do not need a built-in battery to drive low-power chip circuits, although semi-passive zero-power terminals have energy storage units Energy storage is performed, but the energy still comes from the radio energy collected by the RF energy collection module. Therefore, the semi-passive zero-power terminal is also a true zero-power terminal.
  • semi-passive zero-power terminals inherit many advantages of passive zero-power terminals. Therefore, they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals.
  • This type of terminal can have a built-in battery. The battery is used to drive the low-power chip circuit of the zero-power terminal to realize the decoding of forward link signals. Tuning, and signal modulation of backscatter links. But for backscatter links, this type of terminal can use backscatter implementation to transmit signals. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the backscatter link does not need to consume the power of the terminal itself, but uses the backscattering method.
  • the built-in battery of the active zero-power terminal can supply power to the low-power chip circuit to increase the reading and writing distance of the active zero-power terminal and improve the reliability of communication. Therefore, it can be applied in some scenarios that have relatively high requirements on communication distance, read latency, etc.
  • Zero-power communication uses energy harvesting and backscatter communication technology.
  • a zero-power communication network consists of a carrier transmitting device and a zero-power terminal, as shown in Figure 2.
  • the zero-power terminal here can be the above-mentioned semi-passive zero-power terminal.
  • the carrier sending device is used to send carrier signals, downlink communication signals to the zero-power terminal and receive backscattered signals from the zero-power terminal.
  • the zero-power terminal may include an RF energy collection module, a backscatter communication module and a low-power chip circuit.
  • the zero-power terminal can also have a memory to store some basic information (such as item identification, etc.), and can also include sensors to obtain sensing data such as ambient temperature and ambient humidity.
  • the carrier signal is used to supply energy to the zero-power terminal to trigger the operation of the zero-power terminal. Therefore, the carrier signal is also called an energy supply signal or a trigger signal.
  • the key technologies for zero-power communication mainly include wireless radio frequency energy harvesting and backscatter communication.
  • the zero-power terminal receives the carrier signal sent by the carrier sending device, collects energy through the RF energy collection module, and then supplies energy to the low-power chip circuit, modulates the carrier signal, and performs backscattering.
  • the main features are as follows:
  • the zero-power terminal does not actively transmit signals and achieves backscatter communication by modulating the carrier signal
  • Zero-power terminals do not rely on traditional active power amplifier transmitters and use low-power chip circuits to greatly reduce hardware complexity;
  • zero-power terminals can use RF energy collection modules to collect space electromagnetic wave energy through electromagnetic induction, thereby driving low-power chip circuits, sensors, etc.
  • Load modulation is a method often used by zero-power terminals to transmit data to carrier sending devices. Load modulation adjusts the electrical parameters of the zero-power terminal oscillation circuit according to the rhythm of the data flow, so that the size and phase of the zero-power terminal impedance change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, called the load modulation resistor, which is turned on and off according to the clock of the data flow.
  • the on and off of the switch S is controlled by binary data encoding.
  • the circuit principle of resistive load modulation is shown in Figure 5.
  • a capacitor is connected in parallel with the load, replacing the load modulation resistor controlled by a binary data encoding in Figure 5.
  • Radio frequency identification systems usually use one of the following encoding methods: Non Return Zero (NRZ) encoding, Manchester encoding, Unipolar RZ encoding, Differential Biphase ( DBP) coding, Miller coding and spread coding. In layman's terms, different pulse signals are used to represent 0 and 1.
  • NRZ Non Return Zero
  • DBP Differential Biphase
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communications. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government. In order to allow various communication systems that use unlicensed spectrum for wireless communications to coexist amicably on this spectrum, some countries or regions have stipulated requirements that must be met when using unlicensed spectrum. For example, in Europe, communication equipment follows the "Listen-Before-Talk" (LBT) principle, that is, communication equipment needs to listen to the channel before sending signals on the channel of the unlicensed spectrum.
  • LBT Listen-Before-Talk
  • the communication device can send signals only when the channel listening result is that the channel is idle; if the channel listening result of the communication device on a channel in the unlicensed spectrum is that the channel is busy, the communication device cannot send signals. And in order to ensure fairness, in one transmission, the duration of signal transmission by communication equipment using the license-free spectrum channel cannot exceed the Maximum Channel Occupation Time (MCOT).
  • MCOT Maximum Channel Occupation Time
  • the design of unlicensed spectrum should meet the relevant requirements of OCB, that is, signal
  • OCB that is, signal
  • the transmission bandwidth must occupy a certain preset proportion of the channel bandwidth.
  • the signal transmission bandwidth occupies 80% of the 5GHz frequency band or the signal transmission bandwidth occupies 70% of the 60GHz frequency band. So for zero-power terminals, how to make the backscattered signal meet the OCB requirements is an urgent technical problem to be solved in this application.
  • the signal transmission bandwidth is also referred to as the spectrum bandwidth occupied by the signal.
  • Channel bandwidth is also called system channel bandwidth.
  • subcarrier spacing is allowed within the signal transmission bandwidth, that is to say, the above-mentioned channel transmission bandwidth is the channel transmission bandwidth formed between the lowest frequency point and the highest frequency point.
  • this application takes into account the relationship between the carrier signal and the backscattered signal, and based on the design of the frequency domain resources of the carrier signal, so that the backscattered signal meets the OCB requirements.
  • Figure 6 is a flow chart of a wireless communication method provided by an embodiment of the present application. As shown in Figure 6, the method includes the following steps:
  • the carrier sending device sends the carrier signal to the terminal device
  • S620 The terminal device sends a backscattered signal to the carrier sending device according to the carrier signal; wherein the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal.
  • the terminal device may or may not perform LBT before sending the backscatter signal.
  • the terminal device can regard the carrier signal and the backscattered signal as one signal. Therefore, the carrier sending device needs to perform LBT before sending the carrier signal, but for the terminal device, it does not need to perform LBT.
  • the terminal device can regard the carrier signal and the backscattered signal as different signals, but the backscattered signal can share the channel occupancy time (Channel Occupation Time, COT) obtained by the carrier sending device through LBT before sending the carrier signal.
  • FIG. 7 is a schematic diagram of the transmission of a carrier signal and a backscattered signal provided by an embodiment of the present application. As shown in Figure 7, the carrier sending device performs LBT. When the LBT is successful, the carrier sending device performs carrier signal transmission during the channel occupancy time. is sent while the terminal device backscatters the carrier signal.
  • the resources in the COT can also be shared with the terminal device for uplink transmission.
  • the channel access methods that the terminal device can use are Type2A channel access, Type2B channel access or Type2C channel access.
  • the terminal device in the Type2C channel access mode, can directly perform uplink transmission.
  • the start of the uplink transmission The gap size between the starting position and the end position of the previous uplink transmission needs to be less than or equal to 16 ⁇ s.
  • the length of this upstream transmission does not exceed 584 ⁇ s.
  • the terminal device when the terminal device sends the backscattered signal, it uses a channel access method similar to Type2C to directly transmit the backscattered signal. The difference is that since the backscattered signal relies on the transmission of the carrier signal, if the carrier signal is not interrupted, the transmission duration of the backscattered signal is not limited by the Type2C channel access method.
  • the terminal device can modulate the carrier signal and send the modulated signal to the carrier sending device in a backscattering manner. Since the terminal device sends the modulated signal in a backscattering manner, the modulation The backscattered signal is also called the backscattered signal.
  • the frequency domain resource characteristic of the backscattered signal may be the OCB of the backscattered signal, but is not limited to this.
  • the backscattered signal must meet the same OCB requirements as the carrier signal.
  • the OCB requirement for both is that the signal occupied bandwidth accounts for 80% of the channel bandwidth.
  • the signal bandwidth occupied by the carrier signal, the signal bandwidth occupied by the backscattered signal, and the channel bandwidth corresponding to the two signals can exist in the following situations, but are not limited to this:
  • the terminal equipment since the terminal equipment does not generate signals by itself, it generates backscattered signals by modulating and reflecting the carrier signal.
  • the carrier signal is usually modulated through some simple modulation, such as Amplitude Shift Keying (ASK) modulation.
  • ASK Amplitude Shift Keying
  • the essence of modulation is to change the amplitude of the signal to carry information.
  • the data rate of modulation is very low, so inversely
  • the signal bandwidth occupied by the scattering signal is the same or similar to the signal bandwidth occupied by the carrier signal, and the corresponding channel bandwidths of the two are also the same or similar.
  • the backscattered signal can be considered to also meet the OCB requirements.
  • the OCB requirement for the backscattered signal is that the signal transmission bandwidth occupies 80% of the channel bandwidth, then as long as the corresponding carrier signal occupies 80% of the channel bandwidth.
  • Case 2 The channel bandwidth corresponding to the backscattered signal and the carrier signal may be different, and the signal bandwidth occupied by the carrier signal and the signal bandwidth occupied by the backscattered signal may be the same or similar.
  • the backscattered signal can be considered to also meet the OCB requirements.
  • the frequency domain resources of the carrier signal are related to the bandwidth of the channel where the backscattered signal is located.
  • Figure 8 is a schematic diagram of the transmission of another carrier signal and backscattered signal provided by an embodiment of the present application.
  • the channel bandwidth of the carrier signal is 20 MHz
  • the channel of the backscattered signal The bandwidth is 1MHz, where the shaded part indicates the bandwidth occupied by the signal.
  • the bandwidth of the carrier signal only needs to meet the OCB under the 1MHz channel bandwidth.
  • the terminal device considering that the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal, the terminal device does not need to judge whether the backscattered signal meets the OCB requirements.
  • the carrier sending device only needs to If the occupied frequency domain resources, that is, the bandwidth occupied by the carrier signal, are set appropriately, the backscattered signal can meet the OCB requirements, thereby reducing the power consumption of the terminal equipment.
  • the frequency domain resource where the carrier signal is located may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the frequency domain resource where the carrier signal is located may be a continuous frequency domain resource or a discontinuous frequency domain resource, and this application does not limit this.
  • the carrier signal itself is also a resource overhead. If it occupies a large bandwidth, it is a waste of frequency domain resources. Based on this, the above carrier signal can be a discontinuous frequency domain resource. , for example, it can be a frequency domain resource with a comb-tooth structure.
  • Figure 9 is a schematic diagram of a comb-tooth structure of a carrier signal provided by an embodiment of the present application.
  • the carrier signal is a comb-tooth structure, and the shaded portion of the comb-tooth structure represents the comb structure used to transmit the carrier.
  • the sub-band of the signal, the blank part of the comb structure represents the sub-band that is not used to transmit the carrier signal, and the signal bandwidth occupied by the carrier signal occupies 80% of the channel bandwidth, and the OCB requirement is that the signal bandwidth occupies 80% of the channel bandwidth, therefore, the signal bandwidth occupies 80% of the channel bandwidth.
  • the carrier signal meets the OCB requirements.
  • the backscattered signal is the same or similar to the signal bandwidth occupied by the carrier signal, and the corresponding channel bandwidths of the two are also the same or similar, it can be seen that the backscattered signal also satisfies the OCB Require.
  • the resource overhead of the carrier sending device is reduced.
  • the terminal device may have one or more backscatter channels, which may be used to transmit retroreflected signals.
  • the end device has a backscatter channel.
  • the terminal device may have one or more zero-power consumption modules.
  • the above-mentioned carrier signal may include N carrier signals, where N is a positive integer, that is, the above-mentioned carrier signal is N carrier signals; the backscatter signal includes M backscattered signals, M is a positive integer.
  • the N carrier signals may be N parallel signals.
  • the subcarrier spacing may be predefined, indicated by the carrier sending device or indicated by a third-party device, and this application does not limit this.
  • N is equal to M, or N is less than M, or N is greater than M. This application does not limit this.
  • N carrier signals N carrier signals
  • M backscattered signals N carrier signals and M backscattered signals.
  • N when N equals M, there may be a one-to-one correspondence between N carrier signals and M backscattered signals, but is not limited to this.
  • N when N is less than M, there may be a one-to-many correspondence between N carrier signals and M backscattered signals, but is not limited to this.
  • N when N is greater than M, there may be a many-to-one correspondence between N carrier signals and M backscattered signals, but is not limited to this.
  • N carrier signals and M backscattered signals is predefined, indicated by the carrier sending device or indicated by a third-party device, and this application does not limit this.
  • the multiple backscattered signals carry the same information, that is, the multiple backscattered signals are exactly the same.
  • the M backscattered signals are multiple backscattered signals
  • at least two backscattered signals among the multiple backscattered signals carry different information.
  • one of the three backscattered signals carries the identity of the terminal device, and the other two backscattered signals both carry data 1.
  • the frequency domain resource where each carrier signal is located may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the frequency domain resources where the six carrier signals are located are all continuous frequency domain resources.
  • the frequency domain resource where the carrier signal is located may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the frequency domain resource where the carrier signal is located is a non-associated frequency domain resource.
  • the frequency domain resources of the carrier signal are predefined, indicated by the carrier sending device or indicated by a third-party device, but are not limited to this.
  • the terminal device can send the capability information of the terminal device to the carrier sending device, where the frequency domain resources of the carrier signal are related to the capability information of the terminal device.
  • the carrier sending device can determine the frequency domain resource of the carrier signal based on the capability information of the terminal device.
  • the carrier sending device may determine the frequency domain resources of the carrier signal based on the capability information of the terminal device and the frequency domain resource characteristics of the backscattered signal.
  • the capability information of the terminal device includes: the number of backscattering channels that the terminal device has, but is not limited to this.
  • the carrier sending device can set the carrier signal into a comb structure as shown in Figure 9, and set the bandwidth of the carrier signal so that the backscattering signal satisfies OCB requirements.
  • the carrier sending device can set the carrier signal to a multi-channel signal as shown in Figure 10, and set the bandwidth of the carrier signal so that the backscattering signal Meet OCB requirements.
  • the carrier sending device may send the carrier signal sending mode to the terminal device, and the terminal device determines the backscatter signal sending mode according to the carrier signal sending mode.
  • the carrier signal may be transmitted in a comb-tooth structure, or may occupy continuous frequency domain resources, or in a multi-channel manner, which is not limited by this application.
  • the backscattering signal may be sent through one backscattering channel, or multiple backscattering signals may be sent through multiple backscattering channels, which is not limited in this application.
  • the terminal device can send a backscattered signal through a backscattering channel. If the carrier sending device indicates to the terminal device that the sending mode of its carrier signal is a multi-channel sending mode, then the terminal device can send multiple backscattered signals through multiple backscattering channels.
  • the frequency domain resource where the carrier signal is located can be a continuous or discontinuous frequency domain resource, and the carrier signal can also be a multi-channel signal to achieve flexible transmission of the carrier signal.
  • the frequency domain resource where the carrier signal is located is a discontinuous frequency domain resource, or the carrier signal is a multi-channel signal, and there is a certain sub-carrier interval between the multi-channel signals, frequency domain resources can be saved.
  • FIG 12 is a schematic diagram of a terminal device 1200 provided by an embodiment of the present application.
  • the terminal device 1200 includes: a communication unit 1210, configured to: receive a carrier signal sent by a carrier sending device; and send backscattering to the carrier sending device according to the carrier signal. signal; among them, the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal.
  • the frequency domain resource where the carrier signal is located is discontinuous.
  • the carrier signal is a signal with a frequency domain comb structure.
  • the carrier signal includes N carrier signals, N is a positive integer;
  • the backscattered signal includes M backscattered signals, M is a positive integer.
  • N carrier signals N carrier signals
  • M backscattered signals N carrier signals and M backscattered signals.
  • the corresponding relationship between the N carrier signals and the M backscatter signals is predefined, indicated by the carrier sending device or indicated by a third-party device.
  • the M backscattered signals are multiple backscattered signals
  • the multiple backscattered signals carry the same information.
  • the M backscattered signals are multiple backscattered signals
  • at least two backscattered signals among the multiple backscattered signals carry different information.
  • the frequency domain resources of the carrier signal are predefined, indicated by the carrier sending device or indicated by a third-party device.
  • the communication unit 1210 is also configured to: send the capability information of the terminal device to the carrier sending device; wherein the frequency domain resources of the carrier signal are related to the capability information of the terminal device.
  • the capability information of the terminal device includes: the number of backscattering channels that the terminal device has.
  • the frequency domain resource of the carrier signal is related to the bandwidth of the channel where the backscattered signal is located.
  • the frequency domain resource characteristic is OCB.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input and output interface of a communication chip or a system on a chip.
  • terminal device 1200 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 1200 are respectively intended to implement the terminal in the method embodiment.
  • the corresponding process of the equipment will not be described here for the sake of simplicity.
  • Figure 13 is a schematic diagram of a carrier sending device 1300 provided by an embodiment of the present application.
  • the terminal device 1300 includes: a communication unit 1310, used to send a carrier signal to the terminal device, so that the terminal device sends a response to the carrier sending device according to the carrier signal.
  • Backscattered signal wherein, the frequency domain resource characteristics of the backscattered signal are related to the frequency domain resources of the carrier signal.
  • the frequency domain resource where the carrier signal is located is discontinuous.
  • the carrier signal is a signal with a frequency domain comb structure.
  • the carrier signal includes N carrier signals, N is a positive integer;
  • the backscattered signal includes M backscattered signals, M is a positive integer.
  • N carrier signals N carrier signals
  • M backscattered signals N carrier signals and M backscattered signals.
  • the corresponding relationship between the N carrier signals and the M backscatter signals is predefined, indicated by the carrier sending device or indicated by a third-party device.
  • the M backscattered signals are multiple backscattered signals
  • the multiple backscattered signals carry the same information.
  • the M backscattered signals are multiple backscattered signals
  • at least two backscattered signals among the multiple backscattered signals carry different information.
  • the frequency domain resources of the carrier signal are predefined, indicated by the carrier sending device or indicated by a third-party device.
  • the communication unit 1310 is also configured to: receive capability information of the terminal device; wherein the frequency domain resource of the carrier signal is related to the capability information of the terminal device.
  • the capability information of the terminal device includes: the number of backscattering channels that the terminal device has.
  • the frequency domain resource of the carrier signal is related to the bandwidth of the channel where the backscattered signal is located.
  • the frequency domain resource characteristic is OCB.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input and output interface of a communication chip or a system on a chip.
  • the carrier sending device 1300 may correspond to the carrier sending device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the carrier sending device 1300 are respectively to implement the method implementation.
  • the corresponding process of the carrier sending device in the example will not be described again for the sake of simplicity.
  • Figure 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 shown in Figure 14 includes a processor 1410.
  • the processor 1410 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1400 may further include a memory 1420.
  • the processor 1410 can call and run the computer program from the memory 1420 to implement the method in the embodiment of the present application.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated into the processor 1410.
  • the communication device 1400 may also include a transceiver 1430, and the processor 1410 may control the transceiver 1430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1430 may include a transmitter and a receiver.
  • the transceiver 1430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1400 can be specifically the carrier sending device in the embodiment of the present application, and the communication device 1400 can implement the corresponding processes implemented by the carrier sending device in the various methods of the embodiment of the present application. For the sake of brevity, they are not mentioned here. Again.
  • the communication device 1400 may specifically be a terminal device according to the embodiment of the present application, and the communication device 1400 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • Figure 15 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the device 1500 shown in Figure 15 includes a processor 1510.
  • the processor 1510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the device 1500 may also include a memory 1520.
  • the processor 1510 can call and run the computer program from the memory 1520 to implement the method in the embodiment of the present application.
  • the memory 1520 may be a separate device independent of the processor 1510, or may be integrated into the processor 1510.
  • the device 1500 may also include an input interface 1530.
  • the processor 1510 can control the input interface 1530 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the device 1500 may also include an output interface 1540.
  • the processor 1510 can control the output interface 1540 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the device can be applied to the carrier sending device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the carrier sending device in the various methods of the embodiment of the present application.
  • the device can implement the corresponding processes implemented by the carrier sending device in the various methods of the embodiment of the present application.
  • details will not be repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the details will not be described again.
  • the device mentioned in the embodiment of this application may also be a chip.
  • it can be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip or a system-on-a-chip, etc.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the carrier sending device or the base station in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the carrier sending device or the base station in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the carrier sending device or the base station in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the carrier sending device or the base station in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the carrier sending device or the base station in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the carrier sending device or the base station in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备及载波发送设备,该方法包括:接收载波发送设备发送的载波信号;根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。由于反向散射信号的频域资源特性与载波信号的频域资源有关,终端设备无需自己判断反向散射信号是否满足OCB要求,载波发送设备只需要对载波信号所占用的频域资源,即载波信号占用的带宽进行合理地设置,即可以使得反向散射信号满足OCB要求,从而可以降低终端设备的功耗。

Description

无线通信方法、终端设备及载波发送设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备及载波发送设备。
背景技术
零功耗终端由于其低成本、低复杂度、低功耗的特点,在蜂窝通信系统中有广泛的应用,如无源物联网。而免授权频段的使用是蜂窝通信系统中的一个重要部署。
为了避免对在免授权频谱信道上传输的信号造成子带干扰以及提高通信设备在对免授权频谱的信道进行检测时的检测准确性,对免授权频谱的设计应该满足信道占用带宽(Occupied Channel Bandwidth,OCB)的相关要求,即信号传输带宽要占用信道带宽的一定预设比例。例如,信号传输带宽占用5GHz频段80%或者信号传输带宽占用60GHz频段70%。那么对于零功耗终端而言,如何使得反向散射信号满足OCB要求是本申请亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备及载波发送设备,考虑到反向散射信号的频域资源特性与载波信号的频域资源有关,终端设备无需自己判断反向散射信号是否满足OCB要求,载波发送设备只需要对载波信号所占用的频域资源,即载波信号占用的带宽进行合理地设置,即可以使得反向散射信号满足OCB要求。
第一方面,提供一种无线通信方法,包括:接收载波发送设备发送的载波信号;根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
第二方面,提供一种无线通信方法,包括:向终端设备发送载波信号,以使终端设备根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
第三方面,提供一种终端设备,包括:通信单元,用于:接收载波发送设备发送的载波信号;根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
第四方面,提供一种载波发送设备,包括:通信单元,用于向终端设备发送载波信号,以使终端设备根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种载波发送设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
通过本申请提供的技术方案,由于反向散射信号的频域资源特性与载波信号的频域资源有关,终端设备无需自己判断反向散射信号是否满足OCB要求,载波发送设备只需要对载波信号所占用的频域资源,即载波信号占用的带宽进行合理地设置,即可以使得反向散射信号满足OCB要求,从而可以降低终端设备的功耗。
附图说明
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请提供的零功耗通信系统的示意图;
图3为本申请提供的反向散射通信原理图;
图4为本申请实施例提供的能量采集原理图;
图5为本申请实施例提供的电阻负载调制的电路原理图;
图6为本申请实施例提供的一种无线通信方法的流程图;
图7为本申请实施例提供的一种载波信号和反向散射信号的传输示意图;
图8为本申请实施例提供的另一种载波信号和反向散射信号的传输示意图;
图9为本申请实施例提供的一种载波信号的梳齿结构示意图;
图10为本申请实施例提供的再一种载波信号和反向散射信号的传输示意图;
图11为本申请实施例提供的又一种载波信号和反向散射信号的传输示意图;
图12为本申请实施例提供的一种终端设备1200的示意图;
图13为本申请实施例提供的一种载波发送设备1300的示意图;
图14是本申请实施例提供的一种通信设备1400示意性结构图;
图15是本申请实施例的装置的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网、蜂窝无源物联网、或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网或无源物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括载波发送设备110,载波发送设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。载波发送设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个载波发送设备和两个终端设备,可选地,该通信系统100可以包括多个载波发送设备并且每个载波发送设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的载波发送设备110和终端设备120,载波发送设备110 和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和载波发送设备描述了各个实施例,其中:载波发送设备可以是网络设备,其可以是用于与移动设备通信的设备,载波发送设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。载波发送设备也可以是蜂窝网络中的终端设备、WLAN中的站点(Station,STA)还可以是其他任何具有载波发送功能的设备。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗终端等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,终端设备需要其他设备,如载波发送设备为其供能,因此,在本申请实施例中,终端设备可以是零功耗终端,当然也可以是其他需要被供能的任何终端设备,本申请对此不做限制。
示例性地,在零功耗通信系统中,终端设备主要通过载波发送设备为其供能,下面将对零功耗通信技术的相关技术进行说明:
一、零功耗终端的分类
基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
(1)无源零功耗终端
无源零功耗终端无需内装电池,当无源零功耗终端接近载波发送设备时,该无源零功耗终端处于载波发送设备天线辐射形成的近场范围内,因此,该无源零功耗终端的天线通过电磁感应产生感应电流,感应电流驱动该无源零功耗终端的低功耗芯片电路,以实现对前向链路的信号解调工作以及反向散射链路的信号调制等工作。对于反向散射链路,该无源零功耗终端使用反向散射实现方式进行信号的传输。
由此可知,无论是针对前向链路还是反向散射链路,无源零功耗终端都不需要内置电池来驱动低功耗芯片电路,这类终端是一种真正意义的零功耗终端。
此外,无源零功耗终端的射频电路以及基带电路都非常简单,例如无源零功耗终端不需要低噪放(Low Noise Amplifier,LNA)、功放(Power Amplifier,PA)、晶振、模数转换器(Analog-to-Digital Converter,ADC)等器件,因此无源零功耗终端具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(2)半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用无线射频(Radio Frequency,RF)能量采集模块采集无线电能量,同时将采集的能量存储于一个储能单元,如电容中。储能单元获得能量后,可以驱动半无源零功耗终端的低功耗芯片电路,以实现对前向链路信号的解调以及反向散射链路的信号 调制等工作。对于反向散射链路,半无源零功耗终端使用反向散射实现方式进行信号的传输。
由此可知,无论是针对前向链路还是反向散射链路,半无源零功耗终端都不需要内置电池来驱动低功耗芯片电路,虽然半无源零功耗终端存在储能单元进行储能,但其能量还是来源于RF能量采集模块采集的无线电能量,因此半无源零功耗终端也是一种真正意义的零功耗终端。
此外,半无源零功耗终端继承了无源零功耗终端的诸多优点,因此,具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(3)有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池,电池用于驱动零功耗终端的低功耗芯片电路,实现对前向链路信号的解调,以及反向散射链路的信号调制等工作。但对于反向散射链路,该类终端可以使用反向散射实现方式进行信号的传输。因此,该类终端的零功耗主要体现于反向散射链路的信号传输不需要消耗该类终端自身功率,而是使用反向散射的方式。
有源零功耗终端内置的电池可以向低功耗芯片电路供电,以增加有源零功耗终端的读写距离,提高通信的可靠性。因此其可以在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
二、零功耗通信技术原理
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由载波发送设备和零功耗终端构成,如图2所示,这里的零功耗终端可以是上述的半无源零功耗终端。其中载波发送设备用于向该零功耗终端发送载波信号,下行通信信号以及接收零功耗终端的反向散射信号。该零功耗终端可以包括RF能量采集模块,反向散射通信模块以及低功耗芯片电路。此外,零功耗终端还可具备一个存储器用于存储一些基本信息(如物品标识等),还可以包括传感器,用于获取环境温度、环境湿度等传感数据。
在本申请实施例中,载波信号用于向零功耗终端供能,以触发零功耗终端工作,因此,该载波信号也被称为供能信号或触发信号。
零功耗通信的关键技术主要包括无线射频能量采集和反向散射通信。
如图3所示,零功耗终端接收载波发送设备发送的载波信号,通过RF能量采集模块采集能量,进而对低功耗芯片电路进行供能,对载波信号进行调制,并进行反向散射,主要特征如下:
(1)零功耗终端不主动发射信号,通过调制载波信号实现反向散射通信;
(2)零功耗终端不依赖传统的有源功放发射机,同时使用低功耗芯片电路,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
如图4所示,零功耗终端可以利用RF能量采集模块,通过电磁感应实现对空间电磁波能量的采集,进而实现对低功耗芯片电路、传感器等的驱动。
负载调制是零功耗终端经常使用的向载波发送设备传输数据的方法。负载调制通过对零功耗终端振荡回路的电参数按照数据流的节拍进行调节,使零功耗终端阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。
在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理如图5所示。
在电容负载调制中,负载并联一个电容,取代了图5中由二进制数据编码控制的负载调制电阻。
零功耗终端传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Non Return Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
应理解的是,本申请实施例可以应用于免授权频谱。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的要求。例如,在欧洲地区,通信设备遵循“先听后说”(Listen-Before-Talk,LBT)原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。为了避免对在免授权频谱信道上传输的信号造成子带干扰以及提高通信设备在对免授权频谱的信道进行检测时的检测准确性,对免授权频谱 的设计应该满足OCB的相关要求,即信号传输带宽要占用信道带宽的一定预设比例。例如,信号传输带宽占用5GHz频段80%或者信号传输带宽占用60GHz频段70%。那么对于零功耗终端而言,如何使得反向散射信号满足OCB要求是本申请亟待解决的技术问题。
应理解的是,在本申请中,信号传输带宽也被称为信号占用的频谱带宽。信道带宽也被称为系统信道带宽。
应理解的是,在本申请中允许信号传输带宽内存在子载波间隔,也就是说,上述信道传输带宽是最低频点与最高频点之间所形成的信道传输带宽。
为了解决上述技术问题,本申请考虑到载波信号与反向散射信号之间的关系,基于对载波信号的频域资源的设计,使得反向散射信号满足OCB要求。
下面将对本申请技术方案进行详细阐述:
图6为本申请实施例提供的一种无线通信方法的流程图,如图6所示,该方法包括如下步骤:
S610:载波发送设备向终端设备发送载波信号;
S620:终端设备根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
可选地,该终端设备在发送反向散射信号之前,可以进行LBT,也可以不进行LBT。
示例性地,终端设备可以将载波信号和反向散射信号看作是一个信号,因此,载波发送设备在发送载波信号之前需要进行LBT,但是对于终端设备而言,其无需再进行LBT。或者,终端设备可以将载波信号和反向散射信号看作是不同的信号,但是反向散射信号可以共享载波发送设备在发送载波信号之前通过LBT获得的信道占用时间(Channel Occupation Time,COT),图7为本申请实施例提供的一种载波信号和反向散射信号的传输示意图,如图7所示,载波发送设备进行LBT,当LBT成功时,载波发送设备在信道占用时间进行载波信号的发送,同时终端设备对载波信号进行反向散射。
应理解的是,在NR-U技术中,当载波发送设备发起LBT之后,除了可以将COT内的资源用于下行传输,还可以将该COT内的资源共享给终端设备进行上行传输。其中,终端设备可以使用的信道接入方式为Type2A信道接入、Type2B信道接入或Type2C信道接入,其中,在Type2C信道接入方式下,终端设备可以直接进行上行传输,该上行传输的起始位置距离上一次上行传输的结束位置之间的空隙大小需要小于或等于16μs。该上行传输的长度不超过584μs。在本申请中,终端设备在发送反向散射信号时,采用类似于Type2C信道接入方式,直接进行反向散射信号的传输。不同的是,由于反向散射信号依赖于载波信号的发送,如果载波信号没有中断,反向散射的传输时长可以不受Type2C信道接入方式的限制。
应理解的是,终端设备可以对载波信号进行调制,并将调制后的信号以反向散射方式发送给载波发送设备,由于终端设备采用反向散射方式发送该调制后的信号,因此,该调制后后的信号也被称为反向散射信号。
可选地,反向散射信号的频域资源特性可以是反向散射信号的OCB,但不限于此。
可选地,反向散射信号与载波信号所要满足的OCB要求相同。例如:二者的OCB要求均是信号占用带宽占信道带宽的80%。
可选地,载波信号占用的信号带宽、反向散射信号占用的信号带宽以及两种信号分别对应的信道带宽可以存在如下几种情况,但不限于此:
情况一,由于终端设备自己不产生信号,而是通过对载波信号进行调制和反射,产生反向散射信号。而对载波信号的调制通常通过一些简单的调制,如幅移键控(Amplitude Shift Keying,ASK)调制,调制的实质是改变信号的幅度来携带信息,通常调制的数据速率很低,因此,反向散射信号占用的信号带宽与载波信号占用的信号带宽是相同或相近的,并且二者对应的信道带宽也是相同或相近的。在这种情况下,如果载波信号满足OCB要求,那么可以认为反向散射信号也满足OCB要求。
示例性地,假设对于反向散射信号的OCB要求是:信号传输带宽要占用信道带宽的80%,那么只要对应的载波信号占用信道带宽的80%即可。
情况二,反向散射信号与载波信号对应的信道带宽可以不同,载波信号占用的信号带宽与反向散射信号占用的信号带宽可以相同或者相近。在这种情况下,只要载波信号在反向散射信号对应的信道上满足OCB要求,就可以认为反向散射信号也满足OCB要求。换句话讲,在这种情况下,载波信号的频域资源与反向散射信号所在的信道的带宽有关。
示例性地,图8为本申请实施例提供的另一种载波信号和反向散射信号的传输示意图,如图8所示,假设载波信号所在的信道带宽为20MHz,反向散射信号所在的信道带宽为1MHz,其中,阴影部分表示信号占用带宽,为了使得反向散射信号满足OCB要求,载波信号的带宽只需要满足在该1MHz信道带宽下的OCB即可。
综上,在本申请中,考虑到反向散射信号的频域资源特性与载波信号的频域资源有关,终端设备无需自己判断反向散射信号是否满足OCB要求,载波发送设备只需要对载波信号所占用的频域资源,即载波信号占用的带宽进行合理地设置,即可以使得反向散射信号满足OCB要求,从而可以降低终端设备的功耗。
可选地,载波信号所在的频域资源可以是连续的频域资源,也可以是非连续的频域资源。换句话讲,无论在上述情况一还是在上述情况二下,载波信号所在的频域资源可以是连续的频域资源,也可以是非连续的频域资源,本申请对此不做限制。
应理解的是,对于载波发送设备而言,载波信号本身也是一种资源开销,如果其占用较大的带宽对于频域资源是一种浪费,基于此,上述载波信号可以是非连续的频域资源,例如可以是梳齿结构的频域资源。
示例性地,图9为本申请实施例提供的一种载波信号的梳齿结构示意图,如图9所示,该载波信号是一种梳齿结构,梳齿结构的阴影部分表示用于传输载波信号的子带,梳齿结构的空白部分表示不用于传输载波信号的子带,而该载波信号占用的信号带宽占用信道带宽80%,而OCB要求就是信号带宽占用信道带宽80%,因此,该载波信号满足OCB要求,考虑到反向散射信号占用的信号带宽与载波信号占用的信号带宽是相同或相近的,并且二者对应的信道带宽也是相同或相近的,可知反向散射信号也满足OCB要求。此外,由于载波信号的梳齿结构的设置,降低了载波发送设备的资源开销。
可选地,终端设备可以具有一个或者多个反向散射通道,该反向散射通道可以用于传输反向反射信号。例如,在图9所示示例中,终端设备具有一个反向散射通道。也可以理解为终端设备可以具有一个或多个零功耗模块。
可选地,考虑到终端设备可以具有一个或多个反向散射通道,那么上述载波信号可以包括N个载波信号,N为正整数,即上述载波信号是N个载波信号;反向散射信号包括M个反向散射信号,M为正整数。
可选地,N个载波信号之间具有一定的子载波间隔。
可选地,N个载波信号可以是N个并行信号。
可选地,该子载波间隔可以是预定义的、载波发送设备指示的或第三方设备指示的,本申请对此不做限制。
可选地,N等于M,或者N小于M,又或者N大于M,本申请对此不做限制。
可选地,N个载波信号与M个反向散射信号之间具有对应关系。
示例性地,如图10所示,当N等于M时,N个载波信号与M个反向散射信号之间可以是一一对应关系,但不限于此。如图11所示,当N小于M时,N个载波信号与M个反向散射信号之间可以是一对多对应关系,但不限于此。如图9所示,当N大于M时,N个载波信号与M个反向散射信号之间可以是多对一对应关系,但不限于此。
可选地,N个载波信号与M个反向散射信号之间的对应关系是预定义的、载波发送设备指示的或第三方设备指示的,本申请对此不做限制。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号承载相同的信息,也就是说,多个反向散射信号完全相同。
示例性地,假设存在三个反向散射信号,这三个反向散射信号都承载终端设备的标识。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号中至少两个反向散射信号承载不同的信息。
示例性地,假设存在三个反向散射信号,其中,三个反向散射信号中一个反向散射信号承载的是终端设备的标识,另外两个反向散射信号均承载的是数据1。再例如:假设存在三个反向散射信号,其中,三个反向散射信号中一个反向散射信号承载的是终端设备的标识,另外两个反向散射信号分别承载的是数据1和数据2。
可选地,在载波信号是多路载波信号的情况下,每个载波信号所在的频域资源可以是连续的频域资源,也可以是非连续的频域资源。例如:如图10所示,6个载波信号所在的频域资源均是连续的频域资源。
可选地,在载波信号是一路载波信号的情况下,该载波信号所在的频域资源可以是连续的频域资源,也可以是非连续的频域资源。例如:如图9所示,该载波信号所在的频域资源是非联系的频域资源。
可选地,载波信号的频域资源是预定义的、载波发送设备指示的或第三方设备指示的,但不限于此。
可选地,终端设备可以向载波发送设备发送终端设备的能力信息,其中,载波信号的频域资源与 终端设备的能力信息有关。
换句话讲,载波发送设备可以根据终端设备的能力信息确定载波信号的频域资源。
可选地,载波发送设备可以根据终端设备的能力信息和反向散射信号的频域资源特性确定载波信号的频域资源。
可选地,终端设备的能力信息包括:终端设备具有的反向散射通道的个数,但不限于此。
示例性地,如果终端设备具有一个反向散射通道,这时载波发送设备可以将载波信号设置成如图9所示的梳齿结构,并且通过对载波信号的带宽设置,使得反向散射信号满足OCB要求。
示例性地,如果终端设备具有多个反向散射通道,这时载波发送设备可以将载波信号设置成如图10所示的多路信号,并且通过对载波信号的带宽设置,使得反向散射信号满足OCB要求。
可选地,载波发送设备可以向终端设备发送载波信号的发送方式,终端设备根据载波信号的发送方式确定反向散射信号的发送方式。
可选地,载波信号的发送方式可以是以梳齿结构形式的发送方式,或者占用连续频域资源的发送方式,又或者是多路形式的发送方式,本申请对此不做限制。
可选地,反向散射信号的发送方式可以是通过一个反向散射通道发送一个反向散射信号,或者通过多个反向散射通道发送多个反向散射信号,本申请对此不做限制。
示例性地,如果载波发送设备向终端设备指示其载波信号的发送方式是以梳齿结构形式的发送方式,那么终端设备可以通过一个反向散射通道发送一个反向散射信号。如果载波发送设备向终端设备指示其载波信号的发送方式是多路形式的发送方式,那么终端设备可以通过多个反向散射通道发送多个反向散射信号。
综上,在本申请中,载波信号所在的频域资源可以是连续或非连续的频域资源,载波信号也可以是多路信号,以实现载波信号的灵活发送。此外,如果载波信号所在的频域资源是非连续的频域资源,或者载波信号是多路信号,且多路信号之间存在一定的子载波间隔,从而可以节省频域资源。
图12为本申请实施例提供的一种终端设备1200的示意图,该终端设备1200包括:通信单元1210,用于:接收载波发送设备发送的载波信号;根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
可选地,载波信号所在的频域资源非连续。
可选地,载波信号是频域梳齿结构的信号。
可选地,载波信号包括N个载波信号,N为正整数;反向散射信号包括M个反向散射信号,M为正整数。
可选地,N个载波信号与M个反向散射信号之间具有对应关系。
可选地,N个载波信号与M个反向散射信号之间的对应关系是预定义的、载波发送设备指示的或第三方设备指示的。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号承载相同的信息。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号中至少两个反向散射信号承载不同的信息。
可选地,载波信号的频域资源是预定义的、载波发送设备指示的或第三方设备指示的。
可选地,通信单元1210还用于:向载波发送设备发送终端设备的能力信息;其中,载波信号的频域资源与终端设备的能力信息有关。
可选地,终端设备的能力信息包括:终端设备具有的反向散射通道的个数。
可选地,载波信号的频域资源与反向散射信号所在的信道的带宽有关。
可选地,频域资源特性是OCB。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备1200可对应于本申请方法实施例中的终端设备,并且终端设备1200中的各个单元的上述和其它操作和/或功能分别为了实现方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图13为本申请实施例提供的一种载波发送设备1300的示意图,该终端设备1300包括:通信单元1310,用于向终端设备发送载波信号,以使终端设备根据载波信号向载波发送设备发送反向散射信号;其中,反向散射信号的频域资源特性与载波信号的频域资源有关。
可选地,载波信号所在的频域资源非连续。
可选地,载波信号是频域梳齿结构的信号。
可选地,载波信号包括N个载波信号,N为正整数;反向散射信号包括M个反向散射信号,M 为正整数。
可选地,N个载波信号与M个反向散射信号之间具有对应关系。
可选地,N个载波信号与M个反向散射信号之间的对应关系是预定义的、载波发送设备指示的或第三方设备指示的。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号承载相同的信息。
可选地,在M个反向散射信号是多个反向散射信号时,多个反向散射信号中至少两个反向散射信号承载不同的信息。
可选地,载波信号的频域资源是预定义的、载波发送设备指示的或第三方设备指示的。
可选地,通信单元1310还用于:接收终端设备的能力信息;其中,载波信号的频域资源与终端设备的能力信息有关。
可选地,终端设备的能力信息包括:终端设备具有的反向散射通道的个数。
可选地,载波信号的频域资源与反向散射信号所在的信道的带宽有关。
可选地,频域资源特性是OCB。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的载波发送设备1300可对应于本申请方法实施例中的载波发送设备,并且载波发送设备1300中的各个单元的上述和其它操作和/或功能分别为了实现方法实施例中载波发送设备的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备1400示意性结构图。图14所示的通信设备1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,如图14所示,通信设备1400还可以包括收发器1430,处理器1410可以控制该收发器1430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1430可以包括发射机和接收机。收发器1430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1400具体可为本申请实施例的载波发送设备,并且该通信设备1400可以实现本申请实施例的各个方法中由载波发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1400具体可为本申请实施例的终端设备,并且该通信设备1400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的装置的示意性结构图。图15所示的装置1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,装置1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
可选地,该装置1500还可以包括输入接口1530。其中,处理器1510可以控制该输入接口1530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1500还可以包括输出接口1540。其中,处理器1510可以控制该输出接口1540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的载波发送设备,并且该装置可以实现本申请实施例的各个方法中由载波发送设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施 例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的载波发送设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由载波发送设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的载波发送设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由载波发送设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的载波发送设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由载波发送设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑 功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种无线通信方法,其特征在于,包括:
    接收载波发送设备发送的载波信号;
    根据所述载波信号向所述载波发送设备发送反向散射信号;
    其中,所述反向散射信号的频域资源特性与所述载波信号的频域资源有关。
  2. 根据权利要求1所述的方法,其特征在于,所述载波信号所在的频域资源非连续。
  3. 根据权利要求2所述的方法,其特征在于,所述载波信号是频域梳齿结构的信号。
  4. 根据权利要求1所述的方法,其特征在于,所述载波信号包括N个载波信号,N为正整数;所述反向散射信号包括M个反向散射信号,M为正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述N个载波信号与所述M个反向散射信号之间具有对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述对应关系是预定义的、所述载波发送设备指示的或第三方设备指示的。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,在所述M个反向散射信号是多个反向散射信号时,所述多个反向散射信号承载相同的信息。
  8. 根据权利要求4-6任一项所述的方法,其特征在于,在所述M个反向散射信号是多个反向散射信号时,所述多个反向散射信号中至少两个反向散射信号承载不同的信息。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述载波信号的频域资源是预定义的、所述载波发送设备指示的或第三方设备指示的。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,还包括:
    向所述载波发送设备发送终端设备的能力信息;
    其中,所述载波信号的频域资源与所述终端设备的能力信息有关。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备的能力信息包括:所述终端设备具有的反向散射通道的个数。
  12. 根据权利要求1所述的方法,其特征在于,所述载波信号的频域资源与所述反向散射信号所在的信道的带宽有关。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述频域资源特性是信道占用带宽OCB。
  14. 一种无线通信方法,其特征在于,包括:
    向终端设备发送载波信号,以使所述终端设备根据所述载波信号向所述载波发送设备发送反向散射信号;
    其中,所述反向散射信号的频域资源特性与所述载波信号的频域资源有关。
  15. 根据权利要求14所述的方法,其特征在于,所述载波信号所在的频域资源非连续。
  16. 根据权利要求15所述的方法,其特征在于,所述载波信号是频域梳齿结构的信号。
  17. 根据权利要求14所述的方法,其特征在于,所述载波信号包括N个载波信号,N为正整数;所述反向散射信号包括M个反向散射信号,M为正整数。
  18. 根据权利要求17所述的方法,其特征在于,所述N个载波信号与所述M个反向散射信号之间具有对应关系。
  19. 根据权利要求18所述的方法,其特征在于,所述对应关系是预定义的、所述载波发送设备指示的或第三方设备指示的。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,在所述M个反向散射信号是多个反向散射信号时,所述多个反向散射信号承载相同的信息。
  21. 根据权利要求17-19任一项所述的方法,其特征在于,在所述M个反向散射信号是多个反向散射信号时,所述多个反向散射信号中至少两个反向散射信号承载不同的信息。
  22. 根据权利要求15-21任一项所述的方法,其特征在于,所述载波信号的频域资源是预定义的、所述载波发送设备指示的或第三方设备指示的。
  23. 根据权利要求15-22任一项所述的方法,其特征在于,还包括:
    接收所述终端设备的能力信息;
    其中,所述载波信号的频域资源与所述终端设备的能力信息有关。
  24. 根据权利要求23所述的方法,其特征在于,所述终端设备的能力信息包括:所述终端设备具有的反向散射通道的个数。
  25. 根据权利要求14所述的方法,其特征在于,所述载波信号的频域资源与所述反向散射信号所在的信道的带宽有关。
  26. 根据权利要求14-25任一项所述的方法,其特征在于,所述频域资源特性是OCB。
  27. 一种终端设备,其特征在于,包括:通信单元,用于:
    接收载波发送设备发送的载波信号;
    根据所述载波信号向所述载波发送设备发送反向散射信号;
    其中,所述反向散射信号的频域资源特性与所述载波信号的频域资源有关。
  28. 一种载波发送设备,其特征在于,包括:
    通信单元,用于向终端设备发送载波信号,以使所述终端设备根据所述载波信号向所述载波发送设备发送反向散射信号;
    其中,所述反向散射信号的频域资源特性与所述载波信号的频域资源有关。
  29. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  30. 一种载波发送设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至26中任一项所述的方法。
  31. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  32. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至26中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求14至26中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至26中任一项所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  38. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求14至26中任一项所述的方法。
PCT/CN2022/080323 2022-03-11 2022-03-11 无线通信方法、终端设备及载波发送设备 WO2023168687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080323 WO2023168687A1 (zh) 2022-03-11 2022-03-11 无线通信方法、终端设备及载波发送设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080323 WO2023168687A1 (zh) 2022-03-11 2022-03-11 无线通信方法、终端设备及载波发送设备

Publications (1)

Publication Number Publication Date
WO2023168687A1 true WO2023168687A1 (zh) 2023-09-14

Family

ID=87937000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080323 WO2023168687A1 (zh) 2022-03-11 2022-03-11 无线通信方法、终端设备及载波发送设备

Country Status (1)

Country Link
WO (1) WO2023168687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198283A (zh) * 2013-04-23 2013-07-10 复旦大学 一种谐波射频识别系统
WO2016100887A2 (en) * 2014-12-19 2016-06-23 University Of Washington Devices and methods for backscatter communication using one or more wireless communication protocols
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN108141646A (zh) * 2015-08-12 2018-06-08 华盛顿大学 反向散射装置及结合反向散射装置的网络系统
CN110663020A (zh) * 2017-04-06 2020-01-07 华盛顿大学 使用反向散射装置的图像和/或视频发射
US20200412591A1 (en) * 2018-02-14 2020-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Technique for backscattering transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198283A (zh) * 2013-04-23 2013-07-10 复旦大学 一种谐波射频识别系统
WO2016100887A2 (en) * 2014-12-19 2016-06-23 University Of Washington Devices and methods for backscatter communication using one or more wireless communication protocols
CN108141646A (zh) * 2015-08-12 2018-06-08 华盛顿大学 反向散射装置及结合反向散射装置的网络系统
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN110663020A (zh) * 2017-04-06 2020-01-07 华盛顿大学 使用反向散射装置的图像和/或视频发射
US20200412591A1 (en) * 2018-02-14 2020-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Technique for backscattering transmission

Similar Documents

Publication Publication Date Title
US20240160866A1 (en) Wireless communication method, terminal device and network device
WO2023004714A1 (zh) 无线通信方法及设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
US20240155565A1 (en) Wireless communication method, terminal device and communication device
US20240137194A1 (en) Method and device for wireless communication
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023044781A1 (zh) 无线通信方法及设备
EP4383598A1 (en) Wireless communication method, terminal device and network device
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2024168586A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023159489A1 (zh) 无线通信的方法、终端设备和参考设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930325

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024018201

Country of ref document: BR