WO2023044781A1 - 无线通信方法及设备 - Google Patents

无线通信方法及设备 Download PDF

Info

Publication number
WO2023044781A1
WO2023044781A1 PCT/CN2021/120398 CN2021120398W WO2023044781A1 WO 2023044781 A1 WO2023044781 A1 WO 2023044781A1 CN 2021120398 W CN2021120398 W CN 2021120398W WO 2023044781 A1 WO2023044781 A1 WO 2023044781A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
processing process
priority
time interval
target time
Prior art date
Application number
PCT/CN2021/120398
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/120398 priority Critical patent/WO2023044781A1/zh
Priority to CN202180102479.8A priority patent/CN118077254A/zh
Publication of WO2023044781A1 publication Critical patent/WO2023044781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • the semi-passive zero-power terminal can use radio frequency (Radio Frequency, RF) energy collection modules to collect radio waves.
  • RF Radio Frequency
  • the semi-passive zero-power terminal can continuously obtain radio energy and store the radio energy in the energy storage unit. After the energy storage unit obtains enough energy, it can drive the low-power circuit to work to realize Channel scheduling, data processing and other operations.
  • Embodiments of the present application provide a wireless communication method and device, so as to determine a process to be processed or a process to be processed.
  • a wireless communication method is provided, the method is applied to a terminal device, and the method includes: judging whether the terminal device can complete at least one processing process according to the energy collection status of the terminal device; if it is determined that the terminal device cannot complete at least one processing process, then At least one target processing process is determined according to the priority of the at least one processing process.
  • a wireless communication method is provided, the method is applied to a terminal device, and the method includes: judging whether the terminal device can complete the first processing process according to the energy collection state of the terminal device; if it is determined that the terminal device can complete the first processing process, then Process the first process.
  • a terminal device including: a processing unit, configured to: judge whether the terminal device can complete at least one processing process according to the energy collection state of the terminal device; if it is determined that the terminal device cannot complete at least one processing process, then according to at least one The priority of a process determines at least one target process.
  • a terminal device including: a processing unit configured to: judge whether the terminal device can complete the first processing process according to the energy collection state of the terminal device; if it is determined that the terminal device can complete the first processing process, process the second A process.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect, the second aspect or its implementable manner.
  • an apparatus for implementing the method in the first aspect, the second aspect, or each implementation manner thereof.
  • the device includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the device executes the method in the first aspect, the second aspect or each implementation thereof.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the first aspect, the second aspect, or each implementation manner thereof.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the method in the first aspect, the second aspect, or each implementation thereof.
  • a ninth aspect provides a computer program, which, when running on a computer, causes the computer to execute the method in the first aspect, the second aspect, or each implementation thereof.
  • the terminal device can determine the pending processes according to the priority of each processing process, and then process these pending processes. Based on this, the terminal device can guarantee the Prioritize high-priority pending processes to improve end device reliability. Or, each time a processing process is reached, the terminal device judges whether the terminal device can complete the processing process according to its current energy collection state, and if the processing process can be completed, the terminal device only needs to process the processing process. Alternatively, when there is a high-priority processing process within the target time interval, the terminal device may preferentially guarantee processing of the high-priority processing process, so as to improve the reliability of the terminal device.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system provided by the present application.
  • FIG. 3 is a schematic diagram of the backscatter communication provided by the present application.
  • FIG. 4 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • FIG. 5 is a circuit schematic diagram of resistive load modulation provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a wireless sensor network provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the processing process within the target time interval provided by the embodiment of the present application.
  • FIG. 9 is a flowchart of another wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a terminal device 1000 provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device 1100 provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 provided in an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next generation communication system, zero power consumption communication system , cellular IoT or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the network equipment may be a device for communicating with mobile equipment, and the network equipment may be an access point (Access Point, AP) in WLAN, GSM or A base station (Base Transceiver Station, BTS) in CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle-mounted devices, wearable devices, and network devices (gNB) in NR networks or network devices in PLMN networks that will evolve in the future.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB network devices
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example, The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be referred to as a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network, or zero-power devices.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may have an energy collection function, and may also have an energy storage function, so as to store the energy collected by the energy collection module.
  • the terminal device may adopt at least one of the following energy collection methods, but not limited thereto: wireless radio frequency signal collection method; ambient light collection method; vibration energy collection method; heat collection method.
  • the terminal device may have a battery, and the energy harvesting module may supply power to the battery, but it is not limited thereto.
  • the terminal equipment mainly collects the energy of radio frequency signals to perform channel scheduling, data processing, etc.
  • the related technologies of the zero-power communication technology will be described below:
  • zero-power terminals can be divided into the following types:
  • the passive zero-power terminal does not need a built-in battery.
  • the passive zero-power terminal When the passive zero-power terminal is close to the network device, the passive zero-power terminal is in the near-field range formed by the antenna radiation of the network device. Therefore, the passive zero-power terminal The antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the passive zero-power terminal to realize the signal demodulation of the forward link and the signal modulation of the backscatter link.
  • the passive zero-power terminal uses a backscattering implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive the low-power chip circuit.
  • This type of terminal is a real zero-power terminal .
  • passive zero-power terminals do not require low noise amplifier (Low Noise Amplifier, LNA), power amplifier (Power Amplifier, PA), crystal oscillator, modulus Converter (Analog-to-Digital Converter, ADC) and other devices, so passive zero-power terminals have many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA Low Noise Amplifier
  • PA power amplifier
  • ADC modulus Converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use the RF energy harvesting module to collect radio energy, and store the collected energy in an energy storage unit, such as a capacitor. After the energy storage unit obtains energy, it can drive the low-power chip circuit of the semi-passive zero-power terminal to realize the demodulation of the forward link signal and the signal modulation of the backscatter link. For the backscatter link, the semi-passive zero-power terminal uses the backscattering implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive the low-power chip circuit, although the semi-passive zero-power terminal has an energy storage unit Energy storage is carried out, but its energy still comes from the radio energy collected by the RF energy harvesting module, so the semi-passive zero-power terminal is also a real zero-power terminal.
  • the semi-passive zero-power terminal inherits many advantages of the passive zero-power terminal, so it has many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminal used in some scenarios can also be an active zero-power terminal.
  • This type of terminal can have a built-in battery, and the battery is used to drive the low-power chip circuit of the zero-power terminal to realize the resolution of the forward link signal. modulation, and signal modulation for backscatter links. But for the backscatter link, this type of terminal can use the backscatter implementation to transmit signals. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the backscatter link does not need to consume the power of this type of terminal itself, but uses the backscattering method.
  • the built-in battery of the active zero-power terminal can supply power to the low-power chip circuit, so as to increase the reading and writing distance of the active zero-power terminal and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
  • Zero-power communication uses energy harvesting and backscatter communication technologies.
  • the zero-power communication network consists of network devices and zero-power terminals, as shown in Figure 2, where the zero-power terminals may be the above-mentioned semi-passive zero-power terminals.
  • the network device is used to send energy supply signals and downlink communication signals to the zero-power terminal and receive backscattered signals from the zero-power terminal.
  • the zero-power consumption terminal may include an RF energy collection module, a backscatter communication module and a low-power consumption chip circuit.
  • the zero-power consumption terminal can also have a memory for storing some basic information (such as item identification, etc.), and can also include sensors for obtaining sensing data such as ambient temperature and ambient humidity.
  • the energy supply signal is used to supply energy to the zero-power consumption terminal to trigger the operation of the zero-power consumption terminal. Therefore, the energy supply signal is also called a trigger signal. Alternatively, the power supply signal is also referred to as a carrier signal.
  • the key technologies of zero-power communication mainly include wireless radio frequency energy harvesting and backscatter communication.
  • the zero-power terminal receives the energy supply signal sent by the network device, collects energy through the RF energy collection module, and then supplies energy to the low-power chip circuit, modulates the energy supply signal, and performs backscattering , the main features are as follows:
  • the zero-power terminal does not actively transmit signals, and realizes backscatter communication by modulating the energy supply signal
  • Zero-power terminals do not rely on traditional active power amplifier transmitters, and use low-power chip circuits at the same time, which greatly reduces hardware complexity;
  • the zero-power terminal can use the RF energy collection module to collect space electromagnetic wave energy through electromagnetic induction, and then realize the drive of low-power chip circuits and sensors.
  • Load modulation is a method often used by zero-power terminals to transmit data to network devices. Load modulation adjusts the electrical parameters of the zero-power terminal oscillation circuit according to the beat of the data flow, so that the size and phase of the zero-power terminal impedance change accordingly, thereby completing the modulation process.
  • load modulation techniques resistive load modulation and capacitive load modulation.
  • resistive load modulation In resistive load modulation, a resistor is connected in parallel with the load, which is called a load modulation resistor. The resistor is turned on and off according to the clock of the data flow, and the on-off of the switch S is controlled by binary data code.
  • the circuit principle of resistive load modulation is shown in Fig. 5.
  • a capacitor is connected in parallel to the load, replacing the load modulating resistor in Figure 5 controlled by a binary data code.
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return zero (NRZ) encoding, Manchester encoding, unipolar RZ encoding, differential biphase ( DBP) encoding, Miller (Miller) encoding and differential encoding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
  • NRZ reverse non-return zero
  • DBP differential biphase
  • Miller Miller
  • the semi-passive zero-power terminal can continuously obtain radio energy and store the radio energy in the energy storage unit. After the energy storage unit obtains enough energy, it can drive the low-power circuit to work to realize channel scheduling, Data processing and other operations.
  • this type of terminal equipment cannot obtain stable energy. Therefore, in the case of limited energy, when this type of terminal equipment is faced with multiple processing processes to be processed, how to determine the process to be processed or how to process the processing process is an urgent need for this application. Solved technical problems.
  • the present application can determine the process to be processed according to the priority of each processing process. Or, according to the chronological order of each processing process, each time a certain processing process needs to be processed, first judge whether the current energy of the terminal device is sufficient to process the processing process, and if the current energy is sufficient for the processing process, then process the processing process .
  • a processing process the work or process that the terminal device needs to collect energy to complete is referred to as a processing process.
  • a semi-passive zero-power terminal it has an energy harvesting function, and the energy it collects can be used for signal reception, transmission, measurement, encoding and decoding, etc.
  • the collected energy may also be used for information collection in some scenarios.
  • a semi-passive zero-power terminal combined with a sensor needs to read and Store the data obtained by the sensor, such as temperature, pressure and other information.
  • Fig. 6 is a schematic diagram of a wireless sensor network provided by the embodiment of the present application. As shown in Fig.
  • the semi-passive zero-power terminal can read the data of the sensor, and it can pass the backscattering with the network device Links pass sensor data to network devices.
  • the energy obtained by the semi-passive zero-power terminal through energy harvesting can be used for sensor data collection and storage.
  • the semi-passive zero-power consumption terminal can also supply power to the sensor through energy harvesting, or the sensor can supply power to it through other power supply devices.
  • the processing process in this embodiment of the present application may include, but is not limited to, the following: signal reception, transmission, measurement, codec, data collection, data storage, and the like.
  • FIG. 7 is a flow chart of a wireless communication method provided in the embodiment of the present application. As shown in FIG. 7, the method includes the following steps:
  • S710 The terminal device judges whether the terminal device can complete at least one processing process according to the energy collection state of the terminal device;
  • the terminal device determines at least one target processing process according to the priority of the at least one processing process.
  • the energy collection state of the terminal device can be represented by the percentage of the current energy of the terminal device to the full energy, where the full energy refers to 100% energy of the terminal device, for example: if the energy collection state of the terminal device If it is 80%, it means that the current energy of the terminal device accounts for 80% of the full energy.
  • the energy collection state of the terminal device can be represented by high, medium and low levels, for example: if the percentage of the current energy of the terminal device to the full energy is lower than the first threshold, it indicates the energy collection state of the terminal device It is a low state or a low level. If the percentage of the current energy of the terminal device to the full energy is higher than or equal to the first threshold and lower than the second threshold, it means that the energy collection state of the terminal device is a middle state or a middle level. If the percentage of the current energy of the terminal device to the full energy is higher than or equal to the second threshold, it indicates that the energy collection state of the terminal device is a high state or a high level. Wherein, the first threshold is smaller than the second threshold.
  • the present application does not limit the way of expressing the energy collection state of the terminal device.
  • At least one processing process refers to a processing process that needs to be completed by the terminal device.
  • At least one processing process above needs to be completed within a target time interval.
  • the target time interval includes the start time and length of the target time interval.
  • the starting moment of the target time interval is predefined or configured by the network device, but is not limited thereto.
  • the length of the target time interval is predefined or configured by the network device, but is not limited thereto.
  • the target time interval is predefined or configured by the network device, but not limited thereto, that is, the start time and length of the target time interval are predefined, or, the start time of the target time interval and length are configured by the network device.
  • the target time interval is related to at least one of the following, but not limited thereto: capability of the terminal device, and signal measurement results.
  • the capabilities of the terminal device include at least one of the following, but are not limited thereto:
  • the stronger the capability of the terminal device, the longer or shorter the length of the target time interval for example: the stronger the energy storage capability of the terminal device, and/or the longer the energy collection time of the terminal device, And/or, the higher the energy collection efficiency of the terminal device is, and/or the faster the energy collection speed of the terminal device is, the longer or shorter the length of the target time interval is.
  • the signal measurement result includes: the strength of the power supply signal received by the terminal device, but is not limited thereto. For example, the higher the strength of the energy supply signal, the faster the energy collection speed of the terminal device, and the longer or shorter the length of the target time interval.
  • the above-mentioned energy collection state of the terminal device is an energy collection state corresponding to the target time interval.
  • the terminal device can determine its energy collection state at time T0, that is, the energy collection state is the energy collection state of the terminal device at time T0, and the starting time of the target time interval is the T0 time.
  • the terminal device determines its working duration according to its energy collection state, and may determine the processing time of each processing process in the above at least one processing process, including: processing start time and processing duration, based on this, to determine whether the above at least one processing process can be completed.
  • the terminal device determines the power consumption of each processing process in the at least one processing process, and judges whether at least one processing process can be completed in combination with its own energy collection status. For example: the terminal device determines that at least one processing process includes: processing process 1 and processing process 2, their power consumption is 10% and 20% respectively, the total power consumption is 30%, and its energy collection state is 10%, which means In this case, it means that the terminal device cannot complete these two processing processes.
  • the present application does not limit how to determine whether the terminal device can complete at least one processing process.
  • the priority of the at least one processing process is determined according to a priority rule according to the type of the at least one processing process.
  • processing procedures involved in this embodiment of the present application include the following processing procedures, but are not limited thereto:
  • Uplink channel/signal transmission including scheduling-based and scheduling-free transmission
  • Source data such as channel state feedback information, Hybrid Automatic Repeat reQuest (HARQ) information, data, etc.
  • HARQ Hybrid Automatic Repeat reQuest
  • processing processes can be classified into several types of processing processes, such as: dynamic scheduling type, scheduling-free type, data processing type, but not limited thereto.
  • the processing process of the dynamic scheduling type includes: downlink dynamic scheduling and uplink dynamic scheduling, but is not limited thereto.
  • the scheduling-free processing process includes: downlink scheduling-free, uplink dynamic scheduling, but not limited thereto.
  • the processing process of the data processing type includes: collection, access, processing of external information, interaction with a third-party device, signal measurement, synchronization process, etc., but is not limited thereto.
  • the above-mentioned downlink dynamic scheduling includes: reception of downlink channels/signals, demodulation and decoding of downlink channels, and the like.
  • Uplink dynamic scheduling includes: uplink channel/signal transmission, uplink channel coding and modulation, and so on.
  • the above-mentioned downlink scheduling-free also includes: reception of downlink channels/signals, demodulation and decoding of downlink channels, and so on.
  • Uplink scheduling-free also includes: transmission of uplink channels/signals, coding and modulation of uplink channels, etc.
  • the monitoring of the downlink channel/signal shown in FIG. 8 may be combined with the demodulation and decoding of the downlink channel, or the measurement of the downlink signal to form a processing process.
  • the sending of the uplink channel/signal can be bound with the data coding and modulation carried by the uplink channel to form a processing process.
  • priority rules are predefined or configured by network devices, but are not limited thereto.
  • the priority rules include: the processing process priority of the dynamic scheduling type is higher than the processing process priority of the scheduling-free type; the processing process priority of the scheduling-free type is higher than the processing process priority of the data processing type, But not limited to this.
  • the priority of the at least one processing process is predefined, but not limited thereto.
  • the above at least one processing process is a processing process of a scheduling-free type and/or a processing process of a data processing type, and priorities of these processing processes may be predefined.
  • the priority of the at least one processing process is configured by the network device, but it is not limited thereto.
  • the priority of at least one processing process is configured by the network device in a semi-static manner, but is not limited thereto.
  • the priority of the first processing process is carried in the scheduling instruction sent by the network device; wherein, the first processing process is any one of the at least one processing process scheduled by dynamic or semi-persistent scheduling, But not limited to this.
  • the priority may be predefined .
  • the dynamic scheduling process its priority can be carried in the scheduling instruction sent by the network device, such as carried in the downlink control information (Downlink Control Information, DCI), for example: as shown in Figure 8, assuming the above-mentioned downlink channel/signal
  • DCI Downlink Control Information
  • the listener is a dynamic scheduling type processing process, and its corresponding scheduling instruction carries its priority as 2. It is assumed that the above-mentioned sending of the uplink channel/signal is a dynamic scheduling type processing process, and its corresponding scheduling instruction carries its priority as 1.
  • the embodiment of the present application does not limit the manner of obtaining the priority of the at least one processing process.
  • the terminal device assumes that these processing processes are processed according to the priority of the at least one processing process. For example, the terminal device processes the at least one processing process in order of priority from high to low. At this time, the terminal device may At least one target processing process is determined according to the processing time of these processing processes, including the processing start time and duration, wherein the processes to be processed are included in the at least one processing process.
  • the terminal device prioritizes the processing process with the earlier starting time among the two processing processes, but does not limited to this.
  • the terminal device when determining the process to be processed, can assume that the processing process with high priority needs to be processed, and skip the process with priority. low-level processing.
  • the terminal device may process these pending processes according to their priority order; or, process these processes according to their chronological order process, but not limited to this.
  • the terminal device may process the pending process with an earlier time priority, but it is not limited thereto.
  • the terminal device determines that the process to be processed within the target time interval is the monitoring of downlink channels/signals and the sending of uplink channels/signals, and the priority corresponding to the monitoring of downlink channels/signals is 2 , the priority corresponding to the transmission of the uplink channel/signal is 1, and assuming that the smaller the priority index, the higher the priority, then the terminal device can execute the process with priority 1 first according to the priority order of the processes to be processed.
  • the sending of the uplink channel/signal and because the execution time of the monitoring of the downlink channel/signal is before the sending of the uplink channel/signal, in this case, the terminal device skips the execution of the monitoring of the downlink channel/signal.
  • the terminal device may first monitor the downlink channel/signal with priority 2 according to the chronological order of the processes to be processed, and then perform the sending of the uplink channel/signal with priority 1.
  • the terminal device can determine the pending processes according to the priority of each processing process, and then process these pending processes. Based on this, the terminal device can use the technical solution of this application to It can ensure that the terminal equipment processes high-priority pending processes first, so as to improve the reliability of the terminal equipment.
  • FIG. 9 is a flow chart of another wireless communication method provided by the embodiment of the present application. As shown in FIG. 9, the method includes the following steps:
  • S910 The terminal device judges whether the terminal device can complete the first processing process according to the energy collection status of the terminal device;
  • the terminal device executes the processing processes according to the time sequence of the processing processes, that is, each time a processing process is reached, the terminal device judges whether the terminal device can complete the processing process according to its current energy collection state. Processing process, if the processing process can be completed, the terminal device only needs to process the processing process.
  • the first processing process is the currently arriving processing process.
  • the terminal device needs to determine the energy collection state of the terminal device, for example: the terminal device determines its energy collection state when the first processing process arrives.
  • the terminal device determines its working duration according to its energy collection state, and can determine the processing time of the above-mentioned first processing process, including: processing start time and processing duration, based on which, it is judged whether it can be completed The first process.
  • the terminal device may determine the power consumption of the first processing process, and determine whether the first processing process can be completed in combination with its own energy collection status. For example, if the terminal device determines that the power consumption of the first processing process is 20%, but its energy collection state is 10%, this situation means that the terminal device cannot complete the first processing process.
  • the present application does not limit how to determine whether the terminal device can complete the first processing process.
  • the terminal device determines that it cannot complete the first processing process, it does not process the first processing process.
  • the terminal device when there is a high-priority processing process within the target time interval, that is, a second processing process with a priority higher than the preset priority, in order to ensure that such processing processes can be processed, the terminal device can Before judging whether the terminal device can complete the first processing process according to its energy collection status, determine whether there is a second processing process with a priority higher than the preset priority within the target time interval; if there is no second processing process within the target time interval , the terminal device judges whether the terminal device can complete the first processing process according to the energy collection state; if there is a second processing process within the target time interval, the terminal device needs to process the second processing process instead of the first processing process, That is, if there is a second processing process within the target time interval, the terminal device reserves the collected energy, so as to prioritize the processing of the high-priority processing process.
  • the target time interval includes the start time and length of the target time interval.
  • the starting moment of the target time interval is the arrival time of the above-mentioned first processing process, which is not limited in the present application.
  • the starting moment of the target time interval is predefined or configured by the network device, but is not limited thereto.
  • the length of the target time interval is predefined or configured by the network device, but is not limited thereto.
  • the target time interval is predefined or configured by the network device, but not limited thereto, that is, the start time and length of the target time interval are predefined, or, the start time of the target time interval and length are configured by the network device.
  • the target time interval is related to at least one of the following, but not limited thereto: capability of the terminal device, and signal measurement results.
  • the capabilities of the terminal device include at least one of the following, but are not limited thereto:
  • the stronger the capability of the terminal device, the longer or shorter the length of the target time interval for example: the stronger the energy storage capability of the terminal device, and/or the longer the energy collection time of the terminal device, And/or, the higher the energy collection efficiency of the terminal device is, and/or the faster the energy collection speed of the terminal device is, the longer or shorter the length of the target time interval is.
  • the signal measurement result includes: the strength of the power supply signal received by the terminal device, but is not limited thereto. For example, the higher the strength of the energy supply signal, the faster the energy collection speed of the terminal device, and the longer or shorter the length of the target time interval.
  • the above-mentioned energy collection state of the terminal device is an energy collection state corresponding to the target time interval.
  • the terminal device judges whether the terminal device can complete the processing process according to its current energy collection state. If the processing process can be completed, the terminal device processes the processing process. Can. Or, when there is a high-priority processing process in the target time interval, the terminal device can determine whether there is a priority higher than the preset priority in the target time interval before judging whether the terminal device can complete the first processing process according to its energy collection status.
  • the terminal device judges whether the terminal device can complete the first processing process according to the energy harvesting status; if there is a second processing process within the target time interval , the terminal device needs to process the second processing process instead of the first processing process, that is, if there is a second processing process within the target time interval, the terminal device reserves the collected energy to give priority to the high priority processing process processing to improve the reliability of terminal equipment.
  • Fig. 10 is a schematic diagram of a terminal device 1000 provided in the embodiment of the present application.
  • the terminal device 1000 includes: a processing unit 1010, configured to: judge whether the terminal device can complete at least One processing process; if it is determined that the terminal device cannot complete at least one processing process, at least one target processing process is determined according to the priority of the at least one processing process.
  • the processing unit is further configured to: determine at least one processing process that needs to be completed within the target time interval; and determine an energy collection state corresponding to the target time interval.
  • the starting moment of the target time interval is predefined or configured by the network device.
  • the length of the target time interval is predefined or configured by the network device.
  • the target time interval is predefined or configured by the network device.
  • the target time interval is related to at least one of the following: capability of the terminal device, signal measurement result.
  • the capabilities of the terminal device include at least one of the following:
  • the energy harvesting speed of the end device is the energy harvesting speed of the end device.
  • the signal measurement result includes: the strength of the power supply signal received by the terminal device.
  • the priority of the at least one processing process is determined according to a priority rule according to the type of the at least one processing process.
  • the priority rules are predefined or configured by the network device.
  • the type of at least one processing process includes at least one of the following: dynamic scheduling type, scheduling-free type, and data processing type.
  • the priority rule includes: the priority of the processing process of the dynamic scheduling type is higher than the priority of the processing process of the scheduling-free type; the priority of the processing process of the scheduling-free type is higher than the priority of the processing process of the data processing type.
  • the priority of at least one processing process is predefined.
  • the priority of at least one processing process is configured by the network device.
  • the priority of at least one processing process is configured by the network device in a semi-static manner.
  • the priority of the first processing process is carried in the scheduling instruction sent by the network device; wherein, the first processing process is any one of the at least one processing process that is scheduled by dynamic or semi-persistent scheduling.
  • the processing unit 1010 is further configured to: process the at least one target processing process according to the priority sequence of the at least one target processing process.
  • the processing unit 1010 is further configured to: process the at least one target processing process according to the time sequence of the at least one target processing process.
  • the terminal device adopts at least one of the following energy collection methods:
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 1000 may correspond to the terminal device in the method embodiment corresponding to FIG.
  • the corresponding process of the terminal device in the method embodiment is not repeated here.
  • FIG. 11 is a schematic diagram of a terminal device 1100 provided in the embodiment of the present application.
  • the terminal device 1100 includes: a processing unit 1110 configured to: judge whether the terminal device can complete the first step according to the energy collection state of the terminal device; A processing process; if it is determined that the terminal device can complete the first processing process, process the first processing process.
  • the processing unit 1110 is further configured to: not process the first processing process if it is determined that the terminal device cannot complete the first processing process.
  • the processing unit 1110 is further configured to: determine the energy collection state of the terminal device.
  • the processing unit 1110 is further configured to: determine whether there is a second processing process with a priority higher than a preset priority within the target time interval; the processing unit 1110 is specifically configured to: there is no second processing process within the target time interval During the second processing process, it is determined whether the terminal device can complete the first processing process according to the energy collection state.
  • the processing unit 1110 is further configured to: process the second processing process instead of the first processing process when the second processing process exists within the target time interval.
  • the starting moment of the target time interval is predefined or configured by the network device.
  • the length of the target time interval is predefined or configured by the network device.
  • the target time interval is predefined or configured by the network device.
  • the target time interval is related to at least one of the following: capability of the terminal device, signal measurement result.
  • the capabilities of the terminal device include at least one of the following:
  • the energy harvesting speed of the end device is the energy harvesting speed of the end device.
  • the signal measurement result includes: the strength of the power supply signal received by the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 1100 may correspond to the terminal device in the method embodiment corresponding to FIG.
  • the corresponding process of the terminal device in the method embodiment is not repeated here.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 provided in an embodiment of the present application.
  • the terminal device 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the terminal device 1200 may further include a memory 1220 .
  • the processor 1210 can invoke and run a computer program from the memory 1220, so as to implement the method in the embodiment of the present application.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the terminal device 1200 may further include a transceiver 1230, and the processor 1210 may control the transceiver 1230 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1210 may control the transceiver 1230 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include antennas, and the number of antennas may be one or more.
  • the terminal device 1200 may implement the corresponding processes implemented by the network device in the various methods of the embodiments of the present application, and for the sake of brevity, details are not repeated here.
  • Fig. 13 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 1300 may further include a memory 1320 .
  • the processor 1310 can invoke and run a computer program from the memory 1320, so as to implement the method in the embodiment of the present application.
  • the memory 1320 may be an independent device independent of the processor 1310 , or may be integrated in the processor 1310 .
  • the device 1300 may also include an input interface 1330 .
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 1300 may also include an output interface 1340 .
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application.
  • the computer program executes the corresponding functions implemented by the network device or the base station in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法及设备,方法包括:根据终端设备的能量采集状态判断终端设备能否完成至少一个处理进程;若确定终端设备无法完成至少一个处理进程,则根据至少一个处理进程的优先级确定至少一个目标处理进程,通过本申请技术方案可以保证终端设备优先处理高优先级的待处理进程,以提高终端设备的可靠性。

Description

无线通信方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法及设备。
背景技术
目前存在一类需要采集环境能量来进行信道调度、数据处理等操作的终端设备,例如:半无源零功耗终端,其可以使用无线射频(Radio Frequency,RF)能量采集模块来采集无线电波,基于此,半无源零功耗终端可以源源不断地获取无线电能量,并将无线电能量储存于储能单元中,待储能单元获得足够的能量后,其可以驱动低功耗电路工作,以实现信道调度、数据处理等操作。
然而,这类终端设备并不能获得稳定的能量,因此,在能量有限的情况下,当这类终端设备面临多种处理进程需要处理时,如何确定待处理进程或者如何处理处理进程是本申请亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法及设备,以确定待处理进程或者处理处理进程。
第一方面,提供一种无线通信方法,方法应用于终端设备,方法包括:根据终端设备的能量采集状态判断终端设备能否完成至少一个处理进程;若确定终端设备无法完成至少一个处理进程,则根据至少一个处理进程的优先级确定至少一个目标处理进程。
第二方面,提供一种无线通信方法,方法应用于终端设备,方法包括:根据终端设备的能量采集状态判断终端设备能否完成第一处理进程;若确定终端设备能够完成第一处理进程,则处理第一处理进程。
第三方面,提供一种终端设备,包括:处理单元,用于:根据终端设备的能量采集状态判断终端设备能否完成至少一个处理进程;若确定终端设备无法完成至少一个处理进程,则根据至少一个处理进程的优先级确定至少一个目标处理进程。
第四方面,提供一种终端设备,包括:处理单元,用于:根据终端设备的能量采集状态判断终端设备能否完成第一处理进程;若确定终端设备能够完成第一处理进程,则处理第一处理进程。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面、第二方面或其可实现方式中的方法。
第六方面,提供了一种装置,用于实现上述第一方面、第二方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面、第二方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面、第二方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面、第二方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面或其各实现方式中的方法。
通过本申请技术方案,终端设备可以按照各个处理进程的优先级来确定待处理进程,进而处理这些待处理进程,基于此,终端设备在能量有限的情况下,通过本申请技术方案可以保证终端设备优先处理高优先级的待处理进程,以提高终端设备的可靠性。或者,每到达一个处理进程,终端设备根据自身当前的能量采集状态判断终端设备能否完成该处理进程,如果可以完成该处理进程,则终端设备处理该处理进程即可。又或者,当目标时间间隔内存在高优先级的处理进程,终端设备可以优先保证对高优先级的处理进程的处理,以提高终端设备的可靠性。
附图说明
图1为本申请实施例提供的通信系统示意图;
图2为本申请提供的零功耗通信系统的示意图;
图3为本申请提供的反向散射通信原理图;
图4为本申请实施例提供的能量采集原理图;
图5为本申请实施例提供的电阻负载调制的电路原理图;
图6为本申请实施例提供的一种无线传感器网络的示意图;
图7为本申请实施例提供的一种无线通信方法的流程图;
图8为本申请实施例提供的目标时间间隔内的处理进程的示意图;
图9为本申请实施例提供的另一种无线通信方法的流程图;
图10为本申请实施例提供的一种终端设备1000的示意图;
图11为本申请实施例提供的一种终端设备1100的示意图;
图12是本申请实施例提供的一种终端设备1200示意性结构图;
图13是本申请实施例的装置的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频 域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,终端设备可以具有能量采集功能,还可以具有储能功能,以对能量采集模块采集到的能量进行存储。其中,终端设备可以采用以下至少一种能量采集方式,但不限于此:无线射频信号采集方式;环境光采集方式;振动能量采集方式;热量采集方式。
需要说明的是,在本申请实施例中,终端设备可以具有电池,其中能量采集模块可以向电池供能,但不限于此。
示例性地,在零功耗通信系统中,终端设备主要通过采集无线射频信号的能量,以进行信道调度、数据处理等,下面将对零功耗通信技术的相关技术进行说明:
一、零功耗终端的分类
基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
(1)无源零功耗终端
无源零功耗终端无需内装电池,当无源零功耗终端接近网络设备时,该无源零功耗终端处于网络设备天线辐射形成的近场范围内,因此,该无源零功耗终端的天线通过电磁感应产生感应电流,感应电流驱动该无源零功耗终端的低功耗芯片电路,以实现对前向链路的信号解调工作以及反向散射链路的信号调制等工作。对于反向散射链路,该无源零功耗终端使用反向散射实现方式进行信号的传输。
由此可知,无论是针对前向链路还是反向散射链路,无源零功耗终端都不需要内置电池来驱动低功耗芯片电路,这类终端是一种真正意义的零功耗终端。
此外,无源零功耗终端的射频电路以及基带电路都非常简单,例如无源零功耗终端不需要低噪放(Low Noise Amplifier,LNA)、功放(Power Amplifier,PA)、晶振、模数转换器(Analog-to-Digital Converter,ADC)等器件,因此无源零功耗终端具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(2)半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电能量,同时将采集的能量存储于一个储能单元,如电容中。储能单元获得能量后,可以驱动半无源零功耗终端的低功耗芯片电路,以实现对前向链路信号的解调以及反向散射链路的信号调制等工作。对于反向散射链路,半无源零功耗终端使用反向散射实现方式进行信号的传输。
由此可知,无论是针对前向链路还是反向散射链路,半无源零功耗终端都不需要内置电池来驱动低功耗芯片电路,虽然半无源零功耗终端存在储能单元进行储能,但其能量还是来源于RF能量采集模块采集的无线电能量,因此半无源零功耗终端也是一种真正意义的零功耗终端。
此外,半无源零功耗终端继承了无源零功耗终端的诸多优点,因此,具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
(3)有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池,电池用于驱动零功耗终端的低功耗芯片电路,实现对前向链路信号的解调,以及反向散射链路的信号调制等工作。 但对于反向散射链路,该类终端可以使用反向散射实现方式进行信号的传输。因此,该类终端的零功耗主要体现于反向散射链路的信号传输不需要消耗该类终端自身功率,而是使用反向散射的方式。
有源零功耗终端内置的电池可以向低功耗芯片电路供电,以增加有源零功耗终端的读写距离,提高通信的可靠性。因此其可以在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
二、零功耗通信技术原理
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由网络设备和零功耗终端构成,如图2所示,这里的零功耗终端可以是上述的半无源零功耗终端。其中网络设备用于向该零功耗终端发送供能信号,下行通信信号以及接收零功耗终端的反向散射信号。该零功耗终端可以包括RF能量采集模块,反向散射通信模块以及低功耗芯片电路。此外,零功耗终端还可具备一个存储器用于存储一些基本信息(如物品标识等),还可以包括传感器,用于获取环境温度、环境湿度等传感数据。
在本申请实施例中,供能信号用于向零功耗终端供能,以触发零功耗终端工作,因此,该供能信号也被称为触发信号。或者,该供能信号也被称为载波信号。
零功耗通信的关键技术主要包括无线射频能量采集和反向散射通信。
如图3所示,零功耗终端接收网络设备发送的供能信号,通过RF能量采集模块采集能量,进而对低功耗芯片电路进行供能,对供能信号进行调制,并进行反向散射,主要特征如下:
(1)零功耗终端不主动发射信号,通过调制供能信号实现反向散射通信;
(2)零功耗终端不依赖传统的有源功放发射机,同时使用低功耗芯片电路,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
如图4所示,零功耗终端可以利用RF能量采集模块,通过电磁感应实现对空间电磁波能量的采集,进而实现对低功耗芯片电路、传感器等的驱动。
负载调制是零功耗终端经常使用的向网络设备传输数据的方法。负载调制通过对零功耗终端振荡回路的电参数按照数据流的节拍进行调节,使零功耗终端阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。
在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理如图5所示。
在电容负载调制中,负载并联一个电容,取代了图5中由二进制数据编码控制的负载调制电阻。
零功耗终端传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Non Return Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
如上所述,目前存在一类需要采集环境能量来进行信道调度、数据处理等操作的终端设备,例如:半无源零功耗终端,其可以使用RF能量采集模块来采集无线电波,基于此,半无源零功耗终端可以源源不断地获取无线电能量,并将无线电能量储存于储能单元中,待储能单元获得足够的能量后,其可以驱动低功耗电路工作,以实现信道调度、数据处理等操作。然而,这类终端设备并不能获得稳定的能量,因此,在能量有限的情况下,当这类终端设备面临多种处理进程需要处理时,如何确定待处理进程或者如何处理处理进程是本申请亟待解决的技术问题。
为了解决上述技术问题,本申请可以按照各个处理进程的优先级来确定待处理进程。或者,按照各个处理进程的时间先后顺序,在每次需要处理某处理进程时,先判断终端设备当前能量是否够该处理该处理进程,如果当前能量足够该处理进程,则处理该处理进程即可。
应理解的是,在本申请实施例中,将终端设备需要采集能量来完成的工作或者进程称为处理进程。例如,对于半无源零功耗终端来说,其具备能量采集功能,其采集的能量可以用于信号的接收、发送、测量、编解码等。其采集的能量除了驱动终端工作用于通信过程之外,在一些场景下还可能用于信息采集,如在蜂窝物联网场景下,与传感器结合的半无源零功耗终端,需要读取和存储传感器得到的数据,如温度、压力等信息。图6为本申请实施例提供的一种无线传感器网络的示意图,如图6所示,半无源零功耗终端可以读取传感器的数据,并且其可以通过与网络设备之间的反向散射链路将传感器数据传给网络设备。在这种情况下,半无源零功耗终端通过能量采集获得的能量可以用于传感器数据的采集和存储。而半无源零功耗终端通过能量采集也可以向传感器供电,或者,该传感器可以通过其他的供电设备向其供电。基于此,本申请实施例中的处理进程可以包括以下内容,但不限于此:信号的接收、发送、测量、编解码、数据采集、数据存储等。
下面将对本申请技术方案进行详细阐述:
图7为本申请实施例提供的一种无线通信方法的流程图,如图7所示,该方法包括如下步骤:
S710:终端设备根据终端设备的能量采集状态判断终端设备能否完成至少一个处理进程;
S720:若确定终端设备无法完成至少一个处理进程,则终端设备根据至少一个处理进程的优先级确定至少一个目标处理进程。
在一些可实现方式中,终端设备的能量采集状态可以通过终端设备当前的能量占满能量的百分比来表示,其中,满能量是指终端设备的100%能量,例如:若终端设备的能量采集状态是80%,则表示终端设备当前的能量占满能量的80%。
在一些可实现方式中,终端设备的能量采集状态可以通过高中低等层次来表示,例如:若终端设备当前的能量占满能量的百分比低于第一阈值,则表示该终端设备的能量采集状态是低状态或者低层次。若终端设备当前的能量占满能量的百分比高于或等于第一阈值,且低于第二阈值,则表示该终端设备的能量采集状态是中状态或者中层次。若终端设备当前的能量占满能量的百分比高于或等于第二阈值,则表示该终端设备的能量采集状态是高状态或者高层次。其中,第一阈值小于第二阈值。
总之,本申请对终端设备的能量采集状态的表示方式不做限制。
应理解的是,上述至少一个处理进程指的是终端设备需要完成的处理进程。
在一些可实现方式中,上述至少一个处理进程是目标时间间隔内需要完成的。
应理解的是,目标时间间隔包括该目标时间间隔的起始时刻和长度。
在一些可实现方式中,目标时间间隔的起始时刻是预定义的或者是网络设备配置的,但不限于此。
在一些可实现方式中,目标时间间隔的长度是预定义的或者是网络设备配置的,但不限于此。
在一些可实现方式中,目标时间间隔是预定义的或者是网络设备配置的,但不限于此,即目标时间间隔的起始时刻和长度是预定义的,或者,目标时间间隔的起始时刻和长度是网络设备配置的。
在一些可实现方式中,目标时间间隔与以下至少一项有关,但不限于此:终端设备的能力、信号测量结果。
在一些可实现方式中,终端设备的能力包括以下至少一项,但不限于此:
1、终端设备的储能能力;
2、终端设备的能量采集时间;
3、终端设备的能量采集效率;
4、终端设备的能量采集速度。
在一些可实现方式中,终端设备的能力越强,则目标时间间隔的长度越长或越短,例如:终端设备的储能能力越强,和/或,终端设备的能量采集时间越长,和/或,终端设备的能量采集效率越高,和/或,终端设备的能量采集速度越快,则目标时间间隔的长度越长或越短。
在一些可实现方式中,信号测量结果包括:终端设备接收的供能信号的强度,但不限于此。例如:供能信号的强度越高,则说明终端设备的能量采集速度越快,那么目标时间间隔的长度越长或越短。
在一些可实现方式中,上述终端设备的能量采集状态是该目标时间间隔对应的能量采集状态。例如:如图8所示,终端设备可以在T0时刻确定其能量采集状态,也就是说,该能量采集状态是终端设备在T0时刻的能量采集状态,而目标时间间隔的起始时刻是该T0时刻。
在一些可实现方式中,终端设备根据其能量采集状态确定它的工作时长,并且可以确定上述至少一个处理进程中每个处理进程的处理时间,包括:处理起始时间和处理时长,基于此,来判断是否可以完成上述至少一个处理进程。或者,终端设备确定上述至少一个处理进程中每个处理进程的耗电量,并结合自身的其能量采集状态来判断是否可以完成至少一个处理进程。例如:终端设备确定至少一个处理进程包括:处理进程1和处理进程2,它们的耗电量分别是10%和20%,耗电量总和是30%,而其能量采集状态是10%,这种情况则表示终端设备无法完成这两个处理进程。
总之,本申请对如何判断终端设备是否可以完成至少一个处理进程不做限制。
在一些可实现方式中,上述至少一个处理进程的优先级是根据至少一个处理进程的类型,按照优先级规则确定的。
应理解的是,本申请实施例涉及的处理进程,包括以下处理进程,但不限于此:
1、下行信道/信号的接收;
2、上行信道/信号的发送,包括基于调度的和免调度的传输;
3、下行信道的解调、解码;
4、上行信道的编码、调制;
5、信号的测量;
6、同步过程;
7、外部信息的采集、存取、处理等,如传感器信息、定位信息的采集、存取、处理等
8、信源数据的产生,包括存取、计算、映射等,信源数据如信道状态反馈信息、混合自动请求 重传(Hybrid Automatic Repeat reQuest,HARQ)信息、数据等。
9、随机接入过程;
10、与第三方设备的交互,包括信息传输等。
这些处理进程可以归类成若干种处理进程类型,例如:动态调度类型、免调度类型、数据处理类型,但不限于此。
在一些可实现方式中,动态调度类型的处理进程包括:下行动态调度、上行动态调度,但不限于此。
在一些可实现方式中,免调度类型的处理进程包括:下行免调度、上行动态调度,但不限于此。
在一些可实现方式中,数据处理类型的处理进程包括:外部信息的采集、存取、处理、与第三方设备的交互、信号的测量、同步过程等,但不限于此。
应理解的是,在进行处理进程类型划分时,需要对有些处理进程进行绑定,以一起考虑能量的使用,如下行信道/信号的接收和下行信道的解调、解码需要绑定到一起,进一步还可以包括HARQ反馈。再例如,上行信道/信号的发送和上行信道的编码、调制需要绑定到一起。基于此,上述下行动态调度包括:下行信道/信号的接收以及下行信道的解调、解码等。上行动态调度包括:上行信道/信号的发送以及上行信道的编码、调制等。类似的,上述下行免调度也包括:下行信道/信号的接收以及下行信道的解调、解码等。上行免调度也包括:上行信道/信号的发送以及上行信道的编码、调制等。
示例性地,图8所示的下行信道/信号的监听可以与下行信道的解调、解码,或者下行信号的测量绑定,形成一个处理进程。上行信道/信号的发送可以与上行信道承载的数据编码、调制等绑定,形成一个处理进程。
在一些可实现方式中,优先级规则是预定义的或者网络设备配置的,但不限于此。
在一些可实现方式中,优先级规则包括:动态调度类型的处理进程优先级高于免调度类型的处理进程优先级;免调度类型的处理进程优先级高于数据处理类型的处理进程优先级,但不限于此。
在另一些可实现方式中,上述至少一个处理进程的优先级是预定义的,但不限于此。
示例性地,上述至少一个处理进程都是免调度类型的处理进程和/或数据处理类型的处理进程,这些处理进程的优先级可以是预定义的。
在再一些可实现方式中,上述至少一个处理进程的优先级是网络设备配置的,但不限于此。
在一些可实现方式中,至少一个处理进程的优先级是网络设备采用半静态方式配置的,但不限于此。
在一些可实现方式中,第一处理进程的优先级携带在网络设备发送的调度指示中;其中,第一处理进程是至少一个处理进程中通过动态或者半静态调度方式调度的任一个处理进程,但不限于此。
示例性地,假设上述至少一个处理进程中存在免调度类型、动态调度类型、数据处理类型的处理进程,那么针对免调度类型和/或数据处理类型的处理进程,其优先级可以是预定义的。而对于动态调度处理进程,其优先级可以携带在网络设备发送的调度指示中,如携带在下行控制信息(Downlink Control Information,DCI)中,例如:如图8所示,假设上述下行信道/信号的监听是一个动态调度类型的处理进程,它所对应的调度指示中携带它的优先级为2。假设上述上行信道/信号的发送是一个动态调度类型的处理进程,它所对应的调度指示中携带它的优先级为1。
总之,本申请实施例对上述至少一个处理进程的优先级的获取方式不做限制。
在一些可实现方式中,终端设备假设按照上述至少一个处理进程的优先级来处理这些处理进程,例如:终端设备按照优先级由高至低的顺序处理上述至少一个处理进程,这时终端设备可以根据这些处理进程的处理时间,包括处理起始时间和时长来确定至少一个目标处理进程,其中,这些待处理进程包含于上述至少一个处理进程。
在一些可实现方式中,假设存在两个优先级相同的处理进程,那么在确定待处理进程时,可以假设终端设备优先处理这两个处理进程中,起始时间靠前的处理进程,但不限于此。
在一些可实现方式中,假设优先级高的处理进程位于优先级低的处理进程之后,那么在确定待处理进程时,终端设备可以假设需要处理该优先级高的处理进程,而跳过该优先级低的处理进程。
在一些可实现方式中,终端设备确定了上述至少一个目标处理进程之后,可以按照这些待处理进程的优先级先后顺序处理这些待处理进程;或者,按照这些待处理进程的时间先后顺序处理这些处理进程,但不限于此。
应理解的是,假设存在两个优先级相同的待处理进程,那么终端设备可以优先处理时间靠前的待处理进程,但不限于此。
示例性地,如图8所示,假设终端设备确定目标时间间隔内的待处理进程是下行信道/信号的监 听、上行信道/信号的发送,而下行信道/信号的监听对应的优先级是2,上行信道/信号的发送对应的优先级是1,并且假设优先级索引越小,则表示优先级越高,那么终端设备可以按照待处理进程的优先级先后顺序,先执行优先级是1的上行信道/信号的发送,而由于下行信道/信号的监听的执行时间在上行信道/信号的发送之前,这种情况下,终端设备则跳过对下行信道/信号的监听的执行。或者,终端设备可以按照待处理进程的时间先后顺序,先执行优先级是2的下行信道/信号的监听,再执行优先级是1的上行信道/信号的发送。
综上,在本申请实施例中,终端设备可以按照各个处理进程的优先级来确定待处理进程,进而处理这些待处理进程,基于此,终端设备在能量有限的情况下,通过本申请技术方案可以保证终端设备优先处理高优先级的待处理进程,以提高终端设备的可靠性。
图9为本申请实施例提供的另一种无线通信方法的流程图,如图9所示,该方法包括如下步骤:
S910:终端设备根据终端设备的能量采集状态判断终端设备能否完成第一处理进程;
S920:若确定终端设备能够完成第一处理进程,则终端设备处理第一处理进程。
应理解的是,本申请实施例的核心思想是:终端设备按照处理进程的时间先后顺序执行处理进程,即每到达一个处理进程,终端设备根据自身当前的能量采集状态判断终端设备能否完成该处理进程,如果可以完成该处理进程,则终端设备处理该处理进程即可。
在本申请实施例中,第一处理进程就是当前到达的处理进程。
在一些可实现方式中,终端设备需要确定终端设备的能量采集状态,例如:终端设备在第一处理进程到达时,确定其能量采集状态。
应理解的是,关于能量采集状态的解释说明可参考上文,本申请对此不再赘述。
在一些可实现方式中,终端设备根据其能量采集状态确定它的工作时长,并且可以确定上述第一处理进程的处理时间,包括:处理起始时间和处理时长,基于此,来判断是否可以完成该第一处理进程。或者,终端设备可以确定第一处理进程的耗电量,并结合自身的其能量采集状态来判断是否可以完成该第一处理进程。例如:终端设备确定第一处理进程的耗电量是20%,而其能量采集状态是10%,这种情况则表示终端设备无法完成该第一处理进程。
总之,本申请对如何判断终端设备是否可以完成第一处理进程不做限制。
在一些可实现方式中,若终端设备确定其不能完成第一处理进程,则不处理第一处理进程。
在一些可实现方式中,当目标时间间隔内存在高优先级的处理进程,即优先级高于预设优先级的第二处理进程时,为了保证这类处理进程可以被处理,终端设备可以在根据其能量采集状态判断终端设备能否完成第一处理进程之前,判断目标时间间隔内是否存在优先级高于预设优先级的第二处理进程;如果在目标时间间隔内不存在第二处理进程时,终端设备才根据能量采集状态判断终端设备能否完成第一处理进程;如果在目标时间间隔内存在第二处理进程时,终端设备需要处理第二处理进程,并不处理第一处理进程,即如果在目标时间间隔内存在第二处理进程时,终端设备保留采集的能量,以优先保证对高优先级的处理进程的处理。
应理解的是,目标时间间隔包括该目标时间间隔的起始时刻和长度。
在一些可实现方式中,目标时间间隔的起始时刻是上述第一处理进程到达的时间,本申请对此不做限制。
在一些可实现方式中,目标时间间隔的起始时刻是预定义的或者是网络设备配置的,但不限于此。
在一些可实现方式中,目标时间间隔的长度是预定义的或者是网络设备配置的,但不限于此。
在一些可实现方式中,目标时间间隔是预定义的或者是网络设备配置的,但不限于此,即目标时间间隔的起始时刻和长度是预定义的,或者,目标时间间隔的起始时刻和长度是网络设备配置的。
在一些可实现方式中,目标时间间隔与以下至少一项有关,但不限于此:终端设备的能力、信号测量结果。
在一些可实现方式中,终端设备的能力包括以下至少一项,但不限于此:
1、终端设备的储能能力;
2、终端设备的能量采集时间;
3、终端设备的能量采集效率;
4、终端设备的能量采集速度。
在一些可实现方式中,终端设备的能力越强,则目标时间间隔的长度越长或越短,例如:终端设备的储能能力越强,和/或,终端设备的能量采集时间越长,和/或,终端设备的能量采集效率越高,和/或,终端设备的能量采集速度越快,则目标时间间隔的长度越长或越短。
在一些可实现方式中,信号测量结果包括:终端设备接收的供能信号的强度,但不限于此。例如:供能信号的强度越高,则说明终端设备的能量采集速度越快,那么目标时间间隔的长度越长或越短。
在一些可实现方式中,上述终端设备的能量采集状态是该目标时间间隔对应的能量采集状态。
综上,在本申请实施例中,每到达一个处理进程,终端设备根据自身当前的能量采集状态判断终端设备能否完成该处理进程,如果可以完成该处理进程,则终端设备处理该处理进程即可。或者,当目标时间间隔内存在高优先级的处理进程,终端设备可以在根据其能量采集状态判断终端设备能否完成第一处理进程之前,判断目标时间间隔内是否存在优先级高于预设优先级的第二处理进程;如果在目标时间间隔内不存在第二处理进程时,终端设备才根据能量采集状态判断终端设备能否完成第一处理进程;如果在目标时间间隔内存在第二处理进程时,终端设备需要处理第二处理进程,并不处理第一处理进程,即如果在目标时间间隔内存在第二处理进程时,终端设备保留采集的能量,以优先保证对高优先级的处理进程的处理,以提高终端设备的可靠性。
图10为本申请实施例提供的一种终端设备1000的示意图,如图10所示,该终端设备1000包括:处理单元1010,用于:根据终端设备的能量采集状态判断终端设备能否完成至少一个处理进程;若确定终端设备无法完成至少一个处理进程,则根据至少一个处理进程的优先级确定至少一个目标处理进程。
在一些可实现方式中,处理单元还用于:确定目标时间间隔内需要完成的至少一个处理进程;确定目标时间间隔对应的能量采集状态。
在一些可实现方式中,目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔的长度是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔与以下至少一项有关:终端设备的能力、信号测量结果。
在一些可实现方式中,终端设备的能力包括以下至少一项:
终端设备的储能能力;
终端设备的能量采集时间;
终端设备的能量采集效率;
终端设备的能量采集速度。
在一些可实现方式中,信号测量结果包括:终端设备接收的供能信号的强度。
在一些可实现方式中,至少一个处理进程的优先级是根据至少一个处理进程的类型,按照优先级规则确定的。
在一些可实现方式中,优先级规则是预定义的或者网络设备配置的。
在一些可实现方式中,至少一个处理进程的类型包括以下至少一项:动态调度类型、免调度类型、数据处理类型。
在一些可实现方式中,优先级规则包括:动态调度类型的处理进程优先级高于免调度类型的处理进程优先级;免调度类型的处理进程优先级高于数据处理类型的处理进程优先级。
在一些可实现方式中,至少一个处理进程的优先级是预定义的。
在一些可实现方式中,至少一个处理进程的优先级是网络设备配置的。
在一些可实现方式中,至少一个处理进程的优先级是网络设备采用半静态方式配置的。
在一些可实现方式中,第一处理进程的优先级携带在网络设备发送的调度指示中;其中,第一处理进程是至少一个处理进程中通过动态或者半静态调度方式调度的任一个处理进程。
在一些可实现方式中,处理单元1010还用于:按照至少一个目标处理进程的优先级先后顺序处理至少一个目标处理进程。
在一些可实现方式中,处理单元1010还用于:按照至少一个目标处理进程的时间先后顺序处理至少一个目标处理进程。
在一些可实现方式中,终端设备采用以下至少一种能量采集方式:
无线射频信号采集方式;
环境光采集方式;
振动能量采集方式;
热量采集方式。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备1000可对应于图7对应的方法实施例中的终端设备,并且终端设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图7对应的方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图11为本申请实施例提供的一种终端设备1100的示意图,如图11所示,该终端设备1100包括: 处理单元1110,用于:根据终端设备的能量采集状态判断终端设备能否完成第一处理进程;若确定终端设备能够完成第一处理进程,则处理第一处理进程。
在一些可实现方式中,处理单元1110还用于:若确定终端设备不能完成第一处理进程,则不处理第一处理进程。
在一些可实现方式中,处理单元1110还用于:确定终端设备的能量采集状态。
在一些可实现方式中,处理单元1110还用于:判断目标时间间隔内是否存在优先级高于预设优先级的第二处理进程;处理单元1110具体用于:在目标时间间隔内不存在第二处理进程时,根据能量采集状态判断终端设备能否完成第一处理进程。
在一些可实现方式中,处理单元1110还用于:在目标时间间隔内存在第二处理进程时,处理第二处理进程,并不处理第一处理进程。
在一些可实现方式中,目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔的长度是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔是预定义的或者是网络设备配置的。
在一些可实现方式中,目标时间间隔与以下至少一项有关:终端设备的能力、信号测量结果。
在一些可实现方式中,终端设备的能力包括以下至少一项:
终端设备的储能能力;
终端设备的能量采集时间;
终端设备的能量采集效率;
终端设备的能量采集速度。
在一些可实现方式中,信号测量结果包括:终端设备接收的供能信号的强度。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备1100可对应于图9对应的方法实施例中的终端设备,并且终端设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图9对应的方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种终端设备1200示意性结构图。图12所示的终端设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,终端设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,终端设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的装置的示意性结构图。图13所示的装置1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,装置1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该装置1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的 处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的 具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种无线通信方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    根据所述终端设备的能量采集状态判断所述终端设备能否完成至少一个处理进程;
    若确定所述终端设备无法完成所述至少一个处理进程,则根据所述至少一个处理进程的优先级确定至少一个目标处理进程。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    确定目标时间间隔内需要完成的所述至少一个处理进程;
    确定所述目标时间间隔对应的所述能量采集状态。
  3. 根据权利要求2所述的方法,其特征在于,所述目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
  4. 根据权利要求2或3所述的方法,其特征在于,所述目标时间间隔的长度是预定义的或者是网络设备配置的。
  5. 根据权利要求2所述的方法,其特征在于,所述目标时间间隔是预定义的或者是网络设备配置的。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述目标时间间隔与以下至少一项有关:所述终端设备的能力、信号测量结果。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备的能力包括以下至少一项:
    所述终端设备的储能能力;
    所述终端设备的能量采集时间;
    所述终端设备的能量采集效率;
    所述终端设备的能量采集速度。
  8. 根据权利要求6所述的方法,其特征在于,所述信号测量结果包括:所述终端设备接收的供能信号的强度。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述至少一个处理进程的优先级是根据所述至少一个处理进程的类型,按照优先级规则确定的。
  10. 根据权利要求9所述的方法,其特征在于,所述优先级规则是预定义的或者网络设备配置的。
  11. 根据权利要求9或10所述的方法,其特征在于,所述至少一个处理进程的类型包括以下至少一项:动态调度类型、免调度类型、数据处理类型。
  12. 根据权利要求11所述的方法,其特征在于,所述优先级规则包括:
    动态调度类型的处理进程优先级高于免调度类型的处理进程优先级;
    免调度类型的处理进程优先级高于数据处理类型的处理进程优先级。
  13. 根据权利要求1-8任一项所述的方法,其特征在于,所述至少一个处理进程的优先级是预定义的。
  14. 根据权利要求1-8任一项所述的方法,其特征在于,所述至少一个处理进程的优先级是网络设备配置的。
  15. 根据权利要求14所述的方法,其特征在于,所述至少一个处理进程的优先级是网络设备采用半静态方式配置的。
  16. 根据权利要求15所述的方法,其特征在于,第一处理进程的优先级携带在所述网络设备发送的调度指示中;
    其中,所述第一处理进程是所述至少一个处理进程中通过动态或者半静态调度方式调度的任一个处理进程。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,还包括:
    按照所述至少一个目标处理进程的优先级先后顺序处理所述至少一个目标处理进程。
  18. 根据权利要求1-16任一项所述的方法,其特征在于,还包括:
    按照所述至少一个目标处理进程的时间先后顺序处理所述至少一个目标处理进程。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述终端设备采用以下至少一种能量采集方式:
    无线射频信号采集方式;
    环境光采集方式;
    振动能量采集方式;
    热量采集方式。
  20. 一种无线通信方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    根据所述终端设备的能量采集状态判断所述终端设备能否完成第一处理进程;
    若确定所述终端设备能够完成所述第一处理进程,则处理所述第一处理进程。
  21. 根据权利要求20所述的方法,其特征在于,还包括:
    若确定所述终端设备不能完成所述第一处理进程,则不处理所述第一处理进程。
  22. 根据权利要求20或21所述的方法,其特征在于,所述根据所述终端设备的能量采集状态判断所述终端设备能否完成第一处理进程之前,还包括:
    确定所述终端设备的能量采集状态。
  23. 根据权利要求20-22任一项所述的方法,其特征在于,所述根据所述终端设备的能量采集状态判断所述终端设备能否完成第一处理进程之前,还包括:
    判断目标时间间隔内是否存在优先级高于预设优先级的第二处理进程;
    所述根据所述终端设备的能量采集状态判断所述终端设备能否完成第一处理进程,包括:
    在所述目标时间间隔内不存在所述第二处理进程时,根据所述能量采集状态判断所述终端设备能否完成所述第一处理进程。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    在所述目标时间间隔内存在所述第二处理进程时,处理所述第二处理进程,并不处理所述第一处理进程。
  25. 根据权利要求23或24所述的方法,其特征在于,所述目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
  26. 根据权利要求23-25任一项所述的方法,其特征在于,所述目标时间间隔的长度是预定义的或者是网络设备配置的。
  27. 根据权利要求23或24所述的方法,其特征在于,所述目标时间间隔是预定义的或者是网络设备配置的。
  28. 根据权利要求23-27任一项所述的方法,其特征在于,所述目标时间间隔与以下至少一项有关:所述终端设备的能力、信号测量结果。
  29. 根据权利要求28所述的方法,其特征在于,所述终端设备的能力包括以下至少一项:
    所述终端设备的储能能力;
    所述终端设备的能量采集时间;
    所述终端设备的能量采集效率;
    所述终端设备的能量采集速度。
  30. 根据权利要求28所述的方法,其特征在于,所述信号测量结果包括:所述终端设备接收的供能信号的强度。
  31. 一种终端设备,其特征在于,包括:处理单元,用于:
    根据所述终端设备的能量采集状态判断所述终端设备能否完成至少一个处理进程;
    若确定所述终端设备无法完成所述至少一个处理进程,则根据所述至少一个处理进程的优先级确定至少一个目标处理进程。
  32. 根据权利要求31所述的终端设备,其特征在于,所述处理单元还用于:
    确定目标时间间隔内需要完成的所述至少一个处理进程;
    确定所述目标时间间隔对应的所述能量采集状态。
  33. 根据权利要求32所述的终端设备,其特征在于,所述目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述目标时间间隔的长度是预定义的或者是网络设备配置的。
  35. 根据权利要求32所述的终端设备,其特征在于,所述目标时间间隔是预定义的或者是网络设备配置的。
  36. 根据权利要求32-35任一项所述的终端设备,其特征在于,所述目标时间间隔与以下至少一项有关:所述终端设备的能力、信号测量结果。
  37. 根据权利要求36所述的终端设备,其特征在于,所述终端设备的能力包括以下至少一项:
    所述终端设备的储能能力;
    所述终端设备的能量采集时间;
    所述终端设备的能量采集效率;
    所述终端设备的能量采集速度。
  38. 根据权利要求36所述的终端设备,其特征在于,所述信号测量结果包括:所述终端设备接 收的供能信号的强度。
  39. 根据权利要求31-38任一项所述的终端设备,其特征在于,所述至少一个处理进程的优先级是根据所述至少一个处理进程的类型,按照优先级规则确定的。
  40. 根据权利要求39所述的终端设备,其特征在于,所述优先级规则是预定义的或者网络设备配置的。
  41. 根据权利要求39或40所述的终端设备,其特征在于,所述至少一个处理进程的类型包括以下至少一项:动态调度类型、免调度类型、数据处理类型。
  42. 根据权利要求41所述的终端设备,其特征在于,所述优先级规则包括:
    动态调度类型的处理进程优先级高于免调度类型的处理进程优先级;
    免调度类型的处理进程优先级高于数据处理类型的处理进程优先级。
  43. 根据权利要求31-38任一项所述的终端设备,其特征在于,所述至少一个处理进程的优先级是预定义的。
  44. 根据权利要求31-38任一项所述的终端设备,其特征在于,所述至少一个处理进程的优先级是网络设备配置的。
  45. 根据权利要求44所述的终端设备,其特征在于,所述至少一个处理进程的优先级是网络设备采用半静态方式配置的。
  46. 根据权利要求45所述的终端设备,其特征在于,第一处理进程的优先级携带在所述网络设备发送的调度指示中;
    其中,所述第一处理进程是所述至少一个处理进程中通过动态或者半静态调度方式调度的任一个处理进程。
  47. 根据权利要求31-46任一项所述的终端设备,其特征在于,所述处理单元还用于:
    按照所述至少一个目标处理进程的优先级先后顺序处理所述至少一个目标处理进程。
  48. 根据权利要求31-46任一项所述的终端设备,其特征在于,所述处理单元还用于:
    按照所述至少一个目标处理进程的时间先后顺序处理所述至少一个目标处理进程。
  49. 根据权利要求31-48任一项所述的终端设备,其特征在于,所述终端设备采用以下至少一种能量采集方式:
    无线射频信号采集方式;
    环境光采集方式;
    振动能量采集方式;
    热量采集方式。
  50. 一种终端设备,其特征在于,包括:处理单元,用于:
    根据所述终端设备的能量采集状态判断所述终端设备能否完成第一处理进程;
    若确定所述终端设备能够完成所述第一处理进程,则处理所述第一处理进程。
  51. 根据权利要求50所述的终端设备,其特征在于,所述处理单元还用于:
    若确定所述终端设备不能完成所述第一处理进程,则不处理所述第一处理进程。
  52. 根据权利要求50或51所述的终端设备,其特征在于,所述处理单元还用于:
    确定所述终端设备的能量采集状态。
  53. 根据权利要求50-52任一项所述的终端设备,其特征在于,所述处理单元还用于:
    判断目标时间间隔内是否存在优先级高于预设优先级的第二处理进程;
    所述处理单元具体用于:
    在所述目标时间间隔内不存在所述第二处理进程时,根据所述能量采集状态判断所述终端设备能否完成所述第一处理进程。
  54. 根据权利要求53所述的终端设备,其特征在于,所述处理单元还用于:
    在所述目标时间间隔内存在所述第二处理进程时,处理所述第二处理进程,并不处理所述第一处理进程。
  55. 根据权利要求53或54所述的终端设备,其特征在于,所述目标时间间隔的起始时刻是预定义的或者是网络设备配置的。
  56. 根据权利要求53-55任一项所述的终端设备,其特征在于,所述目标时间间隔的长度是预定义的或者是网络设备配置的。
  57. 根据权利要求53或54所述的终端设备,其特征在于,所述目标时间间隔是预定义的或者是网络设备配置的。
  58. 根据权利要求53-57任一项所述的终端设备,其特征在于,所述目标时间间隔与以下至少一 项有关:所述终端设备的能力、信号测量结果。
  59. 根据权利要求58所述的终端设备,其特征在于,所述终端设备的能力包括以下至少一项:
    所述终端设备的储能能力;
    所述终端设备的能量采集时间;
    所述终端设备的能量采集效率;
    所述终端设备的能量采集速度。
  60. 根据权利要求58所述的终端设备,其特征在于,所述信号测量结果包括:所述终端设备接收的供能信号的强度。
  61. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  62. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2021/120398 2021-09-24 2021-09-24 无线通信方法及设备 WO2023044781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/120398 WO2023044781A1 (zh) 2021-09-24 2021-09-24 无线通信方法及设备
CN202180102479.8A CN118077254A (zh) 2021-09-24 2021-09-24 无线通信方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120398 WO2023044781A1 (zh) 2021-09-24 2021-09-24 无线通信方法及设备

Publications (1)

Publication Number Publication Date
WO2023044781A1 true WO2023044781A1 (zh) 2023-03-30

Family

ID=85719240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120398 WO2023044781A1 (zh) 2021-09-24 2021-09-24 无线通信方法及设备

Country Status (2)

Country Link
CN (1) CN118077254A (zh)
WO (1) WO2023044781A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120210150A1 (en) * 2011-02-10 2012-08-16 Alcatel-Lucent Usa Inc. Method And Apparatus Of Smart Power Management For Mobile Communication Terminals
CN206399478U (zh) * 2017-01-06 2017-08-11 浙江大华系统工程有限公司 一种输电线路监测装置
CN109309953A (zh) * 2018-11-30 2019-02-05 努比亚技术有限公司 功耗检测方法、装置、终端及可读存储介质
CN112671456A (zh) * 2020-12-11 2021-04-16 兰州交通大学 反向散射通信中的最优标签选择方法
CN113067937A (zh) * 2021-03-18 2021-07-02 Oppo广东移动通信有限公司 蓝牙连接方法、装置、设备及存储介质
CN113329463A (zh) * 2021-05-21 2021-08-31 Oppo广东移动通信有限公司 功耗控制方法及终端设备、计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120210150A1 (en) * 2011-02-10 2012-08-16 Alcatel-Lucent Usa Inc. Method And Apparatus Of Smart Power Management For Mobile Communication Terminals
CN206399478U (zh) * 2017-01-06 2017-08-11 浙江大华系统工程有限公司 一种输电线路监测装置
CN109309953A (zh) * 2018-11-30 2019-02-05 努比亚技术有限公司 功耗检测方法、装置、终端及可读存储介质
CN112671456A (zh) * 2020-12-11 2021-04-16 兰州交通大学 反向散射通信中的最优标签选择方法
CN113067937A (zh) * 2021-03-18 2021-07-02 Oppo广东移动通信有限公司 蓝牙连接方法、装置、设备及存储介质
CN113329463A (zh) * 2021-05-21 2021-08-31 Oppo广东移动通信有限公司 功耗控制方法及终端设备、计算机可读存储介质

Also Published As

Publication number Publication date
CN118077254A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2023004714A1 (zh) 无线通信方法及设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023004747A1 (zh) 无线通信方法、终端设备和网络设备
WO2023279335A1 (zh) 无线通信方法、终端设备和网络设备
WO2023044780A1 (zh) 无线通信方法及设备
WO2023004748A1 (zh) 无线通信方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023044779A1 (zh) 无线通信方法及设备
WO2023272683A1 (zh) 无线通信方法及设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023272443A1 (zh) 无线通信方法及设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021957908

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957908

Country of ref document: EP

Effective date: 20240424