WO2023004747A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023004747A1
WO2023004747A1 PCT/CN2021/109594 CN2021109594W WO2023004747A1 WO 2023004747 A1 WO2023004747 A1 WO 2023004747A1 CN 2021109594 W CN2021109594 W CN 2021109594W WO 2023004747 A1 WO2023004747 A1 WO 2023004747A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
indication information
energy
parameter
time interval
Prior art date
Application number
PCT/CN2021/109594
Other languages
English (en)
French (fr)
Inventor
贺传峰
崔胜江
邵帅
徐伟杰
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/109594 priority Critical patent/WO2023004747A1/zh
Priority to CN202180100889.9A priority patent/CN117751630A/zh
Priority to EP21951343.9A priority patent/EP4380241A1/en
Publication of WO2023004747A1 publication Critical patent/WO2023004747A1/zh
Priority to US18/418,843 priority patent/US20240160866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, a terminal device, and a network device.
  • zero-power communication when the zero-power terminal is far away from the network site, the speed of obtaining and storing energy through energy harvesting is very slow, and the stored energy can only be used by zero-power devices for a certain period of time. Communication, when the stored energy is depleted, the communication between the zero-power device and the network device will be interrupted.
  • Embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can reduce invalid transmission or scheduling, save transmission resources, reduce time delay, and improve system performance of zero-power consumption communication.
  • the present application provides a wireless communication method, including:
  • the first indication information is used to indicate a first parameter
  • the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device.
  • the present application provides a wireless communication method, including:
  • the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device
  • Data transmission is performed based on the first parameter and the terminal device.
  • the present application provides a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module configured to execute the method in the foregoing first aspect or its various implementation manners.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module configured to execute the method in the above second aspect or each implementation manner thereof.
  • the network device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the network device is a communication chip, the receiving unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above second aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the network device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip configured to implement any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
  • the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof .
  • the present application provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the network device can know the energy collection efficiency or time interval of the terminal device, and then, when the network device performs downlink transmission or uplink scheduling, it can The energy collection efficiency or time interval is used to determine communication parameters, reduce invalid transmission or scheduling, save transmission resources, reduce delay, and improve system performance of zero-power communication.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a zero-power communication system provided by the present application.
  • Fig. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of backscatter communication provided by the present application.
  • Fig. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Fig. 7 is another schematic flowchart of the wireless communication method provided by the embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next generation communication system, zero power consumption communication system , cellular Internet of Things, cellular passive Internet of Things or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio
  • the cellular Internet of Things is the development product of the combination of the cellular mobile communication network and the Internet of Things.
  • the cellular passive Internet of Things is also called the passive cellular Internet of Things, which is composed of network devices and passive terminals.
  • passive terminals can communicate with other passive terminals through network devices.
  • the passive terminal can communicate in a device-to-device (D2D) communication manner, and the network device only needs to send a carrier signal, that is, an energy supply signal, to supply energy to the passive terminal.
  • D2D device-to-device
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the network equipment may be a device for communicating with mobile equipment, and the network equipment may be an access point (Access Point, AP) in WLAN, GSM or A base station (Base Transceiver Station, BTS) in CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle-mounted devices, wearable devices, and network devices (gNB) in NR networks or network devices in PLMN networks that will evolve in the future.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB network devices
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example, The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be referred to as a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network, or zero-power devices.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • a zero-power consumption device may be understood as a device whose power consumption is lower than a preset power consumption. For example, it includes passive terminals and even semi-passive terminals.
  • the zero-power consumption device is a radio frequency identification (Radio Frequency Identification, RFID) tag, which is a technology for realizing non-contact automatic transmission and identification of tag information by means of spatial coupling of radio frequency signals.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, means that the energy of the electronic tags is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag, which is different from the passive radio frequency activation method. Set the frequency band to send information.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • the tags When passive electronic tags are close to the reader, the tags are in the near-field range formed by the radiation of the reader antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the chip circuit of the electronic label.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price, and long service life.
  • the built-in battery When the built-in battery is not accessed by a reader, It only provides power for a few circuits in the chip, and the built-in battery supplies power to the RFID chip only when the reader is accessing, so as to increase the reading and writing distance of the tag and improve the reliability of communication.
  • An RFID system is a wireless communication system.
  • the RFID system is composed of two parts: an electronic tag (TAG) and a reader (Reader/Writer).
  • Electronic tags include coupling components and chips, and each electronic tag has a unique electronic code, which is placed on the target to achieve the purpose of marking the target object.
  • the reader can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
  • Zero-power communication uses energy harvesting and backscatter communication technologies. In order to facilitate understanding of the technical solutions of the embodiments of the present application, related technologies of zero power consumption are described.
  • FIG. 2 is a schematic diagram of a zero-power communication system provided by the present application.
  • the zero-power communication system consists of network equipment and zero-power terminals.
  • the network equipment is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensory data such as ambient temperature and ambient humidity.
  • Zero-power communication can also be called communication based on zero-power terminals.
  • the key technologies of zero-power communication mainly include radio frequency energy harvesting and backscatter communication.
  • FIG. 3 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors and memory read, etc. Therefore, zero-power terminals do not require conventional batteries.
  • FIG. 4 is a schematic diagram of backscatter communication provided by the present application.
  • the zero-power communication terminal receives the wireless signal sent by the network, modulates the wireless signal, loads the information to be sent, and radiates the modulated signal from the antenna. This information transmission process is called for backscatter communication.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the magnitude and phase of the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • FIG. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
  • a resistor is connected in parallel with the load, which is called a load modulation resistor.
  • the resistor is turned on or off based on the control of the binary data flow.
  • Amplitude keying modulation (ASK) that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattered signal of the zero-power terminal.
  • ASK Amplitude keying modulation
  • FSK frequency keying modulation
  • zero-power consumption terminal Since the zero-power consumption terminal performs information modulation on the incoming wave signal by means of load modulation, the backscatter communication process is realized. Therefore, zero-power terminals have significant advantages:
  • the terminal equipment does not actively transmit signals, and realizes backscatter communication by modulating the incoming wave signal.
  • Terminal equipment does not rely on traditional active power amplifier transmitters, and uses low-power computing units at the same time, which greatly reduces hardware complexity.
  • the above-mentioned terminal device may be a zero-power consumption device (such as a passive terminal, or even a semi-passive terminal), and even the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
  • a zero-power consumption device such as a passive terminal, or even a semi-passive terminal
  • the terminal device may be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal may be in some backscatter communication.
  • the data transmitted by the terminal device may use different forms of codes to represent binary "1" and "0".
  • RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller coding and differential coding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
  • zero-power terminals can be divided into the following types based on the energy sources and usage methods of zero-power terminals:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, ADC, etc., so it has small size, light weight, and very low price. Cheap, long service life and many other advantages.
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the energy collected by the energy harvesting module. radio energy, so it is also a true zero-power consumption terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminal used can also be an active zero-power terminal, and this type of terminal can have a built-in battery.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • the active zero-power terminal supplies power to the RFID chip through a built-in battery, so as to increase the reading and writing distance of the zero-power terminal and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
  • the zero-power consumption terminal may perform energy collection based on the energy supply signal.
  • the energy supply signal may be a base station, a smart phone, an intelligent gateway, a charging station, a micro base station, and the like.
  • the energy supply signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
  • the energy supply signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
  • the energy supply signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the energy supply signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Control Channel
  • the carrier signal sent by the foregoing network device can also be used to provide energy to the zero-power consumption device, the carrier signal may also be referred to as an energy supply signal.
  • the zero-power terminal can perform backscatter communication based on the received trigger signal.
  • the trigger signal may be used to schedule or trigger backscatter communication of the zero-power terminal.
  • the trigger signal carries scheduling information of the network device, or the trigger signal is a scheduling signaling or a scheduling signal sent by the network device.
  • the trigger signal can be a base station, a smart phone, an intelligent gateway, etc.;
  • the trigger signal may be a low-frequency, medium-frequency, high-frequency signal, etc.
  • the trigger signal may be a sine wave, a square wave, a triangle wave, a pulse, a rectangular wave, and the like.
  • the trigger signal may be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be a certain signal specified in the 3GPP standard.
  • SRS PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
  • the energy supply signal and the trigger signal may be one signal, or two independent signals, which are not specifically limited in this application.
  • passive IoT devices can be based on existing zero-power consumption devices, such as Radio Frequency Identification (RFID) technology, and extended on this basis to be suitable for cellular IoT.
  • RFID Radio Frequency Identification
  • a technical bottleneck faced by passive zero-power communication technology is the limited coverage distance of the forward link.
  • the signal strength of the signal is based on the existing implementation process.
  • a zero-power terminal needs to consume 10uw (microwatt) of power to drive a low-power circuit. This means that the signal power reaching the zero power terminal needs to be at least -20dBm.
  • the transmission power of network equipment should generally not be too large. For example, in the ISM frequency band where RFID works, the maximum transmission power is 30dBm. Therefore, considering the radio propagation loss in space, the transmission distance of the passive zero-power terminal is generally in the range of 10m to tens of meters.
  • the zero-power terminal with the addition of an energy storage module has the potential to significantly extend the communication distance, because the zero-power terminal can use a radio frequency (RF) energy harvesting module to collect radio waves, so it can continuously obtain radio energy and stored in the energy storage unit. After the energy storage unit obtains enough energy, it can drive the low-power circuit to work, and is used for signal demodulation of the forward link and signal modulation of the reverse link.
  • the energy harvesting module can perform energy harvesting and input electric energy to the energy storage unit when the received radio signal strength is not lower than -30dBm. Therefore, the coverage of the forward link of the zero-power terminal with the energy storage module depends on the RF energy harvesting threshold (such as -30dBm). Compared with the passive zero-power terminal, the received radio signal strength is relaxed from -20dBm to - 30dBm, so a link budget gain of 10dB can be obtained, so the downlink coverage can be improved by more than 3 times.
  • the zero-power terminal with the addition of an energy storage module also faces the problem of a decrease in charging efficiency.
  • the energy that can be harvested and stored by the energy harvesting module is greatly reduced.
  • the received signal strength is -30dBm, that is, 1 microwatt hour
  • the energy that can be collected and stored is far less than 1 microwatt (the efficiency of energy collection is greatly reduced).
  • the low-power circuit of the zero-power terminal may need to consume an average power of 10uw.
  • the speed of obtaining and storing energy through energy harvesting is very slow, and the stored energy can only be used by the zero-power consumption device to communicate within a certain period of time.
  • the communication between the zero-power device and the network device will be interrupted.
  • Zero-power devices at the edge of zero-power communication will cause intermittent communication interruptions due to insufficient power. In order to reduce the impact of intermittent communication interruptions, corresponding processing mechanisms need to be introduced.
  • the present application provides a wireless communication method, terminal equipment and network equipment, which can reduce invalid transmission or scheduling, save transmission resources, reduce time delay, and improve system performance of zero-power consumption communication.
  • Fig. 6 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be interactively executed by a terminal device and a network device.
  • the terminal device shown in FIG. 6 may be the terminal device 120 shown in FIG. 1 , such as a zero-power consumption terminal.
  • the network device shown in FIG. 6 may be the network device 110 shown in FIG. 1 .
  • the method 200 may include part or all of the following:
  • the first indication information is used to indicate a first parameter
  • the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device.
  • the terminal device indicates the first energy collection efficiency and/or the first time interval to the network device through the first indication information.
  • the first parameter includes the first energy collection efficiency and/or the first time interval.
  • the network device can know the energy collection efficiency or time interval of the terminal device, and then, when the network device performs downlink transmission or uplink scheduling, it can The energy collection efficiency or time interval is used to determine communication parameters, reduce invalid transmission or scheduling, save transmission resources, reduce delay, and improve system performance of zero-power communication.
  • the energy supply signal for energy supply and the trigger signal for information transmission may be two signals or one signal.
  • the energy supply signal and the trigger signal are one signal, while in the cellular passive Internet of Things technology, the energy supply signal and the trigger signal can be two independent signals, the two Signals may not be sent in one frequency band; network devices continuously or intermittently send energy supply signals in one frequency band, zero-power consumption devices collect energy, and after zero-power consumption devices obtain energy, they can perform corresponding communication processes, such as measurement, channel/ Reception of signals, transmission of channels/signals, etc.; for example, backscatter communication on another frequency band.
  • zero-power devices are different from traditional active devices. When a zero-power device communicates, it needs to collect energy based on the energy supply signal before it can communicate.
  • zero-power consumption devices For zero-power consumption devices, it has the function of energy harvesting. When the strength of the received power supply signal is less than a certain threshold, the energy that the power supply signal can provide is less than the energy consumed by communication, and sufficient energy needs to be obtained through energy harvesting. In order to drive zero-power devices to communicate. In this case, the zero-power device cannot guarantee the continuity of communication at all times, but will interrupt the communication due to the need for energy harvesting. Therefore, the communication state of the zero-power device may change, but the network device cannot know the communication state of the zero-power device. In addition, for zero-power devices, different energy storage capabilities and the distance between zero-power devices and network devices will affect the energy collection efficiency of zero-power devices, and the energy collection efficiency determines whether the uplink data transmission is successful or not.
  • the network device can know the energy collection efficiency or time interval of the terminal device, and then, when the network device performs downlink transmission or uplink scheduling, it can Efficiency or time interval determines communication parameters, reduces invalid transmission or scheduling, saves transmission resources, reduces delay, and improves system performance of zero-power communication.
  • the term "indication" involved in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • A may be the first indication information
  • B may be information indicated by the first indication information.
  • the first indication information may be multiple bits or multiple bit sequences.
  • different bit sequences are used to indicate different energy harvesting efficiencies, or different bit sequences correspond to different time intervals.
  • the first indication information may also be used to indicate the first energy collection efficiency and/or the first time interval of the terminal device.
  • the first indication information may be used to indicate a first parameter and a second parameter, wherein the first parameter is used to indicate the first energy collection efficiency, and the second parameter is used to indicate the first time interval.
  • the first energy collection efficiency is expressed as an energy collection duration of the terminal device.
  • the first energy collection efficiency represents an energy collection rate of the terminal device.
  • the first energy collection efficiency represents the energy value collected by the terminal device per unit time, or the first energy collection efficiency represents the time length used by the terminal device to collect preset energy.
  • the first time interval is represented as the time required from ending transmission to resuming transmission due to insufficient energy of the terminal device; and/or, the first time interval is represented as a Insufficient length of time for which a communication outage occurred.
  • the first time interval represents the energy collection duration of the terminal device.
  • the first time interval represents the time interval required for the terminal device to retransmit after a communication interruption occurs, that is, the time interval required for two adjacent transmissions.
  • the first time interval may include one or more time units.
  • the time unit may be a symbol, a time slot, a subframe, a frame or other time units or a newly defined time unit in zero power consumption communication.
  • the distance from the energy supply node may be different, and the energy harvesting efficiency is also different.
  • the speed at which the energy harvesting module collects and stores energy decreases. Therefore, when different terminal devices collect the power (for example, 10uw) required to drive the low-power circuit of the terminal device, the time required is also different.
  • the collected power can be transmitted within a certain time range, including backscattering or receiving related processes. Among them, backscattering includes reading stored information, coding, load modulation on incoming wave signals, etc., and receiving includes demodulating information carried by incoming wave signals, decoding, storing, and other processing.
  • the terminal device When the transmission is completed, the terminal device needs to perform energy harvesting again to complete the next transmission. Before the energy collection is completed, the terminal device cannot send or receive. During this period, if the network device sends information to the terminal device, or schedules the terminal device to send, it cannot be completed.
  • the first energy collection efficiency may be represented as the energy collection duration of the terminal device; in addition, the first time interval may be represented as the interval between the end of transmission and the restart of transmission due to insufficient energy of the terminal device The required duration; and/or, the first time interval represents the duration of communication interruption due to insufficient energy of the terminal device; equivalent to the first energy collection efficiency indicated by the first indication information reported by the terminal device and/or the first time interval, which may enable the network device to know the energy collection duration of the terminal device, the time required from ending transmission to resuming transmission due to insufficient energy of the terminal device, or The duration of communication interruption can reduce useless transmission or uplink scheduling of network devices.
  • the first parameter involved in this application is semi-static information, which is mainly related to the strength of the power supply signal received by the terminal device. In other alternative embodiments, it may also be replaced with other information having the same or similar effect, which is not specifically limited in the present application.
  • the method 100 may also include:
  • the first parameter is determined based on the energy harvesting capability of the terminal device and/or the strength of an energy supply signal received by the terminal device.
  • the first parameter may be determined according to at least one of the following:
  • the time interval corresponding to the strength of the power supply signal received by the terminal device is determined as the first parameter.
  • the terminal device may determine the first parameter according to the receiving strength of the energy supply signal and/or according to the energy collection capability of the terminal device. In other words, based on the first correspondence, the terminal device determines the parameter corresponding to the strength of the power supply signal received by the terminal device as the first parameter, and the first correspondence includes multiple intensities of the power supply signal respectively Corresponding multiple parameters, the multiple strengths include the strength of the energy supply signal received by the terminal device; or in other words, the terminal device can use the energy harvesting capability of the terminal device to correspond to the parameter, determined as the first parameter, the second corresponding relationship includes multiple collection capabilities and multiple parameters corresponding to the multiple collection capabilities, and the multiple collection capabilities include the energy collection capability of the terminal device .
  • the method 200 may also include:
  • the energy harvesting capability refers to the energy harvesting efficiency of the terminal device under an energy supply signal of a preset strength.
  • the energy harvesting capability includes the energy harvesting efficiency of the terminal device when the received strength of the energy supply signal is constant.
  • the preset intensity mentioned above may be any intensity at which the terminal can perform energy collection, which is not specifically limited in this application.
  • the S210 may include:
  • the reporting of the first indication information may be periodic reporting.
  • the sending period of the first indication information is predefined, or the sending period of the first indication information is configured by a network device.
  • the sending period of the first indication information may be configured by the network device through a trigger signal.
  • the "predefined” can be defined by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the present application does not limit the specific implementation manner.
  • the predefined ones may refer to those defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not specifically limited in this application.
  • the S210 may include:
  • the reporting of the first indication information may be event-triggered reporting, that is, triggering an event triggers the terminal device to report the first indication information.
  • the terminal device based on the first parameter and/or the strength of the power supply signal received by the terminal device, the terminal device is triggered to report the first indication information.
  • the terminal device is triggered to report the first indication information:
  • the first parameter satisfies a first threshold
  • the change of the first parameter satisfies a second threshold
  • the strength of the power supply signal received by the terminal device meets the third threshold
  • a change in the strength of the power supply signal received by the terminal device satisfies the fourth threshold.
  • At least one of the first threshold, the second threshold, the third threshold, or the fourth threshold is predefined or configured by a network device.
  • the reporting of the first indication information may be an event-triggered reporting, and the event-triggered reporting may be triggered according to a change in the energy collection efficiency of the terminal device or a change in a time interval, for example, a change in the energy collection efficiency of the terminal device or The change of the time interval exceeds or falls below a certain threshold, or the change of the receiving strength of the energy supply signal reaches or falls below a certain threshold, or the receiving strength of the energy supply signal reaches or falls below a certain threshold, all of which can trigger the terminal device to report The first indication information.
  • the certain threshold may be a predefined threshold or a threshold configured by the network.
  • the terminal device receives second indication information, and the second indication information is used to instruct the terminal device to report the first indication information; the terminal device is triggered to report the first indication information through the second indication information. the first instruction information.
  • the second indication information is used to trigger the terminal device to report the first indication information, or in other words, after the terminal device receives the second indication information, in response to the second indication information, the The terminal device sends the first indication information to the network device. That is to say, the report can be performed according to the instruction of the network device, for example, when the network device needs to send downlink data or control information to the terminal device, the second instruction information is carried by the downlink data or the control information to indicate the The terminal device reports the first indication information.
  • sending scheduling request information where the scheduling request information is used to request the network device to allocate uplink transmission resources for the terminal device; triggering the terminal device to report the first indication information through the scheduling request information .
  • the scheduling request information is used to trigger the terminal device to report the first indication information.
  • the terminal device may trigger reporting of the first indication information according to uplink data transmission.
  • the terminal device needs to perform uplink transmission, and may need to send scheduling request information to the network device to request uplink resources, and the scheduling request information may be used to trigger the terminal device to report the first indication information.
  • the scheduling request information and the first indication information may be sent together or separately.
  • the terminal device may send the scheduling request information and the first indication information at the same time, and the terminal device may also send the first indication information after sending the scheduling request information, which is not made in this application. Specific limits.
  • the first indication information is carried in a backscatter signal.
  • the first indication information is carried in the first backscatter signal of the trigger signal scheduling, and for another example, the first indication information is carried in the backscatter signal sent in the first time unit.
  • the first time unit may be a predefined time unit, or a time unit scheduled by the network device.
  • the first time unit may be a time unit scheduled by the network device through the trigger signal.
  • the network device does not know the current energy storage status of the terminal device, and does not know whether the terminal device has enough energy for communication.
  • the energy harvesting of terminal devices may also perform other power-consuming tasks, such as information collection, synchronization, and signal measurement of sensors.
  • the network device can only know the first energy harvesting efficiency and/or the first time interval of the terminal device, and the first energy harvesting efficiency and/or the first time interval are only related to the distance between the terminal device and the network device. It is related to the communication of the terminal equipment, but cannot reflect other power consumption information of the terminal equipment. Based on this, the network device cannot accurately know the energy storage status of the terminal device.
  • the method 200 may also include:
  • the energy storage state and/or the maintainable communication duration of the terminal device is indicated by the third indication information, so that the network device can know the energy storage state and/or the maintainable communication duration of the terminal device, Based on this, when the network device schedules the terminal device or communicates with the terminal device based on the third indication information, it is beneficial for the network device to know whether and when the communication between the terminal device and the network device will be interrupted, Furthermore, it is beneficial for network devices to take corresponding measures to reduce the impact of communication interruptions, such as avoiding transmission failure of key information and meaningless scheduling of network devices when terminal devices interrupt communication, etc., thereby improving communication performance.
  • the energy storage state is expressed as an energy value that has been collected by the terminal device.
  • the energy storage state is expressed as a remaining energy value of the terminal device.
  • the energy storage state represents the energy collection state of the terminal device, for example, x% of electricity has been collected, and x is a positive integer.
  • the sustainable communication duration indicates the length of time during which the terminal device can complete the transmission.
  • the energy storage state and/or the sustainable communication time involved in this application are intended to reflect the dynamic information of the remaining energy of the terminal device. In other alternative embodiments, it may also be replaced with other information having the same or similar effect, which is not specifically limited in the present application.
  • the third indication information is sent periodically.
  • the reporting of the third indication information may be periodic reporting.
  • the sending period of the third indication information is predefined, or the sending period of the third indication information is configured by a network device.
  • the sending period of the third indication information may be configured by the network device through a trigger signal.
  • the "predefined” can be defined by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the present application does not limit the specific implementation manner.
  • the predefined ones may refer to those defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not specifically limited in this application.
  • the third indication information is reported in a triggered manner.
  • the reporting of the third indication information may be event-triggered reporting, that is, triggering an event triggers the terminal device to report the third indication information.
  • the terminal device based on at least one of the energy storage state, the communication duration, or the strength of an energy supply signal received by the terminal device, the terminal device is triggered to report the third indication information.
  • the terminal device is triggered to report the third indication information:
  • the energy storage state satisfies a fifth threshold
  • the change of the energy storage state satisfies the sixth threshold
  • the communication duration meets the seventh threshold
  • the change of the communication duration satisfies the eighth threshold
  • the strength of the power supply signal received by the terminal device meets the ninth threshold
  • a change in the strength of the power supply signal received by the terminal device satisfies a tenth threshold.
  • At least one of the fifth threshold, the sixth threshold, the seventh threshold, the eighth threshold, the ninth threshold or the tenth threshold is a predefined or network device configuration.
  • the reporting of the third indication information may be event-triggered reporting, and the event-triggered reporting may trigger the reporting of the third indication information according to a change in the energy storage state of the terminal device. For example, when the energy collection of the terminal device completes a certain percentage threshold, the terminal device is triggered to report the third indication information.
  • the proportional threshold may be a predefined threshold or a threshold configured by the network.
  • the terminal device may activate a processor circuit according to whether the collected energy can be used to perform corresponding operations such as sensing the third indication information and reporting the third indication information.
  • the fourth indication information is used to instruct the terminal device to report the third indication information; triggering the terminal device to report the third indication information through the fourth indication information 3. Instructions.
  • the fourth indication information is used to trigger the terminal device to report the third indication information, or in other words, after the terminal device receives the fourth indication information, in response to the fourth indication information, the The terminal device sends the third indication information to the network device. That is to say, the report can be performed according to the instruction of the network device, for example, when the network device needs to send downlink data or control information to the terminal device, the fourth instruction information is carried by the downlink data or the control information to indicate the The terminal device reports the third indication information.
  • sending scheduling request information where the scheduling request information is used to request the network device to allocate uplink transmission resources for the terminal device; triggering the terminal device to report the third indication information through the scheduling request information .
  • the scheduling request information is used to trigger the terminal device to report the third indication information.
  • the terminal device may trigger reporting of the third indication information according to uplink data transmission.
  • the terminal device needs to perform uplink transmission, and may need to send scheduling request information to the network device to request uplink resources, and the scheduling request information may be used to trigger the terminal device to report the third indication information.
  • the scheduling request information and the third indication information may be sent together or separately.
  • the terminal device may send the scheduling request information and the third indication information at the same time, and the terminal device may also send the third indication information after sending the scheduling request information. Specific limits.
  • the method 200 is described above from the perspective of a terminal device with reference to FIG. 6
  • the method 300 is described below from the perspective of a network device with reference to FIG. 7 .
  • the method 300 includes:
  • S310 Determine a first parameter, where the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device;
  • the S320 may include:
  • At least one of the following is determined:
  • the second time interval is a time interval between downlink data and feedback information; and/or, the second time interval is a time interval between a trigger signal and a backscatter signal.
  • the second time interval is equal to the sum of the transmission delay and the first time interval.
  • the network device may send information to the terminal device or schedule the terminal device to perform uplink transmission according to the first parameter.
  • the first time interval is a minimum time interval that needs to be met when the network device sends information to the terminal device or when the terminal device is scheduled to perform uplink transmission.
  • the network device may determine a period for the terminal device to perform DRX according to the first time interval.
  • the network device may determine, according to the first time interval, a period of resources for which the terminal device performs semi-persistent scheduling or a period of unlicensed resources.
  • the network device may configure semi-persistent scheduling resources for the terminal device, and the period of the semi-persistent scheduling resources needs to meet the first time interval.
  • the network device may determine the delay information for the terminal device to perform HARQ-ACK feedback according to the first time interval; that is, after the terminal device receives the downlink data, if the terminal device exhausts the collected energy, the terminal device needs to perform Energy harvesting for HARQ-ACK feedback after a certain time interval.
  • the network device may determine the time interval between the time when the terminal device performs HARQ-ACK feedback and the time when downlink data is sent according to the first time interval.
  • the network device may determine the time interval between the terminal device receiving the scheduling information and the data transmission according to the first time interval; that is, after the terminal device receives the scheduling information, if the terminal device exhausts the collected energy, the terminal device Energy harvesting is required to perform data transmission (uplink scheduling) or data reception (downlink scheduling) after a certain time interval.
  • the network device may also determine other parameters based on the first parameter, such as modulation mode, data rate, coding mode, data block size or other parameters that affect the power consumption of the terminal device. This embodiment of the present application does not specifically limit it.
  • the first energy collection efficiency is represented as the energy collection duration of the terminal device; and/or, the first time interval is represented as the end of transmission due to insufficient energy of the terminal device to the restart of transmission required duration; and/or, the first time interval represents a duration during which communication interruption occurs due to insufficient energy of the terminal device.
  • the S310 may include:
  • the first parameter is determined based on the energy harvesting capability of the terminal device and/or the strength of an energy supply signal received by the terminal device.
  • the first parameter is determined according to at least one of the following:
  • the time interval corresponding to the strength of the power supply signal received by the terminal device is determined as the first parameter.
  • the method 300 may also include:
  • the energy harvesting capability refers to the energy harvesting efficiency of the terminal device under an energy supply signal of a preset strength.
  • the S310 may include:
  • the first indication information is used to indicate the first parameter.
  • the first indication information is received periodically.
  • the sending period of the first indication information is predefined, or the sending period of the first indication information is configured by a network device.
  • the method 300 may also include:
  • the first indication information is carried in a backscatter signal.
  • the method 300 may also include:
  • the third indication information is used to indicate the energy storage state and/or maintainable communication duration of the terminal device
  • the terminal device is scheduled within the duration corresponding to the energy storage state or within the communication duration.
  • the network device may send information to the terminal device according to the third indication information, or determine the time length for scheduling the terminal device to perform uplink transmission.
  • the network device may estimate the time length for the terminal device to support downlink reception or uplink transmission based on the energy storage state and/or the sustainable communication duration, so as to determine the time for sending downlink information, or determine the time length for scheduling the terminal device to perform uplink transmission.
  • the energy storage status and/or the maintainable communication duration reflect the real-time energy storage information of the terminal device, and the network device can judge the time length of a downlink transmission or uplink scheduling based on this. For the next transmission, the network device needs to obtain the updated real-time energy storage information of the terminal device to determine the length of the transmission.
  • the third indication information is received periodically.
  • the sending period of the third indication information is predefined, or the sending period of the third indication information is configured by a network device.
  • the method 300 may also include:
  • the steps of the network device may refer to the corresponding steps of the terminal device, and for the sake of brevity, details are not repeated here.
  • the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the user equipment in the cell For the first direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction from the user equipment in the cell to the station, for example, “downlink signal” indicates that the signal transmission direction is the first direction.
  • the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
  • Fig. 8 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • a sending unit 410 configured to send first indication information
  • the first indication information is used to indicate a first parameter
  • the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device.
  • the first energy collection efficiency is represented as the energy collection duration of the terminal device; and/or, the first time interval is represented as the end of transmission due to insufficient energy of the terminal device to the restart of transmission required duration; and/or, the first time interval represents a duration during which communication interruption occurs due to insufficient energy of the terminal device.
  • the sending unit 410 is further configured to:
  • the first parameter is determined based on the energy harvesting capability of the terminal device and/or the strength of an energy supply signal received by the terminal device.
  • the sending unit 410 is specifically configured to:
  • the first parameter is determined according to at least one of the following:
  • the time interval corresponding to the strength of the power supply signal received by the terminal device is determined as the first parameter.
  • the sending unit 410 is further configured to:
  • the energy harvesting capability refers to the energy harvesting efficiency of the terminal device under an energy supply signal of a preset strength.
  • the sending unit 410 is specifically configured to:
  • the sending period of the first indication information is predefined, or the sending period of the first indication information is configured by a network device.
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • the terminal device is triggered to report the first indication information:
  • the first parameter satisfies a first threshold
  • the change of the first parameter satisfies a second threshold
  • the strength of the power supply signal received by the terminal device meets the third threshold
  • a change in the strength of the power supply signal received by the terminal device satisfies the fourth threshold.
  • At least one of the first threshold, the second threshold, the third threshold or the fourth threshold is predefined or configured by a network device.
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • scheduling request information is used to request the network device to allocate uplink transmission resources for the terminal device;
  • the terminal device is triggered to report the first indication information through the scheduling request information.
  • the first indication information is carried in a backscatter signal.
  • the sending unit 410 is further configured to:
  • the energy storage state is expressed as an energy value collected by the terminal device.
  • the sending unit 410 is specifically configured to:
  • the sending period of the third indication information is predefined, or the sending period of the third indication information is configured by a network device.
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • the terminal device is triggered to report the third indication information:
  • the energy storage state satisfies a fifth threshold
  • the change of the energy storage state satisfies the sixth threshold
  • the communication duration meets the seventh threshold
  • the change of the communication duration satisfies the eighth threshold
  • the strength of the power supply signal received by the terminal device meets the ninth threshold
  • a change in the strength of the power supply signal received by the terminal device satisfies a tenth threshold.
  • At least one of the fifth threshold, the sixth threshold, the seventh threshold, the eighth threshold, the ninth threshold or the tenth threshold is a predefined or network device configuration.
  • the sending unit 410 is specifically configured to:
  • the sending unit 410 is specifically configured to:
  • scheduling request information is used to request the network device to allocate uplink transmission resources for the terminal device;
  • the terminal device is triggered to report the third indication information through the scheduling request information.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the terminal device 400 shown in FIG. 8 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the For the sake of brevity, the corresponding processes in each method are not repeated here.
  • Fig. 9 is a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 may include:
  • a determining unit 510 configured to determine a first parameter, where the first parameter is used to represent a first energy collection efficiency and/or a first time interval of the terminal device;
  • a transmission unit 520 configured to perform data transmission based on the first parameter and the terminal device.
  • the transmission unit 520 is specifically used for:
  • At least one of the following is determined:
  • the second time interval is a time interval between downlink data and feedback information; and/or, the second time interval is a time interval between a trigger signal and a backscatter signal.
  • the first energy collection efficiency is represented as the energy collection duration of the terminal device; and/or, the first time interval is represented as the end of transmission due to insufficient energy of the terminal device to the restart of transmission required duration; and/or, the first time interval represents a duration during which communication interruption occurs due to insufficient energy of the terminal device.
  • the determining unit 510 is specifically configured to:
  • the first parameter is determined based on the energy harvesting capability of the terminal device and/or the strength of an energy supply signal received by the terminal device.
  • the determining unit 510 is specifically configured to:
  • the first parameter is determined according to at least one of the following:
  • the time interval corresponding to the strength of the power supply signal received by the terminal device is determined as the first parameter.
  • the transmission unit 520 is also used for:
  • the energy harvesting capability refers to the energy harvesting efficiency of the terminal device under an energy supply signal of a preset strength.
  • the transmission unit 520 is also used for:
  • the first indication information is used to indicate the first parameter.
  • the transmission unit 520 is specifically used for:
  • the sending period of the first indication information is predefined, or the sending period of the first indication information is configured by a network device.
  • the transmission unit 520 is also used for:
  • the first indication information is carried in a backscatter signal.
  • the transmission unit 520 is also used for:
  • the third indication information is used to indicate the energy storage state and/or maintainable communication duration of the terminal device
  • the terminal device is scheduled within the duration corresponding to the energy storage state or within the communication duration.
  • the transmission unit 520 is specifically used for:
  • the sending period of the third indication information is predefined, or the sending period of the third indication information is configured by a network device.
  • the transmission unit 520 is specifically used for:
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the network device 500 shown in FIG. 9 may correspond to the corresponding subject in executing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 500 are for realizing the For the sake of brevity, the corresponding processes in each method are not repeated here.
  • the functional modules may be implemented in the form of hardware, may also be implemented by instructions in the form of software, and may also be implemented by a combination of hardware and software modules.
  • each step of the method embodiment in the embodiment of the present application can be completed by an integrated logic circuit of the hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the embodiment of the present application can be directly embodied as hardware
  • the decoding processor is executed, or the combination of hardware and software modules in the decoding processor is used to complete the execution.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • the sending unit 410 and the transmission unit 520 mentioned above may be implemented by a transceiver, and the determining unit 510 mentioned above may be implemented by a processor.
  • Fig. 10 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may include a processor 610 .
  • processor 610 may invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630 .
  • the processor 610 can control the transceiver 630 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • the communication device 600 may be the terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, that is, the terminal device in the embodiment of the present application
  • the communication device 600 may correspond to the terminal device 400 in the embodiment of the present application, and may correspond to a corresponding subject in performing the method 200 according to the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the communication device 600 may be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 500 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 500 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application.
  • no further repeat may be provided.
  • a chip is also provided in the embodiment of the present application.
  • the chip may be an integrated circuit chip, which has signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 can invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 710 .
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 700 can be applied to the network device in the embodiment of the present application, and the chip can realize the corresponding process implemented by the network device in the various methods of the embodiment of the present application, and can also realize the various methods of the embodiment of the present application For the sake of brevity, the corresponding process implemented by the terminal device in , will not be repeated here.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • Processors mentioned above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the storage mentioned above includes but is not limited to:
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions.
  • the portable electronic device can perform the wireless communication provided by the application. communication method.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the repeat can be applied to the computer program product in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the network device in the methods of the embodiment of the present application. For the sake of brevity , which will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device For the sake of brevity, the corresponding process will not be repeated here.
  • An embodiment of the present application also provides a communication system, which may include the above-mentioned terminal device and network device to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • a communication system which may include the above-mentioned terminal device and network device to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system”.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例中提供了一种无线通信方法、终端设备和网络设备。所述方法包括:发送第一指示信息;其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。通过指示的第一参数,可以使得网络设备获知终端设备的能量采集效率或时间间隔,进而,使得网络设备在进行下行传输或者上行调度时,可以根据零功耗设备指示的所述能量采集效率或时间间隔确定通信参数,减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
在零功耗通信中,零功耗终端距离网络站点较远时,通过能量采集的方式所获得并储存能量速度非常缓慢,而储存的能量也只能用于零功耗设备在一定时间内进行通信,当储存的能量消耗完时,零功耗设备与网络设备之间的通讯会被中断。
因此,针对边缘处的零功耗设备,如何降低中断所造成的影响,是本领域亟需解决的技术问题。发明内容
本申请实施例中提供了一种无线通信方法、终端设备和网络设备,能够减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。
第一方面,本申请提供了一种无线通信方法,包括:
发送第一指示信息;
其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。
第二方面,本申请提供了一种无线通信方法,包括:
确定第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔;
基于所述第一参数和所述终端设备进行数据传输。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,通过指示的第一参数,可以使得网络设备获知终端设备的能量采集效率或时间间隔,进而,使得网络设备在进行下行传输或者上行调度时,可以根据零功耗设备指示的所述能量采集效率或时间间隔确定通信参数,减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。
附图说明
图1是本申请实施例提供的通信系统示意图。
图2是本申请提供的零功耗通信系统的示意图。
图3是本申请实施例提供的能量采集原理图。
图4是本申请提供的反向散射通信原理图。
图5是本申请实施例提供的电阻负载调制的电路原理图。
图6是本申请实施例提供的无线通信方法的示意性流程图。
图7是本申请实施例提供的无线通信方法的另一示意性流程图。
图8是本申请实施例提供的终端设备的示意性框图。
图9是本申请实施例提供的网络设备的示意性框图。
图10是本申请实施例提供的通信设备的示意性框图。
图11是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、零功耗通信系统、蜂窝物联网、蜂窝无源物联网或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备。例如包括无源终端,甚至还包括半无源终端等。
示例性地,零功耗设备是无线射频识别(Radio Frequency Identification,RFID)标签,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID系统是一种无线通信系统。RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构 成。电子标签包括耦合组件及芯片,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。
零功耗通信采用能量采集和反向散射通信技术。为便于理解本申请实施例的技术方案,对零功耗的相关技术进行说明。
图2为本申请提供的零功耗通信系统的示意图。
如图2所示,零功耗通信系统由网络设备和零功耗终端构成,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗通信也可称为基于零功耗终端的通信,零功耗通信的关键技术主要包括射频能量采集和反向散射通信。
1、能量采集(RF Power Harvesting)。
图3为本申请实施例提供的能量采集原理图.
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)。
图4为本申请提供的反向散射通信原理图。
如图4所示,零功耗通信终端接收网络发送的无线信号,并对所述无线信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。
需要说明的是,图4所示的反向散射通信原理是通过零功耗设备和网络设备说明的,实际上,任何具有反向散射通信功能的设备都可以实现反向散射通信。
反向散射通信和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。
图5为本申请实施例提供的电阻负载调制的电路原理图。
如图5所示,在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻基于二进制数据流的控制接通或断开,电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
由于零功耗终端借助于负载调制的方式对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
1、终端设备不主动发射信号,通过调制来波信号实现反向散射通信。
2、终端设备不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度。
3、结合能量采集可实现免电池通信。
应当理解的是,上述终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
具体实现中,终端设备传输的数据可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
示例性地,基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1、无源零功耗终端。
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,ADC等期间,因此具有体积小、重量轻、价格非常便宜、使用寿 命长等诸多优点。
2、半无源零功耗终端。
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
由此可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端。
在某些场景下,使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。也即是说,有源零功耗终端通过内置电池向RFID芯片供电,以增加零功耗终端的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
示例性地,零功耗终端可基于供能信号进行能量采集。
可选的,从供能信号载体上,所述供能信号可以是基站、智能手机、智能网关、充电站、微基站等。
可选的,从频段上,所述供能信号可以是低频、中频、高频信号等。
可选的,从波形上,所述供能信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述供能信号可以是3GPP标准中规定的某一信号。例如,SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等。
需要说明的是,由于上述网络设备发送的载波信号也可用于向零功耗设备提供能量,因此该载波信号也可被称为供能信号。
示例性地,零功耗终端可基于收到的触发信号进行反向散射通信。可选的,所述触发信号可用于调度或者触发零功耗终端反向散射通信。可选的,所述触发信号携带有网络设备的调度信息,或者,所述触发信号为所述网络设备发送的调度信令或调度信号。
可选的,从供能信号载体上,所述触发信号可以是基站、智能手机、智能网关等;
可选的,从频段上,所述触发信号可以是低频、中频、高频信号等。
可选的,从波形上,所述触发信号可以是正弦波、方波、三角波、脉冲、矩形波等。
可选的,所述触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选的,所述触发信号可以是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
需要说明的是,所述供能信号和所述触发信号可以是一个信号,也可以是2个独立的信号,本申请对此不作具体限定。
随着5G行业中应用需求的增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,其能够充实网络中的终端的类型和数量,进而能够真正实现万物互联。其中,无源物联网设备可以基于现有的零功耗设备,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
在实际网络部署中,无源零功耗通信技术面临的一个技术瓶颈是前向链路的覆盖距离受限,主要原因在于前向链路的通信距离受限于到达零功耗终端处的无线信号的信号强度,基于现有的实现工艺,一般零功耗终端需要消耗10uw(微瓦)的功率以驱动低功耗电路。这意味着到达零功耗终端的信号功率至少需要为-20dBm。受限于无线电监管的要求,网络设备的发射功率一般不能太大,例如在RFID工作的ISM频段,最大发射功率为30dBm。因此,考虑到空间的无线电传播损耗,无源零功耗终端的传输距离一般在10m至几十米的范围。
然而,添加了储能模块的零功耗终端具有显著扩展通信距离的潜力,这是由于,零功耗终端可以使用射频(RF)能量采集模块收集无线电波,因此,可以源源不断获取无线电能量并储存于储能单元中。储能单元获得足够的能量后,可以驱动低功耗电路工作,用于前向链路的信号解调以及反向链路的信号调制等操作。基于目前的工艺,能量采集模块可以在接收的无线电信号强度不低于-30dBm时可以进行 能量采集并将电能输入到储能单元。因此,添加了储能模块的零功耗终端的前向链路的覆盖取决于RF能量采集门限(如-30dBm),相对无源零功耗终端,接收的无线电信号强度从-20dBm放松到-30dBm,因此可以获得10dB的链路预算增益,因此可以提升多于3倍的下行覆盖。
需要说明的是,在提升前向链路覆盖的同时,添加了储能模块的零功耗终端也面临充电效率下降的问题。随着接收信号强度的下降,能量采集模块可采集并储存的能量大幅降低。如,在接收信号强度为-30dBm时,也即1微瓦时,可采集并存储的能量远不及1微瓦(能量采集效率大幅下降)。
另一方面,如前所述,零功耗终端的低功耗电路可能需要消耗10uw的平均功率。
因此,当零功耗终端距离网络设备较远时,通过能量采集的方式所获得并储存能量速度非常缓慢,而储存的能量也只能用于零功耗设备在一定时间内进行通信,当储存的能量消耗完时,零功耗设备与网络设备之间的通讯会被中断。零功耗通信中的边缘处的零功耗设备会由于电量不足造成带来间歇性的通讯中断问题,为了降低通讯间歇性中断的影响,需要引入相应的处理机制。
基于此,本申请提供了一种无线通信方法、终端设备和网络设备,能够减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。
图6示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备和网络设备交互执行。图6所示的终端设备可以是如图1所示的终端设备120,例如零功耗终端。图6所示的网络设备可以是如图1所示的网络设备110。
如图6所示,所述方法200可包括以下部分或全部内容:
S210,发送第一指示信息;
其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。
换言之,所述终端设备通过所述第一指示信息向网络设备指示所述第一能量采集效率和/或所述第一时间间隔。或者说,所述第一参数包括所述第一能量采集效率和/或所述第一时间间隔。
本实施例中,通过指示的第一参数,可以使得网络设备获知终端设备的能量采集效率或时间间隔,进而,使得网络设备在进行下行传输或者上行调度时,可以根据零功耗设备指示的所述能量采集效率或时间间隔确定通信参数,减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。
需要说明的是,在蜂窝网络中,由于零功耗设备没有电池供电,需要通过网络设备或专用供能节点提供供能信号,用于零功耗设备获得能量,从而进行相应的通信过程。如果网络设备提供供能信号,其中,用于供能的供能信号和用于信息传输的触发信号可以是两个信号,也可以是一个信号。在RFID技术中,所述供能信号和所述触发信号是一个信号,而在蜂窝无源物联网技术中,所述供能信号和所述触发信号可以是两个独立的信号,这两个信号可以不在一个频段发送;网络设备在一个频段持续或者间歇性的发送供能信号,零功耗设备进行能量采集,零功耗设备获得能量之后,可以进行相应的通信过程,如测量、信道/信号的接收、信道/信号的发送等;例如,在另一个频段上进行反向散射通信。简言之,零功耗设备区别于传统的有源设备,零功耗设备在通讯时,需要先基于供能信号进行能量采集,之后才能进行通讯。
对于零功耗设备来说,其具备能量采集功能,当接收到的供能信号的强度小于一定的阈值,供能信号可以提供的能量小于通信所消耗的能量,需要通过能量采集获得足够的能量才能驱动零功耗设备进行通信。这种情况下,零功耗设备并不能时刻保证通信的持续,而会由于能量采集的需要而中断通信。因此,零功耗设备所处的通信状态可能是变化的,而网络设备并不能获知零功耗设备的通信状态。此外,对于零功耗设备,不同储能能力以及零功耗设备与网络设备的距离都会影响零功耗设备的能量采集效率,而能量采集效率决定了上行数据传输的成功与否,本实施例中,通过指示的第一参数,可以使得网络设备获知终端设备的能量采集效率或时间间隔,进而,使得网络设备在进行下行传输或者上行调度时,可以根据零功耗设备指示的所述能量采集效率或时间间隔确定通信参数,减少无效的传输或者调度,节省传输资源,减少时延,提高零功耗通信的系统性能。
此外,本申请实施例中涉及的术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。例如,A可以所述第一指示信息,B可以是所述第一指示信息指示的信息。
可选的,所述第一指示信息可以是多个比特位或多个比特序列。例如,不同的比特序列用于指示不同的能量采集效率,或者不同的比特序列对应不同的时间间隔。
当然,在本申请的其他可替代实施例中,所述第一指示信息也可用于指示终端设备的第一能量采集效率和/或第一时间间隔。例如,所述第一指示信息可用于指示第一参数和第二参数,其中,所述第一 参数用于表示所述第一能量采集效率,所述第二参数用于表示所述第一时间间隔。
可选的,所述第一能量采集效率表示为所述终端设备的能量采集时长。
可选的,所述第一能量采集效率表示所述终端设备的能量采集速率。例如,所述第一能量采集效率表示所述终端设备单位时间内采集的能量值,或所述第一能量采集效率表示所述终端设备采集预设能量所用的时间长度。
可选的,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
可选的,所述第一时间间隔表示所述终端设备的能量采集时长。
换言之,所述第一时间间隔表示所述终端设备发生通信中断后重新进行传输所需要的时间间隔,即两次相邻的传输所需要满足的时间间隔。可选的,所述第一时间间隔可以包括一个或者多个时间单元。可选的,所述时间单元可以是符号、时隙、子帧、帧或者其他时间单元或者在零功耗通信中新定义的时间单元。
对于终端设备而言,其离供能节点的远近可能不同,能量采集效率也不同。随着供能信号接收强度的下降,能量采集模块采集并储存的能量的速度下降。因此,不同的终端设备,采集用于驱动终端设备的低功耗电路所需的功率(例如10uw)时,其需要的时间也是不一样的。所采集的功率可以完成一定时间范围内的传输,包括反向散射或者接收相关的过程。其中,反向散射包括读取存储的信息、编码、对来波信号进行负载调制等,接收包括解调来波信号承载的信息、解码、存储等处理。
当完成了传输,终端设备需要重新进行能量采集,以完成下一次传输。能量采集完成之前,终端设备无法进行发送或者接收。在此期间网络设备如果给终端设备发送信息,或者调度终端设备进行发送,都是无法完成的。
本实施例中,所述第一能量采集效率可表示为所述终端设备的能量采集时长;此外,所述第一时间间隔可表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长;相当于,通过终端设备上报的第一指示信息所指示的第一能量采集效率和/或第一时间间隔,可以使得网络设备获知所述终端设备的能量采集时长、由于所述终端设备的能量不足结束传输到重新开始传输所需的时长或由于所述终端设备的能量不足发生通信中断的时长,能够减少网络设备无用的传输或者上行调度。
需要说明的是,本申请涉及的第一参数为半静态信息,主要与终端设备接收到的供能信号的强度有关。在其他替代实施例中,也可以替换为其他具有相同或类似作用的信息,本申请对此不作具体限定。
在一些实施例中,所述方法100还可包括:
基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
可选的,可按照以下中的至少一项确定所述第一参数:
将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
换言之,终端设备可以根据供能信号的接收强度和/或根据终端设备的能量采集能力,确定所述第一参数。或者说,终端设备基于第一对应关系,将所述终端设备收到的供能信号的强度对应的参数确定为所述第一参数,所述第一对应关系包括供能信号的多个强度分别对应的多个参数,所述多个强度包括所述终端设备收到的供能信号的强度;或者说,所述终端设备可基于第二对应关系,将所述终端设备的能量采集能力对应的参数,确定为所述第一参数,所述第二对应关系包括多个采集能力和所述多个采集能力分别对应的多个参数,所述多个采集能力包括所述终端设备的能量采集能力。
可选的,所述方法200还可包括:
上报所述终端设备的能量采集能力。
可选的,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
换言之,所述能量采集能力包括在供能信号的接收强度一定的情况下所述终端设备的能量采集效率。需要说明的是,上文涉及的预设强度可以是终端能够进行能量采集的任意强度,本申请对此不作具体限定。
在一些实施例中,所述S210可包括:
周期性发送所述第一指示信息。
换言之,所述第一指示信息的上报可以是周期性的上报。
可选的,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配 置的。
可选的,所述第一指示信息的发送周期可以是网络设备通过触发信号配置的。
需要说明的是,在本申请实施例中,所述"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。可选地,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做具体限定。
在一些实施例中,所述S210可包括:
通过触发的方式上报所述第一指示信息。
换言之,所述第一指示信息的上报可以是事件触发性的上报,即通过触发事件触发所述终端设备上报所述第一指示信息。
在一些实现方式中,基于所述第一参数和/或所述终端设备收到的供能信号的强度,触发所述终端设备上报所述第一指示信息。
可选的,若满足以下中的至少一项,则触发所述终端设备上报所述第一指示信息:
所述第一参数满足第一门限;
所述第一参数的变化满足第二门限;
所述终端设备收到的供能信号的强度满足第三门限;或
所述终端设备收到的供能信号的强度的变化满足第四门限。
可选的,所述第一门限、所述第二门限、所述第三门限或所述第四门限中的至少一项为预定义的或网络设备配置的。
需要说明的是,本申请涉及的满足可以是小于或等于,还可以是大于或等于,本申请对此不作具体限定。换言之,所述第一指示信息的上报可以是事件触发性的上报,事件触发性的上报可以根据终端设备能量采集效率的变化或者时间间隔的变化触发上报,例如终端设备的能量采集效率的变化或者时间间隔的变化超过或低于一定的门限,或者供能信号的接收强度的变化达到或低于一定的门限,或者供能信号的接收强度达到或低于一定的门限,都可以触发终端设备上报所述第一指示信息。可选的,所述一定的门限可以是预定义的或者网络配置的门限。
在另一些实现方式中,终端设备接收第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息;通过所述第二指示信息触发所述终端设备上报所述第一指示信息。
换言之,所述第二指示信息用于触发所述终端设备上报所述第一指示信息,或者说,所述终端设备接收到所述第二指示信息后,响应于所述第二指示信息,所述终端设备向网络设备发送所述第一指示信息。也即是说,可以根据网络设备的指示进行上报,例如网络设备需要向终端设备发送下行数据或者控制信息时,通过所述下行数据或者所述控制信息携带所述第二指示信息,以指示所述终端设备上报所述第一指示信息。
在另一些实现方式中,发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;通过所述调度请求信息触发所述终端设备上报所述第一指示信息。
换言之,所述调度请求信息用于触发所述终端设备上报所述第一指示信息。或者说,终端设备可以根据上行数据传输来触发第一指示信息的上报。例如,所述终端设备需要进行上行传输,可能需要发送调度请求信息给网络设备来请求上行资源,所述调度请求信息可用于触发所述终端设备上报所述第一指示信息。可选的,所述调度请求信息和所述第一指示信息可以一起发送,也可以分开发送。换言之,所述终端设备可以同时发送所述调度请求信息和所述第一指示信息,所述终端设备也可以在发送所述调度请求信息后,发送所述第一指示信息,本申请对此不作具体限定。
在一些实施例中,所述第一指示信息携带在反向散射信号中。
示例性的,所述第一指示信息携带在触发信号调度的第一次反向散射信号中,再如,所述第一指示信息携带在第一时间单元上发送的反向散射信号中。可选的,所述第一时间单元可以是预定义的时间单元,也可以是网络设备调度的时间单元。例如,所述第一时间单元可以是网络设备通过所述触发信号调度的时间单元。
在一些场景下,网络设备并不清楚终端设备当前的储能状态,不知道终端设备能否有足够的能量满足通信。例如,终端设备的能量采集除了完成与网络设备之间的通信之外,还可能进行其他需要耗电的工作,例如传感器的信息采集、同步、信号测量等。通过所述第一参数,网络设备只能知道终端设备的第一能量采集效率和/或第一时间间隔,而所述第一能量采集效率和/或第一时间间隔只跟与网络设备之间的通信有关,而不能反映终端设备其他的耗电信息。基于此,网络设备并不能精确的知道终端设备的储能状态。
在一些实施例中,所述方法200还可包括:
发送第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长。
本实施例中,通过所述第三指示信息指示所述终端设备的储能状态和/或可维持的通信时长,使得网络设备能够知道终端设备的储能状态和/或可维持的通信时长,基于此,网络设备基于所述第三指示信息对终端设备进行调度或与终端设备进行通信时,有利于网络设备得知终端设备和网络设备之间的通信是否会发生中断以及何时发生中断,进而,有利于网络设备采取相应的措施来减少通讯中断带来的影响,例如避免关键信息的传输失败以及网络设备对终端设备中断通讯时而进行无意义的调度等,进而提升通信性能。
可选的,所述储能状态表示为所述终端设备已采集的能量值。
可选的,所述储能状态表示为所述终端设备的剩余的能量值。
可选的,所述储能状态表示所述终端设备的能量采集状态,例如已采集x%的电量,x为正整数。
可选的,所述可维持的通信时长表示所述终端设备可以完成传输的时间长度。
需要说明的是,本申请涉及的储能状态和/或可维持的通信时长旨在体现所述终端设备的剩余能量的动态信息。在其他替代实施例中,也可以替换为其他具有相同或类似作用的信息,本申请对此不作具体限定。
在一些实施例中,,周期性发送所述第三指示信息。
换言之,所述第三指示信息的上报可以是周期性的上报。
可选的,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
可选的,所述第三指示信息的发送周期可以是网络设备通过触发信号配置的。
需要说明的是,在本申请实施例中,所述"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。可选地,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做具体限定。
在一些实施例中,通过触发的方式上报所述第三指示信息。
换言之,所述第三指示信息的上报可以是事件触发性的上报,即通过触发事件触发所述终端设备上报所述第三指示信息。
在一些实现方式中,基于所述储能状态、所述通信时长或所述终端设备收到的供能信号的强度中的至少一项,触发所述终端设备上报所述第三指示信息。
可选的,若满足以下中的至少一项,则触发所述终端设备上报所述第三指示信息:
所述储能状态满足第五门限;
所述储能状态的变化满足第六门限;
所述通信时长满足第七门限;
所述通信时长的变化满足第八门限;
所述终端设备收到的供能信号的强度满足第九门限;或
所述终端设备收到的供能信号的强度的变化满足第十门限。
可选的,所述第五门限、所述第六门限、所述第七门限、所述第八门限、所述第九门限或所述第十门限中的至少一项为预定义的或网络设备配置的。
需要说明的是,本申请涉及的满足可以是小于或等于,还可以是大于或等于,本申请对此不作具体限定。换言之,所述第三指示信息的上报可以是事件触发性的上报,所述事件触发性的上报可以根据终端设备的储能状态的变化触发所述第三指示信息的上报。例如,终端设备的能量采集完成一定的比例门限时,触发所述终端设备上报所述第三指示信息。所述比例门限可以是预定义的或者网络配置的门限。再如,终端设备可以根据采集的能量是否可以激活处理器电路,以进行相应的所述第三指示信息的感知和所述第三指示信息的上报等操作。
在另一些实现方式中,接收第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息;通过所述第四指示信息触发所述终端设备上报所述第三指示信息。
换言之,所述第四指示信息用于触发所述终端设备上报所述第三指示信息,或者说,所述终端设备接收到所述第四指示信息后,响应于所述第四指示信息,所述终端设备向网络设备发送所述第三指示信息。也即是说,可以根据网络设备的指示进行上报,例如网络设备需要向终端设备发送下行数据或者控制信息时,通过所述下行数据或者所述控制信息携带所述第四指示信息,以指示所述终端设备上报所述第三指示信息。
在另一些实现方式中,发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;通过所述调度请求信息触发所述终端设备上报所述第三指示信息。
换言之,所述调度请求信息用于触发所述终端设备上报所述第三指示信息。或者说,终端设备可以根据上行数据传输来触发第三指示信息的上报。例如,所述终端设备需要进行上行传输,可能需要发送调度请求信息给网络设备来请求上行资源,所述调度请求信息可用于触发所述终端设备上报所述第三指示信息。可选的,所述调度请求信息和所述第三指示信息可以一起发送,也可以分开发送。换言之,所述终端设备可以同时发送所述调度请求信息和所述第三指示信息,所述终端设备也可以在发送所述调度请求信息后,发送所述第三指示信息,本申请对此不作具体限定。
上文中结合图6,从终端设备的角度对所述方法200进行了描述,下面结合图7从网络设备的角度对所述方法300进行说明。
如图7所示,所述方法300包括:
S310,确定第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔;
S320,基于所述第一参数和所述终端设备进行数据传输。
在一些实施例中,所述S320可包括:
基于所述第一参数,确定以下中的至少一项:
调度所述终端设备进行反向散射通信时的第二时间间隔;
非连续接收DRX的周期;
半持续调度的资源的周期;
免授权资源的周期。
可选的,所述第二时间间隔为下行数据和反馈信息之间的时间间隔;和/或,所述第二时间间隔为触发信号和反向散射信号之间的时间间隔。
可选的,所述第二时间间隔等于传输时延和所述第一时间间隔的和。
换言之,网络设备在确定所述第一参数后,可以根据所述第一参数向终端设备发送信息或调度所述终端设备进行上行传输。以所述第一时间间隔为例,所述第一时间间隔为网络设备向所述终端设备发送信息时或调度所述终端设备进行上行传输时需要满足的最小时间间隔。再如,网络设备可以根据所述第一时间间隔确定终端设备进行DRX的周期。再如,网络设备可以根据所述第一时间间隔确定终端设备进行半持续调度的资源的周期或免授权资源的周期。例如,一个需要定期上报数据信息或者控制信息的终端设备,网络设备可以配置半持续调度的资源给终端设,所述半持续调度的资源的周期需要满足所述第一时间间隔。再如,网络设备可以根据所述第一时间间隔确定终端设备进行HARQ-ACK反馈的时延信息;即当终端设备接收到下行数据之后,如果终端设备耗尽了采集的能量,终端设备需要进行能量采集以在一定的时间间隔之后进行HARQ-ACK反馈。网络设备可以根据所述第一时间间隔确定终端设备进行HARQ-ACK反馈的时间距离下行数据发送的时间之间的时间间隔。再如,网络设备可以根据所述第一时间间隔确定终端设备接收调度信息和数据发送之间的时间间隔;即当终端设备接收到调度信息之后,如果终端设备耗尽了采集的能量,终端设备需要进行能量采集以在一定的时间间隔之后进行数据的发送(上行调度)或者接收(下行调度)。
当然,在其他可替代实施例中,网络设备还可以基于所述第一参数确定其他参数,例如调制方式、数据速率、编码方式、数据块大小或者其他影响终端设备耗电大小的参数。本申请实施例对此不作具体限定。
在一些实施例中,所述第一能量采集效率表示为所述终端设备的能量采集时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
在一些实施例中,所述S310可包括:
基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
可选的,按照以下中的至少一项确定所述第一参数:
将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
可选的,所述方法300还可包括:
上报所述终端设备的能量采集能力。
可选的,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
在一些实施例中,所述S310可包括:
接收第一指示信息;
其中,所述第一指示信息用于指示所述第一参数。
可选的,周期性接收所述第一指示信息。
可选的,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配置的。
在一些实施例中,所述方法300还可包括:
发送第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息。
在一些实施例中,所述第一指示信息携带在反向散射信号中。
在一些实施例中,所述方法300还可包括:
接收第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长;
在所述储能状态对应的时长内或在所述通信时长内,对所述终端设备进行调度。
换言之,网络设备在收到终端设备上报的第三指示信息后,可以根据所述第三指示信息,向该终端设备进行信息的发送,或者确定调度所述终端设备进行上行发送的时间长度。网络设备可以基于储能状态和/或可维持的通信时长估计终端设备支持下行接收或上行发送的时间长度,从而确定下行信息的发送时间,或者确定调度所述终端设备进行上行发送的时间长度。所述储能状态和/或可维持的通信时长反映了终端设备实时的储能信息,网络设备可以据此判断一次下行发送或者上行调度的时间长度。对于下一次的传输,网络设备需要获得终端设备更新的实时储能信息决定传输的时间长度。
可选的,周期性接收所述第三指示信息。
可选的,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
可选的,所述方法300还可包括:
发送第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息。
需要说明的是,关于网络设备和终端设备交互的方案中,网络设备的步骤可以参考终端设备的相应步骤,为了简洁,在此不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图7,详细描述了本申请的方法实施例,下文结合图8至图11,详细描述本申请的装置实施例。
图8是本申请实施例的终端设备400的示意性框图。
如图8所示,所述终端设备400可包括:
发送单元410,用于发送第一指示信息;
其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。
在一些实施例中,所述第一能量采集效率表示为所述终端设备的能量采集时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
在一些实施例中,所述发送单元410还用于:
基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
在一些实施例中,所述发送单元410具体用于:
按照以下中的至少一项确定所述第一参数:
将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
在一些实施例中,所述发送单元410还用于:
上报所述终端设备的能量采集能力。
在一些实施例中,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
在一些实施例中,所述发送单元410具体用于:
周期性发送所述第一指示信息。
在一些实施例中,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配置的。
在一些实施例中,所述发送单元410具体用于:
通过触发的方式上报所述第一指示信息。
在一些实施例中,所述发送单元410具体用于:
基于所述第一参数和/或所述终端设备收到的供能信号的强度,触发所述终端设备上报所述第一指示信息。
在一些实施例中,所述发送单元410具体用于:
若满足以下中的至少一项,则触发所述终端设备上报所述第一指示信息:
所述第一参数满足第一门限;
所述第一参数的变化满足第二门限;
所述终端设备收到的供能信号的强度满足第三门限;或
所述终端设备收到的供能信号的强度的变化满足第四门限。
在一些实施例中,所述第一门限、所述第二门限、所述第三门限或所述第四门限中的至少一项为预定义的或网络设备配置的。
在一些实施例中,所述发送单元410具体用于:
接收第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息;
通过所述第二指示信息触发所述终端设备上报所述第一指示信息。
在一些实施例中,所述发送单元410具体用于:
发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;
通过所述调度请求信息触发所述终端设备上报所述第一指示信息。
在一些实施例中,所述第一指示信息携带在反向散射信号中。
在一些实施例中,所述发送单元410还用于:
发送第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长。
在一些实施例中,所述储能状态表示为所述终端设备已采集的能量值。
在一些实施例中,所述发送单元410具体用于:
周期性发送所述第三指示信息。
在一些实施例中,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
在一些实施例中,所述发送单元410具体用于:
通过触发的方式上报所述第三指示信息。
在一些实施例中,所述发送单元410具体用于:
基于所述储能状态、所述通信时长或所述终端设备收到的供能信号的强度中的至少一项,触发所述终端设备上报所述第三指示信息。
在一些实施例中,所述发送单元410具体用于:
若满足以下中的至少一项,则触发所述终端设备上报所述第三指示信息:
所述储能状态满足第五门限;
所述储能状态的变化满足第六门限;
所述通信时长满足第七门限;
所述通信时长的变化满足第八门限;
所述终端设备收到的供能信号的强度满足第九门限;或
所述终端设备收到的供能信号的强度的变化满足第十门限。
在一些实施例中,所述第五门限、所述第六门限、所述第七门限、所述第八门限、所述第九门限或 所述第十门限中的至少一项为预定义的或网络设备配置的。
在一些实施例中,所述发送单元410具体用于:
接收第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息;
通过所述第四指示信息触发所述终端设备上报所述第三指示信息。
在一些实施例中,所述发送单元410具体用于:
发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;
通过所述调度请求信息触发所述终端设备上报所述第三指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图8所示的终端设备400可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备400中的各个单元的前述和其它操作和/或功能分别为了实现图6中的各个方法中的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的网络设备500的示意性框图。
如图9所示,所述网络设备500可包括:
确定单元510,用于确定第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔;
传输单元520,用于基于所述第一参数和所述终端设备进行数据传输。
在一些实施例中,所述传输单元520具体用于:
基于所述第一参数,确定以下中的至少一项:
调度所述终端设备进行反向散射通信时的第二时间间隔;
非连续接收DRX的周期;
半持续调度的资源的周期;
免授权资源的周期。
在一些实施例中,所述第二时间间隔为下行数据和反馈信息之间的时间间隔;和/或,所述第二时间间隔为触发信号和反向散射信号之间的时间间隔。
在一些实施例中,所述第一能量采集效率表示为所述终端设备的能量采集时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
在一些实施例中,所述确定单元510具体用于:
基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
在一些实施例中,所述确定单元510具体用于:
按照以下中的至少一项确定所述第一参数:
将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
在一些实施例中,所述传输单元520还用于:
上报所述终端设备的能量采集能力。
在一些实施例中,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
在一些实施例中,所述传输单元520还用于:
接收第一指示信息;
其中,所述第一指示信息用于指示所述第一参数。
在一些实施例中,所述传输单元520具体用于:
周期性接收所述第一指示信息。
在一些实施例中,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配置的。
在一些实施例中,所述传输单元520还用于:
发送第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息。
在一些实施例中,所述第一指示信息携带在反向散射信号中。
在一些实施例中,所述传输单元520还用于:
接收第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长;
在所述储能状态对应的时长内或在所述通信时长内,对所述终端设备进行调度。
在一些实施例中,所述传输单元520具体用于:
周期性接收所述第三指示信息。
在一些实施例中,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
在一些实施例中,所述传输单元520具体用于:
发送第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图9所示的网络设备500可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备500中的各个单元的前述和其它操作和/或功能分别为了实现图7中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的发送单元410、传输单元520可通过收发器实现,上文涉及的确定单元510可通过处理器实现。
图10是本申请实施例的通信设备600示意性结构图。
如图10所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图10所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图10所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的终端设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的网络设备500,并可以对应于执行根据本申请实施例的方法300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图11是根据本申请实施例的芯片700的示意性结构图。
如图11所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图11所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图11所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图11所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的, 而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (50)

  1. 一种无线通信方法,其特征在于,包括:
    发送第一指示信息;
    其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述第一能量采集效率表示为所述终端设备的能量采集时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数,包括:
    按照以下中的至少一项确定所述第一参数:
    将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
    将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
    将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
    将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
    将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    上报所述终端设备的能量采集能力。
  6. 根据权利要求3或5所述的方法,其特征在于,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述发送第一指示信息,包括:
    周期性发送所述第一指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配置的。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述发送第一指示信息,包括:
    通过触发的方式上报所述第一指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述通过触发的方式上报所述第一指示信息,包括:
    基于所述第一参数和/或所述终端设备收到的供能信号的强度,触发所述终端设备上报所述第一指示信息。
  11. 根据权利要求10所述的方法,其特征在于,所述基于所述第一参数和/或所述终端设备收到的供能信号的强度,触发所述终端设备上报所述第一指示信息,包括:
    若满足以下中的至少一项,则触发所述终端设备上报所述第一指示信息:
    所述第一参数满足第一门限;
    所述第一参数的变化满足第二门限;
    所述终端设备收到的供能信号的强度满足第三门限;或
    所述终端设备收到的供能信号的强度的变化满足第四门限。
  12. 根据权利要求11所述的方法,其特征在于,所述第一门限、所述第二门限、所述第三门限或所述第四门限中的至少一项为预定义的或网络设备配置的。
  13. 根据权利要求9所述的方法,其特征在于,所述通过触发的方式上报所述第一指示信息,包括:
    接收第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息;
    通过所述第二指示信息触发所述终端设备上报所述第一指示信息。
  14. 根据权利要求9所述的方法,其特征在于,所述通过触发的方式上报所述第一指示信息,包括:
    发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;
    通过所述调度请求信息触发所述终端设备上报所述第一指示信息。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一指示信息携带在反向散射信号中。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长。
  17. 根据权利要求16所述的方法,其特征在于,所述储能状态表示为所述终端设备已采集的能量 值。
  18. 根据权利要求16或17所述的方法,其特征在于,所述发送第三指示信息,包括:
    周期性发送所述第三指示信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
  20. 根据权利要求16或17所述的方法,其特征在于,所述发送第三指示信息,包括:
    通过触发的方式上报所述第三指示信息。
  21. 根据权利要求20所述的方法,其特征在于,所述通过触发的方式上报所述第三指示信息,包括:
    基于所述储能状态、所述通信时长或所述终端设备收到的供能信号的强度中的至少一项,触发所述终端设备上报所述第三指示信息。
  22. 根据权利要求21所述的方法,其特征在于,所述基于所述储能状态、所述通信时长或所述终端设备收到的供能信号的强度中的至少一项,触发所述终端设备上报所述第三指示信息,包括:
    若满足以下中的至少一项,则触发所述终端设备上报所述第三指示信息:
    所述储能状态满足第五门限;
    所述储能状态的变化满足第六门限;
    所述通信时长满足第七门限;
    所述通信时长的变化满足第八门限;
    所述终端设备收到的供能信号的强度满足第九门限;或
    所述终端设备收到的供能信号的强度的变化满足第十门限。
  23. 根据权利要求22所述的方法,其特征在于,所述第五门限、所述第六门限、所述第七门限、所述第八门限、所述第九门限或所述第十门限中的至少一项为预定义的或网络设备配置的。
  24. 根据权利要求20所述的方法,其特征在于,所述通过触发的方式上报所述第三指示信息,包括:
    接收第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息;
    通过所述第四指示信息触发所述终端设备上报所述第三指示信息。
  25. 根据权利要求20所述的方法,其特征在于,所述通过触发的方式上报所述第三指示信息,包括:
    发送调度请求信息,所述调度请求信息用于请求网络设备为所述终端设备分配上行传输资源;
    通过所述调度请求信息触发所述终端设备上报所述第三指示信息。
  26. 一种无线通信方法,其特征在于,包括:
    确定第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔;
    基于所述第一参数和所述终端设备进行数据传输。
  27. 根据权利要求26所述的方法,其特征在于,所述基于所述第一参数和所述终端设备进行数据传输,包括:
    基于所述第一参数,确定以下中的至少一项:
    调度所述终端设备进行反向散射通信时的第二时间间隔;
    非连续接收DRX的周期;
    半持续调度的资源的周期;
    免授权资源的周期。
  28. 根据权利要求27所述的方法,其特征在于,所述第二时间间隔为下行数据和反馈信息之间的时间间隔;和/或,所述第二时间间隔为触发信号和反向散射信号之间的时间间隔。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述第一能量采集效率表示为所述终端设备的能量采集时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足结束传输到重新开始传输所需的时长;和/或,所述第一时间间隔表示为由于所述终端设备的能量不足发生通信中断的时长。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述确定第一参数,包括:
    基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数。
  31. 根据权利要求30所述的方法,其特征在于,所述基于所述终端设备的能量采集能力和/或所述终端设备收到的供能信号的强度,确定所述第一参数,包括:
    按照以下中的至少一项确定所述第一参数:
    将基于所述第一能量采集效率确定的时间间隔,确定为所述第一参数;
    将所述终端设备的能量采集能力对应的能量采集效率,确定为所述第一参数;
    将所述终端设备收到的供能信号的强度所对应的能量采集效率,确定为所述第一参数;
    将所述终端设备的能量采集能力对应的时间间隔,确定为所述第一参数;或
    将所述终端设备收到的供能信号的强度所对应的时间间隔,确定为所述第一参数。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    上报所述终端设备的能量采集能力。
  33. 根据权利要求30或32所述的方法,其特征在于,所述能量采集能力指在预设强度的供能信号下所述终端设备采集能量的效率。
  34. 根据权利要求26至29中任一项所述的方法,其特征在于,所述确定第一参数,包括:
    接收第一指示信息;
    其中,所述第一指示信息用于指示所述第一参数。
  35. 根据权利要求34所述的方法,其特征在于,所述接收第一指示信息,包括:
    周期性接收所述第一指示信息。
  36. 根据权利要求35所述的方法,其特征在于,所述第一指示信息的发送周期为预定义的,或所述第一指示信息的发送周期为网络设备配置的。
  37. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述终端设备上报所述第一指示信息。
  38. 根据权利要求34至37中任一项所述的方法,其特征在于,所述第一指示信息携带在反向散射信号中。
  39. 根据权利要求26至38中任一项所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述终端设备的储能状态和/或可维持的通信时长;
    在所述储能状态对应的时长内或在所述通信时长内,对所述终端设备进行调度。
  40. 根据权利要求39所述的方法,其特征在于,所述接收第三指示信息,包括:
    周期性接收所述第三指示信息。
  41. 根据权利要求40所述的方法,其特征在于,所述第三指示信息的发送周期为预定义的,或所述第三指示信息的发送周期为网络设备配置的。
  42. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    发送第四指示信息,所述第四指示信息用于指示所述终端设备上报所述第三指示信息。
  43. 一种终端设备,其特征在于,包括:
    发送单元,用于发送第一指示信息;
    其中,所述第一指示信息用于指示第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔。
  44. 一种网络设备,其特征在于,包括:
    确定单元,用于确定第一参数,所述第一参数用于表示终端设备的第一能量采集效率和/或第一时间间隔;
    传输单元,用于基于所述第一参数和所述终端设备进行数据传输。
  45. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至25中任一项所述的方法。
  46. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求26至42中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法或如权利要求26至42中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至42中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至42中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至42中任一项所述的方法。
PCT/CN2021/109594 2021-07-30 2021-07-30 无线通信方法、终端设备和网络设备 WO2023004747A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/109594 WO2023004747A1 (zh) 2021-07-30 2021-07-30 无线通信方法、终端设备和网络设备
CN202180100889.9A CN117751630A (zh) 2021-07-30 2021-07-30 无线通信方法、终端设备和网络设备
EP21951343.9A EP4380241A1 (en) 2021-07-30 2021-07-30 Wireless communication method, terminal device and network device
US18/418,843 US20240160866A1 (en) 2021-07-30 2024-01-22 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109594 WO2023004747A1 (zh) 2021-07-30 2021-07-30 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/418,843 Continuation US20240160866A1 (en) 2021-07-30 2024-01-22 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2023004747A1 true WO2023004747A1 (zh) 2023-02-02

Family

ID=85086076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109594 WO2023004747A1 (zh) 2021-07-30 2021-07-30 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20240160866A1 (zh)
EP (1) EP4380241A1 (zh)
CN (1) CN117751630A (zh)
WO (1) WO2023004747A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163263A1 (en) * 2010-12-22 2012-06-28 Electronics And Telecommunications Research Institute Base station, terminal, and operating method thereof
US20160374016A1 (en) * 2015-06-18 2016-12-22 Samsung Electronics Co., Ltd. Communication system for sensor networks
CN112087721A (zh) * 2020-08-10 2020-12-15 浙江工业大学 一种反向散射辅助的无线供能通信网络的节点间通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163263A1 (en) * 2010-12-22 2012-06-28 Electronics And Telecommunications Research Institute Base station, terminal, and operating method thereof
US20160374016A1 (en) * 2015-06-18 2016-12-22 Samsung Electronics Co., Ltd. Communication system for sensor networks
CN112087721A (zh) * 2020-08-10 2020-12-15 浙江工业大学 一种反向散射辅助的无线供能通信网络的节点间通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "New SID: Study on Wireless Power Sourcing enabled Communication Services in 5GS", 3GPP DRAFT; S1-211120, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG1, no. Electronic Meeting; 20210510 - 20210520, 30 April 2021 (2021-04-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051998610 *

Also Published As

Publication number Publication date
EP4380241A1 (en) 2024-06-05
CN117751630A (zh) 2024-03-22
US20240160866A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023004747A1 (zh) 无线通信方法、终端设备和网络设备
WO2023010321A1 (zh) 一种无线通信方法及装置、通信设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004748A1 (zh) 无线通信方法、终端设备和网络设备
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023141974A1 (zh) 通讯状态的指示方法、终端设备和网络设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2024082267A1 (zh) 无线通信的方法和设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023279335A1 (zh) 无线通信方法、终端设备和网络设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
WO2023272683A1 (zh) 无线通信方法及设备
WO2023272443A1 (zh) 无线通信方法及设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100889.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021951343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021951343

Country of ref document: EP

Effective date: 20240229