WO2024098403A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2024098403A1
WO2024098403A1 PCT/CN2022/131482 CN2022131482W WO2024098403A1 WO 2024098403 A1 WO2024098403 A1 WO 2024098403A1 CN 2022131482 W CN2022131482 W CN 2022131482W WO 2024098403 A1 WO2024098403 A1 WO 2024098403A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation mode
constellation point
modulation
subcarrier carrying
Prior art date
Application number
PCT/CN2022/131482
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/131482 priority Critical patent/WO2024098403A1/zh
Publication of WO2024098403A1 publication Critical patent/WO2024098403A1/zh

Links

Images

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for wireless communications.
  • NR New Radio
  • WUS wake-up signals
  • the embodiments of the present application provide a method and device for wireless communication, which optimizes the modulation mode and/or constellation points associated with subcarriers carrying high-level signals and low-level signals in a target signal so that the modulation depth between the high-level and low-level signals in the target signal meets the demodulation requirements, thereby improving the detection performance of the target signal.
  • a wireless communication method comprising:
  • the first communication device receives a target signal
  • the target signal is a signal that carries information through signal amplitude, and the target signal includes a first signal and a second signal, the first signal is at a first level, the second signal is at a second level, and the first level is higher than the second level;
  • the subcarrier carrying the first signal is associated with a first modulation mode and/or a first constellation point
  • the subcarrier carrying the second signal is associated with a second modulation mode and/or a second constellation point
  • the subcarrier carrying the second signal is a null subcarrier.
  • a wireless communication method comprising:
  • the second communication device sends a target signal
  • the target signal is a signal that carries information through signal amplitude, and the target signal includes a first signal and a second signal, the first signal is at a first level, the second signal is at a second level, and the first level is higher than the second level;
  • the subcarrier carrying the first signal is associated with a first modulation mode and/or a first constellation point
  • the subcarrier carrying the second signal is associated with a second modulation mode and/or a second constellation point
  • the subcarrier carrying the second signal is a null subcarrier.
  • a communication device for executing the method in the first aspect.
  • the communication device includes a functional module for executing the method in the above-mentioned first aspect.
  • a communication device for executing the method in the second aspect.
  • the communication device includes a functional module for executing the method in the above-mentioned second aspect.
  • a communication device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the method in the above-mentioned first aspect.
  • a communication device comprising a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the method in the above-mentioned second aspect.
  • a device for implementing the method in any one of the first to second aspects above.
  • the apparatus includes: a processor, configured to call and run a computer program from a memory, so that a device equipped with the apparatus executes the method in any one of the first to second aspects described above.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in any one of the first to second aspects above.
  • a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in any one of the first to second aspects above.
  • a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to second aspects above.
  • the modulation depth between the high-level and low-level signals in the target signal meets the demodulation requirements, thereby improving the detection performance of the target signal.
  • FIG1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG2 is a diagram of a receiver system based on zero-power wake-up provided by the present application.
  • FIG. 3 is a schematic diagram of a WUR PPDU frame provided in this application.
  • Figure 4 is a schematic diagram of a WUR data OOK modulation provided in this application.
  • FIG5 is a schematic diagram of an MC-OOK signal generated by multi-carrier modulation provided by the present application.
  • FIG6 is a schematic diagram of a zero-power communication provided by the present application.
  • FIG. 7 is a schematic diagram of a backscatter communication principle provided by the present application.
  • FIG8 is a schematic diagram of an energy harvesting principle provided by the present application.
  • FIG. 9 is a circuit schematic diagram of a resistive load modulation provided in the present application.
  • FIG10 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a WUS signal and data signal mapping provided according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a modulation depth provided according to an embodiment of the present application.
  • FIG13 is a schematic diagram of a constellation point region A and a constellation point region B provided according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an on signal and an off signal provided according to an embodiment of the present application.
  • FIG15 is a schematic diagram of a constellation point with a relatively large amplitude value under 256QAM provided according to an embodiment of the present application.
  • FIG16 is a schematic diagram of a constellation point with a relatively large amplitude value under QPSK provided according to an embodiment of the present application.
  • FIG17 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG18 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE on unlicensed spectrum LTE-based ac
  • LTE-U LTE-based access to unlicensed spectrum
  • NR-U NR-based access to unlicensed spectrum
  • NTN Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • IoT Wireless Fidelity
  • WiFi fifth-generation (5G) systems
  • 6G sixth-generation
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • SL sidelink
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, a standalone (SA) networking scenario, or a non-standalone (NSA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • NSA non-standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, where the licensed spectrum can also be considered as an unshared spectrum.
  • the communication system in the embodiments of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range of 410 MHz to 7.125 GHz), or to the FR2 frequency band (corresponding to the frequency band range of 24.25 GHz to 52.6 GHz), or to new frequency bands such as high-frequency frequency bands corresponding to the frequency band range of 52.6 GHz to 71 GHz or the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION, ST in a WLAN
  • a cellular phone a cordless phone
  • Session Initiation Protocol (SIP) phone Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)/system on chip (SoC), etc.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal device in industrial control a wireless terminal device in self-driving
  • a wireless terminal device in remote medical a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city or a wireless terminal device in a smart home, an on-board communication device, a wireless communication chip/application specific integrated circuit (ASIC)
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (eNB or eNodeB) in LTE, or a relay station or access point, or a network device or a base station (gNB) or a transmission reception point (TRP) in a vehicle-mounted device, a wearable device, and an NR network, or a network device in a future evolved PLMN network or a network device in an NTN network, etc.
  • AP access point
  • BTS base station
  • NodeB NodeB
  • NB base station
  • gNB base station
  • TRP transmission reception point
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the first communication device may be a terminal device, such as a mobile phone, a machine facility, a customer premises equipment (Customer Premise Equipment, CPE), industrial equipment, a vehicle, etc.; the second communication device may be a counterpart communication device of the first communication device, such as a network device, a mobile phone, industrial equipment, a vehicle, etc.
  • the first communication device may be a terminal device, and the second communication device may be a network device (i.e., uplink communication or downlink communication); or, the first communication device may be a first terminal, and the second communication device may be a second terminal (i.e., sideline communication).
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of an existing LTE protocol, NR protocol, Wi-Fi protocol, or a protocol related to other communication systems.
  • the present application does not limit the protocol type.
  • a wake-up receiver (Wake up receiver) is introduced to receive the wake-up signal (WUS).
  • the wake-up receiver has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives the wake-up signal (WUS) based on envelope detection. Therefore, the modulation method and waveform of the wake-up signal (WUS) received by the wake-up receiver are different from those of the signal carried by the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • the wake-up signal is mainly an envelope signal modulated by amplitude shift keying (Amplitude Shift Keying, ASK) on the carrier signal.
  • ASK amplitude Shift Keying
  • the demodulation of the envelope signal is also mainly based on the energy provided by the wireless radio frequency signal to drive the low-power circuit to complete, so it can be passive.
  • the wake-up receiver can also be powered by the terminal. Regardless of the power supply method, the wake-up receiver greatly reduces the power consumption compared with the traditional receiver of the UE.
  • the wake-up receiver can be combined with the UE as an additional module of the UE receiver, or it can be used as a wake-up function module of the UE alone.
  • FIG. 1 For example, a block diagram of a receiver system based on zero-power wake-up can be shown in FIG2.
  • the wake-up receiver receives a wake-up signal. If the UE needs to turn on the main receiver, the UE can be instructed to turn on the main receiver. Otherwise, the main receiver of the UE can be in a closed state or a power-off state.
  • the wake-up receiver can also be referred to as a zero-power receiver or a low-power receiver
  • the main receiver can also be referred to as a main transceiver, which is not limited in the embodiments of the present application.
  • the wake-up signal in the WiFi communication related to the present application is explained.
  • WUR wake-up radio
  • AP notify WUR stations (STA) of energy saving operations through WUR wake-up frames.
  • the wake-up frame is carried in the WUR physical layer protocol data unit (PPDU) frame.
  • PPDU WUR physical layer protocol data unit
  • a WUR PPDU frame contains three parts: legacy preamble, WUR synchronization (WUR-Sync) and WUR data (WUR-Data).
  • the role of the legacy preamble is to protect the WUR-Sync and WUR-Data parts. It is a non-WUR part retained for compatibility considerations. It uses traditional orthogonal frequency-division multiplexing (OFDM) modulation and 20MHz bandwidth.
  • WUR-Sync is used to help identify and demodulate the WUR-data part.
  • the WUR-Data part is used to carry the WUR physical layer service data unit (PSDU), as shown in Figure 3.
  • PSDU WUR physical layer service data unit
  • the WUR-Sync part and the WUR-data part use On-Off Keying (OOK) modulation and 4MHz.
  • OOK On-Off Keying
  • the modulation principle of OOK is to modulate the amplitude of the carrier signal to non-zero and zero values, corresponding to On and Off, respectively, to represent information bits.
  • OOK is also known as binary amplitude keying (2ASK).
  • ASK binary amplitude keying
  • the WUR-Sync part carries a synchronization sequence repeated twice, in which bit 1 is modulated to On and bit 0 is modulated to Off.
  • FIG. 5 is a schematic diagram of MC-OOK signal generated by multi-carrier modulation.
  • IDFT inverse discrete Fourier transform
  • the zero-power consumption device related to the present application is described.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • active electronic tags also known as active electronic tags, refer to the energy of electronic tags provided by batteries.
  • the battery, memory and antenna together constitute active electronic tags.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • the tag When passive electronic tags are close to the reader, the tag is in the near field formed by the radiation of the reader antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction, and the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of passive electronic tags, such as small size, light weight, low price and long service life.
  • the built-in battery only provides power for a small number of circuits in the chip when there is no reader access. Only when the reader accesses, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • RFID is a wireless communication technology.
  • the most basic RFID system consists of two parts: an electronic tag (TAG) and a reader/writer.
  • Electronic tag It consists of a coupling component and a chip. Each electronic tag has a unique electronic code and is placed on the target to be measured to achieve the purpose of marking the target object.
  • Reader/writer It can not only read the information on the electronic tag, but also write the information on the electronic tag, and provide the electronic tag with the energy required for communication. As shown in Figure 6, after the electronic tag enters the electromagnetic field, it receives the radio frequency signal emitted by the reader/writer.
  • the passive electronic tag or passive electronic tag uses the energy obtained from the electromagnetic field generated in the space to transmit the information stored in the electronic tag.
  • the reader/writer reads the information and decodes it to identify the electronic tag.
  • a typical zero-power communication system includes a reader and a zero-power terminal.
  • the reader transmits radio waves to provide energy to the zero-power terminal.
  • the energy harvesting module installed in the zero-power terminal can collect energy carried by radio waves in space ( Figure 6 shows the radio waves emitted by the reader), which is used to drive the low-power computing module of the zero-power terminal and realize backscatter communication.
  • the zero-power terminal After the zero-power terminal obtains energy, it can receive the control command of the reader and send data to the reader based on the control signaling based on backscattering.
  • the data sent can come from the data stored in the zero-power terminal itself (such as identity identification or pre-written information, such as the production date, brand, manufacturer, etc. of the product).
  • the zero-power terminal can also load various sensors, so as to report the data collected by various sensors based on the zero-power mechanism.
  • the zero-power device receives the carrier signal sent by the backscatter reader and collects energy through the radio frequency (RF) energy collection module. Then, the low-power processing module (the logic processing module in Figure 7) functions to modulate the incoming signal and perform backscattering.
  • RF radio frequency
  • the terminal does not actively transmit signals, but realizes backscatter communication by modulating the incoming signal
  • the terminal does not rely on traditional active power amplifier transmitters and uses low-power computing units, greatly reducing hardware complexity;
  • the RF module is used to collect the energy of electromagnetic waves in space through electromagnetic induction, and then drive the load circuit (low-power computing, sensor, etc.), which can achieve battery-free operation.
  • Load modulation is a method often used by electronic tags to transmit data to readers. Load modulation completes the modulation process by adjusting the electrical parameters of the electronic tag oscillation circuit according to the beat of the data stream, so that the size and phase of the electronic tag impedance change accordingly.
  • load modulation technology There are two main types of load modulation technology: resistive load modulation and capacitive load modulation.
  • resistive load modulation a resistor is connected in parallel to the load, called a load modulation resistor. The resistor is turned on and off according to the clock of the data stream, and the on and off of the switch S is controlled by the binary data code.
  • the circuit schematic of resistive load modulation is shown in Figure 9.
  • the data transmitted by the electronic tag can be represented by different forms of codes to represent binary "1" and "0".
  • the wireless radio frequency identification system usually uses one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar RZ) encoding, differential bi-phase (DBP) encoding, Miller encoding, and differential encoding. In layman's terms, different pulse signals are used to represent 0 and 1.
  • the energy supply signal carrier can be a base station, a smart phone, a smart gateway, a charging station, a micro base station, etc.
  • the radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used for power supply can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the radio wave used for power supply can be a continuous wave or a discontinuous wave (i.e., a certain time interruption is allowed).
  • the power supply signal may be a signal specified in the 3rd Generation Partnership Project (3GPP) standard, such as Sounding Reference Signal (SRS), Physical Uplink Shared Channel (PUSCH), Physical Random Access Channel (PRACH), Physical Uplink Control Channel (PUCCH), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Physical Broadcast Channel (PBCH), etc.
  • 3GPP 3rd Generation Partnership Project
  • the trigger signal carrier can be a base station, a smart phone, a smart gateway, etc.
  • the radio waves used as triggers can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used as a trigger can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the radio wave used as a trigger can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be a signal specified in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; or it may be a new signal.
  • passive IoT devices can be based on existing zero-power devices, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • Receivers with extremely low power consumption and complexity are used to save power or reduce the complexity and cost of terminals, such as the wake-up radio (WUR) in WiFi technology and the wake-up receiver in NR technology, as well as future zero-power communications.
  • WUR wake-up radio
  • NR NR technology
  • the WUS signal sent by the network device is expected to be compatible with the existing orthogonal frequency-division multiplexing (OFDM) transmitter, and it is expected to be multiplexed with the existing NR signal within the frequency band, rather than using a separate frequency band resource for the transmission of the WUS signal.
  • OFDM orthogonal frequency-division multiplexing
  • the WUS signal is generally received by envelope detection, which requires sufficient power difference between the high level and the low level to correctly demodulate the high and low levels.
  • envelope detection which requires sufficient power difference between the high level and the low level to correctly demodulate the high and low levels.
  • the WUS is multiplexed with other NR signals, how to send the WUS signal to meet the requirements of envelope detection is a problem that needs to be solved.
  • the present application proposes a signal sending solution, which optimizes the modulation mode and/or constellation points associated with the subcarriers carrying the high-level signals and low-level signals in the target signal, so that the modulation depth between the high-level and low-level signals in the target signal meets the demodulation requirements, thereby improving the detection performance of the target signal.
  • FIG. 10 is a schematic flow chart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 10 , the wireless communication method 200 may include at least part of the following contents:
  • the second communication device sends a target signal; wherein the target signal is a signal that carries information through signal amplitude, and the target signal includes a first signal and a second signal, the first signal is at a first level, the second signal is at a second level, and the first level is higher than the second level; wherein the subcarrier carrying the first signal is associated with a first modulation mode and/or a first constellation point, and the subcarrier carrying the second signal is associated with a second modulation mode and/or a second constellation point, or the subcarrier carrying the second signal is a null subcarrier;
  • S220 The first communication device receives the target signal.
  • the modulation depth between the high-level and low-level signals in the target signal meets the demodulation requirements, thereby improving the detection performance of the target signal.
  • the first signal may be the high level portion of the target signal, and the amplitude value of the first signal may be a specific value or a value within a value range.
  • the second signal may be the low level portion of the target signal, and the amplitude value of the second signal may be a specific value or a value within a value range.
  • the difference between the amplitude of the first signal and the amplitude of the second signal is greater than a first threshold, and/or the ratio of the amplitude of the first signal to the amplitude of the second signal is greater than a second threshold, so that the modulation depth between the high and low level signals in the target signal meets the demodulation requirements.
  • the first threshold is agreed upon by a protocol, or the first threshold is configured by a network device.
  • the second threshold is agreed upon by a protocol, or the second threshold is configured by a network device.
  • the first communication device is a terminal device or a network device, wherein the first communication device includes a special receiver, such as a wake-up receiver or a low-power receiver, which can demodulate the target signal.
  • a special receiver such as a wake-up receiver or a low-power receiver, which can demodulate the target signal.
  • the first communication device may be a zero-power device, and the first communication device may demodulate the target signal.
  • the first communication device may obtain energy for communication, information collection and processing through energy harvesting, that is, before the second communication device communicates with the first communication device, it is first necessary to ensure that the first communication device receives radio waves for wireless power supply and obtains wireless energy through energy harvesting.
  • the embodiments of the present application may be applied to zero-power communication technology.
  • the target signal may be a power supply signal of the first communication device.
  • the present application does not limit the specific method in which the first communication device obtains energy through energy harvesting.
  • the first communication device can obtain energy through wireless power supply methods such as wireless radio frequency signals, solar energy, pressure or temperature.
  • zero-power devices are a general name for devices with extremely low complexity and extremely low power consumption. Such devices do not rely on batteries, and the energy required for their operation comes from the environment, and they can have energy collection and storage capabilities.
  • the communication of zero-power devices can support simple modulation and demodulation methods, such as Amplitude Shift Keying (ASK)/Frequency Shift Keying (FSK).
  • ASK Amplitude Shift Keying
  • zero-power devices can refer to ambient power enabled (AMP) devices introduced in the 3rd Generation Partnership Project (3GPP) and WiFi technology, or they can be a communication module of existing devices, such as the wake-up radio (WUR) functional module introduced in WiFi technology and the wake-up receiver (Wake up receiver) of terminal devices introduced by 3GPP.
  • WUR wake-up radio
  • the energy of the AMP device comes from the environment.
  • some AMP devices may have active transmission capabilities instead of relying solely on backscattering.
  • the second communication device is a device for communicating with the first communication device.
  • the second communication device may be a network device, or the second communication device may be a terminal device, or the second communication device may be a power supply node.
  • the target signal is a signal generated based on multi-carrier modulation.
  • the target signal may also be a signal received by envelope detection. That is, in the embodiments of the present application, the target signal is a signal that carries information through signal amplitude, or the target signal is a signal received by envelope detection.
  • the target signal is a WUS signal.
  • the target signal may also be other signals, or some signals used to transmit data, which is not limited in the embodiments of the present application.
  • the WUS signal is an On-Off Keying (OOK) signal or a Multi-carrier On-Off Keying (MC-OOK) signal.
  • OOK On-Off Keying
  • MC-OOK Multi-carrier On-Off Keying
  • IoT devices with extremely low power consumption and complexity such as AMP IoT devices, receive signals mainly based on ASK modulation, such as OOK signals.
  • the signals received by such devices are not only WUS signals for wake-up, but also signals for transmitting user data.
  • the embodiments of the present application are not limited to the generation of WUS signals in NR systems, but are also applicable to the generation of wake-up radio (WUR) signals in other communication systems such as WiFi that use multi-carrier modulation air interface technology.
  • WUR wake-up radio
  • the signal received by envelope detection can also be generated by other modulation methods, such as ASK and FSK modulation. In essence, they need to detect the high and low levels of the signal by envelope detection at the receiving end for demodulation.
  • the on signal in OOK signal corresponds to the high level signal
  • the off signal corresponds to the low level signal.
  • the target signal is a WUS signal, such as an OOK signal or a MC-OOK signal, wherein the first signal is an on signal and the second signal is an off signal.
  • a receiver that detects a target signal by means of envelope detection has low complexity and power consumption.
  • the receiver can demodulate the target signal modulated by ASK, OOK, or FSK by means of envelope detection.
  • ASK ASK
  • OOK OOK
  • FSK FSK
  • a corresponding on time domain waveform can be generated after the IDFT transformation of the transmitter.
  • a corresponding off time domain waveform can be generated, thereby realizing multi-carrier based OOK modulation.
  • the WUR signal in WiFi technology uses 13 subcarriers at the center of a 64-point IDFT to generate an on waveform within a 20MHz bandwidth.
  • the target signal and the signal in the NR system can be multiplexed within the frequency band.
  • the WUS signal and the data signal are mapped to different subcarriers and processed and transmitted by the OFDM transmitter.
  • the amplitudes of the on signal and the off signal of the OOK signal generated by the multi-carrier need to reach a certain modulation depth to be correctly demodulated at the receiving end, as shown in Figure 12.
  • the ratio of the average power of the on symbol and the off symbol needs to be at least 20 decibels (dB).
  • the assignment of the subcarrier carrying the signal needs to satisfy the requirement that the amplitude of the generated time domain signal meets the modulation depth requirement, and the amplitude of the signal within the symbol is as flat as possible.
  • the amplitude of the second signal (such as an Off signal) is as low as possible compared to the symbol of the first signal (such as an On signal) to meet the modulation depth requirement.
  • QAM Quadrature Amplitude Modulation
  • the constellation point with a larger amplitude i.e., the constellation point in area A
  • the constellation point with a smaller amplitude i.e., the constellation point in area B
  • the subcarrier to generate the second signal such as the Off signal, WUS "0"
  • the corresponding subcarrier can also be set as an empty subcarrier to achieve, that is, the subcarrier carrying the second signal (such as the Off signal) is an empty subcarrier. That is, in the symbol where the second signal (such as the Off signal) is located, the modulation symbol mapped to the corresponding subcarrier only needs to ensure that the time domain waveform meets the low level, and even no modulation symbol is mapped on these subcarriers carrying the second signal (such as the Off signal).
  • the target signal is a WUS signal, such as a MC-OOK signal, which generates an equivalent amplitude modulation signal in the time domain by mapping modulation symbols to corresponding subcarriers.
  • a first level i.e., a high level
  • a second level i.e., a low level
  • a second signal e.g., an off signal
  • the modulation symbol of the subcarrier carrying the WUS signal is mapped to have a higher amplitude, such as the constellation point in area A of the constellation point of 256QAM modulation in Figure 13.
  • the selection of these constellation points is not free, and they are often predefined constellation points.
  • the second signal such as the off signal
  • the low level that is, the off signal, can be detected normally in the WUR.
  • the modulation method and/or constellation point used by the first signal depends on the modulation method and/or constellation point used by the second signal (such as the off signal).
  • the signal generated by the modulation method and constellation point used by the first signal (such as the on signal) and the second signal (such as the off signal) meets the target modulation depth.
  • the modulation method and constellation point used by the first signal (such as the on signal) and the second signal can be specified.
  • bit mapping modulation symbols For example, taking 256QAM as an example, the method of bit mapping modulation symbols is as follows:
  • Bits b(8i), b(8i+1), b(8i+2), b(8i+3), b(8i+4), b(8i+5), b(8i+6), and b(8i+7) are mapped to complex-valued modulation symbols according to the following formula 1, and the constellation point (1,1,1,1,1,1,1) has a larger amplitude value, as shown in Figure 15.
  • Quadrature Phase Shift Keying QPSK
  • the bits b(2i), b(2i+1) are mapped to complex-valued modulation symbols according to the following formula 2.
  • the constellation points of QPSK are constant-amplitude and have a small amplitude, as shown in Figure 16.
  • the first modulation mode and/or the first constellation point are determined based on the second modulation mode and/or the second constellation point. That is, the modulation mode and/or the constellation point used by the first signal (such as the on signal) depends on the modulation mode and/or the constellation point used by the second signal (such as the off signal).
  • the first modulation mode and/or the first constellation point are agreed upon by a protocol, or the first modulation mode and/or the first constellation point are configured or indicated by a network device.
  • the first modulation mode and/or the first constellation point are semi-statically configured or indicated by a network device, or the first modulation mode and/or the first constellation point are dynamically configured or indicated by a network device.
  • the second modulation mode and/or the second constellation point are agreed upon by a protocol, or the second modulation mode and/or the second constellation point are configured or indicated by a network device.
  • the second modulation mode and/or the second constellation point are semi-statically configured or indicated by a network device, or the second modulation mode and/or the second constellation point are dynamically configured or indicated by a network device.
  • the first communication device receives first information
  • the first information is used to configure or indicate at least one first combination, and the first combination is a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal.
  • the first communication device receives the first information sent by the second communication device, or the first communication device receives the first information sent by a device other than the second communication device.
  • the first communication device after receiving the first information, obtains the at least one first combination, and the first communication device can demodulate the target signal based on the at least one first combination.
  • the first information is carried by one of the following:
  • Radio Resource Control signaling
  • Media Access Control Element Media Access Control Element
  • DCI Downlink Control Information
  • PC5-RRC signaling PC5-RRC signaling
  • SCI Sidelink Control Information
  • a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the first modulation mode belongs to a first modulation mode set
  • the second modulation mode belongs to a second modulation mode set
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or, the modulation modes in the first modulation mode set are configured or indicated by a network device
  • the modulation modes in the second modulation mode set are agreed upon by a protocol, or, the modulation modes in the second modulation mode set are configured or indicated by a network device.
  • the first constellation point belongs to a first constellation point set
  • the second constellation point belongs to a second constellation point set; wherein the constellation points in the first constellation point set are agreed upon by a protocol, or the constellation points in the first constellation point set are configured or indicated by a network device; and/or the constellation points in the second constellation point set are agreed upon by a protocol, or the constellation points in the second constellation point set are configured or indicated by a network device.
  • the combination of modulation modes and constellation points respectively used by the first signal (such as the on signal) and the second signal (such as the off signal) may include at least one of the following:
  • the time-frequency resource where the second signal is located is allowed to carry the first target information.
  • the first target information includes but is not limited to at least one of the following: physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), physical sidelink shared channel (PSSCH), physical sidelink control channel (PSCCH), physical uplink shared channel (PUSCH), physical uplink control channel (PUCCH), channel state information reference signal (CSI-RS), and demodulation reference signal (DMRS).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • PSCCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • PUCH physical uplink control channel
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the first modulation mode and/or the first constellation point is determined based on a modulation mode adopted by the first target information carried on the time-frequency resource where the second signal is located.
  • the first modulation mode belongs to a first modulation mode set
  • the modulation mode adopted by the first target information belongs to a third modulation mode set
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or, the modulation modes in the first modulation mode set are configured or indicated by a network device
  • the modulation modes in the third modulation mode set are agreed upon by a protocol, or, the modulation modes in the third modulation mode set are configured or indicated by a network device.
  • the modulation modes in the first modulation mode set are semi-statically configured or indicated by the network device, or the modulation modes in the first modulation mode set are dynamically configured or indicated by the network device.
  • the modulation modes in the third modulation mode set are semi-statically configured or indicated by the network device, or the modulation modes in the third modulation mode set are dynamically configured or indicated by the network device.
  • the low level that is, the second signal (such as an off signal) can be detected normally.
  • the first target information that can meet the characteristics of the low-level signal can be carried on the time-frequency resource where the second signal (such as an off signal) is located, and the time-frequency resources can be fully utilized.
  • the modulation method and constellation point adopted by the first signal can be determined according to the modulation method adopted by the first target information.
  • the modulation method adopted by the first signal is 256QAM and the corresponding constellation point.
  • the modulation method adopted by the first signal is 1024QAM and the corresponding constellation point.
  • the energy per resource element (EPRE) of the subcarrier carrying the first signal is different from the EPRE of the subcarrier carrying the second signal.
  • the EPRE of the subcarrier carrying the WUS signal can have a certain power offset with other NR signals to generate an OOK signal that meets a certain modulation depth.
  • the EPRE of the first signal (such as the on signal) is different from the EPRE of the second signal (such as the off signal), and the power offset between them meets a certain threshold.
  • a power offset between an EPRE of a subcarrier carrying the first signal and the second target information is greater than a power offset between an EPRE of a subcarrier carrying the second signal and the second target information.
  • the EPRE of the first signal has a larger power offset relative to the EPRE of the second target information
  • the EPRE of the second signal has a smaller power offset relative to the EPRE of the second target information
  • the second target information includes but is not limited to at least one of the following: secondary synchronization signal (Secondary Synchronization Signal, SSS), CSI-RS, DMRS, PDSCH, PUSCH, PSSCH.
  • SSS Secondary Synchronization Signal
  • CSI-RS Channel synchronization Signal
  • DMRS Downlink Reference Signal
  • PDSCH Downlink Reference Signal
  • PUSCH PUSCH
  • PSSCH PSSCH
  • the EPRE of the subcarrier carrying the first signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the first signal is configured or indicated by a network device; and/or, the EPRE of the subcarrier carrying the second signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the second signal is configured or indicated by a network device.
  • the first communication device receives second information; wherein the second information is used to configure or indicate at least one second combination, and the second combination is a combination of the modulation mode, constellation point and EPRE associated with the subcarrier carrying the first signal and the modulation mode, constellation point and EPRE associated with the subcarrier carrying the second signal.
  • the first communication device receives the second information sent by the second communication device, or the first communication device receives the second information sent by a device other than the second communication device.
  • the second information is carried via one of: RRC signaling, MAC CE, DCI, PC5-RRC signaling, SCI.
  • a combination of a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the first signal and a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the modulation depth between the high-level and low-level signals in the target signal meets the demodulation requirements, thereby improving the detection performance of the target signal.
  • the target signal generated by the embodiment of the present application can meet the modulation depth requirements between the high and low levels based on envelope detection, thereby improving the detection performance of the target signal.
  • FIG17 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
  • the communication device 300 is a first communication device. As shown in FIG17 , the communication device 300 includes:
  • the first communication unit 310 is used to receive a target signal
  • the target signal is a signal that carries information through signal amplitude, and the target signal includes a first signal and a second signal, the first signal is at a first level, the second signal is at a second level, and the first level is higher than the second level;
  • the subcarrier carrying the first signal is associated with a first modulation mode and/or a first constellation point
  • the subcarrier carrying the second signal is associated with a second modulation mode and/or a second constellation point
  • the subcarrier carrying the second signal is a null subcarrier.
  • the first modulation mode and/or the first constellation point is determined based on the second modulation mode and/or the second constellation point.
  • the first modulation mode and/or the first constellation point are agreed upon by a protocol, or the first modulation mode and/or the first constellation point are configured or indicated by a network device; and/or,
  • the second modulation mode and/or the second constellation point are agreed upon by a protocol, or the second modulation mode and/or the second constellation point are configured or indicated by a network device.
  • the communication device 300 further includes:
  • the second communication unit 320 is used to receive the first information
  • the first information is used to configure or indicate at least one first combination, and the first combination is a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal.
  • the first information is carried by one of the following:
  • Radio resource control RRC signaling media access control layer control unit MAC CE, downlink control information DCI, PC5-RRC signaling, side control information SCI.
  • a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the first modulation mode belongs to a first modulation mode set, and the second modulation mode belongs to a second modulation mode set;
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or the modulation modes in the first modulation mode set are configured or indicated by a network device; and/or the modulation modes in the second modulation mode set are agreed upon by a protocol, or the modulation modes in the second modulation mode set are configured or indicated by a network device.
  • the first constellation point belongs to a first constellation point set
  • the second constellation point belongs to a second constellation point set
  • the constellation points in the first constellation point set are agreed upon by a protocol, or the constellation points in the first constellation point set are configured or indicated by a network device; and/or the constellation points in the second constellation point set are agreed upon by a protocol, or the constellation points in the second constellation point set are configured or indicated by a network device.
  • the time-frequency resource where the second signal is located is allowed to carry the first target information.
  • the first modulation mode and/or the first constellation point is determined based on a modulation mode adopted by the first target information carried on the time-frequency resource where the second signal is located.
  • the first modulation mode belongs to a first modulation mode set, and the modulation mode used by the first target information belongs to a third modulation mode set;
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or the modulation modes in the first modulation mode set are configured or indicated by a network device; and/or the modulation modes in the third modulation mode set are agreed upon by a protocol, or the modulation modes in the third modulation mode set are configured or indicated by a network device.
  • the first target information includes at least one of the following: physical downlink shared channel PDSCH, physical downlink control channel PDCCH, physical sidelink shared channel PSSCH, physical sidelink control channel PSCCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, channel state information reference signal CSI-RS, and demodulation reference signal DMRS.
  • the energy per resource unit EPRE of the subcarrier carrying the first signal is different from the EPRE of the subcarrier carrying the second signal.
  • a power offset between an EPRE of a subcarrier carrying the first signal and the second target information is greater than a power offset between an EPRE of a subcarrier carrying the second signal and the second target information.
  • the second target information includes at least one of the following: a secondary synchronization signal SSS, a CSI-RS, a DMRS, a PDSCH, a PUSCH, a PSSCH.
  • the EPRE of the subcarrier carrying the first signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the first signal is configured or indicated by a network device; and/or,
  • the EPRE of the subcarrier carrying the second signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the second signal is configured or indicated by a network device.
  • the communication device 300 further includes:
  • the third communication unit 330 is used to receive second information
  • the second information is used to configure or indicate at least one second combination, and the second combination is a combination of the modulation mode, constellation point and EPRE associated with the subcarrier carrying the first signal and the modulation mode, constellation point and EPRE associated with the subcarrier carrying the second signal.
  • the second information is carried via one of: RRC signaling, MAC CE, DCI, PC5-RRC signaling, SCI.
  • a combination of a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the first signal and a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the target signal is a wake-up signal WUS.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the communication device 300 may correspond to the first communication device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 300 are respectively for implementing the corresponding process of the first communication device in the method 200 shown in Figure 10, which will not be repeated here for the sake of brevity.
  • FIG18 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 is a second communication device. As shown in FIG18 , the communication device 400 includes:
  • a first communication unit 410 configured to send a target signal
  • the target signal is a signal that carries information through signal amplitude, and the target signal includes a first signal and a second signal, the first signal is at a first level, the second signal is at a second level, and the first level is higher than the second level;
  • the subcarrier carrying the first signal is associated with a first modulation mode and/or a first constellation point
  • the subcarrier carrying the second signal is associated with a second modulation mode and/or a second constellation point
  • the subcarrier carrying the second signal is a null subcarrier.
  • the first modulation mode and/or the first constellation point is determined based on the second modulation mode and/or the second constellation point.
  • the first modulation mode and/or the first constellation point are agreed upon by a protocol, or the first modulation mode and/or the first constellation point are configured or indicated by a network device; and/or,
  • the second modulation mode and/or the second constellation point are agreed upon by a protocol, or the second modulation mode and/or the second constellation point are configured or indicated by a network device.
  • the communication device 400 includes:
  • the second communication unit 420 is used to send the first information
  • the first information is used to configure or indicate at least one first combination, and the first combination is a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal.
  • the first information is carried by one of the following:
  • Radio resource control RRC signaling media access control layer control unit MAC CE, downlink control information DCI, PC5-RRC signaling, side control information SCI.
  • a combination of a modulation mode and a constellation point associated with a subcarrier carrying the first signal and a modulation mode and a constellation point associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the first modulation mode belongs to a first modulation mode set, and the second modulation mode belongs to a second modulation mode set;
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or the modulation modes in the first modulation mode set are configured or indicated by a network device; and/or the modulation modes in the second modulation mode set are agreed upon by a protocol, or the modulation modes in the second modulation mode set are configured or indicated by a network device.
  • the first constellation point belongs to a first constellation point set
  • the second constellation point belongs to a second constellation point set
  • the constellation points in the first constellation point set are agreed upon by a protocol, or the constellation points in the first constellation point set are configured or indicated by a network device; and/or the constellation points in the second constellation point set are agreed upon by a protocol, or the constellation points in the second constellation point set are configured or indicated by a network device.
  • the time-frequency resource where the second signal is located is allowed to carry the first target information.
  • the first modulation mode and/or the first constellation point is determined based on a modulation mode adopted by the first target information carried on the time-frequency resource where the second signal is located.
  • the first modulation mode belongs to a first modulation mode set, and the modulation mode used by the first target information belongs to a third modulation mode set;
  • the modulation modes in the first modulation mode set are agreed upon by a protocol, or the modulation modes in the first modulation mode set are configured or indicated by a network device; and/or the modulation modes in the third modulation mode set are agreed upon by a protocol, or the modulation modes in the third modulation mode set are configured or indicated by a network device.
  • the first target information includes at least one of the following: physical downlink shared channel PDSCH, physical downlink control channel PDCCH, physical sidelink shared channel PSSCH, physical sidelink control channel PSCCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, channel state information reference signal CSI-RS, and demodulation reference signal DMRS.
  • the energy per resource unit EPRE of the subcarrier carrying the first signal is different from the EPRE of the subcarrier carrying the second signal.
  • a power offset between an EPRE of a subcarrier carrying the first signal and the second target information is greater than a power offset between an EPRE of a subcarrier carrying the second signal and the second target information.
  • the second target information includes at least one of the following: a secondary synchronization signal SSS, a CSI-RS, a DMRS, a PDSCH, a PUSCH, a PSSCH.
  • the EPRE of the subcarrier carrying the first signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the first signal is configured or indicated by a network device; and/or,
  • the EPRE of the subcarrier carrying the second signal is agreed upon by a protocol, or the EPRE of the subcarrier carrying the second signal is configured or indicated by a network device.
  • the communication device 400 includes:
  • the third communication unit 430 is used to send second information
  • the second information is used to configure or indicate at least one second combination, and the second combination is a combination of the modulation mode, constellation point and EPRE associated with the subcarrier carrying the first signal and the modulation mode, constellation point and EPRE associated with the subcarrier carrying the second signal.
  • the second information is carried via one of: RRC signaling, MAC CE, DCI, PC5-RRC signaling, SCI.
  • a combination of a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the first signal and a modulation mode, a constellation point, and an EPRE associated with a subcarrier carrying the second signal is agreed upon by a protocol.
  • the target signal is a wake-up signal WUS.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the communication device 400 may correspond to the second communication device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the communication device 400 are respectively for implementing the corresponding process of the second communication device in the method 200 shown in Figure 10, which will not be repeated here for the sake of brevity.
  • Fig. 19 is a schematic structural diagram of a communication device 500 provided in an embodiment of the present application.
  • the communication device 500 shown in Fig. 19 includes a processor 510, and the processor 510 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of the antennas may be one or more.
  • the processor 510 may implement the function of a processing unit in the first communication device, or the processor 510 may implement the function of a processing unit in the second communication device, which will not be described in detail for the sake of brevity.
  • the transceiver 530 may implement the function of a communication unit in the first communication device, which will not be described in detail here for the sake of brevity.
  • the transceiver 530 may implement the function of a communication unit in the second communication device, which will not be described in detail here for the sake of brevity.
  • the communication device 500 may specifically be the first communication device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first communication device in each method of the embodiment of the present application, which will not be repeated here for the sake of brevity.
  • the communication device 500 may specifically be the second communication device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the second communication device in each method of the embodiment of the present application, which will not be described again for the sake of brevity.
  • Fig. 20 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the device 600 shown in Fig. 20 includes a processor 610, which can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the apparatus 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the apparatus 600 may further include an input interface 630.
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the processor 610 may be located inside or outside the chip.
  • the processor 610 may implement the function of a processing unit in the second communication device, or the processor 610 may implement the function of a processing unit in the first communication device, which will not be described in detail for the sake of brevity.
  • the input interface 630 may implement the functionality of a communication unit in the second communication device, or the input interface 630 may implement the functionality of a communication unit in the first communication device.
  • the apparatus 600 may further include an output interface 640.
  • the processor 610 may control the output interface 640 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the processor 610 may be located inside or outside the chip.
  • the output interface 640 may implement the functionality of a communication unit in the second communication device, or the output interface 640 may implement the functionality of a communication unit in the first communication device.
  • the apparatus may be applied to the first communication device in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the first communication device in the various methods in the embodiments of the present application, which will not be described in detail here for the sake of brevity.
  • the apparatus may be applied to the second communication device in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the second communication device in the various methods in the embodiments of the present application, which will not be described in detail here for the sake of brevity.
  • the device mentioned in the embodiments of the present application may also be a chip, for example, a system-on-chip, a system-on-chip, a chip system, or a system-on-chip chip.
  • FIG21 is a schematic block diagram of a communication system 700 provided in an embodiment of the present application. As shown in FIG21 , the communication system 700 includes a second communication device 710 and a first communication device 720 .
  • the second communication device 710 can be used to implement the corresponding functions implemented by the second communication device in the above method
  • the first communication device 720 can be used to implement the corresponding functions implemented by the first communication device in the above method.
  • the second communication device 710 can be used to implement the corresponding functions implemented by the second communication device in the above method
  • the first communication device 720 can be used to implement the corresponding functions implemented by the first communication device in the above method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the first communication device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer-readable storage medium can be applied to the second communication device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first communication device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the second communication device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first communication device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the first communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program can be applied to the second communication device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the second communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。该无线通信的方法,包括:第一通信设备接收目标信号;其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
在新无线(New Radio,NR)系统中,引入了极低功耗和复杂度的接收机来接收通过信号幅度承载信息的信号,如唤醒信号(wake up signal,WUS)。然而,为了能够正确解调通过信号幅度承载信息的信号,对该通过信号幅度承载信息的信号的高低电平之间的调制深度提出了更高的要求。
发明内容
本申请实施例提供了一种无线通信的方法及设备,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。
第一方面,提供了一种无线通信的方法,该方法包括:
第一通信设备接收目标信号;
其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;
其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波。
第二方面,提供了一种无线通信的方法,该方法包括:
第二通信设备发送目标信号;
其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;
其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波。
第三方面,提供了一种通信设备,用于执行上述第一方面中的方法。
具体地,该通信设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种通信设备,用于执行上述第二方面中的方法。
具体地,该通信设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第一方面中的方法。
第六方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种基于零功耗唤醒的接收机系统图。
图3是本申请提供的一种WUR PPDU帧的示意图。
图4是本申请提供的一种WUR数据OOK调制的示意图。
图5是本申请提供的一种通过多载波调制产生的MC-OOK信号的示意图。
图6是本申请提供的一种零功耗通信的原理图。
图7是本申请提供的一种反向散射通信原理图。
图8是本申请提供的一种能量采集原理图。
图9是本申请提供的一种电阻负载调制的电路原理图。
图10是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图11是根据本申请实施例提供的一种WUS信号和数据信号映射的示意性图。
图12是根据本申请实施例提供的一种调制深度的示意性图。
图13是根据本申请实施例提供的一种星座点区域A和星座点区域B的示意性图。
图14是根据本申请实施例提供的一种on信号和off信号的示意性图。
图15是根据本申请实施例提供的一种256QAM下具有较大幅度值的星座点的示意性图。
图16是根据本申请实施例提供的一种QPSK下具有较大幅度值的星座点的示意性图。
图17是根据本申请实施例提供的一种通信设备的示意性框图。
图18是根据本申请实施例提供的另一种通信设备的示意性框图。
图19是根据本申请实施例提供的再一种通信设备的示意性框图。
图20是根据本申请实施例提供的一种装置的示意性框图。
图21是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。在本申请实施例中,第一通信设备可以是终端设备,且第二通信设备可以网络设备(即上行通信或下行通信);或者,第 一通信设备可以是第一终端,且第二通信设备可以第二终端(即侧行通信)。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于更好的理解本申请实施例,对本申请相关的基于唤醒接收机的终端节能进行说明。
为了终端设备(UE)的进一步节电,引入了唤醒接收机(Wake up receiver)接收唤醒信号(WUS)。唤醒接收机具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收唤醒信号(WUS)。因此,唤醒接收机接收的唤醒信号(WUS)与基于物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的信号的调制方式、波形等不同。唤醒信号主要通过对载波信号进行幅移键控(Amplitude Shift Keying,ASK)调制的包络信号。包络信号的解调也主要基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。唤醒接收机也可以通过终端进行供电,无论哪种供电方式,唤醒接收机相比UE的传统接收机极大的降低了功耗。唤醒接收机可以和UE结合在一起,作为UE接收机的一个附加模块,也可以单独作为一个UE的唤醒功能模块。
具体例如,基于零功耗唤醒的接收机系统框图可以如图2所示,唤醒接收机接收唤醒信号,如果需要UE打开主接收机,可以指示UE开启主接收机。否则,UE的主接收机可以处于关闭状态或断电状态。需要说明的是,唤醒接收机也可以称之为零功耗接收机或低功耗接收机,主接收机也可以称之为主收发机,本申请实施例对此并不限定。
为便于更好的理解本申请实施例,对本申请相关的WiFi通信中的唤醒信号进行说明。
WiFi通信中采用唤醒无线电(wake-up radio,WUR)信号实现设备的节能。WUR接入点(Access point,AP)通过WUR唤醒帧(wake-up frame)通知WUR站点(station,STA)的节能操作。wake-up frame承载于WUR物理层协议数据单元(physical layer protocol data unit,PPDU)帧中,一个WUR PPDU帧包含传统前导码(legacy preamble)、WUR同步(WUR-Sync)和WUR数据(WUR-Data)三部分,其中legacy preamble的作用是用于保护WUR-Sync和WUR-Data部分,是为了兼容性的考虑而保留的非WUR部分,它使用传统的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制和20MHz带宽。WUR-Sync是用于帮助识别、解调WUR-data部分,WUR-Data部分用于承载WUR物理层服务数据单元(physical layer service data unit,PSDU),如图3所示。
WUR-Sync部分和WUR-data部分采用了开关键控(On-Off Keying,OOK)调制和4MHz。OOK的调制原理是用来将载波信号的幅度调制为非零值和零值,分别对应开(On)和关(Off),用来表示信息比特,OOK又名二进制振幅键控(2ASK),如图4所示,WUR-Sync部分承载重复两次的同步序列,序列中比特1调制为On,0调制为Off。
需要说明的是,上述OOK信号的产生是通过多载波(Multi-carrier,MC)产生的,因此称为MC-OOK信号。MC-OOK信号的产生可以采用多载波调制如OFDM调制产生OOK信号,可以与OFDM系统保持良好的兼容性,减少实现WUR信号而引入的发射机复杂度。图5为通过多载波调制产生的MC-OOK信号的示意图。通过在频域上的多个子载波映射相应的幅度值,通过离散傅里叶变换的逆变换(Inverse Discrete Fourier Transform,IDFT)转到时域信号的波形近似于ASK调制形成的波形,其中比特1通过信号的高电平表示,比特0通过信号的低电平表示。
为便于更好的理解本申请实施例,对本申请相关的零功耗设备进行说明。
近年来,零功耗设备的应用越来越广泛。一种典型的零功耗设备是无线射频识别(Radio Frequency Identification,RFID),它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子 标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID是一种无线通信技术。最基本的RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签:它由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器:不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。如图6所示,电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
零功耗通信的关键技术包括能量采集和反向散射通信以及低功耗计算,如图6所示,一个典型的零功耗通信系统包括读写器和零功耗终端。读写器发射无线电波,用于向零功耗终端提供能量。安装在零功耗终端的能量采集模块可以采集空间中的无线电波携带的能量(图6中所示为读写器发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收读写器的控制命令并基于控制信令基于后向散射的方式向读写器发送数据。所发送的数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
为便于更好的理解本申请实施例,对本申请相关的反向散射通信(Back Scattering)进行说明。
如图7所示,零功耗设备(图7中的反向散射标签)接收反向散射读写器发送的载波信号,通过无线射频(Radio Frequency,RF)能量采集模块采集能量。进而对低功耗处理模块(图7中的逻辑处理模块)进行功能,对来波信号进行调制,并进行反向散射。
反向散射通信主要特征如下:
(1)终端不主动发射信号,通过调制来波信号实现反向散射通信;
(2)终端不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
为便于更好的理解本申请实施例,对本申请相关的RF能量采集(Power Harvesting)进行说明。
如图8所示,利用RF模块通过电磁感应实现对空间电磁波能量的采集,进而实现对负载电路的驱动(低功耗运算、传感器等),可以实现免电池。
为便于更好的理解本申请实施例,对本申请相关的负载调制进行说明。
负载调制是电子标签经常使用的向读写器传输数据的方法。负载调制通过对电子标签振荡回路的电参数按照数据流的节拍进行调节,使电子标签阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理图如图9所示。
在电容负载调制中,负载并联一个电容,取代了图9中由二进制数据编码控制的负载调制电阻。
为便于更好的理解本申请实施例,对本申请相关的编码技术进行说明。
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的供能信号进行说明。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作供能的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
供能信号可能是第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)标准中规定的某一信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink  Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的触发信号进行说明。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发的无线电波可以是低频、中频、高频等。
从波形上,用作触发的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作触发的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
触发信号可能是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
为便于更好的理解本申请实施例,对本申请相关的蜂窝无源物联网进行说明。
随着5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于现有的零功耗设备,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
极低功耗和复杂度的接收机被用来节电或者降低终端的复杂度和成本,如WiFi技术中的唤醒无线电(WUR)和NR技术中的唤醒接收机,以及未来的零功耗通信。为了与现有系统兼容,及资源的充分利用,以NR系统为例,当终端采用的唤醒接收机接收唤醒信号(WUS),网络设备所发送的WUS信号希望是与现有的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)发射机兼容的,并且希望与现有的NR信号进行频带内的复用,而不是为WUS信号的发送单独使用一个频带资源。WUS信号一般采用包络检测的方式接收,包络检测要求高电平和低电平之间具有足够的功率差,才能正确的解调出高低电平。在NR系统中,当WUS与其他NR信号复用时,如何发送WUS信号以满足包络检测的要求,是需要解决的问题。
基于上述问题,本申请提出了一种信号发送的方案,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图10是根据本申请实施例的无线通信的方法200的示意性流程图,如图10所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第二通信设备发送目标信号;其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波;
S220,第一通信设备接收该目标信号。
在本申请实施例中,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。
在本申请实施例中,第一信号可以是目标信号中的高电平部分,第一信号的幅度值可以是一个具体的值,也可以是一个取值范围内的值。第二信号可以是目标信号中的低电平部分,第二信号的幅度值可以是一个具体的值,也可以是一个取值范围内的值。
在一些实施例中,该第一信号的幅度与该第二信号的幅度的差值大于第一阈值,和/或,该第一信号的幅度与该第二信号的幅度的比值大于第二阈值,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求。
在一些实施例中,该第一阈值由协议约定,或者该第一阈值由网络设备配置。
在一些实施例中,该第二阈值由协议约定,或者该第二阈值由网络设备配置。
在一些实施例中,第一通信设备为终端设备或网络设备,其中,该第一通信设备包括一个特殊的接收机,如唤醒接收机或低功耗接收机,该接收机可以解调该目标信号。
在一些实施例中,第一通信设备可以为零功耗设备,该第一通信设备可以解调该目标信号。可选地,第一通信设备可以通过能量采集获得能量以用于通信、信息采集及处理,也即,第二通信设备在与第一通信设备通信之前,首先需要保证第一通信设备接收到用于无线供能的无线电波并通过能量采 集的方式获得无线能量。也就是说,本申请实施例可以应用于零功耗通信技术。可选地,该目标信号可以为该第一通信设备的供能信号。
应理解,本申请并不限定第一通信设备通过能量采集获得能量的具体方式,作为示例而非限定,第一通信设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
需要说明的是,零功耗设备是对具备极低复杂度和极低功耗的设备的一种概括的命名。这类设备可以不依赖于电池,其工作所需要的能量来源于环境,可以具备能量收集和储能能力。零功耗设备的通信可以支持简单的调制解调方式,如幅移键控(Amplitude Shift Keying,ASK)/频移键控(Frequency Shift Keying,FSK)等。具体的,零功耗设备可以指第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)和WiFi技术中引入的环境能量使能(Ambient Power Enabled,AMP)的设备,也可以是现有设备的一个通讯模块,如WiFi技术引入的唤醒无线电(WUR)功能模块和3GPP引入的终端设备的唤醒接收机(Wake up receiver)。
具体的,AMP设备的能量来源于环境,根据AMP设备的类型不同,有的AMP设备可能具有主动发射能力,而不是仅依赖于反向散射。
在一些实施例中,该第二通信设备为用于与该第一通信设备通信的设备。可选地,该第二通信设备可以为网络设备,或者,该第二通信设备可以为终端设备,或者,该第二通信设备可以为供能节点。
在一些实施例中,该目标信号为基于多载波调制生成的信号。
在一些实施例中,该目标信号也可以为采用包络检测方式接收的信号。也即,在本申请实施例中,该目标信号为通过信号幅度承载信息的信号,或者,该目标信号为采用包络检测方式接收的信号。
在一些实施例中,该目标信号为WUS信号,当然,该目标信号也可以是其他信号,或者,是一些用于传输数据的信号,本申请实施例对此并不限定。可选地,该WUS信号为开关键控(On-Off Keying,OOK)信号或多载波开关键控(Multi-carrier On-Off Keying,MC-OOK)信号。具体例如,在零功耗通信中具有极低功耗和复杂度的IoT设备,如AMP IoT设备,该类型设备接收的信号主要是基于ASK调制的信号,如OOK信号等。对于这类设备接收的信号,不仅仅是用于唤醒的WUS信号,也可以是用于传输用户数据的信号。
本申请实施例不限于NR系统中WUS信号的产生,同样适用于WiFi等其他使用多载波调制空口技术的通信系统中唤醒无线电(WUR)信号的产生。
以OOK信号为例,说明采用包络检波方式接收的信号,还可以采用其他调制方式产生的信号,如ASK、FSK调制,它们本质上要在接收端通过包络检波的方式检测信号的高、低电平进行解调。相应的,OOK信号中的on信号对应高电平信号,off信号对应低电平信号。
在一些实施例中,该目标信号为WUS信号,具体如OOK信号或MC-OOK信号,其中,第一信号为on信号和第二信号为off信号。
在一些实施例中,通过包络检测的方式检测目标信号的接收机具有低复杂度和功耗。通过ASK、OOK,或FSK调制的目标信号,该接收机都可以通过包络检测的方式解调。以MC-OOK信号为例,通过对多个子载波设置一定的非零幅值,经过发射机的IDFT变换,可以产生相应的on时域波形。而不对相应的子载波赋值,则可以产生相应的off时域波形,从而实现基于多载波的OOK调制。例如,在WiFi技术中的WUR信号,在20MHz带宽内,使用了64点(64-point)IDFT中心的13个子载波产生on波形。对于2μs符号长度,13个子载波中的子载波索引为k=(–6,–4,–2,2,4,6)的6个子载波进行非零赋值,其他子载波不赋值。对于4μs符号长度,13个子载波中的子载波索引为k=(–6,–5,…–1,1,2,…6)的12个子载波进行非零赋值,其他子载波不赋值。
在一些实施例中,目标信号与NR系统中的信号可以进行频带内的复用。如图11所示,WUS信号和数据信号映射到不同的子载波上,通过OFDM发射机进行处理和发射。
在一些实施例中,通过多载波产生的OOK信号,on信号和off信号的幅度需要达到一定的调制深度,以在接收端进行正确的解调,如图12所示。例如,在WiFi技术中的MC-OOK信号,On符号和off符号的平均功率的比值需要至少20分贝(dB)。
在一些实施例中,在产生第一信号(如On信号)时,对于承载信号的子载波的赋值,需要满足产生的时域信号的幅度满足调制深度的要求,并且在符号内信号的幅度尽量平坦。相应的,第二信号(如Off信号)的幅度相比第一信号(如On信号)的符号来说尽量低,以满足调制深度的要求。以256正交振幅调制(Quadrature Amplitude Modulation,QAM)调制为例,通过在子载波上映射不同的星座点,以满足上述要求。如图13所示,将幅值较大的星座点(即区域A内的星座点)映射到子载波以产生第一信号(如On信号,WUS“1”),将幅值较小的星座点(即区域B内的星座点)映射到子载波以产生第二信号(如Off信号,WUS“0”)。
在一些实施例中,对于第二信号(如Off信号),还可以将相应的子载波设置为空子载波来实现, 即承载第二信号(如Off信号)的子载波为空子载波。也即,在第二信号(如Off信号)所在的符号,相应的子载波映射的调制符号只要保证时域波形满足低电平即可,甚至在这些承载第二信号(如Off信号)的子载波上不映射调制符号。
在一些实施例中,该目标信号为WUS信号,具体如MC-OOK信号,其是通过将调制符号映射到相应的子载波,从而产生时域上等效的调幅信号。具体的,用第一电平(即高电平)表示第一信号(如on信号),用来承载比特1;用第二电平(即低电平)表示第二信号(如off信号),用来承载比特0,如图14所示。
为了产生第一信号(如on信号),映射承载WUS信号的子载波的调制符号具有较高的幅值,如图13中256QAM调制的星座点中区域A的星座点。为了满足产生是时域波形满足一定的幅度要求,这些星座点的选择并不是自由的,往往是预定义的星座点。但是对于第二信号(如off信号),只要能满足低电平,且满足相比高电平的幅值的比例,就可以在WUR正常检测出低电平,即off信号。
为了满足一定的调制深度,在产生第一信号(如on信号)时,需要确定采用哪种调制方式,以及哪些星座点,来映射到相应的子载波。可选地,第一信号(如on信号)采用的调制方式和/或星座点取决于第二信号(如off信号)采用的调制方式和/或星座点。也就是说,第一信号(如on信号)和第二信号(如off信号)采用的调制方式和星座点所产生的信号满足目标调制深度。为此,可以规定第一信号(如on信号)和第二信号(如off信号)分别采用的调制方式和星座点。
具体例如,以256QAM为例,比特映射调制符号的方法如下:
比特b(8i),b(8i+1),b(8i+2),b(8i+3),b(8i+4),b(8i+5),b(8i+6),b(8i+7),根据以下公式1映射到复数值的调制符号,星座点(1,1,1,1,1,1,1,1)具有较大的幅度值,如图15所示。
Figure PCTCN2022131482-appb-000001
具体又例如,以正交相移键控(Quadrature Phase Shift Keying,QPSK)为例,比特b(2i),b(2i+1),根据以下公式2映射到复数值的调制符号,QPSK的星座点是恒幅的,且幅值较小,如图16所示。
Figure PCTCN2022131482-appb-000002
在一些实施例中,第一调制方式和/或第一星座点基于第二调制方式和/或第二星座点确定。也即,第一信号(如on信号)采用的调制方式和/或星座点取决于第二信号(如off信号)采用的调制方式和/或星座点。
在一些实施例中,该第一调制方式和/或该第一星座点由协议约定,或者,该第一调制方式和/或该第一星座点由网络设备配置或指示。例如,该第一调制方式和/或该第一星座点由网络设备半静态配置或指示,或者,该第一调制方式和/或该第一星座点由网络设备动态配置或指示。
在一些实施例中,该第二调制方式和/或该第二星座点由协议约定,或者,该第二调制方式和/或该第二星座点由网络设备配置或指示。例如,该第二调制方式和/或该第二星座点由网络设备半静态配置或指示,或者,该第二调制方式和/或该第二星座点由网络设备动态配置或指示。
在一些实施例中,该第一通信设备接收第一信息;
其中,该第一信息用于配置或指示至少一种第一组合,且该第一组合为承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波关联的调制方式和星座点的组合。
具体例如,该第一通信设备接收该第二通信设备发送的该第一信息,或者,该第一通信设备接收除该第二通信设备之外的其他设备发送的该第一信息。
具体的,该第一通信设备在接收到该第一信息之后,获取该至少一种第一组合,以及该第一通信设备可以基于该至少一种第一组合进行目标信号的解调。
在一些实施例中,该第一信息通过以下之一承载:
无线资源控制(Radio Resource Control,RRC)信令,媒体接入控制层控制单元(Media Access Control Control Element,MAC CE),下行控制信息(Downlink Control Information,DCI),PC5-RRC信令,侧行控制信息(Sidelink Control Information,SCI)。
在一些实施例中,承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波关联的调制方式和星座点的组合由协议约定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第二调制方式属于第二调制方式集合;其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第二调制方式集合中的调制方式由协议约定,或者,该第二调制 方式集合中的调制方式由网络设备配置或指示。
在一些实施例中,该第一星座点属于第一星座点集合,该第二星座点属于第二星座点集合;其中,该第一星座点集合中的星座点由协议约定,或者,该第一星座点集合中的星座点由网络设备配置或指示;和/或,该第二星座点集合中的星座点由协议约定,或者,该第二星座点集合中的星座点由网络设备配置或指示。
在一些实施例中,第一信号(如on信号)和第二信号(如off信号)分别采用的调制方式和星座点的组合可以包括以下至少之一:
(256QAM,星座点“11111111”)和(QPSK,星座点“11”或任意星座点);
(1024QAM,星座点“1111111111”)和(QPSK,星座点“11”或任意星座点)
(256QAM,星座点“11111111”)和(二进制相移键控(Binary Phase Shift Keying,BPSK),星座点“1”或任意星座点);
(64QAM,星座点“111111”)和(BPSK,星座点“1”或任意星座点);
(64QAM,星座点“111111”)和(QPSK,星座点“11”或任意星座点);
(1024QAM,星座点“1111111111”)和(16QAM,星座点“1111”)。
在一些实施例中,该第二信号所在的时频资源上允许承载第一目标信息。
在一些实施例中,该第一目标信息包括但不限于以下至少之一:物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH),物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),解调参考信号(Demodulation Reference Signal,DMRS)。
在一些实施例中,该第一调制方式和/或该第一星座点基于该第二信号所在的时频资源上承载的该第一目标信息所采用的调制方式确定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第一目标信息所采用的调制方式属于第三调制方式集合;其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第三调制方式集合中的调制方式由协议约定,或者,该第三调制方式集合中的调制方式由网络设备配置或指示。
具体例如,第一调制方式集合中的调制方式由网络设备半静态配置或指示,或者,第一调制方式集合中的调制方式由网络设备动态配置或指示。
具体例如,第三调制方式集合中的调制方式由网络设备半静态配置或指示,或者,第三调制方式集合中的调制方式由网络设备动态配置或指示。
在一些实施例中,对于第二信号(如off信号),只要能满足低电平,且满足相比高电平的幅值的比例,就可以正常检测出低电平,即第二信号(如off信号)。为此,在第二信号(如off信号)所在的时频资源上,可以承载可以满足低电平信号特性的第一目标信息,可以充分利用时频资源。在这种情况下,第一信号(如on信号)采用的调制方式和星座点,可以根据第一目标信息采用的调制方式来确定。例如,当第一目标信息的调制方式为BPSK或QPSK时,第一信号(如on信号)采用的调制方式为256QAM和相应的星座点。又例如,当第一目标信息的调制方式为16QAM时,第一信号(如on信号)采用的调制方式为1024QAM和相应的星座点。
在一些实施例中,承载该第一信号的子载波的每资源单元能量(Energy per resource element,EPRE)与承载该第二信号的子载波的EPRE不同。
具体例如,承载WUS信号的子载波的EPRE可以与其他NR信号有一定的功率偏置,以产生满足一定调制深度的OOK信号。其中,第一信号(如on信号)的EPRE和第二信号(如off信号)的EPRE不同,它们之间的功率偏置满足一定的门限。
在一些实施例中,承载该第一信号的子载波的EPRE与第二目标信息之间的功率偏置大于承载该第二信号的子载波的EPRE与该第二目标信息之间的功率偏置。
也即,第一信号(如on信号)的EPRE相对第二目标信息的EPRE具有较大的功率偏置,第二信号(如off信号)的EPRE相对第二目标信息的EPRE具有较小的功率偏置。
在一些实施例中,该第二目标信息包括但不限于以下至少之一:辅同步信号(Secondary Synchronization Signal,SSS),CSI-RS,DMRS,PDSCH,PUSCH,PSSCH。
在一些实施例中,承载该第一信号的子载波的EPRE由协议约定,或者,承载该第一信号的子载波的EPRE由网络设备配置或指示;和/或,承载该第二信号的子载波的EPRE由协议约定,或者,承 载该第二信号的子载波的EPRE由网络设备配置或指示。
在一些实施例中,该第一通信设备接收第二信息;其中,该第二信息用于配置或指示至少一种第二组合,且该第二组合为承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合。
具体例如,该第一通信设备接收该第二通信设备发送的该第二信息,或者,该第一通信设备接收除该第二通信设备之外的其他设备发送的该第二信息。
在一些实施例中,第二信息通过以下之一承载:RRC信令,MAC CE,DCI,PC5-RRC信令,SCI。
在一些实施例中,承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合由协议约定。
因此,在本申请实施例中,通过优化承载目标信号中的高电平信号和低电平信号的子载波关联的调制方式和/或星座点,从而使得目标信号中的高低电平信号之间的调制深度满足解调需求,提升了目标信号的检测性能。换句话说,本申请实施例所产生的目标信号,可以满足基于包络检测的高低电平之间的调制深度要求,提高目标信号的检测性能。
上文结合图10至图16,详细描述了本申请的方法实施例,下文结合图17至图21,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图17示出了根据本申请实施例的通信设备300的示意性框图。该通信设备300为第一通信设备,如图17所示,该通信设备300包括:
第一通信单元310,用于接收目标信号;
其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;
其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波。
在一些实施例中,该第一调制方式和/或该第一星座点基于该第二调制方式和/或该第二星座点确定。
在一些实施例中,该第一调制方式和/或该第一星座点由协议约定,或者,该第一调制方式和/或该第一星座点由网络设备配置或指示;和/或,
该第二调制方式和/或该第二星座点由协议约定,或者,该第二调制方式和/或该第二星座点由网络设备配置或指示。
在一些实施例中,该通信设备300还包括:
第二通信单元320,用于接收第一信息;
其中,该第一信息用于配置或指示至少一种第一组合,且该第一组合为承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波关联的调制方式和星座点的组合。
在一些实施例中,该第一信息通过以下之一承载:
无线资源控制RRC信令,媒体接入控制层控制单元MAC CE,下行控制信息DCI,PC5-RRC信令,侧行控制信息SCI。
在一些实施例中,承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波关联的调制方式和星座点的组合由协议约定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第二调制方式属于第二调制方式集合;
其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第二调制方式集合中的调制方式由协议约定,或者,该第二调制方式集合中的调制方式由网络设备配置或指示。
在一些实施例中,该第一星座点属于第一星座点集合,该第二星座点属于第二星座点集合;
其中,该第一星座点集合中的星座点由协议约定,或者,该第一星座点集合中的星座点由网络设备配置或指示;和/或,该第二星座点集合中的星座点由协议约定,或者,该第二星座点集合中的星座点由网络设备配置或指示。
在一些实施例中,该第二信号所在的时频资源上允许承载第一目标信息。
在一些实施例中,该第一调制方式和/或该第一星座点基于该第二信号所在的时频资源上承载的该第一目标信息所采用的调制方式确定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第一目标信息所采用的调制方式属于第三调制方式集合;
其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第三调制方式集合中的调制方式由协议约定,或者,该第三调制方式集合中的调制方式由网络设备配置或指示。
在一些实施例中,该第一目标信息包括以下至少之一:物理下行共享信道PDSCH,物理下行控制信道PDCCH,物理侧行共享信道PSSCH,物理侧行控制信道PSCCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,信道状态信息参考信号CSI-RS,解调参考信号DMRS。
在一些实施例中,承载该第一信号的子载波的每资源单元能量EPRE与承载该第二信号的子载波的EPRE不同。
在一些实施例中,承载该第一信号的子载波的EPRE与第二目标信息之间的功率偏置大于承载该第二信号的子载波的EPRE与该第二目标信息之间的功率偏置。
在一些实施例中,该第二目标信息包括以下至少之一:辅同步信号SSS,CSI-RS,DMRS,PDSCH,PUSCH,PSSCH。
在一些实施例中,承载该第一信号的子载波的EPRE由协议约定,或者,承载该第一信号的子载波的EPRE由网络设备配置或指示;和/或,
承载该第二信号的子载波的EPRE由协议约定,或者,承载该第二信号的子载波的EPRE由网络设备配置或指示。
在一些实施例中,该通信设备300还包括:
第三通信单元330,用于接收第二信息;
其中,该第二信息用于配置或指示至少一种第二组合,且该第二组合为承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合。
在一些实施例中,该第二信息通过以下之一承载:RRC信令,MAC CE,DCI,PC5-RRC信令,SCI。
在一些实施例中,承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合由协议约定。
在一些实施例中,该目标信号为唤醒信号WUS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备300可对应于本申请方法实施例中的第一通信设备,并且通信设备300中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法200中第一通信设备的相应流程,为了简洁,在此不再赘述。
图18示出了根据本申请实施例的通信设备400的示意性框图。该通信设备400为第二通信设备,如图18所示,该通信设备400包括:
第一通信单元410,用于发送目标信号;
其中,该目标信号为通过信号幅度承载信息的信号,该目标信号包括第一信号和第二信号,该第一信号处于第一电平,该第二信号处于第二电平,该第一电平高于该第二电平;
其中,承载该第一信号的子载波关联第一调制方式和/或第一星座点,承载该第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载该第二信号的子载波为空子载波。
在一些实施例中,该第一调制方式和/或该第一星座点基于该第二调制方式和/或该第二星座点确定。
在一些实施例中,该第一调制方式和/或该第一星座点由协议约定,或者,该第一调制方式和/或该第一星座点由网络设备配置或指示;和/或,
该第二调制方式和/或该第二星座点由协议约定,或者,该第二调制方式和/或该第二星座点由网络设备配置或指示。
在一些实施例中,该通信设备400包括:
第二通信单元420,用于发送第一信息;
其中,该第一信息用于配置或指示至少一种第一组合,且该第一组合为承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波关联的调制方式和星座点的组合。
在一些实施例中,该第一信息通过以下之一承载:
无线资源控制RRC信令,媒体接入控制层控制单元MAC CE,下行控制信息DCI,PC5-RRC信令,侧行控制信息SCI。
在一些实施例中,承载该第一信号的子载波关联的调制方式和星座点与承载该第二信号的子载波 关联的调制方式和星座点的组合由协议约定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第二调制方式属于第二调制方式集合;
其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第二调制方式集合中的调制方式由协议约定,或者,该第二调制方式集合中的调制方式由网络设备配置或指示。
在一些实施例中,该第一星座点属于第一星座点集合,该第二星座点属于第二星座点集合;
其中,该第一星座点集合中的星座点由协议约定,或者,该第一星座点集合中的星座点由网络设备配置或指示;和/或,该第二星座点集合中的星座点由协议约定,或者,该第二星座点集合中的星座点由网络设备配置或指示。
在一些实施例中,该第二信号所在的时频资源上允许承载第一目标信息。
在一些实施例中,该第一调制方式和/或该第一星座点基于该第二信号所在的时频资源上承载的该第一目标信息所采用的调制方式确定。
在一些实施例中,该第一调制方式属于第一调制方式集合,该第一目标信息所采用的调制方式属于第三调制方式集合;
其中,该第一调制方式集合中的调制方式由协议约定,或者,该第一调制方式集合中的调制方式由网络设备配置或指示;和/或,该第三调制方式集合中的调制方式由协议约定,或者,该第三调制方式集合中的调制方式由网络设备配置或指示。
在一些实施例中,该第一目标信息包括以下至少之一:物理下行共享信道PDSCH,物理下行控制信道PDCCH,物理侧行共享信道PSSCH,物理侧行控制信道PSCCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,信道状态信息参考信号CSI-RS,解调参考信号DMRS。
在一些实施例中,承载该第一信号的子载波的每资源单元能量EPRE与承载该第二信号的子载波的EPRE不同。
在一些实施例中,承载该第一信号的子载波的EPRE与第二目标信息之间的功率偏置大于承载该第二信号的子载波的EPRE与该第二目标信息之间的功率偏置。
在一些实施例中,该第二目标信息包括以下至少之一:辅同步信号SSS,CSI-RS,DMRS,PDSCH,PUSCH,PSSCH。
在一些实施例中,承载该第一信号的子载波的EPRE由协议约定,或者,承载该第一信号的子载波的EPRE由网络设备配置或指示;和/或,
承载该第二信号的子载波的EPRE由协议约定,或者,承载该第二信号的子载波的EPRE由网络设备配置或指示。
在一些实施例中,该通信设备400包括:
第三通信单元430,用于发送第二信息;
其中,该第二信息用于配置或指示至少一种第二组合,且该第二组合为承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合。
在一些实施例中,该第二信息通过以下之一承载:RRC信令,MAC CE,DCI,PC5-RRC信令,SCI。
在一些实施例中,承载该第一信号的子载波关联的调制方式、星座点和EPRE与承载该第二信号的子载波关联的调制方式、星座点和EPRE的组合由协议约定。
在一些实施例中,该目标信号为唤醒信号WUS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的第二通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法200中第二通信设备的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例提供的一种通信设备500示意性结构图。图19所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图19所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图19所示,通信设备500还可以包括收发器530,处理器510可以控制该 收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,处理器510可以实现第一通信设备中的处理单元的功能,或者,处理器510可以实现第二通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器530可以实现第一通信设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器530可以实现第二通信设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的第一通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的第二通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
图20是本申请实施例的装置的示意性结构图。图20所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图20所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。可选地,处理器610可以位于芯片内或芯片外。
在一些实施例中,处理器610可以实现第二通信设备中的处理单元的功能,或者,处理器610可以实现第一通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,输入接口630可以实现第二通信设备中的通信单元的功能,或者,输入接口630可以实现第一通信设备中的通信单元的功能。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。可选地,处理器610可以位于芯片内或芯片外。
在一些实施例中,输出接口640可以实现第二通信设备中的通信单元的功能,或者,输出接口640可以实现第一通信设备中的通信单元的功能。
在一些实施例中,该装置可应用于本申请实施例中的第一通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的第二通信设备,并且该装置可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图21是本申请实施例提供的一种通信系统700的示意性框图。如图21所示,该通信系统700包括第二通信设备710和第一通信设备720。
其中,该第二通信设备710可以用于实现上述方法中由第二通信设备实现的相应的功能,以及该第一通信设备720可以用于实现上述方法中由第一通信设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第二通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第二通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第二通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际 的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信设备接收目标信号;
    其中,所述目标信号为通过信号幅度承载信息的信号,所述目标信号包括第一信号和第二信号,所述第一信号处于第一电平,所述第二信号处于第二电平,所述第一电平高于所述第二电平;
    其中,承载所述第一信号的子载波关联第一调制方式和/或第一星座点,承载所述第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载所述第二信号的子载波为空子载波。
  2. 如权利要求1所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点基于所述第二调制方式和/或所述第二星座点确定。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点由协议约定,或者,所述第一调制方式和/或所述第一星座点由网络设备配置或指示;和/或,
    所述第二调制方式和/或所述第二星座点由协议约定,或者,所述第二调制方式和/或所述第二星座点由网络设备配置或指示。
  4. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备接收第一信息;
    其中,所述第一信息用于配置或指示至少一种第一组合,且所述第一组合为承载所述第一信号的子载波关联的调制方式和星座点与承载所述第二信号的子载波关联的调制方式和星座点的组合。
  5. 如权利要求4所述的方法,其特征在于,
    所述第一信息通过以下之一承载:
    无线资源控制RRC信令,媒体接入控制层控制单元MAC CE,下行控制信息DCI,PC5-RRC信令,侧行控制信息SCI。
  6. 如权利要求1或2所述的方法,其特征在于,
    承载所述第一信号的子载波关联的调制方式和星座点与承载所述第二信号的子载波关联的调制方式和星座点的组合由协议约定。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,
    所述第一调制方式属于第一调制方式集合,所述第二调制方式属于第二调制方式集合;
    其中,所述第一调制方式集合中的调制方式由协议约定,或者,所述第一调制方式集合中的调制方式由网络设备配置或指示;和/或,所述第二调制方式集合中的调制方式由协议约定,或者,所述第二调制方式集合中的调制方式由网络设备配置或指示。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,
    所述第一星座点属于第一星座点集合,所述第二星座点属于第二星座点集合;
    其中,所述第一星座点集合中的星座点由协议约定,或者,所述第一星座点集合中的星座点由网络设备配置或指示;和/或,所述第二星座点集合中的星座点由协议约定,或者,所述第二星座点集合中的星座点由网络设备配置或指示。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,
    所述第二信号所在的时频资源上允许承载第一目标信息。
  10. 如权利要求9所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点基于所述第二信号所在的时频资源上承载的所述第一目标信息所采用的调制方式确定。
  11. 如权利要求10所述的方法,其特征在于,所述第一调制方式属于第一调制方式集合,所述第一目标信息所采用的调制方式属于第三调制方式集合;
    其中,所述第一调制方式集合中的调制方式由协议约定,或者,所述第一调制方式集合中的调制方式由网络设备配置或指示;和/或,所述第三调制方式集合中的调制方式由协议约定,或者,所述第三调制方式集合中的调制方式由网络设备配置或指示。
  12. 如权利要求9至11中任一项所述的方法,其特征在于,
    所述第一目标信息包括以下至少之一:物理下行共享信道PDSCH,物理下行控制信道PDCCH,物理侧行共享信道PSSCH,物理侧行控制信道PSCCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,信道状态信息参考信号CSI-RS,解调参考信号DMRS。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,承载所述第一信号的子载波的每资源单元能量EPRE与承载所述第二信号的子载波的EPRE不同。
  14. 如权利要求13所述的方法,其特征在于,
    承载所述第一信号的子载波的EPRE与第二目标信息之间的功率偏置大于承载所述第二信号的子载波的EPRE与所述第二目标信息之间的功率偏置。
  15. 如权利要求14所述的方法,其特征在于,所述第二目标信息包括以下至少之一:辅同步信号SSS,CSI-RS,DMRS,PDSCH,PUSCH,PSSCH。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,
    承载所述第一信号的子载波的EPRE由协议约定,或者,承载所述第一信号的子载波的EPRE由网络设备配置或指示;和/或,
    承载所述第二信号的子载波的EPRE由协议约定,或者,承载所述第二信号的子载波的EPRE由网络设备配置或指示。
  17. 如权利要求13至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备接收第二信息;
    其中,所述第二信息用于配置或指示至少一种第二组合,且所述第二组合为承载所述第一信号的子载波关联的调制方式、星座点和EPRE与承载所述第二信号的子载波关联的调制方式、星座点和EPRE的组合。
  18. 如权利要求17所述的方法,其特征在于,
    所述第二信息通过以下之一承载:RRC信令,MAC CE,DCI,PC5-RRC信令,SCI。
  19. 如权利要求13至16中任一项所述的方法,其特征在于,
    承载所述第一信号的子载波关联的调制方式、星座点和EPRE与承载所述第二信号的子载波关联的调制方式、星座点和EPRE的组合由协议约定。
  20. 如权利要求1至19中任一项所述的方法,其特征在于,
    所述目标信号为唤醒信号WUS。
  21. 一种无线通信的方法,其特征在于,包括:
    第二通信设备发送目标信号;
    其中,所述目标信号为通过信号幅度承载信息的信号,所述目标信号包括第一信号和第二信号,所述第一信号处于第一电平,所述第二信号处于第二电平,所述第一电平高于所述第二电平;
    其中,承载所述第一信号的子载波关联第一调制方式和/或第一星座点,承载所述第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载所述第二信号的子载波为空子载波。
  22. 如权利要求21所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点基于所述第二调制方式和/或所述第二星座点确定。
  23. 如权利要求21或22所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点由协议约定,或者,所述第一调制方式和/或所述第一星座点由网络设备配置或指示;和/或,
    所述第二调制方式和/或所述第二星座点由协议约定,或者,所述第二调制方式和/或所述第二星座点由网络设备配置或指示。
  24. 如权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述第二通信设备发送第一信息;
    其中,所述第一信息用于配置或指示至少一种第一组合,且所述第一组合为承载所述第一信号的子载波关联的调制方式和星座点与承载所述第二信号的子载波关联的调制方式和星座点的组合。
  25. 如权利要求24所述的方法,其特征在于,
    所述第一信息通过以下之一承载:
    无线资源控制RRC信令,媒体接入控制层控制单元MAC CE,下行控制信息DCI,PC5-RRC信令,侧行控制信息SCI。
  26. 如权利要求21或22所述的方法,其特征在于,
    承载所述第一信号的子载波关联的调制方式和星座点与承载所述第二信号的子载波关联的调制方式和星座点的组合由协议约定。
  27. 如权利要求21至26中任一项所述的方法,其特征在于,
    所述第一调制方式属于第一调制方式集合,所述第二调制方式属于第二调制方式集合;
    其中,所述第一调制方式集合中的调制方式由协议约定,或者,所述第一调制方式集合中的调制方式由网络设备配置或指示;和/或,所述第二调制方式集合中的调制方式由协议约定,或者,所述第二调制方式集合中的调制方式由网络设备配置或指示。
  28. 如权利要求21至27中任一项所述的方法,其特征在于,
    所述第一星座点属于第一星座点集合,所述第二星座点属于第二星座点集合;
    其中,所述第一星座点集合中的星座点由协议约定,或者,所述第一星座点集合中的星座点由网络设备配置或指示;和/或,所述第二星座点集合中的星座点由协议约定,或者,所述第二星座点集合中的星座点由网络设备配置或指示。
  29. 如权利要求21至28中任一项所述的方法,其特征在于,
    所述第二信号所在的时频资源上允许承载第一目标信息。
  30. 如权利要求29所述的方法,其特征在于,
    所述第一调制方式和/或所述第一星座点基于所述第二信号所在的时频资源上承载的所述第一目标信息所采用的调制方式确定。
  31. 如权利要求30所述的方法,其特征在于,所述第一调制方式属于第一调制方式集合,所述第一目标信息所采用的调制方式属于第三调制方式集合;
    其中,所述第一调制方式集合中的调制方式由协议约定,或者,所述第一调制方式集合中的调制方式由网络设备配置或指示;和/或,所述第三调制方式集合中的调制方式由协议约定,或者,所述第三调制方式集合中的调制方式由网络设备配置或指示。
  32. 如权利要求29至31中任一项所述的方法,其特征在于,
    所述第一目标信息包括以下至少之一:物理下行共享信道PDSCH,物理下行控制信道PDCCH,物理侧行共享信道PSSCH,物理侧行控制信道PSCCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,信道状态信息参考信号CSI-RS,解调参考信号DMRS。
  33. 如权利要求21至32中任一项所述的方法,其特征在于,承载所述第一信号的子载波的每资源单元能量EPRE与承载所述第二信号的子载波的EPRE不同。
  34. 如权利要求33所述的方法,其特征在于,
    承载所述第一信号的子载波的EPRE与第二目标信息之间的功率偏置大于承载所述第二信号的子载波的EPRE与所述第二目标信息之间的功率偏置。
  35. 如权利要求34所述的方法,其特征在于,所述第二目标信息包括以下至少之一:辅同步信号SSS,CSI-RS,DMRS,PDSCH,PUSCH,PSSCH。
  36. 如权利要求33至35中任一项所述的方法,其特征在于,
    承载所述第一信号的子载波的EPRE由协议约定,或者,承载所述第一信号的子载波的EPRE由网络设备配置或指示;和/或,
    承载所述第二信号的子载波的EPRE由协议约定,或者,承载所述第二信号的子载波的EPRE由网络设备配置或指示。
  37. 如权利要求33至36中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信设备发送第二信息;
    其中,所述第二信息用于配置或指示至少一种第二组合,且所述第二组合为承载所述第一信号的子载波关联的调制方式、星座点和EPRE与承载所述第二信号的子载波关联的调制方式、星座点和EPRE的组合。
  38. 如权利要求37所述的方法,其特征在于,
    所述第二信息通过以下之一承载:RRC信令,MAC CE,DCI,PC5-RRC信令,SCI。
  39. 如权利要求33至36中任一项所述的方法,其特征在于,
    承载所述第一信号的子载波关联的调制方式、星座点和EPRE与承载所述第二信号的子载波关联的调制方式、星座点和EPRE的组合由协议约定。
  40. 如权利要求21至39中任一项所述的方法,其特征在于,
    所述目标信号为唤醒信号WUS。
  41. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:
    第一通信单元,用于接收目标信号;
    其中,所述目标信号为通过信号幅度承载信息的信号,所述目标信号包括第一信号和第二信号,所述第一信号处于第一电平,所述第二信号处于第二电平,所述第一电平高于所述第二电平;
    其中,承载所述第一信号的子载波关联第一调制方式和/或第一星座点,承载所述第二信号的子载波关联第二调制方式和/或第二星座点,或者,承载所述第二信号的子载波为空子载波。
  42. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述通信设备包括:
    第一通信单元,用于发送目标信号;
    其中,所述目标信号为通过信号幅度承载信息的信号,所述目标信号包括第一信号和第二信号,所述第一信号处于第一电平,所述第二信号处于第二电平,所述第一电平高于所述第二电平;
    其中,承载所述第一信号的子载波关联第一调制方式和/或第一星座点,承载所述第二信号的子 载波关联第二调制方式和/或第二星座点,或者,承载所述第二信号的子载波为空子载波。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至20中任一项所述的方法。
  44. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求21至40中任一项所述的方法。
  45. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法。
  46. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至40中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求1至20中任一项所述的方法被实现。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求21至40中任一项所述的方法被实现。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求1至20中任一项所述的方法被实现。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求21至40中任一项所述的方法被实现。
  51. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1至20中任一项所述的方法被实现。
  52. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求21至40中任一项所述的方法被实现。
PCT/CN2022/131482 2022-11-11 2022-11-11 无线通信的方法及设备 WO2024098403A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131482 WO2024098403A1 (zh) 2022-11-11 2022-11-11 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131482 WO2024098403A1 (zh) 2022-11-11 2022-11-11 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2024098403A1 true WO2024098403A1 (zh) 2024-05-16

Family

ID=91031703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131482 WO2024098403A1 (zh) 2022-11-11 2022-11-11 无线通信的方法及设备

Country Status (1)

Country Link
WO (1) WO2024098403A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557809A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种接收机配置信息的确定方法、终端及网络设备
US11233625B1 (en) * 2018-10-15 2022-01-25 Nxp Usa, Inc. Power-boosted pilot tones in OFDM communication
CN115150236A (zh) * 2021-03-30 2022-10-04 华为技术有限公司 一种信号处理方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557809A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种接收机配置信息的确定方法、终端及网络设备
US11233625B1 (en) * 2018-10-15 2022-01-25 Nxp Usa, Inc. Power-boosted pilot tones in OFDM communication
CN115150236A (zh) * 2021-03-30 2022-10-04 华为技术有限公司 一种信号处理方法及相关设备
WO2022206464A1 (zh) * 2021-03-30 2022-10-06 华为技术有限公司 一种信号处理方法及相关设备

Similar Documents

Publication Publication Date Title
WO2023071864A1 (zh) 发送信号的方法和装置
WO2023078358A1 (zh) 通信的方法和装置
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024098404A1 (zh) 无线通信的方法和设备
CN117813874A (zh) 无线通信的方法和设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023184283A1 (zh) 无线通信的方法及装置
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2024046224A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
US20240178700A1 (en) Wireless communication method and apparatus, and communication device
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023206254A1 (zh) 通信方法及通信装置
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2024012174A1 (zh) 通信方法、装置、设备以及存储介质
WO2024026771A1 (zh) 接入认证的方法和设备