WO2024012174A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2024012174A1
WO2024012174A1 PCT/CN2023/101965 CN2023101965W WO2024012174A1 WO 2024012174 A1 WO2024012174 A1 WO 2024012174A1 CN 2023101965 W CN2023101965 W CN 2023101965W WO 2024012174 A1 WO2024012174 A1 WO 2024012174A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time domain
uplink
downlink
scheduling information
Prior art date
Application number
PCT/CN2023/101965
Other languages
English (en)
French (fr)
Inventor
罗之虎
鲁振伟
吴毅凌
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024012174A1 publication Critical patent/WO2024012174A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device, equipment and storage medium.
  • IoT Internet of things
  • 5G fifth generation wireless system
  • RFID radio frequency identification
  • the communication method, device, equipment and storage medium provided by the embodiments of the present application provide a solution for how to achieve effective transmission control between devices when RFID is applied to various communication systems.
  • inventions of the present application provide a communication method.
  • the method includes: a first device receiving first downlink information from a second device, where the first downlink information includes an uplink transmission instruction for the first device. Scheduling information, the transmission parameters and/or transmission resources of the scheduling information are related to the second downlink information, the second downlink information is the downlink information before the first downlink information, or the second downlink information is the first downlink information. synchronization signal in the uplink information; the first device sends uplink information to the first device.
  • the first downlink information sent by the first device is received, so as to perform the uplink information according to the uplink scheduling information in the first downlink information. transmission, realizing flexible scheduling of uplink transmission, thereby improving the efficiency of uplink resource usage.
  • the transmission parameters and/or transmission resources of the uplink scheduling information are related to the second downlink information, and the first device can receive the uplink scheduling information based on the indication of the second downlink information, which provides a solution for successfully receiving the uplink scheduling information.
  • the transmission resources of the scheduling information include time domain resources; the time domain resources are determined based on the first time domain unit, and the first time domain unit is the synchronization signal of the first downlink information. occupied time domain resources.
  • the time domain resources of the scheduling information are determined based on the synchronization signal of the first downlink information and the time domain resources. No additional signaling is required to indicate the time domain resource location of the scheduling information, which saves signaling. overhead.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the first time domain unit, or the starting time domain position of the time domain resource is adjacent to the ending time of the first time domain unit.
  • the time domain interval is a preset value, which saves signaling overhead and processing complexity.
  • the time domain interval is related to the second downlink information; wherein, when the second downlink information includes the synchronization signal in the first downlink information, the time domain interval is related to at least one of the following synchronization signals: :
  • the time domain resource is between the first time domain unit and the second time domain unit; or, the time domain resource is after the second time domain unit; where the second time domain unit is the first time domain unit.
  • the time domain unit occupied by the data of downlink information.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the second time domain unit, or the starting time domain position of the time domain resource is adjacent to the ending time of the second time domain unit.
  • the transmission resources of the scheduling information include frequency domain resources; the frequency domain resources are determined based on the first frequency domain unit, and the first frequency domain unit is the synchronization signal of the first downlink information. Frequency domain resources occupied.
  • the frequency domain resources occupied by the scheduling information are indicated through synchronization signals, thereby saving signaling overhead.
  • the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit; or, the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit. There are frequency domain intervals between points.
  • the center frequency point of the frequency domain resource of the scheduling information is the same as the center frequency point of the first frequency domain unit, which can avoid signal interference caused by non-orthogonal subcarriers.
  • the frequency domain of the scheduling information The gap between the center frequency point of the resource and the center frequency point of the first frequency domain unit enables flexible configuration of frequency domain resources of the scheduling information.
  • the frequency domain interval is a preset value, which saves signaling overhead and processing complexity.
  • the frequency domain interval is related to the second downlink information; wherein, when the second downlink information includes the synchronization signal in the first downlink information, the frequency domain interval is related to at least one of the following synchronization signals: :
  • the bandwidth of the frequency domain resource is the same as the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource is a preset value, which saves signaling overhead and processing complexity.
  • the bandwidth of the frequency domain resource is related to the second downlink information; wherein, when the second downlink information includes the synchronization signal in the first downlink information, the bandwidth of the frequency domain resource is related to the following of the synchronization signal: At least one related:
  • the transmission parameter of the scheduling information is related to at least one of the following synchronization signals:
  • the transmission parameters include: bandwidth, subcarrier spacing, cyclic prefix CP type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, modulation depth, and duty cycle. at least one of them.
  • the uplink information supports channel coding
  • the scheduling information includes information indicating a transport block or code block size of the uplink information.
  • the channel coding type of the scheduling information is the same as the channel coding type of the uplink information.
  • the scheduling information when the number of bits of the scheduling information is greater than or equal to the preset number of bits, the scheduling information uses CRC; when the number of bits of the scheduling information is less than the preset number of bits, the scheduling information does not use CRC.
  • CRC is used to achieve reliable transmission of the scheduling information.
  • the number of bits of the scheduling information is small, not using CRC saves transmission resources and reduces the time required for information processing. the complexity.
  • the preset number of bits is less than or equal to 12.
  • the scheduling information includes first information, the first information is used to indicate the transmission of the uplink information. input parameters and/or transfer resources.
  • the value of the transmission parameter of the uplink information indicated by the first information is related to at least one of the following of the synchronization signal:
  • the transmission parameters of the uplink information include: bandwidth, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, modulation depth, and duty cycle. At least one of the ratio, the number of time units occupied, and the redundant version.
  • the scheduling information includes second information
  • the second information is used to indicate at least one of the following:
  • the uplink information supports frequency relocation.
  • the second information is used to determine at least one indication field in the scheduling information, and the at least one indication field is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • inventions of the present application provide a communication method.
  • the method includes: a second device sending first downlink information to a first device, where the first downlink information includes a schedule for indicating uplink transmission of the first device. information, the transmission parameters and/or transmission resources of the scheduling information are related to the second downlink information, the second downlink information is the downlink information before the first downlink information, or the second downlink information is the first downlink information synchronization signal in; the second device receives uplink information from the first device.
  • the transmission resources of the scheduling information include time domain resources; the time domain resources are determined based on the first time domain unit, and the first time domain unit is the synchronization signal of the first downlink information. occupied time domain resources.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the first time domain unit, or the starting time domain position of the time domain resource is adjacent to the first time domain position. There is a temporal gap between the domain positions at the end of the domain unit.
  • the time domain interval is a preset value; or the time domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the time domain interval is related to at least one of the following of the synchronization signal:
  • the time domain resource is between the first time domain unit and the second time domain unit; or, the time domain resource is after the second time domain unit; wherein, the second time domain The unit is the time domain unit occupied by the data of the first downlink information.
  • the time domain resource is adjacent to the second time domain unit, or there is a time domain interval between the time domain resource and the second time domain unit.
  • the transmission resources of the scheduling information include frequency domain resources; the frequency domain resources are determined based on the first frequency domain unit, and the first frequency domain unit is the synchronization signal of the first downlink information. Frequency domain resources occupied.
  • the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit; or, the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit. There are frequency domain intervals between points.
  • the frequency domain interval is a preset value; or the frequency domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the frequency domain interval is related to at least one of the following of the synchronization signal:
  • the bandwidth of the frequency domain resource is the same as the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource is a preset value; or, the bandwidth of the frequency domain resource is related to the second downlink information; wherein the second downlink information includes the first downlink information
  • the bandwidth of the frequency domain resource is related to at least one of the following aspects of the synchronization signal:
  • the transmission parameter of the scheduling information is related to at least one of the following synchronization signals:
  • the transmission parameters include: bandwidth, subcarrier spacing, cyclic prefix CP type, line code parameters, channel coding parameters, modulation mode, number of repetitions, spreading factor, data rate, time length, modulation At least one of depth and duty cycle.
  • the uplink information supports channel coding
  • the scheduling information includes information indicating a transport block or code block size of the uplink information.
  • the channel coding type of the scheduling information is the same as the channel coding type of the uplink information.
  • the first downlink information when the number of bits of the scheduling information is greater than or equal to the preset number of bits, the first downlink information also includes the CRC of the scheduling information; when the number of bits of the scheduling information is less than the preset number of bits , the first downlink information does not include the CRC corresponding to the scheduling information.
  • the preset number of bits is less than or equal to 12.
  • the scheduling information includes first information, where the first information is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • the value of the transmission parameter of the uplink information indicated by the first information is related to at least one of the following of the synchronization signal:
  • the transmission parameters of the uplink information include: bandwidth, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, At least one of modulation depth, duty cycle, number of occupied time units, and redundant version.
  • the scheduling information includes second information
  • the second information is used to indicate at least one of the following:
  • the uplink information supports frequency relocation.
  • the second information is used to determine at least one indication field in the scheduling information, and the at least one indication field is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • inventions of the present application provide a communication device.
  • the method includes: a transceiver module configured to receive first downlink information from a second device, where the first downlink information includes an instruction for instructing the communication device. Scheduling information for uplink transmission, the transmission parameters and/or transmission resources of the scheduling information are related to the second downlink information, the second downlink information is the downlink information before the first downlink information, or the second downlink information is the third downlink information.
  • a synchronization signal in downlink information a processing module used to determine the scheduling information,
  • the transceiver module is also used to send uplink information to the first device.
  • the transmission resources of the scheduling information include time domain resources; the time domain resources are determined based on the first time domain unit, and the first time domain unit is the synchronization signal of the first downlink information. occupied time domain resources.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the first time domain unit, or the starting time domain position of the time domain resource is adjacent to the first time domain position. There is a temporal gap between the domain positions at the end of the domain unit.
  • the time domain interval is a preset value; or the time domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the time domain interval is related to at least one of the following of the synchronization signal:
  • the time domain resource is between the first time domain unit and the second time domain unit; or, the time domain resource is after the second time domain unit; wherein, the second time domain The unit is the time domain unit occupied by the data of the first downlink information.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the second time domain unit, or the starting time domain position of the time domain resource is adjacent to the second time domain position. There is a temporal gap between the domain positions at the end of the domain unit.
  • the transmission resources of the scheduling information include frequency domain resources; the frequency domain resources are determined based on the first frequency domain unit, and the first frequency domain unit is the synchronization signal of the first downlink information. Frequency domain resources occupied.
  • the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit; or, the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit. There are frequency domain intervals between points.
  • the frequency domain interval is a preset value; or the frequency domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the frequency domain interval is related to at least one of the following of the synchronization signal:
  • the bandwidth of the frequency domain resource is the same as the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource is a preset value; or, the bandwidth of the frequency domain resource is related to the second downlink information; wherein the second downlink information includes the first downlink information
  • the bandwidth of the frequency domain resource is related to at least one of the following aspects of the synchronization signal:
  • the transmission parameter of the scheduling information is related to at least one of the following synchronization signals:
  • the transmission parameters include: bandwidth, subcarrier spacing, cyclic prefix CP type, line code parameters, channel coding parameters, modulation mode, number of repetitions, spreading factor, data rate, time length, modulation At least one of depth and duty cycle.
  • the uplink information supports channel coding
  • the scheduling information includes information indicating a transport block or code block size of the uplink information.
  • the channel coding type of the scheduling information is the same as the channel coding type of the uplink information.
  • the scheduling information when the number of bits of the scheduling information is greater than or equal to the preset number of bits, the scheduling information uses CRC; when the number of bits of the scheduling information is less than the preset number of bits, the scheduling information does not use CRC.
  • the preset number of bits is less than or equal to 12.
  • the scheduling information includes first information, where the first information is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • the value of the transmission parameter of the uplink information indicated by the first information is related to at least one of the following of the synchronization signal:
  • the transmission parameters of the uplink information include: bandwidth, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, At least one of modulation depth, duty cycle, number of occupied time units, and redundant version.
  • the scheduling information includes second information
  • the second information is used to indicate at least one of the following:
  • the uplink information supports frequency relocation.
  • the second information is used to determine at least one indication field in the scheduling information, and the at least one indication field is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • embodiments of the present application provide a communication device, including: a processing module, configured to determine transmission parameters and/or transmission resources of scheduling information used to indicate uplink transmission of the first device in the first downlink information; and a transceiver module. , used to send first downlink information to the first device, where the first downlink information includes scheduling information indicating uplink transmission of the first device, and the transmission parameters and/or transmission resources of the scheduling information are consistent with the second downlink information.
  • the second downlink information is the downlink information before the first downlink information, or the second downlink information is the synchronization signal in the first downlink information; the transceiver module is also used to receive signals from the first device. upstream information.
  • the transmission resources of the scheduling information include time domain resources; the time domain resources are determined based on the first time domain unit, and the first time domain unit is the synchronization signal of the first downlink information. occupied time domain resources.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the first time domain unit, or the starting time domain position of the time domain resource is adjacent to the first time domain position. There is a temporal gap between the domain positions at the end of the domain unit.
  • the time domain interval is a preset value; or the time domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the time domain interval is related to at least one of the following of the synchronization signal:
  • the time domain resource is between the first time domain unit and the second time domain unit; or, the time domain resource is after the second time domain unit; wherein, the second time domain The unit is the time domain unit occupied by the data of the first downlink information.
  • the starting time domain position of the time domain resource is adjacent to the ending time domain position of the second time domain unit, or the starting time domain position of the time domain resource is adjacent to the second time domain position. There is a temporal gap between the domain positions at the end of the domain unit.
  • the transmission resources of the scheduling information include frequency domain resources; the frequency domain resources are determined based on the first frequency domain unit, and the first frequency domain unit is the synchronization signal of the first downlink information. Frequency domain resources occupied.
  • the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit; or, the center frequency point of the frequency domain resource is the same as the center frequency point of the first frequency domain unit. There are frequency domain intervals between points.
  • the frequency domain interval is a preset value; or the frequency domain interval is related to the second downlink information; wherein the second downlink information includes the synchronization signal in the first downlink information
  • the frequency domain interval is related to at least one of the following of the synchronization signal:
  • the bandwidth of the frequency domain resource is the same as the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource is a preset value; or, the bandwidth of the frequency domain resource is related to the second downlink information; wherein the second downlink information includes the first downlink information
  • the bandwidth of the frequency domain resource is related to at least one of the following aspects of the synchronization signal:
  • the transmission parameter of the scheduling information is related to at least one of the following synchronization signals:
  • the transmission parameters include: bandwidth, subcarrier spacing, cyclic prefix CP type, line code parameters, channel coding parameters, modulation mode, number of repetitions, spreading factor, data rate, time length, modulation At least one of depth and duty cycle.
  • the uplink information supports channel coding
  • the scheduling information includes information indicating a transport block or code block size of the uplink information.
  • the channel coding type of the scheduling information is the same as the channel coding type of the uplink information.
  • the scheduling information when the number of bits of the scheduling information is greater than or equal to the preset number of bits, the scheduling information uses CRC; when the number of bits of the scheduling information is less than the preset number of bits, the scheduling information does not use CRC.
  • the preset number of bits is less than or equal to 12.
  • the scheduling information includes first information, where the first information is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • the value of the transmission parameter of the uplink information indicated by the first information is related to at least one of the following of the synchronization signal:
  • the transmission parameters of the uplink information include: bandwidth, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, At least one of modulation depth, duty cycle, number of occupied time units, and redundant version.
  • the scheduling information includes second information
  • the second information is used to indicate at least one of the following:
  • the uplink information supports frequency relocation.
  • the second information is used to determine at least one indication field in the scheduling information, and the at least one indication field is used to indicate transmission parameters and/or transmission resources of the uplink information.
  • the beneficial effects of the communication device provided in the fourth aspect can be referred to the beneficial effects brought by the above-mentioned second aspect and possible implementations of the second aspect, and will not be described again here.
  • embodiments of the present application provide a communication device, including: a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program stored in the memory to perform the following steps: Methods in the second aspect or possible implementations.
  • embodiments of the present application provide a chip, including: a processor, configured to call and run computer instructions from a memory, so that a device installed with the chip executes the first aspect, the second aspect, or each possible implementation. method within the method.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • Figure 1 shows a communication system suitable for embodiments of the present application
  • Figure 2 is a schematic structural diagram of a backscatter communication system provided by an embodiment of the present application.
  • FIG. 3a is a schematic structural diagram of a Radio Frequency Identification (RFID) system provided by an embodiment of the present application;
  • RFID Radio Frequency Identification
  • Figure 3b is a schematic diagram of RFID communication provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a signal envelope provided by an embodiment of the present application.
  • Figure 5 is a schematic interaction flow diagram of a communication method provided by an embodiment of the present application.
  • Figure 6a is a schematic diagram of the time domain resource location of uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 6b is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 7a is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 7b is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 7c is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 7d is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 7e is a schematic diagram of time domain resource locations of another uplink transmission scheduling information provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of frequency domain resource locations of scheduling information for uplink transmission provided by an embodiment of the present application.
  • Figure 8b is a schematic diagram of frequency domain resource locations of scheduling information for another uplink transmission provided by an embodiment of the present application.
  • Figure 8c is a schematic diagram of frequency domain resource locations of scheduling information for another uplink transmission provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a coverage level provided by an embodiment of the present application.
  • Figure 10a is a schematic diagram of a basis function of a bi-phase spatial encoding provided by an embodiment of the present application.
  • Figure 10b is a schematic diagram of a state transition mechanism of bi-phase spatial coding provided by an embodiment of the present application.
  • Figure 10c is a schematic diagram of a basis function of a Miller code provided by an embodiment of the present application.
  • Figure 10d is a schematic diagram of a state transfer mechanism of a Miller code provided by an embodiment of the present application.
  • Figure 11 is a schematic block diagram of a device provided by an embodiment of the present application.
  • Figure 12 is another schematic block diagram of a device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR System evolution LTE-based access to unlicensed spectrum (LTE-U) system on unlicensed spectrum
  • LTE-U unlicensed spectrum
  • NR-U unlicensed spectrum
  • Non-Terrestrial Networks NTN
  • Universal Mobile Telecommunication System UMTS
  • Wireless Local Area Networks WLAN
  • WiFi Wireless Fidelity
  • 5G fifth generation communications
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) netting scene.
  • Carrier Aggregation CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment or base station (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB base station
  • gNB NR network network equipment or base station
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network devices may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, a cell corresponding to a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission. Lose service.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method according to the embodiment of the present application.
  • the communication system 100 may include network devices and terminal devices.
  • the number of network devices and terminal devices may be one or more, such as network devices 111 and 112 and terminal devices 121 to 128 shown in FIG. 1 , in the communication system 100, the network device 111 can communicate with one or more of the terminal devices 121 to 126 through the wireless air interface, and the network device 111 can communicate with one or more of the terminal devices 127 and 128 through the network device 112. communicate with terminal devices.
  • the terminal devices 124 to 126 can form a communication system 101.
  • the terminal device 124 can communicate with one or more of the terminal devices 125 and 126 through wireless air interfaces
  • the network device 112 can communicate with the terminal device 127.
  • and 128 may form a communication system 102, in which the network device 112 may communicate with one or more of the terminal devices 127 and 128 through a wireless air interface.
  • FIG. 1 is only an example, showing two network devices and eight terminal devices in the communication system 100, three terminal devices in the communication system 101, and one network device and two terminal devices in the communication system 102. . But this shall not constitute any limitation on this application. Any of the above communication systems may include more or fewer network devices, or more or fewer terminal devices. The embodiments of the present application do not limit this.
  • Backscatter communication may also be called reflection communication, which is not limited in this application.
  • FIG. 2 is a schematic structural diagram of a backscatter communication system provided by an embodiment of the present application.
  • the backscatter communication system 200 generally consists of an exciter 210, a receiver 220, and a reflector (backscatter device) (or tag) 230.
  • the communication link includes the exciter 210 to the reflector 230.
  • the downlink generally uses the Amplitude Shift Keying (ASK) modulation method.
  • the reflector 230 can demodulate the downlink modulated signal based on a low-power envelope detector; the reflector 230 changes based on the information bits to be sent.
  • ASK Amplitude Shift Keying
  • the load of the antenna allows its information bits to be modulated onto the incident carrier wave to achieve wireless transmission of uplink data. Since the reflector 230 does not require high-power consumption devices such as radio frequency oscillators, power amplifiers, and low-noise amplifiers, it has the characteristics of low cost and ultra-low power consumption.
  • communication between the exciter 210 and the reflector 230 and between the receiver 220 and the reflector 230 can be performed in each of the aforementioned communication systems.
  • the exciter 210 and the receiver 220 can be deployed on the same device, such as any terminal device or network device in the aforementioned examples, and the reflector 230 can be deployed as any terminal device in the aforementioned examples.
  • the network device 111 can send downlink signaling/data to the reflector 230 through the exciter 210, and receive uplink data sent by the terminal device 125 through the receiver 220.
  • the reflector 130 can be divided into a passive reflector and a semi-passive reflector according to whether it is powered by a battery.
  • the passive reflector itself has no power supply and needs to rectify the downlink RF signal and use the rectified DC voltage as a power supply for use by analog and digital circuits.
  • the semi-passive reflector has its own power supply and does not rely on the rectified output of the downstream RF signal for power.
  • the above-described backscatter communication system is an example of applying backscatter communication technology to various communication systems.
  • the following takes the widely used Ultra-High Frequency (UHF) RFID system as an example to illustrate the backscatter communication technology.
  • UHF Ultra-High Frequency
  • the typical passive UHF RFID system architecture is shown in Figure 3a below.
  • the reader (reader) 310 sends a downlink excitation signal to the tag (tag) 320 through the downlink to provide energy for the tag 320a; the tag 320 receives the signal sent by the reader 310 signaling, and sends uplink signals to the reader/writer 310 on the uplink through backscatter technology.
  • the reader/writer 310 can identify the ID of the tag and perform operations such as reading/writing on the tag.
  • FIG. 3b is a schematic diagram of RFID communication provided by an embodiment of the present application.
  • the reader sends a continuous high-level waveform (CW) to the tag on the downlink.
  • the tag After receiving the energy, the tag reflects the information to the reader through the uplink.
  • CW continuous high-level waveform
  • the tag After receiving the energy, the tag reflects the information to the reader through the uplink.
  • tag reflection uses dynamic time slot anti-collision (such as ALOHA) technology for reflection.
  • ALOHA dynamic time slot anti-collision
  • the reader/writer sends a query command to the tag to start an inventory cycle. After the tag to be inventoried receives the query command from the reader/writer, it selects a random number from the range of ( 0,2Q-1 ) and loads it into its own time slot counter according to the Q value indicated in the query command.
  • the selected tag with a random value of 0 enters the response state and responds with an RN16. Then the reader responds with an ACK confirmation tag containing the same RN16. The confirmed tag moves to the confirmed state and sends a response message, which includes product code (PC), electronic product code (EPC), cyclic redundancy check (cyclic redundancy check, CRC) At least one of the codes to complete the basic information inventory process of the tag. Tags selected with a non-zero value are transferred to the arbitration state.
  • PC product code
  • EPC electronic product code
  • CRC cyclic redundancy check
  • the reader can also send queryrep or queryadjust signaling to the tag.
  • the tag's inventory flag is inverted (for example, A ⁇ B or B ⁇ A), it is transferred to the ready state, and the inventory process ends.
  • the queryrep signaling repeats the previous query operation without changing any parameters.
  • a tag in the arbitration state receives a queryrep signaling, the value in its slot counter is decremented by 1. At this time, the tag whose slot counter value is reduced to 0 is repeated. Same response process as above.
  • Queryadjust signaling repeats the previous query operation and can increase or decrease Q.
  • the tag in the arbitration state receives a queryadjust signaling, it adjusts the Q value, and then re-selects a random number in the range of (0, 2 Q -1) to load into their time slot counter.
  • Tags with a non-zero value are transferred to the arbitration state, and tags with a 0 value are selected to enter the response state.
  • the tag transmits RN16, basic information of the tag (such as EPC), etc. through the uplink.
  • the transmission control information of RN16 can be notified through query signaling.
  • the transmission control information of RN16 is still used in subsequent EPC transmissions.
  • resource scheduling for uplink transmission lacks flexible control, which is not conducive to efficient use of uplink resources.
  • the above RFID When the above RFID is applied to various communication systems (such as NR communication systems), it may include an exciter 210, a receiver 220 and a reflector 230 as shown in Figure 2.
  • the exciter 210 and the receiver 220 shown in Figure 2 are similar to the reader 310 in Figure 3a.
  • the RFID system in Figure 3a can also include a receiver for receiving uplink data sent by the reflector 320.
  • the receiver may be independent of the reader/writer 310.
  • the reflector 130 shown in Figure 2 is similar to the reflector 320 in Figure 3a.
  • embodiments of the present application provide an uplink data control scheme.
  • scheduling information indicating uplink transmission is sent to it, so that the reflector can perform uplink based on the received scheduling information.
  • the flexible control of uplink transmission resource scheduling is improved, thereby improving the use efficiency of uplink resources.
  • the tag can also drive the chip to transmit its stored information by acquiring energy such as ambient light and heat.
  • the first, second and various numerical numbers are only for convenience of description and are not used to limit the scope of the embodiments of the present application. For example, distinguish between different devices, downlink information, time domain units, etc.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the first device and the second device).
  • This application is for its specific implementation. The method is not limited.
  • Preconfiguration can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the first device and the second device), or it can also be pre-configured through signaling, such as network
  • the device is implemented through signaling pre-configuration, etc. This application does not limit its specific implementation.
  • the "protocol” involved in the embodiments of this application may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the first device may be, for example, the above-mentioned tag (such as the reflector 220 in Figure 2), or a terminal device deployed with the tag;
  • the second device may be the above-mentioned reader/writer (such as the reader/writer 210 in Figure 2), Or deploy terminal devices with readers and writers, or deploy network devices with readers and writers.
  • the first device When the first device is a terminal device with a tag deployed, and the second device is a terminal device with a reader/writer deployed, the first device may be the terminal device 125 or 126 in Figure 1 , and the second device may be the terminal device in Figure 1
  • the first device shown in the following embodiments can also be replaced with components in the first device, such as a chip, a chip system, or other functional modules capable of calling and executing a program.
  • the second device can also be replaced with components in the second device, such as a chip, a chip system, or other functional modules capable of calling and executing a program.
  • Line coding also called line code, is used to eliminate or reduce DC and low-frequency components in digital electrical signals to facilitate transmission, reception and monitoring in wired/wireless channels.
  • A represents the maximum value of the envelope of the signal
  • B represents the minimum value of the envelope of the signal.
  • Envelope ripple which represents the amplitude fluctuation of the radio frequency signal envelope at high levels (M h in Figure 4) or low level (M l in Figure 4), where M h represents The magnitude of the upward fluctuation, M l represents the magnitude of the downward fluctuation.
  • Figure 5 is a schematic interaction flow diagram of a communication method 400 provided by an embodiment of the present application. As shown in Figure 5, the method 400 may include S410 and S420. Each step in the method 200 is described in detail below.
  • the second device sends first downlink information to the first device.
  • the first downlink information includes scheduling information indicating uplink transmission of the first device.
  • the transmission parameters and/or transmission resources of the scheduling information are different from those of the second device.
  • the second downlink information is related to the downlink information, and the second downlink information is the downlink information before the first downlink information, or the second downlink information is the synchronization signal in the first downlink information.
  • the first device receives the first downlink information sent by the second device.
  • S420 The first device sends uplink information to the second device according to the scheduling information.
  • the second device receives the uplink information from the first device.
  • the scheduling information indicating the uplink transmission of the first device may be used to indicate the uplink transmission of the second device.
  • the uplink scheduling information may be used to indicate the transmission parameters and/or transmission of the uplink information. resource.
  • the transmission parameters may include bandwidth, subcarrier spacing, cyclic prefix (CP) type, line code parameters, channel coding parameters, modulation method, number of repetitions, spreading factor, data rate, time length, modulation depth, accounting At least one of the space ratios;
  • the transmission resources may include time domain resources and/or frequency domain resources occupied by uplink information.
  • the uplink scheduling information may also be called an uplink grant (UL grant), or the uplink scheduling information may also be called control information of the uplink information.
  • the uplink information may be uplink data and/or uplink control signaling.
  • the uplink scheduling information can be carried through the physical downlink control channel (PDCCH) or the physical downlink shared channel (PDSCH), and the downlink scheduling information can be carried through the PDCCH or PDSCH.
  • Uplink information can be carried through the physical uplink shared channel (PUSCH).
  • the uplink data may be application layer data and/or control signaling.
  • the The transmission parameters and/or transmission resources of the uplink scheduling information are indicated through the second downlink information.
  • the second device may send second downlink information to the first device to implement transmission parameters of the scheduling information and/or indication of transmission resources.
  • the second downlink information may be independent of the first downlink information.
  • the second device may first send the second downlink information to the first device, and then send the first downlink information to the first device.
  • the second downlink information may be downlink control information (DCI).
  • DCI downlink control information
  • the second downlink information may be the query command in Figure 3b, or downlink signaling including the query command.
  • the second downlink information serves as a kind of control signaling, which may be radio resource control (RRC) signaling, media access control control element (MAC CE), media access control element (MAC CE), or media access control element (MAC CE).
  • RRC radio resource control
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • MAC CE media access control element
  • the second downlink information may directly indicate the transmission parameters and/or transmission resources of the scheduling information.
  • the first downlink information may only include uplink scheduling information, excluding downlink data, and the transmission resources between the scheduling information and the downlink data are not related.
  • the scheduling information and the downlink data belong to different downlink information, and the transmission resources of the two do not overlap.
  • the reliability of transmission can be improved; alternatively, the first downlink information can include uplink scheduling information and downlink data, and the transmission resources of the uplink scheduling information and downlink data can both be indicated by the second downlink information, or the second downlink information can indicate the scheduling information.
  • the resource interval between the downlink data and the resource interval is not be indicated.
  • the above downlink data can be carried through PDSCH or PDCCH.
  • Downlink data may be application layer data and/or control signaling.
  • the first downlink information when it includes downlink data, it also includes a synchronization signal.
  • backscatter communication systems are generally asynchronous systems, that is, the first device and the second device are not strictly synchronized, it is necessary to insert a synchronization signal (also called preamble, preamble code or preamble) before the valid data of the downlink information. sequence).
  • the function of the synchronization signal may include: at least one of automatic gain control (AGC), time synchronization, frequency synchronization, packet detection, and boundary detection.
  • AGC automatic gain control
  • time synchronization time synchronization
  • frequency synchronization frequency synchronization
  • packet detection packet detection
  • boundary detection is used to detect the boundary of the preamble sequence and/or downlink data.
  • the synchronization signal precedes the downlink data.
  • the transmission resource of the synchronization signal may also be indicated by the second downlink information before the first downlink information, or the second downlink information may indicate the resource interval between the synchronization signal and the scheduling information.
  • the above resource intervals may include resource intervals in the time domain and resource intervals in the frequency domain.
  • the second downlink information may be included in the first downlink information.
  • the second downlink information may be a synchronization signal in the first downlink information.
  • the downlink information (such as the query in Figure 3b) sent by the second device to the first device may be composed of a synchronization signal and a data part.
  • the synchronization signal in the first downlink information indicates the transmission of scheduling information parameters and/or transmission resources
  • the first downlink information may include synchronization signals, scheduling information and downlink data, and the time domain position of the scheduling information is later than the time domain position of the synchronization signal.
  • this application does not exclude the case where the first downlink information includes synchronization signals and scheduling information, but does not include downlink data.
  • the time domain resource of the uplink scheduling information can be determined based on the time domain resource occupied by the synchronization signal (ie, the first time domain unit).
  • the first device receives the first downlink information sent by the second device. , and further determine the time domain resources of the uplink scheduling information based on the time domain resources of the synchronization signal in the first downlink information.
  • the starting time domain position of the time domain resource of the uplink scheduling information and the ending time domain position of the synchronization signal may be adjacent (see Figure 6a), or the starting time domain position of the time domain resource of the uplink scheduling information may be adjacent to the ending time domain position of the synchronization signal.
  • There is a time domain interval between the end time domain positions of the synchronization signal see Figure 6b). When the time domain interval is zero, it can be understood that the time domain resource of the uplink scheduling information is adjacent to the synchronization signal.
  • the time domain interval may be a preconfigured default value.
  • the preset value may be configured based on the second downlink information.
  • the second downlink information notifies the first device of the preset value.
  • the time domain interval may be determined based on the synchronization signal.
  • the time domain interval may be determined based on at least one of the signal sequence, signal length, repetition number, and spreading factor of the synchronization signal. For example, different signal sequences correspond to different time domain intervals.
  • the first device may Based on the correspondence between the signal sequence and the time domain interval and the received signal sequence, the time domain interval is determined.
  • the time domain interval may be the time interval between the starting time domain position of the time domain resource of the uplink scheduling information and the ending time domain position of the synchronization signal; or, the time domain interval The interval may be the time interval between the starting time domain position of the time domain resource of the uplink scheduling information and the starting time domain position of the synchronization signal; or the time domain interval may be the time domain interval of the time domain resource of the uplink scheduling information. End time domain position and end of synchronization signal The time interval between time domain positions.
  • the transmission parameters and/or transmission resources of the scheduling information are indicated through the downlink information before the first downlink information, and the indicated information is easily received by the first device accurately; in the above second example, through the synchronization signal Indicating the transmission parameters and/or transmission resources of the scheduling information does not require additional indication information, which reduces signaling overhead.
  • the time domain resources occupied by the uplink scheduling information are located after the time domain resources occupied by the synchronization signal.
  • the time domain resources occupied by the uplink scheduling information at least include as shown in Figure 7a Referring to several possible examples shown in Figure 7e, of course, the following examples do not represent limitations on the time domain resources occupied by the scheduling information.
  • the scheduling information is transmitted on any time domain resource located after the synchronization signal and determined based on the synchronization signal. All fall within the protection scope of this application.
  • Example 1 The time domain resource of the uplink scheduling information is located between the first time domain unit and the second time domain unit, where the second time domain unit is the time domain occupied by the data of the first downlink information (that is, downlink data) unit. As shown in FIG. 7a , the time domain resource of the indication information is located between the first time domain unit and the second time domain unit.
  • Example 2 The time domain resource of the uplink scheduling information is located after the second time domain unit. It should be understood that the second time domain unit is located after the first time domain unit. As shown in FIG. 7b , the time domain resource of the indication information is located after the second time domain unit.
  • the indication information may include uplink scheduling information.
  • the indication information may also include a cyclic redundancy check (CRC) of the uplink scheduling information.
  • CRC cyclic redundancy check
  • the first downlink information may also include indicating downlink scheduling information (referred to as downlink scheduling information).
  • the downlink scheduling information is used to indicate downlink transmission.
  • the downlink scheduling information may indicate the transmission parameters and/or transmission of downlink data. resources, or transmission parameters and/or transmission resources indicating the next downlink information, which is not limited in this application.
  • the time domain resources of the uplink scheduling information may refer to Example 3 and Example 4 below.
  • Example 3 The time domain resource of the uplink scheduling information is located after the time domain resource of the downlink scheduling information and before the second time domain unit.
  • the indication information is located between the first time domain unit and the second time domain unit, and the indication information includes downlink scheduling information and uplink scheduling information.
  • the indication information includes two independent indication information, uplink indication information and downlink indication information.
  • the uplink indication information includes uplink scheduling information, and the CRC obtained by encoding the uplink scheduling information.
  • the information includes downlink scheduling information and a CRC obtained by encoding the downlink scheduling information; in Figure 7d, the indication information includes uplink scheduling information, downlink scheduling information and a CRC obtained by encoding the two scheduling information in the indication information.
  • the time domain position of the downlink scheduling information may be before the time domain position of the uplink scheduling information to facilitate transmission scheduling of downlink data in the first downlink information.
  • Example 4 The time domain resource of the uplink scheduling information is located after the second time domain unit, and the time domain resource of the downlink scheduling information is located between the first time domain unit and the second time domain unit.
  • the uplink indication information is located after the second time domain unit, and the downlink indication information is located between the first time domain unit and the second time domain unit.
  • the uplink indication information may include uplink scheduling information and is obtained by encoding the uplink scheduling information.
  • CRC the downlink indication information may include downlink scheduling information and a CRC obtained by encoding the downlink scheduling information.
  • the indication information including the uplink scheduling information, the synchronization signal, and the downlink data may be adjacent in the time domain or have a time domain interval.
  • the indication information and the synchronization signal may be adjacent in time domain or have a time domain interval
  • the indication information and the downlink data may be adjacent in time domain or have a time domain interval.
  • the time domain interval may be the time interval between the starting time domain position of the time domain resource of the indication information and the ending time domain position of the synchronization signal; or, the time domain interval may be It is the time interval between the starting time domain position of the time domain resource of the indication information and the starting time domain position of the synchronization signal; or, the time domain interval can be the end time domain position of the time domain resource of the indication information and the synchronization signal The time interval between the end time domain positions.
  • FIG. 7c there is a time domain interval between the uplink indication information and the synchronization signal, and the downlink indication information is carried in the time domain of the interval.
  • the uplink indication information and the downlink indication information may be adjacent in time domain or exist.
  • the time domain interval between any two pieces of information please refer to the description of the time domain interval between the indication information and the synchronization signal in the above example of Figure 7a, and will not be described again here.
  • whether the uplink scheduling information uses CRC may be determined based on the number of bits of the scheduling information. For example, dispatch letter When the number of bits of the information is greater than or equal to the preset number of bits, the uplink scheduling information uses CRC. When the number of bits of the scheduling information is less than the preset number of bits, the uplink scheduling information does not use CRC. Assume that the number of bits occupied by the uplink scheduling information is recorded as N1, and the number of CRC bits used by the uplink scheduling information is recorded as L1. When the uplink scheduling information does not use CRC, L1 can be considered to be 0, and the value of L1 is determined based on N1, so that the CRC The overhead can be adjusted flexibly.
  • L1 When N1 is small, a smaller L1 can be used, which can reduce the CRC overhead, that is, L1/(N1+L1) can be reduced; when N1 is large, a larger L1 can be used to maintain a sustainable Accept the CRC overhead while ensuring the performance of the CRC check, because the longer the number of CRC bits, the stronger the ability to detect errors.
  • the preset number of bits may be a positive integer less than or equal to 12.
  • the preset number of bits may be 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12, etc.
  • the uplink information can use CRC.
  • the number of check bits of the CRC of the uplink scheduling information and the number of check bits of the CRC of the uplink information may be the same or different, and this application does not limit this.
  • the number of check bits in the CRC of the uplink scheduling information is 6, and the number of check bits in the CRC of the uplink information is 16 or 24.
  • the number of check bits of the CRC of the uplink scheduling information may be determined based on the number of bits of the uplink scheduling information. For example, if the number of bits of the uplink scheduling information is less than or equal to K, then the number of check bits of the CRC of the uplink scheduling information is 6; if the number of bits of the uplink scheduling information is greater than K, then the number of check bits of the CRC of the uplink scheduling information is 16.
  • the starting time domain position of the first device to send uplink information is later than the end time domain position of the first downlink information, that is, the time domain resources occupied by the uplink information are equal to the time domain resources occupied by the first downlink information.
  • the time domain resources do not overlap.
  • the time domain resources occupied by the uplink information and the time domain resources occupied by the downlink data of the first downlink information may overlap. That is, the first device may send uplink information to the second device while receiving downlink data.
  • the frequency domain resource of the uplink scheduling information can be determined based on the frequency domain resource (ie, the first frequency domain unit) occupied by the synchronization signal in the first downlink information, or in other words, the frequency domain resource of the uplink scheduling information
  • the resource is associated with the first frequency domain unit.
  • the center frequency point of the frequency domain resource of the uplink scheduling information may be the same as the center frequency point of the first frequency domain unit or there may be a frequency domain interval.
  • the bandwidth of the frequency domain resource of the uplink scheduling information may be the same as the center frequency point of the first frequency domain unit. Bandwidths are the same or different.
  • the center frequency point of the frequency domain resource of the uplink scheduling information is the same as the center frequency point of the first frequency domain unit, and the bandwidth of the frequency domain resource of the uplink scheduling information is different from the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource of the uplink scheduling information may be a preset value.
  • the bandwidth of the frequency domain resource of the uplink scheduling information may be a preconfigured value. , or defined by the protocol; or the bandwidth of the frequency domain resource of the uplink scheduling information can be calculated based on the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource of the uplink scheduling information can be the bandwidth of the first frequency domain unit.
  • a multiple of the bandwidth, or the bandwidth of the frequency domain resource of the uplink scheduling information is obtained from the preset value of increase/decrease in the bandwidth of the first frequency domain unit; or the bandwidth of the frequency domain resource of the uplink scheduling information is related to the second downlink information, that is, The bandwidth of the frequency domain resource of the uplink scheduling information is indicated by the second downlink information.
  • the second downlink information can be the downlink information before the first downlink information, or the second downlink information can be the downlink information in the first downlink information. sync signal.
  • the bandwidth of the frequency domain resource of the uplink scheduling information may be related to at least one of the signal sequence, signal length, number of repetitions, and spreading factor of the synchronization signal.
  • the center frequency point of the frequency domain resource of the uplink scheduling information is the same as the center frequency point of the first frequency domain unit, and the bandwidth of the frequency domain resource of the uplink scheduling information is the same as the bandwidth of the first frequency domain unit.
  • the bandwidth of the frequency domain resource of the uplink scheduling information is the same as the bandwidth of the first frequency domain unit, there is no need to indicate the bandwidth of the frequency domain resource of the uplink scheduling information.
  • the frequency domain interval between the center frequency point of the frequency domain resource of the uplink scheduling information and the center frequency point of the first frequency domain unit may be a preset value.
  • the frequency domain interval is the preset value.
  • Domain intervals can be preconfigured or protocol-defined; Or the frequency domain interval between the center frequency point of the frequency domain resource of the uplink scheduling information and the center frequency point of the first frequency domain unit may be indicated by the second downlink information.
  • the second downlink information may be the first downlink information.
  • the downlink information before the information, or the second downlink information is the synchronization signal in the first downlink information.
  • the frequency domain interval may be related to at least one of the signal sequence, signal length, repetition number, and spreading factor of the synchronization signal.
  • the bandwidth of the frequency domain resource of the up and down scheduling information may be the same as or different from the bandwidth of the first frequency domain unit, and this application does not limit this.
  • the bandwidth of the frequency domain resource of the uplink scheduling information may be a preset value, or may be calculated based on the bandwidth of the first frequency domain unit, or The bandwidth of the frequency domain resource of the uplink scheduling information is related to the second downlink information.
  • the transmission parameters of the uplink scheduling information may be determined based on the synchronization signal.
  • the transmission parameters of the uplink scheduling information may be related to at least one of the signal sequence, signal length, number of repetitions, and spreading factor of the synchronization signal.
  • the first device receives the first downlink information sent by the second device. , and further determine the transmission parameters of the uplink scheduling information based on at least one of the signal sequence, signal length, repetition number, and spreading factor of the synchronization signal in the first downlink information.
  • the transmission parameters of the uplink scheduling information may include but are not limited to: bandwidth, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation mode, number of repetitions, spreading factor, data rate, time length, modulation At least one of depth and duty cycle.
  • the uplink scheduling information transmission parameters corresponding to sequence 1 may include: a bandwidth of 1 resource block (RB), line code parameters corresponding to Manchester coding, channel coding parameters corresponding to polar codes and polarization
  • RB resource block
  • line code parameters corresponding to Manchester coding channel coding parameters corresponding to polar codes
  • the code rate of the code is 1
  • the modulation method is binary amplitude keying (such as OOK) modulation
  • the number of repetitions is 1.
  • the transmission parameters of the uplink scheduling information corresponding to sequence 2 may include: the bandwidth is 1RB, the line code parameters correspond to Manchester coding, the channel coding parameters correspond to polar codes, and the code rate of the polar codes is 1/ 4.
  • the modulation method is binary amplitude keying (such as OOK) modulation, and the number of repetitions is 8.
  • the transmission parameters of the uplink scheduling information corresponding to sequence 3 may include: the bandwidth is 1 RB, the line code parameters correspond to Manchester coding, the channel coding parameters correspond to polar codes, and the code rate of the polar codes is 1/ 4.
  • the modulation method is binary amplitude keying (such as OOK) modulation, and the number of repetitions is 64.
  • a signal sequence of a synchronization signal may correspond to a set of transmission parameters of uplink scheduling information. It should be noted that the signal sequence of a synchronization signal can also correspond to multiple sets of transmission parameters of the uplink scheduling information. In this case, after receiving the synchronization signal, the first device can perform blind detection based on the assumption of multiple sets of transmission parameters, and then receive Uplink scheduling information sent by the first device.
  • the synchronization signal may be passed through at least one of signal sequence, signal length, number of repetitions, and spreading factor.
  • the item indicates one or more transmission parameters of the uplink scheduling information.
  • the synchronization signal may define different coverage levels. In the coverage level, it may include at least one of the signal sequence, signal length, number of repetitions, and spreading factor of the synchronization signal. In the different coverage levels, , at least one of the signal sequence, signal length, repetition number, and spreading factor of the synchronization signal is different. For example, as shown in Figure 9, the signal sequence of the synchronization signal is [W], corresponding to coverage level 0.
  • the code rate of the uplink scheduling information is 1 and the number of repetitions is 8; the signal sequence of the synchronization signal is [W] W'], corresponding to coverage level 1.
  • the code rate of the uplink scheduling information is 1/4, and the number of repetitions is 8; the signal sequence of the synchronization signal is [W'W W'W], corresponding to coverage level 2,
  • the code rate of the uplink scheduling information is 1/4, and the number of repetitions is 64. It should be noted that the coverage level is only a possible naming method, or it can be called a duplication level, coverage enhancement level, enhanced coverage level, etc., which is not limited in this application.
  • the element of the signal sequence of the synchronization signal is 0 or 1 as an example. However, this should not be understood as any limitation of the present application.
  • the element of the signal sequence can also be +1 or -1, or the signal
  • the first device can determine the transmission parameters and/or transmission resources of the uplink scheduling information based on the second downlink information, and then receive the uplink scheduling sent by the second device based on the determined transmission parameters and/or transmission resources of the uplink scheduling information. information.
  • the transmission resources may be pre-configured or protocol-defined.
  • the transmission parameters may be pre-configured or protocol-defined. defined by the protocol.
  • both the uplink scheduling information sent by the second device and the uplink information sent by the first device support channel coding
  • the type of channel coding adopted by the uplink scheduling information and the uplink information may be the same.
  • both uplink scheduling information and uplink information use polar codes.
  • the uplink scheduling information may use block code.
  • the number of bits to be encoded in the uplink scheduling information can be recorded as K
  • the bit sequence to be encoded in the uplink scheduling information can be recorded as c 0 , c 1 , c 2 , c 3 ,..., c K-1
  • the bits after encoding the uplink scheduling information The sequence can be recorded as d 0 , d 1 , d 2 , d 3 ,..., d N-1 , where N is the number of bits after encoding the uplink scheduling information.
  • the bit sequence to be encoded for the uplink scheduling information is c 0
  • N 1
  • the bit sequence to be encoded for the uplink scheduling information is c 0
  • the bit sequence to be encoded for the uplink scheduling information is c 0 , c 1
  • x is a placeholder, whose main function is to maximize the Euclidean distance of the modulation symbols carrying information bits.
  • the uplink scheduling information may carry Enter the transport block size or code block size of the uplink information.
  • the above embodiments exemplarily describe the determination of transmission parameters and transmission resources of uplink scheduling information.
  • the first device After the first device receives the uplink scheduling information according to the transmission parameters and transmission resources of the uplink scheduling information, in the above S420, the first device transmits the uplink information according to the received scheduling information.
  • the content of the uplink scheduling information will be exemplified below.
  • the uplink scheduling information includes first information, the first information is used to indicate transmission parameters and/or transmission resources when the first device transmits uplink information.
  • the transmission parameters of the uplink information that the first information may indicate include but are not limited to: bandwidth, frequency domain resource location, time resource location, subcarrier spacing, CP type, line code parameters, channel coding parameters, modulation method, repetition At least one of the number of times, spreading factor, data rate, time length, modulation depth, duty cycle, number of occupied time units, and redundant version.
  • the value or value range of the transmission parameter of the uplink information indicated by the first information may be related to at least one of the signal sequence, signal length, number of repetitions, and spreading factor of the synchronization signal.
  • the first device can determine the value, value range, or value set of the transmission parameter of the uplink information based on at least one of the signal sequence, signal length, repetition number, and spreading factor of the synchronization signal.
  • the transmission parameters of the uplink information indicated by the first information are coverage-related parameters.
  • the transmission parameter of the uplink information indicated by the first information is the number of repetitions.
  • the synchronization signal has three coverage levels, coverage level 0, coverage level 1 and coverage level 2.
  • the number of repetitions is determined based on the coverage level of the synchronization signal. collection of values.
  • the coverage level of the synchronization signal is coverage level 0, and the value set of the number of repetitions indicated in the uplink scheduling information is ⁇ 1, 2, 4, 8 ⁇ .
  • the coverage level of the synchronization signal is coverage level 1, and the value set of the number of repetitions indicated in the uplink scheduling information is ⁇ 4, 8, 16, 32 ⁇ .
  • the coverage level of the synchronization signal is coverage level 2, and the value set of the number of repetitions indicated in the uplink scheduling information is ⁇ 16, 32, 64, 128 ⁇ . In this case, 2 bits can be used to indicate the number of repetitions from the value set. . If no matter which coverage level the synchronization signal is in, the value set of the number of repetitions follows the scheme of ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ , then the uplink scheduling information requires 3 bits to indicate the number of repetitions. This embodiment can reduce the signaling overhead of the number of repetitions of the uplink scheduling information indication.
  • the first information may indicate the frequency domain resource of the uplink information.
  • the first information can be directly notified of the frequency domain resources of the uplink information.
  • the first information includes the bandwidth of the uplink information, the rate of the uplink information, the offset between the frequency domain resources of the uplink information and the frequency domain resources of the uplink scheduling information. At least one of the offset values.
  • the first information may indirectly notify the frequency domain resources of the uplink information, for example, determine different frequency domain resource locations of the uplink information through different line code parameter configurations, where the line code parameters may include at least one of line type and M value.
  • the line code type can be Manchester, bi-phase space coding (FM0), or Miller code.
  • the M value is used to determine the waveform length of each bit.
  • Manchester encoding is also called phase encoding, in which each data bit is encoded either low first and then high, or first high then low, lasting the same time. It is a self-clocked signal with no DC component.
  • Table 5 and Table 6 below are examples of Manchester encoding.
  • FM0 encoding can also be called bi-phase spatial encoding.
  • the working principle is to use level changes within a bit window to represent logic. If the level flips from the beginning of the bit window, it represents a logic "1". If the level flips in the middle of the bit window in addition to the beginning of the bit window, it represents a logic "0".
  • the basis functions corresponding to bit 0 and bit 1 are shown in Figure 10a. Each corresponds to two different basis functions. For example, bit 0 corresponds to s 2 and s 3 , bit 1 corresponds to s 1 and s 4 .
  • the state transfer mechanism is shown in Figure 10b, that is, based on the basis function corresponding to the current bit and the next bit, the basis function that needs to be used for the next bit can be uniquely determined. For example, assuming that the current bit is 0 and the corresponding waveform is s 2 , when the next bit is 0, waveform s 2 still needs to be used; and when the next bit is 1, waveform s 1 needs to be used.
  • the basis function here The number is the encoded waveform.
  • Miller code also known as delayed modulation code, is a modified biphase code. Its encoding rules: There is no jump at the beginning of the original symbol "1" code element, and it is represented by a jump at the center point, that is, it is represented by 10 or 01. When the information code is connected to "1", the following "1" must be interleaved and encoded; the "0" in the information code is encoded as a bipolar non-return-to-zero code "00" or "11”, that is, there is no jump in the middle of the code element; the information code When a single "0” is used. The leading edge, middle moment, and trailing edge do not jump; when the information code is connected to "0", the interval between two "0” code elements jumps.
  • the possible basis functions corresponding to bit 0 and bit 1 are shown in Figure 10c, each corresponding to two different basis functions, such as bit 0 corresponds to s 1 and s 4 , bit 1 corresponds to s 2 and s 3 .
  • the state transfer mechanism is shown in Figure 10d. For example, assuming that the current bit is 0, the corresponding basis function is s 1 . When the next bit is 0, the basis function s 4 needs to be used; and when the next bit is 1, the basis function needs to be used. s 2 .
  • the first information may indicate the modulation mode of the uplink information.
  • Optional modulation methods include amplitude shift keying (ASK) modulation (also called amplitude keying) and phase-shift keying (PSK).
  • ASK amplitude shift keying
  • PSK phase-shift keying
  • ASK can be single sideband (SSB)-ASK, double-sideband (DSB)-ASK, or phase reversal (PR)-ASK.
  • the first information may indicate the time domain resource of the uplink information.
  • the first information may be in the form of directly notifying the time domain resources of the uplink information.
  • the first information indicates the time domain resource starting position and/or the time domain resource ending position of the uplink information.
  • the uplink scheduling information includes first information, the first information is used to indicate at least one of the following:
  • the uplink information supports frequency relocation.
  • the second information may indicate at least one indication field (or referred to as an indication field) of the uplink scheduling information.
  • indication fields have different functions, that is, if the contents indicated by the second information are different, the indication fields included in the uplink scheduling information should be different.
  • the indication field in the uplink scheduling information is used to indicate the transmission parameters and/or transmission resources of the uplink information.
  • the uplink scheduling information includes fields used to determine the modulation and coding scheme (modulation and coding scheme, MCS) or channel coding parameters
  • the uplink scheduling information includes a field for determining the number of repetitions.
  • the bits occupied by the field used to determine the MCS or channel coding parameters and the bits occupied by the field used to determine the number of repetitions may be the same.
  • the terminator is used to determine the end position of upstream data transmission.
  • the first downlink information sent by the first device is received, so as to transmit the uplink information according to the uplink scheduling information in the first downlink information.
  • This provides flexible scheduling of uplink transmission, thereby improving the efficiency of uplink resource usage.
  • the transmission parameters and/or transmission resources of the uplink scheduling information are related to the second downlink information, and the first device can receive the uplink scheduling information based on the indication of the second downlink information, which provides a solution for successfully receiving the uplink scheduling information.
  • the modulation method may be on/off keying (on -offkeying (OOK), multicarrier on-off keying (MC-OOK), double-sideband amplitude-shift keying (DSB-ASK), single-sideband amplitude-shift keying (single-sideband amplitude-shift keying, SSB-ASK), phase-reversal amplitude-shift keying (PR-ASK), multiple amplitude-shift keying (MASK), frequency Frequency-shift keying (FSK), Gaussian frequency shift keying (GFSK), multiple frequency-shift keying (MFSK), binary phase shift (binary phase shift) keying (BPSK), quadrature phase shift keying (QPSK), pulse amplitude modulation (PAM), pulse-width modulation (PWM), pulse position modulation (pulse position modulation)
  • OOK on -offkeying
  • MC-OOK multicarrier on-off keying
  • DSB-ASK double-sideband amplitude-shift keying
  • a possible implementation manner is that the first device can determine whether there is a downlink control channel after the synchronization signal through the synchronization signal, where the downlink control channel can be used to carry uplink scheduling information.
  • the first device obtains first configuration information from the second device, and the first configuration information indicates whether there is a downlink control channel after the synchronization signal, where the downlink control channel can be used to carry uplink scheduling information.
  • the first device can send capability information to the second device, and accordingly, the second device can receive capability information from the first device, where the capability information includes at least the following: One item: whether the first device supports the downlink control channel, whether the first device supports channel coding, the type of channel coding supported by the first device, whether the first device supports line codes, the type of line codes supported by the first device, whether the first device supports Supports hybrid automatic repeat request acknowledgment (HARQ-ACK) feedback.
  • HARQ-ACK hybrid automatic repeat request acknowledgment
  • Whether the first device supports channel coding may specifically refer to whether the first device supports channel coding for uplink.
  • the channel coding type supported by the first device may specifically be the channel coding type supported by the first device for uplink.
  • Whether the first device supports line codes may specifically refer to whether the first device supports line codes for uplink.
  • the line code type supported by the first device may specifically be a line code type supported by the first device for uplink.
  • Whether the first device supports HARQ-ACK feedback specifically, whether the first device supports HARQ-ACK feedback for uplink.
  • the uplink may be an uplink control channel and/or an uplink data channel. It should be noted that, among the above capability information, multiple capability information can be associated. For the associated multiple capability information, the first device only needs to report one capability information among the multiple associated capability information. In this way, the overhead of reporting capability information by the first device can be saved. As an example, whether the first device supports channel coding and whether the first device supports downlink control channels can be related.
  • the first device reports capability information, and the content of the capability information is that the first device supports channel coding, it means that the first device also supports downlink. control channel.
  • the first device reports capability information.
  • the content of the capability information is that the first device does not support channel coding, which means that the first device does not support the downlink control channel either.
  • whether the first device supports HARQ-ACK feedback and whether the first device supports a control channel may be associated.
  • the first device reports capability information, and the content of the capability information is that the first device supports HARQ-ACK feedback, it means that the first device also supports the downlink control channel.
  • the first device reports capability information.
  • the content of the capability information is that the first device does not support HARQ-ACK feedback, which means that the first device does not support the downlink control channel either.
  • the first device can send capability information to the second device, and accordingly, the second device can receive capability information from the first device, where the capability information includes at least one of the following: Items: The first device supports the downlink control channel, the first device supports channel coding, the channel coding type supported by the first device, the first device supports line codes, the first device supports line code types, the first device supports HARQ-ACK feedback .
  • the first device supports channel coding. Specifically, for uplink, the first device supports channel coding.
  • the channel coding type supported by the first device may specifically be the channel coding type supported by the first device for uplink.
  • the first device supports the line code. Specifically, for uplink, the first device supports the line code.
  • the line code type supported by the first device may specifically be the line code type supported by the first device for uplink.
  • first equipment HARQ-ACK feedback is supported.
  • the first device supports HARQ-ACK feedback.
  • the uplink may be an uplink control channel and/or an uplink data channel. If the first device does not send capability information to the second device, the capability information indicates that the first device supports the downlink control channel, or if the second device does not receive capability information from the first device, the capability information indicates that the first device supports downlink control channel, it means that the first device does not support the downlink control channel.
  • the capability information is that the first device supports channel coding, or if the second device does not receive capability information from the first device, the capability information is that the first device supports channel coding encoding, it means that the first device does not support channel encoding. If the first device does not send capability information to the second device, the capability information is the line code supported by the first device, or if the second device does not receive capability information from the first device, the capability information is the line code supported by the first device. code, it means that the first device does not support line codes.
  • the capability information indicates that the first device supports HARQ-ACK feedback
  • the capability information indicates that the first device supports HARQ-ACK feedback.
  • Supporting HARQ-ACK feedback means that the first device does not support HARQ-ACK feedback.
  • multiple capability information can be associated.
  • the first device only needs to report one capability information among the multiple capability information associated. In this way, This can save the overhead of the first device reporting capability information.
  • the first device supports channel coding and the first device supports downlink control channels can be associated.
  • the first device reports capability information, and the content of the capability information is that the first device supports channel coding, it means that the first device also supports downlink control channels. .
  • the first device supporting HARQ-ACK feedback and the first device supporting the control channel may be associated. For example, if the first device reports capability information, and the content of the capability information is that the first device supports HARQ-ACK feedback, it means that the first device also supports the downlink control channel.
  • a possible implementation manner is that the second device can send the second configuration information to the first device, and accordingly, the first device can receive the second configuration information from the second device.
  • the configuration information includes at least one of the following configuration information: whether to enable the downlink control channel, whether to enable channel coding, enabled channel coding type, whether to enable line code, enabled line code type, whether Enable HARQ-ACK feedback. It should be understood that "enable” here can also be expressed as "activate”. Whether to enable channel coding may specifically refer to whether the second device enables channel coding for uplink.
  • the enabled channel coding type may specifically be the channel coding type enabled by the second device for uplink.
  • Whether to enable line codes may specifically refer to whether the second device enables line codes for uplink.
  • the enabled line code type may specifically be the line code type enabled by the second device for uplink. Whether to enable HARQ-ACK feedback may specifically refer to whether the second device enables HARQ-ACK feedback for uplink.
  • the uplink may be an uplink control channel and/or an uplink data channel. It should be noted that the above multiple configuration information can be associated. For the associated multiple configuration information, the second device only needs to send one configuration information among the associated multiple configuration information. In this way, the cost of sending the second configuration information by the second device can be saved. As an example, whether channel coding is enabled and whether the downlink control channel is enabled can be related. For example, the second device sends second configuration information, and the second configuration information includes the content of enabling channel coding, which means that the second device also enables downlink.
  • the second device sends the second configuration information, and the content of the second configuration information is to disable channel coding, which means that the second device also does not disable the downlink control channel.
  • whether the second device enables HARQ-ACK feedback and whether the second device enables the control channel may be associated. For example, if the second device sends the second configuration information, and the content of the second configuration information is to enable HARQ-ACK feedback, it means that the second device also enables the downlink control channel.
  • the second device sends second configuration information.
  • the content of the second configuration information is to disable HARQ-ACK feedback, which means that the second device also disables the downlink control channel.
  • a possible implementation manner is that the second device can send the second configuration information to the first device, and accordingly, the first device can receive the second configuration information from the second device.
  • the configuration information includes at least one of the following: enabling downlink control channel, enabling channel coding, enabled channel coding type, enabling line code, enabled line code type, and enabling HARQ-ACK feedback. It should be understood that "enable” here can also be expressed as "activate”.
  • Enabling channel coding may specifically enable the second device to enable channel coding for uplink.
  • the enabled channel coding type may specifically be the channel coding type enabled by the second device for uplink.
  • Enabling the line code may specifically enable the second device to enable the line code for uplink.
  • the enabled line code type may specifically be the line code type enabled by the second device for uplink. Enabling HARQ-ACK feedback may specifically enable the second device to enable HARQ-ACK feedback for uplink.
  • the uplink may be an uplink control channel and/or an uplink data channel. If the second device does not send the second configuration information to the first device, the second configuration information is to enable the downlink control channel, or if the first device does not receive the second configuration information from the second device, the second configuration information If the information is to enable the downlink control channel, it means that the second device does not enable the downlink control channel.
  • the second configuration information is to enable channel coding, or if the first device does not receive the second configuration information from the second device, If the second configuration information is channel coding enabled, it means that the second device does not enable channel coding. If the second device does not send the second configuration information to the first device, the second configuration information is the enabled line code, or if the first device does not receive the second configuration information from the second device, the second configuration information If the line code is enabled, it means that the second device does not have the line code enabled.
  • the second configuration information is to enable HARQ-ACK feedback, or if the first device does not receive the second configuration information from the second device, the second configuration information is enabled. If the configuration information is to enable HARQ-ACK feedback, it means that the second device does not enable HARQ-ACK feedback. It should be noted that the above multiple configuration information can be associated. For the associated multiple configuration information, the second device only needs to send one configuration information among the associated multiple configuration information. In this way, the cost of sending the second configuration information by the second device can be saved. In one example, enabling channel coding and enabling downlink control channels can be associated.
  • the second device sends second configuration information, and the content of the second configuration information is enabling channel coding, which means that the second device also enables downlink control channels.
  • the second device enables HARQ-ACK feedback and the second device enables control channel may be associated. For example, if the second device sends the second configuration information, and the content of the second configuration information is to enable HARQ-ACK feedback, it means that the second device also enables the downlink control channel.
  • a possible implementation manner is that the first device sends capability information to the second device. Accordingly, the second device receives the capability information from the first device. That is to say, the first device can report capability information to the second device.
  • the capability information may include one or more of the following: whether the first device supports energy harvesting, whether the first device supports a low-power receiver, or whether the first device supports backscatter communication.
  • the first device supporting energy collection may mean that the first device supports autonomously acquiring energy from the environment, and the source of the energy may be at least one of the following: light, radio waves, temperature differences, Vibrations, motion, salinity gradients, wind or water flows.
  • the first device converts energy obtained from the environment into electrical energy.
  • the benefit of energy collection is to replace the battery to power the device or supplement the battery energy, thereby extending the service life of the device.
  • the energy generated through energy collection can be provided to the signal processing or data storage circuit of the first device to maintain the normal operation of the first device. working status.
  • the first device supporting a low-power receiver may mean that the first device supports receiving signals in a non-coherent reception manner.
  • Low-power receivers can avoid using RF modules with large power consumption, such as high-linearity mixers, voltage-controlled oscillators that can provide accurate local oscillator signals, etc. Therefore, low-power receivers can achieve lower power consumption. consumption level.
  • the non-coherent receiving method can be envelope detection, differential demodulation, etc.
  • the signal may be a signal from the second device.
  • the first device supporting a low-power receiver may mean that the first device only has a low-power receiver, or the first device has both a low-power receiver and a traditional receiver. Traditional receivers are different from low-power receivers.
  • the receiver architecture of traditional receivers can be superheterodyne, zero-IF or low-IF, and traditional receivers can support coherent reception.
  • Traditional receivers need to use some high-performance and high-precision module circuits to ensure receiver performance, such as high-gain and high-linearity low-noise amplifiers, high-linearity mixers, and voltage-controlled oscillators that can provide accurate local oscillator signals. etc., these module circuits have higher power consumption, so within a certain period of time, the power consumption of traditional receivers is higher than that of low-power receivers.
  • the first device that has both a traditional receiver and a low-power receiver, you can achieve energy saving by turning off the traditional receiver and turning on the low-power receiver.
  • the first device can receive a wake-up signal through a low-power receiver, and trigger the start-up of the traditional receiver through the wake-up signal.
  • the wake-up signal may be sent by the second device.
  • envelope detection can refer to a signal detection method that obtains the envelope or amplitude line of the low-frequency original signal after half-wave or full-wave rectification of a high-frequency or intermediate-frequency input signal.
  • the first device can obtain the envelope of the original signal after receiving the signal in a manner including detection.
  • the first device can digitally sample the envelope of the original signal and compare it with the amplitude or energy threshold set by the first device to determine whether the received signal is 1 or 0.
  • the first device can also determine whether the received signal is 1 or 0 based on other implementation methods, which is not specifically limited in this embodiment of the present application.
  • the first device supports backscatter communication, which may mean that the first device supports transmitting information to the second device without an actively transmitting radio frequency link; or, the first device supports transmitting information to the second device when it has an actively transmitting radio frequency link. Passes information to the second device without the link being open. That is to say, the first device mainly relies on an excitation device other than the second device or a continuous carrier wave transmitted by the second device for modulation.
  • the first device can reflect part or all of the incident carrier waves by adjusting the impedance of the antenna of the first device; or the first device can also adjust the impedance of the antenna of the first device so as not to reflect the incident carrier waves, or Absorbs the energy of the incident carrier wave. In this way, by adjusting the impedance of the antenna of the first device, the first device can modulate the digital information of the first device onto the incident carrier wave and transmit it to the second device.
  • the maximum bandwidth supported by the first device is limited.
  • the maximum uplink bandwidth supported by the first device does not exceed X1.
  • X1 is 20MHz, or X1 is 5MHz, or X1 is 3MHz, or X1 is 1.4MHz, or X1 is 1MHz, or X1 is 720kHz, or X1 is 540kHz, or X1 is 360kHz, or X1 is 180kHz.
  • X1 is K1 resource blocks, and K1 is a positive integer.
  • K1 is a positive integer less than or equal to 11, or K1 is a positive integer less than or equal to 25, or K1 is a positive integer less than or equal to 51, or K1 is a positive integer less than or equal to 106.
  • the maximum downlink bandwidth supported by the first device does not exceed Y1.
  • Y1 is 20MHz, or Y1 is 5MHz, or Y1 is 3MHz, or Y1 is 1.4MHz, or Y1 is 1MHz, or Y1 is 720kHz, or Y1 is 540kHz, or Y1 is 360kHz, or Y1 is 180kHz.
  • Y1 is K2 resource blocks, and K2 is a positive integer.
  • K2 is a positive integer less than or equal to 11, or K2 is a positive integer less than or equal to 25, or K2 is a positive integer less than or equal to 51, or K2 is a positive integer less than or equal to 106.
  • the maximum uplink bandwidth supported by the first device is less than or equal to the maximum downlink bandwidth supported by the first device.
  • the first device supports a limited number of transmitting and/or receiving antennas.
  • the number of receiving antennas of the first device does not exceed X2.
  • X2 is 1, or 2, or 4.
  • the number of receiving branches (Rx branches) of the first device does not exceed X2, where X2 is 1, or 2, or 4.
  • the number of transmitting antennas of the first device does not exceed Y2.
  • Y2 is 1, or 2, or 4.
  • the number of sending branches of the first device does not exceed Y2.
  • Y2 is 1, or 2, or 4.
  • the number of transmitting antennas of the first device is greater than or equal to the number of receiving antennas of the second device.
  • the number of sending branches of the first device is greater than or equal to the number of receiving branches of the first device.
  • the "receiving branch” may also be called “the number of received radio frequency channels” or “the number of received radio frequency chains (RF chains)”.
  • “Sending branches” can also be called “number of RF channels sent”, or “number of RF chains sent”.
  • the first device cannot perform uplink transmission and downlink reception at the same time on the serving cell with paired spectrum.
  • Figure 11 is a schematic block diagram of a device provided by an embodiment of the present application.
  • the device 500 may include: a transceiver module 510 and a processing module 520.
  • the communication device 500 may correspond to the first device in the above method embodiment, for example, it may be the first device, or may be configured with a component in the first device (eg, a chip or a chip system, etc.).
  • each module in the communication device 500 is respectively intended to implement the corresponding processes of each method in the foregoing embodiments.
  • the transceiver module 510 may be configured to receive first downlink information from the second device, where the first downlink information includes scheduling information indicating uplink transmission of the communication device, transmission parameters of the scheduling information and/or The transmission resource is related to the second downlink information, the second downlink information is the downlink information before the first downlink information, or the second downlink information is the synchronization signal in the first downlink information; the processing module 520 can be used to To determine the scheduling information, the transceiving module 510 is also used to send uplink information to the first device.
  • the communication device 500 may correspond to the second device in the above method embodiment, for example, it may be the second device, or may be configured with a component in the second device (eg, a chip or a chip system, etc.).
  • each module in the communication device 500 is respectively intended to implement the corresponding processes of each method in the foregoing embodiments.
  • the processing module 520 may be used to determine the transmission parameters and/or transmission resources in the first downlink information used to indicate the scheduling information of the uplink transmission of the first device.
  • Transceiver module 510 configured to send first downlink information to the first device.
  • the first downlink information includes scheduling information indicating uplink transmission of the first device.
  • the transmission parameters and/or transmission resources of the scheduling information are consistent with
  • the second downlink information is related to the downlink information before the first downlink information, or the second downlink information is the synchronization signal in the first downlink information; the transceiver module 510 is also used to receive from Uplink information on the first device.
  • the transceiver module 510 in the device 500 can be implemented by a transceiver, for example, it can correspond to the transceiver 610 in the device 600 shown in Figure 12.
  • the processing module 520 may be implemented by at least one processor, for example, may correspond to the processor 620 in the device 600 shown in FIG. 12 .
  • the transceiver module 510 in the device 500 can be implemented through an input/output interface, a circuit, etc., in the device 500
  • the processing module 520 can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • Figure 12 is another schematic block diagram of a device provided by an embodiment of the present application.
  • the device 600 may include: a transceiver 610, a processor 620 and a memory 630.
  • the transceiver 610, the processor 620 and the memory 630 communicate with each other through internal connection paths.
  • the memory 630 is used to store instructions
  • the processor 620 is used to execute the instructions stored in the memory 630 to control the transceiver 610 to send signals and /or receive a signal.
  • the device 600 may correspond to the first device or the second device in the above method embodiment, and may be used to perform various steps and/or processes performed by the first device or the second device in the above method embodiment.
  • the memory 630 may include read-only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 630 can be a separate device or integrated into the processor 620 .
  • the processor 620 may be configured to execute instructions stored in the memory 630, and when the processor 620 executes the instructions stored in the memory, the processor 620 is configured to execute the above method embodiment corresponding to the first device or the second device. various steps and/or processes.
  • the device 600 is the first device in the previous embodiment.
  • the device 600 is the second device in the previous embodiment.
  • the transceiver 610 may include a transmitter and a receiver.
  • the transceiver 610 may further include an antenna, and the number of antennas may be one or more.
  • the processor 620, the memory 630 and the transceiver 610 may be devices integrated on different chips.
  • the processor 620 and the memory 630 can be integrated in a baseband chip, and the transceiver 610 can be integrated in a radio frequency chip.
  • the processor 620, the memory 630 and the transceiver 610 may also be devices integrated on the same chip. This application does not limit this.
  • the device 600 is a component configured in the first device, such as a chip, a chip system, etc.
  • the device 600 is a component configured in the second device, such as a chip, a chip system, etc.
  • the transceiver 620 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 620, the processor 610 and the memory 630 can be integrated in the same chip, such as a baseband chip.
  • This application also provides a processing device, including at least one processor, the at least one processor being used to execute a computer program stored in the memory, so that the processing device executes the first device or the second device in the above method embodiment. method of execution.
  • An embodiment of the present application also provides a processing device, including a processor and an input and output interface.
  • the input and output interface is coupled to the processor.
  • the input and output interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing device executes the method executed by the first device or the second device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the first device or the second device in the above method embodiment.
  • the processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • Software modules can be located in random access memory, flash memory, read-only memory, Programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the first step in the above method embodiment. A method performed by one device or a second device.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned first device and second device.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be used through other way to achieve.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:第一设备接收来自于第二设备的第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;该第一设备向该第一设备发送上行信息。实现了对上行传输的灵活调度,进而提高了上行资源的使用效率。

Description

通信方法、装置、设备以及存储介质
本申请要求于2022年07月14日提交中国专利局、申请号为202210827907.X、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
物联(internet ofthings,IoT)通信技术的快速发展使万物互联逐步实现。在有些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,通过支持射频识别(radio frequency identification,RFID)技术,可以降低IoT应用成本和功耗,以使IoT得到更加广泛的应用。
目前,在将RFID技术应用于各通信系统时,设备间如何进行有效的传输控制,缺少有效的解决方案。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,在RFID应用于各通信系统时,为如何实现设备间有效的传输控制提供了一种解决方案。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一设备接收来自于第二设备的第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;该第一设备向该第一设备发送上行信息。
通过该实施方式提供的通信方法,在第一设备向第二设备发送上行信息之前,接收第一设备发送的第一下行信息,以根据第一下行信息中的上行调度信息进行上行信息的传输,实现了对上行传输的灵活调度,进而提高了上行资源的使用效率。
进一步地,上行调度信息的传输参数和/或传输资源与第二下行信息相关,第一设备可以基于第二下行信息的指示接收上行调度信息,为成功接收上行调度信息提供了一种解决方案。
在一种可能的实施方式中,该调度信息的传输资源包括时域资源;该时域资源为基于第一时域单元确定的,该第一时域单元为该第一下行信息的同步信号占用的时域资源。
通过该实施方式提供的通信方法,基于第一下行信息的同步信号与的时域资源确定调度信息的时域资源,不需要额外的信令指示调度信息的时域资源位置,节省了信令开销。
可选的,该时域资源的起始时域位置与该第一时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第一时域单元的结束时域位置之间存在时域间隔。
可选的,该时域间隔为预设值,节省了信令开销以及处理的复杂度。
可选的,该时域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该时域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在节省信令开销的同时,提高了调度信息的资源位置的灵活指示。
可选的,该时域资源处于该第一时域单元和第二时域单元之间;或者,该时域资源处于第二时域单元之后;其中,该第二时域单元为该第一下行信息的数据占用的时域单元。
可选的,该时域资源的起始时域位置与该第二时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第二时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该调度信息的传输资源包括频域资源;该频域资源为基于第一频域单元确定的,该第一频域单元为该第一下行信息的同步信号占用的频域资源。
通过该实施方式提供的通信方法,通过同步信号指示调度信息占用的频域资源,节省了信令开销。
在一种可能的实施方式中,该频域资源的中心频点与该第一频域单元的中心频点相同;或者,该频域资源的中心频点与该第一频域单元的中心频点存在频域间隔。
通过该实施方式提供的通信方法,该调度信息的频域资源的中心频点与第一频域单元的中心频点的相同,可以避免子载波非正交造成信号干扰,该调度信息的频域资源的中心频点与第一频域单元的中心频点之间存在间隔实现了调度信息的频域资源的灵活配置。
可选的,该频域间隔为预设值,节省了信令开销以及处理的复杂度。
可选的,该频域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在节省信令开销的同时,提高了调度信息的资源位置的灵活指示。
在一种可能的实施方式中,该频域资源的带宽与该第一频域单元的带宽相同。
通过该实施方式提供的通信方法,避免子载波非正交造成信号干扰,提高了通信系统的可靠性。
可选的,该频域资源的带宽为预设值,节省了信令开销以及处理的复杂度。
可选的,该频域资源的带宽与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域资源的带宽与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在节省信令开销的同时,提高了调度信息的资源位置的灵活指示。
在一种可能的实施方式中,该第二下行信息包括该第一下行信息中的同步信号时,该调度信息的传输参数与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在节省信令开销的同时,提高了调度信息的资源位置的灵活指示。
可选的,该传输参数包括:带宽、子载波间隔、循环前缀CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比中的至少之一。
可选的,该上行信息支持信道编码,该调度信息包括用于指示该上行信息的传输块或码块大小的信息。
在一种可能的实施方式中,该调度信息的信道编码类型与该上行信息的信道编码类型相同。
通过该实施方式提供的通信方法,节省了信令开销,且降低了信号处理复杂度。
在一种可能的实施方式中,该调度信息的比特数大于或等于预设比特数时,该调度信息使用CRC;该调度信息的比特数小于预设比特数时,该调度信息不使用CRC。
通过该实施方式提供的通信方法,该调度信息的比特数较大时,使用CRC实现调度信息的可靠传输,在调度信息的比特数较小时,不使用CRC节省了传输资源并降低了信息处理的复杂度。
可选的,该预设比特数小于或等于12。
在一种可能的实施方式中,该调度信息包括第一信息,该第一信息用于指示该上行信息的传 输参数和/或传输资源。
在一种可能的实施方式中,该第一信息指示的上行信息的传输参数的值与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
可选的,该上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
在一种可能的实施方式中,该调度信息包括第二信息,该第二信息用于指示以下至少之一:
该上行信息是否启用信道编码;
该上行信息是否有结束符;
该上行信息是否支持频率搬移。
在一种可能的实施方式中,该第二信息用于确定该调度信息中的至少一个指示域,该至少一个指示域用于指示该上行信息的传输参数和/或传输资源。
第二方面,本申请实施例提供一种通信方法,该方法包括:第二设备向第一设备发送第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;该第二设备接收来自于该第一设备的上行信息。
在一种可能的实施方式中,该调度信息的传输资源包括时域资源;该时域资源为基于第一时域单元确定的,该第一时域单元为该第一下行信息的同步信号占用的时域资源。
在一种可能的实施方式中,该时域资源的起始时域位置与该第一时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第一时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该时域间隔为预设值;或者,该时域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该时域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该时域资源处于该第一时域单元和第二时域单元之间;或者,该时域资源处于第二时域单元之后;其中,该第二时域单元为该第一下行信息的数据占用的时域单元。
在一种可能的实施方式中,该时域资源与该第二时域单元相邻,或者该时域资源与该第二时域单元之间存在时域间隔。
在一种可能的实施方式中,该调度信息的传输资源包括频域资源;该频域资源为基于第一频域单元确定的,该第一频域单元为该第一下行信息的同步信号占用的频域资源。
在一种可能的实施方式中,该频域资源的中心频点与该第一频域单元的中心频点相同;或者,该频域资源的中心频点与该第一频域单元的中心频点存在频域间隔。
在一种可能的实施方式中,该频域间隔为预设值;或者,该频域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该频域资源的带宽与该第一频域单元的带宽相同。
在一种可能的实施方式中,该频域资源的带宽为预设值;或者,该频域资源的带宽与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域资源的带宽与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该第二下行信息包括该第一下行信息中的同步信号时,该调度信息的传输参数与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该传输参数包括:带宽、子载波间隔、循环前缀CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比中的至少之一。
在一种可能的实施方式中,该上行信息支持信道编码,该调度信息包括用于指示该上行信息的传输块或码块大小的信息。
在一种可能的实施方式中,该调度信息的信道编码类型与该上行信息的信道编码类型相同。
在一种可能的实施方式中,该调度信息的比特数大于或等于预设比特数时,该第一下行信息还包括该调度信息的CRC;该调度信息的比特数小于预设比特数时,该第一下行信息不包括该调度信息对应的CRC。
在一种可能的实施方式中,该预设比特数小于或等于12。
在一种可能的实施方式中,该调度信息包括第一信息,该第一信息用于指示该上行信息的传输参数和/或传输资源。
在一种可能的实施方式中,该该第一信息指示的上行信息的传输参数的值与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
在一种可能的实施方式中,该调度信息包括第二信息,该第二信息用于指示以下至少之一:
该上行信息是否启用信道编码;
该上行信息是否有结束符;
该上行信息是否支持频率搬移。
在一种可能的实施方式中,该第二信息用于确定该调度信息中的至少一个指示域,该至少一个指示域用于指示该上行信息的传输参数和/或传输资源。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,该方法包括:收发模块,用于接收来自于第二设备的第一下行信息,该第一下行信息包括用于指示该通信装置的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;处理模块,用于确定该调度信息, 该收发模块还用于向该第一设备发送上行信息。
在一种可能的实施方式中,该调度信息的传输资源包括时域资源;该时域资源为基于第一时域单元确定的,该第一时域单元为该第一下行信息的同步信号占用的时域资源。
在一种可能的实施方式中,该时域资源的起始时域位置与该第一时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第一时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该时域间隔为预设值;或者,该时域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该时域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该时域资源处于该第一时域单元和第二时域单元之间;或者,该时域资源处于第二时域单元之后;其中,该第二时域单元为该第一下行信息的数据占用的时域单元。
在一种可能的实施方式中,该时域资源的起始时域位置与该第二时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第二时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该调度信息的传输资源包括频域资源;该频域资源为基于第一频域单元确定的,该第一频域单元为该第一下行信息的同步信号占用的频域资源。
在一种可能的实施方式中,该频域资源的中心频点与该第一频域单元的中心频点相同;或者,该频域资源的中心频点与该第一频域单元的中心频点存在频域间隔。
在一种可能的实施方式中,该频域间隔为预设值;或者,该频域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该频域资源的带宽与该第一频域单元的带宽相同。
在一种可能的实施方式中,该频域资源的带宽为预设值;或者,该频域资源的带宽与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域资源的带宽与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该第二下行信息包括该第一下行信息中的同步信号时,该调度信息的传输参数与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该传输参数包括:带宽、子载波间隔、循环前缀CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比中的至少之一。
在一种可能的实施方式中,该上行信息支持信道编码,该调度信息包括用于指示该上行信息的传输块或码块大小的信息。
在一种可能的实施方式中,该调度信息的信道编码类型与该上行信息的信道编码类型相同。
在一种可能的实施方式中,该调度信息的比特数大于或等于预设比特数时,该调度信息使用CRC;该调度信息的比特数小于预设比特数时,该调度信息不使用CRC。
在一种可能的实施方式中,该预设比特数小于或等于12。
在一种可能的实施方式中,该调度信息包括第一信息,该第一信息用于指示该上行信息的传输参数和/或传输资源。
在一种可能的实施方式中,该第一信息指示的上行信息的传输参数的值与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
在一种可能的实施方式中,该调度信息包括第二信息,该第二信息用于指示以下至少之一:
该上行信息是否启用信道编码;
该上行信息是否有结束符;
该上行信息是否支持频率搬移。
在一种可能的实施方式中,该第二信息用于确定该调度信息中的至少一个指示域,该至少一个指示域用于指示该上行信息的传输参数和/或传输资源。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理模块,用于确定第一下行信息中用于指示第一设备上行传输的调度信息的传输参数和/或传输资源;收发模块,用于向第一设备发送第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;该收发模块还用于接收来自于该第一设备的上行信息。
在一种可能的实施方式中,该调度信息的传输资源包括时域资源;该时域资源为基于第一时域单元确定的,该第一时域单元为该第一下行信息的同步信号占用的时域资源。
在一种可能的实施方式中,该时域资源的起始时域位置与该第一时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第一时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该时域间隔为预设值;或者,该时域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该时域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该时域资源处于该第一时域单元和第二时域单元之间;或者,该时域资源处于第二时域单元之后;其中,该第二时域单元为该第一下行信息的数据占用的时域单元。
在一种可能的实施方式中,该时域资源的起始时域位置与该第二时域单元的结束时域位置相邻,或者该时域资源的起始时域位置与该第二时域单元的结束时域位置之间存在时域间隔。
在一种可能的实施方式中,该调度信息的传输资源包括频域资源;该频域资源为基于第一频域单元确定的,该第一频域单元为该第一下行信息的同步信号占用的频域资源。
在一种可能的实施方式中,该频域资源的中心频点与该第一频域单元的中心频点相同;或者,该频域资源的中心频点与该第一频域单元的中心频点存在频域间隔。
在一种可能的实施方式中,该频域间隔为预设值;或者,该频域间隔与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域间隔与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该频域资源的带宽与该第一频域单元的带宽相同。
在一种可能的实施方式中,该频域资源的带宽为预设值;或者,该频域资源的带宽与该第二下行信息相关;其中,该第二下行信息包括该第一下行信息中的同步信号时,该频域资源的带宽与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该第二下行信息包括该第一下行信息中的同步信号时,该调度信息的传输参数与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该传输参数包括:带宽、子载波间隔、循环前缀CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比中的至少之一。
在一种可能的实施方式中,该上行信息支持信道编码,该调度信息包括用于指示该上行信息的传输块或码块大小的信息。
在一种可能的实施方式中,该调度信息的信道编码类型与该上行信息的信道编码类型相同。
在一种可能的实施方式中,该调度信息的比特数大于或等于预设比特数时,该调度信息使用CRC;该调度信息的比特数小于预设比特数时,该调度信息不使用CRC。
在一种可能的实施方式中,该预设比特数小于或等于12。
在一种可能的实施方式中,该调度信息包括第一信息,该第一信息用于指示该上行信息的传输参数和/或传输资源。
在一种可能的实施方式中,该第一信息指示的上行信息的传输参数的值与该同步信号的以下至少之一相关:
信号序列;
信号长度;
重复次数;
扩频因子。
在一种可能的实施方式中,该上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
在一种可能的实施方式中,该调度信息包括第二信息,该第二信息用于指示以下至少之一:
该上行信息是否启用信道编码;
该上行信息是否有结束符;
该上行信息是否支持频率搬移。
在一种可能的实施方式中,该第二信息用于确定该调度信息中的至少一个指示域,该至少一个指示域用于指示该上行信息的传输参数和/或传输资源。
上述第四方面所提供的通信装置,其有益效果可以参见上述第二方面以及第二方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
附图说明
图1示出了适用于本申请实施例的一种通信系统;
图2为本申请实施例提供的一种反向散射通信系统的结构示意图;
图3a为本申请实施例提供的一种射频识别(Radio Frequency Identification,RFID)系统的结构示意图;
图3b为本申请实施例提供的一种RFID通信的示意图;
图4为本申请实施例提供的一种信号包络的示意图;
图5为本申请实施例提供的一种通信方法的示意性交互流程示意图;
图6a为本申请实施例提供的一种上行传输的调度信息的时域资源位置示意图;
图6b为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图7a为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图7b为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图7c为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图7d为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图7e为本申请实施例提供的另一种上行传输的调度信息的时域资源位置示意图;
图8a为本申请实施例提供的一种上行传输传输的调度信息的频域资源位置示意图;
图8b为本申请实施例提供的另一种上行传输传输的调度信息的频域资源位置示意图;
图8c为本申请实施例提供的另一种上行传输传输的调度信息的频域资源位置示意图;
图9为本申请实施例提供的一种覆盖等级示意图;
图10a为本申请实施例提供的一种双相空间编码的基函数示意图;
图10b为本申请实施例提供的一种双相空间编码的状态转移机制示意图;
图10c为本申请实施例提供的一种密勒码的基函数示意图;
图10d为本申请实施例提供的一种密勒码的状态转移机制示意图;
图11是本申请实施例提供的装置的示意性框图;
图12是本申请实施例提供的装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR 系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络
(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(selfdriving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传 输服务。
应理解,本申请对于网络设备和终端设备的具体形式均不做限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,通信系统100可以包括网络设备和终端设备,网络设备和终端设备的数量均可以是一个或者多个,例如图1中所示的网络设备111和112、终端设备121至128,在该通信系统100中,网络设备111可以与终端设备121至126中的一个或多个终端设备通过无线空口通信,网络设备111可以通过网络设备112与终端设备127和128中的一个或多个终端设备进行通信。此外,终端设备124至126可以组成通信系统101,在该通信系统101中,终端设备124可以与终端设备125和126中的一个或多个终端设备通过无线空口通信、网络设备112与终端设备127和128可以组成通信系统102,在该通信系统102中,网络设备112可以与终端设备127和128中的一个或多个终端设备通过无线空口通信。
应理解,通信系统101可以是通信系统100的子系统,或者独立于通信系统100的通信系统;通信系统102可以是通信系统100的子系统,或者独立于通信系统100的通信系统。
还应理解,图1仅为示例,示出了通信系统100中两个网络设备和八个终端设备,通信系统101中的三个终端设备,通信系统102中的一个网络设备和两个终端设备。但这不应对本申请构成任何限定。上述任一通信系统可以包括更多或更少的网络设备,或者包括更多或更少的终端设备。本申请实施例对此不做限定。
在IoT技术领域中,终端的电池寿命极大的增加了终端的维护成本和维护难度,成为制约物联网发展的主要瓶颈,而基于无线功率传输、包络检波解调和反向散射调制技术的无源反向散射(backscatter)通信有望解决终端的寿命和维护问题,使得下一代终端实现低成本、高密度、免维护的无源物联网(Passive IoT)成为可能。
反向散射通信或者可以称作反射通信,本申请对此不作限定。
图2为本申请实施例提供的一种反向散射通信系统的结构示意图。如图2所示,反向散射通信系统200一般由激励器210、接收器220、反射器(backscatter device)(或称作标签)230组成,其通信链路包括激励器210到反射器230的下行链路和反射器230到接收器220的上行链路。其中,下行链路一般采用幅移键控(Amplitude Shift Keying,ASK)调制方式,反射器230可基于低功耗的包络检波器解调下行调制信号;反射器230基于要发送的信息比特改变天线的负载,使得其信息比特可以调制到入射的载波上,实现上行数据的无线传输。由于反射器230不需要射频振荡器,功率放大器、低噪声放大器等高功耗器件,因此具有低成本和超低功耗的特点。
本申请实施例中,激励器210与反射器230之间,以及接收器220与反射器230之间,均可以在前述各通信系统中进行通信。示例性的,激励器210和接收器220可以部署于同一设备,例如可以是前述示例中的任意终端设备或者网络设备,反射器230可以部署为前述示例中的任意终端设备。假设激励器210和接收器220可部署于图1中的网络设备111,反射器230可以为图1中的终端设备125,网络设备111与终端设备之间可以在前述各通信系统进行通信,例如在NR系统中进行通信,网络设备111可以通过激励器210向反射器230发送下行信令/数据,并通过接收器220接收终端设备125发送的上行数据。
反射器130根据自身是否有电池供电,可分为无源反射器和半无源(semi-passive)反射器。无源反射器自身没有电源,需要对下行射频信号进行整流,并将整流输出的直流电压作为电源,供模拟、数字电路使用。半无源反射器自身具有电源,不依赖下行射频信号的整流输出供电。
上述反向散射通信系统是将反向散射通信技术应用于各通信系统时的一种示例。下面以广泛应用的超高频(Ultra-High Frequency,UHF)RFID系统为例对反向散射通信技术进行示例性的说明。
典型的无源UHF RFID系统架构如下图3a所示,读写器(reader)310通过下行链路向标签(tag)320发送下行激励信号,为标签320a提供能量;标签320接收读写器310发送的信令,并通过反向散射技术在上行链路向读写器310发送上行信号。通过这种方式读写器310可以识别标签的ID,对标签进行读/写等操作。
图3b为本申请实施例提供的一种RFID通信的示意图。读写器在下行链路上发送连续包含高电平的波形(CW)给标签,标签接收能量后通过上行链路将信息反射给读写器。在RFID空口协议ISO 18000-6C中,定义标签反射采用动态时隙防碰撞(如ALOHA)技术进行反射。具体的读写器和标签通信过程包括:
1)选择标签过程。读写器首先发送选择(select)命令,利用该信令为盘存和访问选择一个特定的标签/标签群。
2)盘存标签过程。读写器向标签发送查询(query)命令,开启一轮盘存周期。待盘存的标签接收到来自读写器的query命令后,根据query命令中指示的Q值,从(0,2Q-1)的范围内选出一个随机数装入自身的时隙计数器中。
此时,选到随机数值为0值的标签进入响应状态,并响应一个RN16,随后读写器回答一个包含同样RN16的ACK确认标签。被确认的标签转移到确认状态,并发送响应消息,该响应消息包括产品码(product code,PC)、电子产品码(electronic product code,EPC)、循环冗余校验(cyclic redundancy check,CRC)码中的至少之一,以完成标签的基本信息盘存过程。选到非0值的标签转移到仲裁状态。
读写器还可以向标签发送queryrep或者queryadjust信令。当已被识别的标签接收到queryrep或者queryadjust信令时,此时标签的盘存标志置反(例如A→B或B→A),转移到就绪状态,并结束该轮盘存过程。
queryrep信令重复先前query操作,不改变任何参数,处于仲裁状态的标签,每接收到一条queryrep信令时,其时隙计数器中的值减1,此时时隙计数器中值减为0的标签重复和上述相同的应答过程。queryadjust信令重复先前query操作,并可增减Q。另外如果处于仲裁状态的标签接收到一条queryadjust信令时,调整Q值,然后重新在(0,2Q-1)的范围内选出一个随机数装入它们的时隙计数器中,此时选到非0值的标签转移到仲裁状态,选到0值的标签进入响应状态。
上述RFID的通信过程中,标签通过上行链路传输RN16、标签的基本信息(例如EPC)等,其中RN16的传输控制信息可以通过query信令通知,后续EPC传输时仍然采用RN16的传输控制信息。此种情况下,上行传输的资源调度缺少灵活的控制,不利于上行资源的高效使用。
上述RFID与各通信系统(例如NR通信系统)中应用时,可以包括如图2所示的激励器210、接收器220和反射器230。图2所示的激励器210和接收器220与图3a中的读写器310类似,在一些实施例中,图3a中的RFID系统也可以包括用于接收反射器320发送的上行数据的接收器,该接收器可以独立于读写器310。图2所示的反射器130与图3a中的反射器320类似。
上述RFID技术与各通信系统(例如NR通信系统)进行通信时,仍存在上述上行传输的资源调度缺少灵活的控制,不利于上行资源的高效使用的技术问题。对此,本申请实施例提供一种上行数据的控制方案,在向反射器发送下行信令/数据时,向其发送指示上行传输的调度信息,以便于反射器基于接收到的调度信息进行上行传输,相比于基于一个下行信令对盘存过程中的多个上行传输进行指示而言,提高了上行传输资源调度的灵活控制,进而提高了上行资源的使用效率。
可以理解的是,上述反向散射通信中上行通信方法仅为示例,在本申请另一些实施例中,标签还可以通过获取环境光、热等能量,来驱动芯片将自身存储的信息传送出去。
为便于理解本申请实施例,做出如下几点说明:
第一,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的设备、下行信息、时域单元等。
第二,“预定义”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某 种客观情况下设备(如,第一设备或者第二设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,第一设备或者第二设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
下面将结合附图对本申请实施例提供的通信方法做详细说明。
应理解,下文仅为便于理解和说明,以第一设备与第二设备之间的交互为例详细说明本申请实施例所提供的方法。
其中,第一设备例如可以是上述标签(例如图2中的反射器220),或者部署有标签的终端设备;第二设备可以是上述读写器(例如图2中的读写器210),或者部署有读写器的终端设备,或者部署有读写器的网络设备。当第一设备是部署有标签的终端设备,第二设备是部署有读写器的终端设备时,该第一设备可以是图1中的终端设备125或126,第二设备可以是图1中的终端设备124;当第一设备是部署有标签的终端设备时,第二设备是部署有读写器的网络设备,该第一设备可以是图1中的终端设备121至123中的任意一个,第二设备可以是图1中的网络设备111,或者第一设备可以是图1中的终端设备127或128,第二设备可以是图1中的网络设备112。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一设备也可以替换为该第一设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。第二设备也可以替换为该第二设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块等。
为了便于理解本申请实施例涉及的技术方案,以下对本申请实施例涉及的技术术语进行解释和说明。
1)线路编码,也称作线路码,作用是消除或减少数字电信号中的直流和低频分量,以便于在有线/无线信道中传输、接收及监测。
2)调制深度,可以定义为D=(A-B)/A,其中A表示信号的包络的最大值,B表示信号的包络的最小值。例如,一种信号包络的示意图可以如图4所示。
3)包络纹波,表示射频信号包络在高电平的幅度波动(如图4中的Mh)或低电平时的幅度波动(如图4中的Ml),其中,Mh表示幅度向上波动的大小,Ml表示幅度向下波动的大小。
图5为本申请实施例提供的一种通信方法400的示意性交互流程示意图。如图5所示,该方法400可以包括S410和S420。下面对方法200中的各个步骤做详细说明。
S410,第二设备向第一设备发送第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为第一下行信息之前的下行信息,或者该第二下行信息为第一下行信息中的同步信号。
相应的,第一设备接收第二设备发送的第一下行信息。
S420,第一设备根据该调度信息向第二设备发送上行信息。
相应的,第二设备接收来自于第一设备的上行信息。
示例性的,指示第一设备的上行传输的调度信息(简称为上行调度信息)可以用于指示第二设备的上行传输,例如该上行调度信息可以用于指示上行信息的传输参数和/或传输资源。其中,传输参数可以包括带宽、子载波间隔、循环前缀(cyclic prefix,CP)类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比中的至少一项;传输资源可以包括上行信息占用的时域资源和/或频域资源。该上行调度信息的内容将在下文中具体说明。
需要说明的是,在本申请的所有实施例中,上行调度信息也可以称为上行授权(UL grant),或者,上行调度信息也可以称为上行信息的控制信息。其中上行信息可以为上行数据,和/或,上行控制信令。其中,上行调度信息可以通过物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)承载,下行调度信息可以通过PDCCH或PDSCH承载。上行信息可以通过物理上行共享信道(physical uplink shared channel,PUSCH)承载。上行数据可以为应用层数据,和/或控制信令。
为了使上行调度信息能够传输至第一设备,也即使第一设备能够正确接收上行调度信息,可 以通过第二下行信息对上行调度信息的传输参数和/或传输资源进行指示。例如,第二设备可以向第一设备发送第二下行信息以实现调度信息的传输参数和/或传输资源的指示。
作为第一种示例,第二下行信息可以独立于第一下行信息,例如第二设备可以先向第一设备发送第二下行信息,再向第一设备发送第一下行信息。此种情况下,第二下行信息可以是下行控制信息(downlink control information,DCI),例如第二下行信息可以是图3b中的query命令,或者包括query命令的下行信令。可选的,第二下行信息作为一种控制信令,其可以是无线资源控制(radio resource control,RRC)信令,媒体接入控制控制元素(media access control control element,MAC CE),媒体接入控制协议数据单元(media access control protocol data unit,MAC PDU)中的一种或多种。
在上述第一种示例中,第二下行信息可以直接指示调度信息的传输参数和/或传输资源。第一下行信息可以仅包括上行调度信息,不包括下行数据,且调度信息与下行数据之间的传输资源不相关,当然调度信息和下行数据属于不同的下行信息,二者的传输资源不重叠可以提高传输的可靠性;或者,第一下行信息可以包括上行调度信息和下行数据,上行调度信息和下行数据的传输资源可以均由第二下行信息指示,或者第二下行信息可以指示调度信息与下行数据之间的资源间隔。
上述下行数据可以通过PDSCH或PDCCH承载。下行数据可以为应用层数据,和/或,控制信令。
一般来说,第一下行信息在包括下行数据的情况下还包括同步信号。由于反向散射通信系统一般都是异步系统,即第一设备和第二设备非严格同步的,因此需要在下行信息的有效数据之前插入同步信号(也称作前导(preamble)、前导码或前导序列)。同步信号的功能可以包括:自动增益控制(automatic gain control,AGC)、时间同步、频率同步、数据包检测、边界检测中的至少之一。其中,AGC用于通过调整接收信号的强度减少失真;时间同步用于通过获取正确的定时或采样定时;边界检测用于检测前导序列和/或下行数据的边界。在时域上,同步信号位于下行数据之前。此种情况下,同步信号的传输资源也可以由第一下行信息之前的第二下行信息指示,或者第二下行信息可以指示同步信号与调度信息之间的资源间隔。上述资源间隔可以包括时域上的资源间隔以及频域上的资源间隔。
作为第二种示例,第二下行信息可以包括于第一下行信息,例如第二下行信息可以是第一下行信息中的同步信号。需要说明的是,在第二设备向第一设备发送的下行信息(例如图3b中的query)可以由同步信号和数据部分组成,当通过第一下行信息中的同步信号指示调度信息的传输参数和/或传输资源时,第一下行信息可以包括同步信号、调度信息和下行数据,且调度信息的时域位置晚于同步信号的时域位置。当然本申请并不排除第一下行信息包括同步信号和调度信息,不包括下行数据的情况。
在上述第二种示例中,上行调度信息的时域资源可以基于同步信号占用的时域资源(即第一时域单元)确定,换言之,第一设备接收第二设备发送的第一下行信息,进而基于第一下行信息中同步信号的时域资源确定上行调度信息的时域资源。示例性的,上行调度信息的时域资源的起始时域位置与同步信号的结束时域位置之间可以相邻(参见图6a)或者上行调度信息的时域资源的起始时域位置与同步信号的结束时域位置之间存在时域间隔(参见图6b),当该时域间隔为零时,可以理解为上行调度信息的时域资源与同步信号相邻。
作为一种实现方式,该时域间隔可以是预先配置的预设值,例如该预设值可以是基于第二下行信息配置的,在第二设备向第一设备发送第二下行信息时,通过第二下行信息将预设值通知给第一设备。作为另一种实现方式,该时域间隔可以是基于同步信号确定的。例如,时域间隔可以是基于同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一确定的,举例而言,不同的信号序列对应不同的时域间隔,第一设备可以基于信号序列与时域间隔之间的对应关系以及接收到的信号序列,确定时域间隔。需要说明的是,该实现方式中,该时域间隔可以为该上行调度信息的时域资源的起始时域位置与该同步信号的结束时域位置之间的时间间隔;或者,该时域间隔可以为该上行调度信息的时域资源的起始时域位置与该同步信号的起始时域位置之间的时间间隔;或者,该时域间隔可以为该上行调度信息的时域资源的结束时域位置与同步信号的结束 时域位置之间的时间间隔。
上述第一种示例中,通过第一下行信息之前的下行信息指示调度信息的传输参数和/或传输资源,指示的信息容易被第一设备准确接收;上述第二种示例中,通过同步信号指示调度信息的传输参数和/或传输资源,不需要额外增加指示信息,降低了信令开销。
当上行调度信息占用的时域资源基于同步信号确定时,调度信息占用的时域资源位于同步信号占用的时域资源之后,此种情况下,上行调度信息占用的时域资源至少包括如图7a至图7e所示的几种可能的示例,当然,如下示例并不表示对调度信息占用的时域资源的限定,在位于同步信号之后且基于同步信号确定的任意时域资源上传输该调度信息均属于本申请的保护范围。
示例一:上行调度信息的时域资源位于第一时域单元和第二时域单元之间,其中,第二时域单元为第一下行信息的数据(也即下行数据)占用的时域单元。结合图7a所示,指示信息的时域资源位于第一时域单元和第二时域单元之间。
示例二:上行调度信息的时域资源位于第二时域单元之后,应理解,第二时域单元位于第一时域单元之后。结合图7b所示,指示信息的时域资源位于第二时域单元之后。
无论在上述示例一还是示例二中,指示信息均可以包括上行调度信息。在一些实施例中,指示信息还可以包括上行调度信息的循环冗余校验(cyclical redundancy check,CRC),该CRC为对上行调度信息进行编码得到的,用于检测或校验数据传输可能出现的错误。
在一些实施例中,第一下行信息还可以包括指示下行调度信息(简称下行调度信息),该下行调度信息用于指示下行传输,例如下行调度信息可以指示下行数据的传输参数和/或传输资源,或者指示下一次下行信息的传输参数和/或传输资源,本申请对此不做限定。在第一下行信息还包括下行调度信息时,上行调度信息的时域资源可以参见如下示例三和示例四。
示例三:上行调度信息的时域资源位于下行调度信息的时域资源之后,且位于第二时域单元之前。结合图7c和图7d所示,指示信息位于第一时域单元和第二时域单元之间,且指示信息包括下行调度信息和上行调度信息。二者区别在于,图7c中,指示信息包括上行指示信息和下行指示信息两个独立的指示信息,在上行指示信息中包括上行调度信息,以及对上行调度信息进行编码得到的CRC,在下行指示信息中包括下行调度信息,以及对下行调度信息进行编码得到的CRC;图7d中,指示信息包括上行调度信息、下行调度信息以及对指示信息中这两个调度信息进行编码得到的CRC。
可选的,下行调度信息的时域位置在可以在上行调度信息的时域位置之前,便于对第一下行信息中的下行数据进行传输调度。
示例四:上行调度信息的时域资源位于第二时域单元之后,且下行调度信息的时域资源位于第一时域单元和第二时域单元之间。结合图7e所示,上行指示信息位于第二时域单元之后,下行指示信息位于第一时域单元和第二时域单元之间,上行指示信息可以包括上行调度信息以及对上行调度信息编码得到的CRC,下行指示信息可以包括下行调度信息以及对下行调度信息编码得到的CRC。
可以理解的是,在上述示例一至示例四中,包括上行调度信息的指示信息与同步信号、下行数据之间均可以是时域相邻的或者存在时域间隔。
例如,在图7a中指示信息与同步信号之间可以时域相邻或者存在时域间隔,指示信息与下行数据之间可以时域相邻或者存在时域间隔。需要说明的是,该实现方式中,该时域间隔可以为该指示信息的时域资源的起始时域位置与同步信号的结束时域位置之间的时间间隔;或者,该时域间隔可以为指示信息的时域资源的起始时域位置与同步信号的起始时域位置之间的时间间隔;或者,该时域间隔可以为指示信息的时域资源的结束时域位置与同步信号的结束时域位置之间的时间间隔。
又例如,在图7c中,上行指示信息与同步信号之间存在时域间隔,且在间隔的时域中承载有下行指示信息,上行指示信息与下行指示信息之间可以时域相邻或者存在时域间隔,且上行指示信息与下行数据之间可以时域相邻或存在时域间隔。其中,任意两个信息之间的时域间隔均可以参见上述图7a示例中指示信息与同步信号之间的时域间隔的说明,此处不再赘述。
在一些实施例中,上行调度信息是否使用CRC可以基于调度信息的比特数确定。例如调度信 息的比特数大于或等于预设比特数时,上行调度信息使用CRC,在调度信息的比特数小于预设比特数时,该上行调度信息不使用CRC。假设上行调度信息占用的比特数记为N1,上行调度信息使用的CRC的比特数记为L1,上行调度信息不使用CRC时,可认为L1为0,根据N1确定L1的取值,使得CRC的开销可以灵活调整,N1较少时,可以采用较小的L1,可以降低CRC的开销,即可以降低L1/(N1+L1);N1较大时,可以采用较大的L1,能够维持一个可接受的CRC开销,同时保证CRC校验的性能,因为CRC的比特数越长,检验错误的能力越强。
可选地,预设比特数可以为小于或者等于12的正整数,例如预设比特数可以为2或3或4或5或6或7或8或9或10或11或12等。
无论上述上行调度信息是否使用CRC,上行信息均可以使用CRC。当上行调度信息使用CRC时,上行调度信息的比特数CRC的校验比特数与上行信息的CRC的校验比特数可以相同也可以不同,本申请对此不做限定。
在一些实施例中,上行调度信息的CRC的校验比特数为6,上行信息的CRC的校验比特数为16或24。
在一些实施例中,上行调度信息的CRC的校验比特数可以根据上行调度信息的比特数确定。例如,上行调度信息的比特数小于或等于K,则上行调度信息的CRC的校验比特数为6,上行调度信息的比特数大于K,则上行调度信息的CRC的校验比特数为16。
举例而言,假设上行调度信息的CRC的校验比特数为16,则上行调度信息的CRC的生成多项式为gCRC16(D)=[D16+D12+D5+1];CRC的校验比特数为11时,CRC的生成多项式为gCRC11(D)=[D11+D10+D9+D5+1]。CRC的校验比特数为6时,CRC的生成多项式为gCRC6(D)=[D6+D5+1]。
需要说明的是,本申请中不使用CRC也可以理解不附加CRC,使用CRC也可以理解为附加CRC。
结合图7a至图7e所示,第一设备发送上行信息的起始时域位置晚于第一下行信息的结束时域位置,也即上行信息占用的时域资源与第一下行信息占用的时域资源不重叠。在一些实施例中上行信息占用的时域资源与第一下行信息的下行数据占用的时域资源可以重叠,也即第一设备在接收下行数据的过程中可以向第二设备发送上行信息。
在上述第二种示例中,上行调度信息的频域资源可以基于第一下行信息中的同步信号占用的频域资源(即第一频域单元)确定,或者说,上行调度信息的频域资源与第一频域单元相关联。示例性的,上行调度信息的频域资源的中心频点可以与第一频域单元的中心频点相同或者存在频域间隔,上行调度信息的频域资源的带宽可以与第一频域单元的带宽相同或不同。
结合图8a所示,上行调度信息的频域资源的中心频点与第一频域单元的中心频点相同,且上行调度信息的频域资源的带宽与第一频域单元的带宽不同。当上行调度信息的频域资源的带宽与第一频域单元的带宽不同时,上行调度信息的频域资源的带宽可以是预设值,例如上行调度信息的频域资源的带宽可以是预配置的,或者协议定义的;或者上行调度信息的频域资源的带宽可以是基于第一频域单元的带宽计算得到的,例如可以上行调度信息的频域资源的带宽可以是第一频域单元的带宽的倍数,或者由第一频域单元的带宽的增/减预设数值得到上行调度信息的频域资源的带宽;或者上行调度信息的频域资源的带宽与第二下行信息相关,也即上行调度信息的频域资源的带宽由第二下行信息指示,如前所述第二下行信息可以为第一下行信息之前的下行信息,或者该第二下行信息为第一下行信息中的同步信号。当第二下行信息为第一下行信息中的同步信号时,上行调度信息的频域资源的带宽可以与同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一相关。
结合图8b所示,上行调度信息的频域资源的中心频点与第一频域单的中心频点相同,且上行调度信息的频域资源的带宽与第一频域单元的带宽相同。一般来说,上行调度信息的频域资源的带宽与第一频域单元的带宽相同时,不需要再对上行调度信息的频域资源的带宽进行指示。
结合图8c所示,上行调度信息的频域资源的中心频点与第一频域单元的中心频点之间存在频域间隔。此种情况下,上行调度信息的频域资源的中心频点与第一频域单元的中心频点之间的频域间隔可以为预设值,当频域间隔为预设值时,该频域间隔可以是预先配置的或者协议定义的; 或者上行调度信息的频域资源的中心频点与第一频域单元的中心频点之间的频域间隔可以由第二下行信息指示,如前所述第二下行信息可以为第一下行信息之前的下行信息,或者该第二下行信息为第一下行信息中的同步信号。当第二下行信息为第一下行信息中的同步信号时,频域间隔可以与同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一相关。
在图8c所示示例中,上下调度信息的频域资源的带宽与第一频域单元的带宽可以相同也可以不同,本申请对此不做限定。当上行调度信息的频域资源的带宽与第一频域单元的带宽不同时,上行调度信息的频域资源的带宽可以是预设值,或者可以基于第一频域单元的带宽计算得到,或者上行调度信息的频域资源的带宽与第二下行信息相关,具体可以参见图8a示例中的相关说明,此处不再赘述。
在上述第二种示例中,上行调度信息的传输参数可以基于同步信号确定。示例性的,上行调度信息的传输参数可以与同步信号的信号序列、信号长度、重复次数、扩频因子中的至少一项相关,换言之,第一设备接收第二设备发送的第一下行信息,进而基于第一下行信息中同步信号的信号序列、信号长度、重复次数、扩频因子中的至少一项,确定上行调度信息的传输参数。
可选的,上行调度信息的传输参数可以包括但不限于:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比(duty cycle)中的至少之一。
举例而言,参见如下表1,同步信号的信号序列为序列1,即[W],例如W=[0 1 0 1 1 0]。序列1对应的上行调度信息传输参数可以包括:带宽为1资源块(resource block,RB)、线路码参数对应曼切斯特(manchester)编码、信道编码参数对应极化(polar)码且极化码的码率为1、调制方式为二进制振幅键控(如OOK)调制、重复次数为1。
仍参见表1,同步信号的信号序列为序列2,即[W W'],W'为W通过一种预设变换得到,比如W'为W逐元素取反得到,例如W=[0 1 0 1 1 0],W'=[1 0 1 0 0 1],此时序列2为[W W']=[1 0 1 0 0 1 1 0 1 0 0 1]。序列2对应的上行调度信息的传输参数可以包括:带宽为1RB、线路码参数对应曼切斯特(manchester)编码、信道编码参数对应极化(polar)码且极化码的码率为1/4、调制方式为二进制振幅键控(如OOK)调制、重复次数为8。
仍参见表1,同步信号的信号序列为序列,3,即[W'W W'W],W'为W通过一种预设变换得到,比如W'为W逐元素取反得到,例如W=[0 1 0 1 1 0],W'=[1 0 1 0 0 1],此时序列3为[W'W W'W]=[1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0]。序列3对应的上行调度信息的传输参数可以包括:带宽为1RB、线路码参数对应曼切斯特(manchester)编码、信道编码参数对应极化(polar)码且极化码的码率为1/4、调制方式为二进制振幅键控(如OOK)调制、重复次数为64。
表1
在上述实施例中,一个同步信号的信号序列可以对应上行调度信息的一组传输参数。需要说明的是,一个同步信号的信号序列还可以对应上行调度信息的多组传输参数,此种情况下,第一设备接收到同步信号后可以按照多组传输参数的假设进行盲检测,进而接收第一设备发送的上行调度信息。
在上述实施例中,同步信号可以通过信号序列、信号长度、重复次数、扩频因子中的至少一 项指示上行调度信息的一个或者多个传输参数。在另一些实施例中,同步信号可以定义不同的覆盖等级,在覆盖等级中,可以包括同步信号的信号序列、信号长度、重复次数、扩频因子中的至少一项,在不同的覆盖等级中,同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一不同。例如,结合图9所示,同步信号的信号序列为[W],对应覆盖等级0,在覆盖等级0中上行调度信息的码率为1、重复次数为8;同步信号的信号序列为[W W'],对应覆盖等级1,在覆盖等级1中上行调度信息的码率为1/4,重复次数为8;同步信号的信号序列为[W'W W'W],对应覆盖等级2,在覆盖等级2中上行调度信息的码率为1/4,重复次数为64。需要说明的是,覆盖等级仅为一种可能的命名方式,或者可以称为重复等级、覆盖增强等级、增强覆盖等级等,本申请对此不做限定。
上述实施例中,均以同步信号的信号序列的元素为0或1为例进行说明,但不应理解为对本申请的任何限定,信号序列的元素还可以是+1或-1,或者,信号序列的元素为复数a+bj,其中j2=-1,a和b为实数。
基于上述实施例,第一设备可以基于第二下行信息确定上行调度信息的传输参数和/或传输资源,进而根据确定的上行调度信息的传输参数和/或传输资源接收第二设备发送的上行调度信息。
应理解,当第二下行信息仅指示传输参数时,传输资源可以是预先配置的或者协议定义的,与之类似的,当第二下行信息仅指示传输资源时,传输参数可以是预先配置的或者协议定义的。
在一些实施例中,第二设备发送的上行调度信息和第一设备发送的上行信息均支持信道编码时,上行调度信息和上行信息采用的信道编码的类型可以相同。例如,上行调度信息和上行信息均采用极化(polar)码。
在一种可选的实施方式中,所述上行调度信息可以采用分组码(block code)。上行调度信息待编码的比特数可以记为K,上行调度信息待编码的比特序列可以记为c0,c1,c2,c3,…,cK-1,上行调度信息编码后的比特序列可以记为d0,d1,d2,d3,…,dN-1,其中N为上行调度信息编码后的比特数。
当K=1时,上行调度信息待编码的比特序列为c0,N=1,上行调度信息编码后的比特序列d0=c0。或者,上行调度信息待编码的比特序列为c0,上行调度信息编码后的比特序列可以根据下表2确定,其中N=Qm,Qm为上行调度信息的调制阶数。
表2
上述表2中,"x"和"y"为占位符(placeholders),主要作用是使得携带信息比特的调制符号的欧式距离最大。
当K=2时,上行调度信息待编码的比特序列为c0,c1,N=3,上行调度信息编码后的比特序列d0=c0,d1=c1,d2=c2,其中c2=(c0+c1)mod 2。或者,上行调度信息待编码的比特序列为c0,c1,上行调度信息编码后的比特序列可以根据下表3确定,其中N=3Qm,Qm为上行调度信息的调制阶数。
表3
上述表3中,"x"为占位符(placeholders),主要作用是使得携带信息比特的调制符号的欧式距离最大。
当3≤K≤11时,上行调度信息编码后的比特序列满足:其中i=0,1,…,N-1,N=32,Mi,k表示基础序列,Mi,k通过下表4确定。
表4
在一些实施例中,第一设备发送的上行信息支持信道编码时,上行调度信息可以携带用于传 输上行信息的传输块大小或码块大小。
上述实施例针对上行调度信息的传输参数和传输资源的确定进行示例性的说明。第一设备根据上行调度信息的传输参数和传输资源接收上行调度信息之后,在上述S420中,第一设备根据接收到的调度信息,进行上行信息的传输。下面将对上行调度信息的内容进行示例性的说明。
示例1,上行调度信息包括第一信息,该第一信息用于指示第一设备传输上行信息时的传输参数和/或传输资源。
示例性的,第一信息可以指示的上行信息的传输参数包括但不限于:带宽,频域资源位置,时间资源位置,子载波间隔,CP类型,线路码参数,信道编码参数,调制方式,重复次数,扩频因子,数据速率,时间长度,调制深度,占空比(duty cycle),占用的时间单元数,冗余版本中的至少一项。
示例性的,第一信息指示的上行信息的传输参数的取值或者取值范围可以与同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一相关。换言之,第一设备基于同步信号的信号序列、信号长度、重复次数、扩频因子中的至少之一可以确定上行信息的传输参数的取值、取值范围或取值集合。第一信息指示的上行信息的传输参数为覆盖相关参数。
举例而言,第一信息指示的上行信息的传输参数为重复次数,假设同步信号有3个覆盖等级,覆盖等级0,覆盖等级1和覆盖等级2,根据同步信号的覆盖等级确定重复次数的取值集合。比如,同步信号的覆盖等级为覆盖等级0,上行调度信息中指示的重复次数的取值集合为{1,2,4,8}。同步信号的覆盖等级为覆盖等级1,上行调度信息中指示的重复次数的取值集合为{4,8,16,32}。同步信号的覆盖等级为覆盖等级2,上行调度信息中指示的重复次数的取值集合为{16,32,64,128},此种情况下可以再通过2比特从取值集合中指示重复次数即可。若无论同步信号处于哪种覆盖等级,重复次数的取值集合均按照{1,2,4,8,16,32,64,128}的方案,则上行调度信息指示重复次数需要3比特。本实施例可以降低上行调度信息指示重复次数的信令开销。
示例性的,第一信息可以指示上行信息的频域资源。第一信息可以通过直接通知上行信息的频域资源的方式,比如,第一信息包括上行信息的带宽,上行信息的速率,上行信息的频域资源和上行调度信息的频域资源之间的偏移量(offset)中的至少一项。或者,第一信息可以通过间接通知上行信息的频域资源,比如,通过不同线路码参数配置确定上行信息的不同频域资源位置,其中线路码参数可以包括线路类型及M值的至少一项。其中线路码类型可以为Manchester,双相间空号编码(bi-phase space coding,FM0),或密勒(Miller)码。其中M值用于确定每比特的波形长度。
其中,Manchester编码也称为相位编码,其中每个数据位的编码要么先低后高,要么先高后低,持续相同的时间。它是一个没有直流分量的自时钟信号。以下表5和表6为Manchester编码的示例。
表5
表6
FM0编码也可以称为双相空间编码,工作原理是在一个位窗内采用电平变化来表示逻辑。如果电平从位窗的起始处翻转,则表示逻辑“1”。如果电平除了在位窗的起始处翻转,还在位窗中间翻转则表示逻辑“0”。参照RFID空口协议ISO 18000-6C协议,下面为FM0编码的一个示例,比特0和比特1对应的基函数如图10a所示,各自对应于两种不同的基函数,如比特0对应于s2和s3,比特1对应于s1和s4。状态转移机制如图10b所示,即根据当前比特对应的基函数,以及下一个比特,可以唯一确定下一个比特需要采用的基函数。如假设当前比特为0,对应的波形为s2,当下一个比特为0时,仍要采用波形s2;而当下一个比特为1时,需要采用波形s1。这里的基函 数就是编码后的波形。
密勒码(Miller码)也称延迟调制码,是一种变形双相码。其编码规则:对原始符号“1”码元起始不跃变,中心点出现跃变来表示,即用10或01表示。信息码连“1”时,后面的“1”要交错编码;信息码中的“0”编码为双极非归零码“00”或者“11”,即码元中间不跳变;信息码单个“0”时。其前沿、中间时刻、后沿均不跳变;信息码连“0”时,两个“0”码元的间隔跳变。参照RFID空口协议ISO 18000-6C协议,以下为Miller编码的一个示例:比特0和比特1对应的可能的基函数如图10c所示,各自对应于两种不同的基函数,如比特0对应于s1和s4,比特1对应于s2和s3。状态转移机制如图10d所示,如假设当前比特为0,对应的基函数为s1,当下一个比特为0时,需要采用基函数s4;而当下一个比特为1时,需要采用基函数s2
示例性的,第一信息可以指示上行信息的调制方式。可选的,调制方式包括幅移键控(amplitude shift keying,ASK)调制(也称作振幅键控)和相移键控(phase-shift keying,PSK)。其中ASK可以是单边带(single side band,SSB)-ASK,或双边带(double-sideband,DSB)-ASK,或相位反转(phase reversal,PR)-ASK。
示例性的,第一信息可以指示上行信息的时域资源。第一信息可以通过直接通知上行信息的时域资源的方式,比如,第一信息指示上行信息的时域资源起始位置和/或时域资源截止位置。
示例2,上行调度信息包括第一信息,该第一信息用于指示以下至少之一:
上行信息是否启用信道编码;
上行信息是否有结束符;
上行信息是否支持频率搬移。
在上述示例2中,第二信息可以指示该上行调度信息的至少一个指示域(或者称作指示字段)。需要说明的是,不同的指示域具有不同的功能,也即第二信息指示的内容不同,则上行调度信息中包括的指示域应不同。而上行调度信息中的指示域用于指示上行信息的传输参数和/或传输资源。
例如,参见表7,上行调度信息中指示上行信息启用信道编码(如Value=1)时,上行调度信息中包括用于确定调制编码方案(modulation and coding scheme,MCS)或信道编码参数的域;第二信息指示上行数据不启用信道编码(如Value=0)时,上行调度信息中包括用于确定重复次数的域。在上行调度信息中,用于确定MCS或信道编码参数的域占用的比特,和用于确定重复次数的域占用的比特可以相同。
表7
又例如,参见表8,第二信息指示上行信息无结束符(如Value=1)时,上行调度信息中包括用于指示传输块大小或码块大小的域;第二信息指示上行信息有结束符(如Value=0)时,上行调度信息包括用于指示MCS或重复次数的域。其中结束符用于确定上行数据传输的结束位置。
表8
再例如,参见表9,第二信息指示上行信息启用频率搬移(如Value=1)时,上行调度信息中包括用于指示频域资源的域;第二信息指示上行数据不启用频率搬移(如Value=0)时,上行调度信息信息中包括用于指示MCS或重复次数的域。
表9

因此,本申请实施例在第一设备向第二设备发送上行信息之前,接收第一设备发送的第一下行信息,以根据第一下行信息中的上行调度信息进行上行信息的传输,实现了对上行传输的灵活调度,进而提高了上行资源的使用效率。
进一步地,上行调度信息的传输参数和/或传输资源与第二下行信息相关,第一设备可以基于第二下行信息的指示接收上行调度信息,为成功接收上行调度信息提供了一种解决方案。
对于本申请的所有实施例,一种可能的实现方式,对于第一下行信息,第二下行信息,上行调度信息,下行调度信息中的至少一项,其调制方式可以为开关键控(on-offkeying,OOK),多载波开关键控(multicarrier on-off keying,MC-OOK),双边带幅移键控(double-sideband amplitude-shift keying,DSB-ASK),单边带幅移键控(single-sideband amplitude-shift keying,SSB-ASK),相位反转幅移键控(phase-reversal amplitude shift keying,PR-ASK),多幅移键控(multiple amplitude-shift keying,MASK),频移键控(frequency-shift keying,FSK),高斯频移键控(gauss frequency shift keying,GFSK),多频移键控(multiple frequency-shift keying,MFSK),二进制相移键控(binary phase shift keying,BPSK),四相相移键控(quadrature phase shift keying,QPSK),脉冲幅度调制(pulse amplitude modulation,PAM),脉冲宽度调制(pulse-width modulation,PWM),脉冲位置调制(pulse position modulation,PPM),脉冲密度调制(pulse density modulation,PDM),或脉冲编码调制(Pulse-code modulation,PCM)。
对于本申请的所有实施例,一种可能的实现方式,第一设备可以通过同步信号确定同步信号之后是否有下行控制信道,其中下行控制信道可以用来承载上行调度信息。或者,第一设备从第二设备获取第一配置信息,该第一配置信息指示同步信号之后是否有下行控制信道,其中下行控制信道可以用来承载上行调度信息。
对于本申请的所有实施例,一种可能的实现方式,第一设备可以向第二设备发送能力信息,相应地,第二设备可以接收来自第一设备的能力信息,所述能力信息包括以下至少一项:第一设备是否支持下行控制信道,第一设备是否支持信道编码,第一设备支持的信道编码类型,第一设备是否支持线路码,第一设备支持的线路码类型,第一设备是否支持混合自动重传请求确认(hybrid automatic repeat request acknowledgement,HARQ-ACK)反馈。其中第一设备是否支持信道编码具体可以是对于上行,第一设备是否支持信道编码。第一设备支持的信道编码类型具体可以是对于上行,第一设备支持的信道编码类型。第一设备是否支持线路码具体可以是对于上行,第一设备是否支持线路码。第一设备支持的线路码类型具体可以是对于上行,第一设备支持的线路码类型。第一设备是否支持HARQ-ACK反馈,具体可以是对于上行,第一设备是否支持HARQ-ACK反馈。其中上行可以是上行控制信道和/或上行数据信道。需要说明的是,上述能力信息中,多种能力信息可以关联,对于关联的多种能力信息,第一设备只需要上报其中该关联的多种能力信息中的一种能力信息。通过这种方式可以节省第一设备上报能力信息的开销。一个示例,第一设备是否支持信道编码和第一设备是否支持下行控制信道可以关联,比如第一设备上报能力信息,能力信息的内容为第一设备支持信道编码,则表示第一设备也支持下行控制信道。第一设备上报能力信息,能力信息的内容为第一设备不支持信道编码,则表示第一设备也不支持下行控制信道。另一个示例,第一设备是否支持HARQ-ACK反馈和第一设备是否支持控制信道可以关联。比如第一设备上报能力信息,能力信息的内容为第一设备支持HARQ-ACK反馈,则表示第一设备也支持下行控制信道。第一设备上报能力信息,能力信息的内容为第一设备不支持HARQ-ACK反馈,则表示第一设备也不支持下行控制信道。
对于本申请的所有实施例,一种可能的实现方式,第一设备可以向第二设备发送能力信息,相应地,第二设备可以接收来自第一设备的能力信息,该能力信息包括以下至少一项:第一设备支持下行控制信道,第一设备支持信道编码,第一设备支持的信道编码类型,第一设备支持线路码,第一设备支持的线路码类型,第一设备支持HARQ-ACK反馈。其中第一设备支持信道编码具体可以是对于上行,第一设备支持信道编码。第一设备支持的信道编码类型具体可以是对于上行,第一设备支持的信道编码类型。第一设备支持线路码具体可以是对于上行,第一设备支持线路码。第一设备支持的线路码类型具体可以是对于上行,第一设备支持的线路码类型。第一设备 支持HARQ-ACK反馈,具体可以是对于上行,第一设备支持HARQ-ACK反馈。其中上行可以是上行控制信道和/或上行数据信道。若第一设备不向第二设备发送能力信息,该能力信息为第一设备支持下行控制信道,或者,若第二设备没有接收到来自第一设备的能力信息,该能力信息为第一设备支持下行控制信道,则表示第一设备不支持下行控制信道。若第一设备不向第二设备发送能力信息,该能力信息为第一设备支持信道编码,或者,若第二设备没有接收到来自第一设备的能力信息,该能力信息为第一设备支持信道编码,则表示第一设备不支持信道编码。若第一设备不向第二设备发送能力信息,该能力信息为第一设备支持线路码,或者,若第二设备没有接收到来自第一设备的能力信息,该能力信息为第一设备支持线路码,则表示第一设备不支持线路码。若第一设备不向第二设备发送能力信息,该能力信息为第一设备支持HARQ-ACK反馈,或者,若第二设备没有接收到来自第一设备的能力信息,该能力信息为第一设备支持HARQ-ACK反馈,则表示第一设备不支持HARQ-ACK反馈。需要说明的是,上述能力信息中,多种能力信息可以关联,对于关联的多种能力信息,第一设备只需要上报其中该关联的多种能力信息中的一种能力信息,通过这种方式可以节省第一设备上报能力信息的开销。一个示例,第一设备支持信道编码和第一设备支持下行控制信道可以关联,比如第一设备上报能力信息,能力信息的内容为第一设备支持信道编码,则表示第一设备也支持下行控制信道。另一个示例,第一设备支持HARQ-ACK反馈和第一设备支持控制信道可以关联。比如第一设备上报能力信息,能力信息的内容为第一设备支持HARQ-ACK反馈,则表示第一设备也支持下行控制信道。
对于本申请的所有实施例,一种可能的实现方式,第二设备可以向第一设备发送第二配置信息,相应地,第一设备可以接收来自第二设备的第二配置信息,所述第二配置信息包括以下配置信息中的至少一项:是否使能(enable)下行控制信道,是否使能信道编码,使能的信道编码类型,是否使能线路码,使能的线路码类型,是否使能HARQ-ACK反馈。应理解,这里的“使能(enable)”也可以表述为“激活(activate)”。其中是否使能信道编码具体可以是对于上行,第二设备是否使能信道编码。使能的信道编码类型具体可以是对于上行,第二设备使能的信道编码类型。是否使能线路码具体可以是对于上行,第二设备是否使能线路码。使能的线路码类型具体可以是对于上行,第二设备使能的线路码类型。是否使能HARQ-ACK反馈具体可以是对于上行,第二设备是否使能HARQ-ACK反馈。其中上行可以是上行控制信道和/或上行数据信道。需要说明的是,上述多种配置信息可以关联,对于关联的多种配置信息,第二设备只需要发送其中该关联的多种配置信息中的一种配置信息。通过这种方式可以节省第二设备发送第二配置信息的开销。一个示例,是否使能信道编码和是否使能下行控制信道可以关联,比如第二设备发送第二配置信息,第二配置信息包括的内容为使能信道编码,则表示第二设备也使能下行控制信道。第二设备发送第二配置信息,第二配置信息的内容为不使能信道编码,则表示第二设备也不使能下行控制信道。另一个示例,第二设备是否使能HARQ-ACK反馈和第二设备是否使能控制信道可以关联。比如第二设备发送第二配置信息,第二配置信息的内容为使能HARQ-ACK反馈,则表示第二设备也使能下行控制信道。第二设备发送第二配置信息,第二配置信息的内容为不使能HARQ-ACK反馈,则表示第二设备也不使能下行控制信道。
对于本申请的所有实施例,一种可能的实现方式,第二设备可以向第一设备发送第二配置信息,相应地,第一设备可以接收来自第二设备的第二配置信息,所述第二配置信息包括以下至少一项:使能(enable)下行控制信道,使能信道编码,使能的信道编码类型,使能线路码,使能的线路码类型,使能HARQ-ACK反馈。应理解,这里的“使能(enable)”也可以表述为“激活(activate)”。其中使能信道编码具体可以是对于上行,第二设备使能信道编码。使能的信道编码类型具体可以是对于上行,第二设备使能的信道编码类型。使能线路码具体可以是对于上行,第二设备使能线路码。使能的线路码类型具体可以是对于上行,第二设备使能的线路码类型。使能HARQ-ACK反馈具体可以是对于上行,第二设备使能HARQ-ACK反馈。其中上行可以是上行控制信道和/或上行数据信道。若第二设备不向第一设备发送第二配置信息,该第二配置信息为使能下行控制信道,或者,若第一设备没有接收到来自第二设备的第二配置信息,该第二配置信息为使能下行控制信道,则表示第二设备没有使能下行控制信道。若第二设备不向第一设备发送第二配置信息,该第二配置信息为使能信道编码,或者,若第一设备没有接收到来自第二设备的第二配置信息, 该第二配置信息为使能信道编码,则表示第二设备没有使能信道编码。若第二设备不向第一设备发送第二配置信息,该第二配置信息为使能线路码,或者,若第一设备没有接收到来自第二设备的第二配置信息,该第二配置信息为使能线路码,则表示第二设备没有使能线路码。若第二设备不向第一设备发送第二配置信息,该第二配置信息为使能HARQ-ACK反馈,或者,若第一设备没有接收到来自第二设备的第二配置信息,该第二配置信息为使能HARQ-ACK反馈,则表示第二设备没有使能HARQ-ACK反馈。需要说明的是,上述多种配置信息可以关联,对于关联的多种配置信息,第二设备只需要发送其中该关联的多种配置信息中的一种配置信息。通过这种方式可以节省第二设备发送第二配置信息的开销。一个示例,使能信道编码和使能下行控制信道可以关联,比如第二设备发送第二配置信息,第二配置信息包括的内容为使能信道编码,则表示第二设备也使能下行控制信道。另一个示例,第二设备使能HARQ-ACK反馈和第二设备使能控制信道可以关联。比如第二设备发送第二配置信息,第二配置信息的内容为使能HARQ-ACK反馈,则表示第二设备也使能下行控制信道。
对于本申请的所有实施例,一种可能的实现方式,第一设备向第二设备发送能力信息。相应地,第二设备接收来自第一设备的能力信息。也就是说,第一设备可以向第二设备上报能力信息。
可选地,能力信息可以包括以下一项或多项:第一设备是否支持能量收集,第一设备是否支持低功耗接收机,或者第一设备是否支持反向散射通信。
应理解,第一设备支持能量收集可以是指第一设备支持从环境中自主地获取能量,该能量的来源可以是以下至少一种:光,无线电波(radio waves),温差(temperature differences)、振动(vibrations)、运动(motion)、盐度梯度(salinity gradients)、风或水流(water flows)。第一设备将从环境中获取的能量转化为电能。能量收集的好处是替代电池给设备供电或补充电池能量,从而延长设备使用寿命,通过能量收集的方式产生的能量可以提供给第一设备的信号处理或者数据存储电路,以维持第一设备设备正常的工作状态。
应理解,第一设备支持低功耗接收机可以是指第一设备支持以非相干接收的方式接收信号。低功耗接收机可以避免采用功耗较大的射频模块,例如高线性度的混频器,能提供精确本振信号的压控振荡器等,因此低功耗接收机可以达到较低的功耗水平。其中非相干的接收方式可以是包络检波,或者差分解调等。该信号可以是来自第二设备的信号。第一设备支持低功耗接收机可以是指第一设备只具备低功耗接收机,或者,第一设备同时具备低功耗接收机和传统接收机。传统接收机和低功耗接收机不同,传统接收机的接收机架构可以为超外差,零中频或低中频,传统接收机可以支持相干接收。传统接收机需要采用一些高性能高精度的模块电路来保证接收机接收性能,如高增益高线性度的低噪声放大器,高线性度的混频器,能提供精确本振信号的压控振荡器等,这些模块电路功耗较高,因此一定时长内,传统接收机的功耗要高于低功耗接收机的功耗。对于同时具备传统接收机和低功耗接收机的第一设备,可以通过关闭传统接收机,开启低功耗接收机达到节能的效果。该第一设备可以通过低功耗接收机接收唤醒信号,通过唤醒信号触发开启传统接收机。唤醒信号可以是由第二设备发送的。
其中,包络检波可以是指将高频或中频的输入信号经过半波或者全波整流后得到低频原始信号的包络或者幅度线的一种信号检测方法。如此,第一设备以包括检波的方式接收信号之后可以得到原始信号的包络。进而,第一设备可以对原始信号的包络进行数字采样,并与第一设备设置的幅度或者能量门限进行比较,判决接收的信号是1还是0。当然,第一设备还可以根据其它实现方式判决接收的信号是1还是0,本申请实施例对此不作具体限定。
应理解,第一设备支持反向散射通信可以是指第一设备支持在没有主动发射的射频链路的情况下可以向第二设备传递信息;或者,第一设备支持在自身具备主动发射的射频链路但不需要开启的情况下向第二设备传递信息。也就是说,第一设备此时主要依赖于第二设备之外的激励设备或第二设备发射的连续载波来进行调制。示例性的,第一设备可以通过调整第一设备的天线的阻抗来反射一部分或者全部入射的载波;或者,第一设备也可以通过调整第一设备的天线的阻抗来不反射入射的载波,或者吸收入射的载波的能量。如此,第一设备通过调节第一设备的天线的阻抗,可以实现将第一设备的数字信息调制到入射的载波上,并传递给第二设备。
可选地,对于本申请的所有实施例,第一设备支持的最大带宽受限。
可选地,一种可能的实现方式中,第一设备支持的最大上行带宽不超过X1。
示例性的,X1为20MHz,或者X1为5MHz,或者X1为3MHz,或者X1为1.4MHz,或者X1为1MHz,或者X1为720kHz,或者X1为540kHz,或者X1为360kHz,或者X1为180kHz。
或者,可选地,X1为K1个资源块,K1为正整数。
示例性的,K1为小于或等于11的正整数,或者K1为小于或等于25的正整数,或者K1为小于或等于51的正整数,或者K1为小于或等于106的正整数。
可选地,对于本申请的所有实施例,另一种可能的实现方式中,第一设备支持的最大下行带宽不超过Y1。
示例性的,Y1为20MHz,或者Y1为5MHz,或者Y1为3MHz,或者Y1为1.4MHz,或者Y1为1MHz,或者Y1为720kHz,或者Y1为540kHz,或者Y1为360kHz,或者Y1为180kHz。
或者,可选地,Y1为K2个资源块,K2为正整数。
示例性的,K2为小于或等于11的正整数,或者K2为小于或等于25的正整数,或者K2为小于或等于51的正整数,或者K2为小于或等于106的正整数。
可选地,本申请实施例中,第一设备支持的最大上行带宽小于或者等于第一设备支持的最大下行带宽。
可选地,对于本申请的所有实施例,第一设备支持的发送和/或接收天线数有限。
可选地,第一设备接收天线数不超过X2。其中,X2为1,或2,或4。
或者,可选地,第一设备的接收分支(Rx branch)数不超过X2,其中X2为1,或2,或4。
可选地,第一设备发送天线数不超过Y2。其中,Y2为1,或2,或4。
或者,可选地,第一设备的发送分支数不超过Y2。其中,Y2为1,或2,或4。
可选地,第一设备的发送天线数大于或等于第二设备的接收天线数。
或者,可选地,第一设备的发送分支数大于或等于第一设备的接收分支数。
需要说明的是,本申请实施例中,“接收分支”还可以称为“接收的射频通道数”,或者“接收的射频链(RF chain)数”。“发送分支”也可以称为“发送的射频通道数”,或者“发送的射频链数”。
需要说明的是,第一设备不可以在具有配对频谱(paired spectrum)的服务小区上同时进行上行发送和下行接收。
图11是本申请实施例提供的装置的示意性框图。如图11所示,该装置500可以包括:收发模块510和处理模块520。
可选的,通信装置500可对应于上文方法实施例中的第一设备,例如,可以为第一设备,或者配置与第一设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500中的各模块分别为了实现前述实施例中各方法的相应流程。
其中,收发模块510可以用于接收来自于第二设备的第一下行信息,该第一下行信息包括用于指示该通信装置的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;处理模块520可以用于确定该调度信息,该收发模块510还用于向该第一设备发送上行信息。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选的,通信装置500可对应于上文方法实施例中的第二设备,例如,可以为第二设备,或者配置与第二设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500中的各模块分别为了实现前述实施例中各方法的相应流程。
其中,当该通信装置500用于执行图5中的方法400时,处理模块520可以用于确定第一下行信息中用于指示第一设备上行传输的调度信息的传输参数和/或传输资源;收发模块510,用于向第一设备发送第一下行信息,该第一下行信息包括用于指示第一设备的上行传输的调度信息,该调度信息的传输参数和/或传输资源与第二下行信息相关,该第二下行信息为该第一下行信息之前的下行信息,或者该第二下行信息为该第一下行信息中的同步信号;该收发模块510还用于接收来自于该第一设备的上行信息。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置500为第一设备或第二设备时,该装置500中的收发模块510可以通过收发器实现,例如可对应于图12中所示的装置600中的收发器610,该装置500中的处理模块520可通过至少一个处理器实现,例如可对应于图12中示出的装置600中的处理器620。
当该装置500为配置于通信设备(如第一设备或第二设备)中的芯片或芯片系统时,该装置500中的收发模块510可以通过输入/输出接口、电路等实现,该装置500中的处理模块520可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图12是本申请实施例提供的装置的另一示意性框图。如图12所示,该装置600可以包括:收发器610、处理器620和存储器630。其中,收发器610、处理器620和存储器630通过内部连接通路互相通信,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制该收发器610发送信号和/或接收信号。
应理解,该装置600可以对应于上述方法实施例中的第一设备或第二设备,并且可以用于执行上述方法实施例中第一设备或第二设备执行的各个步骤和/或流程。可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器630可以是一个单独的器件,也可以集成在处理器620中。该处理器620可以用于执行存储器630中存储的指令,并且当该处理器620执行存储器中存储的指令时,该处理器620用于执行上述与第一设备或第二设备对应的方法实施例的各个步骤和/或流程。
可选地,该装置600是前文实施例中的第一设备。
可选地,该装置600是前文实施例中的第二设备。
其中,收发器610可以包括发射机和接收机。收发器610还可以进一步包括天线,天线的数量可以为一个或多个。该处理器620和存储器630与收发器610可以是集成在不同芯片上的器件。如,处理器620和存储器630可以集成在基带芯片中,收发器610可以集成在射频芯片中。该处理器620和存储器630与收发器610也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置600是配置在第一设备中的部件,如芯片、芯片系统等。
可选地,该装置600是配置在第二设备中的部件,如芯片、芯片系统等。
其中,收发器620也可以是通信接口,如输入/输出接口、电路等。该收发器620与处理器610和存储器630都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中第一设备或第二设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器, 可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一设备和第二设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它 的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备接收来自于第二设备的第一下行信息,所述第一下行信息包括用于指示第一设备的上行传输的调度信息,所述调度信息的传输参数和/或传输资源与第二下行信息相关,所述第二下行信息为所述第一下行信息之前的下行信息,或者所述第二下行信息为所述第一下行信息中的同步信号;
    所述第一设备向所述第一设备发送上行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述调度信息的传输资源包括时域资源;所述时域资源为基于第一时域单元确定的,所述第一时域单元为所述第一下行信息的同步信号占用的时域资源。
  3. 根据权利要求2所述的方法,其特征在于,所述时域资源的起始时域位置与所述第一时域单元的结束时域位置相邻,或者所述时域资源的起始时域位置与所述第一时域单元的结束时域位置之间存在时域间隔。
  4. 根据权利要求3所述的方法,其特征在于,
    所述时域间隔为预设值;或者,
    所述时域间隔与所述第二下行信息相关;
    其中,所述第二下行信息包括所述第一下行信息中的同步信号时,所述时域间隔与所述同步信号的以下至少之一相关:
    信号序列;
    信号长度;
    重复次数;
    扩频因子。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述调度信息的比特数大于或等于预设比特数时,所述调度信息使用循环冗余校验CRC;
    所述调度信息的比特数小于预设比特数时,所述调度信息不使用CRC。
  6. 根据权利要求5所述的方法,其特征在于,所述预设比特数小于或等于12。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述调度信息包括第一信息,所述第一信息用于指示所述上行信息的传输参数和/或传输资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息指示的上行信息的传输参数的值与所述同步信号的以下至少之一相关:
    信号序列;
    信号长度;
    重复次数;
    扩频因子。
  9. 根据权利要求7或8所述的方法,其特征在于,所述上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述调度信息包括第二信息,所述第二信息用于指示以下至少之一:
    所述上行信息是否启用信道编码;
    所述上行信息是否有结束符;
    所述上行信息是否支持频率搬移。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第二信息用于确定所述调度信息中的至少一个指示域,所述至少一个指示域用于指示所述上行信息的传输参数和/或传输资源。
  12. 一种通信方法,其特征在于,所述方法包括:
    第二设备向第一设备发送第一下行信息,所述第一下行信息包括用于指示第一设备的上行传输的调度信息,所述调度信息的传输参数和/或传输资源与第二下行信息相关,所述第二下行信息 为所述第一下行信息之前的下行信息,或者所述第二下行信息为所述第一下行信息中的同步信号;
    所述第二设备接收来自于所述第一设备的上行信息。
  13. 根据权利要求12所述的方法,其特征在于,所述调度信息的传输资源包括时域资源;所述时域资源为基于第一时域单元确定的,所述第一时域单元为所述第一下行信息的同步信号占用的时域资源。
  14. 根据权利要求13所述的方法,其特征在于,所述时域资源的起始时域位置与所述第一时域单元的结束时域位置相邻,或者所述时域资源的起始时域位置与所述第一时域单元的结束时域位置之间存在时域间隔。
  15. 根据权利要求14所述的方法,其特征在于,
    所述时域间隔为预设值;或者,
    所述时域间隔与所述第二下行信息相关;
    其中,所述第二下行信息包括所述第一下行信息中的同步信号时,所述时域间隔与所述同步信号的以下至少之一相关:
    信号序列;
    信号长度;
    重复次数;
    扩频因子。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,
    所述调度信息的比特数大于或等于预设比特数时,所述第一下行信息还包括所述调度信息的CRC;
    所述调度信息的比特数小于预设比特数时,所述第一下行信息不包括所述调度信息对应的CRC。
  17. 根据权利要求16所述的方法,其特征在于,所述预设比特数小于或等于12。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,所述调度信息包括第一信息,所述第一信息用于指示所述上行信息的传输参数和/或传输资源。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信息指示的上行信息的传输参数的值与所述同步信号的以下至少之一相关:
    信号序列;
    信号长度;
    重复次数;
    扩频因子。
  20. 根据权利要求18或19所述的方法,其特征在于,所述上行信息的传输参数包括:带宽、子载波间隔、CP类型、线路码参数、信道编码参数、调制方式、重复次数、扩频因子、数据速率、时间长度、调制深度、占空比、占用的时间单元数、冗余版本中的至少之一。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,所述调度信息包括第二信息,所述第二信息用于指示以下至少之一:
    所述上行信息是否启用信道编码;
    所述上行信息是否有结束符;
    所述上行信息是否支持频率搬移。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,所述第二信息用于确定所述调度信息中的至少一个指示域,所述至少一个指示域用于指示所述上行信息的传输参数和/或传输资源。
  23. 一种通信装置,其特征在于,包括:用于执行如权利要求1至11中任一项所述方法的模块,或者,包括用于执行如权利要求12至22中的任一项所述方法的模块。
  24. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  25. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2023/101965 2022-07-14 2023-06-21 通信方法、装置、设备以及存储介质 WO2024012174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210827907.X 2022-07-14
CN202210827907.XA CN117460057A (zh) 2022-07-14 2022-07-14 通信方法、装置、设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2024012174A1 true WO2024012174A1 (zh) 2024-01-18

Family

ID=89535500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101965 WO2024012174A1 (zh) 2022-07-14 2023-06-21 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117460057A (zh)
WO (1) WO2024012174A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585730A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 传输方法和通信装置
CN111886820A (zh) * 2018-06-15 2020-11-03 Oppo广东移动通信有限公司 一种资源配置方法及设备、计算机可读存储介质
WO2020238992A1 (zh) * 2019-05-31 2020-12-03 华为技术有限公司 一种通信方法及装置
WO2021062811A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输方法及相关设备
CN112655262A (zh) * 2019-01-04 2021-04-13 Oppo广东移动通信有限公司 资源分配的方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886820A (zh) * 2018-06-15 2020-11-03 Oppo广东移动通信有限公司 一种资源配置方法及设备、计算机可读存储介质
CN112655262A (zh) * 2019-01-04 2021-04-13 Oppo广东移动通信有限公司 资源分配的方法、终端设备和网络设备
CN111585730A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 传输方法和通信装置
WO2020238992A1 (zh) * 2019-05-31 2020-12-03 华为技术有限公司 一种通信方法及装置
WO2021062811A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输方法及相关设备

Also Published As

Publication number Publication date
CN117460057A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
Gong et al. Multiprotocol backscatter for personal IoT sensors
US20140119410A1 (en) System and method for communication using hybrid signals
CN104584649A (zh) 针对低功率唤醒信号及wlan操作的系统和方法
WO2023071864A1 (zh) 发送信号的方法和装置
Chen et al. Reliable and practical bluetooth backscatter with commodity devices
WO2024012174A1 (zh) 通信方法、装置、设备以及存储介质
CN114189318A (zh) 数据传输方法和装置
WO2023151045A1 (zh) 反向散射通信的方法及设备
CN112398573A (zh) 一种加扰、解扰方法、网络设备以及终端设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
CN116073971A (zh) 通信的方法和装置
JP2006005497A (ja) 無線通信システム及び無線通信装置
WO2024012226A1 (zh) 一种下行数据的控制信息的接收、发送方法及装置
WO2024012369A1 (zh) 一种数据传输的方法和通信装置
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2024098404A1 (zh) 无线通信的方法和设备
Yuan et al. Multiprotocol backscatter with commodity radios for personal iot sensors
WO2023201493A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838668

Country of ref document: EP

Kind code of ref document: A1