WO2024040589A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2024040589A1
WO2024040589A1 PCT/CN2022/115208 CN2022115208W WO2024040589A1 WO 2024040589 A1 WO2024040589 A1 WO 2024040589A1 CN 2022115208 W CN2022115208 W CN 2022115208W WO 2024040589 A1 WO2024040589 A1 WO 2024040589A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
carrier signal
signal
subcarriers
carrier
Prior art date
Application number
PCT/CN2022/115208
Other languages
English (en)
French (fr)
Inventor
贺传峰
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/115208 priority Critical patent/WO2024040589A1/zh
Publication of WO2024040589A1 publication Critical patent/WO2024040589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method and device.
  • zero-power devices send data through backscattering.
  • the carrier signal that backscattering relies on is often a narrow-band signal, such as a sine wave.
  • this carrier signal cannot better meet the needs of zero-power devices. communication needs.
  • Embodiments of the present application provide a wireless communication method and device, which introduces a carrier signal generated based on multi-carrier modulation, which can support carrier signals and energy supply signals for zero-power communication in a multi-carrier system, reducing the need for The transmitter complexity introduced by supporting zero-power communications can also maintain compatibility with other devices.
  • a wireless communication method which method includes:
  • the first communication device receives a carrier signal generated based on multi-carrier modulation
  • the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate a backscattered signal through modulation.
  • a wireless communication method which method includes:
  • the second communication device sends a carrier signal generated based on multi-carrier modulation
  • the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate a backscattered signal through modulation.
  • a third aspect provides a communication device for performing the method in the above first aspect.
  • the communication device includes a functional module for performing the method in the above-mentioned first aspect.
  • a fourth aspect provides a communication device for performing the method in the above second aspect.
  • the communication device includes a functional module for executing the method in the above second aspect.
  • a communication device including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the above-mentioned first aspect.
  • a sixth aspect provides a communication device, including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device performs the above-mentioned second aspect. Methods.
  • a seventh aspect provides an apparatus for implementing the method in any one of the above first to second aspects.
  • the device includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the device executes the method in any one of the above-mentioned first to second aspects.
  • An eighth aspect provides a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the above-mentioned first to second aspects.
  • a computer program product including computer program instructions, which cause a computer to execute the method in any one of the above-mentioned first to second aspects.
  • a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to second aspects.
  • a carrier signal generated based on multi-carrier modulation is introduced, which can support carrier signals and energy supply signals for zero-power communication in a multi-carrier system, reducing the number of transmitters introduced to support zero-power communication. complexity while also maintaining compatibility with other devices.
  • Figure 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Figure 2 is a system diagram of a receiver based on zero-power wake-up provided by this application.
  • FIG. 3 is a schematic diagram of a WUR PPDU frame provided by this application.
  • Figure 4 is a schematic diagram of a WUR synchronization sequence OOK modulation provided by this application.
  • FIG. 5 is a schematic diagram of WUR data OOK modulation provided by this application.
  • Figure 6 is a schematic diagram of an MC-OOK signal generated through multi-carrier modulation provided by this application.
  • Figure 7 is a schematic diagram of a zero-power communication provided by this application.
  • FIG 8 is a schematic diagram of backscatter communication provided by this application.
  • FIG. 9 is a schematic diagram of energy harvesting provided by this application.
  • Figure 10 is a circuit schematic diagram of resistive load modulation provided by this application.
  • Figure 11 is a schematic flow chart of a wireless communication method provided according to an embodiment of the present application.
  • Figure 12 is a flow chart for generating a carrier signal based on multi-carrier modulation according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of an equally spaced subcarrier pattern provided according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of a carrier signal provided according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of a backscattered signal provided according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of another carrier signal provided according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of another backscattering signal provided according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of subcarriers associated with a carrier signal and subcarriers associated with a backscattered signal according to an embodiment of the present application.
  • Figure 19 is a schematic diagram of another subcarrier associated with a carrier signal and a subcarrier associated with a backscattered signal according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • Figure 22 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Figure 24 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) network deployment scenario, or applied to Non-Standalone (NSA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • NSA Non-Standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, Among them, licensed spectrum can also be considered as unshared spectrum.
  • the communication system in the embodiment of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range 410MHz to 7.125GHz), can also be applied to the FR2 frequency band (corresponding to the frequency band range 24.25GHz to 52.6GHz), and can also be applied to The new frequency band, for example, corresponds to the frequency band range of 52.6 GHz to 71 GHz or the high frequency band corresponding to the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), vehicle-mounted communication equipment, wireless communication chip/application specific integrated circuit (ASIC)/system on chip (System on Chip, SoC), etc.
  • ASIC application specific integrated circuit
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network Network equipment or base station (gNB) or Transmission Reception Point (TRP), or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • gNB NR network Network equipment or base station
  • TRP Transmission Reception Point
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network devices may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and other numbers of terminal devices may be included within the coverage of each network device. The embodiments of the present application do not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the first communication device may be a terminal device, such as a mobile phone, a machine facility, a Customer Premise Equipment (CPE), industrial equipment, a vehicle, etc.; the second communication device The device may be a peer communication device of the first communication device, such as a network device, a mobile phone, an industrial device, a vehicle, etc.
  • the first communication device may be a terminal device, and the second communication device may be a network device (ie, uplink communication or downlink communication); or, the first communication device may be a first terminal, and the second communication device Can be used as a second terminal (i.e. sideline communication).
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of the existing LTE protocol, NR protocol, Wi-Fi protocol or protocols related to other communication systems.
  • the application does not limit the type of agreement.
  • the terminal energy saving based on the wake-up receiver related to the present application will be described.
  • a wake-up receiver (Wake up receiver) is introduced to receive the wake-up signal.
  • the wake-up receiver has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives wake-up signals (Wake up signal, WUS) based on envelope detection. Therefore, the modulation method and waveform of the wake-up signal (WUS) received by the wake-up receiver is different from the signal carried by the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • the wake-up signal is mainly an envelope signal modulated by Amplitude Shift Keying (ASK) on the carrier signal.
  • ASK Amplitude Shift Keying
  • the demodulation of the envelope signal is also mainly completed based on the energy provided by the wireless radio frequency signal to drive a low-power circuit, so it can be passive.
  • the wake-up receiver can also be powered by the terminal. Regardless of the power supply method, the wake-up receiver greatly reduces power consumption compared with the traditional receiver of the UE.
  • the wake-up receiver can be combined with the UE as an additional module of the UE receiver, or can be used alone as a wake-up function module for the UE.
  • the block diagram of the receiver system based on zero-power wake-up can be shown in Figure 2.
  • the wake-up receiver receives the wake-up signal. If the UE is required to turn on the receiver, the UE can be instructed to turn on the main receiver. Otherwise, the UE's primary receiver may be in an off state.
  • Wake-up radio (WUR) signals are used in WiFi communications to save energy on devices.
  • the WUR access point (AP) notifies the WUR station (station, STA) of the energy-saving operation through the WUR wake-up frame (wake-up frame).
  • the wake-up frame is carried in the WUR physical layer protocol data unit (PPDU) frame.
  • PPDU physical layer protocol data unit
  • a WUR PPDU frame contains the traditional preamble (legacy preamble), WUR synchronization (WUR-Sync) and WUR data (WUR- Data) three parts, of which the legacy preamble is used to protect the WUR-Sync and WUR-Data parts. It is a non-WUR part reserved for compatibility reasons.
  • WUR-Sync is used to help identify and demodulate the WUR-data part.
  • the WUR-Data part is used to carry the WUR physical layer service data unit (PSDU), as shown in Figure 3.
  • PSDU physical layer service data unit
  • the WUR-Sync part and the WUR-data part use On-Off Keying (OOK) modulation and 4MHz.
  • OOK On-Off Keying
  • the modulation principle of OOK is used to modulate the amplitude of the carrier signal to non-zero values and zero values, corresponding to on (On) and off (Off) respectively, used to represent information bits.
  • OOK is also known as binary amplitude keying (2ASK).
  • ASK binary amplitude keying
  • the WUR-Sync part carries a synchronization sequence repeated twice, in which bit 1 is modulated to On and bit 0 is modulated to Off.
  • the synchronization sequence uses a predefined sequence W containing 32 bits. Different sequences indicate the data rate (data rate) used by different WUR-data parts.
  • LDR WUR low data rate
  • the synchronization sequence corresponding to WUR high data rate (HDR) is as follows:
  • Each bit in the WUR-Sync part is mapped into a 2 ⁇ s length MC-OOK symbol through OOK modulation.
  • the WUR-data part carries user information. After the user information is encoded, OOK modulation is used to form MC-OOK symbols of corresponding length, as shown in Figure 5.
  • the corresponding MC-OOK symbol lengths of WUR LDR and WUR HDR are 4 ⁇ s and 2 ⁇ s respectively.
  • FIG. 6 is a schematic diagram of the MC-OOK signal generated by multi-carrier modulation.
  • IDFT inverse discrete Fourier Transform
  • RFID Radio Frequency Identification
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags classified according to different power supply methods can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, mean that the energy for the operation of the electronic tag is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag. Different from the passive radio frequency activation method, it passes through the battery until the battery is replaced. Set the frequency band to send messages.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • a passive electronic tag When a passive electronic tag is close to a reader, the tag is within the near field range formed by the radiation of the reader's antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of passive electronic tags such as small size, light weight, low price and long service life.
  • the built-in battery only provides power for a few circuits in the chip when there is no reader/writer access. When the reader is accessing, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • RFID is a wireless communication technology.
  • the most basic RFID system is composed of two parts: electronic tag (TAG) and reader/writer (Reader/Writer).
  • Electronic tag It is composed of coupling components and chips. Each electronic tag has a unique electronic code and is placed on the measured target to achieve the purpose of marking the target object.
  • Reader/writer It can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication. As shown in Figure 7. After the electronic tag enters the electromagnetic field, it receives the radio frequency signal from the reader.
  • the passive electronic tag or passive electronic tag uses the energy obtained from the electromagnetic field generated in the space to transmit the information stored in the electronic tag.
  • the reader reads the information and performs the processing. Decode to identify the electronic tag.
  • a typical zero-power communication system includes a reader/writer and a zero-power terminal.
  • the reader emits radio waves that are used to provide energy to zero-power terminals.
  • the energy collection module installed in the zero-power terminal can collect the energy carried by radio waves in space (shown in Figure 7 is the radio wave emitted by the reader), and is used to drive the low-power computing module of the zero-power terminal.
  • Implement backscatter communication After the zero-power terminal obtains energy, it can receive control commands from the reader and send data to the reader in a backscattering manner based on control signaling.
  • the data sent can come from the data stored in the zero-power terminal itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power terminals can also be loaded with various sensors to report data collected by various sensors based on a zero-power mechanism.
  • the zero-power device receives the carrier signal sent by the backscatter reader and collects energy through a radio frequency (Radio Frequency, RF) energy collection module. Then, the low-power processing module (logic processing module in Figure 8) functions to modulate the incoming signal and perform backscattering.
  • RF Radio Frequency
  • the terminal does not actively transmit signals and achieves backscattering communication by modulating the incoming wave signal
  • the terminal does not rely on traditional active power amplifier transmitters and uses low-power computing units to greatly reduce hardware complexity;
  • the RF module is used to collect space electromagnetic wave energy through electromagnetic induction, and then to drive the load circuit (low-power computing, sensors, etc.), which can be battery-free.
  • Load modulation is a method often used by electronic tags to transmit data to readers. Load modulation adjusts the electrical parameters of the electronic tag's oscillation circuit according to the rhythm of the data flow, so that the size and phase of the electronic tag's impedance change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes resistive load modulation and capacitive load modulation. In resistive load modulation, the load is connected in parallel with a resistor, called the load modulation resistor, which is turned on and off according to the clock of the data flow. The on and off of the switch S is controlled by binary data encoding.
  • the circuit schematic diagram of resistive load modulation is shown in Figure 10.
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller encoding spread dynamic encoding. In layman's terms, different pulse signals are used to represent 0 and 1.
  • the energy supply signal carrier From the energy supply signal carrier, it can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.
  • the radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the radio waves used for power supply can be continuous waves or discontinuous waves (that is, allowing a certain time interruption).
  • the power supply signal may be a certain signal specified in the 3rd Generation Partnership Project (3GPP) standard. For example, Sounding Reference Signal (SRS), Physical Uplink Shared Channel (PUSCH), Physical Random Access Channel (PRACH), Physical Uplink Control Channel (PUCCH) ), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Physical Broadcast Channel (PBCH), etc.
  • 3GPP 3rd Generation Partnership Project
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used as triggers can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as triggers can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the radio wave used as a trigger can be a continuous wave or a discontinuous wave (that is, allowing a certain time interruption).
  • the trigger signal may be a certain signal specified in the 3GPP standard. For example, SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc.; it may also be a new signal.
  • passive IoT devices can be based on existing zero-power devices, such as RFID technology, and extended on this basis to be suitable for cellular IoT.
  • zero-power devices such as RFID
  • the carrier signal on which backscatter depends is often a narrowband signal, such as a sine wave.
  • This carrier signal has two disadvantages. On the one hand, it is not compatible with transmitters in multi-carrier modulation (such as OFDM transmitters). It has obvious shortcomings in terms of transmitter complexity and compatibility with other equipment; on the other hand, it is not compatible with transmitters in multi-carrier modulation (such as OFDM transmitters).
  • a device that uses a channel with a certain bandwidth to send signals has a certain limit on the signal transmission power per unit bandwidth.
  • the transmission power of the carrier signal is also limited by the bandwidth. It will be relatively small, and it may not be able to meet the signal power threshold requirements of zero-power devices for energy harvesting, and communication with zero-power devices cannot be achieved.
  • this application proposes a solution to generate carrier signals through multi-carrier modulation, and introduces carrier signals generated based on multi-carrier modulation, which can support carrier signals and energy supply for zero-power communication in multi-carrier systems. signal, reducing the transmitter complexity introduced to support zero-power communications while also maintaining compatibility with other devices.
  • FIG 11 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in Figure 11, the wireless communication method 200 may include at least part of the following content:
  • the second communication device sends a carrier signal generated based on multi-carrier modulation; wherein the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate backscattering through modulation. Signal;
  • S220 The first communication device receives the carrier signal.
  • a carrier signal generated based on multi-carrier modulation is introduced, the carrier signal is used for power supply of the first communication device, and/or the carrier signal is used by the first communication device to generate a backscatter signal through modulation,
  • the carrier signal and energy supply signal for zero-power communication can be supported in a multi-carrier system, reducing the complexity of the transmitter introduced to support zero-power communication, and maintaining compatibility with other devices.
  • the "backscattered signal” may also be called a "reflected signal” or a “reflected signal”, which is not limited by this application.
  • the carrier signal is used to power the first communication device, that is, the carrier signal may be the power supply signal of the first communication device.
  • the first communications device may be a zero-power device.
  • the first communication device can obtain energy through energy harvesting for communication, information collection, and processing. That is, before the second communication device communicates with the first communication device, it first needs to ensure that the first communication device receives the username. It is based on wirelessly powered radio waves and obtains wireless energy through energy harvesting. In other words, the embodiments of the present application can be applied to zero-power communication technology.
  • the first communication device can obtain energy through wireless energy supply methods such as wireless radio frequency signals, solar energy, pressure or temperature.
  • zero-power devices are a general name for devices with extremely low complexity and extremely low power consumption. This type of device does not rely on batteries. The energy required for its operation comes from the environment, and it can have energy collection and energy storage capabilities. Communication with zero-power devices only supports simple modulation and demodulation methods, such as Amplitude Shift Keying (ASK)/Frequency Shift Keying (FSK), etc.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • zero-power devices can refer to Ambient Power Enabled (AMP) devices introduced in the 3rd Generation Partnership Project (3GPP) and WiFi technology (such as the 802.11 technical standard). It can also be a communication module of an existing device, such as the WUR function module introduced by 802.11ba technology and the wake-up receiver (Wake up receiver) of terminal equipment introduced by 3GPP.
  • AMP Ambient Power Enabled
  • the energy of AMP devices comes from the environment.
  • some AMP devices may have active emission capabilities instead of relying solely on backscattering. Therefore, the solution in this application based on the carrier signal generated by multi-carrier modulation can also be used to generate an energy supply signal.
  • the energy supply signal is used to provide the energy required for the operation of the AMP device through a wireless radio frequency signal.
  • the second communication device can generate the carrier signal based on multi-carrier modulation; or, the second communication device can obtain the carrier signal generated based on multi-carrier modulation from other devices and send the carrier signal to the first communication device.
  • the second communications device is a device for communicating with the first communications device.
  • the second communication device may be a network device, or the second communication device may be a terminal device, or the second communication device may be an energy supply node.
  • the process of generating a carrier signal based on multi-carrier modulation can be shown in Figure 12. First, a non-zero amplitude value needs to be selected, then the selected non-zero amplitude value needs to be mapped to multiple sub-carriers, and then IDFT transformation is performed. Finally, digital-to-analog conversion and radio frequency are performed to obtain the carrier signal.
  • the carrier signal in multi-carrier modulation, is modulated based on multiple sub-carriers set with non-zero amplitude values.
  • the non-zero amplitude values associated with the multiple subcarriers may be the same or different.
  • the non-zero amplitude value is agreed by the protocol, or the non-zero amplitude value is configured by the network.
  • the non-zero amplitude value is one of:
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • QAM 16-Quadrature Amplitude Modulation
  • the multiple subcarriers are arranged at equal intervals, or the multiple subcarriers are arranged at unequal intervals.
  • the transmit power of the device In addition to considering the spacing between subcarriers, the number of subcarriers, or the bandwidth range spanned by the subcarriers, must also be considered.
  • the transmit power of the device Under unlicensed spectrum, there is an upper limit requirement for the transmit power of the device and the signal power spectral density so that the spectrum can be shared fairly between devices.
  • the power spectral density of the equipment is required not to exceed 10dBm/MHz.
  • the maximum power of the device can reach 23dBm.
  • the maximum transmit power of the device is less than 23dBm.
  • the distribution of multiple carriers in the frequency domain that generate carrier signals must ensure that there are one or more subcarriers per MHz range (the scale of power spectral density is in MHz), and its power spectral density The upper limit can be reached, such as 10dBm/MHz.
  • the subcarriers that generate the carrier signal need to be distributed within a bandwidth of at least 10MHz, and one or more subcarriers are guaranteed to exist within each MHz.
  • the method of generating the energy supply signal and the method of generating the carrier signal may be different.
  • the requirements for generating the energy supply signal may be lower than those of the carrier signal, but the interference problem still needs to be considered, but the amplitude characteristic requirements can be reduced, and the power requirement ( Bandwidth) may not be reduced in order to achieve coverage. From the perspective of implementation complexity, both are generated using the same method and have lower complexity.
  • the plurality of subcarriers are selected according to a target subcarrier pattern
  • the target subcarrier pattern is specified by a protocol, or the target subcarrier pattern is configured by the network.
  • the subcarrier spacing used by OFDM is 312.5kHz, and there are three subcarriers within the 1MHz range. If you select subcarriers with larger intervals to generate carrier signals when selecting subcarriers, you need to ensure that there is at least one subcarrier in each MHz for generating carrier signals. For example, for equally spaced subcarrier selection, between the selected subcarriers The interval cannot exceed 1MHz. For the selection of non-equally spaced subcarriers, a certain subcarrier pattern needs to be determined to meet the above requirement that at least one subcarrier exists in each MHz. The specific pattern can be predefined or configured by the network.
  • the selected subcarrier spacing is 312.5kHz*3, 10MHz bandwidth.
  • pattern 1 requires 10 subcarriers
  • pattern 2 requires 11 subcarrier.
  • the number of subcarriers included in the pattern may be different.
  • a certain number of subcarriers and their corresponding positions can be selected in each 1 MHz in MHz units.
  • the selection of subcarriers needs to consider the maximum transmit power of the device and the upper limit of the power spectral density, thereby determining how much bandwidth the carrier signal that can be transmitted using the maximum transmit power needs to occupy, and the bandwidth between subcarriers. spacing, and the distribution of subcarriers within the bandwidth. In practical applications, based on different coverage scenarios, the bandwidth size of the signal, the spacing between subcarriers, the transmit power of the device, etc. can be flexibly selected.
  • the plurality of subcarriers are determined based on at least one of the following:
  • the transmit power of the device that generates the carrier signal (such as the maximum transmit power), the signal power spectral density (the signal power spectral density that needs to be met per MHz, affecting the distribution of subcarriers), the target transmit power of the carrier signal (the need to transmit the carrier signal power), the bandwidth capability of the first communication device.
  • the carrier does not necessarily need to transmit at full power or transmit close to the maximum transmit power (pursuing large coverage). It may also use lower power to pursue smaller coverage. In this case, the target transmit power of the carrier signal will be involved.
  • the bandwidth processing capability of the first communication device for backscattering is also a factor that needs to be considered.
  • the bandwidth of the first communication device for backscattering the carrier signal has a certain range, and the bandwidth of the carrier signal cannot exceed the bandwidth capability requirement of the first communication device for backscattering.
  • the carrier signal may be an OOK signal generated by multi-carrier modulation.
  • OOK signal generated by OFDM modulation by setting certain non-zero amplitude values for multiple subcarriers and undergoing IDFT transformation of the transmitter, The corresponding on time domain waveform can be generated; without assigning the corresponding subcarrier, the corresponding off time domain waveform can be generated, thereby realizing the generation of OOK signal based on multi-carrier modulation.
  • the WUR signal in 802.11ba technology uses 13 subcarriers at the 64-point IDFT center within a 20MHz bandwidth to generate an on waveform.
  • the generation method of the carrier signal in this application can refer to the WUR signal, and will not be described in detail here.
  • the carrier signal is used by the first communication device to generate a backscattered signal through modulation, that is, the first communication device carries information by modulating the carrier signal.
  • the modulation method is, for example, ASK modulation. Therefore, the carrier signal generally has a relatively constant amplitude.
  • the first communication device forms a backscattered ASK signal by performing amplitude modulation on the carrier signal.
  • a preferred method is to generate carrier signals through multiple carriers.
  • WiFi technology and NR technology using OFDM modulation The on waveform generated by OFDM modulation has a certain relatively flat amplitude, which can meet the requirements as a carrier signal.
  • the first communication device can modulate its amplitude through load modulation to form an ASK backscatter signal. . Therefore, in this embodiment of the present application, corresponding non-zero assignments can be made through a group of subcarriers within the bandwidth, and the carrier signal can be generated through IDFT.
  • the signal is a carrier signal with flat amplitude.
  • the first communication device performs ASK modulation on the carrier signal to form a backscattered signal.
  • the information bit 10101011 is carried through ASK modulation.
  • the length of the generated on symbol is different depending on the spacing of non-zero subcarriers. As shown in Figure 16, by adjusting the spacing of non-zero subcarriers, it is possible to have a shorter symbol length.
  • the first communication device performs ASK modulation on the carrier signal to form a backscattered signal. As shown in Figure 17, the information bit 1010101110101011 is carried through ASK modulation.
  • the symbol length associated with the carrier signal is the same as the symbol length associated with the backscattered signal, as shown in Figures 14 to 17.
  • the symbol length associated with the carrier signal is different from the symbol length associated with the backscattered signal.
  • the symbol length associated with the backscattered signal may not depend on the symbol length of the generated carrier signal. That is, the symbol length of the backscattered signal may be different from the symbol length of the resulting carrier signal.
  • the first communication device can determine the symbol length associated with the backscattered signal based on its own data rate, and perform ASK modulation on the carrier signal to form an ASK symbol.
  • the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain; or, the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal are in the frequency domain.
  • the overlapping area in the frequency domain is smaller than the preset value.
  • the frequency domain resources of the carrier signal and the backscattered signal are the same, strong interference will be caused to the reception of the backscattered signal.
  • the alignment of different subcarriers is difficult to achieve, so overlap may occur.
  • the overlapping area in the frequency domain between the subcarriers associated with the carrier signal and the subcarriers associated with the backscattering signal can be set to be smaller than the predetermined area. Set value.
  • the subcarriers associated with the carrier signal may be subcarriers used to generate the carrier signal
  • the subcarriers associated with the backscattered signal may be subcarriers used to generate the backscattered signals.
  • the preset value is agreed upon by a protocol, or the preset value is configured by a network, or the preset value is determined by the first communication device, or the preset value is determined by a device that generates the carrier signal.
  • Device OK the preset value is agreed upon by a protocol, or the preset value is configured by a network, or the preset value is determined by the first communication device, or the preset value is determined by a device that generates the carrier signal.
  • the number of subcarriers associated with the backscattered signal may be independent of the number of subcarriers associated with the carrier signal, or the number of subcarriers associated with the backscattered signal may be related to the number of subcarriers associated with the carrier signal. Related.
  • the number of subcarriers associated with the backscattered signal is less than the number of subcarriers associated with the carrier signal.
  • the number of subcarriers associated with the backscattered signal is greater than the number of subcarriers associated with the carrier signal.
  • the number of subcarriers associated with the backscattered signal is equal to the number of subcarriers associated with the carrier signal.
  • the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain, or the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain.
  • the overlapping area is smaller than the preset value, which can reduce the interference caused by the sub-carriers associated with the carrier signal to the reception of the backscattered signal.
  • the subcarriers associated with the backscattered signal are obtained by shifting some or all of the subcarriers associated with the carrier signal in the frequency domain.
  • the non-zero subcarriers used to generate the carrier signal are selected at equal intervals within the channel bandwidth, and the subcarriers between adjacent non-zero subcarriers are not assigned a value, or are assigned a value of 0, that is, empty subcarriers.
  • the first communication device when performing backscattering, performs an offset in the frequency domain so that the non-zero subcarriers are offset to empty subcarriers of the carrier signal.
  • the non-zero subcarriers of the carrier signal are subcarriers 1, 3, 5, 7, 9, and 11.
  • the backscattered signal produces a subcarrier offset.
  • the non-zero subcarriers are subcarrier 0. 2,4,6,8,10.
  • the above-mentioned embodiment shown in Figure 18 has higher requirements on the frequency domain synchronization capability of the first communication device. If the backscattered signal cannot achieve a more accurate frequency domain offset of an integer multiple of the subcarrier ( That is, an integer multiple of the frequency domain raster. A fully offset frequency domain raster is better for alignment and less likely to interfere.) Interference between subcarriers will also occur. Therefore, another way is that when backscattering, the first communication device moves the subcarriers associated with the carrier signal as a whole in the frequency domain, so that the set of subcarriers associated with the carrier signal and the set of subcarriers associated with the backscattered signal are in Isolation in the frequency domain.
  • the set of subcarriers associated with the carrier signal is subcarriers 0-5.
  • the first communication device performs a relatively large range of frequency domain offset, for example, offset to subcarriers 6-11. That is, the set of subcarriers associated with the backscattered signal is subcarriers 6-11.
  • This approach can further reduce interference.
  • the frequency domain synchronization capability of the first communication device can be relaxed to a certain extent, and the frequency domain offset is not strictly required to be subcarrier Integer multiples, the backscattered signal can be received by the receiving end without being interfered by other signals.
  • the offset in the frequency domain is agreed upon by the protocol, or the offset in the frequency domain is configured by the network, or the offset in the frequency domain is determined by the first communication device, or the frequency domain offset is determined by the first communication device.
  • the offset on the domain is determined by the device generating the carrier signal. In this case, the capability requirements for the first communication device are relatively small.
  • the offset in the frequency domain is determined based on the capabilities of the first communications device.
  • the offset in the frequency domain may include a range and precision of the frequency domain offset.
  • a carrier signal generated based on multi-carrier modulation is introduced.
  • the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate backscatter through modulation.
  • the signal can support carrier signals and energy supply signals for zero-power communication in a multi-carrier system, reducing the complexity of the transmitter introduced to support zero-power communication, and can also maintain compatibility with other devices.
  • the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain, or the overlapping area in the frequency domain between the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal is smaller than
  • the preset value can reduce the interference caused by the subcarriers associated with the carrier signal on the reception of backscattered signals.
  • the multi-carrier selection method can realize the signal to fully utilize the transmit power of the device while meeting the limitations of the power spectral density.
  • the use of multi-carriers can also achieve frequency diversity gain.
  • Figure 20 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
  • the communication device 300 is a first communication device.
  • the communication device 300 includes:
  • Communication unit 310 configured to receive a carrier signal generated based on multi-carrier modulation
  • the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate a backscattered signal through modulation.
  • the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain; or, the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal are in the frequency domain.
  • the overlapping area in the frequency domain is smaller than the preset value.
  • the subcarriers associated with the backscattered signal are obtained by shifting some or all of the subcarriers associated with the carrier signal in the frequency domain.
  • the offset in the frequency domain is agreed upon by the protocol, or the offset in the frequency domain is configured by the network, or the offset in the frequency domain is determined by the first communication device, or the frequency domain offset is determined by the first communication device.
  • the offset on the domain is determined by the device generating the carrier signal.
  • the offset in the frequency domain is determined based on the capabilities of the first communications device.
  • the symbol length associated with the carrier signal is the same as the symbol length associated with the backscattered signal, or the symbol length associated with the carrier signal is different from the symbol length associated with the backscattered signal.
  • the carrier signal in multi-carrier modulation, is modulated based on multiple sub-carriers set with non-zero amplitude values.
  • the non-zero amplitude value is agreed by the protocol, or the non-zero amplitude value is configured by the network.
  • the non-zero amplitude value is one of:
  • the multiple subcarriers are arranged at equal intervals, or the multiple subcarriers are arranged at unequal intervals.
  • the plurality of subcarriers are selected according to a target subcarrier pattern
  • the target subcarrier pattern is specified by a protocol, or the target subcarrier pattern is configured by the network.
  • the plurality of subcarriers are determined based on at least one of the following:
  • the transmission power of the device that generates the carrier signal the signal power spectral density, the target transmission power of the carrier signal, and the bandwidth capability of the first communication device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 300 may correspond to the first communication device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 300 are respectively intended to realize what is shown in Figure 11
  • the corresponding process of the first communication device in the method 200 is shown, and for the sake of brevity, it will not be described again here.
  • Figure 21 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 is a second communication device.
  • the communication device 400 includes:
  • Communication unit 410 used to send carrier signals generated based on multi-carrier modulation
  • the carrier signal is used to power the first communication device, and/or the carrier signal is used by the first communication device to generate a backscattered signal through modulation.
  • the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal do not overlap in the frequency domain; or, the subcarriers associated with the carrier signal and the subcarriers associated with the backscattered signal are in the frequency domain.
  • the overlapping area in the frequency domain is smaller than the preset value.
  • the subcarriers associated with the backscattered signal are obtained by shifting some or all of the subcarriers associated with the carrier signal in the frequency domain.
  • the offset in the frequency domain is agreed upon by the protocol, or the offset in the frequency domain is configured by the network, or the offset in the frequency domain is determined by the first communication device, or the frequency domain offset is determined by the first communication device.
  • the offset on the domain is determined by the device generating the carrier signal.
  • the offset in the frequency domain is determined based on the capabilities of the first communications device.
  • the symbol length associated with the carrier signal is the same as the symbol length associated with the backscattered signal, or the symbol length associated with the carrier signal is different from the symbol length associated with the backscattered signal.
  • the carrier signal in multi-carrier modulation, is modulated based on multiple sub-carriers set with non-zero amplitude values.
  • the non-zero amplitude value is agreed by the protocol, or the non-zero amplitude value is configured by the network.
  • the non-zero amplitude value is one of:
  • the multiple subcarriers are arranged at equal intervals, or the multiple subcarriers are arranged at unequal intervals.
  • the plurality of subcarriers are selected according to a target subcarrier pattern
  • the target subcarrier pattern is specified by a protocol, or the target subcarrier pattern is configured by the network.
  • the plurality of subcarriers are determined based on at least one of the following:
  • the transmission power of the device that generates the carrier signal the signal power spectral density, the target transmission power of the carrier signal, and the bandwidth capability of the first communication device.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 400 may correspond to the second communication device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 400 are respectively intended to implement what is shown in Figure 11
  • the corresponding process of the second communication device in the method 200 is shown, and for the sake of brevity, it will not be described again here.
  • Figure 22 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in Figure 22 includes a processor 510.
  • the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 500 may also include memory 520.
  • the processor 510 can call and run the computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the communication device 500 may also include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the processor 510 can implement the functions of a processing unit in a communication device, which will not be described again for the sake of brevity.
  • the transceiver 530 can implement the function of a communication unit in a communication device, which will not be described again for the sake of brevity.
  • the communication device 500 can specifically be the communication device in the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application. For the sake of simplicity, in This will not be described again.
  • the communication device 500 can be specifically the communication device of the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application. For the sake of simplicity, in This will not be described again.
  • Figure 23 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the device 600 shown in Figure 23 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • device 600 may also include memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the device 600 may also include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips. Alternatively, processor 610 may be located on-chip or off-chip.
  • the processor 610 can implement the functions of a processing unit in the communication device, which will not be described again for the sake of brevity.
  • the input interface 630 may implement the function of a communication unit in a communication device.
  • the device 600 may also include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips. Alternatively, processor 610 may be located on-chip or off-chip.
  • the output interface 640 may implement the function of a communication unit in a communication device.
  • the device can be applied to the communication device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the device can be applied to the communication device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the second communication device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the devices mentioned in the embodiments of this application may also be chips.
  • it can be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip or a system-on-a-chip, etc.
  • Figure 24 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 24 , the communication system 700 includes a first communication device 710 and a second communication device 720 .
  • the first communication device 710 can be used to implement the corresponding functions implemented by the first communication device in the above method
  • the second communication device 720 can be used to implement the corresponding functions implemented by the second communication device in the above method. , for the sake of brevity, will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the computer-readable storage medium can be applied to the communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the first communication device in the various methods of the embodiment of the present application.
  • the computer program product can be applied to the communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the second communication device in the various methods of the embodiment of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform the corresponding steps implemented by the first communication device in each method of the embodiment of the present application. The process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform the corresponding steps implemented by the second communication device in each method of the embodiment of the present application. The process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,引入了基于多载波调制生成的载波信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。该无线通信的方法,包括:第一通信设备接收基于多载波调制生成的载波信号;其中,该载波信号用于该第一通信设备的供能,和/或,该载波信号用于该第一通信设备通过调制生成反向散射信号。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
现阶段,零功耗设备通过反向散射的方式来发数据,反向散射依赖的载波信号往往是一个窄带信号,如正弦波,然而,这种载波信号无法更好的满足基于零功耗设备的通信需求。
发明内容
本申请实施例提供了一种无线通信的方法及设备,引入了基于多载波调制生成的载波信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。
第一方面,提供了一种无线通信的方法,该方法包括:
第一通信设备接收基于多载波调制生成的载波信号;
其中,该载波信号用于该第一通信设备的供能,和/或,该载波信号用于该第一通信设备通过调制生成反向散射信号。
第二方面,提供了一种无线通信的方法,该方法包括:
第二通信设备发送基于多载波调制生成的载波信号;
其中,该载波信号用于第一通信设备的供能,和/或,该载波信号用于第一通信设备通过调制生成反向散射信号。
第三方面,提供了一种通信设备,用于执行上述第一方面中的方法。
具体地,该通信设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种通信设备,用于执行上述第二方面中的方法。
具体地,该通信设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第一方面中的方法。
第六方面,提供了一种通信设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该通信设备执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,引入了基于多载波调制生成的载波信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种基于零功耗唤醒的接收机系统图。
图3是本申请提供的一种WUR PPDU帧的示意图。
图4是本申请提供的一种WUR同步序列OOK调制的示意图。
图5是本申请提供的一种WUR数据OOK调制的示意图。
图6是本申请提供的一种通过多载波调制产生的MC-OOK信号的示意图。
图7是本申请提供的一种零功耗通信的原理图。
图8是本申请提供的一种反向散射通信原理图。
图9是本申请提供的一种能量采集原理图。
图10是本申请提供的一种电阻负载调制的电路原理图。
图11是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图12是根据本申请实施例提供的一种基于多载波调制生成载波信号的流程图。
图13是根据本申请实施例提供的一种等间隔子载波图样的示意图。
图14是根据本申请实施例提供的一种载波信号的示意图。
图15是根据本申请实施例提供的一种反向散射信号的示意图。
图16是根据本申请实施例提供的另一种载波信号的示意图。
图17是根据本申请实施例提供的另一种反向散射信号的示意图。
图18是根据本申请实施例提供的一种载波信号关联的子载波和反向散射信号关联的子载波的示意图。
图19是根据本申请实施例提供的另一种载波信号关联的子载波和反向散射信号关联的子载波的示意图。
图20是根据本申请实施例提供的一种通信设备的示意性框图。
图21是根据本申请实施例提供的另一种通信设备的示意性框图。
图22是根据本申请实施例提供的再一种通信设备的示意性框图。
图23是根据本申请实施例提供的一种装置的示意性框图。
图24是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统、第六代通信(6th-Generation,6G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,侧行(sidelink,SL)通信,车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者发送接收点(Transmission Reception Point,TRP),或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。在本申请实施例中,第一通信设备可以是终端设备,且第二通信设备可以网络设备(即上行通信或下行通信);或者,第 一通信设备可以是第一终端,且第二通信设备可以第二终端(即侧行通信)。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为便于更好的理解本申请实施例,对本申请相关的基于唤醒接收机的终端节能进行说明。
为了UE的进一步节电,引入了唤醒接收机(Wake up receiver)接收唤醒信号。唤醒接收机具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收唤醒信号(Wake up signal,WUS)。因此,唤醒接收机接收的唤醒信号(Wake up signal,WUS)与基于物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的信号的调制方式、波形等不同。唤醒信号主要通过对载波信号进行幅移键控(Amplitude Shift Keying,ASK)调制的包络信号。包络信号的解调也主要基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。唤醒接收机也可以通过终端进行供电,无论哪种供电方式,唤醒接收机相比UE的传统接收机极大的降低了功耗。唤醒接收机可以和UE结合在一起,作为UE接收机的一个附加模块,也可以单独作为一个UE的唤醒功能模块。
基于零功耗唤醒的接收机系统框图可以如图2所示,唤醒接收机接收唤醒信号,如果需要UE打开接收机,可以指示UE开启主接收机。否则,UE的主接收机可以处于关闭状态。
为便于更好的理解本申请实施例,对本申请相关的WiFi通信中的唤醒信号进行说明。
WiFi通信中采用唤醒无线电(wake-up radio,WUR)信号实现设备的节能。WUR接入点(Access point,AP)通过WUR唤醒帧(wake-up frame)通知WUR站点(station,STA)的节能操作。wake-up frame承载于WUR物理层协议数据单元(physical layer protocol data unit,PPDU)帧中,一个WUR PPDU帧包含传统前导码(legacy preamble)、WUR同步(WUR-Sync)和WUR数据(WUR-Data)三部分,其中legacy preamble的作用是用于保护WUR-Sync和WUR-Data部分,是为了兼容性的考虑而保留的非WUR部分,它使用传统的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)调制和20MHz带宽。WUR-Sync是用于帮助识别、解调WUR-data部分,WUR-Data部分用于承载WUR物理层服务数据单元(physical layer service data unit,PSDU),如图3所示。
WUR-Sync部分和WUR-data部分采用了开关键控(On-Off Keying,OOK)调制和4MHz。OOK的调制原理是用来将载波信号的幅度调制为非零值和零值,分别对应开(On)和关(Off),用来表示信息比特,OOK又名二进制振幅键控(2ASK),如图4所示,WUR-Sync部分承载重复两次的同步序列,序列中比特1调制为On,0调制为Off。
其中,同步序列采用预定义的包含32个比特的序列W,不同的序列指示了不同的WUR-data部分采用的数据速率(data rate)。
WUR低数据速率(low data rate,LDR)对应的同步序列如下:
W=[1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0]
WUR高数据速率(high data rate,HDR)对应的同步序列如下:
W=[0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1]
WUR-Sync部分中的每个比特经过OOK调制映射成一个2μs长度的MC-OOK符号。
WUR-data部分承载用户信息,用户信息进行编码后,采用了OOK调制后形成相应长度的MC-OOK符号,如图5所示。
其中,WUR LDR和WUR HDR对应MC-OOK符号长度分别为4μs和2μs。
需要说明的是,上述OOK信号的产生是通过多载波(Multi-carrier,MC)产生的,因此称为MC-OOK信号。MC-OOK信号的产生可以采用多载波调制如OFDM调制产生OOK信号,可以与OFDM系统保持良好的兼容性,减少实现WUR信号而引入的发射机复杂度。图6为通过多载波调制产生的MC-OOK信号的示意图。通过在频域上的多个子载波映射相应的幅度值,通过离散傅里叶变换的逆变换(Inverse Discrete Fourier Transform,IDFT)转到时域信号的波形近似于ASK调制形成的波形,其中比特1通过信号的高电平表示,比特0通过信号的低电平表示。
为便于更好的理解本申请实施例,对本申请相关的零功耗设备进行说明。
近年来,零功耗设备的应用越来越广泛。一种典型的零功耗设备是无线射频识别(Radio Frequency Identification,RFID),它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID是一种无线通信技术。最基本的RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签:它由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器:不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。如图7所示。电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
零功耗通信的关键技术包括能量采集和反向散射通信以及低功耗计算,如图7所示,一个典型的零功耗通信系统包括读写器和零功耗终端。读写器发射无线电波,用于向零功耗终端提供能量。安装在零功耗终端的能量采集模块可以采集空间中的无线电波携带的能量(图7中所示为读写器发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收读写器的控制命令并基于控制信令基于后向散射的方式向读写器发送数据。所发送的数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
为便于更好的理解本申请实施例,对本申请相关的反向散射通信(Back Scattering)进行说明。
如图8所示,零功耗设备(图8中的反向散射标签)接收反向散射读写器发送的载波信号,通过无线射频(Radio Frequency,RF)能量采集模块采集能量。进而对低功耗处理模块(图8中的逻辑处理模块)进行功能,对来波信号进行调制,并进行反向散射。
反向散射通信主要特征如下:
(1)终端不主动发射信号,通过调制来波信号实现反向散射通信;
(2)终端不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
为便于更好的理解本申请实施例,对本申请相关的RF能量采集(Power Harvesting)进行说明。
如图9所示,利用RF模块通过电磁感应实现对空间电磁波能量的采集,进而实现对负载电路的驱动(低功耗运算、传感器等),可以实现免电池。
为便于更好的理解本申请实施例,对本申请相关的负载调制进行说明。
负载调制是电子标签经常使用的向读写器传输数据的方法。负载调制通过对电子标签振荡回路的电参数按照数据流的节拍进行调节,使电子标签阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理图如图10所示。
在电容负载调制中,负载并联一个电容,取代了图10中由二进制数据编码控制的负载调制电阻。
为便于更好的理解本申请实施例,对本申请相关的编码技术进行说明。
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零 (Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的供能信号进行说明。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作供能的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
供能信号可能是第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)标准中规定的某一信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等。
为便于更好的理解本申请实施例,对本申请相关的零功耗通信系统中的触发信号进行说明。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发的无线电波可以是低频、中频、高频等。
从波形上,用作触发的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。此外,用作触发的无线电波可以是连续波,也可以是非连续波(即允许一定的时间中断)。
触发信号可能是3GPP标准中规定的某一信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等;也可能是一种新的信号。
为便于更好的理解本申请实施例,对本申请相关的蜂窝无源物联网进行说明。
随着5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于现有的零功耗设备,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
现阶段,零功耗设备(如RFID)通过反向散射的方法来发数据。反向散射依赖的载波信号往往是一个窄带信号,如正弦波。这种载波信号存在两个缺点,一方面是不能与多载波调制中的发射机(如OFDM发射机)兼容,在发射机复杂度和与其他设备的兼容性上都有明显的缺点;另一方面是在非授权频谱下,使用一定带宽的信道发送信号的设备,在单位带宽下的信号发射功率有一定的限制,如果采用一个窄带信号发送载波信号,载波信号的发射功率同样受带宽限制,会比较小,可能会无法满足零功耗设备对于能量采集的信号功率门限的要求,无法实现与零功耗设备之间的通信。
基于上述问题,本申请提出了一种通过多载波调制产生载波信号的方案,引入了基于多载波调制生成的载波信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。
以下通过具体实施例详述本申请的技术方案。
图11是根据本申请实施例的无线通信的方法200的示意性流程图,如图11所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第二通信设备发送基于多载波调制生成的载波信号;其中,该载波信号用于第一通信设备的供能,和/或,该载波信号用于第一通信设备通过调制生成反向散射信号;
S220,该第一通信设备接收该载波信号。
在本申请实施例中,引入了基于多载波调制生成的载波信号,载波信号用于第一通信设备的供能,和/或,载波信号用于第一通信设备通过调制生成反向散射信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。
在本申请实施例中,“反向散射信号”也可以称之为“反射信号”或“反射的信号”,本申请对此并不限定。
在本申请实施例中,该载波信号用于第一通信设备的供能,也即,该载波信号可以是该第一通信设备的供能信号。
在一些实施例中,第一通信设备可以为零功耗设备。可选地,第一通信设备可以通过能量采集获得能量以用于通信、信息采集及处理,也即,第二通信设备在与第一通信设备通信之前,首先需要保证第一通信设备接收到用于无线供能的无线电波并通过能量采集的方式获得无线能量。也就是说,本 申请实施例可以应用于零功耗通信技术。
应理解,本申请并不限定第一通信设备通过能量采集获得能量的具体方式,作为示例而非限定,第一通信设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
需要说明的是,零功耗设备是对具备极低复杂度和极低功耗的设备的一种概括的命名。这类设备可以不依赖于电池,其工作所需要的能量来源于环境,可以具备能量收集和储能能力。零功耗设备的通信只支持简单的调制解调方式,如幅移键控(Amplitude Shift Keying,ASK)/频移键控(Frequency Shift Keying,FSK)等。具体的,零功耗设备可以指第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)和WiFi技术(如802.11技术标准)中引入的环境能量使能(Ambient Power Enabled,AMP)的设备,也可以是现有设备的一个通讯模块,如802.11ba技术引入的WUR功能模块和3GPP引入的终端设备的唤醒接收机(Wake up receiver)。
具体的,AMP设备的能量来源于环境,根据AMP设备的类型不同,有的AMP设备可能具有主动发射能力,而不是仅依赖于反向散射。因此,本申请中基于多载波调制生成的载波信号的方案,也可以用于产生供能信号,该供能信号用于通过无线射频信号的方式为AMP设备提供工作需要的能量。
在一些实施例中,该第二通信设备可以基于多载波调制生成该载波信号;或者,该第二通信设备可以从其他设备处获取基于多载波调制生成的载波信号,并将该载波信号发送给该第一通信设备。
在一些实施例中,该第二通信设备为用于与该第一通信设备通信的设备。可选地,该第二通信设备可以为网络设备,或者,该第二通信设备可以为终端设备,或者,该第二通信设备可以为供能节点。
在一些实施例中,基于多载波调制生成载波信号的流程可以如图12所示,首先,需要选取非零幅度值,接着将选取的非零幅度值映射到多个子载波,然后进行IDFT变换,最后执行数模转换、射频得到载波信号。
在一些实施例中,在多载波调制中,该载波信号基于设置有非零幅度值的多个子载波调制得到。
在一些实施例中,该多个子载波分别关联的非零幅度值可以相同,也可以不同。
在一些实施例中,该非零幅度值由协议约定,或者,该非零幅度值由网络配置。
在一些实施例中,该非零幅度值为以下之一:
二进制相移键控(Binary Phase Shift Keying,BPSK)关联的幅度值,正交相移键控(Quadrature Phase Shift Keying,QPSK)关联的幅度值,16-正交振幅调制(Quadrature Amplitude Modulation,QAM)关联的幅度值,64-QAM关联的幅度值,256-QAM关联的幅度值。
在一些实施例中,该多个子载波等间隔设置,或者,该多个子载波非等间隔设置。
具体的,在产生载波信号的子载波的选取上,除了考虑子载波之间的间隔,还要考虑子载波的个数,或者说子载波跨越的带宽范围。在非授权频谱下,对于设备的发射功率,和信号功率谱密度有一个上限的要求,以使设备之间可以公平的该频谱。例如,对于2.4GHz非授权频谱,要求设备的功率谱密度要求不能超过10dBm/MHz。例如,对于20MHz带宽来说,设备的最大功率可以到达23dBm。又例如,在2.4GHz频谱下,设备的最大发射功率小于23dBm。
需要说明的是,对于载波信号的发送来说,希望尽量用满设备的最大发射功率,以达到能够达到的最大覆盖范围。考虑到信号功率谱密度的限制,产生载波信号的多个载波在频域上的分布要保证每MHz范围有一个或者多个子载波(功率频谱密度的尺度是以MHz为单位),其功率谱密度可以达到上限,如10dBm/MHz。以设备的最大功率为20dBm为例,产生载波信号的子载波至少需要分布在10MHz的带宽范围内,且每MHz内都能保证存在一个或者多个子载波。如果带宽小于10MHz,则无法使用设备的最大发射功率。假设设备的最大发射功率为P,则要实现以P为功率发射载波信号,其信号带宽W和P的关系需要满足:P=10log(10mw*W),其中,P的单位为dBm,W的单位为MHz。
在一些实施例中,产生供能信号与产生载波信号的方法可以不同,供能信号产生的要求可能比载波信号要低,但仍需要考虑干扰问题,但对幅度特性要求可以降低,功率要求(带宽)为了达到覆盖,可能无法降低。从实现复杂度的角度,两者采用相同的方法产生,复杂度较低。
在一些实施例中,该多个子载波是按照目标子载波图样选取的;
其中,该目标子载波图样由协议约定,或者,该目标子载波图样由网络配置。
具体例如,以2.4GHz下的WiFi技术为例,OFDM采用的子载波间隔为312.5kHz,1MHz范围内有3个子载波。如果在选取子载波时选取更大间隔的子载波产生载波信号,需要保证每MHz内都至少存在一个子载波用于产生载波信号,例如,对于等间隔的子载波选取,选取的子载波之间的间隔不能超过1MHz。对于非等间隔的子载波选取,需要确定一定的子载波图样(pattern),以满足上述每MHz内都至少存在一个子载波的要求,具体的pattern可以是预定义的,或者网络进行配置的。如图13所示,以等间隔子载波为例,选取的子载波间隔为312.5kHz*3,10MHz带宽,为了保证每MHz都有至少一个子载波,pattern 1需要10个子载波,pattern 2需要11个子载波。具体的,根据选取的 子载波的位置,pattern中包含的子载波个数可能不一样。
可选地,对于非等间隔子载波选取,可以以MHz为单位,在每个1MHz中选取一定数量的子载波,和其相应的位置。
为实现设备的最大发射功率发射的需要,子载波的选择需要考虑设备的最大发射功率、功率谱密度上限,从而决定可以使用最大发射功率发射的载波信号的占据的带宽需要多大,子载波之间的间隔,以及子载波在带宽内的分布。在实际应用上,基于不同的覆盖场景,可以灵活的选择信号的带宽大小、子载波之间的间隔、设备的发射功率等。
在一些实施例中,该多个子载波基于以下至少之一确定:
生成该载波信号的设备的发射功率(如最大发射功率),信号功率谱密度(每MHz需要满足的信号功率谱密度,影响子载波的分布),该载波信号的目标发射功率(发射载波信号需要的功率),该第一通信设备的带宽能力。
需要说明的是,载波不一定需要满功率发射或贴近最大发射功率发射(追求大覆盖),也可能用低一些的功率来追求小一些的覆盖,此时会涉及到载波信号的目标发射功率。
在本申请实施例中,该第一通信设备进行反向散射的带宽处理能力也是需要考虑的因素。该第一通信设备对载波信号进行反向散射的带宽具有一定的范围,载波信号的带宽不能超过该第一通信设备进行反向散射的带宽能力要求。
在一些实施例中,该载波信号可以是通过多载波调制产生的OOK信号,以OFDM调制产生的OOK信号为例,通过对多个子载波设置一定的非零幅度值,经过发射机的IDFT变换,可以产生相应的on时域波形;而不对相应的子载波赋值,则可以产生相应的off时域波形,从而实现基于多载波调制生成OOK信号。例如,在802.11ba技术中的WUR信号,在20MHz带宽内,使用了64点(64-point)IDFT中心的13个子载波产生on波形。对于2μs符号长度,13个子载波中的子载波索引为k=(–6,–4,–2,2,4,6)的6个子载波进行非零赋值(即设置非零幅度值),其他子载波不赋值。对于4μs符号长度,13个子载波中的子载波索引为k=(–6,–5,…–1,1,2,…6)的12个子载波进行非零赋值(即设置非零幅度值),其他子载波不赋值。本申请中载波信号的产生方式可以参考WUR信号,在此不再赘述。
在一些实施例中,该载波信号用于该第一通信设备通过调制生成反向散射信号,也即,该第一通信设备通过对载波信号进行调制来承载信息。其中,调制方式例如为ASK调制,因此,载波信号一般具有较为恒定的幅度,该第一通信设备通过对载波信号进行调幅来形成反向散射的ASK信号。
在多载波系统中,比较优选的方法是通过多载波产生载波信号。例如,采用OFDM调制的WiFi技术和NR技术等。通过OFDM调制产生的on波形,具有一定的较为平坦的幅度,其可以满足作为载波信号的要求,第一通信设备可以在此基础上通过负载调制,对其幅度进行调制以形成ASK反向散射信号。因此,在本申请实施例中,可以通过带宽内的一组子载波进行相应的非零赋值,通过IDFT来产生载波信号。
在一些实施例中,如图14所示,通过选取具有一定间隔的一组子载波,进行非零赋值,经过IDFT,产生连续的on符号,从时域上看该信号为幅度平坦的载波信号。相应的,第一通信设备对载波信号进行ASK调制,形成了反向散射信号,如图15所示,通过ASK调制承载信息比特10101011。
在一些实施例中,根据非零子载波的间隔的不同,产生的on符号的长度也不同。如图16所示,通过调整非零子载波的间隔,可以具有更短的符号长度。相应的,第一通信设备对载波信号进行ASK调制,形成了反向散射信号,如图17所示,通过ASK调制承载信息比特1010101110101011。
在一些实施例中,该载波信号关联的符号长度与该反向散射信号关联的符号长度相同,如图14至17所示。
在一些实施例中,该载波信号关联的符号长度与该反向散射信号关联的符号长度不同。具体的,反向散射信号关联的符号长度可以不依赖于产生载波信号的符号长度。也就是说,反向散射信号的符号长度可以与产生载波信号的符号长度不同。可选地,该第一通信设备可以基于自己的数据速率,决定反向散射信号关联的符号长度,对载波信号进行ASK调制,形成ASK符号。
在一些实施例中,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上不重叠;或者,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上重叠的区域小于预设值。
需要说明的是,如果载波信号和反向散射信号的频域资源相同,会对反向散射信号的接收产生很强的干扰。此外,不同子载波的对齐很难实现,故也可能发生重叠,此种情况下,可以设置该载波信号关联的子载波与该反向散射信号关联的子载波在频域上重叠的区域小于预设值。
具体的,该载波信号关联的子载波可以是用于产生载波信号的子载波,该反向散射信号关联的子载波可以是用于产生反向散射信号的子载波。
在一些实施例中,该预设值由协议约定,或者,该预设值由网络配置,或者,该预设值由该第一通信设备确定,或者,该预设值由生成该载波信号的设备确定。
在一些实施例中,该反向散射信号关联的子载波数量可以与该载波信号关联的子载波数量无关,或者,该反向散射信号关联的子载波数量可以与该载波信号关联的子载波数量相关。
例如,该反向散射信号关联的子载波数量少于该载波信号关联的子载波数量。
又例如,该反向散射信号关联的子载波数量多于该载波信号关联的子载波数量。
再例如,该反向散射信号关联的子载波数量等于该载波信号关联的子载波数量。
因此,本申请实施例中,载波信号关联的子载波与反向散射信号关联的子载波在频域上不重叠,或者,载波信号关联的子载波与反向散射信号关联的子载波在频域上重叠的区域小于预设值,可以减少载波信号关联的子载波对反向散射信号的接收产生的干扰。
在一些实施例中,该反向散射信号关联的子载波由该载波信号关联的部分或全部子载波在频域上偏移得到。
在一些实施例中,用于产生载波信号的非零子载波在信道带宽内等间隔选取,并在相邻非零子载波之间的子载波不赋值,或者赋值为0,即空子载波。相应的,第一通信设备在进行反向散射时,在频域上进行偏移,使得非零子载波偏移到载波信号的空子载波上。如图18所示,载波信号的非零子载波为子载波1,3,5,7,9,11,反向散射信号产生了一个子载波的偏移,非零子载波为子载波0,2,4,6,8,10。
在一些实施例中,上述图18所示的实施例对第一通信设备的频域同步能力要求较高,如果反向散射信号的不能实现较为精确的子载波的整数倍的频域偏移(即频域栅格的整数倍,偏移完整的频域栅格益于对齐,不容易干扰),则同样会产生子载波间的干扰。因此,另一种方式是第一通信设备在反向散射时,将载波信号关联的子载波在频域上整体搬移,使得载波信号关联的子载波集合和反向散射信号关联的子载波集合在频域上隔离。如图19所示,载波信号关联的子载波集合为子载波0-5,第一通信设备在反向散射时,进行比较大范围的频域偏移,例如偏移到子载波6-11,即反向散射信号关联的子载波集合为子载波6-11。这种方法可以进一步减少干扰。同时,如果第一通信设备的反向散射信号所在的频域范围内没有其他信号使用,对于第一通信设备的频域同步能力可以进行一定的放松,不严格要求频域偏移为子载波的整数倍,可以由接收端对反向散射信号进行接收,而不会被其他信号干扰。
在一些实施例中,频域上的偏移量由协议约定,或者,频域上的偏移量由网络配置,或者,频域上的偏移量由该第一通信设备确定,或者,频域上的偏移量由生成该载波信号的设备确定。此种情况下,对于第一通信设备的能力要求较小。
在一些实施例中,频域上的偏移量基于该第一通信设备的能力确定。
在一些实施例中,频域上的偏移可以包括频域偏移的范围和精度。
因此,在本申请实施例中,引入了基于多载波调制生成的载波信号,载波信号用于第一通信设备的供能,和/或,载波信号用于第一通信设备通过调制生成反向散射信号,可以在多载波系统中支持用于零功耗通信的载波信号和供能信号,减少了为支持零功耗通信而引入的发射机复杂度,也可以保持与其他设备的兼容性。
进一步地,载波信号关联的子载波与反向散射信号关联的子载波在频域上不重叠,或者,载波信号关联的子载波与反向散射信号关联的子载波在频域上重叠的区域小于预设值,可以减少载波信号关联的子载波对反向散射信号的接收产生的干扰。
更进一步地,在本申请实施例中,多载波的选择方式可以实现信号在满足功率谱密度的限制的情况下充分利用设备的发射功率,使用多载波还可以实现频率分集增益。
上文结合图11至图19,详细描述了本申请的方法实施例,下文结合图20至图24,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图20示出了根据本申请实施例的通信设备300的示意性框图。该通信设备300为第一通信设备,如图20所示,该通信设备300包括:
通信单元310,用于接收基于多载波调制生成的载波信号;
其中,该载波信号用于该第一通信设备的供能,和/或,该载波信号用于该第一通信设备通过调制生成反向散射信号。
在一些实施例中,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上不重叠;或者,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上重叠的区域小于预设值。
在一些实施例中,该反向散射信号关联的子载波由该载波信号关联的部分或全部子载波在频域上偏移得到。
在一些实施例中,频域上的偏移量由协议约定,或者,频域上的偏移量由网络配置,或者,频域 上的偏移量由该第一通信设备确定,或者,频域上的偏移量由生成该载波信号的设备确定。
在一些实施例中,频域上的偏移量基于该第一通信设备的能力确定。
在一些实施例中,该载波信号关联的符号长度与该反向散射信号关联的符号长度相同,或者,该载波信号关联的符号长度与该反向散射信号关联的符号长度不同。
在一些实施例中,在多载波调制中,该载波信号基于设置有非零幅度值的多个子载波调制得到。
在一些实施例中,该非零幅度值由协议约定,或者,该非零幅度值由网络配置。
在一些实施例中,该非零幅度值为以下之一:
二进制相移键控BPSK关联的幅度值,正交相移键控QPSK关联的幅度值,16-正交振幅调制QAM关联的幅度值,64-QAM关联的幅度值,256-QAM关联的幅度值。
在一些实施例中,该多个子载波等间隔设置,或者,该多个子载波非等间隔设置。
在一些实施例中,该多个子载波是按照目标子载波图样选取的;
其中,该目标子载波图样由协议约定,或者,该目标子载波图样由网络配置。
在一些实施例中,该多个子载波基于以下至少之一确定:
生成该载波信号的设备的发射功率,信号功率谱密度,该载波信号的目标发射功率,该第一通信设备的带宽能力。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备300可对应于本申请方法实施例中的第一通信设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法200中第一通信设备的相应流程,为了简洁,在此不再赘述。
图21示出了根据本申请实施例的通信设备400的示意性框图。该通信设备400为第二通信设备,如图21所示,该通信设备400包括:
通信单元410,用于发送基于多载波调制生成的载波信号;
其中,该载波信号用于第一通信设备的供能,和/或,该载波信号用于第一通信设备通过调制生成反向散射信号。
在一些实施例中,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上不重叠;或者,该载波信号关联的子载波与该反向散射信号关联的子载波在频域上重叠的区域小于预设值。
在一些实施例中,该反向散射信号关联的子载波由该载波信号关联的部分或全部子载波在频域上偏移得到。
在一些实施例中,频域上的偏移量由协议约定,或者,频域上的偏移量由网络配置,或者,频域上的偏移量由该第一通信设备确定,或者,频域上的偏移量由生成该载波信号的设备确定。
在一些实施例中,频域上的偏移量基于该第一通信设备的能力确定。
在一些实施例中,该载波信号关联的符号长度与该反向散射信号关联的符号长度相同,或者,该载波信号关联的符号长度与该反向散射信号关联的符号长度不同。
在一些实施例中,在多载波调制中,该载波信号基于设置有非零幅度值的多个子载波调制得到。
在一些实施例中,该非零幅度值由协议约定,或者,该非零幅度值由网络配置。
在一些实施例中,该非零幅度值为以下之一:
二进制相移键控BPSK关联的幅度值,正交相移键控QPSK关联的幅度值,16-正交振幅调制QAM关联的幅度值,64-QAM关联的幅度值,256-QAM关联的幅度值。
在一些实施例中,该多个子载波等间隔设置,或者,该多个子载波非等间隔设置。
在一些实施例中,该多个子载波是按照目标子载波图样选取的;
其中,该目标子载波图样由协议约定,或者,该目标子载波图样由网络配置。
在一些实施例中,该多个子载波基于以下至少之一确定:
生成该载波信号的设备的发射功率,信号功率谱密度,该载波信号的目标发射功率,该第一通信设备的带宽能力。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的第二通信设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法200中第二通信设备的相应流程,为了简洁,在此不再赘述。
图22是本申请实施例提供的一种通信设备500示意性结构图。图22所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图22所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图22所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,处理器510可以实现通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,收发器530可以实现通信设备中的通信单元的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的通信设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
图23是本申请实施例的装置的示意性结构图。图23所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图23所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。可选地,处理器610可以位于芯片内或芯片外。
在一些实施例中,处理器610可以实现通信设备中的处理单元的功能,为了简洁,在此不再赘述。
在一些实施例中,输入接口630可以实现通信设备中的通信单元的功能。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。可选地,处理器610可以位于芯片内或芯片外。
在一些实施例中,输出接口640可以实现通信设备中的通信单元的功能。
在一些实施例中,该装置可应用于本申请实施例中的通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的通信设备,并且该装置可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图24是本申请实施例提供的一种通信系统700的示意性框图。如图24所示,该通信系统700包括第一通信设备710和第二通信设备720。
其中,该第一通信设备710可以用于实现上述方法中由第一通信设备实现的相应的功能,以及该第二通信设备720可以用于实现上述方法中由第二通信设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、 电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (36)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信设备接收基于多载波调制生成的载波信号;
    其中,所述载波信号用于所述第一通信设备的供能,和/或,所述载波信号用于所述第一通信设备通过调制生成反向散射信号。
  2. 如权利要求1所述的方法,其特征在于,
    所述载波信号关联的子载波与所述反向散射信号关联的子载波在频域上不重叠;或者,
    所述载波信号关联的子载波与所述反向散射信号关联的子载波在频域上重叠的区域小于预设值。
  3. 如权利要求2所述的方法,其特征在于,所述反向散射信号关联的子载波由所述载波信号关联的部分或全部子载波在频域上偏移得到。
  4. 如权利要求3所述的方法,其特征在于,
    频域上的偏移量由协议约定,或者,频域上的偏移量由网络配置,或者,频域上的偏移量由所述第一通信设备确定,或者,频域上的偏移量由生成所述载波信号的设备确定。
  5. 如权利要求3所述的方法,其特征在于,
    频域上的偏移量基于所述第一通信设备的能力确定。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,
    所述载波信号关联的符号长度与所述反向散射信号关联的符号长度相同,或者,所述载波信号关联的符号长度与所述反向散射信号关联的符号长度不同。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,
    在多载波调制中,所述载波信号基于设置有非零幅度值的多个子载波调制得到。
  8. 如权利要求7所述的方法,其特征在于,
    所述非零幅度值由协议约定,或者,所述非零幅度值由网络配置。
  9. 如权利要求7或8所述的方法,其特征在于,
    所述非零幅度值为以下之一:
    二进制相移键控BPSK关联的幅度值,正交相移键控QPSK关联的幅度值,16-正交振幅调制QAM关联的幅度值,64-QAM关联的幅度值,256-QAM关联的幅度值。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,
    所述多个子载波等间隔设置,或者,所述多个子载波非等间隔设置。
  11. 如权利要求10所述的方法,其特征在于,
    所述多个子载波是按照目标子载波图样选取的;
    其中,所述目标子载波图样由协议约定,或者,所述目标子载波图样由网络配置。
  12. 如权利要求7至11中任一项所述的方法,其特征在于,
    所述多个子载波基于以下至少之一确定:
    生成所述载波信号的设备的发射功率,信号功率谱密度,所述载波信号的目标发射功率,所述第一通信设备的带宽能力。
  13. 一种无线通信的方法,其特征在于,包括:
    第二通信设备发送基于多载波调制生成的载波信号;
    其中,所述载波信号用于第一通信设备的供能,和/或,所述载波信号用于第一通信设备通过调制生成反向散射信号。
  14. 如权利要求13所述的方法,其特征在于,
    所述载波信号关联的子载波与所述反向散射信号关联的子载波在频域上不重叠;或者,
    所述载波信号关联的子载波与所述反向散射信号关联的子载波在频域上重叠的区域小于预设值。
  15. 如权利要求14所述的方法,其特征在于,所述反向散射信号关联的子载波由所述载波信号关联的部分或全部子载波在频域上偏移得到。
  16. 如权利要求15所述的方法,其特征在于,
    频域上的偏移量由协议约定,或者,频域上的偏移量由网络配置,或者,频域上的偏移量由所述第一通信设备确定,或者,频域上的偏移量由生成所述载波信号的设备确定。
  17. 如权利要求15所述的方法,其特征在于,
    频域上的偏移量基于所述第一通信设备的能力确定。
  18. 如权利要求13至17中任一项所述的方法,其特征在于,
    所述载波信号关联的符号长度与所述反向散射信号关联的符号长度相同,或者,所述载波信号关联的符号长度与所述反向散射信号关联的符号长度不同。
  19. 如权利要求13至18中任一项所述的方法,其特征在于,
    在多载波调制中,所述载波信号基于设置有非零幅度值的多个子载波调制得到。
  20. 如权利要求19所述的方法,其特征在于,
    所述非零幅度值由协议约定,或者,所述非零幅度值由网络配置。
  21. 如权利要求19或20所述的方法,其特征在于,
    所述非零幅度值为以下之一:
    二进制相移键控BPSK关联的幅度值,正交相移键控QPSK关联的幅度值,16-正交振幅调制QAM关联的幅度值,64-QAM关联的幅度值,256-QAM关联的幅度值。
  22. 如权利要求19至21中任一项所述的方法,其特征在于,
    所述多个子载波等间隔设置,或者,所述多个子载波非等间隔设置。
  23. 如权利要求22所述的方法,其特征在于,
    所述多个子载波是按照目标子载波图样选取的;
    其中,所述目标子载波图样由协议约定,或者,所述目标子载波图样由网络配置。
  24. 如权利要求19至23中任一项所述的方法,其特征在于,
    所述多个子载波基于以下至少之一确定:
    生成所述载波信号的设备的发射功率,信号功率谱密度,所述载波信号的目标发射功率,所述第一通信设备的带宽能力。
  25. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述通信设备包括:
    通信单元,用于接收基于多载波调制生成的载波信号;
    其中,所述载波信号用于所述第一通信设备的供能,和/或,所述载波信号用于所述第一通信设备通过调制生成反向散射信号。
  26. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述通信设备包括:
    通信单元,用于发送基于多载波调制生成的载波信号;
    其中,所述载波信号用于第一通信设备的供能,和/或,所述载波信号用于第一通信设备通过调制生成反向散射信号。
  27. 一种通信设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求1至12中任一项所述的方法。
  28. 一种通信设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求13至24中任一项所述的方法。
  29. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  30. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求13至24中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求1至12中任一项所述的方法被实现。
  32. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被执行时,如权利要求13至24中任一项所述的方法被实现。
  33. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求1至12中任一项所述的方法被实现。
  34. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令被执行时,如权利要求13至24中任一项所述的方法被实现。
  35. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1至12中任一项所述的方法被实现。
  36. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求13至24中任一项所述的方法被实现。
PCT/CN2022/115208 2022-08-26 2022-08-26 无线通信的方法及设备 WO2024040589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115208 WO2024040589A1 (zh) 2022-08-26 2022-08-26 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115208 WO2024040589A1 (zh) 2022-08-26 2022-08-26 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2024040589A1 true WO2024040589A1 (zh) 2024-02-29

Family

ID=90012165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115208 WO2024040589A1 (zh) 2022-08-26 2022-08-26 无线通信的方法及设备

Country Status (1)

Country Link
WO (1) WO2024040589A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN111132342A (zh) * 2019-12-26 2020-05-08 重庆邮电大学 一种基于无线供电反向散射通信网络的多载波资源分配方法
CN111342855A (zh) * 2020-03-19 2020-06-26 复旦大学 一种用于远距离反向散射通信系统的低功耗接收机
WO2021163480A1 (en) * 2020-02-14 2021-08-19 The Regents Of The University Of California Low power wi-fi backscatter communication
CN113810069A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 用于传输信号的通信装置及信号传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506426A (zh) * 2016-10-11 2017-03-15 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN111132342A (zh) * 2019-12-26 2020-05-08 重庆邮电大学 一种基于无线供电反向散射通信网络的多载波资源分配方法
WO2021163480A1 (en) * 2020-02-14 2021-08-19 The Regents Of The University Of California Low power wi-fi backscatter communication
CN111342855A (zh) * 2020-03-19 2020-06-26 复旦大学 一种用于远距离反向散射通信系统的低功耗接收机
CN113810069A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 用于传输信号的通信装置及信号传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "OPPO views on Rel-18 package", 3GPP DRAFT; RWS-210041, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210622 - 20210702, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025606 *

Similar Documents

Publication Publication Date Title
US20240137194A1 (en) Method and device for wireless communication
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
US20240171269A1 (en) Wireless communication method and apparatus, and communication device
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2024040589A1 (zh) 无线通信的方法及设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
CN116073971A (zh) 通信的方法和装置
WO2024098403A1 (zh) 无线通信的方法及设备
CN117813874A (zh) 无线通信的方法和设备
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023173300A1 (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2024040402A1 (zh) 无线通信的方法和设备
WO2024174188A1 (zh) 无线通信的方法及设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
US20240259137A1 (en) Information indication method, network device, terminal, chip, and storage medium
EP4391661A1 (en) Wireless communication method, and device
WO2023193255A1 (zh) 无线通信的方法和设备
WO2024145727A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956134

Country of ref document: EP

Kind code of ref document: A1