WO2021119941A1 - 反射通信的方法和通信装置 - Google Patents

反射通信的方法和通信装置 Download PDF

Info

Publication number
WO2021119941A1
WO2021119941A1 PCT/CN2019/125703 CN2019125703W WO2021119941A1 WO 2021119941 A1 WO2021119941 A1 WO 2021119941A1 CN 2019125703 W CN2019125703 W CN 2019125703W WO 2021119941 A1 WO2021119941 A1 WO 2021119941A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reflected
reflected signal
signals
reflection
Prior art date
Application number
PCT/CN2019/125703
Other languages
English (en)
French (fr)
Inventor
颜矛
高宽栋
黄煌
邵华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/125703 priority Critical patent/WO2021119941A1/zh
Priority to CN201980102219.3A priority patent/CN114667684B/zh
Publication of WO2021119941A1 publication Critical patent/WO2021119941A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques

Definitions

  • This application relates to the technical field of reflection communication, and more specifically, to a method and communication device for reflection communication.
  • Reflective communication relies on the wireless signal received by the reflective antenna for communication.
  • the current reflection communication system mainly includes an exciter, a reflector and a receiver.
  • the exciter sends an excitation signal
  • the reflector receives the excitation signal and reflects the signal.
  • the reflector will carry its own data on the reflected signal.
  • the receiver receives the reflected signal from the reflector and demodulates the data carried on the reflected signal, thereby completing the reflected communication.
  • the reflector due to the passiveness of the reflector and the time ambiguity of the excitation signal sent by the exciter to the reflector after passing through the multipath channel, it will cause the detection deviation of the reflector. These factors will cause the reflector's clock to be inaccurate.
  • the reflector communicates with other devices in the reflection communication system based on a large time deviation, and the performance of the reflection communication will be severely affected.
  • the present application provides a reflection communication method and communication device, which can reduce the clock deviation of the reflector, thereby improving the performance of reflection communication.
  • the present application provides a reflection communication method.
  • the method includes: a reflector receives an excitation signal from an exciter; the reflector sends at least two reflection signals to the receiver based on the excitation signal, and the at least two reflection signals are At least one of the following parameters of the first reflection signal and the second reflection signal in the two reflection signals is different: chip width, frequency position, and bandwidth, wherein the first reflection signal and the second reflection signal are different from each other. Any two of the at least two reflected signals.
  • the reflector reflects at least two reflected signals based on the received excitation signal from the exciter, and at least one of chip width, frequency position, or bandwidth of the at least two reflected signals is different.
  • the receiver can estimate the clock of the reflector more accurately according to the reflected signal of different chip width, frequency position or bandwidth, so as to assist the reflector to adjust the clock of the reflector, reduce the clock deviation of the reflector, and enable The reflector and the exciter or receiver get better synchronization, and the performance of reflection communication is improved.
  • the receiver obtains a more accurate clock estimate of the reflector, which can also assist the receiver to improve the demodulation performance of the data from the reflector.
  • the method includes: the reflector receives a clock adjustment amount, the clock adjustment amount is used to adjust the clock of the reflector, and the clock adjustment amount is based on the At least two reflected signals are determined; the reflector sends and/or receives signals based on the clock adjustment amount.
  • the at least two reflected signals further include at least one other reflected signal in addition to the first reflected signal and the second reflected signal, so Any one of the at least one other reflected signal is different from at least one of the following parameters of the other reflected signal, the first reflected signal or the second reflected signal: chip width, frequency position, and bandwidth.
  • the other reflection signals in the at least two reflection signals satisfy the chip width.
  • At least one of the frequency position or bandwidth is different, or the other reflected signal is different from at least one of the chip width, frequency position or bandwidth of the first reflected signal or the second reflected signal, which can further improve the clock of the receiver to the reflector. The accuracy of the estimate.
  • the chip width of the first reflected signal and the second reflected signal are different, and the chip width of the second reflected signal is the same as that of the first reflected signal.
  • the multiple of the chip width of the reflected signal, and the multiple is an exponential power of 2.
  • the chip width adjustment is carried out in multiples of 2, which is beneficial to reduce the complexity of the reflector implementation. For example, double frequency can be used to achieve 2 times.
  • the chip width of the first reflected signal is D 1
  • the chip width of the second reflected signal is D 2
  • the at least two excitation signals include a first excitation signal and a second excitation signal
  • the first excitation signal is The length in the time domain is T 1
  • the reflector sends and/or receives a signal based on the clock adjustment amount, including: the reflector adjusts the clock of the reflector according to the clock adjustment amount ; The reflector sends and/or receives signals according to the adjusted clock.
  • the method before the reflector sends at least two reflected signals to the receiver, the method further includes: the reflector receives configuration information of the reflected signal, and the configuration information is used for Indicate one or more of the chip width, reflection time, number of chips, and data bit rate of the reflection signal; the reflector sends at least two reflection signals to the receiver, including: the reflector sends at least two reflection signals to the receiver based on the configuration information. The receiver transmits the at least two reflected signals.
  • the present application provides a reflection communication method, the method includes: a receiver receives at least two reflection signals from a reflector, and the first reflection signal and the second reflection signal of the at least two reflection signals At least one of the following parameters is different: chip width, frequency position, and bandwidth, where the first reflection signal and the second reflection signal are any two reflection signals of the at least two reflection signals; receiving; The device sends a clock adjustment amount of the reflector based on the at least two reflected signals, and the clock adjustment amount is determined according to the at least two reflected signals.
  • the at least two reflected signals further include at least one other reflected signal in addition to the first reflected signal and the second reflected signal, so Any one of the at least one other reflected signal is different from at least one of the following parameters of the other reflected signal, the first reflected signal or the second reflected signal: chip width, frequency position, and bandwidth.
  • the method further includes: the receiver sends configuration information of the reflected signal and/or configuration information of the excitation signal, wherein the configuration information of the reflected signal is used for Indicate one or more of the chip width, reflection time, number of chips, and data bit rate of the reflection signal; the configuration information of the excitation signal is used to indicate the frequency position, time length, and time length of the excitation signal.
  • the receiver sends configuration information of the reflected signal and/or configuration information of the excitation signal, wherein the configuration information of the reflected signal is used for Indicate one or more of the chip width, reflection time, number of chips, and data bit rate of the reflection signal; the configuration information of the excitation signal is used to indicate the frequency position, time length, and time length of the excitation signal.
  • the configuration information of the excitation signal is used for Indicate one or more of the chip width, reflection time, number of chips, and data bit rate of the reflection signal.
  • the configuration information of the excitation signal is used to indicate the frequency position, time length, and time length of the excitation signal.
  • the present application provides a reflection communication method, the method includes: an exciter receives a clock adjustment amount from a receiver, the clock adjustment amount is used to adjust the clock of the reflector, and the clock adjustment amount is based on Is determined by the at least two reflection signals of the reflector, at least one of the following parameters of the first reflection signal and the second reflection signal in the at least two reflection signals is different: chip width, frequency position and bandwidth, where all The first reflection signal and the second reflection signal are any two reflection signals of the at least two reflection signals; the exciter sends the clock adjustment amount to the reflector.
  • the method further includes: the exciter receives configuration information of the excitation signal and/or configuration information of the reflected signal from the receiver, wherein the configuration of the excitation signal Information is used to indicate one or more of the frequency position, time length, sub-carrier spacing, and signal generation parameters of the excitation signal; the configuration information of the reflected signal is used to indicate the chip width and reflection of the reflected signal One or more of time, number of chips, and data bit rate.
  • the method further includes: the exciter sends configuration information of the reflected signal to the reflector.
  • the exciter can be used as a controller to generate configuration information of the reflected signal and send it to the reflector.
  • the receiver acts as a controller to generate configuration information of the reflected signal and send it to the exciter.
  • the exciter sends the configuration information of the reflected signal to the transmitter.
  • the description of the reflected signal and the excitation signal can refer to the description of the first aspect or the second aspect, and details are not repeated here.
  • the present application provides a communication device that has a function of implementing the method in the first aspect or any possible implementation manner thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the communication device is a reflector in a reflection communication system.
  • the present application provides a communication device that has a function of implementing the method in the second aspect or any possible implementation manner thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the communication device is a receiver in a reflection communication system.
  • the present application provides a communication device that has a function of implementing the method of the third aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the communication device is an exciter in a reflection communication system.
  • the present application provides a communication device including one or more processors and one or more memories.
  • the one or more memories are used to store computer programs, and the one or more processors are used to call and run the computer programs stored in the one or more memories, so that the communication device executes the first aspect or any of its possibilities.
  • the method in the implementation is used to store computer programs, and the one or more processors are used to call and run the computer programs stored in the one or more memories, so that the communication device executes the first aspect or any of its possibilities.
  • the present application provides a communication device including one or more processors and one or more memories.
  • the one or more memories are used to store computer programs, and the one or more processors are used to call and run the computer programs stored in the one or more memories, so that the communication device executes the second aspect or any of its possibilities The method in the implementation.
  • the present application provides a communication device including one or more processors and one or more memories.
  • the one or more memories are used to store computer programs, and the one or more processors are used to call and run the computer programs stored in the one or more memories, so that the communication device executes the method of the third aspect.
  • this application provides a chip including one or more processors.
  • the one or more processors are used to read and execute one or more computer programs stored in the memory to execute the method in the first aspect or any possible implementation manner thereof.
  • the one or more memories are independently provided outside the chip.
  • the chip further includes one or more memories, and the one or more memories and the one or more processors are connected to the one or more memories through circuits or wires.
  • the chip further includes a communication interface.
  • this application provides a chip including one or more processors.
  • the one or more processors are used to read and execute the computer program stored in one or more memories to execute the method in the second aspect or any possible implementation manner thereof.
  • the one or more memories are independently provided outside the chip.
  • the chip further includes one or more memories, and the one or more memories and the one or more processors are connected to the one or more memories through circuits or wires.
  • the chip further includes a communication interface.
  • this application provides a chip including one or more processors.
  • the one or more processors are used to read and execute computer programs stored in one or more memories to execute the method of the third aspect.
  • the one or more memories are independently provided outside the chip.
  • the chip further includes one or more memories, and the one or more memories and the one or more processors are connected to the one or more memories through circuits or wires.
  • the chip further includes a communication interface.
  • the chip mentioned in the above aspect may be a system on chip (SoC), a baseband chip, and so on.
  • SoC system on chip
  • baseband chip a baseband chip
  • this application also provides a computer program product, including computer program code, which when the computer program code runs on a computer, causes the computer to execute the first aspect or any one of its possible implementations. method.
  • this application also provides a computer program product, including computer program code, which when the computer program code runs on a computer, causes the computer to execute the second aspect or any one of its possible implementations. method.
  • this application also provides a computer program product, including computer program code, which when the computer program code runs on a computer, causes the computer to execute the method of the third aspect.
  • the present application also provides a computer storage medium in which computer instructions are stored.
  • the computer instructions When the computer instructions are run on a computer, the first aspect or any of its possible implementations The method is implemented.
  • the present application also provides a computer storage medium in which computer instructions are stored.
  • the computer instructions are run on a computer, the second aspect or any possible implementation manner thereof The method is implemented.
  • the present application also provides a computer storage medium in which computer instructions are stored, and when the computer instructions are executed on a computer, the method of the third aspect is implemented.
  • the present application provides a reflection communication system, including one or more of the communication device described in the seventh aspect, the communication device described in the eighth aspect, and the communication device described in the ninth aspect.
  • a reflection communication system including one or more of the communication device described in the seventh aspect, the communication device described in the eighth aspect, and the communication device described in the ninth aspect.
  • FIG. 1 are schematic diagrams of the architecture of the reflection communication system.
  • FIG. 2 is a flowchart of the reflective communication method provided by this application.
  • Figure 3 is an example of the clock for estimating and adjusting the reflector provided by this application.
  • Figure 4 shows an example of configuring reflection communication.
  • Figure 5 shows another example of configuring reflection communication.
  • Figure 6 is another example of configuring reflective communication.
  • Figure 7 is another example of configuring reflective communication.
  • (A) and (b) of FIG. 8 are the time-frequency domain structure of the excitation signal and the reflected signal of the embodiment of the application.
  • (A) and (b) of FIG. 9 are examples of the chip width of the reflected signal in the embodiment of the application.
  • FIG. 10 is a schematic diagram of the time structure of reflected data symbols according to an embodiment of the application.
  • FIG. 11 is a schematic block diagram of a communication device provided by this application.
  • FIG. 12 is a schematic block diagram of a communication device provided by this application.
  • FIG. 13 is a schematic diagram of the structure of the reflector provided by this application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by this application.
  • Reflective communication relies on the wireless signal received by the transmitting antenna to communicate, which is suitable for extremely low-power and low-cost information transmission in Internet of Things applications.
  • the architecture of a typical reflection communication system is shown in Figure 1.
  • the reflective communication system includes an exciter, a reflector, and a receiver, as shown in Figure 1(a).
  • the exciter and the reflector can be integrated into the same node, as shown in Figure 1(b).
  • the exciter sends a wireless signal.
  • the reflector receives the wireless signal from the exciter and reflects the signal. During reflection, the reflector will carry its own data on the reflected signal.
  • the receiver demodulates the data carried on the reflected signal.
  • the wireless signal sent by the exciter is also called the excitation signal, and the wireless communication sent by the reflector based on the excitation signal is called the reflected signal.
  • RFID radio frequency identification
  • the reader sends continuous wave (CW) to provide energy to the reflector.
  • the continuous wave can be a single tone signal, a cosine signal, a sine signal, and so on.
  • the reader sends an amplitude shift keying (ASK) signal, which is used to charge the reflector and send control information to the reflector.
  • ASK amplitude shift keying
  • the reader continuously sends continuous waves to provide energy and information carriers to the reflector.
  • the reflector reflects the data signal according to the control information of the reader.
  • the reader/writer receives the data signal from the reflector and demodulates it while sending the continuous wave (that is, the excitation signal).
  • the ASK signal sent from the exciter to the reflector undergoes time ambiguity after a multipath channel, which leads to the detection deviation of the reflector. Coupled with the passive reflector, these factors have caused the reflector's clock to be inaccurate and poor synchronization performance.
  • the present application provides a reflection communication method.
  • the receiver can adjust the clock of the reflector so that the clock of the reflector is synchronized with the clocks of the exciter and the receiver.
  • the specific implementation of the exciter and receiver can be:
  • the exciter is a terminal device, and the receiver is an access network device.
  • the exciter is an access network device, and the receiver is a terminal device.
  • both the exciter and the receiver are terminal devices.
  • both the exciter and the receiver are access network equipment.
  • the names of the access network devices may be different in different communication systems.
  • the access network equipment may be an eNB in LTE or a gNB in NR.
  • any of the three exciters, reflectors, and receivers can be any of base stations, terminal devices, and internet of things devices in the existing 3GPP network; or,
  • Dedicated receiver that is, a device dedicated to receiving reflected signals, which can be connected to network equipment or directly connected to the cellular network; or,
  • Dedicated exciter that is, a device dedicated to sending an excitation signal, which can be connected to a network device or directly connected to a cellular network).
  • the exciter can be defined as other names, for example, Helper, interrogator, reader, and user equipment (UE).
  • Reflector can also be defined as other names, such as backscatter device, battery-less device, passive device, semi-passive device, scattering signal device (ambient signal device) tag (Tag).
  • reflective communication can also be called passive communication, passive communication, and ambient communication.
  • the exciter and receiver in the reflection communication system can be integrated on one node, which is called a reader.
  • a reader which is called a reader.
  • the description is made with an architecture in which the exciter and the receiver are separately arranged.
  • the technical solution of the present application is also applicable to the architecture where the exciter and the receiver become the reader and writer, and should not be limited to the embodiments of the present application.
  • FIG. 2 is a flowchart of the reflective communication method provided by this application.
  • the exciter sends an excitation signal to the reflector.
  • the two different excitation signals mean that at least one of the frequency, duration, subcarrier spacing, signal generation parameters, etc. is different.
  • the signal generation parameters may include the initial value of the sequence of the excitation signal, the type of the sequence, and so on.
  • the reflector receives the excitation signal from the exciter and sends at least two reflection signals to the receiver.
  • the receiver receives the excitation signal and sends the reflection signal at the same time.
  • At least one of the following parameters of the first reflection signal and the second reflection signal in the at least two reflection signals is different: chip width, frequency position, and bandwidth.
  • the first reflection signal and the second reflection signal are any two reflection signals of the at least two reflection signals.
  • chip width may refer to the basic unit of the time length occupied by a data bit or symbol.
  • one data bit or symbol is several chip widths.
  • the chip widths corresponding to two data bits or symbols of the same absolute time length are inconsistent, and the number of chips constituting the data bit is inconsistent.
  • the chip width can correspond to the rate (or frequency), and different chip widths correspond to different chip rates.
  • the chip widths of the first reflected signal and the second reflected signal are different.
  • the chip of the second reflected signal is a multiple of the chip width of the second reflected signal, and the multiple is an exponential power of 2.
  • the chip width of the first reflected signal is D 1
  • the chip width of the second reflected signal is D 2
  • D 2 2D 1
  • the reflector receives the excitation signal from the exciter and sends the first reflection signal and the second reflection signal to the receiver.
  • the reflector receives the excitation signal from the exciter and sends multiple reflected signals to the receiver.
  • the multiple reflected signals include a first reflected signal and a second reflected signal.
  • the multiple reflected signals further include at least one other reflected signal other than the first reflected signal and the second reflected signal.
  • any one of the at least one other reflected signal is different from at least one of the following parameters of the other reflected signal, the first reflected signal, or the second reflected signal: chip width, Frequency location and bandwidth.
  • the first reflected signal is recorded as reflected signal 1
  • the second reflected signal is recorded as reflected signal 2
  • any one of the at least one other reflected signals is recorded as reflected signal 3.
  • the at least two reflected signals The signal can include many possible implementations.
  • At least one of the chip width, frequency position, and bandwidth of the reflected signal 3 is different from the reflected signal 4 in the at least one other reflected signal, where the reflected signal 4 may be the at least one of the at least one other reflected signal. anyone.
  • the reflected signal 3 and the reflected signal 4 are different from the reflected signal 1 and the reflected signal 2.
  • At least one of the chip width, frequency position, and bandwidth of the reflected signal 3 is different from the reflected signal 4.
  • the reflected signal 3 and/or the reflected signal 4 are the same as the reflected signal 1, or the reflected signal 3 and/or the reflected signal 4 are the same as the reflected signal 2.
  • any two reflected signals are a group, one of the two reflected signals in each group is the reflected signal 1, and the other is the reflected signal 2, and N is an integer.
  • At least one of the chip width, frequency position, and bandwidth of any one of the at least two reflected signals is different from the other reflected signal.
  • the reflector only needs to be different in one or more of the chip width, frequency position, and bandwidth of the at least two reflected signals of the at least two reflected signals sent based on the excitation signal.
  • the receiver determines the clock adjustment amount of the reflector according to the at least two reflected signals.
  • the receiver estimates the clock of the reflector according to two or more reflected signals different in at least one of chip width, frequency position, or bandwidth in the at least two reflected signals to obtain the clock adjustment value of the reflector.
  • the receiver determines the clock adjustment amount of the reflector according to the first reflection signal and the second reflection signal.
  • the receiver receives the first reflected signal, the second reflected signal, and at least one other reflected signal from the reflector, and any one of the at least one other reflected signal is different from the other reflected signal, the first reflected signal, or the other reflected signal. If one or more of the chip width, frequency position, and bandwidth of the second reflected signal is different, the receiver determines the reflection according to the first reflected signal, the second reflected signal, and the at least one other reflected signal The amount of clock adjustment of the device.
  • the receiver can obtain a more accurate estimate of the reflector's clock based on at least two reflected signals from the reflector.
  • the receiver can send the estimated clock adjustment to the reflector to help the reflector synchronize to the receiver or exciter more accurately, which helps the reflector reduce synchronization errors with other reflectors when it is connected to the network.
  • the interference caused can improve the performance of reflection communication.
  • the receiver obtains a more accurate clock estimation of the reflector, which can also assist the receiver to improve the demodulation performance of the data from the reflector.
  • the sheet width is D' 1 and D' 2 .
  • the receiver can be estimated based on the following equation (1):
  • arg min represents the value of the variable when the latter formula reaches the minimum value.
  • the receiving end estimates the clock of the reflector in the time domain.
  • the chip width is related to frequency and bandwidth.
  • the clock estimation based on the chip width can naturally also be extended to the frequency domain.
  • the clock estimation can be performed based on the frequency or bandwidth of the reflected signal.
  • the receiver can improve the demodulation performance of the data from the reflector based on the estimated clock adjustment of the reflector.
  • the clock adjustment can also be provided to the reflector so that the reflector can synchronize the clock to the receiver. Or exciter.
  • the method 200 further includes steps 240-250.
  • the receiver sends the clock adjustment value of the reflector.
  • step 240 multiple implementation manners may be included.
  • the receiver sends a clock adjustment to the exciter.
  • the exciter receives the clock adjustment from the receiver.
  • the method 200 further includes step 250.
  • the exciter sends the clock adjustment value to the reflector.
  • the receiver estimates the clock adjustment value of the reflector, it first sends it to the exciter, and then the exciter sends the clock adjustment value to the reflector.
  • the receiver may directly send the clock adjustment amount to the reflector (this implementation is not shown in FIG. 2), and the reflector receives the clock adjustment amount from the receiver.
  • the reflector adjusts the clock of the reflector according to the received clock adjustment amount, and based on the adjusted clock, communicates with other devices in the reflection communication system (for example, an exciter, a receiver, or a third-party device). Reflection communication. For example, the reflector sends and/or receives signals according to the adjusted clock.
  • the clock of the reflector After the clock of the reflector is adjusted, it can be more accurately synchronized with the clocks of the receiver and the exciter, so that the performance of the reflection communication can be improved.
  • FIG. 3 is an example of the clock for estimating and adjusting the reflector provided by this application.
  • the exciter, receiver, or third-party device configures reflection communication.
  • configuring reflection communication includes configuring parameters required for reflection communication. For example, the configuration information of the excitation signal and the configuration information of the reflection signal are configured.
  • the configuration information of the excitation signal may include one or more of the frequency position, time length, subcarrier spacing, and signal generation parameters of the excitation signal.
  • the signal generation parameters may include the initial value of the sequence of the excitation signal, the type of the sequence, and so on.
  • the type of sequence may include Gold sequence, longest linear feedback shift register sequence (maximum length sequence, m sequence), Kasami sequence, complement sequence, Zadoff-Chu sequence, quadratic residual sequence, double prime sequence, Frank Sequence, Golomb sequence, Chirp sequence, P4 sequence, polyphasic sequence, Golay sequence or other low peak-to-average ratio sequences, etc.
  • the configuration information of the reflected signal may include one or more of the chip width of the reflected signal, the reflection time, the number of chips, and the data bit rate.
  • the configuration information of the excitation signal and the configuration information of the reflection signal may be configured by one device, or may also be configured by different devices.
  • the configuration information of the excitation signal and the configuration information of the reflection signal are all configured and issued by the receiver.
  • the configuration information of the excitation signal is configured and issued by the receiver or a third-party device, and the configuration information of the reflected signal is configured and issued by the exciter.
  • part of the configuration information of the excitation signal and the configuration information of the reflected signal is configured by a third-party device, and the other part is configured by the exciter or receiver.
  • the exciter sends excitation signal 1 and excitation signal 2, and the reflector reflects signals based on the excitation signal, such as reflected signal 1 and reflected signal 2.
  • the exciter sends one or more excitation signals.
  • the reflector reflects the received one or more excitation signals, and modulates the data of the reflector on at least two reflected signals.
  • the exciter sends two excitation signals as an example, such as excitation signal 1 and excitation signal 2.
  • the excitation signal sent by the exciter and the reflected signal from the reflector are carried out simultaneously in time.
  • two reflected signals are taken as an example, such as reflected signal 1 and reflected signal 2.
  • the chip widths of the reflected signal 1 and the reflected signal 2 are different.
  • the receiver receives the reflected signal 1 and the reflected signal 2 from the reflector.
  • the reflector estimates the clock of the reflector according to the reflected signal 1 and the reflected signal 2, and determines the amount of clock adjustment.
  • the clock adjustment amount can be the time difference between the reflector and the exciter, or the time difference between the reflector and the receiver.
  • the receiver feeds back the clock adjustment amount to the exciter.
  • the exciter receives the clock adjustment from the receiver.
  • the exciter sends the clock adjustment value to the reflector.
  • the receiver estimates the clock adjustment amount of the reflector, it first sends the clock adjustment amount to the exciter, and then the exciter informs the reflector.
  • the receiver after the receiver estimates the clock adjustment amount, it can directly feed back the clock adjustment amount to the reflector.
  • This implementation is particularly suitable for scenarios where the reflector has a strong capability or the receiver is close to the reflector. This can reduce the feedback delay.
  • step 310 the parameter configuration required to complete the reflection communication can be implemented in multiple ways.
  • the configuration information of the excitation signal and the configuration information of the reflected signal that need to be sent to the exciter or receiver can be carried by the following information or signaling:
  • Radio resource control radio resource control
  • MAC-CE medium access control-control element
  • PDU protocol data unit
  • DCI downlink control information
  • the configuration information of the reflected signal may be notified to the reflector through any one of the reflection link control information of the exciter, the reflection link radio resource control message, and the reflection link medium access control message.
  • the reflection link refers to the communication link from the exciter to the reflector, or the communication link from the exciter to the reflector to the receiver.
  • the receiver acts as a controller, as shown in Figure 4.
  • the receiver configures the configuration information of the excitation signal and sends the configuration information of the excitation signal to the exciter.
  • the exciter configures the configuration information of the reflected signal, and sends the configuration information of the reflected signal to the reflector.
  • the receiver acts as a controller, but the receiver configures the configuration information of the excitation signal and the configuration information of the reflected signal and sends them to the exciter.
  • the exciter sends the configuration information of the reflected signal to the reflector separately.
  • the exciter acts as a controller, as shown in Figure 6.
  • the configuration information of the excitation signal and/or the reflected signal is sent from the exciter to the receiver for the receiver to use for the excitation signal cancellation and/or the demodulation of the reflected signal.
  • the exciter sends configuration information of the reflected signal to the reflector.
  • the receiver receives the configuration information of the excitation signal from the exciter, and the configuration information of the excitation signal can be used to eliminate the excitation signal.
  • the receiver receives the configuration information of the reflected signal from the exciter, and the configuration information of the reflected signal is used for the subsequent demodulation of the reflected signal received from the reflector.
  • the exciter sends an excitation signal, and the reflector reflects the signal.
  • the receiver receives the reflected signal from the reflector, and according to the configuration information of the reflected signal, demodulates the transmitted signal to obtain the data from the reflector carried on the reflected signal.
  • the excitation signal sent by the exciter is not only received by the reflector, but may also be received by the receiver.
  • the reflected signal and excitation signal are received.
  • the receiver needs to cancel the excitation signal according to the configuration information of the excitation signal. After that, the reflected signal is demodulated.
  • the third-party device serves as the controller, as shown in Figure 7.
  • the third-party device is equipped with an exciter and a receiver, and the exciter is equipped with a reflector.
  • the configuration information of the excitation signal and/or the configuration information of the reflected signal are sent to the receiver.
  • the configuration information of the excitation signal is used for the elimination of the excitation signal
  • the configuration information of the reflected signal is used for the demodulation of the reflected signal.
  • the third-party device in this document may be a dedicated network device (for example, a base station), an access management device, a control center, an operation panel, etc., and is a physical device or a logic module that can control the reflection communication configuration.
  • the excitation signal may be determined according to the configuration information of the excitation signal, or indicated by the configuration information of the excitation signal, or may also be predefined by the protocol.
  • the structure of the excitation signal and the reflected signal in the time domain and the frequency domain is shown in Figure 8.
  • (a) and (b) of FIG. 8 are the time-frequency domain structure of the excitation signal and the reflected signal according to the embodiment of the application.
  • the exciter sends excitation signal 1 and excitation signal 2, and the time length, frequency position and bandwidth of excitation signal 1 are T 1 , f 1 and N 1, respectively .
  • the time length, frequency position and bandwidth of the excitation signal 2 are T 2 , f 2 and N 2, respectively .
  • the reflector transmits (or reflects) the reflected signal 1 and the reflected signal 2 based on the excitation signal 1 and the excitation signal 2.
  • Reflected signal duration, frequency bandwidth, and position 2 are respectively T '2, f' 2 and N '2.
  • the frequency and bandwidth of the excitation signal 1 and the excitation signal 2 are the same. At this time, it can be considered that the excitation signal 1 and the excitation signal 2 are the same signal.
  • At least one of the chip width, frequency position, and bandwidth of the reflected signal 1 and the reflected signal 2 reflected by the reflector based on the same excitation signal is different.
  • the bandwidth can also be expressed as the number of subcarriers. Therefore, the bandwidth is different, that is, the number of subcarriers is different.
  • the frequency f 1 of the excitation signal 1 and the frequency f 2 of the excitation signal 2 are different, and the bandwidths N 1 and N 2 are the same.
  • the performance of the receiver can be improved, especially the synchronization performance between the receiver and the exciter. For example, it is beneficial for the receiver to accurately obtain the frequency of the exciter, improve the performance of canceling excitation signals at the receiving end, and also improve the performance of detecting reflected signals.
  • the frequency of the excitation signal 1 and the excitation signal 2 are not the same, and the bandwidth is also different.
  • the bandwidth of excitation signal 1 is greater than the bandwidth of excitation signal 2.
  • Configuring a larger bandwidth for the excitation signal 1 is beneficial to the receiving end to obtain a more accurate estimation of the excitation signal 1. After obtaining a more accurate estimate of the excitation signal, a more accurate estimate of the reflected signal 2 and synchronization information can also be obtained.
  • the bandwidth of the excitation signal 1 is smaller than the bandwidth of the excitation signal 2.
  • the receiving end can perform initial processing on the excitation signal and the reflected signal.
  • the configuration of a smaller bandwidth for the excitation signal 1 is beneficial for the receiving end to perform initial processing on the excitation signal and the reflected signal with a smaller overhead, thereby obtaining the initial synchronization information of the reflector.
  • the receiver uses the received excitation signal 2 and reflected signal 2 to further determine the amount of clock adjustment of the reflector.
  • the total time lengths of the excitation signal 1 and the excitation signal 2 are different.
  • the total time length of the excitation signal 1 is greater than the time length of the excitation signal 2.
  • the total time length of the excitation signal 1 is longer, and more accurate initial synchronization information of the reflector can be obtained.
  • the total time length of the excitation signal 1 is less than the time length of the excitation signal 2.
  • This method is beneficial for the receiving end to perform initial processing on the excitation signal and the reflected signal with a small overhead, and obtain the initial synchronization information of the reflector. On this basis, the receiver uses the received excitation signal 2 and reflected signal 2 to further determine the amount of clock adjustment of the reflector.
  • the transmission power of the excitation signal 1 and the excitation signal 2 are not consistent.
  • the transmission power of the excitation signal 1 is higher than that of the excitation signal 2.
  • the exciter uses a higher transmission power to transmit the excitation signal 1, so that the receiver not only obtains the preliminary synchronization information of the reflector, but also obtains a high-precision direct signal between the exciter and the receiver, so as to facilitate the receiver to eliminate the direct signal. signal. Then, the exciter sends an excitation signal 2 through a lower transmission power, which is used by the receiver to further estimate the clock of the reflector.
  • the transmission power of the excitation signal 1 is lower than the transmission power of the excitation signal 2.
  • the chip width of the reflected signal is related to at least one of the bandwidth, time length, frequency, and transmission power of the excitation signal.
  • one or more of the bandwidth, time length, and transmission power of the excitation signal may have a linear relationship with the chip width of the reflected signal, or may be determined by a predefined formula or mapping relationship.
  • the exciter sends the excitation signal 1 and the excitation signal 2, and the reflector reflects two reflection signals, such as the reflection signal 1 and the reflection signal 2, which are just examples.
  • the exciter can send more than two excitation signals.
  • the time-frequency structure of any two excitation signals in the two or more excitation signals may be like excitation signal 1 and excitation signal 2.
  • the reflector can reflect more than two reflected signals, and the time-frequency structure of any two reflected signals of the two or more reflected signals may be as reflected signal 1 and reflected signal 2.
  • At least one of the width D 1 of the chip of the reflected signal 1, the amplitude of the chip, and/or the phase of the chip is related to at least one of the subcarrier interval, bandwidth, and time length of the excitation signal 1.
  • At least one of the chip width D 2 , the amplitude of the chip, and/or the phase of the chip of the reflected signal 2 is related to at least one of the subcarrier interval, bandwidth, and time length of the excitation signal 1.
  • (a) and (b) of FIG. 9 are examples of the chip width of the reflected signal in the embodiment of the application. As shown in (a) of FIG. 9, the chip width D 1 of the reflected signal 1 is greater than the chip width D 2 of the reflected signal 2. As shown in (b) of FIG. 9, the chip width D 1 of the reflected signal 1 is smaller than the chip width D 2 of the reflected signal 2.
  • FIG. 10 is a schematic diagram of a time structure of a reflected data symbol according to an embodiment of the present application. It should be understood that in a chip width, the high and low levels are only shown in the figure, and may be other ones.
  • the entire chip width is high level, or the entire chip width is low level.
  • the time width occupied by the high level is different from the time width occupied by the low level.
  • the shape and time length of the high and low levels of the reflected signal within the chip width can be pre-defined or pre-configured by the protocol, and is not limited.
  • the reflector can be embodied in the frequency domain as the reflector shifting the frequency of the received excitation signal, or it can be embodied as the reflector moving the received excitation signal Reflect after amplitude scaling and/or phase adjustment. In other words, the reflector reflects the received excitation signal through a variety of reflection states.
  • reflection states of the reflector correspond to different amplitudes and/or phases of the chips.
  • a reflected signal and the length of time of each of the reflected signal 2 T '1, T' 2 , the chip width D 1, D 2, and where the frequency f '1, f' 2, the bandwidth occupied by N '1, N ' 2 it can be configured according to any one of Figures 4-7, or can be pre-defined by the protocol.
  • the reflector uses a larger number of chip amplitudes and/or phases, which can enable the reflected signal to obtain more frequencies. Furthermore, at the receiving end, the synchronization information of the reflector with higher accuracy can be obtained.
  • the waveform of the excitation signal is DFT-s-OFDM.
  • DFT-s-OFDM refers to the existence of transform precoding (DFT) before the excitation signal is mapped to the OFDM subcarrier.
  • the duration T 1 of the excitation signal 1 and the duration T 2 of the excitation signal 2 may respectively include several OFDM symbols or time slots.
  • T 1 2L OFDM symbols
  • T 2 L OFDM symbols.
  • the chip width of the reflected signal may be the time length of K DFT-s-OFDM symbols.
  • the excitation signal can be other forms of waveforms.
  • linear filtering of a single carrier may also be referred to as single carrier quadrature amplitude modulation (SC-QAM).
  • SC-QAM single carrier quadrature amplitude modulation
  • the times T 1 and T 2 of the excitation signal 1 and the excitation signal 2 are L transmission blocks, L ⁇ 1, and L is an integer.
  • the transmission block is the time unit for transmitting the QAM signal and consists of M QAM symbols, where M is a multiple of 16 or 32.
  • the chip width of the reflected signal is the time length of K transmission blocks, where K can be determined according to the configuration information of the reflected signal.
  • the receiver estimates the clock of the reflector, and feeds back the clock adjustment value to the reflector.
  • the reflector adjusts the clock of the reflector according to the clock adjustment amount, which can better synchronize the communication time between the reflector, the exciter and the receiver, which is beneficial to reduce the interference in the network and improve the network efficiency.
  • FIG. 11 is a schematic block diagram of a communication device 500 provided by this application.
  • the communication device 500 includes a transceiving unit 510 and a processing unit 520.
  • the transceiver unit 510 is configured to receive the excitation signal from the exciter
  • the processing unit 520 is configured to control the transceiver unit 510 to send at least two reflection signals to the receiver based on the excitation signal.
  • the first reflection signal and the second reflection signal are among the following parameters At least one item of is different: chip width, frequency position, and bandwidth, where the first reflected signal and the second reflected signal are any two reflected signals of the at least two reflected signals.
  • the transceiving unit 510 is further configured to receive a clock adjustment amount, the clock adjustment amount is used to adjust the clock of the reflector, and the clock adjustment amount is based on the at least two reflections.
  • Signal definite the clock adjustment amount is used to adjust the clock of the reflector, and the clock adjustment amount is based on the at least two reflections.
  • the processing unit 520 is further configured to control the transceiver unit 510 to send signals and/or receive signals based on the clock adjustment amount.
  • the at least two reflected signals further include at least one other reflected signal in addition to the first reflected signal and the second reflected signal, and the at least one other reflected signal Any one of the reflected signals is different from at least one of the following parameters of the other reflected signal, the first reflected signal or the second reflected signal: chip width, frequency position, and bandwidth.
  • the chip widths of the first reflection signal and the second reflection signal are different, and the chip width of the second reflection signal is the chip width of the first reflection signal A multiple of, and the multiple is an exponential power of 2.
  • the chip width of the first reflected signal is D 1
  • the chip width of the second reflected signal is D 2
  • the relationship between D 1 and D 2 satisfies The following relationship:
  • the chip width of each of the at least two reflected signals satisfies a positive correlation with one or more of the bandwidth, time length, and transmission power of the excitation signal Or negatively correlated linear relationship.
  • the at least two excitation signals include a first excitation signal and a second excitation signal
  • the length of the first excitation signal in the time domain is T 1
  • the length of the second excitation signal in the time domain is T 2
  • T 2 2T 1 .
  • the processing unit 520 is specifically configured to adjust the clock of the communication device according to the clock adjustment amount; and, the processing unit 520 controls the clock of the communication device according to the adjusted clock.
  • the transceiver unit 510 transmits and/or receives signals.
  • the transceiving unit 510 is further configured to receive configuration information of the reflected signal, and the configuration information is used to indicate the chip width, reflection time, number of chips, and data bit rate of the reflected signal.
  • the configuration information is used to indicate the chip width, reflection time, number of chips, and data bit rate of the reflected signal.
  • the processing unit 520 is further configured to control the transceiver unit 510 to send the at least two reflected signals based on the configuration information.
  • the communication device 500 may be a reflector in a reflection communication system.
  • the communication device 500 may completely correspond to the reflector in the method embodiment.
  • the transceiving unit 510 may be a transceiver.
  • the transceiver can be replaced by a receiver or a transmitter.
  • the transceiving unit 510 can be replaced by a transmitter when performing a sending action, and the transceiving unit 510 can be replaced by a receiver when performing a receiving action.
  • the communication device 500 may be a circuit system in a reflector, and the circuit system may be a chip, an integrated circuit, or a system on chip (SoC) or the like.
  • the transceiving unit 510 may be a communication interface.
  • the transceiving unit 510 may be an input/output interface or an interface circuit.
  • the input and output circuit may include an input interface and an output interface.
  • the interface circuit may include an input interface circuit and an output interface circuit.
  • the processing unit 520 may be a processing circuit.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include one or more memories and one or more processors.
  • the one or more memories are used to store computer programs, and the one or more processors read and execute the computer programs stored in the one or more memories, so that the communication device 500 executes various method embodiments. Operations and/or processing performed by the reflector.
  • the processing device may also only include the one or more processors, and the one or more storages are located outside the processing device.
  • the one or more processors are connected to the one or more memories through circuits/wires to read and execute computer programs stored in the memories.
  • the transceiving unit 510 may be a radio frequency device in the reflector, and the processing unit 520 may be a baseband device.
  • FIG. 12 is a schematic block diagram of a communication device 600 provided in this application. As shown in FIG. 12, the communication device 600 includes a transceiving unit 610 and a processing unit 620.
  • the transceiver unit 610 is configured to receive at least two reflection signals from the reflector, where at least one of the following parameters of the first reflection signal and the second reflection signal of the at least two reflection signals is different: chip width, frequency Position and bandwidth, wherein the first reflection signal and the second reflection signal are any two reflection signals of the at least two reflection signals;
  • the processing unit 620 is configured to control the transceiver unit 610 to send a clock adjustment amount of the reflector based on the at least two reflection signals, and the clock adjustment amount is determined according to the at least two reflection signals.
  • the at least two reflected signals further include at least one other reflected signal in addition to the first reflected signal and the second reflected signal, and the at least one other reflected signal Any one of the reflected signals is different from at least one of the following parameters of the other reflected signal, the first reflected signal or the second reflected signal: chip width, frequency position, and bandwidth.
  • the transceiver unit 610 is further configured to send configuration information of the reflected signal and/or configuration information of the excitation signal, wherein the configuration information of the reflected signal is used to indicate the reflected signal One or more of the chip width, reflection time, number of chips, and data bit rate;
  • the configuration information of the excitation signal is used to indicate one or more of the frequency position, time length, subcarrier spacing, and signal generation parameters of the excitation signal.
  • the communication device 600 may be a receiver in a reflection communication system.
  • the communication device 600 may completely correspond to the receiver in the method embodiment.
  • the transceiving unit 610 may be a transceiver.
  • the transceiver can be replaced by a receiver or a transmitter.
  • the transceiver performs the sending action, it can be replaced by the transmitter.
  • the transceiver performs the receiving action, it can be replaced by the receiver.
  • the communication device 600 may be a circuit system in a receiver, and the circuit system may be a chip, an integrated circuit, or a system on chip (SoC) or the like.
  • the transceiving unit 610 may be a communication interface.
  • the transceiving unit 610 may be an input/output interface or an interface circuit.
  • the input and output circuit may include an input interface and an output interface.
  • the interface circuit may include an input interface circuit and an output interface circuit.
  • the processing unit 620 may be a processing circuit.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include one or more memories and one or more processors.
  • the one or more memories are used to store computer programs, and the one or more processors read and execute the computer programs stored in the one or more memories, so that the communication device 600 executes various method embodiments. Operations and/or processing performed by the receiver.
  • the processing device may also only include the one or more processors, and the one or more storages are located outside the processing device.
  • the one or more processors are connected to the one or more memories through circuits/wires to read and execute computer programs stored in the memories.
  • the structure of the communication device 600 may be as shown in FIG. 13.
  • the reflector includes a data receiving and demodulating unit, an energy collection and management unit, a signal modulation reflection unit, and a logic control unit.
  • the logic control unit may be a processor.
  • the reflector may also include a storage unit and a channel coding module.
  • the reflector can also be connected to the sensor or the data unit of the sensor, so that the reflector can transmit the data collected by the sensor.
  • the data reflected by the reflector can be RFID or other data, such as temperature, humidity and other data collected by the sensor.
  • the processing circuit inside the reflector communicates with the energy collection and management unit.
  • the processing circuit inside the reflector communicates with the signal modulation reflection unit.
  • the aforementioned channel coding unit, logic control unit or processing period may each be a part of the function of the processing circuit.
  • FIG. 13 there may be one or more storage units, which are integrated with the processing circuit, and the present application is not limited to this manner.
  • the storage unit may be located outside the processing circuit, and the two are physically independent structures.
  • logic control unit or processor is mainly used to process received data and reflected data.
  • the senor can also be integrated inside the reflector, which is not limited herein.
  • the data unit or output interface of the sensor can be connected to the processing circuit of the reflector, so that the processing circuit of the reflector can receive and transmit the data collected by the sensor.
  • the transceiving unit 610 may be a radio frequency device in the receiver, and the processing unit 620 may be a baseband device.
  • FIG. 14 is a schematic block diagram of a communication device 700 provided by this application. As shown in FIG. 14, the communication device 700 includes a receiving unit 710 and a sending unit 720.
  • the receiving unit 710 is configured to receive a clock adjustment amount from the receiver, the clock adjustment amount is used to adjust the clock of the reflector, and the clock adjustment amount is determined according to at least two reflection signals of the reflector. At least one of the following parameters of the first reflection signal and the second reflection signal in the two reflection signals is different: chip width, frequency position, and bandwidth, where the first reflection signal and the second reflection signal are Any two of the at least two reflected signals;
  • the sending unit 720 is configured to send the clock adjustment amount to the reflector.
  • the communication device 700 may be an exciter in a reflection communication system.
  • the communication device 700 may completely correspond to the exciter in the method embodiment.
  • the receiving unit 710 and the sending unit 720 may be integrated as a transceiver unit.
  • the transceiver unit may be a transceiver.
  • the communication device 700 may be a circuit system in the exciter, and the circuit system may be a chip, an integrated circuit, or a system on chip (SoC) or the like.
  • the receiving unit 710 and the sending unit 720 may be communication interfaces.
  • the receiving unit 710 may be an input interface
  • the sending unit 720 may be an output interface.
  • the input interface or output interface may be an interface circuit.
  • the communication device 700 may further include a processing unit 730.
  • the processing unit 730 may be a processing circuit or a processor.
  • the processing unit 730 may be used to generate an excitation signal.
  • the functions of the processing unit 730 may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing unit 730 may include one or more memories and one or more processors. Wherein, the one or more memories are used to store computer programs, and the one or more processors read and execute the computer programs stored in the one or more memories, so that the communication device 700 executes various method embodiments. Operations and/or processing performed by the exciter.
  • the processing unit 730 may also only include the one or more processors, and the one or more storages are located outside the processing unit 730.
  • the one or more processors are connected to the one or more memories through circuits/wires to read and execute computer programs stored in the memories.
  • the communication device 700 may specifically include a signal transceiving unit, an excitation signal generating unit, and a data signal generating unit.
  • the signal transceiver unit is used for signal transmission and reception.
  • the excitation signal generating unit is used to generate the excitation signal to be transmitted, and the data signal generating unit is used to generate the data signal to be transmitted.
  • the receiving unit 710 and the sending unit 720 may be radio frequency devices in the exciter, and the processing unit 730 may be a baseband device.
  • FIG. 15 is a schematic structural diagram of the communication device 10 provided by this application.
  • the communication device 10 includes: one or more processors 11, one or more memories 12, and one or more communication interfaces 13.
  • the processor 11 is used to control the communication interface 13 to receive and/or send signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the communication device 10 executes the application.
  • the processor 11 may have the function of the processing unit 520 shown in FIG. 11, and the communication interface 13 may have the function of the transceiving unit 510 shown in FIG.
  • the operations and/or processing performed by the processor 11 may refer to the description of the processing unit 520 in FIG. 11, and the operations and/or processing performed by the communication interface 13 may refer to the description of the transceiver unit 510.
  • processing unit 520 in the device embodiment may be replaced by the processor 11, and the transceiver unit 510 in the device embodiment may be replaced by the communication interface 13.
  • the communication device 20 includes: one or more processors 21, one or more memories 22, and one or more communication interfaces 23.
  • the processor 21 is used to control the communication interface 23 to receive and/or send signals
  • the memory 22 is used to store a computer program
  • the processor 21 is used to call and run the computer program from the memory 22, so that the communication device 20 executes the application.
  • the processing and/or operation performed by the receiver in each method embodiment of.
  • the processor 21 may have the function of the processing unit 620 shown in FIG. 12, and the communication interface 23 may have the function of the transceiving unit 510 shown in FIG.
  • the processor 21 may have the function of the processing unit 620 shown in FIG. 12, and the communication interface 23 may have the function of the transceiving unit 510 shown in FIG.
  • operations and/or processing performed by the processor 21 refer to the description of the processing unit 520 in FIG. 12, and for operations and/or processing performed by the communication interface 23, refer to the description of the transceiver unit 510.
  • processing unit 520 in the device embodiment may be replaced by the processor 21, and the transceiver unit 510 in the device embodiment may be replaced by the communication interface 23.
  • the processor 21 may be a baseband device in the receiver, and the communication interface 23 may be a radio frequency device in the receiver.
  • FIG. 17 is a schematic structural diagram of the communication device 30 provided by this application.
  • the communication device 30 includes: one or more processors 31, one or more memories 32, and one or more communication interfaces 33.
  • the processor 31 is used to control the communication interface 33 to receive and/or send signals
  • the memory 32 is used to store a computer program
  • the processor 31 is used to call and run the computer program from the memory 32, so that the communication device 30 executes the application.
  • the processor 31 may have the functions of the processing unit 730 shown in FIG. 14, and the communication interface 33 may have the functions of the receiving unit 710 and the sending unit 720 shown in FIG. 14.
  • the operation and/or processing performed by the processor 31 may refer to the description of the processing unit 730 in FIG. 14, and the operation and/or processing performed by the communication interface 33 may refer to the description of the receiving unit 710 and the sending unit 720.
  • the processor 31 may be a baseband device in the exciter, and the communication interface 33 may be a radio frequency device in the exciter.
  • the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may also be integrated.
  • this application also provides a computer-readable storage medium in which computer instructions are stored.
  • the computer instructions run on a computer, the computer executes the reflective communication method provided in this application. Operations and/or processing performed by the reflector.
  • the present application also provides a computer-readable storage medium that stores computer instructions.
  • the computer instructions run on a computer, the computer executes the reflective communication method provided by the present application. Operation and/or processing performed by the device.
  • This application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the operations performed by the reflector in the reflective communication method provided in this application. And/or processing.
  • This application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the operations performed by the receiver in the reflective communication method provided by this application. And/or processing.
  • the present application also provides a communication device, including a processor and an interface circuit, the interface circuit is used to receive computer code or instructions, and transmit to the processor, the processor is used to run the computer code or instructions to Perform operations and/or processing performed by the reflector in the reflective communication method provided in this application.
  • the present application also provides a communication device, including a processor and an interface circuit, the interface circuit is used to receive computer code or instructions, and transmit to the processor, the processor is used to run the computer code or instructions to Perform operations and/or processing performed by the receiver in the reflective communication method provided in this application.
  • the application also provides a chip including one or more processors.
  • the one or more processors are used to execute a computer program stored in the memory to execute operations and/or processing performed by the reflector in any method embodiment.
  • the memory for storing the computer program is provided independently of the chip.
  • the chip may also include one or more communication interfaces.
  • the one or more communication interfaces may be input/output interfaces, input/output circuits, and the like.
  • the chip may also include one or more of the memories.
  • the application also provides a chip including one or more processors.
  • the one or more processors are used to execute a computer program stored in the memory to execute operations and/or processing performed by the receiver in any method embodiment.
  • the memory for storing the computer program is provided independently of the chip.
  • the chip may also include one or more communication interfaces.
  • the one or more communication interfaces may be input/output interfaces, input/output circuits, and the like.
  • the chip may also include one or more of the memories.
  • the present application also provides a reflective communication system, including the reflector and/or receiver in the embodiments of the present application.
  • the processor mentioned in the above embodiment has the ability to process signals.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory mentioned in the above embodiment may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DRRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请提供了一种反射通信的方法,反射器接收来自于激励器的激励信号,向接收器发送码片宽度、频率位置或带宽中至少一项不同的至少两个反射信号,使得接收器可以根据该至少两个反射信号可以对反射器的时钟进行估计,得到时钟调整量并反馈给反射器。反射器基于时钟调整量对时钟进行调整,使得反射器的时钟和接收器或激励器的时钟获得更好的同步,提高反射通信的性能。

Description

反射通信的方法和通信装置 技术领域
本申请涉及反射通信技术领域,更具体地,涉及一种反射通信的方法和通信装置。
背景技术
反射通信(backscatter communication)依靠反射天线接收到的无线信号进行通信。目前的反射通信系统主要包括激励器、反射器和接收器。激励器发送激励信号,反射器接收激励信号,并将信号反射。在反射时,反射器会将自身的数据承载于反射信号上。接收器接收来自于反射器的反射信号,解调出承载于反射信号上的数据,从而完成反射通信。
但是,由于反射器的无源,以及激励器向反射器发送的激励信号经过多径信道后,时间模糊,会导致反射器的检测偏差,这些因素都将造成反射器的时钟不准确。反射器基于较大的时间偏差与反射通信系统中的其它设备通信,反射通信的性能将会受到严重的影响。
发明内容
本申请提供一种反射通信的方法和通信装置,可以降低反射器的时钟偏差,从而提高反射通信的性能。
第一方面,本申请提供一种反射通信的方法,该方法包括:反射器接收来自激励器的激励信号;反射器基于所述激励信号,向接收器发送至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号。
本申请的技术方案,反射器基于接收到的来自激励器的激励信号,反射至少两个反射信号,所述至少两个反射信号的码片宽度、频率位置或带宽的至少一项不同。接收器根据不同的码片宽度、频率位置或带宽的反射信号,可以对反射器的时钟进行更精确的估计,从而辅助反射器对反射器的时钟进行调整,降低反射器的时钟偏差,能够使反射器与激励器或接收器获得更好的同步,提高反射通信的性能。
此外,接收器获得反射器的更精确的时钟估计,也可以辅助接收器提升对来自反射器的数据的解调性能。
结合第一方面,在第一方面的某些实现方式中,该方法包括:反射器接收时钟调整量,所述时钟调整量用于反射器的时钟的调整,所述时钟调整量是根据所述至少两个反射信号确定的;反射器基于所述时钟调整量,发送和/或接收信号。
结合第一方面,在第一方面的某些实现方式中,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它 反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
在该实施例中,除了第一反射信号和第二反射信号满足码片宽度、频率位置和带宽至少一项不同之外,所述至少两个反射信号中的其它反射信号之间满足码片宽度、频率位置或带宽的至少一项不同,或者其它反射信号与第一反射信号或第二反射信号的码片宽度、频率位置或带宽的至少一项不同,可以进一步提高接收器对反射器的时钟估计的精确性。
结合第一方面,在第一方面的某些实现方式中,所述第一反射信号和所述第二反射信号的码片宽度不同,所述第二反射信号的码片宽度是所述第一反射信号的码片宽度的倍数,且所述倍数为2的指数幂。
码片宽度调整以2的倍数进行,有利于降低反射器实现复杂度,例如,采取倍频即可实现2倍。
结合第一方面,在第一方面的某些实现方式中,所述第一反射信号的码片宽度为D 1,所述第二反射信号的码片宽度为D 2,所述D 1和所述D 2之间满足如下关系式:D 2=2 n·D 1,n=-4,-3,-2,-1,1,2,3,4。
结合第一方面,在第一方面的某些实现方式中,所述至少两个反射信号中的每个反射信号的码片宽度与所述激励信号的带宽、时间长度和发送功率中的一项或多项满足正相关或负相关的线性关系。
结合第一方面,在第一方面的某些实现方式中,所述激励信号为至少两个,所述至少两个激励信号包括第一激励信号和第二激励信号,所述第一激励信号在时域上的长度为T 1,所述第二激励信号在时域上的长度为T 2,T 2=2T 1
结合第一方面,在第一方面的某些实现方式中,反射器基于所述时钟调整量,发送和/或接收信号,包括:反射器根据所述时钟调整量,对反射器的时钟进行调整;反射器根据调整后的时钟,发送和/或接收信号。
结合第一方面,在第一方面的某些实现方式中,反射器向接收器发送至少两个反射信号之前,所述方法还包括:反射器接收反射信号的配置信息,所述配置信息用于指示反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;反射器向接收器发送至少两个反射信号,包括:反射器基于所述配置信息,向接收器发送所述至少两个反射信号。
第二方面,本申请提供一种反射通信的方法,该方法包括:接收器接收来自反射器的至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;接收器基于所述至少两个反射信号,发送反射器的时钟调整量,所述时钟调整量是根据所述至少两个反射信号确定的。
结合第二方面,在第二方面的某些实现方式中,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收器发送反射信号的配置信息和/或激励信号的配置信息,其中,所述反射信号的配置信息用于指示所述 反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;所述激励信号的配置信息用于指示所述激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项。
第三方面,本申请提供一种反射通信的方法,该方法包括:激励器接收来自接收器的时钟调整量,所述时钟调整量用于反射器的时钟的调整,所述时钟调整量是根据反射器的至少两个反射信号确定的,所述至少两个反射信号中第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;激励器向所述反射器发送所述时钟调整量。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:激励器接收来自接收器的激励信号的配置信息和/或反射信号的配置信息,其中,所述激励信号的配置信息用于指示所述激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项;所述反射信号的配置信息用于指示所述反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:激励器向反射器发送所述反射信号的配置信息。
在该实施例中,激励器可以作为控制器生成反射信号的配置信息,并发送给反射器。或者,接收器作为控制器生成反射信号的配置信息,并发送给激励器。激励器再将反射信号的配置信息发送给发射器。
第三方面中,反射信号以及激励信号的说明可以参见第一方面或第二方面的说明,这里不再赘述。
第四方面,本申请提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个具体实现中,该通信装置为反射通信系统中的反射器。
第五方面,本申请提供一种通信装置,所述通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个具体的实现中,该通信装置为反射通信系统中的接收器。
第六方面,本申请提供一种通信装置,所述通信装置具有实现第三方面的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个具体的实现中,该通信装置为反射通信系统中的激励器。
第七方面,本申请提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器用于调用并运行所述一个或多个存储器中存储的计算机程序,使得该通信设备执行第一方面或其任意可能的实现方式中的方法。
第八方面,本申请提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器用于调用并运行所述 一个或多个存储器中存储的计算机程序,使得该通信设备执行第二方面或其任意可能的实现方式中的方法。
第九方面,本申请提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器用于调用并运行所述一个或多个存储器中存储的计算机程序,使得该通信设备执行第三方面的方法。
第十方面,本申请提供一种芯片,包括一个或多个处理器。所述一个或多个处理器用于读取并执行一个或多个存储器中存储的计算机程序,以执行第一方面或其任意可能的实现方式中的方法。所述一个或多个存储器独立设置于所述芯片之外。
可选地,所述芯片还包括一个或多个存储器,所述一个或多个存储器与所述一个或多个处理器通过电路或电线与所述一个或多个存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十一方面,本申请提供一种芯片,包括一个或多个处理器。所述一个或多个处理器用于读取并执行一个或多个存储器中存储的计算机程序,以执行第二方面或其任意可能的实现方式中的方法。所述一个或多个存储器独立设置于所述芯片之外。
可选地,所述芯片还包括一个或多个存储器,所述一个或多个存储器与所述一个或多个处理器通过电路或电线与所述一个或多个存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十二方面,本申请提供一种芯片,包括一个或多个处理器。所述一个或多个处理器用于读取并执行一个或多个存储器中存储的计算机程序,以执行第三方面的方法。所述一个或多个存储器独立设置于所述芯片之外。
可选地,所述芯片还包括一个或多个存储器,所述一个或多个存储器与所述一个或多个处理器通过电路或电线与所述一个或多个存储器连接。
进一步可选地,所述芯片还包括通信接口。
上述方面中提及的芯片可以是片上系统(system on chip,SoC)、基带芯片等。
第十三方面,本申请还提供一种计算机程序产品,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或其任意一种可能的实现方式中的方法。
第十四方面,本申请还提供一种计算机程序产品,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或其任意一种可能的实现方式中的方法。
第十五方面,本申请还提供一种计算机程序产品,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面的方法。
第十六方面,本申请还提供一种计算机存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,所述第一方面或其任意可能的实现方式中的方法被实现。
第十七方面,本申请还提供一种计算机存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,所述第二方面或其任意可能的实现方式中的方法被实现。
第十八方面,本申请还提供一种计算机存储介质,所述计算机可读存储介质中存储有 计算机指令,当计算机指令在计算机上运行时,所述第三方面的方法被实现。
第十九方面,本申请提供一种反射通信系统,包括如第七方面所述的通信设备、如第八方面所述的通信设备以及如第九方面所述的通信设备中的一种或多种。
附图说明
图1的(a)和(b)为反射通信系统的架构的示意图。
图2为本申请提供的反射通信的方法的流程图。
图3为本申请提供的估计和调整反射器的时钟的一个示例。
图4为配置反射通信一个示例。
图5为配置反射通信另一个示例。
图6为配置反射通信的又一个示例。
图7为配置反射通信的又一个示例。
图8的(a)和(b)为本申请实施例的激励信号和反射信号的时频域结构。
图9的(a)和(b)为本申请实施例的反射信号的码片宽度的示例。
图10为本申请实施例的反射数据符号时间结构的示意图。
图11为本申请提供的通信装置的示意性框图。
图12为本申请提供的通信装置的示意性框图。
图13为本申请提供的反射器的结构的示意图。
图14为本申请提供的通信装置的示意性结构图。
图15为本申请提供的通信装置的示意性结构图。
图16为本申请提供的通信装置的示意性结构图。
图17为本申请提供的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请的技术方案,首先对反射通信的相关概念作简单介绍。
反射通信(backscatter communication)依靠发射天线端接收到的无线信号进行通信,适用于物联网应用的极低功耗、低成本的信息传输。典型的反射通信系统的架构如图1。
参见图1,图1的(a)和(b)为反射通信系统的架构的示意图。在一种架构中,反射通信系统中包括激励器、反射器和接收器,如图1的(a)所示。其中,激励器和反射器可以集成为同一个节点,如图1的(b)所示,。
激励器发送无线信号。反射器接收激励器的无线信号,并将信号反射。在反射时,反射器会将自身的数据承载于反射信号上。接收器解调出承载于反射信号上的数据。
激励器发送的无线信号也称为激励信号,反射器基于激励信号发送的无线通信,称为反射信号。
现有的基于反射通信的技术为射频标识(radio frequency identification,RFID)。在RFID中,激励器和接收器集成于同一个节点,被称为读写器。
现有的RFID系统,通信过程大致可以概括为如下几个步骤:
1、读写器发送连续波(continuous wave,CW),用于给反射器提供能量。其中,连 续波可以为单音信号、余弦信号、正弦信号等。
2、读写器发送振幅键控(amplitude shift keying,ASK)信号,用于给反射器充电和向反射器发送控制信息。与此同时,被激活的反射器对来自读写器的ASK信号进行解调,获取其中的控制信息。
3、读写器持续发送连续波,用于给反射器提供能量和信息载体。
反射器根据读写器的控制信息,反射数据信号。与此同时,读写器在发送连续波(也即激励信号)的同时,接收来自反射器的数据信号,并对其进行解调。
4、读写器对反射器的读或写的过程,可以经过多次的步骤1~3,直至目标操作完成。
在现有RFID系统中,激励器向反射器发送的ASK信号经历多径信道后时间模糊,导致反射器的检测偏差。再加上反射器无源,这些因素都导致了反射器的时钟不准确,同步性能差。
为此,本申请提供一种反射通信的方法,接收器可以对反射器的时钟进行调整,使得反射器的时钟和激励器、接收器的时钟保持同步。
在本申请中,根据激励器、接收器与现有的长期演进(long term evolution,LTE)或新空口(new radio,NR)网络的对应关系,激励器和接收器的具体实现可以为:
激励器为终端设备,接收器为接入网设备。或者,激励器为接入网设备,接收器为终端设备。或者,激励器和接收器均为终端设备。或者,激励器和接收器均为接入网设备。
可选地,接入网设备在不同的通信系统中名称可以不相同。例如,接入网设备可以为LTE中的eNB或NR中的gNB等。
此外,激励器、反射器和接收器这三者中的任意一个可以为现有的3GPP网络中的基站、终端设备、物联网(internet of thing)设备(device)中的任意一种;或者,
RFID系统中的读写器、反射器;或者,
专用接收器(即,专用接收反射信号的设备,可以和网络设备相连,也可以直接接入蜂窝网络);或者,
专用激励器(即,专用发送激励信号的设备,可以和网络设备相连,也可以直接接入蜂窝网络)。
此外,激励器可以被定义为其他名称,例如,Helper、询问器(interrogator)、读写器(reader)、用户设备(user equipment,UE)。反射器还可以被定义为其他名称,例如,发射设备(backscatter device)、无源设备(battery-less device)、被动设备(passive device)、半有源设备(semi-passive device)、散射信号设备(ambient signal device)标签(Tag)。
此外,反射通信又可以称为被动通信(passive communication)、无源通信、散射通信(ambient communication)。
下面结合图2对本申请的技术方案进行说明。
首先需要说明,如上文所述,反射通信系统中的激励器和接收器可以集成在一个节点上,称为读写器。在下文的实施例中,以激励器和接收器分开设置的架构进行描述。但是,本申请的技术方案同样适用于激励器和接收器即成为读写器的架构,不应对本申请的实施例构成限定。
参见图2,图2为本申请提供的反射通信的方法的流程图。
210、激励器向反射器发送激励信号。
可选地,激励信号可以为一个或多个。
应理解,不同的两个激励信号是指频率、时长、子载波间隔、信号生成参数等至少一项不同。其中,信号生成参数可以包括激励信号的序列的初始值,序列的类型等。
220、反射器接收来自于激励器的激励信号,并向接收器发送至少两个反射信号。
根据反射通信的原理,接收器接收激励信号和发送反射信号是同时的。
其中,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数的至少一项不同:码片宽度、频率位置和带宽。
第一反射信号和第二反射信号为所述至少两个反射信号中任意两个反射信号。
需要说明的是,“码片宽度”可以指一个数据比特或符号所占时间长度的基本单元。例如,一个数据比特或符号为若干个码片宽度。两个相同的绝对时间长度的数据比特或符号对应的码片宽度不一致,则构成该数据比特的码片数量不一致。
码片宽度可以对应速率(或者说,频率),不同的码片宽度对应不同的码片速率。
在一个示例中,第一反射信号和第二反射信号的码片宽度不同。第二反射信号的码片是第二反射信号的码片宽度的倍数,且所述倍数为2的指数幂。
可选地,假设第一反射信号的码片宽度为D 1,第二反射信号的码片宽度为D 2,D 1和所述D 2之间满足如下关系式:
D 2=2 n·D 1,n=-4,-3,-2,-1,1,2,3,4。
例如,D 2=2D 1
在一个实施例中,反射器接收来自激励器的激励信号,并向接收器发送第一反射信号和第二反射信号。
在另一个实施例中,反射器接收来自激励器的激励信号,并向接收器发送多个反射信号。所述多个反射信号包括第一反射信号和第二反射信号,除此之外,所述多个反射信号还包括第一反射信号和第二反射信号之外的至少一个其它反射信号。
可选地,作为一个示例,所述至少一个其它反射信号中的任意一个反射信号与另一个反射信号、第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
假设,将第一反射信号记作反射信号1,将第二反射信号记作反射信号2,所述至少一个其它反射信号中的任意一个反射信号记作反射信号3,则所述至少两个反射信号可以包括多种可能的实现。
例如,反射信号3的码片宽度、频率位置和带宽中的至少一项与所述至少一个其它反射信号中的反射信号4不同,其中,反射信号4可以为所述至少一个其它反射信号中的任意一个。另外,反射信号3和反射信号4与反射信号1和反射信号2均不同。
又例如,反射信号3的码片宽度、频率位置和带宽中的至少一项与反射信号4不同。另外,反射信号3和/或反射信号4中与反射信号1相同,或者,反射信号3和/或反射信号4与反射信号2相同。
又例如,所述至少两个反射信号共有2N个,任意两个反射信号为一组,每一组的两个反射信号中的一个如反射信号1,另一个如反射信号2,N为整数。
又例如,所述至少两个反射信号中任意一个反射信号与另一个反射信号的码片宽度、频率位置和带宽中的至少一项不同。
以上列举仅是作为示例,并不限于上述可能。
在本申请中,反射器基于激励信号发送的所述至少两个反射信号中至少两个反射信号的码片宽度、频率位置和带宽中的一项或多项不同即可。
230、接收器根据所述至少两个反射信号,确定反射器的时钟调整量。
具体地,接收器根据所述至少两个反射信号中码片宽度、频率位置或带宽中至少一项不同的两个或多个反射信号,估计反射器的时钟,得到反射器的时钟调整量。
例如,接收器从反射器接收到第一反射信号和第二反射信号,则接收器根据第一反射信号和第二反射信号,确定反射器的时钟调整量。
又例如,接收器从反射器接收第一反射信号、第二反射信号以及至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号的与另一个反射信号、第一反射信号或第二反射信号的码片宽度、频率位置和带宽中一项或多项不同,则接收器根据所述第一反射信号和所述第二反射信号,以及所述至少一个其它反射信号,确定反射器的时钟调整量。
接收器根据来自反射器的至少两个反射信号,可以获得反射器的时钟的更精确的估计。一方面,接收器可以将估计的时钟调整量发送给反射器,帮助反射器更精确地同步到接收器或激励器,有利于反射器在接入网络时降低与其它反射器之间因同步误差造成的干扰,可以提升反射通信的性能。另一方面,接收器获得反射器的更精确的时钟估计,也可以辅助接收器提升对来自反射器的数据的解调性能。
在本申请中,接收器对反射器的时钟进行估计。假定反射器的理想时钟为C,则在理想的码片宽度D 1内,有N 1=D 1/C个时钟周期。在理想的码片宽度D 2内,有N 2=D 2/C个时钟周期。
由于接收器从反射器获取到的信息经历了反射器非理想性(例如,时钟误差和抖动)、信道衰落以及干扰的影响(例如,激励信号的干扰)等因素,接收端获取的实际的码片宽度为D' 1、D' 2
如果将反射器的实际的时钟记作C',接收器可以基于下式(1)进行估计:
C'=arg min|D' 1-N 1C| 2+|D' 2-N 2C| 2          (1)
应理解,arg min表示使得后面这个式子达到最小值时的变量的取值。
在该实施例中,接收端在时域上对反射器的时钟进行估计。本领域技术人员可以知道,由于码片宽度与频率、带宽都是相关的。根据码片宽度进行时钟估计,自然也可以扩展到频域上,例如,根据反射信号的频率或者带宽等进行时钟估计。
并且,以上公式(1)仅是作为一个示例,在此基础上上容易想到与公式(1)等价的多种变形或者变换,都应属于根据本申请实施例可以确定的范围,这里不再一一列举。
如上文所述,接收器基于估计的反射器的时钟调整量,可以提升对来自反射器的数据的解调性能,还可以将时钟调整量提供给反射器,便于反射器将时钟同步到接收器或激励器。进一步地,方法200还包括步骤240-250。
240、接收器发送所述反射器的时钟调整量。
在步骤240中,可以包括多种实现方式。
例如,在一种实现中,接收器向激励器发送时钟调整量。激励器接收来自接收器的时钟调整量。这种实现方式中,方法200还包括步骤250。
250,激励器向反射器发送所述时钟调整量。
可以理解的是,在这种实现中,接收器估计得到反射器的时钟调整量之后,先发送给激励器,再由激励器将时钟调整量发送给反射器。
又例如,在另一种实现中,接收器可以直接向反射器发送时钟调整量(图2中未示出这种实现),反射器接收来自接收器的时钟调整量。
进一步地,反射器根据接收到的时钟调整量,对反射器的时钟进行调整,并基于调整后的时钟,与反射通信系统中的其它设备(例如,激励器、接收器或第三方设备)进行反射通信。例如,反射器根据调整后的时钟发送信号和/或接收信号。
反射器的时钟经过调整之后,可以和接收器、激励器的时钟获得更精确的同步,从而可以提高反射通信的性能。
以上对本申请提供的反射通信的方法进行了说明,具体说明了对反射器的时钟进行调整的主要流程。下面给出一些具体的示例。
参见图3,图3为本申请提供的估计和调整反射器的时钟的一个示例。
310、在开始反射通信之前,激励器、接收器或第三方设备配置反射通信。
其中,配置反射通信包括配置反射通信所需的参数。例如,配置激励信号的配置信息和反射信号的配置信息。
进一步地,激励信号的配置信息可以包括激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项。
这里,信号生成参数可以包括激励信号的序列的初始值,序列的类型等。
可选地,序列的类型可以包括Gold序列、最长线性反馈移位寄存器序列(maximum length sequence,m序列)、Kasami序列、补序列、Zadoff-Chu序列、二次剩余序列、双素数序列、Frank序列、Golomb序列、Chirp序列、P4序列、多相序列、Golay序列或其它低峰均比序列等。
反射信号的配置信息可以包括反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项。
可选地,激励信号的配置信息和反射信号的配置信息可以由一个设备配置,或者也可以分别由不同的设备配置。
例如,激励信号的配置信息和反射信号的配置信息全部由接收器配置并下发。又例如,激励信号的配置信息由接收器或第三方设备配置并下发,而反射信号的配置信息由激励器配置并下发。再例如,激励信号的配置信息和反射信号的配置信息的一部分由第三方设备配置,另一部分由激励器或接收器配置。本文对配置的具体形式不作限定,下文会给出几个具体的示例。
320、激励器发送激励信号1和激励信号2,反射器基于激励信号反射信号,如反射信号1和反射信号2。
具体地,激励器发送一个或多个的激励信号。反射器对接收到的所述一个或多个激励信号进行反射,并在至少两个反射信号上调制反射器的数据。
在图3中,以激励器发送2个激励信号为例,如激励信号1和激励信号2。
需要说明的是,激励器发送激励信号和反射器反射信号在时间上是同时进行的。
如上文所述,反射信号为至少两个,且至少两个反射信号的码片宽度。频率位置和带 宽中的至少一项不同。图3中,以两个反射信号为例,如反射信号1和反射信号2。
作为一个示例,反射信号1和反射信号2的码片宽度不同。
接收器接收来自反射器的反射信号1和反射信号2。
330、反射器根据反射信号1和反射信号2,对反射器的时钟进行估计,确定时钟调整量。
时钟调整量可以是反射器和激励器的时间差,或者反射器和接收器的时间差。
340、接收器向激励器反馈时钟调整量。
激励器从接收器接收时钟调整量。
350、激励器向反射器发送时钟调整量。
在图3所示的流程中,接收器估计出反射器的时钟调整量之后,先将时钟调整量发送给激励器,再由激励器通知反射器。
在另一种实现中,接收器估计出时钟调整量之后,可以直接将时钟调整量反馈给反射器。这种实现方式尤其适用于反射器的能力较强,或者接收器离反射器比较近的场景。这样可以降低反馈时延。
另外,在步骤310中,完成反射通信所需的参数配置可以有多种实现方式。
例如,需要发送给激励器或接收器的激励信号的配置信息以及反射信号的配置信息可以通过如下信息或信令携带:
无线资源控制(radio resource control,RRC)信令、媒体接入控制-控制元素(medium access control-control element,MAC-CE)、MAC协议数据单元(protocol data unit,PDU)、下行控制信息(downlink control information,DCI)以及系统消息。
可选地,反射信号的配置信息可以通过激励器的反射链路控制信息、反射链路无线资源控制消息、反射链路媒体接入控制消息中的任意一个通知给反射器。
应理解,反射链路是指激励器到反射器之间的通信链路,或者激励器到反射器到接收器之间的通信链路。
下面给出步骤310中配置反射通信的几个示例。
例如,在一种实现中,接收器作为控制器,如图4所示。
参见图4,图4为配置反射通信一个示例。在这种方式中,接收器配置激励信号的配置信息,并将激励信号的配置信息发送给激励器。激励器配置反射信号的配置信息,并将反射信号的配置信息发送给反射器。
参见图5,图5为配置反射通信的另一个示例。在这种方式中,接收器作为控制器,但是,接收器配置激励信号的配置信息和反射信号的配置信息,并发送给激励器。激励器再将反射信号的配置信息单独发送给反射器。
例如,在另一种实现中,激励器作为控制器,如图6所示。
参见图6,图6为配置反射通信的另一个示例。在这种方式中,激励信号和/或反射信号的配置信息由激励器发送给接收器,供接收器用于激励信号消除和/或反射信号的解调。此外,激励器将反射信号的配置信息发送给反射器。
应理解,接收器从激励器接收激励信号的配置信息,激励信号的配置信息可以用于激励信号的消除。接收器从激励器接收反射信号的配置信息,反射信号的配置信息用于后续从反射器接收到的反射信号的解调。
需要说明的,通常情况下,激励器发送激励信号,反射器反射信号。接收器从反射器接收反射信号,并根据反射信号的配置信息,对发射信号进行解调,获取反射信号上承载的来自于反射器的数据。
但是,在一些场景下,例如,激励器距离接收器较近,激励器发送的激励信号不仅被反射器接收,还可能被接收器接收到。对于接收器而言,就接收到了反射信号和激励信号。此时,接收器在解调反射信号之前,需要根据激励信号的配置信息,对激励信号进行消除。之后,再对反射信号进行解调。
例如,在再一种实现中,第三方设备作为控制器,如图7所示。
参见图7,图7为配置反射通信的又一个示例。在这种实现中,第三方设备配置激励器和接收器,激励器配置反射器。其中,激励信号的配置信息和/或反射信号的配置信息发送给接收器。其中,激励信号的配置信息用于激励信号的消除,反射信号的配置信息用于反射信号的解调。
其中,关于激励信号的消除,在上文的图6已经进行了说明,这里不再赘述。
本文中的第三方设备,可以是专用网络设备(例如,基站)、接入管理设备、控制中心、操作面板等,是可以实现控制反射通信配置的实体设备或者逻辑模块。
上文结合图2-图7,对本申请提供的反射通信的方法的流程做了详细说明,下面对本申请实施例中的激励信号和反射信号作进一步的介绍。
可选地,激励信号可以是根据激励信号的配置信息确定的,或者是由激励信号的配置信息指示的,或者也可以是由协议预定义的。激励信号和反射信号在时域和频域上的结构如图8所示。
参见图8,图8的(a)和(b)为本申请实施例的激励信号和反射信号的时频域结构。
如图8的(a)所示,作为一个示例,激励器发送激励信号1和激励信号2,激励信号1的时间长度、频率位置和带宽分别为T 1,f 1和N 1。激励信号2的时间长度、频率位置和带宽分别为T 2,f 2和N 2
如图8的(b)所示,作为一个示例,反射器基于激励信号1和激励信号2,发送(或者说,反射)反射信号1和反射信号2。其中,反射信号1的时间长度、频率位置和带宽分别为T' 1,f' 1和N' 1。反射信号2的时间长度、频率位置和带宽分别为T' 2,f' 2和N' 2
在一种实现方式中,激励信号1和激励信号2的频率和带宽相同。此时,可以认为激励信号1和激励信号2是同一个信号。
但是,反射器基于同一个激励信号而反射的反射信号1和反射信号2的码片宽度、频率位置和带宽中的至少一种不相同。
可选地,带宽也可以表示为子载波数量。因此,带宽不同也即子载波数量不同。
在一个示例中,激励信号1的频率f 1和激励信号2的频率f 2不同,带宽N 1和N 2相同。
通过配置不同频率的激励信号,可以提高接收器的性能,尤其是提升接收器和激励器之间同步的性能。例如,有利于接收器精确获取激励器的频率,提升接收端对激励信号的消除性能,并且也可以提升对反射信号的检测性能。
在另一个示例中,激励信号1和激励信号2的频率不相同,带宽也不相同。
例如,激励信号1的带宽大于激励信号2的带宽。为激励信号1配置更大的带宽,有利于接收端获得激励信号1的更准确的估计。在获得激励信号的更准确的估计之后,也可 以获得反射信号2的更准确的估计以及同步信息。
又例如,激励信号1的带宽小于激励信号2的带宽。根据接收到的激励信号1和反射信号1,接收端可以对激励信号和反射信号进行初始的处理。而为激励信号1配置更小的带宽,有利于接收端以更小的开销对激励信号和反射信号进行初始的处理,从而获得反射器的初始同步信息。然后,在此基础上,接收器利用接收到的激励信号2和反射信号2,进一步确定反射器的时钟调整量。
在另一个示例中,激励信号1和激励信号2的总时间长度不同。
例如,激励信号1的总时间长度大于激励信号2的时间长度。激励信号1的总时间长度更长,可以获得反射器的比较准确的初始同步信息。
再例如,激励信号1的总时间长度小于激励信号2的时间长度。这种方式有利于接收端以较小的开销对激励信号和反射信号进行初始的处理,获得反射器的初始同步信息。在此基础上,接收器利用接收到的激励信号2和反射信号2,进一步确定反射器的时钟调整量。
在另一个示例中,激励信号1和激励信号2的发送功率不一致。
例如,激励信号1比激励信号2的发送功率高。激励器使用更高的发送功率发送激励信号1,使得接收器不仅获得反射器的初步的同步信息,并且获得高精度的激励器与接收器之间的直达信号,从而方便接收器消除所述直达信号。然后,激励器再通过较低的发送功率发送激励信号2,用于接收器对反射器的时钟作进一步的估计。
又例如,激励信号1的发送功率低于激励信号2的发送功率。
可选地,反射信号的码片宽度与激励信号的带宽、时间长度、频率以及发送功率中的至少一种有关。
在一些示例中,激励信号的带宽、时间长度以及发送功率中的一种或多种与反射信号的码片宽度可以是线性关系,或者由预定义的公式或者映射关系确定。
例如,激励信号的带宽、总时间长度和/或发送功率越大,反射信号的码片宽度越宽,有利于获得反射器的更精确的同步信息。
再例如,激励信号的带宽、时间长度和/或发送功率越小,反射信号的码片宽度越宽。在这种情况下,可以保证在两个不同时间获得的反射器的同步信息的性能差异不大,使得总体的反射器的同步信息在信道时变性比较慢的时候性能更好。
在上述实施例中,激励器发送激励信号1和激励信号2,进而反射器反射两个反射信号,如反射信号1和反射信号2,仅是作为示例。在对反射器的时钟进行估计时,激励器可以发送两个以上的激励信号。所述两个以上的激励信号中任意两个激励信号的时频结构可以如激励信号1和激励信号2。相应地,反射器可以反射两个以上的反射信号,所述两个以上的反射信号中任意两个反射信号的时频结构可以如反射信号1和反射信号2。
在一种实现方式中,反射信号1的码片的宽度D 1、码片的幅度和/或码片的相位的至少一个,与激励信号1的子载波间隔、带宽和时间长度的至少一个相关。
类似地,反射信号2的码片宽度D 2、码片的幅度和/或码片的相位的至少一个,与激励信号1的子载波间隔、带宽和时间长度的至少一个相关。
参见图9,图9的(a)和(b)为本申请实施例的反射信号的码片宽度的示例。如图9的(a)所示,反射信号1的码片宽度D 1大于反射信号2的码片宽度D 2。如图9的(b) 所示,反射信号1的码片宽度D 1小于反射信号2的码片宽度D 2
下面结合图10,对本申请的反射数据符号时间结构进行说明。
参见图10,图10为本申请实施例的反射数据符号时间结构的示意图。应理解,在一个码片宽度中,高低电平仅为图示,还可以为其他。
例如,整个码片宽度为高电平,或者整个码片宽度为低电平。又例如,在码片宽度的时间内,高电平所占的时间宽度与低电平所占时间宽度不同。
可选地,反射信号在码片宽度内高低电平的形状、时间长度,可以由协议预定义或预配置,不作限定。
反射器通过控制反射信号的码片宽度以及对应的电平幅度、相位,在频域上可以体现为反射器对接收到的激励信号进行频率搬移,也可以体现为反射器对接收到的激励信号进行幅度缩放和/或相位调节后进行反射。或者说,反射器通过多种反射状态对接收到的激励信号进行反射。
应理解,反射器的不同的反射状态对应码片的幅度和/或相位不同。
另外,反射信号1和反射信号2各自的时间长度T' 1、T' 2、码片宽度D 1、D 2,以及所在的频率f' 1,f' 2,所占带宽N' 1、N' 2,可以是根据图4-图7中任意一种方式配置获得,或者可以由协议预定义。
在一种实现方式中,反射器使用更多数量的码片的幅度和/或相位,可以使反射信号获得更多的频率。进一步地,在接收端,可以获得更高精度的反射器的同步信息。
在一种实现方式中,激励信号的波形是正交频分复用(orthogonal frequency division multiplex,OFDM)符号。因此,激励信号1的时长T 1和激励信号2的时长T 2可以分别包含若干个OFDM符号或者时隙。例如,T 1=2L个OFDM符号,T 2=L个OFDM符号,L≥1,且L为整数。又例如,T 1=k 1个时隙,T 2=k 2个时隙,k 1和k 2均为整数。例如,k 1=1,2,k 2=1,2。反射信号的码片宽度可以为K个OFDM符号或时隙,K可以根据反射信号的配置信息确定。例如,K=1,K=2,K=4,K=8,K=32,K=64,K=128,K=256,K=1024,K=2048,K=4196,K=8192。再例如,K=7,K=6。
在另一种实现方式中,激励信号的波形是DFT-s-OFDM。
应理解,DFT-s-OFDM是指激励信号映射到OFDM子载波之前,存在转移编码(transform precoding,DFT)。
激励信号1的时长T 1和激励信号2的时长T 2可以分别包含若干个OFDM符号或者时隙。例如,例如,T 1=2L个OFDM符号,T 2=L个OFDM符号。反射信号的码片宽度可以为K个DFT-s-OFDM符号的时间长度。其中,K可以根据反射信号的配置信息来确定。例如,K=1,K=2,K=4,K=8,K=16,K=32,K=64,K=128,K=256,K=1024,K=2048,K=4196,K=8192,K=7,K=6,K=1/2,K=1/3,K=1/4,K=1/6,或者K=1/12。
在另一些实现方式中,激励信号可以是其他形式的波形。例如,线性滤波单载波,其也可以称为单载波正交幅度调整(single carrier quadrature amplitude modulation,SC-QAM)。
激励信号1和激励信号2的时间T 1、T 2是L个传输块,L≥1,且L为整数。传输块是传输QAM信号的时间单元,由M个QAM符号组成,其中,M为16或32的倍数。反射信号的码片宽度为K个传输块的时间长度,其中,K可以根据反射信号的配置信息确定。
例如,K=1,K=2,K=4,K=8,K=16,K=32,K=64,K=128,K=256,K=1024,K=2048, K=4196,K=8192,K=6,K=1/2,K=1/3,K=1/4,K=1/6,或者K=1/12。
在一些示例中,T 1=T 2,或者,T 1>T 2,例如,T 1=2T 2等,不作限定。
本申请提供的反射通信的方法,接收器对反射器的时钟进行估计,并向反射器反馈时钟调整量。反射器根据时钟调整量对反射器的时钟进行调整,可以使反射器与激励器、接收器之间通信的时间更好地同步,有利于降低网络中的干扰,提高网络效率。
以上,对估计反射器的时钟的方法进行了详细说明,下面说明本申请提供的通信装置。
参见图11,图11为本申请提供的通信装置500的示意性框图。如图11所示,通信装置500包括收发单元510和处理单元520。
收发单元510,用于接收来自激励器的激励信号;
处理单元520,用于基于所述激励信号,控制所述收发单元510向接收器发送至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号。
可选地,在一个实施例中,收发单元510还用于接收时钟调整量,所述时钟调整量用于所述反射器的时钟的调整,所述时钟调整量是根据所述至少两个反射信号确定的;
所述处理单元520,还用于基于所述时钟调整量,控制收发单元510发送信号和/或接收信号。
可选地,在一个实施例中,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
可选地,在一个实施例中,所述第一反射信号和所述第二反射信号的码片宽度不同,所述第二反射信号的码片宽度是所述第一反射信号的码片宽度的倍数,且所述倍数为2的指数幂。
可选地,在一个实施例中,所述第一反射信号的码片宽度为D 1,所述第二反射信号的码片宽度为D 2,所述D 1和所述D 2之间满足如下关系式:
D 2=2 n·D 1,n=-4,-3,-2,-1,1,2,3,4。
可选地,在一个实施例中,所述至少两个反射信号中的每个反射信号的码片宽度与所述激励信号的带宽、时间长度和发送功率中的一项或多项满足正相关或负相关的线性关系。
可选地,在一个实施例中,所述激励信号为至少两个,所述至少两个激励信号包括第一激励信号和第二激励信号,所述第一激励信号在时域上的长度为T 1,所述第二激励信号在时域上的长度为T 2,T 2=2T 1
可选地,在一个实施例中,所述处理单元520具体用于根据所述时钟调整量,对所述通信装置的时钟进行调整;以及,所述处理单元520根据调整后的时钟,控制所述收发单元510发送和/或接收信号。
可选地,在一个实施例中,所述收发单元510还用于接收反射信号的配置信息,所述配置信息用于指示反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
所述处理单元520,还用于基于所述配置信息,控制所述收发单元510发送所述至少两个反射信号。
可选地,在一种实现中,通信装置500可以为反射通信系统中的反射器。例如,通信装置500可以完全对应方法实施例中的反射器。收发单元510可以为收发器。收发器可以由接收机或者发射机代替。例如,收发单元510在执行发送的动作时,可以由发射机代替,收发单元510在执行接收的动作时,可以由接收机代替。
可选地,在另一种实现中,通信装置500可以为反射器中的电路系统,所述电路系统可以为芯片、集成电路或片上系统(system on chip,SoC)等。此时,收发单元510可以为通信接口。例如,收发单元510可以为输入/输出接口或接口电路。输入输出电路可以包括输入接口和输出接口。接口电路可以包括输入接口电路和输出接口电路。处理单元520可以为处理电路。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括一个或多个存储器以及一个或多个处理器。其中,所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器读取并执行所述一个或多个存储器中存储的计算机程序,使得通信装置500执行各方法实施例中由反射器执行的操作和/或处理。
可选地,处理装置也可以仅包括所述一个或多个处理器,所述一个或多个储存器位于处理装置之外。所述一个或多个处理器通过电路/电线与所述一个或多个存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,在一个实施例中,收发单元510可以为反射器中的射频装置,处理单元520可以为基带装置。
参见图12,图12为本申请提供的通信装置600的示意性框图。如图12所示,通信装置600包括收发单元610和处理单元620。
收发单元610,用于接收来自反射器的至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;
处理单元620,用于基于所述至少两个反射信号,控制所述收发单元610发送所述反射器的时钟调整量,所述时钟调整量是根据所述至少两个反射信号确定的。
可选地,在一个实施例中,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
可选地,在一个实施例中,所述收发单元610,还用于发送反射信号的配置信息和/或激励信号的配置信息,其中,所述反射信号的配置信息用于指示所述反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
所述激励信号的配置信息用于指示所述激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项。
可选地,在一种实现中,通信装置600可以为反射通信系统中的接收器。例如,通信 装置600可以完全对应方法实施例中的接收器。收发单元610可以为收发器。收发器可以由接收机或者发射机代替。例如,收发器执行发送的动作时,可以由发射机代替。收发器执行接收的动作时,可以由接收机代替。
可选地,在另一种实现中,通信装置600可以为接收器中的电路系统,所述电路系统可以为芯片、集成电路或片上系统(system on chip,SoC)等。此时,收发单元610可以为通信接口。例如,收发单元610可以为输入/输出接口或接口电路。输入输出电路可以包括输入接口和输出接口。接口电路可以包括输入接口电路和输出接口电路。处理单元620可以为处理电路。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括一个或多个存储器以及一个或多个处理器。其中,所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器读取并执行所述一个或多个存储器中存储的计算机程序,使得通信装置600执行各方法实施例中由接收器执行的操作和/或处理。
可选地,处理装置也可以仅包括所述一个或多个处理器,所述一个或多个储存器位于处理装置之外。所述一个或多个处理器通过电路/电线与所述一个或多个存储器连接,以读取并执行存储器中存储的计算机程序。
在一种实现中,通信装置600为反射器的情况下,通信装置600的结构可以如图13所示。
参见图13,图13为本申请提供的反射器的结构的示意图。如图13所示,反射器包括数据接收解调单元、能量收集和管理单元、信号调制反射单元以及逻辑控制单元等。可选地,所述逻辑控制单元可以为处理器。进一步地,反射器还可以包括存储单元以及信道编码模块。
反射器还可以与传感器或者传感器的数据单元连接,使得反射器可以传输传感器采集的数据。反射器反射的数据可以是RFID,也可以是其它数据,例如,传感器采集的温度、湿度等数据。在接收能量的情况下,反射器内部的处理电路与能量收集和管理单元连通。在反射信号的情况下,反射器内部的处理电路与信号调制反射单元连通。上述的信道编码单元、逻辑控制单元或处理期可以各自为处理电路的部分功能。
另外,在图13中,存储单元可以为一个或多个,并和处理电路集成在一起,本申请不限定为此方式。例如,在另一些实现中,存储单元可以位于处理电路之外,两者是物理上相互独立的结构。
应理解,逻辑控制单元或处理器主要用于对接收到的数据以及反射数据的处理。
可选在,在另一些实现中,传感器也可以集成在反射器的内部,本文不作限定。例如,传感器的数据单元或输出接口可以与反射器的处理电路连接,从而,反射器的处理电路可以接收并传输传感器采集的数据。
可选地,在一个实施例中,收发单元610可以为接收器中的射频装置,处理单元620可以为基带装置。
参见图14,图14为本申请提供的通信装置700的示意性框图。如图14所示,通信装置700包括接收单元710和发送单元720。
接收单元710,用于接收来自接收器的时钟调整量,所述时钟调整量用于反射器的时 钟的调整,所述时钟调整量是根据反射器的至少两个反射信号确定的,所述至少两个反射信号中第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;
发送单元720,用于向所述反射器发送所述时钟调整量。
可选地,在一种实现中,通信装置700可以为反射通信系统中的激励器,例如,通信装置700可以完全对应方法实施例中的激励器。接收单元710和发送单元720可以为集成为收发单元。收发单元可以为收发器。
可选地,在另一种实现中,通信装置700可以为激励器中的电路系统,所述电路系统可以为芯片、集成电路或片上系统(system on chip,SoC)等。此时,接收单元710和发送单元720可以为通信接口。例如,接收单元710可以为输入接口,发送单元720可以为输出接口。所述输入接口或输出接口可以为接口电路。
可选地,通信装置700还可以包括处理单元730。可选地,处理单元730可以处理电路或处理器。
其中,处理单元730可以用于生成激励信号。可选地,处理单元730的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理单元730可以包括一个或多个存储器以及一个或多个处理器。其中,所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器读取并执行所述一个或多个存储器中存储的计算机程序,使得通信装置700执行各方法实施例中由激励器执行的操作和/或处理。
可选地,处理单元730也可以仅包括所述一个或多个处理器,所述一个或多个储存器位于处理单元730之外。所述一个或多个处理器通过电路/电线与所述一个或多个存储器连接,以读取并执行存储器中存储的计算机程序。
在一种实现中,通信装置700具体可以包括信号收发单元、激励信号生成单元和数据信号生成单元。其中,信号收发单元用于信号的发送和接收。激励信号生成单元用于产生待发送的激励信号,数据信号生成单元用于产生待发送的数据信号。
可选地,在一个实施例中,接收单元710和发送单元720可以为激励器中的射频装置,处理单元730可以为基带装置。
为描述的方便和简洁,上述描述的通信装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
参见图15,图15为本申请提供的通信装置10的示意性结构图。如图15所示,通信装置10包括:一个或多个处理器11,一个或多个存储器12,以及一个或多个通信接口13。其中,处理器11用于控制通信接口13接收和/或发送信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行所述计算机程序,使得通信装置10执行本申请的各方法实施例中由反射器执行的处理和/或操作。
例如,处理器11可以具有图11中所示的处理单元520的功能,通信接口13可以具备图11中所示的收发单元510的功能。具体地,处理器11执行的操作和/或处理可以参见图11中对处理单元520的说明,通信接口13执行的操作和/或处理可以参见对收发单元510的说明。
或者说,装置实施例中处理单元520可以由处理器11代替,装置实施例中收发单元 510可以由通信接口13代替。
参见图16,图16为本申请提供的通信装置20的示意性结构图。如图16所示,通信装置20包括:一个或多个处理器21,一个或多个存储器22,以及一个或多个通信接口23。其中,处理器21用于控制通信接口23接收和/或发送信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行所述计算机程序,使得通信装置20执行本申请的各方法实施例中由接收器执行的处理和/或操作。
例如,处理器21可以具有图12中所示的处理单元620的功能,通信接口23可以具备图12中所示的收发单元510的功能。处理器21执行的操作和/或处理可以参见图12中对处理单元520的说明,通信接口23执行的操作和/或处理可以参见对收发单元510的说明。
或者说,装置实施例中处理单元520可以由处理器21代替,装置实施例中收发单元510可以由通信接口23代替。
可选地,在一个实施例中,处理器21可以为接收器中的基带装置,通信接口23可以为接收器中的射频装置。
参见图17,图17为本申请提供的通信装置30的示意性结构图。如图17所示,通信装置30包括:一个或多个处理器31,一个或多个存储器32,以及一个或多个通信接口33。其中,处理器31用于控制通信接口33接收和/或发送信号,存储器32用于存储计算机程序,处理器31用于从存储器32中调用并运行所述计算机程序,使得通信装置30执行本申请的各方法实施例中由激励器执行的处理和/或操作。
例如,处理器31可以具有图14中所示的处理单元730的功能,通信接口33可以具备图14中所示的接收单元710和发送单元720的功能。处理器31执行的操作和/或处理可以参见图14中对处理单元730的说明,通信接口33执行的操作和/或处理可以参见对接收单元710和发送单元720的说明。
可选地,在一个实施例中,处理器31可以为激励器中的基带装置,通信接口33可以为激励器中的射频装置。
可选地,上述各装置实施例中的存储器和处理器可以是物理上相互独立的单元,或者,存储器和处理器也可以集成在一起。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行本申请提供的反射通信的方法中由反射器执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行本申请提供的反射通信的方法中由接收器执行的操作和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行本申请提供的反射通信的方法中由反射器执行的操作和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行本申请提供的反射通信的方法中由接收器执行的操作和/或处理。
本申请还提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行本申请提供的反射通信的方法中由反射器执行的操作和/或处理。
本申请还提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行本申请提供的反射通信的方法中由接收器执行的操作和/或处理。
本申请还提供一种芯片,所述芯片包括一个或多个处理器。所述一个或多个处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由反射器执行的操作和/或处理。其中,用于存储计算机程序的存储器独立于所述芯片之外而设置。
进一步地,所述芯片还可以包括一个或多个通信接口。所述一个或多个通信接口可以是输入/输出接口,输入/输出电路等。进一步地,所述芯片还可以包括一个或多个所述存储器。
本申请还提供一种芯片,所述芯片包括一个或多个处理器。所述一个或多个处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由接收器执行的操作和/或处理。其中,用于存储计算机程序的存储器独立于所述芯片之外而设置。
进一步地,所述芯片还可以包括一个或多个通信接口。所述一个或多个通信接口可以是输入/输出接口,输入/输出电路等。进一步地,所述芯片还可以包括一个或多个所述存储器。
此外,本申请还提供一种反射通信系统,包括本申请实施例中的反射器和/或接收器。
上述实施例中提及的处理器具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直 接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本文中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中,A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种反射通信的方法,其特征在于,包括:
    反射器接收来自激励器的激励信号;
    所述反射器基于所述激励信号,向接收器发送至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述反射器接收时钟调整量,所述时钟调整量用于所述反射器的时钟的调整,所述时钟调整量是根据所述至少两个反射信号确定的;
    所述反射器基于所述时钟调整量,发送和/或接收信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一反射信号和所述第二反射信号的码片宽度不同,所述第二反射信号的码片宽度是所述第一反射信号的码片宽度的倍数,且所述倍数为2的指数幂。
  5. 根据权利要求4所述的方法,其特征在于,所述第一反射信号的码片宽度为D 1,所述第二反射信号的码片宽度为D 2,所述D 1和所述D 2之间满足如下关系式:
    D 2=2 n·D 1,n=-4,-3,-2,-1,1,2,3,4。
  6. 根据权利要求1-5中任意一项所述的方法,其特征在于,所述至少两个反射信号中的每个反射信号的码片宽度与所述激励信号的带宽、时间长度和发送功率中的一项或多项满足正相关或负相关的线性关系。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述激励信号为至少两个,所述至少两个激励信号包括第一激励信号和第二激励信号,所述第一激励信号在时域上的长度为T 1,所述第二激励信号在时域上的长度为T 2,T 1=2T 2
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述反射器基于所述时钟调整量,发送和/或接收信号,包括:
    所述反射器根据所述时钟调整量,对所述反射器的时钟进行调整;
    所述反射器根据调整后的时钟,发送和/或接收信号。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述反射器向接收器发送至少两个反射信号之前,所述方法还包括:
    所述反射器接收反射信号的配置信息,所述配置信息用于指示反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
    所述反射器基于所述激励信号,向接收器发送至少两个反射信号,包括:
    所述反射器根据所述激励信号的配置信息,向接收器发送所述至少两个反射信号。
  10. 一种反射通信的方法,其特征在于,包括:
    接收器接收来自反射器的至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;
    所述接收器基于所述至少两个反射信号,发送所述反射器的时钟调整量,所述时钟调整量是根据所述至少两个反射信号确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述接收器发送反射信号的配置信息和/或激励信号的配置信息;
    其中,所述反射信号的配置信息用于指示所述反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
    所述激励信号的配置信息用于指示所述激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自激励器的激励信号;
    处理单元,用于基于所述激励信号,控制所述收发单元向接收器发送至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号。
  14. 根据权利要求13所述的通信装置,其特征在于,所述收发单元还用于接收时钟调整量,所述时钟调整量用于所述通信装置的时钟的调整,所述时钟调整量是根据所述至少两个反射信号确定的;
    所述处理单元,还用于基于所述时钟调整量,控制所述收发单元发送和/或接收信号。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
  16. 根据权利要求13-15中任一项所述的通信装置,其特征在于,所述第一反射信号和所述第二反射信号的码片宽度不同,所述第二反射信号的码片宽度是所述第一反射信号的码片宽度的倍数,且所述倍数为2的指数幂。
  17. 根据权利要求16所述的通信装置,其特征在于,所述第一反射信号的码片宽度为D 1,所述第二反射信号的码片宽度为D 2,所述D 1和所述D 2之间满足如下关系式:
    D 2=2 n·D 1,n=-4,-3,-2,-1,1,2,3,4。
  18. 根据权利要求13-17中任一项所述的通信装置,其特征在于,所述至少两个反射信号中的每个反射信号的码片宽度与所述激励信号的带宽、时间长度和发送功率中的一项或多项满足正相关或负相关的线性关系。
  19. 根据权利要求13-18中任一项所述的通信装置,其特征在于,所述激励信号为至少两个,所述至少两个激励信号包括第一激励信号和第二激励信号,所述第一激励信号在时域上的长度为T 1,所述第二激励信号在时域上的长度为T 2,T 1=2T 2
  20. 根据权利要求13-19中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述时钟调整量,对所述通信装置的时钟进行调整;
    根据调整后的时钟,控制所述收发单元发送和/或接收信号。
  21. 根据权利要求13-20中任一项所述的通信装置,其特征在于,所述收发单元还用于接收反射信号的配置信息,所述配置信息用于指示反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
    所述处理单元,还用于根据所述配置信息,控制所述收发单元向接收器发送所述至少两个反射信号。
  22. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自反射器的至少两个反射信号,所述至少两个反射信号中的第一反射信号和第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽,其中,所述第一反射信号和所述第二反射信号为所述至少两个反射信号中的任意两个反射信号;
    处理单元,用于基于所述至少两个反射信号,控制所述收发单元发送所述反射器的时钟调整量,所述时钟调整量是所述处理单元根据所述至少两个反射信号确定的。
  23. 根据权利要求22所述的通信装置,其特征在于,所述至少两个反射信号中还包括除了所述第一反射信号和所述第二反射信号之外的至少一个其它反射信号,所述至少一个其它反射信号中的任意一个反射信号与另外一个反射信号、所述第一反射信号或第二反射信号的如下参数中的至少一项不同:码片宽度、频率位置和带宽。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述收发单元还用于发送反射信号的配置信息和/或激励信号的配置信息;
    其中,所述反射信号的配置信息用于指示所述反射信号的码片宽度、反射时间、码片的数量和数据比特速率中的一项或多项;
    所述激励信号的配置信息用于指示所述激励信号的频率位置、时间长度、子载波间隔和信号生成参数中的一项或多项。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行如权利要求1-9中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行如权利要求10-12中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被执行时,如权利要求1-9中任一项所述的方法被实现。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被执行时,如权利要求10-12中任一项所述的方法被实现。
  29. 一种通信系统,其特征在于,包括如权利要求13-21中任一项所述的通信装置,和/或如权利要求22-24中任一项所述的通信装置。
PCT/CN2019/125703 2019-12-16 2019-12-16 反射通信的方法和通信装置 WO2021119941A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/125703 WO2021119941A1 (zh) 2019-12-16 2019-12-16 反射通信的方法和通信装置
CN201980102219.3A CN114667684B (zh) 2019-12-16 2019-12-16 反射通信的方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125703 WO2021119941A1 (zh) 2019-12-16 2019-12-16 反射通信的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021119941A1 true WO2021119941A1 (zh) 2021-06-24

Family

ID=76478123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125703 WO2021119941A1 (zh) 2019-12-16 2019-12-16 反射通信的方法和通信装置

Country Status (2)

Country Link
CN (1) CN114667684B (zh)
WO (1) WO2021119941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023133840A1 (zh) * 2022-01-14 2023-07-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和供能节点
WO2023193255A1 (zh) * 2022-04-08 2023-10-12 Oppo广东移动通信有限公司 无线通信的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027681A (zh) * 2007-10-25 2011-04-20 原子能和辅助替代能源委员会 用于同步的方法和装置
US8823494B1 (en) * 2010-11-19 2014-09-02 Logitech Europe S.A. Systems and methods for wireless device connection and pairing
CN105005751A (zh) * 2015-08-12 2015-10-28 苏州芯动科技有限公司 一种rfid标签芯片信号反射方法
CN108254743A (zh) * 2016-12-28 2018-07-06 富士通株式会社 信息提取装置、物品检测装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697946B2 (en) * 2002-06-04 2010-04-13 Forster Ian J Reflective communication using radio-frequency devices
US7760835B2 (en) * 2002-10-02 2010-07-20 Battelle Memorial Institute Wireless communications devices, methods of processing a wireless communication signal, wireless communication synchronization methods and a radio frequency identification device communication method
JP4528170B2 (ja) * 2005-03-17 2010-08-18 株式会社リコー 原稿読み取り装置および複写装置
US7492316B1 (en) * 2005-12-23 2009-02-17 Multispectral Solutions, Inc. Wireless time reference system and method
US9230141B2 (en) * 2010-07-01 2016-01-05 Intelleflex Corporation RSSI estimate on variable length correlator output
KR101139491B1 (ko) * 2010-09-08 2012-05-02 에스케이하이닉스 주식회사 Rfid 장치
US9485609B2 (en) * 2015-02-06 2016-11-01 Nxp B.V. Pulse frequency control for wireless communications and ranging
US9673964B2 (en) * 2015-02-18 2017-06-06 Qualcomm Incorporated Active load modulation in near field communication
WO2017027847A1 (en) * 2015-08-12 2017-02-16 University Of Washington Backscatter devices and network systems incorporating backscatter devices
KR102410912B1 (ko) * 2015-10-28 2022-06-20 삼성전자주식회사 비접촉 통신 장치, 이를 포함하는 전자 시스템, 및 비접촉 통신 장치의 동작 방법
TW201717570A (zh) * 2015-11-09 2017-05-16 新力股份有限公司 通信裝置及通信方法
US10951446B2 (en) * 2016-01-26 2021-03-16 University Of Washington Backscatter devices including examples of single sideband operation
SG10201608437WA (en) * 2016-10-07 2018-05-30 Huawei Int Pte Ltd Active load modulation technique in near field communication
US10462759B2 (en) * 2017-01-31 2019-10-29 Dialog Semiconductor B.V. System and method for clock synchronization on a wireless network
US10194409B2 (en) * 2017-02-16 2019-01-29 Samsung Electronics Co., Ltd. Near field communication device and an operating method of the near field communication device
CN108462991B (zh) * 2017-02-22 2020-07-14 北京小鸟听听科技有限公司 处理器时钟同步方法、设备及系统
CN109391448B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置
CN110324068A (zh) * 2018-03-28 2019-10-11 上海华为技术有限公司 射频识别系统、组建中继网络的方法和阅读器、中继器
CN109858302B (zh) * 2019-01-31 2020-05-15 清华大学 环境反射通信系统的标签反射系数优化方法及装置
CN110430540B (zh) * 2019-06-28 2021-10-26 南京中感微电子有限公司 无线广播发射、接收设备及通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027681A (zh) * 2007-10-25 2011-04-20 原子能和辅助替代能源委员会 用于同步的方法和装置
US8823494B1 (en) * 2010-11-19 2014-09-02 Logitech Europe S.A. Systems and methods for wireless device connection and pairing
CN105005751A (zh) * 2015-08-12 2015-10-28 苏州芯动科技有限公司 一种rfid标签芯片信号反射方法
CN108254743A (zh) * 2016-12-28 2018-07-06 富士通株式会社 信息提取装置、物品检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023133840A1 (zh) * 2022-01-14 2023-07-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和供能节点
WO2023193255A1 (zh) * 2022-04-08 2023-10-12 Oppo广东移动通信有限公司 无线通信的方法和设备

Also Published As

Publication number Publication date
CN114667684B (zh) 2023-06-27
CN114667684A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2021169586A1 (zh) 一种通信方法及装置
JP6843220B2 (ja) 通信装置、通信方法及び集積回路
CN115280176A (zh) 用于在半双工模式下工作的无线通信网络中的通信和感测的方法和装置
US20150055617A1 (en) Communication device and integrated circuit
WO2021119987A1 (zh) 反射通信方法、激励器、反射器和接收器
WO2017219996A1 (zh) 传输用户序列的方法、网络设备和终端设备
WO2021097597A1 (zh) 信号传输的方法和装置、反射器以及接收器
WO2018171491A1 (zh) 无线通信的方法、网络设备和终端设备
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
WO2021204293A1 (zh) 定位信号处理方法及装置
CN111837353A (zh) 用于在无线通信系统中发送和接收定位参考信号的方法和装置
CN110830212B (zh) 一种参考信号发送、接收方法及装置
WO2017132806A1 (zh) 配置导频信号的方法及第一设备
WO2021119941A1 (zh) 反射通信的方法和通信装置
WO2019029586A1 (zh) 通信方法和通信设备
WO2019062947A1 (zh) 一种通信方法及设备
TW201919427A (zh) 無線通訊方法、終端和網路設備
CN110830202B (zh) 通信方法、装置和通信系统
US11728943B2 (en) Methods and apparatuses for communicating position reference signals
WO2018127180A1 (zh) 一种参考信号传输方法及装置
US11469871B2 (en) Signaling of SRS resources for PUSCH rate matching
CN116963264A (zh) Uwb信号的传输方法及相关装置
WO2020216068A1 (zh) 发送参考信号的方法和装置
CN116584059A (zh) 一种参考信号的通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956873

Country of ref document: EP

Kind code of ref document: A1