WO2017219996A1 - 传输用户序列的方法、网络设备和终端设备 - Google Patents

传输用户序列的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2017219996A1
WO2017219996A1 PCT/CN2017/089502 CN2017089502W WO2017219996A1 WO 2017219996 A1 WO2017219996 A1 WO 2017219996A1 CN 2017089502 W CN2017089502 W CN 2017089502W WO 2017219996 A1 WO2017219996 A1 WO 2017219996A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
user sequence
sequence
network device
signaling
Prior art date
Application number
PCT/CN2017/089502
Other languages
English (en)
French (fr)
Inventor
张华滋
王坚
李榕
余荣道
戎璐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17814734.4A priority Critical patent/EP3457735B1/en
Publication of WO2017219996A1 publication Critical patent/WO2017219996A1/zh
Priority to US16/231,521 priority patent/US10848274B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly to a method, network device and terminal device for transmitting a sequence of users.
  • IoT Internet of Things
  • MTC Machine-Type Communications
  • the uplink user state information is multiplexed and transmitted on the time-frequency resources shared by the system, and can be used in various scenarios.
  • a random access signal for example, a preamble
  • LTE Long Term Evolution
  • UDRS User Detection Reference Signal
  • DMRS Demodulation Reference Signal
  • the user selects a sequence of users from a set of user sequences for transmission.
  • the user sequence mainly plays the role of identifying the user; the base station detects the user sequence sent by the user, that is, the user detection process.
  • Channel estimation or time-frequency offset estimation can also be performed based on the user sequence.
  • the set of user-selectable user sequences is referred to as the user sequence space, and the size of the user sequence space directly determines the probability of collision between users. The larger the user sequence space, the smaller the collision probability.
  • the user sequences in the existing user sequence space are mutually orthogonal, and the size of the user sequence space is limited by the length of the user sequence.
  • the traditional cellular mobile communication system is mainly designed for MBB services, and does not consider the scenario of mass connection.
  • MBB service the number of users that have been accessed and the number of potential access users are relatively limited. Therefore, when designing the user sequence space, the system often specifies the number of available user sequences in the protocol, and only provides a total number of available user sequences with a small total number and a fixed total number. For example, on the Physical Random Access Channel (PRACH) of the LTE system, only 54 Zadoff-Chu (ZC) sequences are provided for contention access.
  • PRACH Physical Random Access Channel
  • ZC Zadoff-Chu
  • the probability of collisions is greatly increased, that is, the probability of collision is greatly increased.
  • the present application provides a method for transmitting a user sequence, which can flexibly specify the size of a user sequence space, and can improve system work efficiency.
  • the present application provides a method for transmitting a user sequence, including: a network device sending first signaling to a terminal device, where the first signaling includes a number of user sequences indicating a first user sequence space. a message, the user sequence of the first user sequence space includes a complete set of user sequences used by the terminal device served by the network device; the network device receives the first user sequence sent by the terminal device according to the first information; and the network device is configured according to the first user sequence, Perform user detection and/or communication parameter estimation.
  • the network device may be a network device of a cell, and may be a base station in a cell level sense or a network device having a function similar to a base station, such as a wireless router and an access point (AP).
  • the network device may be a network device that provides wireless access and communication services for terminal devices that are mobile or fixed in the cell.
  • All terminal devices served by the network device include a terminal device that accesses the network device and a terminal device that resides in the network device.
  • the terminal device includes an access network device, a terminal device that performs uplink/downlink communication through the network device, and a terminal device that resides in the service scope of the network device and is likely to perform access, uplink/downlink communication, and the like.
  • the network equipment service scope can refer to the coverage of its air interface.
  • the first user sequence is a sequence of users in the first user sequence space.
  • the user sequence of the first user sequence space includes a complete set of user sequences used by the terminal device served by the network device, and may also be described as a sequence of users of the first user sequence space including all user sequences used by the terminal device served by the network device, or The user sequence of the first user sequence space includes a union of user sequences for use by all terminal devices served by the network device.
  • the first aspect provides a method for transmitting a sequence of users, the network device sending, to the terminal device, first information indicating a number of user sequences of the first user sequence space, where the user sequence of the first user sequence space includes a terminal device served by the network device.
  • the complete set of user sequences used thereby flexibly specifying the size of the user sequence space that can be used by all terminal devices served by the network device, thereby enabling adjustment of the size of the user sequence space, thereby improving the accuracy of user detection or communication parameter estimation. Sex, improve system efficiency.
  • the complete set of user sequences used by the terminal device served by the network device comprises: a sequence of users for competitive access and/or for non-competitive access.
  • User sequence In other words, the first user sequence space may include a sequence of users used by the terminal device for competitive access and/or a sequence of users for non-competitive access.
  • the method for transmitting the user sequence may include: the network device transmitting the first to the terminal device Signaling, the first signaling includes information on the number of user sequences for competitive access and the number of user sequences for non-competitive access, user sequences for competitive access and The non-competitive access user sequence constitutes a first user sequence space; the network device receiving terminal device transmits according to the number of user sequences used for competitive access and/or the number of user sequences used for non-competitive access A sequence of users; the network device performs user detection and/or communication parameter estimation based on the first user sequence.
  • the complete set of user sequences used by the terminal device served by the network device includes: a sequence of users for scheduling based on unscheduled access and/or for using the A sequence of users that the network device schedules access to.
  • the user sequence of the first user sequence space includes a sequence of users for scheduling based on unscheduled access and/or a sequence of users for scheduling access based on the network device.
  • the complete set of user sequences used by the terminal device served by the network device comprises: a sequence of users for autonomous access and/or for a network device Guide (supervised) the sequence of users accessed.
  • the user sequence of the first user sequence space includes a sequence of users for autonomous access and/or a sequence of users for network device supervised access.
  • the method further includes: the network device sends the second signaling to the terminal device, where the second signaling includes Second information of the number of user sequences of the second user sequence space, the second user sequence space includes a first spatial subset and a second spatial subset, the first spatial subset and the second spatial subset are completely different, the first space
  • the subset includes a user sequence identical to the user sequence of the first user sequence space, and the degree of coherence of each user sequence of the second spatial subset and the user sequence of the first spatial subset is less than or equal to the second user sequence space. The degree of coherence of the user sequence with the user sequence of the first spatial subset.
  • the first user sequence space includes a third spatial subset and a fourth spatial subset, the third spatial subset and the fourth spatial subset are completely different, and the fourth spatial sub- The degree of coherence of each user sequence of the set and the user sequence of the third spatial subset is greater than or equal to the coherence of any two user sequences of the third spatial subset; after the network device sends the first signaling to the terminal device, the method The method further includes: the network device sends the third signaling to the terminal device, where the third signaling includes third information for indicating the number of user sequences of the third user sequence space, the user sequence of the third user sequence space and the third space
  • the subset includes the same user sequence.
  • the first user sequence space is expanded into a second user sequence space, and the maximum coherence of the expanded second user sequence space is greater than or equal to the maximum coherence of the first user sequence space before the expansion.
  • the maximum coherence refers to the maximum value of the coherence of any two user sequences in the user sequence space.
  • the first user sequence space is reduced to the third user sequence space, and the reduced third user sequence space has a maximum coherence that is less than or equal to the maximum coherence of the first user sequence space before the decrease.
  • the above two possible implementation manners can flexibly expand or reduce the user sequence space by signaling, and the maximum coherence of the extended or reduced user sequence space is kept as small as possible, and the user can detect or estimate the communication parameters. accuracy.
  • the method may further include: the network device sending the second signaling to the terminal device, where the second signaling includes a quantity of the user sequence indicating the second user sequence space is relatively
  • the second information of the change in the number of user sequences in the first user sequence space, the second user sequence space includes a first spatial subset and a second spatial subset, the first spatial subset and the second spatial subset are completely different,
  • the first spatial subset includes a user sequence identical to the user sequence of the first user sequence space, and the coherence of each user sequence of the second spatial subset to the user sequence of the first spatial subset is less than or equal to the second user sequence The degree of coherence of the user sequence outside the space with the user sequence of the first spatial subset.
  • the method may further include: the network device sending the third signaling to the terminal device, where the third signaling includes a user sequence for indicating the third user sequence space.
  • the first user sequence space comprising a third spatial subset and a fourth spatial subset, a third spatial subset and a fourth spatial subset
  • the third spatial subset includes a user sequence identical to the user sequence of the third user sequence space
  • the coherence of each user sequence of the fourth spatial subset and the third spatial subset user sequence is greater than or equal to Any two of the three spatial subsets The coherence of the user sequence.
  • the method may further include: determining, by the network device, the user sequence of the first user sequence space according to the current network load and the system parameter.
  • the number of system parameters including user sequence length, collision probability tolerance value, missed detection probability tolerance value, timing estimation error, channel estimation error, bit error rate, available time-frequency resource size, available computing resource size, received signal power and signal noise At least one of the ratios.
  • the network device determines the number of user sequences in the first user sequence space according to the current network load and system parameters, and may more accurately determine the size of the first user sequence space, so that the user The size of the sequence space is more conducive to improving the accuracy of user detection or communication parameter estimation and improving system efficiency.
  • the network device After receiving the first user sequence, the network device can be applied to the following scenarios:
  • the first user sequence is a random access signal
  • the network device performs user detection and/or communication parameter estimation according to the first user sequence, including: the network device performs user detection according to the random access signal, and performs random access to the terminal device. process.
  • the first user sequence is a user detection reference signal
  • the network device performs user detection and/or communication parameter estimation according to the first user sequence, including: the network device performs user detection according to the user detection reference signal, and determines that the terminal device uses the data transmission.
  • the first user sequence is a demodulation reference signal
  • the network device performs user detection and/or communication parameter estimation according to the first user sequence, including: the network device performs communication parameter estimation for data demodulation and communication according to the demodulation reference signal.
  • the parameter estimation includes at least one of a time offset estimation, a frequency offset estimation, and a channel estimation.
  • the network device sends the first signaling to the terminal device, where the network device sends the first signaling to the terminal device in a broadcast form.
  • the first signaling is sent in the form of a broadcast, and the implementation is simple and efficient.
  • the first user sequence of this implementation mode is an RM sequence, and the RM sequence can obtain extremely low detection complexity while greatly increasing the user sequence space.
  • the present application provides a method for transmitting a user sequence, including: receiving, by a terminal device, first signaling sent by a network device, where the first signaling includes a quantity of a user sequence indicating a first user sequence space.
  • the first information, the user sequence of the first user sequence space includes a complete set of user sequences used by the terminal device served by the network device; and the terminal device sends the first user sequence to the network device according to the first information.
  • the method further includes: receiving, by the terminal device, the second signaling sent by the network device, where the second signaling includes And second information indicating the number of user sequences of the second user sequence space, the second user sequence space includes a first spatial subset and a second spatial subset, the first spatial subset and the second spatial subset are completely different,
  • a spatial subset includes a user sequence identical to a user sequence of the first user sequence space, and a degree of coherence between each user sequence of the second spatial subset and the user sequence of the first spatial subset is less than or equal to the second user sequence space User sequence and first spatial subset The coherence of the user sequence.
  • the first user sequence space includes a third spatial subset and a fourth spatial subset, and the third spatial subset and the fourth spatial subset are completely different, and the fourth spatial sub- The degree of coherence of each user sequence of the set and the user sequence of the third spatial subset is greater than or equal to the coherence of any two user sequences of the third spatial subset; after the terminal device receives the first signaling sent by the network device, The method further includes: receiving, by the terminal device, third signaling sent by the network device, where the third signaling includes third information for indicating the number of user sequences of the third user sequence space, and the user sequence of the third user sequence space and the third The three-space subset includes the same user sequence.
  • the terminal device sends the first user sequence to the network device according to the first information, including: the number of user sequences in the first user sequence space indicated by the terminal device according to the first information Generating a first user sequence belonging to the first user sequence space; the terminal device transmitting the first user sequence to the network device.
  • the terminal device receives the first signaling sent by the network device, where the terminal device receives the first signaling that is sent by the network device in a broadcast manner.
  • the first user sequence generated by the implementation manner is an RM sequence, and the RM sequence can obtain a very low detection complexity while greatly increasing the user sequence space.
  • the coherence of any two user sequences of the first user sequence space may be greater than or equal to 0 and less than or equal to the first threshold.
  • the coherence of any two user sequences of the first user sequence space is equal to zero, the first user sequence is completely orthogonal.
  • the first user sequence space is quasi-orthogonal when there is at least one pair of user sequences having a degree of coherence greater than zero in the first user sequence space.
  • the first threshold may be determined according to the length of the user sequence.
  • the first signaling further includes fourth information indicating a type of the user sequence of the first user sequence space.
  • the type of the user sequence of the first user sequence space may include a Reed-Muller sequence or a Zadoff-Chu sequence.
  • This possible implementation uses the Reed-Muller sequence to achieve a very low detection complexity while significantly increasing the user's sequence space.
  • the first information comprises a spatial progression of the first user sequence space or a quantized value indicating the number of user sequences of the first user sequence space.
  • the spatial level of the first user sequence space may refer to the number of values of the maximum coherence of the subspace that can be divided by the first user sequence space.
  • the specific implementation manner may be that the network device sends the first signaling to the terminal device, where the network device may carry the space level indicating the first user sequence space in the system information block SIB, or carry the information to indicate the first user.
  • the first information of the quantized value of the number of user sequences in the sequence space, the first signaling is sent to the terminal device.
  • the network device sends the first signaling to the terminal device, and the method further includes: the network device is carried in the SIB to indicate the first
  • the fourth information of the type of the user sequence of the user sequence space sends the first signaling to the terminal device.
  • the first information may be an index used to indicate a configuration of the first user sequence space, and the index is pre-agreed in the network device and the terminal device by using a standard, the first user sequence
  • the configuration of the space includes the number of user sequences of the first user sequence space.
  • the configuration of the first user sequence space may further include at least one of a kind of the user sequence of the first user sequence space, a spatial level of the first user sequence space, and a length of the user sequence of the first user sequence space.
  • the above two possible implementation manners use a spatial level, a quantized value, or an index to indicate the size of the user sequence space.
  • the first information is a spatial level, a quantized value, or an index
  • the first information may occupy a small number of bits. , thereby reducing signaling overhead and improving resource utilization.
  • the present application provides a method for transmitting a user sequence, including: the network device sends a first signaling to the terminal device, where the first signaling includes a first indicator for indicating orthogonality of the first user sequence space. Information; the network device receives a first user sequence sent by the terminal device according to orthogonality of the first user sequence space; and the network device performs user detection and/or communication parameter estimation according to the first user sequence.
  • the first information is a maximum value of the coherence between any two user sequences in the first user sequence space.
  • the first information is a spatial level of the first user sequence space, and the spatial level refers to a value of a maximum coherence of the subspace that the first user sequence space can divide. Number.
  • the method further includes: the network device sends the second signaling to the terminal device, where the second signaling includes The second information of the orthogonality of the second user sequence space, the orthogonality of the second user sequence space is weaker than or equal to the orthogonality of the first user sequence space.
  • the specific implementation may be: after the network device sends the first signaling to the terminal device, the method further includes: the network device sends the second signaling to the terminal device, where the second signaling includes the second user sequence space.
  • the second information of orthogonality, the maximum value of the degree of coherence between the two user sequences in the second user sequence space is greater than or equal to the maximum value of the coherence between the two user sequences in the first user sequence space.
  • the specific implementation may be that after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the second signaling to the terminal device, where the second signaling includes indicating the second user sequence space
  • the second signaling includes indicating the second user sequence space
  • the second information of the orthogonality, the spatial order of the second user sequence space is greater than or equal to the spatial order of the first user sequence space.
  • the method further includes:
  • the network device sends third signaling to the terminal device, where the third signaling includes third information for indicating orthogonality of the third user sequence space, where the orthogonality of the third user sequence space is stronger than or equal to the first user.
  • the orthogonality of the sequence space is stronger than or equal to the first user.
  • the specific implementation manner may be: after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the third signaling to the terminal device, where the third signaling includes the third user sequence space
  • the third signaling includes the third user sequence space
  • the third information of orthogonality, the maximum value of the degree of coherence between the two user sequences in the third user sequence space is less than or equal to the maximum value of the coherence between the two user sequences in the first user sequence space.
  • the specific implementation manner may further include: after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the third signaling to the terminal device, where the third signaling includes indicating the third user sequence space
  • the third signaling includes indicating the third user sequence space
  • the third information of the orthogonality, the spatial order of the third user sequence space is less than or equal to the spatial order of the first user sequence space.
  • the third aspect and the beneficial effects of each possible design of the third aspect may refer to the first aspect, the second aspect, and The beneficial effects corresponding to the corresponding features of the first aspect and the second aspect are not described herein again.
  • the application provides a network device, including a sending module, a receiving module, and a processing module, for implementing the function of the network device in the foregoing aspect.
  • the functions can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a network device, including a receiver, a transmitter, and a processor, for supporting a network device to perform a corresponding function in the foregoing method.
  • the receiver and transmitter are used to support communication with the terminal device.
  • the network device can also include a memory for coupling with the processor that holds the necessary program instructions and data.
  • the present application provides a terminal device, including a receiving module and a sending module, for implementing the function of the terminal device in the foregoing aspect.
  • the functions can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may also include a generation module to perform the corresponding function.
  • the present application provides a terminal device, including a receiver and a transmitter, for supporting a terminal device to perform a corresponding function in the foregoing method.
  • Receivers and transmitters are used to support communication with network devices.
  • the terminal device can also include a memory for coupling with the processor that holds the necessary program instructions and data.
  • the first signaling of the present application may be carried in the downlink control information DCI or may be carried in the radio resource control RRC signaling.
  • the second signaling of the present application may be carried in the DCI or may be carried in the RRC signaling.
  • the third signaling of the present application may be carried in the DCI or may be carried in the RRC signaling.
  • the first signaling may further include information indicating whether to adopt the unscheduled transmission mode.
  • the method may further include: the network device sending the fourth signaling to the terminal device, where the fourth signaling indicates whether the unscheduled transmission mode is adopted.
  • the first information, the second information, or the third information may be an index, and the index may include a root index of the demodulation reference signal DMRS and an offset.
  • FIG. 1 is a schematic diagram of a communication scenario to which the present application is applied.
  • FIG. 2 is a schematic diagram of the spatial order of the user sequence space of one embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for transmitting a user sequence according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting a user sequence according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the size of a user sequence space according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for transmitting a user sequence according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for transmitting a user sequence according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of an extension of a user sequence space in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a reduction in user sequence space in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a user detection process according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a contention-based random access procedure according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE Long Term Evolution
  • UMTS Terrestrial Radio Access Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network GERAN
  • SGSN Serving GPRS Support
  • GGSN Gateway GPRS support node
  • PLMN Public Land Mobile Network
  • PLMN Public Land Mobile Network
  • a terminal device may refer to a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a functional handheld device, a computing device, or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a network after a 5G network or a 5G, and the like are not limited in this embodiment of the present application.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), or can access a distributed peer-to-peer (Ad-Hoc) mode network and users through self-organizing or unauthorized access.
  • RAN Radio Access Network
  • Ad-Hoc distributed peer-to-peer
  • the terminal device can also access the network for communication in other manners, which is not limited in this embodiment of the present application.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a network after a 5G network or a 5G or Network devices and the like in a future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a network after a 5G network or a 5G or Network devices
  • the network device in this embodiment of the present application may be a network device of a cell, and may be a base station in a cell level sense or a network device having a function similar to a base station.
  • the network device may be a network device that provides wireless access and communication services for mobile devices that are mobile or fixed within the cell.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disk (CD), a digital versatile disk (Digital Versatile Disk, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • IoT Internet of Things
  • MTC Machine-Type Communications
  • the uplink user state information is multiplexed and transmitted on the time-frequency resources shared by the system, and can be used in various scenarios.
  • a random access signal for example, a preamble
  • LTE Long Term Evolution
  • UDRS UDRS before uplink data transmission
  • DMRS Demodulation Reference Signal
  • FIG. 1 shows a schematic diagram of a communication scenario of an embodiment of the present application.
  • the user selects a sequence of users from a set of user sequences for transmission.
  • the user sequence mainly plays the role of identifying the user; the base station detects the user sequence sent by the user, that is, the user detection process.
  • Channel estimation or time-frequency offset estimation can also be performed based on the user sequence.
  • the base station will consider that the user sequence corresponds to only one access user. This situation is called collision.
  • collision As shown in Figure 1, when two users simultaneously select user sequence 7, the two users collide. Often, collisions lead to subsequent data transmission failures that have a large impact on communication system performance.
  • the set of user-selectable user sequences is referred to as the user sequence space, and the size of the user sequence space directly determines the probability of collision between users. The larger the user sequence space, the smaller the collision probability.
  • the user sequences in the existing user sequence space are mutually orthogonal, and the size of the user sequence space is limited by the length of the user sequence.
  • the traditional cellular mobile communication system is mainly designed for MBB services, and does not consider the scenario of mass connection.
  • MBB service the number of users that have been accessed and the number of potential access users are relatively limited. Therefore, when designing a user sequence space, the system often only provides a total number of available user sequences with a small total number and a fixed total number. For example, on the Physical Random Access Channel (PRACH) of the LTE system, only 54 Zadoff-Chu (ZC) sequences are provided for contention access.
  • PRACH Physical Random Access Channel
  • ZC Zadoff-Chu
  • the existing solution is to increase the time-frequency resources occupied by the user sequence (ie, Increase the user sequence length) to increase the number of supported user sequences.
  • increasing the length of the user sequence may result in a reduction in time-frequency resources for uplink data transmission, which is detrimental to the massive connection and small data packet transmission of the IoT service.
  • an increase in the number of user sequence lengths causes the base station to demodulate the complexity of the user sequence, thereby increasing the delay.
  • User sequences are widely used in scenarios such as random access procedures, channel estimation, time-offset estimation, and frequency offset estimation for wireless terminals.
  • the first step in the random access procedure is usually user detection (or referred to as user identification).
  • a plurality of users respectively send a sequence of users identifying themselves in the shared time-frequency resources, and signals transmitted by different users are superimposed in the air, and the base station determines which wireless terminals are currently requesting access by receiving these aliased signals.
  • the user sequence in the user sequence space is designed to have orthogonality, so that even if the signal transmitted by the user is aliased at the base station, the base station can transmit the signal transmitted by each user through the orthogonality of the user sequence. Separate to achieve the purpose of user testing.
  • the user wants to perform coordinated scheduling without performing coordinated scheduling, that is, performing Grant-free communication.
  • the user randomly selects a user sequence from the user sequence space as its own transmission sequence.
  • the user sequence space corresponds to the above set of user sequences, a set of optional user sequences, and the like.
  • a Zadoff-Chu (ZC) sequence is mainly used as a user sequence, and a plurality of ZC sequences are used to form a user sequence space.
  • the ZC sequence can better satisfy the orthogonality required by the user for detection.
  • Different ZC sequences in the user sequence space are generated by cyclic shifting of a base sequence, wherein one base sequence is generated by a root index.
  • a base sequence of length N can have N cyclic shifts, resulting in N ZC sequences.
  • the N ZC sequences generated by cyclic shifting of the same root sequence satisfy the perfect orthogonal characteristic, that is, the coherence of any two ZC sequences in the N ZC sequences is zero. Therefore, the ZC sequence has a good user detection performance as a user sequence, and is widely used in communication systems such as an LTE system.
  • the 5th generation mobile communication under study should have the characteristics of high throughput, low latency, and large connectivity. Among them, the large connection is proposed for the demand of massive terminal connections in the IoT service. At this time, the user detection design in the existing protocol and the existing solution mainly has the following problems.
  • the user sequence space is small: a base sequence of length N usually supports a maximum of N different user sequences. At this time, if the number of simultaneous access users is large, they each randomly select their own sequence to generate a "collision", that is, two or more users select the same user sequence.
  • Table 1 shows the collision probability of different size user sequence spaces and different access users. It can be seen that when the number of access users is the same, the larger the user sequence space, the lower the collision probability of the user.
  • Table 1 shows the relationship between the size of the user sequence space, the number of access users, and the collision probability when the user sequence is randomly selected.
  • the user sequence space does not support flexible extension: in the existing LTE system, once the user sequence length is determined, the corresponding user sequence space size is determined accordingly.
  • the number of access users is small, if a large user sequence space is used (corresponding to a large user sequence length), time-frequency resources are wasted; when the number of access users is large, if a small number of users are used, The user sequence space has a high collision probability. This design lacks flexibility.
  • the embodiment of the present application provides a method for transmitting a user sequence.
  • the method includes: the network device sends the first signaling to the terminal device, and correspondingly, the terminal device receives the first signaling sent by the network device, where the first signaling includes a user sequence for indicating the first user sequence space.
  • a first number of information, the user sequence of the first user sequence space comprising a complete set of user sequences for use by the terminal device served by the network device.
  • the network device receives a first user sequence that is sent by the terminal device according to the first information, and correspondingly, the terminal device sends a first user sequence to the network device according to the first information.
  • the network device performs user detection and/or communication parameter estimation according to the first user sequence.
  • the network device in the embodiment of the present application may be a network device of a cell, and may be a base station in a cell level sense or a network device having a function similar to a base station, such as a wireless router and a wireless access point.
  • the network device may be a network device that provides wireless access and communication services for mobile devices that are mobile or fixed within the cell. All terminal devices served by the network device include a terminal device that accesses the network device and a terminal device that resides in the network device.
  • the terminal device includes an access network device, a terminal device that performs uplink/downlink communication through the network device, and a terminal device that resides in the service scope of the network device and is likely to perform access, uplink/downlink communication, and the like.
  • the network equipment service scope can refer to the coverage of its air interface.
  • the user sequence of the first user sequence space includes a complete set of user sequences used by the terminal device served by the network device, and may also be described as a sequence of users of the first user sequence space including all user sequences used by the terminal device served by the network device, or The user sequence of the first user sequence space includes a union of user sequences for use by all terminal devices served by the network device.
  • the number of user sequences of the first user sequence space (also referred to as the size of the user sequence space) is determined by the protocol, or at least at the time of system initialization, the network device (eg, the base station) and The terminal device (for example, User Equipment (UE)) negotiates and remains unchanged. Therefore, in the existing solution, the network device does not send the first signaling to the terminal device, and the first signaling indicates the number of user sequences in the first user sequence space.
  • the network device eg, the base station
  • the terminal device for example, User Equipment (UE)
  • the network device sends, to the terminal device, first information indicating the number of user sequences in the first user sequence space, where the user sequence of the first user sequence space includes a terminal served by the network device.
  • a complete set of user sequences used by the device thereby flexibly specifying the size of the user sequence space that can be used by all terminal devices served by the network device, thereby enabling adjustment of the size of the user sequence space, thereby improving user detection or communication parameter estimation. Accuracy and improve system efficiency.
  • the user sequence of the first user sequence space includes users for use by the terminal device served by the network device.
  • the complete set of sequences may also be described as a sequence of users in the first user sequence space including all user sequences used by the terminal device served by the network device, or a sequence of users in the first user sequence space including all terminal devices served by the network device The union of user sequences.
  • the corpus of user sequences used by the terminal devices served by the network device may comprise: a sequence of users for competitive access and/or a sequence of users for non-competitive access.
  • the first user sequence space may include a sequence of users used by the terminal device for competitive access and/or a sequence of users for non-competitive access.
  • the corpus of user sequences used by the terminal device served by the network device may comprise: a sequence of users for scheduling based on unscheduled access and/or a sequence of users for scheduling access based on the network device.
  • the user sequence of the first user sequence space includes a sequence of users for scheduling based on unscheduled access and/or a sequence of users for scheduling access based on the network device.
  • the complete set of user sequences used by the terminal devices served by the network device may comprise: a sequence of users for autonomous access and/or a sequence of users for network device supervised access.
  • the user sequence of the first user sequence space includes a sequence of users for autonomous access and/or a sequence of users for network device supervised access.
  • the first user sequence space may only include user sequences for competing access (based on network device scheduled access, network device directed access). In some scenarios, such as scenarios of base station scheduled communications, the first user sequence space may only include user sequences for non-competitive access (based on unscheduled access, autonomous access). In some scenarios, it is possible for the first user sequence space to include both a user sequence of competing access and a sequence of users of non-competitive access.
  • the coherence of any two user sequences of the first user sequence space is greater than or equal to 0 and less than or equal to the first threshold.
  • the first user sequence space is completely orthogonal, that is, any two user sequences in the first user sequence space are orthogonal.
  • the user sequence in the user sequence space used may be quasi-orthogonal, that is, not completely orthogonal.
  • the user sequence of the first user sequence space may be quasi-orthogonal, and the quasi-orthogonal means that the coherence of any two user sequences of the first user sequence space is greater than or equal to 0 and less than or Equal to the first threshold, and the coherence of at least one pair of user sequences in the first user sequence space is greater than zero.
  • the embodiment of the present application may be in the case that the user sequence length N of the existing scheme is unchanged (that is, without adding additional time-frequency resources with respect to the prior art scheme), using a quasi-orthogonal code (for example, The orthogonal Reed-Muller sequence) is used as the user sequence.
  • the quasi-orthogonal user sequence is not limited to a fixed orthogonal user sequence space size, and thus can generate a larger sequence space.
  • the size of the user sequence space refers to the total number of different user sequences in the set of user sequences that the user can use.
  • the user sequence space size refers to the number of all user sequences included in the user's sequence space. This is different from the number of intra-packet sequences configured by the Random Access CHannel (RACH) in the existing LTE protocol.
  • RACH Random Access CHannel
  • Quasi-orthogonal means that the coherence of any two user sequences of the user sequence space is greater than or equal to 0 and less than or equal to the first threshold ⁇ , and the coherence of at least one pair of user sequences in the user sequence space is greater than zero.
  • Embodiments of the present application allow user sequences to be not completely orthogonal, but should maximize the orthogonality of the user sequence space. It should be noted that
  • the user sequence space can contain orthogonal sub-user sequence spaces.
  • the definition of the coherence of the user sequences s 1 and s 2 of length N can be as follows:
  • the setting of the first threshold ⁇ is determined according to system parameters, for example, may be determined according to the length N of the user sequence. Specifically, the first threshold ⁇ can take a value
  • the method of the embodiment of the present application adopts a quasi-orthogonal user sequence space
  • the user sequence space is increased, the collision probability between users can be reduced, and the length of the user sequence can be not changed, and no additional time-frequency resources need to be allocated.
  • the method for transmitting a user sequence in the embodiment of the present application may include: the network device sends the first signaling to the terminal device, where the first signaling includes a first part for indicating orthogonality of the first user sequence space. a first information sequence that is sent by the terminal device according to the orthogonality of the first user sequence space; the network device performs user detection and/or communication according to the first user sequence. Parameter Estimation.
  • the network device in the solution notifies the terminal device of the orthogonality of the first user sequence space rather than the number of user sequences, and this manner also enables the network device and the terminal device to mutually determine the user sequence space to be used. the size of.
  • the first information indicating the orthogonality of the first user sequence space may be a maximum value of the coherence between any two user sequences in the first user sequence space; or may be the first user sequence space.
  • a spatial progression refers to a number of values of maximum coherence of the subspace that the first user sequence space can divide.
  • the user sequence of length N can generate a user sequence space of size N at most, and the number of supported users is limited.
  • the use of quasi-orthogonal user sequence space that is, the user sequence in the user sequence space is not completely orthogonal, the number of supported users can be greatly increased, thereby achieving the purpose of reducing the collision probability.
  • Table 2 shows the number of levels of the user sequence space, the size of the user sequence space, the user sequence that satisfies the requirements, and the maximum degree of coherence between the user sequences. As shown in Table 2, a quasi-orthogonal user sequence of length N can produce a user sequence space that is much larger than N.
  • the Kerdock set, the DG(m, 1) set, and the DG(m, r) set are all parameters used in constructing the RM sequence.
  • the DG set is called the Delsarte-Goethals Set, and m is a parameter related to the length of the sequence.
  • the first-level user sequence space is an orthogonal user sequence space, and the user sequence space of level 2 and above is a quasi-orthogonal user sequence space.
  • the user sequence space is from level 1 to r+2, and the number of stages is gradually increased.
  • the user sequence space contains low-level user sequence spaces.
  • FIG. 2 is a schematic diagram showing the spatial order of the user sequence space of the embodiment of the present application.
  • the network device may determine the number of user sequences in the first user sequence space according to the current network load and system parameters, where the system parameters include user sequence length, collision probability tolerance value, and missed detection probability tolerance value. At least one of timing estimation error, channel estimation error, bit error rate, available time-frequency resource size, available computing resource size, received signal power, and signal to noise ratio.
  • a common network device base station is taken as an example for description.
  • the number of user sequences that the base station determines in the user sequence space can be implemented by an algorithm.
  • the input of the algorithm includes the number of access users (such as the average number of access users or the number of currently accessed users) k, the user sequence length N, and the system performance parameters may include at least one of the following parameters but are not limited to:
  • Available time-frequency resource size (eg RACH)
  • Available computing resource size eg, hardware resources for computing, algorithms that the hardware resources of the sender and/or receiver can withstand
  • SINR Signal to Interference plus Noise Ratio
  • the output of the algorithm may include at least one of the following but is not limited to:
  • the size C of the user sequence space ie the number of user sequences in the user sequence space
  • system performance parameters are determined by specific application scenarios. For example, when the application scenario of the user sequence is blind detection of random access by the user, if the performance of the detection algorithm is ideal, the number of access users k, the length of the user sequence N, and the collision probability tolerance value. For the necessary input parameters.
  • the size of the user sequence space can be determined in the following ways:
  • the miss detection probability is related to the user sequence length N.
  • the probability of missed detection is a function of Signal Noise Ratio (SNR):
  • Q() is a Q function
  • Q function is also called an error function, which is a general function used in signal processing to estimate detection performance.
  • f alg is related to the detection algorithm.
  • SNIR is proportional to the number of access users k.
  • N and C jointly determine the interference between users.
  • the value, SNR determines the noise value.
  • the network device determines the number of user sequences in the first user sequence space according to the current network load and system parameters, and can more accurately determine the size of the first user sequence space, so that the size of the user sequence space is more favorable for improving.
  • User detection or communication parameter estimation accuracy improve system efficiency.
  • the actual performance of the detection algorithm (determined by the size of the user sequence space, the signal-to-noise ratio, etc.) and the available computing resources or algorithm complexity (the complexity of the algorithm increases with the user sequence space) Multiple factors such as linearity increase to determine the optimal size of the user's sequence space.
  • Network equipment can also Determine the size of the user's sequence space by setting conditions. For example, a certain condition may be preset in the network device according to experience, and the condition may be related to a network load or other system parameters. When the network load or other system parameters meet certain conditions, the size of the user sequence space is determined as The corresponding value.
  • the network device can also set an interface so that the network administrator can set the size of the user sequence space through the interface.
  • the size of the user sequence space may also be stored on the network device after the artificial division.
  • the specific determination manner of the size of the user sequence space is not limited in this embodiment of the present application.
  • the base station notifies the UE of the size of the first user sequence space according to requirements, or notifies the UE to expand or reduce the user sequence space in real time, and can also notify the UE of the sequence number of the user space, the type of the user sequence, and the like.
  • the UE sends the first user sequence to the base station according to the number of user sequences in the first user sequence space.
  • the first user sequence is a sequence of users in the first user sequence space.
  • the base station performs user detection and/or communication parameter estimation based on the first user sequence.
  • FIG. 3 is a schematic flowchart of a method for transmitting a user sequence according to an embodiment of the present application. The steps of the method can be as shown in FIG.
  • the base station counts input parameters. Specifically, the base station may count network load and system parameters in a certain period, for example, may include input parameters such as the number of access users, system performance parameters, and user sequence length. Alternatively, the period may be a broadcast period.
  • the base station determines an output parameter. Specifically, the base station determines the size of the current user sequence space, and can also determine the type of the user sequence and the like.
  • the base station sends the first signaling that includes the information of the output parameter to all the UEs.
  • the base station may send the first signaling by using a broadcast.
  • the UE receives the first signaling sent by the network device.
  • the base station may carry the information by using System Information Blocks (SIB) SIB2 similar to that specified in 36.331 of the LTE protocol, for use as a pilot sequence, a synchronization sequence, or a demodulation reference signal. Additional signaling or multiplexing of existing signaling is required, and the specific form and content of the first signaling will be detailed below.
  • SIB System Information Blocks
  • the random access procedure SIB2 can carry the following information:
  • PRACH-ConfigInfo:: SEQUENCE ⁇
  • the UE randomly selects or generates a user sequence in a specified user sequence space according to the first signaling sent by the base station.
  • the UE can select or generate a user sequence by two methods.
  • One is the sequence of all users in the largest user sequence space that may be used by the offline generation system and stored in the UE.
  • the UE selects a sequence of users in the corresponding user sequence subspace according to the indicated size of the user sequence space, and sends the sequence to the base station.
  • the other is to generate a user sequence online.
  • the UE directly generates a user sequence in a predetermined user sequence space according to the size of the indicated user sequence space by a certain calculation method, and uses the user sequence to generate an uplink signal.
  • the sending, by the UE, the first user sequence to the network device according to the number of user sequences in the first user sequence space may include: generating, according to the number of user sequences in the first user sequence space, the first The first sequence of users of the user sequence space; transmitting the first sequence of users to the network device.
  • the UE sends a user sequence to the base station.
  • the base station receives the sequence of users sent by the UE.
  • the base station performs user detection and/or communication parameter estimation according to the user sequence.
  • the UE performs uplink data transmission. Accordingly, the base station receives data transmitted by the UE.
  • the base station demodulates and decodes the data.
  • Another form is a form of adaptive adjustment, which differs from a semi-static form in that, when determining the size of the user sequence space according to system parameters, the UE is not notified by cycle, but the size of the user sequence space changes or changes larger than the pre- The UE is notified when the threshold is set. Therefore, in the case that the system parameter remains unchanged or changes less than the preset threshold for a long time, the first signaling is not sent to the UE, and the signaling overhead can be saved.
  • the system may configure a specific user sequence for each optional user sequence space size, so that the network device and the terminal device know which user sequence the user sequence space corresponding to the size of the user sequence space includes.
  • the configuration may be pre-stored in the system.
  • the user sequence space of each size and the user sequence included therein may be stored in the network device and the terminal device by means of a list; or may be a user sequence space of each size.
  • Each user sequence space stores a sequence of users whose other user sequences are calculated from this sequence of users.
  • the configuration may also be notified by using a signaling, for example, the network device notifies the user sequence of the user sequence space of each size of the terminal device by signaling, which is not limited in this embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting a user sequence according to an embodiment of the present application. The flow of a specific example in the above case will be given below with reference to FIG.
  • the UE selects a user sequence of the user sequence space for random access.
  • the base station collects current system parameters. For example, it may include the number of access users, signal to noise ratio, probability of missed detection, probability of collision, and the like.
  • the base station evaluates system performance after expanding the user sequence space and/or reducing the user sequence space according to the system parameter.
  • the system performance after evaluating the extended user sequence space and/or reducing the user sequence space can be performed by an analytical method or a statistical method.
  • the analytic method estimates the system performance required for optimization based on mathematical formulas and selects the size of the user sequence space that makes the system perform better. For example, when the current application scenario is random access, user collision and user miss detection will cause access failure, so we can evaluate the extended user sequence space and/or reduce the access performance after the user sequence space.
  • p failure p col +p miss .
  • the access probability of failure to access the performance parameters p failure indicates, p failure of the collision probability parameter p col p miss probability and missed detection. among them,
  • the statistical method is based on historical system performance statistics to find and compare similar input parameters, the system performance corresponding to the size of different user sequence spaces, and select the size of the user sequence space that makes the system performance better.
  • S405. Determine, according to the evaluation result, whether the extended user sequence space can improve the system performance by exceeding a second threshold. If yes, execute S406; otherwise, keep the user sequence space unchanged, and execute S402.
  • the base station sends signaling in the form of a broadcast.
  • S407. Determine, according to the evaluation result, whether reducing the user sequence space can cause the system performance to increase beyond a third threshold. If yes, execute S408; otherwise, keep the user sequence space unchanged, and execute S402. It should be understood that the execution of S405 and S407 has no prioritized definition.
  • the base station sends signaling in the form of a broadcast.
  • the network device may send the first signaling to the terminal device in a broadcast manner.
  • the terminal device receives the first signaling sent by the network device in the form of a broadcast.
  • the network device and the terminal device may also transmit signaling in other manners, such as a unicast or a multicast manner, which is not limited in this embodiment of the present application.
  • the embodiment of the present application can be applied to a massive access scenario of the IoT service, where the size C of the user sequence space may be a large value, and the first information in the first signaling sent by the base station to the UE is caused. Brings large signaling resource overhead.
  • the embodiment of the present application may adopt a method of bit-quantizing the size of the user sequence space and transmitting the quantized value.
  • the first information comprises a spatial order of the first user sequence space or a quantized value indicating the number of user sequences of the first user sequence space.
  • the first information may also include the number of user sequences corresponding to the unit quantized values, referred to as granularity.
  • the number of the user sequence corresponding to the unit quantized value (the granularity) can also be stipulated by the system or the protocol, which is not limited by the embodiment of the present application.
  • the first information may be the number L of the first user sequence space, which is owned by the L-level space.
  • the number of available sequences is N L , so a smaller L can indicate a very large spatial range, and only a few bits can be used, which greatly saves signaling overhead.
  • the number of user sequences included in each user sequence space increases exponentially when L is increased. In some application scenarios, the granularity required to accurately adjust the size of the user sequence space may not be provided.
  • the number of user sequences in a user sequence space is a partial user sequence of a series of user sequence spaces. At this point, the number of user sequences in each user's sequence space can be further quantified, as shown in Table 3 below.
  • the signaling overhead is reduced by transmitting signaling only when the configuration of the user sequence space changes. For example, when the terminal device is first accessed, the base station sends C 0 through downlink signaling to indicate the user space used by the terminal device to access. After the first access, The base station sends a C ⁇ notification change through broadcast signaling only when the size of the user sequence space changes. If the configuration of the size of the user sequence space does not change, the base station does not repeat the broadcast signaling.
  • eMBB enhanced mobile broadband
  • uRLLC ultra-Reliable and Low-Latency Communications
  • the above signaling manner based on the change in the size of the user sequence space is also applicable to indicating the type of the user sequence, the number of spatial stages of the user sequence space, and the like.
  • the specific indication manner in the embodiment of the present application can be specified in the standard.
  • the base station may determine the size of the currently used user sequence space by calculation.
  • the base station may also determine the size of the user sequence space by selecting a user sequence space from a plurality of pre-configured user sequence spaces. Pre-configured multiple user sequence spaces can be specified in a standard form. In the standard, the correspondence between the configuration of the user sequence space and the index can be established.
  • the configuration of the user sequence space includes the number of user sequences of the user sequence space, and may further include at least one of a type of user sequence of the user sequence space, a spatial level of the user sequence space, and a length of the user sequence of the user sequence space. .
  • the first information may be an index used to indicate a configuration of the first user sequence space, where the index is pre-agreed in the network device and the terminal device by a standard, the first user sequence
  • the configuration of the space includes the number of user sequences of the first user sequence space.
  • the configuration of the first user sequence space may further include: a type of the user sequence of the first user sequence space, a spatial level of the first user sequence space, and a length of a user sequence of the first user sequence space At least one of them.
  • the index of the configuration of the user sequence space may be simply referred to as a User Sequence Index (USI).
  • USI User Sequence Index
  • the configuration of the user sequence space includes the number of user sequences of the user sequence space, and may also include at least one of the kind of the user sequence of the user sequence space, the spatial order of the user sequence space, and the length of the user sequence of the user sequence space.
  • signaling resources may be saved by using an index to indicate the number of user sequences in the user sequence space, the type of user sequence, the spatial level of the user sequence space, and the length of the user sequence.
  • the content indicated by the user sequence index can be as shown in Table 5.
  • the content in the table 5 can also be specified in the specification, for example, by means of signaling, etc., which is not limited by the embodiment of the present application.
  • the standard can use different numbers of user sequence indexes to achieve different granularity control over the user sequence space. If the user sequence index includes only two usage modes, the first signaling needs 1 bit to indicate the user sequence index corresponding to the user sequence space selected by the base station; if the user sequence index list includes four usage modes, The first signaling needs 2 bits to indicate the user sequence index corresponding to the user sequence space selected by the base station; if the user sequence index includes more than 4 usage modes in the list, the first signaling needs at least 3 bits to indicate the user sequence space selected by the base station.
  • User sequence index The number of bits required for the user sequence index can also be specified in the standard.
  • the user sequence index can also be sent through the foregoing signaling indication manner based on the change of the configuration of the user sequence space, and details are not described herein.
  • the embodiment of the present application uses a spatial level, a quantized value, or an index to indicate the size of the user sequence space.
  • the first information is a spatial level, a quantized value, or an index
  • the first information may occupy a small number of bits, thereby reducing The overhead of small signaling increases the utilization of resources.
  • the system needs to specify the quantized value and the number of user sequences corresponding to the unit quantized value, that is, the granularity, by standard or signaling, to unify the understanding of the spatial size at both ends of the transmitting and receiving.
  • the first 3 bits indicate the granularity of the current spatial size value
  • the last 9 bits indicate the quantized value of the size of the user sequence space.
  • the size C of the user sequence space is: the quantized value of the size of the user sequence space x granularity.
  • the number of stages of the user sequence space is 3
  • the granularity is N 2
  • the quantized value is The number of bits occupied by the quantized value is log 2 N.
  • the type of the user sequence in the first user sequence space may be a Reed-Muller sequence (RM sequence) or a Zadoff-Chu sequence (ZC sequence), and the embodiment of the present application is not limited thereto.
  • RM sequence Reed-Muller sequence
  • ZC sequence Zadoff-Chu sequence
  • the user sequence of the first user sequence space includes a Reed-Muller sequence generated from at least two generator matrices.
  • FIG. 6 is a schematic flowchart of a method for transmitting a user sequence according to another embodiment of the present application. The method of this example includes the following steps.
  • the base station counts input parameters. Specifically, the base station may count input parameters such as the number of access users, system performance parameters, and user sequence length in a certain period. Alternatively, the period may be a broadcast period.
  • the base station evaluates system performance after expanding the user sequence space and/or reducing the user sequence space according to the system parameter.
  • the base station determines, according to the evaluation result, whether the user sequence space needs to be adjusted. It should be understood that the main point herein is to adjust the size of the user sequence space.
  • the base station sends the first signaling to the UE, where the first signaling includes the size C broadcast of the adjusted user sequence space.
  • the base station may send the first signaling by means of a broadcast.
  • the UE compares the size of the C broadcast with the C local .
  • S606 is performed; when C broadcasts ⁇ C local , S607 is performed.
  • S608 generating an RM sequence according to the available generation matrix. Specifically, a P matrix is selected among the available generation matrix sets, and then one b is selected to generate an RM sequence.
  • the UE sends a user sequence, that is, a generated RM sequence, to the base station.
  • the base station performs user and/or communication parameter estimation according to the user sequence.
  • the base station indicates the size of the user sequence space that the UE can use, and the UE may select a set of user sequences that satisfy a certain orthogonality according to an agreed manner (for example, may be a subset or subspace of a certain sequence of user sequence spaces) And select its own user sequence to send it.
  • a certain orthogonality for example, may be a subset or subspace of a certain sequence of user sequence spaces
  • the method for generating the spatial sequence of RM sequences at each level is as follows:
  • the first step generate m ⁇ m binary P matrix set ⁇ P 1 ,..., P M ⁇
  • the level 1 user sequence space is any P matrix in the Kerdock Set (corresponding to an orthogonal user sequence space of size N).
  • Step 2 Generate a set of binary vectors b of length m: ⁇ b 1 ,...,b N ⁇
  • the term is optional and acts as the amplitude normalization parameter A.
  • x bin(k)
  • the value of k is 0,1,...,2 m -1
  • bin(k) is a binary vector representation of k.
  • the amplitude normalization parameter A can be determined by the upper layer power control.
  • P can be called a generator matrix
  • b can be called a generator vector.
  • the L-th user sequence space contains all low-level user sequence spaces.
  • Step 4 A total of 2 m (L-1) RM sequences of length N can be generated by the above method. All user sequences can be sorted by the following methods: in order to enhance detection performance, low-level user sequence space is in front, advanced users The sequence space is at the back. In the same user sequence space, in order to enhance the wideband channel estimation performance, a sub-space with a small Peak-to-Average Power Ratio (PAPR) after Fast Fourier Transformation (FFT) is used. Set) In the past, the subspace with a large average PAPR is behind.
  • PAPR Peak-to-Average Power Ratio
  • FFT Fast Fourier Transformation
  • the user sequence in the first level user sequence space (fully orthogonal user sequence space) is used first. It is then extended in the N orthogonal user sequences of the level 2 user sequence space; after all the orthogonal spaces in the level 2 user sequence space are used, the expansion continues in the level 3 space, and so on.
  • an RM sequence of length 32 is used, and C ⁇ 1024 (ie, a second-level user sequence is used.
  • the order of 32 orthogonal user sequence subspaces is as follows: [10 17 32 15 23 8 28 9 2 24 16 14 27 5 25 7 29 22 11 12 26 4 30 20 13 3 6 19 18 31 21 1], wherein the sequence number is the sequence number of the P matrix corresponding to the high m(r+1) bit in the following rule (each P matrix corresponds to an orthogonal user sequence subspace).
  • the orthogonal user sequence subspace can be extended in this order.
  • the subspace of the user sequence is reduced in the reverse order of the sequence.
  • the order of the 64 orthogonal subspaces is as follows: [7 25 36 17 4 33 56 46 26 2 45 60 47 55 43 12 5 27 15 16 63 44 20 38 61 51 29 40 52 35 23 30 21 57 13 8 31 49 42 39 32 6 19 62 18 41 11 37 9 54 10 28 24 59 50 22 53 58 34 64 14 48 3 1], wherein the sequence number is the sequence number of the P matrix corresponding to the high m(r+1) bit in the following rule (each P matrix corresponds to an orthogonal user sequence subspace).
  • Step 5 The user sequence included in the first user sequence space of the user sequence space size C is the first C user sequence after sorting.
  • the RM sequence generation rules are as follows:
  • the P matrix required to generate the RM sequence space of each level can be selected from the following nested spaces:
  • the DG is the abbreviation DG(m,0) of the Delsarte-Goethals Set, also known as the Kerdock Set.
  • the Kerdock Set contains a total of 2 m P matrices, which are generated by the following steps:
  • Tr[xya] (x 0 ...x m-1 )P 0 (a)(y 0 ...y m-1 ) T
  • the 2 m elements a of the CCP correspond to 2 m P matrices.
  • DG(m,r) contains a total of 2 m(r+1) P matrices, which are generated by the following methods:
  • each a has 2 m values, so a total of 2 m(r+1) P matrices can be generated.
  • P t can be obtained by:
  • the specifically calculated P t method is similar to P 0 in the Kerdock Set and will not be described here.
  • DG(m,r) contains a total of 2 m(r+1) P matrices and 2 m b vectors to generate 2 m(r+2) RM sequences.
  • the total 2 m (r+2) RM sequences generated by DG(m,r) are represented by m(r+2) long binary numbers, and the mapping method is as follows:
  • the sequence number of m(r+2) is divided into the lowest m bits, and the remaining m(r+1) bits.
  • the vector corresponding to the lowest m bit is the b vector
  • the RM sequence is calculated from the P matrix and the b vector.
  • the method of the embodiment of the present application uses a quasi-orthogonal sequence constructed by a Reed-Muller (RM) code to greatly increase the user sequence space while obtaining extremely low detection complexity.
  • RM Reed-Muller
  • Table 6 only lists the statistics of the number of multiplications without considering the complexity of each multiplication. Since the complexity of the RM sequence per bit (bit flip) is almost negligible compared to ZC (floating point complex multiplication), the overall detection complexity of the RM sequence is much lower than the estimate in Table 6.
  • the user sequence of the first user sequence space includes a Zadoff-Chu sequence generated from at least two root indices.
  • FIG. 7 is a schematic flowchart of a method for transmitting a user sequence according to another embodiment of the present application. The method of this example includes the following steps.
  • the base station counts input parameters. Specifically, the base station may count input parameters such as the number of access users, system performance parameters, and user sequence length in a certain period. Alternatively, the period may be a broadcast period.
  • the base station evaluates system performance after expanding the user sequence space and/or reducing the user sequence space according to the system parameter.
  • S703 The base station determines, according to the evaluation result, whether the user sequence space needs to be adjusted. It should be understood that the main point herein is to adjust the size of the user sequence space. S704 is performed when the user sequence space needs to be adjusted, and the subsequent steps are not performed when the user sequence space does not need to be adjusted, and S701 and S702 are executed, waiting for the next cycle to continue to evaluate the extended user sequence space and/or the system after reducing the user sequence space. performance.
  • the base station sends the first signaling to the UE, where the first signaling includes the size C broadcast of the adjusted user sequence space.
  • the base station may send the first signaling by means of a broadcast.
  • S705 The UE compares the size of the C broadcast with the C local .
  • S706 is performed; when C broadcasts ⁇ C local , S707 is executed.
  • a root index is selected among the set of available root indices, a base sequence is generated and a cyclic shift is selected to generate a ZC sequence.
  • the UE sends a user sequence, that is, a generated ZC sequence, to the base station.
  • the base station performs user and/or communication parameter estimation according to the user sequence.
  • the method for generating spatial sequences of ZC sequences at each level is as follows:
  • Step 1 Generate a set of available root indices (roots) ⁇ r 1 ,...,r N ⁇
  • the first-level user sequence space is any one of 1 to N r (corresponding to an orthogonal user sequence space of size N)
  • the second level space is all r from 1 to N (corresponding to a quasi-orthogonal user sequence space of size N 2 containing the first level orthogonal user sequence space)
  • Step 2 Select one from 0 to N-1 as the cyclic shift value
  • the third step for all the optional root index sets, and all the cyclic shift values, first generate a ZC base sequence of length N according to the following formula, and then perform corresponding cyclic shift to obtain the user sequence.
  • ceil() means rounding up.
  • the requirement for coherence can be achieved by setting the user sequence length N to a prime number.
  • the ZC sequence only supports the level 2 user sequence space, and the scalability is not as good as the RM sequence.
  • a ZC sequence of length N when the size of the user sequence space is C, the number of root indices used is ceil (C/N). All available root indices (usually, to ensure better performance, the root index needs to be reciprocal to the sequence length) are ordered from ⁇ 1,...,ceil(C/N) ⁇ .
  • the root index r is sequentially selected in the extended space to generate a ZC base sequence of length N.
  • an N ⁇ ceil (C/N) sequence can be sequentially generated, wherein the user sequence space formed by the first C ZC sequences is the first user sequence space.
  • the extended user sequence space described above may correspond to this dynamic process of user sequence space expansion.
  • 8 is a schematic diagram of an extension of a user sequence space in accordance with an embodiment of the present application. As shown in FIG. 8, the user sequence space is expanded from the first user sequence space to the second user sequence space. From a signaling point of view, the method corresponding to the embodiment of the present application further includes: the network device sending the second signaling to the terminal device (see S309 of FIG. 3).
  • the second signaling includes second information indicating a quantity of a user sequence of a second user sequence space, where the second user sequence space includes a first spatial subset and a second spatial subset, the first The spatial subset is completely different from the second spatial subset, the first spatial subset includes a user sequence identical to the user sequence of the first user sequence space, and each user of the second spatial subset
  • the degree of coherence of the sequence with the user sequence of the first subset of spaces is less than or equal to the degree of coherence of the user sequence other than the second user sequence space and the user sequence of the first spatial subset.
  • the degree of coherence of the user sequence in the first spatial subset and the user sequence of the second spatial subset as shown in FIG. 8 is greater than or equal to the coherence of the two user sequences in the first spatial subset.
  • the degree of coherence of the user sequence in the first spatial subset and the user sequence in the second spatial subset is less than or equal to the coherence of the user sequence in the first spatial subset and the user sequences in the other spatial subset.
  • the second spatial subset includes a sequence of users whose spatial level is greater than or equal to M.
  • the first user sequence space is expanded into a second user sequence space, and the maximum coherence of the expanded second user sequence space is greater than or equal to the maximum coherence of the first user sequence space before the expansion.
  • the maximum coherence refers to the maximum value of the coherence of any two user sequences in the user sequence space.
  • the first user sequence space is expanded to the second user sequence space, and the network device can also notify the terminal device by the following method.
  • the method further includes: the network device sending the second signaling to the terminal device, where the second signaling includes indicating the second user Second information of orthogonality of the sequence space, the orthogonality of the second user sequence space is weaker than or equal to the orthogonality of the first user sequence space.
  • the method may further include: after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the second signaling to the terminal device, where the second signaling includes Used to indicate the second use Second information of orthogonality of the user sequence space, the maximum value of the degree of coherence between any two user sequences in the second user sequence space is greater than or equal to the coherence between the two user sequences in the first user sequence space The maximum value of the degree.
  • the method further includes: the network device sending the second signaling to the terminal device, where the second signaling is Second information is included for indicating orthogonality of the second user sequence space, the spatial order of the second user sequence space being greater than or equal to the spatial order of the first user sequence space.
  • the reduced user sequence space described above may correspond to this dynamic process of user sequence space reduction.
  • 9 is a schematic diagram of a reduction in user sequence space in accordance with an embodiment of the present application. As shown in FIG. 9, the user sequence space is reduced from the first user sequence space to the third user sequence space. From a signaling point of view, the method corresponding to the embodiment of the present application further includes:
  • the network device sends third signaling to the terminal device, where the third signaling includes third information for indicating the number of user sequences of the third user sequence space, and the user of the third user sequence space
  • the sequence is identical to the user sequence included in the third subset of spaces; wherein the first user sequence space includes a third spatial subset and a fourth spatial subset, the third spatial subset and the fourth
  • the spatial subset is completely different, and the coherence of each user sequence of the fourth spatial subset and the user sequence of the third spatial subset is greater than or equal to the coherence of any two user sequences of the third spatial subset degree.
  • the degree of coherence of the user sequence in the third spatial subset and the user sequence of the fourth spatial subset as shown in FIG. 9 is greater than or equal to the coherence of the two user sequences in the third spatial subset.
  • the degree of coherence of the user sequence in the third spatial subset and the user sequence of the fourth spatial subset is less than or equal to the coherence of the user sequence in the third spatial subset and the user sequences in the other spatial subset.
  • the first user sequence space is reduced to the third user sequence space, and the reduced third user sequence space has a maximum coherence that is less than or equal to the maximum coherence of the first user sequence space before the decrease.
  • the first user sequence space is reduced to the second user sequence space, and the network device can also notify the terminal device by the following method.
  • the method further includes: the network device sending the third signaling to the terminal device, where the third signaling includes Third information of orthogonality of the sequence space, the orthogonality of the third user sequence space is stronger than or equal to the orthogonality of the first user sequence space.
  • the specific method may be: after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the third signaling to the terminal device, where the third signaling includes Third information for indicating orthogonality of the third user sequence space, the maximum value of the degree of coherence between the two user sequences in the third user sequence space is less than or equal to two or two users in the first user sequence space The maximum value of the degree of coherence between sequences.
  • the method may further include: after the network device sends the first signaling to the terminal device, the method further includes: the network device sending the third signaling to the terminal device, where the third signaling is And including third information for indicating orthogonality of the third user sequence space, the spatial order of the third user sequence space being less than or equal to the spatial order of the first user sequence space.
  • the user sequence space can be flexibly expanded or reduced by signaling, and the maximum coherence of the extended or reduced user sequence space is kept as small as possible, and the accuracy of user detection or communication parameter estimation can be ensured.
  • the base station uses a user-detection method based on interference cancellation to minimize the loss of user detection performance caused by non-orthogonality.
  • the specific process is a schematic flow chart of the user detection process shown in FIG.
  • S1001 Perform user detection or channel estimation on the currently received signal.
  • S1003 determining whether the remaining energy is noise energy, and detecting is ended when it is noise energy. When it is not noise energy, S1001 is performed.
  • the first user sequence is a random access signal
  • performing user detection and/or communication parameter estimation according to the first user sequence may include: according to the random access Signaling, performing user detection and performing a random access procedure to the terminal device.
  • random access refers to an access procedure of a UE before starting communication with a network. Random access is generally used to identify newly accessed users, and implements uplink timing synchronization for users who have not obtained or have lost uplink synchronization, thereby scheduling uplink orthogonal resources.
  • FIG. 11 shows a schematic flow chart of a contention based random access procedure.
  • the base station determines an output parameter. Corresponding to step S302 of the previous embodiment.
  • the base station sends the current size of the user sequence space, and if necessary, can also send the type of the user sequence.
  • a base station specifies the use of a ZC sequence in order to be compatible with existing processes and technologies.
  • the system can specify that the ZC sequence is used when the user sequence space is less than a preset threshold, the RM sequence is used when the user sequence space is greater than a preset threshold, and so on. It should be understood that the above two scenarios indicating the types of user sequences are merely examples and are not limiting.
  • S1103 The UE selects and sends a random access preamble sequence, or a random access signal, in a specified user sequence space.
  • the base station transmits the type of the user sequence
  • the UE selects and transmits a random access preamble sequence in the specified user sequence space according to the type of the user sequence sent by the base station.
  • the S1011 to S1103 are different from the random access scheme in the existing LTE protocol, because the base station needs to indicate the size of the currently used user sequence space, and the UE is in the system specified physical random access channel (Physical Random Access CHannel, PRACH).
  • the uplink access preamble sequence is sent to the base station.
  • S1104 The base station performs user detection.
  • S1105 The base station sends a random access response (RAR) according to the detection result of the random access preamble sequence.
  • RAR random access response
  • S1106 The UE without collision transmits an exact random access procedure message, such as a tracking area update or a scheduling request.
  • S1107 The base station sends a contention resolution message.
  • the resource configuration of the PRACH determines the resource allocation for random access and data transmission. The more resources allocated to the PRACH, the fewer resources are used for data transmission.
  • the random access preamble sequence can distinguish different users on the same PRACH time-frequency resource. If more than one user transmits the same random access preamble sequence on the same PRACH time-frequency resource, a collision occurs, resulting in random access failure. In this embodiment, since the extended user sequence space is used, the collision probability between users is greatly reduced, and the access performance is significantly improved compared with the existing scheme.
  • the first user sequence is a user detection reference signal
  • performing user detection and/or communication parameter estimation may include: performing user detection according to the user detection reference signal, and determining a time domain resource and a frequency domain used by the terminal device for data transmission. At least one of a resource and a code domain resource.
  • This specific embodiment can be applied to an application scenario in which the uplink user detection is not scheduled.
  • SCMA Sparse Coded Multiple Access
  • the embodiment of the present application uses a sequence of scalable space as a user pilot (pilot).
  • pilot pilot
  • the actual implementation is not limited to the SCMA schedule-free uplink transmission application.
  • the UE selects one of its own pilots by using the available user sequence space indicated by the base station.
  • the pilot here usually has two functions. One is to inform the base station as the user identifier that the user is about to transmit uplink data, and the other is to inform the base station of the SCMA codebook used by the data to be transmitted, that is, the time-frequency resource used.
  • the advantage of this unscheduled transmission mode is that it does not need to send and receive signaling to and from the base station to allocate time-frequency resources, which saves the sequence overhead and shortens the delay. However, this unscheduled transmission method still exists. If two users simultaneously select the same sequence as the pilot, the base station cannot distinguish two users, and usually cannot correctly demodulate their uplink data. Since the embodiment of the present application allows the use of the extended user sequence space, the pilot collision probability between users can be greatly reduced, thereby improving the uplink transmission efficiency of the schedule-free SCMA system.
  • the user sequence is a demodulation reference signal
  • the first user sequence is a demodulation reference signal
  • the user detection and/or communication parameters are performed according to the first user sequence.
  • the estimating may include: performing communication parameter estimation for data demodulation according to the demodulation reference signal, the communication parameter estimation including at least one of a time offset estimation, a frequency offset estimation, and a channel estimation.
  • This specific embodiment can be applied to application scenarios of time-frequency offset estimation and channel estimation.
  • the receiving end since the receiving end adopts coherent demodulation, it is necessary to estimate the transmission delay or timing advance TA (Timing Advance), frequency offset, and channel estimation as accurately as possible.
  • TA Timing Advance
  • the quasi-orthogonal sequence described in the embodiment of the present application has better orthogonality, in particular, the RM sequence has the characteristics of adjacent shift orthogonality, and is suitable for multipath channel estimation, and thus can also be used as a demodulation reference signal DMRS.
  • Two DMRSs are usually embedded in one transmission frame, and each DMRS occupies all subcarriers.
  • Channel parameters such as time offset, frequency offset, and channel response of different users can be estimated by the phase difference between the two DMRSs and the phase difference on different subcarriers.
  • the UE selects one sequence from the specified sequence space as the DMRS. At this time, if different UEs select the same sequence, the receiving end cannot accurately estimate the TA, the frequency offset, and the channel response. Since the embodiment of the present application allows the use of the extended sequence space, the DMRS collision probability between users can be greatly reduced, thereby improving the channel parameter estimation accuracy of the scheduling-free system, thereby improving the transmission efficiency.
  • FIG. 12 shows a schematic block diagram of a network device 1200 in accordance with an embodiment of the present application. As shown in FIG. 12, the network device 1200 includes:
  • the sending module 1210 is configured to send, to the terminal device, first signaling, where the first signaling includes first information indicating a quantity of a user sequence of the first user sequence space, where the user of the first user sequence space
  • the sequence includes a complete set of user sequences for use by the terminal device served by the network device;
  • the receiving module 1220 is configured to receive a first user sequence that is sent by the terminal device according to the first information sent by the sending module 1210.
  • the processing module 1230 is configured to perform user detection and/or communication parameter estimation according to the first user sequence received by the receiving module 1220.
  • the network device in the embodiment of the present application sends, to the terminal device, first information indicating the number of user sequences in the first user sequence space, where the user sequence of the first user sequence space includes a user sequence used by the terminal device served by the network device.
  • the complete set thereby flexibly specifying the size of the user sequence space that all terminal devices of the network device service can use, thereby supporting the adjustment of the size of the user sequence space, thereby improving the accuracy of user detection or communication parameter estimation, and improving the system. Work efficiency.
  • the sending module 1210 is further configured to: after sending the first signaling to the terminal device, send the second signaling to the terminal device, where the second signaling includes Second information for indicating the number of user sequences of the second user sequence space, the second user sequence space comprising a first spatial subset and a second spatial subset, the first spatial subset and the second The spatial subset is completely different, the first spatial subset includes a user sequence identical to the user sequence of the first user sequence space, and each user sequence of the second spatial subset and the first spatial sub- The coherence of the set user sequence is less than or equal to the coherence of the user sequence outside the second user sequence space and the user sequence of the first spatial subset.
  • the first user sequence space includes a third spatial subset and a fourth spatial subset, where the third spatial subset and the fourth spatial subset are completely different, where the first The degree of coherence of each user sequence of the four spatial subsets with the user sequence of the third spatial subset is greater than or equal to the coherence of any two user sequences of the third spatial subset; the sending module 1210 also uses After transmitting the first signaling to the terminal device, sending, to the terminal device, third signaling, where the third signaling includes a third number indicating a number of user sequences of the third user sequence space. Information, the user sequence of the third user sequence space is identical to the user sequence included in the third spatial subset.
  • the sending module 1210 is specifically configured to: send the first signaling to the terminal device by using a broadcast.
  • the receiving module 1220 may be implemented by a receiver
  • the sending module 1210 may be implemented by a transmitter
  • the processing module 1230 may be implemented by a processor.
  • network device 1300 can include a processor 1310, a receiver 1320, a transmitter 1330, and a memory 1340.
  • the memory 1340 can be used to store code and the like executed by the processor 1310.
  • bus system 1350 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the network device 1200 shown in FIG. 12 or the network device 1300 shown in FIG. 13 can implement the various processes implemented in the foregoing embodiments of FIG. 1 to FIG. 11. To avoid repetition, details are not described herein again.
  • the above method embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • Array, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • FIG. 14 shows a schematic block diagram of a terminal device 1400 according to an embodiment of the present application.
  • the terminal device 1400 includes:
  • the receiving module 1410 is configured to receive first signaling sent by the network device, where the first signaling includes first information indicating a quantity of a user sequence of the first user sequence space, where the first user sequence space
  • the user sequence includes a complete set of user sequences for use by the terminal device served by the network device;
  • the sending module 1420 is configured to send, according to the first information received by the receiving module 1410, a first user sequence to the network device.
  • the receiving module 1410 is further configured to: after receiving the first signaling sent by the network device, receive the second signaling sent by the network device, where the second signaling Included in the second information for indicating the number of user sequences of the second user sequence space, the second user sequence space comprising a first spatial subset and a second spatial subset, the first spatial subset and the The second spatial subset is completely different, the first spatial subset includes a user sequence identical to the user sequence of the first user sequence space, and each user sequence of the second spatial subset is the first The degree of coherence of the user sequence of the spatial subset is less than or equal to the degree of coherence of the user sequence other than the second user sequence space and the user sequence of the first spatial subset.
  • the first user sequence space includes a third spatial subset and a fourth spatial subset, where the third spatial subset and the fourth spatial subset are completely different, where the first The degree of coherence of each user sequence of the four spatial subsets with the user sequence of the third spatial subset is greater than or equal to the coherence of any two user sequences of the third spatial subset; the receiving module 1410 also uses After receiving the first signaling sent by the network device, receiving the third signaling sent by the network device, where the third signaling includes the number of user sequences used to indicate the third user sequence space. The third information, the user sequence of the third user sequence space is identical to the user sequence included in the third spatial subset.
  • the terminal device 1400 further includes: a generating module 1430, configured to generate, according to the number of user sequences in the first user sequence space indicated by the first information, to belong to the first The first sequence of users of the user sequence space.
  • a generating module 1430 configured to generate, according to the number of user sequences in the first user sequence space indicated by the first information, to belong to the first The first sequence of users of the user sequence space.
  • the receiving module 1410 is specifically configured to: receive, by using a broadcast, the first signaling sent by the network device.
  • the receiving module 1410 may be implemented by a receiver
  • the sending module 1420 may be implemented by a transmitter
  • the generating module 1430 may be implemented by a processor.
  • network device 1500 can include a processor 1510, a receiver 1520, a transmitter 1530, and a memory 1540.
  • the memory 1540 can be used to store code and the like executed by the processor 1510.
  • bus system 1550 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the terminal device 1400 shown in FIG. 14 or the terminal device 1500 shown in FIG. 15 can implement the various processes implemented in the foregoing embodiments of FIG. 1 to FIG. 11. To avoid repetition, details are not described herein again.
  • the first signaling in the embodiment of the present application may be carried in Downlink Control Information (DCI), or may be carried in Radio Resource Control (RRC) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the RRC signaling may be high layer signaling.
  • the second signaling in the embodiment of the present application may be carried in the DCI or may be carried in the RRC signaling.
  • the third signaling in the embodiment of the present application may be carried in the DCI or may be carried in the RRC signaling.
  • the first signaling may further include information indicating whether to adopt the unscheduled transmission mode.
  • a field in the first signaling is used to indicate whether to use the unscheduled transmission mode or the scheduled transmission mode.
  • embodiments of the present application are not limited to support the unscheduled transmission mode.
  • the method may further include: before the network device sends the first signaling to the terminal device, the method may further include: the network device sends the fourth signaling to the terminal device, where the fourth signaling indicates whether the scheduling is adopted. Transfer mode.
  • the network device may be configured to allow the terminal device to use the user sequence space dedicated to the unscheduled transmission mode when the network device and the terminal device communicate through the unscheduled transmission mode; when the network device and the terminal device transmit through scheduling When the mode is communicating, the network device allows the terminal device to use the user sequence space dedicated to the scheduled transmission mode.
  • the user sequence space dedicated to the unscheduled transmission mode and the user sequence space dedicated to the scheduled transmission mode do not have the same user sequence.
  • the user sequence space dedicated to the unscheduled transmission mode or the user sequence space dedicated to the scheduled transmission mode may correspond to the first user sequence space indicated by the first information in the first signaling described in the foregoing, The second user sequence space indicated by the second information in the second signaling and the third user sequence space indicated by the third information in the third signaling.
  • the first information, the second information, or the third information may be an index, and the index may include demodulation.
  • DMRS Demodulation Reference Signal
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输用户序列的方法、网络设备和终端设备,该方法包括:网络设备向终端设备发送第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;所述网络设备接收所述终端设备根据所述第一信息发送的第一用户序列;所述网络设备根据所述第一用户序列,进行用户检测和/或通信参数估计。因此,本申请提供的方法,网络设备可以灵活地指定网络设备服务的所有终端设备可以使用的用户序列空间的大小,从而能够调整用户序列空间的大小,提高用户检测或通信参数估计的准确性,提高系统工作效率。

Description

传输用户序列的方法、网络设备和终端设备
本申请要求于2016年6月23日提交中国专利局、申请号为201610464260.3、发明名称为“传输用户序列的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输用户序列的方法、网络设备和终端设备。
背景技术
随着通信技术的快速发展,物联网(Internet of Things,IoT)技术越来越受到业内的关注。不同于移动宽带(Mobile Broad Band,MBB)业务,IoT的主要服务场景是海量和/或高可靠机器类型通信(Machine-Type Communications,MTC)。海量MTC的主要特点有海量连接、小数据包、低成本等。因此,IoT业务成为了蜂窝移动通信系统支撑的主要业务之一。
通常,上行的用户状态信息在系统共享的时频资源上复用传输,可以用于多种场景。例如,可以用于现有的长期演进(Long Term Evolution,LTE)协议的随机接入过程的随机接入信号(具体例如前导码(Preamble));或者用于上行数据传输前的用户检测参考信号(User Detection Reference Signal,UDRS);或者用于解调参考信号(DeModulation Reference Signal,DMRS)等。在这些场景中,用户会从一定数量的用户序列的集合中选取一条用户序列进行传输,该用户序列主要起到标识用户的作用;基站则对用户发送的用户序列进行检测,即用户检测过程,同时也可以根据用户序列进行信道估计或时频偏估计。
如果两个用户碰巧同时选择了同一条用户序列并发送,基站会认为该用户序列对应的只有一个接入用户,这种情况称作发生了碰撞。通常情况下,碰撞会导致后续的数据传输的失败,对通信系统性能产生很大的影响。将用户可选择的用户序列的集合称作用户序列空间,则用户序列空间的大小直接决定了用户之间的碰撞概率。用户序列空间越大,碰撞概率越小。现有的用户序列空间中的用户序列是相互正交的,且用户序列空间的大小受到用户序列长度的限制。
传统的蜂窝移动通信系统主要针对MBB业务设计,没有考虑海量连接的场景。MBB业务中,已经接入的用户数量和潜在的接入用户数量都相对有限。因此,系统在设计用户序列空间时,往往在协议中规定可用的用户序列的数量,只提供总数量较小且总数量固定的可用的用户序列。例如,在LTE系统的物理随机接入信道(Physical Random Access Channel,PRACH)上,只提供54个Zadoff-Chu(ZC)序列用于竞争接入。
在IoT业务的海量连接的场景中,由于连接数量大、接入用户数量多,如果用户序列的集合的大小与MBB设计相同,则碰撞出现的概率会大大增加,即冲突概率大大增加。
发明内容
本申请提供一种传输用户序列的方法,可以灵活地指定用户序列空间的大小,能够提高系统工作效率。
第一方面,本申请提供了一种传输用户序列的方法,包括:网络设备向终端设备发送第一信令,第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集;网络设备接收终端设备根据第一信息发送的第一用户序列;网络设备根据第一用户序列,进行用户检测和/或通信参数估计。
其中,网络设备可以是小区的网络设备,可以是小区层面意义上的基站或者具有类似于基站的功能的网络设备,例如无线路由器和无线接入点(Access Point,AP)等。网络设备可以是为小区内移动或固定不动的终端设备提供无线接入、通信服务的网络设备。
网络设备服务的所有终端设备包括接入网络设备的终端设备和驻留在网络设备的终端设备等。包括接入网络设备的终端设备、通过该网络设备进行上行/下行通信的终端设备和驻留在该网络设备服务范围内并潜在可能进行接入、上行/下行通信的终端设备等。其中网络设备服务范围可以指其空口所覆盖的范围。
第一用户序列是第一用户序列空间中的一个用户序列。
第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集,也可以描述为第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的所有用户序列,或者第一用户序列空间的用户序列包括供网络设备服务的所有终端设备使用的用户序列的并集。
第一方面提供的传输用户序列的方法,网络设备向终端设备发送指示第一用户序列空间的用户序列的数量的第一信息,该第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集,由此可以灵活地指定网络设备服务的所有终端设备可以使用的用户序列空间的大小,从而能够支持用户序列空间的大小的调整,进而提高用户检测或通信参数估计的准确性,提高系统工作效率。
在第一方面的一种可能的实现方式中,供所述网络设备服务的终端设备使用的用户序列的全集包括:用于竞争性接入的用户序列和/或用于非竞争性接入的用户序列。或者说,第一用户序列空间可以包括终端设备用于竞争性接入的用户序列和/或用于非竞争性接入的用户序列。对于终端设备可以使用的用户序列包括终端设备用于竞争性接入的用户序列和用于非竞争性接入的用户序列的情况,传输用户序列的方法可以包括:网络设备向终端设备发送第一信令,第一信令中包括用于竞争性接入的用户序列的数量的信息和用于非竞争性接入的用户序列的数量的信息,用于竞争性接入的用户序列和用于非竞争性接入的用户序列构成第一用户序列空间;网络设备接收终端设备根据用于竞争性接入的用户序列的数量和/或用于非竞争性接入的用户序列的数量发送的第一用户序列;网络设备根据第一用户序列,进行用户检测和/或通信参数估计。
在第一方面的一种可能的实现方式中,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:用于基于免调度接入的用户序列和/或用于基于所述网络设备调度接入的用户序列。或者说,第一用户序列空间的用户序列包括用于基于免调度接入的用户序列和/或用于基于所述网络设备调度接入的用户序列。
在第一方面的一种可能的实现方式中,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:用于自主(autonomous)接入的用户序列和/或用于网络设备引导 (supervised)接入的用户序列。或者说,第一用户序列空间的用户序列包括用于自主(autonomous)接入的用户序列和/或用于网络设备引导(supervised)接入的用户序列。
在第一方面的一种可能的实现方式中,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第二信令,第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,第二用户序列空间包括第一空间子集和第二空间子集,第一空间子集和第二空间子集完全不同,第一空间子集包括的用户序列与第一用户序列空间的用户序列完全相同,第二空间子集的每一个用户序列与第一空间子集的用户序列的相干度小于或等于第二用户序列空间以外的用户序列与第一空间子集的用户序列的相干度。
在第一方面的另一种可能的实现方式中,第一用户序列空间包括第三空间子集和第四空间子集,第三空间子集和第四空间子集完全不同,第四空间子集的每一个用户序列与第三空间子集的用户序列的相干度大于或等于第三空间子集的任意两个用户序列的相干度;在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第三信令,第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,第三用户序列空间的用户序列与第三空间子集包括的用户序列完全相同。
由第一用户序列空间扩展为第二用户序列空间,扩展后的第二用户序列空间的最大相干度大于或等于扩展前的第一用户序列空间的最大相干度。其中,最大相干度是指用户序列空间中任意两个用户序列的相干度的最大值。由第一用户序列空间减小为第三用户序列空间,减小后的第三用户序列空间的最大相干度小于或等于减小前的第一用户序列空间的最大相干度。
上述两种可能的实现方式,通过信令通知,可以灵活的扩展或缩小用户序列空间,并且扩展或缩小后的用户序列空间的最大相干度尽可能保持最小,可以保证用户检测或通信参数估计的准确性。
当扩展用户序列空间时,除直接通知扩展后的第二用户序列空间的用户序列的数量以外,还可以通知扩展后的第二用户序列空间相对于第一用户序列空间的用户序列的数量的变化量,因此在向终端设备发送第一信令之后,方法还可以包括:网络设备向终端设备发送第二信令,第二信令中包括用于指示第二用户序列空间的用户序列的数量相对于第一用户序列空间的用户序列的数量的变化的第二信息,第二用户序列空间包括第一空间子集和第二空间子集,第一空间子集和第二空间子集完全不同,第一空间子集包括的用户序列与第一用户序列空间的用户序列完全相同,第二空间子集的每一个用户序列与第一空间子集的用户序列的相干度小于或等于第二用户序列空间以外的用户序列与第一空间子集的用户序列的相干度。
当缩小用户序列空间时,除直接通知缩小后的第二用户序列空间的用户序列的数量以外,还可以通知缩小后的第二用户序列空间相对于第一用户序列空间的用户序列的数量的变化量,因此,在网络设备向终端设备发送第一信令之后,方法还可以包括:网络设备向终端设备发送第三信令,第三信令中包括用于指示第三用户序列空间的用户序列的数量相对于第一用户序列空间的用户序列的数量的变化的第三信息,第一用户序列空间包括第三空间子集和第四空间子集,第三空间子集和第四空间子集完全不同,第三空间子集包括的用户序列与第三用户序列空间的用户序列完全相同,第四空间子集的每一个用户序列与第三空间子集的用户序列的相干度大于或等于第三空间子集的任意两个用 户序列的相干度。
在第一方面的一种可能的实现方式中,在网络设备向终端设备发送第一信令之前,方法还可以包括:网络设备根据当前网络负载和系统参数,确定第一用户序列空间的用户序列的数量,系统参数包括用户序列长度、碰撞概率容忍值、漏检概率容忍值、定时估计误差、信道估计误差、误码率、可用时频资源大小、可用计算资源大小、接收信号功率和信噪比中的至少一种。
在该可能的实现方式中,基于不同的应用场景,网络设备根据当前网络负载和系统参数确定第一用户序列空间的用户序列的数量,可以更准确的确定第一用户序列空间的大小,使得用户序列空间的大小更有利于提高用户检测或通信参数估计的准确性,提高系统工作效率。
网络设备接收到第一用户序列后,可以应用于以下场景中:
第一用户序列为随机接入信号,网络设备根据第一用户序列,进行用户检测和/或通信参数估计,包括:网络设备根据随机接入信号,进行用户检测并执行对终端设备的随机接入过程。
第一用户序列为用户检测参考信号,网络设备根据第一用户序列,进行用户检测和/或通信参数估计,包括:网络设备根据用户检测参考信号,进行用户检测并确定终端设备进行数据传输时使用的时域资源、频域资源和码域资源中的至少一种。
第一用户序列为解调参考信号,网络设备根据第一用户序列,进行用户检测和/或通信参数估计,包括:网络设备根据解调参考信号,进行通信参数估计以用于数据解调,通信参数估计包括时偏估计、频偏估计和信道估计中的至少一种。
在第一方面的一种可能的实现方式中,网络设备向终端设备发送第一信令,包括:网络设备通过广播的形式,向终端设备发送第一信令。通过广播的形式发送第一信令,实现方式简单高效。
在第一方面的一种可能的实现方式中,第一用户序列是终端设备根据公式
Figure PCTCN2017089502-appb-000001
生成的,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。本实现方式的第一用户序列为RM序列,RM序列在大幅增加用户序列空间的同时,还能够获得极低的检测复杂度。
第二方面,本申请提供了一种传输用户序列的方法,包括:终端设备接收网络设备发送的第一信令,第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集;终端设备根据第一信息,向网络设备发送第一用户序列。
在第二方面的一种可能的实现方式中,在终端设备接收网络设备发送的第一信令之后,方法还包括:终端设备接收网络设备发送的第二信令,第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,第二用户序列空间包括第一空间子集和第二空间子集,第一空间子集和第二空间子集完全不同,第一空间子集包括的用户序列与第一用户序列空间的用户序列完全相同,第二空间子集的每一个用户序列与第一空间子集的用户序列的相干度小于或等于第二用户序列空间以外的用户序列与第一空间子集 的用户序列的相干度。
在第二方面的另一种可能的实现方式中,第一用户序列空间包括第三空间子集和第四空间子集,第三空间子集和第四空间子集完全不同,第四空间子集的每一个用户序列与第三空间子集的用户序列的相干度大于或等于第三空间子集的任意两个用户序列的相干度;在终端设备接收网络设备发送的第一信令之后,方法还包括:终端设备接收网络设备发送的第三信令,第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,第三用户序列空间的用户序列与第三空间子集包括的用户序列完全相同。
在第二方面的一种可能的实现方式中,终端设备根据第一信息,向网络设备发送第一用户序列,包括:终端设备根据第一信息指示的第一用户序列空间中的用户序列的数量,生成属于第一用户序列空间的第一用户序列;终端设备向网络设备发送第一用户序列。
在第二方面的一种可能的实现方式中,终端设备接收网络设备发送的第一信令,包括:终端设备接收网络设备通过广播的形式发送的第一信令。
在第二方面的一种可能的实现方式中,在终端设备根据第一信息,向网络设备发送第一用户序列之前,方法还包括:终端设备根据公式
Figure PCTCN2017089502-appb-000002
生成第一用户序列,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。本实现方式生成的第一用户序列为RM序列,RM序列在大幅增加用户序列空间的同时,还能够获得极低的检测复杂度。
第二方面以及第二方面各可能的设计的有益效果可以参照第一方面以及第一方面相应的特征对应的有益效果,此处不再进行赘述。
在第一方面和第二方面的可能的实现方式中,第一用户序列空间的任意两个用户序列的相干度可以大于或等于0且小于或等于第一阈值。当第一用户序列空间的任意两个用户序列的相干度均等于0时,第一用户序列是完全正交的。当第一用户序列空间中存在至少一对用户序列的相干度大于0时,第一用户序列空间为准正交的。
其中,第一阈值可以是根据用户序列长度确定的。
在第一方面和第二方面的可能的实现方式中,第一信令中还包括用于指示第一用户序列空间的用户序列的种类的第四信息。其中,第一用户序列空间的用户序列的种类可以包括Reed-Muller序列或Zadoff-Chu序列。
本可能的实现方式使用Reed-Muller序列,在大幅增加用户序列空间的同时,还能够获得极低的检测复杂度。
在第一方面和第二方面的可能的实现方式中,第一信息包括第一用户序列空间的空间级数,或用于指示第一用户序列空间的用户序列的数量的量化值。其中,第一用户序列空间的空间级数可以指第一用户序列空间能够划分出的子空间的最大相干度的取值个数。
具体的实现方式可以为,网络设备向终端设备发送第一信令,可以包括:网络设备通过在系统信息块SIB中携带指示第一用户序列空间的空间级数,或携带用于指示第一用户序列空间的用户序列的数量的量化值的第一信息,向终端设备发送第一信令。网络设备向终端设备发送第一信令,还可以包括:网络设备通过在SIB中携带用于指示第一 用户序列空间的用户序列的种类的第四信息,向终端设备发送第一信令。
在第一方面和第二方面的可能的实现方式中,第一信息可以为用于指示第一用户序列空间的配置的索引,索引通过标准在网络设备和终端设备中预先约定,第一用户序列空间的配置包括第一用户序列空间的用户序列的数量。第一用户序列空间的配置还可以包括第一用户序列空间的用户序列的种类、第一用户序列空间的空间级数和第一用户序列空间的用户序列的长度中的至少一种。
上述两种可能的实现方式采用空间级数、量化值或索引来指示用户序列空间的大小,当第一信息为空间级数、量化值或索引时,可以使得第一信息占用的bit数很少,从而减小信令的开销,提高资源的利用率。
第三方面,本申请提供了一种传输用户序列的方法,包括:网络设备向终端设备发送第一信令,第一信令中包括用于指示第一用户序列空间的正交性的第一信息;网络设备接收终端设备根据第一用户序列空间的正交性发送的第一用户序列;网络设备根据第一用户序列,进行用户检测和/或通信参数估计。
在第三方面的一种可能的实现方式中,第一信息为第一用户序列空间内任意两个用户序列间的相干度的最大值。
在第三方面的另一种可能的实现方式中,第一信息为第一用户序列空间的空间级数,空间级数指第一用户序列空间能够划分出的子空间的最大相干度的取值个数。
在第三方面的一种可能的实现方式中,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第二信令,第二信令中包括用于指示第二用户序列空间的正交性的第二信息,第二用户序列空间的正交性弱于或等于第一用户序列空间的正交性。
具体的实现方式可以为,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第二信令,第二信令中包括用于指示第二用户序列空间的正交性的第二信息,第二用户序列空间内两两用户序列间的相干度的最大值大于或等于第一用户序列空间内两两用户序列间的相干度的最大值。
具体的实现方式还可以为,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第二信令,第二信令中包括用于指示第二用户序列空间的正交性的第二信息,第二用户序列空间的空间级数大于或等于第一用户序列空间的空间级数。
在第三方面的另一种可能的实现方式中,在网络设备向终端设备发送第一信令之后,方法还包括:
网络设备向终端设备发送第三信令,第三信令中包括用于指示第三用户序列空间的正交性的第三信息,第三用户序列空间的正交性强于或等于第一用户序列空间的正交性。
具体的实现方式可以为,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第三信令,第三信令中包括用于指示第三用户序列空间的正交性的第三信息,第三用户序列空间内两两用户序列间的相干度的最大值小于或等于第一用户序列空间内两两用户序列间的相干度的最大值。
具体的实现方式还可以为,在网络设备向终端设备发送第一信令之后,方法还包括:网络设备向终端设备发送第三信令,第三信令中包括用于指示第三用户序列空间的正交性的第三信息,第三用户序列空间的空间级数小于或等于第一用户序列空间的空间级数。
第三方面以及第三方面各可能的设计的有益效果可以参照第一方面、第二方面以及 第一方面、第二方面相应的特征对应的有益效果,此处不再进行赘述。
第四方面,本申请提供了一种网络设备,包括发送模块、接收模块和处理模块,用于实现上述方面中网络设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请提供了一种网络设备,包括接收器、发射器和处理器,用于支持网络设备执行上述方法中相应的功能。接收器和发射器用于支持与终端设备之间的通信。网络设备还可以包括存储器,存储器用于与处理器耦合,其保存必要的程序指令和数据。
第六方面,本申请提供了一种终端设备,包括接收模块和发送模块,用于实现上述方面中终端设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。终端设备还可以包括生成模块以完成相应功能。
第七方面,本申请提供了一种终端设备,包括接收器和发射器,用于支持终端设备执行上述方法中相应的功能。接收器和发射器用于支持与网络设备之间的通信。终端设备还可以包括存储器,存储器用于与处理器耦合,其保存必要的程序指令和数据。
应理解,本申请的第一信令可以承载在下行控制信息DCI中,或者可以承载在无线资源控制RRC信令中。
应理解,本申请的第二信令可以承载在DCI中,或者可以承载在RRC信令中。
应理解,本申请的第三信令可以承载在DCI中,或者可以承载在RRC信令中。
在本申请中,第一信令中还可以包括指示是否采用免调度传输模式的信息。
在本申请中,在网络设备向终端设备发送第一信令之前,方法还可以包括网络设备向终端设备发送第四信令,所述第四信令指示是否采用免调度传输模式。
本申请中,第一信息、第二信息或第三信息可以为索引,索引可以包括解调参考信号DMRS的根指数以及偏移量。
附图说明
图1是本申请应用的通信场景的示意图。
图2是本申请一个实施例的用户序列空间的空间级数的示意图。
图3是本申请一个实施例的传输用户序列的方法的示意性流程图。
图4是本申请另一个实施例的传输用户序列的方法的示意性流程图。
图5是本申请一个实施例的指示用户序列空间的大小的示意图。
图6是本申请另一个实施例的传输用户序列的方法的示意性流程图。
图7是本申请另一个实施例的传输用户序列的方法的示意性流程图。
图8是本申请一个实施例的用户序列空间的扩展的示意图。
图9是本申请一个实施例的用户序列空间的减小的示意图。
图10是本申请一个实施例的用户检测过程的示意性流程图。
图11是本申请一个实施例的基于竞争的随机接入过程的示意性流程图。
图12是本申请一个实施例的网络设备的示意性框图。
图13是本申请另一个实施例的网络设备的示意性框图。
图14是本申请一个实施例的终端设备的示意性框图。
图15是本申请另一个实施例的终端设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或/GERAN架构中,MME的功能由服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统或5G之后的通信系统等,本申请实施例对此不作限定。
本申请各个实施例涉及终端设备。终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等,本申请实施例对此不作限定。
终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式的点对点(Ad-Hoc)模式网络以及用户部署的子网络,终端设备还可以通过其他方式接入网络进行通信,本申请实施例对此不作限定。
本申请各个实施例还涉及网络设备。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本申请实施例的网络设备可以是小区的网络设备,可以是小区层面意义上的基站或者与具有类似于基站的功能的网络设备。网络设备可以是为小区内移动或固定的终端设备提供无线接入、通信服务的网络设备。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,CD)、数字通用盘(Digital Versatile Disk,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
随着通信技术的快速发展,物联网(Internet of Things,IoT)技术越来越受到业内的关注。不同于移动宽带(Mobile Broad Band,MBB)业务,IoT的主要服务场景是海量和/或高可靠机器类型通信(Machine-Type Communications,MTC)。海量MTC的主要特点有海量连接、小数据包、低代价等。因此,IoT业务成为了蜂窝移动通信系统支撑的主要业务之一。
通常,上行的用户状态信息在系统共享的时频资源上复用传输,可以用于多种场景。例如,可以用于现有的长期演进(Long Term Evolution,LTE)协议的随机接入过程的随机接入信号(具体例如前导码(Preamble));或者用于上行数据传输前的UDRS;或者用于解调参考信号(DeModulation Reference Signal,DMRS)等。图1示出了本申请一个实施例的通信场景的示意图。在这些场景中,用户会从一定数量的用户序列的集合中选取一条用户序列进行传输,该用户序列主要起到标识用户的作用;基站则对用户发送的用户序列进行检测,即用户检测过程,同时也可以根据用户序列进行信道估计或时频偏估计。
如果两个用户碰巧同时选择了同一条用户序列并发送,基站会认为该用户序列对应的只有一个接入用户,这种情况称作发生了碰撞。如图1所示,有两个用户同时选择了用户序列7,则这两个用户就发生了碰撞。通常情况下,碰撞会导致后续的数据传输的失败,对通信系统性能产生很大的影响。将用户可选择的用户序列的集合称作用户序列空间,则用户序列空间的大小直接决定了用户之间的碰撞概率。用户序列空间越大,碰撞概率越小。现有的用户序列空间中的用户序列是相互正交的,且用户序列空间的大小受到用户序列长度的限制。
传统的蜂窝移动通信系统主要针对MBB业务设计,没有考虑海量连接的场景。MBB业务中,已经接入的用户数量和潜在的接入用户数量都相对有限。因此,系统在设计用户序列空间时,往往只提供总数量较小且总数量固定的可用的用户序列。例如,在LTE系统的物理随机接入信道(Physical Random Access Channel,PRACH)上,只提供54个Zadoff-Chu(ZC)序列用于竞争接入。
在IoT业务的海量连接的场景中,由于连接数量大、接入用户数量多,如果用户序列的集合的大小与MBB设计相同,则碰撞出现的概率会大大增加,即冲突概率大大增加。为了减小随机接入过程中的冲突概率,现有的方案是增加用户序列所占用的时频资源(即 增加用户序列长度)来增加所支持的用户序列的数量。但增加用户序列长度,一方面会导致用于上行数据传输的时频资源的减少,不利于IoT业务的海量连接和小数据包传输。另一方面,用户序列长度数量的增加,会导致基站解调用户序列的复杂度,从而使时延增加。
用户序列广泛应用于无线终端的随机接入过程、信道估计、时偏估计和频偏估计等场景。在这些应用中,例如随机接入过程的第一步通常是用户检测(或者称为用户识别)。多个用户在共享的时频资源中各自发送标识自身的用户序列,不同用户发送的信号在空中叠加,基站通过接收这些混叠的信号判断当前有哪些无线终端在请求接入。现有的方案中,用户序列空间中的用户序列被设计成具有正交性的,这样即使用户发送的信号在基站混叠,基站也可以通过用户序列的正交性,将各个用户发送的信号分离开来,达到用户检测的目的。
为了支持更低的接入时延,用户在接入之前希望能不进行协调调度,即进行免调度(Grant-free)的通信。这时用户随机地从用户序列空间中选择一个用户序列作为自身的发送序列。这里,用户序列空间对应于上文的用户序列的集合,可选的用户序列的集合等等。
现有的方案中,主要使用Zadoff-Chu(ZC)序列作为用户序列,采用多个ZC序列形成用户序列空间。ZC序列可以较好地满足用户检测所需要的正交性。用户序列空间中不同的ZC序列由一个基序列进行循环移位产生,其中一个基序列由一个根指数生成。长度为N的基序列可以有N种循环移位,从而产生N条ZC序列。通过同一个根序列循环移位产生的N条ZC序列满足完美的正交特性,即N条ZC序列中的任意两条ZC序列的相干度为0。因此,ZC序列作为用户序列,具有较好的用户检测性能,被广泛应用于LTE系统等通信系统中。
正在研究中的第5代移动通信应当具备高吞吐量、低时延、大连接的特性。其中,大连接就是针对IoT业务中的海量终端连接的需求提出的。此时,现有协议和现有方案中的用户检测设计主要具有以下几个问题。
(1)用户序列空间小:长度为N的基序列通常最多支持N个不同的用户序列。这时,如果同时接入用户数量较大,它们各自随机选择自身序列时会产生“碰撞”,即两个或两个以上用户选择了同一条用户序列。表1示出了不同大小的用户序列空间、不同接入用户数量下的碰撞概率。可以看出,接入用户数量相同时,用户序列空间越大,用户的碰撞概率越低。
表1随机选择用户序列时,用户序列空间的大小、接入用户数量和碰撞概率之间的关系
Figure PCTCN2017089502-appb-000003
Figure PCTCN2017089502-appb-000004
(2)用户序列空间不支持灵活扩展:在现有的LTE系统中,用户序列长度一旦确定,就相应的确定了相应的用户序列空间的大小。当接入用户数量很少时,如果使用较大的用户序列空间(对应于较大的用户序列长度),就会造成时频资源的浪费;当接入用户数量很多时,如果使用较小的用户序列空间,则碰撞概率高。这样的设计缺乏灵活性。
(3)检测复杂度高:ZC序列的相关性检测需要对用户序列空间的所有用户序列做相关,复杂度是用户序列长度N的平方。在N较大时,实时检测会产生较高的计算开销。
基于现有的方案中存在的以上问题,本申请实施例提供了一种传输用户序列的方法。该方法包括:网络设备向终端设备发送第一信令,相应地,终端设备接收网络设备发送的第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集。所述网络设备接收所述终端设备根据所述第一信息发送的第一用户序列,相应地,所述终端设备根据所述第一信息,向所述网络设备发送第一用户序列。所述网络设备根据所述第一用户序列,进行用户检测和/或通信参数估计。
应理解,本申请实施例的网络设备可以是小区的网络设备,可以是小区层面意义上的基站或者与具有类似于基站的功能的网络设备,例如无线路由器和无线接入点等。网络设备可以是为小区内移动或固定的终端设备提供无线接入、通信服务的网络设备。网络设备服务的所有终端设备包括接入网络设备的终端设备和驻留在网络设备的终端设备等。包括接入网络设备的终端设备、通过该网络设备进行上行/下行通信的终端设备和驻留在该网络设备服务范围内并潜在可能进行接入、上行/下行通信的终端设备等。其中网络设备服务范围可以指其空口所覆盖的范围。
第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集,也可以描述为第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的所有用户序列,或者第一用户序列空间的用户序列包括供网络设备服务的所有终端设备使用的用户序列的并集。
应理解,现有的方案中,第一用户序列空间的用户序列的数量(也称为用户序列空间的大小)是协议确定好的,或者至少是在系统初始化时,网络设备(例如基站)和终端设备(例如,用户设备(User Equipment,UE))双方协商好并保持不变的。因此,现有的方案中,网络设备不会向终端设备发送第一信令,由第一信令指示第一用户序列空间的用户序列的数量。
本申请实施例提供的传输用户序列的方法,网络设备向终端设备发送指示第一用户序列空间的用户序列的数量的第一信息,该第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集,由此可以灵活地指定网络设备服务的所有终端设备可以使用的用户序列空间的大小,从而能够支持用户序列空间的大小的调整,进而提高用户检测或通信参数估计的准确性,提高系统工作效率。
应理解,第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户 序列的全集,也可以描述为第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的所有用户序列,或者第一用户序列空间的用户序列包括供网络设备服务的所有终端设备使用的用户序列的并集。
供所述网络设备服务的终端设备使用的用户序列的全集可以包括:用于竞争性接入的用户序列和/或用于非竞争性接入的用户序列。或者说,第一用户序列空间可以包括终端设备用于竞争性接入的用户序列和/或用于非竞争性接入的用户序列。
或者,供所述网络设备服务的终端设备使用的用户序列的全集可以包括:用于基于免调度接入的用户序列和/或用于基于所述网络设备调度接入的用户序列。或者说,第一用户序列空间的用户序列包括用于基于免调度接入的用户序列和/或用于基于所述网络设备调度接入的用户序列。
或者,供所述网络设备服务的终端设备使用的用户序列的全集可以包括:用于自主(autonomous)接入的用户序列和/或用于网络设备引导(supervised)接入的用户序列。或者说,第一用户序列空间的用户序列包括用于自主(autonomous)接入的用户序列和/或用于网络设备引导(supervised)接入的用户序列。
在一些场景中,例如免授权通信的场景,第一用户序列空间有可能只包括竞争性接入(基于网络设备调度接入、网络设备引导接入)的用户序列。在一些场景中,例如基站调度的通信的场景,第一用户序列空间有可能只包括非竞争性接入(基于免调度接入、自主接入)的用户序列。在一些场景中,第一用户序列空间有可能既包括竞争性接入的用户序列又包括非竞争性接入的用户序列。
应理解,本申请实施例中,所述第一用户序列空间的任意两个用户序列的相干度大于或等于0且小于或等于第一阈值。当第一用户序列空间的任意两个用户序列的相干度均等于0时,第一用户序列空间是完全正交的,即第一用户序列空间内的任意两个用户序列是正交的。
为了解决海量连接下用户序列容易发生碰撞的问题,所使用的用户序列空间中的用户序列可以是准正交的,即不是完全的正交的。
此时,所述第一用户序列空间的用户序列可以是准正交的,所述准正交是指所述第一用户序列空间的任意两个用户序列的相干度大于或等于0且小于或等于第一阈值,并且所述第一用户序列空间中存在至少一对用户序列的相干度大于0。
具体而言,如上文所述,用户序列长度对系统用于进行上行数据传输的时频资源的大小是有影响的。因而,本申请实施例可以是在现有的方案的用户序列长度N不变的情况下(即相对于现有技术的方案,无需分配额外的时频资源),使用准正交码(例如准正交的Reed-Muller序列)作为用户序列。准正交的用户序列不局限于固定的正交用户序列空间大小,因此可以产生更大的序列空间。
用户序列空间(简称用户空间、序列空间)的大小是指用户可使用的用户序列的集合中不同用户序列的总数量。换而言之,用户序列空间大小是指用户序列空间中包括的所有用户序列的数量。这与现有的LTE协议中随机接入信道(Random Access CHannel,RACH)配置的分组内序列数量是有区别的。
准正交是指用户序列空间的任意两个用户序列的相干度大于或等于0且小于或等于第一阈值ε,并且用户序列空间中存在至少一对用户序列的相干度大于0。本申请实施例允许用户序列之间不完全正交,但应最大限度地保持用户序列空间的正交性。应注意,
用户序列空间中可以包含正交的子用户序列空间。长度为N的用户序列s1和s2的相干度的定义可以如下:
Figure PCTCN2017089502-appb-000005
其中s(i)为序列的第i位。
第一阈值ε的设置根据系统参数决定,例如可以是根据用户序列长度N确定的。具体地,第一阈值ε可以取值
Figure PCTCN2017089502-appb-000006
本申请实施例的方法采用准正交的用户序列空间时,用户序列空间增大,可以降低用户间的碰撞概率,并且能够不改变用户序列的长度,无需分配额外的时频资源。
本申请实施例中另外一种传输用户序列的方法,可以包括:网络设备向终端设备发送第一信令,所述第一信令中包括用于指示第一用户序列空间的正交性的第一信息;所述网络设备接收所述终端设备根据所述第一用户序列空间的正交性发送的第一用户序列;所述网络设备根据所述第一用户序列,进行用户检测和/或通信参数估计。
相比于前述的方案,该方案中网络设备通知终端设备第一用户序列空间的正交性而非用户序列的数量,这种方式也可以使网络设备和终端设备相互确定要使用的用户序列空间的大小。
其中,指示第一用户序列空间的正交性的第一信息可以为所述第一用户序列空间内任意两个用户序列间的相干度的最大值;也可以为所述第一用户序列空间的空间级数,所述空间级数指所述第一用户序列空间能够划分出的子空间的最大相干度的取值个数。
下面详细说明可以使用准正交的用户序列扩展用户序列空间的原理。
如果只使用正交的用户序列空间,长度为N的用户序列最多能产生大小为N的用户序列空间,所支持的用户数量受限。而使用准正交的用户序列空间,即用户序列空间中的用户序列非完全正交的,所支持的用户数量可以大幅增加,从而达到减少碰撞概率的目的。表2示出了用户序列空间的级数、用户序列空间的大小、满足要求的用户序列以及用户序列间最大的相干度。如表2所示,长度为N的准正交的用户序列可产生远大于N的用户序列空间。
表2用户序列空间的举例
Figure PCTCN2017089502-appb-000007
Figure PCTCN2017089502-appb-000008
其中,Kerdock集合、DG(m,1)集合和DG(m,r)集合等均为构造RM序列用到的参数。DG集合全称为Delsarte-Goethals Set,m为与用于序列长度相关的参数。1级用户序列空间为正交的用户序列空间,2级及2级以上用户序列空间为准正交的用户序列空间,用户序列空间从1级至r+2级,级数逐渐升高,高级用户序列空间包含低级用户序列空间。
如表2所示,随着用户序列空间的扩大,虽然碰撞概率会大幅降低,但用户之间的正交性也越来越差,即用户间干扰越大(表现为用户序列之间相干度的上升)。根据上文描述的基于正交性的用户检测的准确度会由于引入非完全正交的用户序列而降低。图2示出了本申请实施例的用户序列空间的空间级数的示意图。如图2所示,用户序列空间的空间级数越大,碰撞概率越低,同时用户序列空间中用户序列的正交性越低,用户检测成功率越低。因而本申请实施例中,可以对获得大用户序列空间下海量连接(低碰撞概率)和高可靠(高检测成功率)进行折衷。
本申请实施例中,网络设备可以根据当前网络负载和系统参数,确定所述第一用户序列空间的用户序列的数量,所述系统参数包括用户序列长度、碰撞概率容忍值、漏检概率容忍值、定时估计误差、信道估计误差、误码率、可用时频资源大小、可用计算资源大小、接收信号功率和信噪比中的至少一种。
具体而言,以常见的网络设备基站为例进行说明。基站确定用户序列空间的用户序列的数量可以通过算法实现。算法的输入包括接入用户数量(例如平均接入用户数量或当前接入用户数量)k,用户序列长度N,系统性能参数可以包括至少一种以下参数但不限于:
碰撞概率容忍值
Figure PCTCN2017089502-appb-000009
漏检概率容忍值
Figure PCTCN2017089502-appb-000010
可用时频资源大小(例如RACH)
可用计算资源大小(例如用于计算的硬件资源,发送端和/或接收端的硬件资源所能承受的算法)
接收信号功率
信号与干扰和噪声比(Signal to Interference plus Noise Ratio,SINR)或其他衡量接收信道质量的参数
定时估计误差
信道估计误差
误码率或误块率
其他与用户序列空间的大小选择相关的系统参数…
算法的输出可以包括以下至少一种但不限于:
用户序列空间的大小C,即用户序列空间的用户序列的数量
用户序列的种类(RM序列、ZC序列等)
用户序列空间的级数L
在具体的例子中,为使系统总体性能最佳,系统性能参数由具体的应用场景决定。例如,当用户序列的应用场景为用户随机接入的盲检测时,假设检测算法性能理想,则接入用户数量k、用户序列长度N和碰撞概率容忍值
Figure PCTCN2017089502-appb-000011
为必要的输入参数。用户序列空间的大小可由以下方式确定:
由于k个用户在大小为C的用户序列空间中随机接入时,碰撞概率为
Figure PCTCN2017089502-appb-000012
因此用户序列空间的大小C应满足以下公式
Figure PCTCN2017089502-appb-000013
通常情况下,除了碰撞性能,同时还需要考虑检测性能,即漏检概率。因为用户序列长度N越长,用户序列之间的干扰(相干度)越低,因此漏检概率与用户序列长度N相关。漏检概率为信噪比(Signal Noise Ratio,SNR)的函数:
pmiss(k,N,C,SNR)=Q(SINR)
其中,Q()为Q函数,Q函数又称为误差函数,是信号处理中用于估计检测性能的通用函数。SINR=falg(k,N,C,SNR)为信号与干扰和噪声比,falg与检测算法相关,SNIR与接入用户数k成正比,N和C共同决定了用户间两两的干扰值,SNR决定了噪声值。
因此用户序列空间的大小C应满足以下公式
Figure PCTCN2017089502-appb-000014
基于不同的应用场景,网络设备根据当前网络负载和系统参数确定第一用户序列空间的用户序列的数量,可以更准确的确定第一用户序列空间的大小,使得用户序列空间的大小更有利于提高用户检测或通信参数估计的准确性,提高系统工作效率。
本申请实施例中,可以通过综合考虑检测算法的实际性能(由用户序列空间的大小,信噪比等共同决定),以及可用计算资源或算法复杂度(算法复杂度随用户序列空间增大而线性增加)等多重因素,来共同确定最佳的用户序列空间的大小。网络设备还可以 通过设置条件来确定用户序列空间的大小。例如,可以根据经验在网络设备中预先设置一定的条件,该条件可以是与网络负载或其他系统参数相关的,当网络负载或其他系统参数符合一定的条件时,将用户序列空间的大小确定为相应的数值。网络设备还可以设置接口,使得网络管理员可以通过该接口设定用户序列空间的大小。用户序列空间的大小还可以是人为划分之后存储在网络设备上的,本申请实施例对用户序列空间的大小的具体确定方式不作限定。
实验证明,通过合理的设计,将用户序列空间相对现有的方案急剧扩大(例如:128长的序列,将空间扩大120倍)时,只有小幅检测性能损失用户间碰撞概率则大大降低。
而后,基站根据需求,通知UE第一用户序列空间的大小,或者通知UE实时扩展或减小用户序列空间,还可以通知UE用户序列空间的级数、用户序列的种类等等。UE根据第一用户序列空间的用户序列的数量向基站发送第一用户序列。其中,第一用户序列是第一用户序列空间中的一个用户序列。基站根据第一用户序列进行用户检测和/或通信参数估计。
基站通过向UE发送第一信令通知UE用户序列空间的大小,UE据此向基站发送用户序列,可以有多种形式。其中一种形式为半静态的形式,具体的,图3是本申请一个实施例的传输用户序列的方法的示意性流程图。该方法的步骤可以如图3所示。
S301,基站统计输入参数。具体地,基站可以在一定的周期内统计网络负载和系统参数,例如可以包括接入用户数量、系统性能参数和用户序列长度等输入参数。可选地,该周期可以为广播周期。
S302,基站确定输出参数。具体地,基站确定当前的用户序列空间的大小,还可以确定用户序列的种类等。
S303,基站将包括输出参数的信息的第一信令发送给所有UE,可选地,基站可以通过广播的形式发送第一信令。相对应地,UE接收网络设备发送的所述第一信令。具体地,对于随机接入过程,基站可以通过类似于LTE协议中36.331中规定的系统信息块(System Information Blocks,SIB)SIB2承载该信息,对于用作导频序列、同步序列或解调参考信号需要另外添加信令或复用已有信令,第一信令的具体形式和内容将在下文中详细展开。
随机接入过程SIB2可以承载信息如下:
PRACH-ConfigInfo::=SEQUENCE{
……
prach-IndexOfSequenceSpaceUsed
prach-NumOfSequenceSpaceUsed
prach-LevelOfSequenceSpaceUsed
Prach-TypeOfSequenceUsed
……
}
S304,UE根据基站发送的第一信令,在指定的用户序列空间内随机选择或生成用户序列。
具体而言,UE选择或生成用户序列,可以通过两种方法。
一种是离线生成系统可能使用的最大的用户序列空间中的所有用户序列,并保存于UE中。使用时,UE根据指示的用户序列空间的大小,选择相应用户序列子空间中的一个用户序列,发送给基站。
另一种是在线生成用户序列。使用时,UE根据指示的用户序列空间的大小,以一定的计算方法直接生成规定的用户序列空间中的一个用户序列,并用该用户序列,生成上行的信号。相应地。UE根据所述第一用户序列空间的用户序列的数量,向所述网络设备发送第一用户序列,可以包括:根据所述第一用户序列空间中的用户序列的数量,生成属于所述第一用户序列空间的所述第一用户序列;向所述网络设备发送所述第一用户序列。
S305,UE向基站发送用户序列。相应地,基站接收UE发送的用户序列。
S306,基站根据用户序列,进行用户检测和/或通信参数估计。
S307,UE进行上行数据传输。相应地,基站接收UE传输的数据。
S308,基站对数据进行解调和译码。
另外一种形式是自适应调整的形式,其与半静态形式的区别在于,当按照系统参数确定用户序列空间的大小不按周期通知UE,而是在用户序列空间的大小发生变化或变化大于预设的阈值时通知UE。由此,在系统参数长时间保持不变或变化小于预设的阈值的情况下,不向UE发送第一信令,可以节省信令的开销。
应理解,本申请实施例中,系统可以为每一可选的用户序列空间的大小配置特定的用户序列,使得网络设备和终端设备知晓用户序列空间的大小对应的用户序列空间包括哪些用户序列。该配置可以是预先存储在系统中的,例如,可以将各大小的用户序列空间及其包括的用户序列通过列表的方式存储在网络设备和终端设备中;或者可以为各大小的用户序列空间的每一个用户序列空间存储一个用户序列,该用户序列空间中的其它用户序列根据此用户序列算出。该配置也可以通过信令进行通知,例如网络设备通过信令通知终端设备各大小的用户序列空间对应的用户序列,本申请实施例对此不作限定。
图4是本申请一个实施例的传输用户序列的方法的示意性流程图。下面结合图4给出一个上述情况下的具体的例子的流程。
S401,对系统进行用户序列空间的初始化,初始化用户序列空间的大小C=C0
S402,UE选择用户序列空间的用户序列进行随机接入。
S403,基站统计当前的系统参数。例如,可以包括接入用户数量、信噪比、漏检概率、碰撞概率等等。
S404,基站根据系统参数评估扩展用户序列空间和/或减小用户序列空间后的系统性能。其中,评估扩展用户序列空间和/或减小用户序列空间后的系统性能可以通过解析法,也可以通过统计法。
解析法是根据数学公式预估所需优化的系统性能,并选择使得系统性能更佳的用户序列空间的大小。例如,当前的应用场景为随机接入时,用户碰撞和用户漏检都会造成接入失败,因此我们可以评估扩展用户序列空间和/或减小用户序列空间后的接入性能pfailure=pcol+pmiss。这里接入性能以接入失败概率参数pfailure表示,pfailure为碰撞 概率参数pcol与漏检概率pmiss的和。其中,
pmiss=Q(SINR)=Q(falg(k,N,C,SNR)),
Figure PCTCN2017089502-appb-000015
统计法是根据历史系统性能统计查找、比较相似输入参数时,不同用户序列空间的大小对应的系统性能,并选择使得系统性能更佳的用户序列空间的大小。
S405,根据评估结果确定扩展用户序列空间是否能够使得系统性能的提升超过第二阈值。是,执行S406;否,保持用户序列空间不变,执行S402。
S406,基站将用户序列空间的大小扩展为C=C+Δ1,并向UE发送信令,信令中至少包括用于指示新的用户序列空间的用户序列的数量的信息。可选地,基站发送信令可以通过广播的形式。
S407,根据评估结果确定减小用户序列空间是否能够使得系统性能的提升超过第三阈值。是,执行S408;否,保持用户序列空间不变,执行S402。应理解,S405与S407的执行无先后顺序的限定。
S408,基站将用户序列空间的大小减小为C=C-Δ2,并向UE发送信令,信令中至少包括用于指示新的用户序列空间的用户序列的数量的信息。可选地,基站发送信令可以通过广播的形式。
应理解,本申请实施例中,可选地,网络设备可以通过广播的形式,向终端设备发送第一信令。相应地,终端设备接收网络设备通过广播的形式发送的第一信令。当然,网络设备和终端设备之间也可以通过其他的方式,例如单播或组播的方式传输信令,本申请实施例对此不作限定。
还应理解,本申请实施例可以应用在IoT业务的海量接入场景,此时用户序列空间的大小C可能会是很大的数值,导致基站向UE发送的第一信令中的第一信息带来较大的信令资源开销。本申请实施例可以采用比特量化用户序列空间的大小并发送量化值的方法。相应地,所述第一信息包括所述第一用户序列空间的空间级数,或用于指示所述第一用户序列空间的用户序列的数量的量化值。第一信息还可以包括单位量化值对应的用户序列的数量,简称为粒度。当然单位量化值对应的用户序列的数量(粒度)也可以通过系统或者协议约定,本申请实施例对此不作限定。
具体而言,当第一用户序列空间的用户序列的数量是一个级数的用户序列空间的所有用户序列时,第一信息可以是第一用户序列空间的级数L,由于L级空间所拥有的可用序列数为NL,因此较小的L就可以指示非常大的空间范围,可以只使用几个比特,大大节省了信令开销。
另外一种情况是,由于当L增加时,每一级用户序列空间包括的用户序列的数量呈指数上升,在某些应用场景下可能无法提供精确调控用户序列空间大小所需要的粒度,即第一用户序列空间的用户序列的数量是一个级数的用户序列空间的部分用户序列。此时,可以对每级用户序列空间内的用户序列的数量进行进一步量化,如下表3所示。
表3用户序列空间大小的量化方法
Figure PCTCN2017089502-appb-000016
在终端设备(用户)始终保持唤醒状态的一些应用场景中,例如5G的增强型移动宽带(enhanced Mobile Broadband,eMBB)技术或5G的(ultra-Reliable and Low-Latency Communications,uRLLC)技术中,可以通过只在用户序列空间的配置发生变化的情况下发送信令,以减少信令的开销。以信令中包括用户序列空间的大小的情况为例,在终端设备首次接入时,基站通过下行信令发送C0,指示终端设备接入时使用的用户空间;而在首次接入后,基站只在用户序列空间的大小发生变化时,通过广播信令发送CΔ通知变化,如用户序列空间的大小的配置无变化,则基站不重复广播信令。上述基于用户序列空间的大小的变化的信令指示方式也适用于指示用户序列的种类、用户序列空间的空间级数等。本申请实施例中的具体指示方式,可在标准中作出规定。
在本申请实施例中,基站可以通过计算自行决定当前使用的用户序列空间的大小。为了统一和简化操作方式,基站也可以通过从预配置的多个用户序列空间中选择一个用户序列空间的方式来确定用户序列空间的大小。预配置的多个用户序列空间可以通过标准的形式进行规定。在标准中,可以建立用户序列空间的配置与索引之间的对应关系。用户序列空间的配置包括所述用户序列空间的用户序列的数量,还可以包括用户序列空间的用户序列的种类、用户序列空间的空间级数和用户序列空间的用户序列的长度中的至少一种。
对应地,所述第一信息可以为用于指示所述第一用户序列空间的配置的索引,所述索引通过标准在所述网络设备和所述终端设备中预先约定,所述第一用户序列空间的配置包括所述第一用户序列空间的用户序列的数量。所述第一用户序列空间的配置还可以包括所述第一用户序列空间的用户序列的种类、所述第一用户序列空间的空间级数和所述第一用户序列空间的用户序列的长度中的至少一种。
在一个具体的例子中,可以列出如表4所示的用户序列空间的大小的配置方案。
表4用户序列空间的大小的配置方案
Figure PCTCN2017089502-appb-000017
Figure PCTCN2017089502-appb-000018
用户序列空间的配置的索引可以简称为用户序列索引(User Sequence Index,USI)。用户序列空间的配置包括用户序列空间的用户序列的数量,还可以包括用户序列空间的用户序列的种类、用户序列空间的空间级数和用户序列空间的用户序列的长度中的至少一种。可选地,用一个索引指示用户序列空间的用户序列的数量、用户序列的种类、用户序列空间的空间级数和用户序列的长度,可以节省信令资源。
在一个具体的例子中,用户序列索引指示的内容可以如表5所示。表5中的各项内容也可以在标准以外规定,例如通过信令等通知,本申请实施例对此不作限定。
表5用户序列索引指示的内容(可以由标准约定)
Figure PCTCN2017089502-appb-000019
根据应用场景对性能的需求,标准可以使用不同数量的用户序列索引,以实现对用户序列空间的不同粒度的控制。如果用户序列索引的列表中只包括2种使用模式,则第一信令需要1bit即可指示基站选择的用户序列空间对应的用户序列索引;如果用户序列索引的列表中包括4种使用模式,则第一信令需要2bit指示基站选择的用户序列空间对应的用户序列索引;如果用户序列索引的列表中包括多于4种使用模式,则第一信令需要至少3bit指示基站选择的用户序列空间对应的用户序列索引。用户序列索引所需的bit数也可以在标准中规定。
为节省信令开销,用户序列索引的发送也可以通过前文描述的基于用户序列空间的配置的变化的信令指示方式,此处不再进行赘述。
本申请实施例采用空间级数、量化值或索引来指示用户序列空间的大小,当第一信息为空间级数、量化值或索引时,可以使得第一信息占用的bit数很少,从而减小信令的开销,提高资源的利用率。
应理解,当使用比特化的量化值时,系统需要通过标准或信令规定量化值以及单位量化值对应的用户序列的数量,即粒度,以统一收发两端对空间大小的理解。例如,可以如图5规定前3个比特指示当前空间大小值的粒度,后9个比特指示用户序列空间的大小的量化值。最终,用户序列空间的大小C为:用户序列空间的大小的量化值×粒度。例如,对于用户序列空间C满足N2≤C≤N3,该用户序列空间的级数为3,粒度为N2,量化值为
Figure PCTCN2017089502-appb-000020
量化值占用的比特数为log2N。由此,可以用较少的比特数指示用户序列空间的非常大的动态范围,可以适用于IoT业务的海量连接场景。
在本申请实施例中,所述第一用户序列空间的用户序列的种类可以为Reed-Muller序列(RM序列)或Zadoff-Chu序列(ZC序列),当然本申请实施例并不局限于此。
对于准正交的用户序列空间,当系统使用RM序列时,所述第一用户序列空间的用户序列包括根据至少两个生成矩阵生成的Reed-Muller序列。
下面以一个具体的例子说明系统使用RM序列形成用户序列空间并进行用户处理的流程。在该例子中,基站采用自适应调整用户序列空间的大小的方案控制当前的用户序列空间;UE则采用在线生成用户序列的方案。实际的实施过程中可以使用但不局限于该例子中用户序列空间的控制方法以及用户序列生成方法。图6是本申请另一个实施例的传输用户序列的方法的示意性流程图。该例子的方法包括以下步骤。
S601,基站统计输入参数。具体地,基站可以在一定的周期内统计接入用户数量、系统性能参数和用户序列长度等输入参数。可选地,该周期可以为广播周期。
S602,基站根据系统参数评估扩展用户序列空间和/或减小用户序列空间后的系统性能。
S603,基站根据评估结果确定是否需要调整用户序列空间,应理解,这里主要是指调整用户序列空间的大小。
S604,基站向UE发送第一信令,其中,第一信令包括调整后的用户序列空间的大小C广播。可选地,基站可以通过广播的形式发送第一信令。
S605,UE比较C广播与C本地的大小。当C广播>C本地时,执行S606;当C广播<C本地时,执行S607。
S606,新增用于生成RM序列的生成矩阵。
S607,删除用于生成RM序列的部分生成矩阵。
S608,根据可用的生成矩阵,生成RM序列。具体而言,在可用的生成矩阵集合中选择一个P矩阵,再选择一个b,生成RM序列。
S609,UE向基站发送用户序列,即生成的RM序列。
S610,基站根据用户序列,进行用户和/或通信参数估计。
其中,基站指示UE可使用的用户序列空间的大小,UE可以按照约定的方式选取满足一定正交性的用户序列的集合(例如可以是某个级数的用户序列空间的子集或子空间),并在其中选取自己的用户序列发送。
其中,各级RM序列空间序列的生成方法如下:
第一步:生成m×m二进制P矩阵集合{P1,…,PM}
第1级用户序列空间为Kerdock Set中任意一个P矩阵(对应大小为N的正交的用户序列空间)。
第2级用户序列空间为Kerdock Set中所有N=2m个P矩阵(对应大小为N2的准正交的用户序列空间,包含第1级用户序列空间)。
……
第L级空间的P矩阵的集合为:生成大小为M=2m(L-2)的P矩阵集合,即Delsarte-Goethals(m,r)Set,其中r=L-1。
第二步:生成长度为m的二进制向量b的集合:{b1,…,bN}
第三步:根据下式对所有(P,b)对生成长度为N=2m的RM序列
Figure PCTCN2017089502-appb-000021
其中,
Figure PCTCN2017089502-appb-000022
项为可选项,作用为幅度归一化参数A。实际中,可以使用公式
Figure PCTCN2017089502-appb-000023
x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,其幅度归一化参数A可由上层功率控制决定。其中的P可以称为生成矩阵,b可以称为生成向量。
应理解,第L级用户序列空间包含所有低级用户序列空间。
第四步:通过以上方法共可以产生2m(L-1)条长度为N的RM序列,可以采用以下方法对所有用户序列进行排序:为了增强检测性能,低级用户序列空间在前,高级用户序列空间在后。在同一级用户序列空间中,为了增强宽带信道估计性能,做快速傅里叶变换(Fast Fourier Transformation,FFT)后平均峰均比(Peak-to-Average Power Ratio,PAPR)小的子空间(子集)在前,平均PAPR大的子空间在后。
在扩展用户序列空间时,例如,可以取调整步长Δ=N(正交的用户序列空间的大小)。首先使用第1级用户序列空间(完全正交的用户序列空间)中的用户序列。然后在第2级用户序列空间的N个正交的用户序列中扩展;当使用完所有第2级用户序列空间中的正交空间后,继续在第3级空间中扩展,以此类推。
具体地,例如使用长度为32的RM序列,并且C≤1024(即使用第2级用户序列空 间Kerdock Set),则32个正交的用户序列子空间的排序如下:[10 17 32 15 23 8 28 9 2 24 16 14 27 5 25 7 29 22 11 12 26 4 30 20 13 3 6 19 18 31 21 1],其中的序号为下文的细则中的高m(r+1)位对应的P矩阵的序号(每个P矩阵对应一个正交的用户序列子空间)。用户序列扩展时,可以按该顺序扩展正交的用户序列子空间,用户序列减小时,按该顺序的逆序减小用户序列的子空间。
又如使用长度为64的RM序列,并且C≤4096(即使用第2级用户序列空间Kerdock Set),则64个正交子空间的排序如下:[7 25 36 17 4 33 56 46 26 2 45 60 47 55 43 12 5 27 15 16 63 44 20 38 61 51 29 40 52 35 23 30 21 57 13 8 31 49 42 39 32 6 19 62 18 41 11 37 9 54 10 28 24 59 50 22 53 58 34 64 14 48 3 1],其中的序号为下文的细则中的高m(r+1)位对应的P矩阵的序号(每个P矩阵对应一个正交的用户序列子空间)。
第五步:用户序列空间的大小为C的第一用户序列空间所包括的用户序列即为排序后前C条用户序列。
RM序列生成细则如下:
其中,产生各级RM序列空间所需要的P矩阵可由以下嵌套空间中选取:
Figure PCTCN2017089502-appb-000024
其中DG为Delsarte-Goethals Set的简称DG(m,0)又称为Kerdock Set。
Kerdock Set共包含2m个P矩阵,由以下步骤生成:
Tr[xya]=(x0…xm-1)P0(a)(y0…ym-1)T
其中
Figure PCTCN2017089502-appb-000025
Figure PCTCN2017089502-appb-000026
的元素x到二元域F2的映射。所有计算都在有限域中。
因此,P矩阵的第i行,第j列元素可以这样得到:
1.使x0…xm-1向量的第i位为1,其余均为0;使y0…ym-1向量的第j位为1,其余均为0。
2.将这两个长度为m的二元域F2向量分别映射为
Figure PCTCN2017089502-appb-000027
的元素x和y;并计算Tr[xya]。
3.Kerdock Set中第a个P矩阵的第i行,第j列元素即为Tr[xya]。
Figure PCTCN2017089502-appb-000028
中共2m个元素a一一对应了2m个P矩阵。
DG(m,r)共包含2m(r+1)个P矩阵,由以下方法生成:
Figure PCTCN2017089502-appb-000029
由于一共有r+1个F2m元素a0,a1,…,ar,每个a又有2m个取值,因此共可产生2m(r+1)个P矩阵。
由上式可见,每个P矩阵为Pt,t=0,1,…,r的线性组合,因此DG(m,r)包括所有低阶集。这里Pt可由下式得到:
Figure PCTCN2017089502-appb-000030
具体计算的Pt方法与Kerdock Set中的P0类似,此处不再赘述。
序列生成的原顺序(排序前)方法:
综上所述,DG(m,r)包含的共2m(r+1)个P矩阵和2m个b向量共可产生2m(r+2)条RM序列。由DG(m,r)产生的共2m(r+2)条RM序列由m(r+2)长的二进制序号表示,映射方法如下:
1.将m(r+2)长的序号分为最低m位,和其余m(r+1)位
2.最低m位对应的向量即为b向量
3.其余m(r+1)位转换为r+1长2m进制向量,其中每个元素映射为
Figure PCTCN2017089502-appb-000031
的元素at,t=0,1,…,r后再映射为Pt,t=0,1,…,r;最后根据DG(m,r)的生成方法计算出线性组合后的P矩阵。
4.根据RM序列生成式,由P矩阵和b向量计算得到RM序列。
本申请实施例的方法使用Reed-Muller(RM)码构造的准正交序列,在大幅增加用户序列空间的同时,还能够获得极低的检测复杂度。
这是由于基于RM序列的用户检测使用快速Hadamard变换,所需乘法次数是ZC序列(逐次做相关)的
Figure PCTCN2017089502-appb-000032
另外非常重要的一点是:由于RM序列只在{±1,±i}中取值,因此做相关时的每次乘法只需要改变符号(bit翻转即可),而无需像ZC序列那样做浮点复数乘法,因此其每次乘法的复杂度与ZC序列相比又大幅降低(甚至可以忽略不计)。因此使用RM序列在进行用户检测(大空间搜索)时,不会明显增加复杂度。用户检测的乘法次数比较具体如表6所示。最终检测复杂度主要来自于乘法次数×每次乘法复杂度。表6仅列出了乘法次数的统计而没有考虑每次乘法的复杂度。由于RM序列每次乘法(bit翻转)复杂度和ZC(浮点复数乘法)相比,几乎可以忽略不计,因此RM序列的整体检测复杂度还要远低于表6的估计。
表6用户检测的乘法次数
用户序列长度 用户检测的乘法次数(RM序列/ZC序列)
64 9.38%
128 5.47%
256 3.13%
对于准正交的用户序列空间,当系统使用RM序列时,所述第一用户序列空间的用户序列包括根据至少两个根指数生成的Zadoff-Chu序列。
下面以一个具体的例子说明系统使用ZC序列形成用户序列空间并进行用户处理的流程。在该例子中,基站采用自适应调整用户序列空间的大小的方案控制当前的用户序列空间;UE则采用在线生成用户序列的方案。实际的实施过程中可以使用但不局限于该例子中用户序列空间的控制方法以及用户序列生成方法。图7是本申请另一个实施例的传输用户序列的方法的示意性流程图。该例子的方法包括以下步骤。
S701,基站统计输入参数。具体地,基站可以在一定的周期内统计接入用户数量、系统性能参数和用户序列长度等输入参数。可选地,该周期可以为广播周期。
S702,基站根据系统参数评估扩展用户序列空间和/或减小用户序列空间后的系统性能。
S703,基站根据评估结果确定是否需要调整用户序列空间,应理解,这里主要是指调整用户序列空间的大小。在需要调整用户序列空间时执行S704,在不需要调整用户序列空间时不执行后续的步骤,执行S701和S702,等待下一周期继续评估扩展用户序列空间和/或减小用户序列空间后的系统性能。
S704,基站向UE发送第一信令,其中,第一信令包括调整后的用户序列空间的大小C广播。可选地,基站可以通过广播的形式发送第一信令。
S705,UE比较C广播与C本地的大小。当C广播>C本地时,执行S706;当C广播<C本地时,执行S707。
S706,新增用于生成ZC序列的根指数。
S707,删除用于生成ZC序列的部分根指数。
S708,根据可用的根指数,生成ZC序列。具体而言,在可用的根指数集合中选择一个根指数,产生基序列并选择一个循环移位,从而生成ZC序列。
S709,UE向基站发送用户序列,即生成的ZC序列。
S710,基站根据用户序列,进行用户和/或通信参数估计。
各级ZC序列空间序列的生成方法如下:
第一步:生成可用的根指数(roots)集合{r1,…,rN}
第1级用户序列空间为1到N中任意一个r(对应大小为N的正交的用户序列空间)
第2级空间为1到N中所有r(对应大小为N2的准正交的用户序列空间,其中包含第1级正交的用户序列空间)
第二步:从0到N-1中选择一个作为循环移位值
第三步:对于所有可选的根指数集合,以及所有的循环移位值,先根据下式生成长度为N的ZC基序列,然后进行相应的循环移位得到用户序列
Figure PCTCN2017089502-appb-000033
其中,ceil()表示上取整。对于ZC序列,可用通过将用户序列长度N设为素数来达到相干度的要求。ZC序列只支持第2级用户序列空间,扩展性不如RM序列。
在本申请实施例中,如果使用长度为N的ZC序列,则用户序列空间的大小为C时,使用的根指数个数为ceil(C/N)。将所有可用的根指数(通常,为了保证较好的性能,可规定根指数需要与序列长度互质)排序标号,从{1,…,ceil(C/N)}。在扩展空间时依次选择根指数r,生成长度为N的ZC基序列。由此,可以依次产生N×ceil(C/N)条序列,其中前C条ZC序列形成的用户序列空间即为第一用户序列空间。
上文中描述的扩展用户序列空间可以对应于用户序列空间扩大的这一动态的过程。图8是本申请一个实施例的用户序列空间的扩展的示意图。如图8所示,用户序列空间由第一用户序列空间扩展为第二用户序列空间。从信令角度来看,这一过程对应于本申请实施例的方法还包括:所述网络设备向所述终端设备发送第二信令(参见图3的S309)。所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
如图8所示第一空间子集中的用户序列与第二空间子集的用户序列的相干度大于或等于第一空间子集中的两个用户序列的相干度。第一空间子集中的用户序列与第二空间子集的用户序列的相干度小于或等于第一空间子集中的用户序列与其它的空间子集中的用户序列的相干度。
可以理解,如果这里第一用户序列空间的对应的空间级数为M,则第二空间子集包括空间级数大于或等于M的用户序列。
由第一用户序列空间扩展为第二用户序列空间,扩展后的第二用户序列空间的最大相干度大于或等于扩展前的第一用户序列空间的最大相干度。其中,最大相干度是指用户序列空间中任意两个用户序列的相干度的最大值。
由第一用户序列空间扩展为第二用户序列空间,网络设备也可以通过以下方法通知终端设备。在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用户序列空间的正交性的第二信息,所述第二用户序列空间的正交性弱于或等于所述第一用户序列空间的正交性。
具体的方式可以是,在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用 户序列空间的正交性的第二信息,所述第二用户序列空间内任意两个用户序列间的相干度的最大值大于或等于所述第一用户序列空间内两两用户序列间的相干度的最大值。
具体的方式也可以是,在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用户序列空间的正交性的第二信息,所述第二用户序列空间的空间级数大于或等于所述第一用户序列空间的空间级数。
上文中描述的减小用户序列空间可以对应于用户序列空间减小的这一动态的过程。图9是本申请一个实施例的用户序列空间的减小的示意图。如图9所示,用户序列空间由第一用户序列空间减小为第三用户序列空间。从信令角度来看,这一过程对应于本申请实施例的方法还包括:
所述网络设备向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同;其中,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度。
如图9所示第三空间子集中的用户序列与第四空间子集的用户序列的相干度大于或等于第三空间子集中的两个用户序列的相干度。第三空间子集中的用户序列与第四空间子集的用户序列的相干度小于或等于第三空间子集中的用户序列与其它的空间子集中的用户序列的相干度。
由第一用户序列空间减小为第三用户序列空间,减小后的第三用户序列空间的最大相干度小于或等于减小前的第一用户序列空间的最大相干度。
由第一用户序列空间减小为第二用户序列空间,网络设备也可以通过以下方法通知终端设备。在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的正交性的第三信息,所述第三用户序列空间的正交性强于或等于所述第一用户序列空间的正交性。
具体的方式可以是,在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的正交性的第三信息,所述第三用户序列空间内两两用户序列间的相干度的最大值小于或等于所述第一用户序列空间内两两用户序列间的相干度的最大值。
具体的方式也可以是,在所述网络设备向终端设备发送第一信令之后,所述方法还包括:所述网络设备向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的正交性的第三信息,所述第三用户序列空间的空间级数小于或等于所述第一用户序列空间的空间级数。
上述方案中,通过信令通知,可以灵活的扩展或缩小用户序列空间,并且扩展或缩小后的用户序列空间的最大相干度尽可能保持最小,可以保证用户检测或通信参数估计的准确性。
由于准正交序列之间会产生一定的干扰,这会影响用户检测性能。基站使用基于干扰消除的逐次用户检测方法,可以最大限度地抑制非正交性带来的用户检测性能损失。 具体过程如图10示出的用户检测过程的示意性流程图。
S1001,对当前接收到的信号进行用户检测或信道估计。
S1002,消除检出的序列的干扰。应理解,本申请实施例的干扰的消除可以基于现有的技术,此处进行赘述。
S1003,判断剩余的能量是否为噪声能量,当为噪声能量时检测结束。当不为噪声能量时,执行S1001。
作为本申请一个具体的实施例,所述第一用户序列为随机接入信号,所述根据所述第一用户序列,进行用户检测和/或通信参数估计,可以包括:根据所述随机接入信号,进行用户检测并执行对所述终端设备的随机接入过程。
在蜂窝移动通信系统中,随机接入(Random Access)指UE在开始和网络通信之前的接入过程。随机接入通常用于识别新接入的用户,并且为还未得到或已经失去上行同步的用户实现上行定时同步,从而进行上行正交资源的调度。
用户初始化为基于竞争的随机接入过程。在这个过程中,用户随机地选择接入前导序列(Preamble)。由于初始化接入时各个用户各自独立选择序列,因此存在多个用户同时传输相同前导序列的可能性,导致接入冲突。图11示出了基于竞争的随机接入过程的示意性流程图。
S1101,基站确定输出参数。对应于前文的实施例的步骤S302。
S1102,基站发送当前的用户序列空间的大小,必要时还可以发送用户序列的种类。例如,在一些场景中,基站为了与现有的流程和技术兼容而指定使用ZC序列。再如,系统可以规定在用户序列空间小于预设的阈值时使用ZC序列,在用户序列空间大于预设的阈值时使用RM序列,等等。应理解,上述两种指示用户序列的种类的场景仅为举例而非限定。
S1103,UE在指定用户序列空间内选择并发送随机接入前导序列,或者称为随机接入信号。当基站发送用户序列的种类时,UE根据基站发送的用户序列的种类,在指定用户序列空间内选择并发送随机接入前导序列。
其中,S1101至S1103区别于现有的LTE协议中的随机接入方案,因为基站需要指示当前使用的用户序列空间的大小,并且UE在系统指定的物理随机接入信道(Physical Random Access CHannel,PRACH)上向基站发送随机接入前导序列。
S1104,基站进行用户检测。
S1105,基站根据随机接入前导序列的检测结果,发送随机接入响应(Random Access Response,RAR)。
S1106,没有冲突的UE传送确切的随机接入过程消息,如跟踪区域更新或者调度请求等。
S1107,基站端发送竞争解决消息。
PRACH的资源配置决定了用于随机接入和数据传输的资源分配。分配给PRACH的资源越多,则用于数据传输的资源就越少。随机接入前导序列可以区分同一PRACH时频资源上的不同用户。如果存在多于1个用户在同一PRACH时频资源上传输相同的随机接入前导序列,则发生冲突,导致随机接入失败。在本实施例中,由于使用了扩展的用户序列空间,因此用户间的冲突概率大幅降低,接入性能比现有方案明显提升。
作为本申请另一个具体的实施例,所述第一用户序列为用户检测参考信号,所述根 据所述第一用户序列,进行用户检测和/或通信参数估计,可以包括:根据所述用户检测参考信号,进行用户检测并确定所述终端设备进行数据传输时使用的时域资源、频域资源和码域资源中的至少一种。
该具体的实施例可以应用于免调度的上行用户检测的应用场景中。本申请实施例描述了一种基于稀疏码分多址(Sparse Coded Multiple Access,SCMA)的免调度(Grant-free)上行传输时,本申请实施例使用可扩展空间的序列作为用户导频(pilot)。当然,实际实施中并不局限于SCMA免调度上行传输的应用。
SCMA上行传输前,UE会通过从基站指示的可用的用户序列空间中选择一个作为自身的导频。这里的导频通常具有两个作用,一是作为用户标识告诉基站该用户即将传输上行数据,二是告诉基站即将传输的数据使用的SCMA码本,即使用的时频资源。这种免调度传输方式的好处是:无需通过和基站来回发送信令来分配时频资源,既节省了序列开销,又缩短了时延。但这种免调度传输方式依然存在如果两个用户同时选择了同一个序列作为导频,基站端就无法分辨两个用户,通常也无法正确解调它们的上行数据的问题。由于本申请实施例允许使用扩展的用户序列空间,因此可以大幅降低用户间的导频碰撞概率,从而提升了免调度SCMA系统的上行传输效率。
作为本申请另一个具体的实施例,所述用户序列为解调参考信号,所述第一用户序列为解调参考信号,所述根据所述第一用户序列,进行用户检测和/或通信参数估计,可以包括:根据所述解调参考信号,进行通信参数估计以用于数据解调,所述通信参数估计包括时偏估计、频偏估计和信道估计中的至少一种。
该具体的实施例可以应用于时频偏估计和信道估计的应用场景。在蜂窝移动通信系统中,由于接收端采用相干解调,因此需要尽量准确地估计传输时延或定时提前TA(Timing Advance)、频偏、以及信道估计。由于本申请实施例描述的准正交序列具有较好的正交性,特别是RM序列具有相邻移位正交的特性,适用于多径信道估计,因此也可以作为解调参考信号DMRS。
一个发送帧中通常嵌入两条DMRS,每条DMRS占据了所有的子载波。通过两条DMRS间的相位差和不同子载波上的相位差,可以估计不同用户的时偏、频偏以及信道响应等信道参数。在免调度上行传输系统中,UE从指定的序列空间中各自选择一条序列作为DMRS。这时,如果不同UE选择了同一个序列,则接收端无法准确估计TA、频偏以及信道响应。由于本申请实施例允许使用扩展了的序列空间,因此可以大幅降低用户间的DMRS碰撞概率,从而可以提升免调度系统的信道参数估计准确度,进而提升传输效率。
上文中结合图1至图11,详细描述了根据本申请实施例的传输用户序列的方法,下面将结合图12至图15,详细描述根据本申请实施例的网络设备和终端设备。
图12示出了根据本申请实施例的网络设备1200的示意性框图。如图12所示,该网络设备1200包括:
发送模块1210,用于向终端设备发送第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
接收模块1220,用于接收所述终端设备根据所述发送模块1210发送的所述第一信息发送的第一用户序列;
处理模块1230,用于根据所述接收模块1220接收的所述第一用户序列,进行用户检测和/或通信参数估计。
因此,本申请实施例的网络设备向终端设备发送指示第一用户序列空间的用户序列的数量的第一信息,该第一用户序列空间的用户序列包括供网络设备服务的终端设备使用的用户序列的全集,由此可以灵活地指定网络设备服务的所有终端设备可以使用的用户序列空间的大小,从而能够支持用户序列空间的大小的调整,进而提高用户检测或通信参数估计的准确性,提高系统工作效率。
可选地,作为一个实施例,所述发送模块1210还用于:在向所述终端设备发送第一信令之后,向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
可选地,作为一个实施例,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度;所述发送模块1210还用于:在向所述终端设备发送第一信令之后,向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
可选地,作为一个实施例,所述发送模块1210具体用于:通过广播的形式,向所述终端设备发送所述第一信令。
可选地,作为一个实施例,所述第一用户序列是所述终端设备根据公式
Figure PCTCN2017089502-appb-000034
生成的,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
应注意,本申请实施例中,接收模块1220可以由接收器实现,发送模块1210可以由发射器实现,处理模块1230可以由处理器实现。如图13所示,网络设备1300可以包括处理器1310、接收器1320、发射器1330和存储器1340。其中,存储器1340可以用于存储处理器1310执行的代码等。
网络设备1300中的各个组件通过总线系统1350耦合在一起,其中总线系统1350除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图12所示的网络设备1200或图13所示的网络设备1300能够实现前述图1至图11的实施例中所实现的各个过程,为避免重复,这里不再赘述。
应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate  array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(souble sata rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14示出了根据本申请实施例的终端设备1400的示意性框图。如图14所示,该终端设备1400包括:
接收模块1410,用于接收网络设备发送的第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
发送模块1420,用于根据所述接收模块1410接收的所述第一信息,向所述网络设备发送第一用户序列。
可选地,作为一个实施例,所述接收模块1410还用于:在接收所述网络设备发送的第一信令之后,接收所述网络设备发送的第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
可选地,作为一个实施例,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度;所述接收模块1410还用于:在接收所述网络设备发送的第一信令之后,接收所述网络设备发送的第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
可选地,作为一个实施例,所述终端设备1400还包括生成模块1430用于:在所述发送模块根据所述第一信息,向所述网络设备发送第一用户序列之前,根据公式
Figure PCTCN2017089502-appb-000035
生成所述第一用户序列,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
可选地,作为一个实施例,所述终端设备1400还包括生成模块1430用于:根据所述第一信息指示的所述第一用户序列空间中的用户序列的数量,生成属于所述第一用户序列空间的所述第一用户序列。
可选地,作为一个实施例,所述接收模块1410具体用于:通过广播的形式,接收所述网络设备发送的所述第一信令。
应注意,本申请实施例中,接收模块1410可以由接收器实现,发送模块1420可以由发射器实现,生成模块1430可以由处理器实现。如图15所示,网络设备1500可以包括处理器1510、接收器1520、发射器1530和存储器1540。其中,存储器1540可以用于存储处理器1510执行的代码等。
终端设备1500中的各个组件通过总线系统1550耦合在一起,其中总线系统1550除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图14所示的终端设备1400或图15所示的终端设备1500能够实现前述图1至图11的实施例中所实现的各个过程,为避免重复,这里不再赘述。
可选地,本申请实施例的第一信令可以承载在下行控制信息(Downlink Control Information,DCI)中,或者可以承载在无线资源控制(Radio Resource Control,RRC)信令中。其中,RRC信令可以是高层信令。
可选地,本申请实施例的第二信令可以承载在DCI中,或者可以承载在RRC信令中。
可选地,本申请实施例的第三信令可以承载在DCI中,或者可以承载在RRC信令中。
在本申请实施例中,可选地,第一信令中还可以包括指示是否采用免调度传输模式的信息。例如,采用第一信令中的某个字段指示是采用免调度传输模式,还是采用调度传输模式。当然,本申请各实施例不限定一定能够支持免调度传输模式。
在本申请实施例中,可选地,在网络设备向终端设备发送第一信令之前,方法还可以包括网络设备向终端设备发送第四信令,所述第四信令指示是否采用免调度传输模式。
网络设备可以设置为,当网络设备和终端设备之间通过免调度传输模式进行通信时,网络设备允许终端设备使用免调度传输模式专用的用户序列空间;当网络设备和终端设备之间通过调度传输模式进行通信时,网络设备允许终端设备使用调度传输模式专用的用户序列空间。可选地,免调度传输模式专用的用户序列空间和调度传输模式专用的用户序列空间中没有相同的用户序列。
具体而言,指示免调度传输模式专用的用户序列空间或者指示调度传输模式专用的用户序列空间可以对应于在前文中描述的第一信令中的第一信息所指示的第一用户序列空间、第二信令中的第二信息所指示的第二用户序列空间和第三信令中的第三信息所指示的第三用户序列空间。
本申请实施例中,第一信息、第二信息或第三信息可以为索引,索引可以包括解调 参考信号(Demodulation Reference Signal,DMRS)的根指数(root)以及偏移量(cyclic shift value)。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围 为准。

Claims (54)

  1. 一种传输用户序列的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
    所述网络设备接收所述终端设备根据所述第一信息发送的第一用户序列;
    所述网络设备根据所述第一用户序列,进行用户检测和/或通信参数估计。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括用于指示所述第一用户序列空间的配置的索引,所述索引在所述网络设备和所述终端设备中预先约定,所述第一用户序列空间的配置包括所述第一用户序列空间的用户序列的数量。
  3. 根据权利要求2所述的方法,其特征在于,所述第一用户序列空间的配置还包括所述第一用户序列空间的用户序列的种类、所述第一用户序列空间的空间级数和所述第一用户序列空间的用户序列的长度中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述第一用户序列空间的空间级数,或
    用于指示所述第一用户序列空间的用户序列的数量的量化值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:
    用于竞争性接入的用户序列和用于非竞争性接入的用户序列。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:
    用于基于免调度接入的用户序列和用于基于所述网络设备调度接入的用户序列。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一用户序列是所述终端设备根据公式
    Figure PCTCN2017089502-appb-100001
    生成的,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述网络设备向终端设备发送第一信令之后,所述方法还包括:
    所述网络设备向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等 于所述第三空间子集的任意两个用户序列的相干度;在所述网络设备向终端设备发送第一信令之后,所述方法还包括:
    所述网络设备向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一信令中还包括用于指示所述第一用户序列空间的用户序列的种类的第四信息。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一用户序列空间的用户序列的种类包括Reed-Muller序列或Zadoff-Chu序列。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一信令承载在下行控制信息DCI或无线资源控制RRC信令中。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一信令中还包括指示是否采用免调度传输模式的信息。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,在所述网络设备向终端设备发送第一信令之前,所述方法还包括:
    所述网络设备向所述终端设备发送第四信令,所述第四信令指示是否采用免调度传输模式。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一信息为索引,所述索引包括解调参考信号DMRS的根指数以及偏移量。
  16. 一种传输用户序列的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
    所述终端设备根据所述第一信息,向所述网络设备发送第一用户序列。
  17. 根据权利要求16所述的方法,其特征在于,所述第一信息包括用于指示所述第一用户序列空间的配置的索引,所述索引在所述网络设备和所述终端设备中预先约定,所述第一用户序列空间的配置包括所述第一用户序列空间的用户序列的数量。
  18. 根据权利要求17所述的方法,其特征在于,所述第一用户序列空间的配置还包括所述第一用户序列空间的用户序列的种类、所述第一用户序列空间的空间级数和所述第一用户序列空间的用户序列的长度中的至少一种。
  19. 根据权利要求16所述的方法,其特征在于,所述第一信息包括所述第一用户序列空间的空间级数,或
    用于指示所述第一用户序列空间的用户序列的数量的量化值。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:
    用于竞争性接入的用户序列和用于非竞争性接入的用户序列。
  21. 根据权利要求16至19中任一项所述的方法,其特征在于,所述供所述网络设备服务的终端设备使用的用户序列的全集包括:
    用于基于免调度接入的用户序列和用于基于所述网络设备调度接入的用户序列。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,在所述终端设备根 据所述第一信息,向所述网络设备发送第一用户序列之前,所述方法还包括:
    所述终端设备根据公式
    Figure PCTCN2017089502-appb-100002
    生成所述第一用户序列,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,在所述终端设备接收网络设备发送的第一信令之后,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
  24. 根据权利要求16至22中任一项所述的方法,其特征在于,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度;在所述终端设备接收网络设备发送的第一信令之后,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,所述第一信令中还包括用于指示所述第一用户序列空间的用户序列的种类的第四信息。
  26. 根据权利要求16至25中任一项所述的方法,其特征在于,所述第一用户序列空间的用户序列的种类包括Reed-Muller序列或Zadoff-Chu序列。
  27. 根据权利要求16至26中任一项所述的方法,其特征在于,所述终端设备根据所述第一信息,向所述网络设备发送第一用户序列,包括:
    所述终端设备根据所述第一信息指示的所述第一用户序列空间中的用户序列的数量,生成属于所述第一用户序列空间的所述第一用户序列;
    所述终端设备向所述网络设备发送所述第一用户序列。
  28. 根据权利要求16至27中任一项所述的方法,其特征在于,所述第一信令承载在下行控制信息DCI或无线资源控制RRC信令中。
  29. 根据权利要求16至28中任一项所述的方法,其特征在于,所述第一信令中还包括指示是否采用免调度传输模式的信息。
  30. 根据权利要求16至28中任一项所述的方法,其特征在于,在终端设备接收网络设备发送的第一信令之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的第四信令,所述第四信令指示是否采用免调度传输模式。
  31. 根据权利要求16至30中任一项所述的方法,其特征在于,所述第一信息为索引,所述索引包括解调参考信号DMRS的根指数以及偏移量。
  32. 一种网络设备,其特征在于,包括:
    发射器,用于向终端设备发送第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
    接收器,用于接收所述终端设备根据所述发射器发送的所述第一信息发送的第一用户序列;
    处理器,用于根据所述接收器接收的所述第一用户序列,进行用户检测和/或通信参数估计。
  33. 根据权利要求32所述的网络设备,其特征在于,所述第一信息包括用于指示所述第一用户序列空间的配置的索引,所述索引在所述网络设备和所述终端设备中预先约定,所述第一用户序列空间的配置包括所述第一用户序列空间的用户序列的数量。
  34. 根据权利要求32所述的网络设备,其特征在于,所述第一信息包括所述第一用户序列空间的空间级数,或
    用于指示所述第一用户序列空间的用户序列的数量的量化值。
  35. 根据权利要求32至34中任一项所述的网络设备,其特征在于,所述第一用户序列是所述终端设备根据公式
    Figure PCTCN2017089502-appb-100003
    生成的,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
  36. 根据权利要求32至35中任一项所述的网络设备,其特征在于,所述发射器还用于:
    在向所述终端设备发送第一信令之后,向所述终端设备发送第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
  37. 根据权利要求32至35中任一项所述的网络设备,其特征在于,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度;所述发射器还用于:
    在向所述终端设备发送第一信令之后,向所述终端设备发送第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
  38. 根据权利要求32至37中任一项所述的网络设备,其特征在于,所述第一用户序列空间的用户序列的种类包括Reed-Muller序列或Zadoff-Chu序列。
  39. 根据权利要求32至38中任一项所述的网络设备,其特征在于,所述第一信令承载在下行控制信息DCI或无线资源控制RRC信令中。
  40. 根据权利要求32至39中任一项所述的网络设备,其特征在于,所述第一信令 中还包括指示是否采用免调度传输模式的信息。
  41. 根据权利要求32至39中任一项所述的网络设备,其特征在于,所述发射器还用于:
    在向终端设备发送第一信令之前,向所述终端设备发送第四信令,所述第四信令指示是否采用免调度传输模式。
  42. 根据权利要求32至41中任一项所述的网络设备,其特征在于,所述第一信息为索引,所述索引包括解调参考信号DMRS的根指数以及偏移量。
  43. 一种终端设备,其特征在于,包括:
    接收器,用于接收网络设备发送的第一信令,所述第一信令中包括用于指示第一用户序列空间的用户序列的数量的第一信息,所述第一用户序列空间的用户序列包括供所述网络设备服务的终端设备使用的用户序列的全集;
    发射器,用于根据所述接收器接收的所述第一信息,向所述网络设备发送第一用户序列。
  44. 根据权利要求43所述的终端设备,其特征在于,所述第一信息包括用于指示所述第一用户序列空间的配置的索引,所述索引在所述网络设备和所述终端设备中预先约定,所述第一用户序列空间的配置包括所述第一用户序列空间的用户序列的数量。
  45. 根据权利要求43所述的终端设备,其特征在于,所述第一信息包括所述第一用户序列空间的空间级数,或
    用于指示所述第一用户序列空间的用户序列的数量的量化值。
  46. 根据权利要求43至45中任一项所述的终端设备,其特征在于,所述终端设备还包括处理器用于:
    在所述发射器根据所述第一信息,向所述网络设备发送第一用户序列之前,根据公式
    Figure PCTCN2017089502-appb-100004
    生成所述第一用户序列,其中,x=bin(k),k的取值为0,1,...,2m-1,bin(k)为对k取二进制向量表示,A为幅度归一化参数,P为生成矩阵,b为生成向量。
  47. 根据权利要求43至46中任一项所述的终端设备,其特征在于,所述接收器还用于:
    在接收所述网络设备发送的第一信令之后,接收所述网络设备发送的第二信令,所述第二信令中包括用于指示第二用户序列空间的用户序列的数量的第二信息,所述第二用户序列空间包括第一空间子集和第二空间子集,所述第一空间子集和所述第二空间子集完全不同,所述第一空间子集包括的用户序列与所述第一用户序列空间的用户序列完全相同,所述第二空间子集的每一个用户序列与所述第一空间子集的用户序列的相干度小于或等于所述第二用户序列空间以外的用户序列与所述第一空间子集的用户序列的相干度。
  48. 根据权利要求43至46中任一项所述的终端设备,其特征在于,所述第一用户序列空间包括第三空间子集和第四空间子集,所述第三空间子集和所述第四空间子集完全不同,所述第四空间子集的每一个用户序列与所述第三空间子集的用户序列的相干度大于或等于所述第三空间子集的任意两个用户序列的相干度;所述接收器还用于:
    在接收所述网络设备发送的第一信令之后,接收所述网络设备发送的第三信令,所述第三信令中包括用于指示第三用户序列空间的用户序列的数量的第三信息,所述第三用户序列空间的用户序列与所述第三空间子集包括的用户序列完全相同。
  49. 根据权利要求43至48中任一项所述的终端设备,其特征在于,所述第一用户序列空间的用户序列的种类包括Reed-Muller序列或Zadoff-Chu序列。
  50. 根据权利要求43至49中任一项所述的终端设备,其特征在于,所述终端设备还包括处理器用于:
    根据所述第一信息指示的所述第一用户序列空间中的用户序列的数量,生成属于所述第一用户序列空间的所述第一用户序列。
  51. 根据权利要求43至50中任一项所述的终端设备,其特征在于,所述第一信令承载在下行控制信息DCI或无线资源控制RRC信令中。
  52. 根据权利要求43至51中任一项所述的终端设备,其特征在于,所述第一信令中还包括指示是否采用免调度传输模式的信息。
  53. 根据权利要求43至51中任一项所述的终端设备,其特征在于,所述接收器还用于:
    在接收网络设备发送的第一信令之前,接收所述网络设备发送的第四信令,所述第四信令指示是否采用免调度传输模式。
  54. 根据权利要求43至53中任一项所述的终端设备,其特征在于,所述第一信息为索引,所述索引包括解调参考信号DMRS的根指数以及偏移量。
PCT/CN2017/089502 2016-06-23 2017-06-22 传输用户序列的方法、网络设备和终端设备 WO2017219996A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17814734.4A EP3457735B1 (en) 2016-06-23 2017-06-22 Method for transmitting user sequence, network device, and terminal device
US16/231,521 US10848274B2 (en) 2016-06-23 2018-12-23 User sequence transmission method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610464260.3 2016-06-23
CN201610464260.3A CN107548094B (zh) 2016-06-23 2016-06-23 传输用户序列的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/231,521 Continuation US10848274B2 (en) 2016-06-23 2018-12-23 User sequence transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2017219996A1 true WO2017219996A1 (zh) 2017-12-28

Family

ID=60783820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089502 WO2017219996A1 (zh) 2016-06-23 2017-06-22 传输用户序列的方法、网络设备和终端设备

Country Status (4)

Country Link
US (1) US10848274B2 (zh)
EP (1) EP3457735B1 (zh)
CN (1) CN107548094B (zh)
WO (1) WO2017219996A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11265896B2 (en) * 2017-01-18 2022-03-01 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
EP3577804B1 (en) * 2017-02-06 2021-07-28 Telefonaktiebolaget LM Ericsson (PUBL) Combining synchronization sequences of different lengths
US11101910B2 (en) * 2018-01-12 2021-08-24 Qualcomm Incorporated Sequence based short code design for resource spread multiple access (RSMA)
CN110299980B (zh) * 2018-03-23 2022-11-25 中兴通讯股份有限公司 一种传输参考信号的方法、装置和系统
CN110912660B (zh) * 2018-09-14 2021-09-14 华为技术有限公司 生成参考信号的方法和装置
CN111464260B (zh) * 2019-01-21 2023-07-11 华为技术有限公司 一种信号发送、接收方法及设备
WO2020034609A1 (en) * 2019-02-02 2020-02-20 Zte Corporation Grant free transmission techniques
CN112752351A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 基于序列的信号传输的方法和通信装置
CN114095137A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 一种无线通信的方法及装置
US11888669B2 (en) * 2021-06-21 2024-01-30 Qualcomm Incorporated Space frequency multi-user signaling and tone reservation signaling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019878A1 (ja) * 2007-08-08 2009-02-12 Panasonic Corporation 無線送信装置及び無線通信方法
CN103765802A (zh) * 2011-08-12 2014-04-30 英特尔公司 用于lte上行链路参考信号的截短的zadoff-chu序列
CN104640222A (zh) * 2013-11-07 2015-05-20 华为技术有限公司 多输入输出系统的导频调度方法及协同设备
CN105634709A (zh) * 2016-01-19 2016-06-01 北京联合大学 一种导频分配方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038221B2 (ja) * 2005-12-08 2008-01-23 フリービット株式会社 中継装置及びクライアント機器とサーバとの接続方法
WO2008114967A1 (en) * 2007-03-16 2008-09-25 Lg Electronics Inc. Method of generating random access preambles in wireless communication system
US20090073944A1 (en) * 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
US9480084B2 (en) * 2008-07-01 2016-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for performing preamble assignment for random access in a telecommunications system
JP5322832B2 (ja) 2009-08-06 2013-10-23 シャープ株式会社 移動局装置、基地局装置、無線通信システムおよびランダムアクセス方法
US20120300714A1 (en) * 2011-05-06 2012-11-29 Samsung Electronics Co., Ltd. Methods and apparatus for random access procedures with carrier aggregation for lte-advanced systems
JP5902817B2 (ja) * 2011-09-30 2016-04-13 京セラ株式会社 小セルの上りリンクの干渉を緩和するシステム及び方法
US9369247B2 (en) * 2013-03-15 2016-06-14 Blackberry Limited Simultaneously accessing shared resources
US9231749B2 (en) * 2014-04-25 2016-01-05 Collision Communications, Inc. Methods, systems, and computer program products for determining a radio network temporary identifier and coding rate for an intercell signal in a long term evolution communications network
WO2015191347A1 (en) * 2014-06-13 2015-12-17 Apple Inc. Enhanced prach scheme for power savings, range improvement and improved detection
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
JP2018032886A (ja) * 2015-01-08 2018-03-01 シャープ株式会社 端末装置、基地局装置、無線通信方法及び集積回路
EP3316635B1 (en) * 2015-06-24 2021-08-25 NTT DoCoMo, Inc. User device, base station and communication methods for using predetermined uplink radio resources
CN105704834B (zh) * 2016-04-01 2019-03-22 宇龙计算机通信科技(深圳)有限公司 非授权载波上前导码的配置方法、发送方法和相关设备
WO2017218785A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Grant-less uplink transmission for new radio
US9967073B2 (en) * 2016-06-15 2018-05-08 Qualcomm Incorporated Full bandwidth multicast indication to multiple users
US11085522B2 (en) * 2018-03-28 2021-08-10 Borgwarner Inc. Gravity-fed lubrication system with disconnect front axle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019878A1 (ja) * 2007-08-08 2009-02-12 Panasonic Corporation 無線送信装置及び無線通信方法
CN103765802A (zh) * 2011-08-12 2014-04-30 英特尔公司 用于lte上行链路参考信号的截短的zadoff-chu序列
CN104640222A (zh) * 2013-11-07 2015-05-20 华为技术有限公司 多输入输出系统的导频调度方法及协同设备
CN105634709A (zh) * 2016-01-19 2016-06-01 北京联合大学 一种导频分配方法

Also Published As

Publication number Publication date
EP3457735B1 (en) 2022-07-27
EP3457735A1 (en) 2019-03-20
US20190132084A1 (en) 2019-05-02
CN107548094A (zh) 2018-01-05
US10848274B2 (en) 2020-11-24
CN107548094B (zh) 2020-08-25
EP3457735A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2017219996A1 (zh) 传输用户序列的方法、网络设备和终端设备
US11582729B2 (en) Method for data transmission in sidelink and terminal device
US11464006B2 (en) Data transmission method, network device, and terminal
RU2770188C2 (ru) Конфигурирование ресурсов при d2d-связи, терминальное устройство и сетевое устройство
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
TWI812603B (zh) 數據傳輸方法和裝置
US20230217445A1 (en) Sidelink communication method, terminal device and network device
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
CN110336655A (zh) Ssb候选位置索引指示、接收方法及装置、存储介质、基站、用户设备
WO2017000233A1 (zh) 传输导频序列的方法和装置
CN109152009B (zh) 通信方法、终端设备和网络设备
US20210160852A1 (en) Resource configuration method and terminal device
WO2014166046A1 (zh) 随机接入前导的发送与接收方法、以及相应的设备
JP6469855B2 (ja) Sc−fdmaにおけるプリアンブルのないアップリンク同期化
JP2022515415A (ja) サイドリンク通信方法及び端末装置
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
US20180337760A1 (en) Pilot signal sending method, channel estimation method, and device
WO2018126363A1 (zh) 上行传输方法、终端与网络设备
JP2020511020A (ja) 送信方法、ネットワークデバイス、及び端末デバイス
WO2018157714A1 (en) Network node, user device, and method for wireless communication system
CN114071723A (zh) 一种通信方法及装置
JP5389919B2 (ja) フェムトセル識別のためのシステムおよび方法
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
CN109937603B (zh) 基于竞争的传输方法和设备
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017814734

Country of ref document: EP

Effective date: 20181214

NENP Non-entry into the national phase

Ref country code: DE