WO2021169586A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021169586A1
WO2021169586A1 PCT/CN2020/141645 CN2020141645W WO2021169586A1 WO 2021169586 A1 WO2021169586 A1 WO 2021169586A1 CN 2020141645 W CN2020141645 W CN 2020141645W WO 2021169586 A1 WO2021169586 A1 WO 2021169586A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reflection
time
reflected
reflector
Prior art date
Application number
PCT/CN2020/141645
Other languages
English (en)
French (fr)
Inventor
颜矛
高宽栋
黄煌
林华炯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20921922.9A priority Critical patent/EP4087204A4/en
Publication of WO2021169586A1 publication Critical patent/WO2021169586A1/zh
Priority to US17/891,716 priority patent/US20220390393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • Reflective communication is a passive communication technology with extremely low power consumption and low cost, which is suitable for scenarios such as the Internet of Things (IoT) that are more sensitive to power consumption.
  • IoT Internet of Things
  • three nodes can be included: exciter, reflector, and receiver.
  • the exciter and reflector can also be integrated into the same node, which can be called a reader.
  • the exciter can send a wireless signal, and the wireless signal sent by the exciter can also be called an excitation signal.
  • the excitation signal can be a single-tone signal or a multi-tone signal, and it does not carry any data.
  • the excitation signal sent by the exciter is a signal known to the reflector.
  • the reflector After the reflector receives the excitation signal, it can modulate the data to be sent onto the excitation signal to obtain the reflected signal, and send the reflected signal to the receiver. After the receiver receives the reflected signal, it can demodulate the data carried on the reflected signal.
  • the embodiments of the present application provide a communication method and device to solve the problem of signal conflict when multiple reflectors reflect signals at the same time in the prior art.
  • an embodiment of the present application provides a communication method, the method includes: a reflector receives an excitation signal from an exciter; the reflector determines a reflected signal pattern in a set of reflected signal patterns, wherein the reflected signal pattern The set includes a plurality of reflection signal patterns, and the reflection reference signals in the plurality of reflection signal patterns do not overlap in the time domain; the reflector modulates the reflection reference on the excitation signal according to the determined reflection signal pattern Signal and reflected data signal to obtain a reflected signal; the reflector sends the reflected signal to the receiver.
  • the reflected reference signals in different reflected signal patterns may be located in different channels (frequency bands), and the reflected reference signal and the reflected data signal are modulated on the excitation signal by the same reflector. Can be on the same channel.
  • the reflected signal pattern set includes multiple reflected signal patterns, and the reflected reference signals in the multiple reflected signal patterns do not overlap in the time domain and are orthogonal to each other.
  • the multiple reflectors may be based on different The reflected signal pattern transmits the reflected signal.
  • the reflected reference signal modulated on the reflected signal sent by multiple reflectors does not overlap in the time domain.
  • the receiver can detect (or demodulate) the reflected reference signal sent by multiple reflectors. ), and demodulate the reflected data signal sent by the corresponding reflector according to the channel where the reflected reference signal is detected, which can avoid the conflict of the reflected signals sent by multiple reflectors.
  • the excitation signal includes a first time area and a second time area, and the signal time granularity of the excitation signal in the first time area and the second time area may be different.
  • the reflector can respectively modulate the reflected reference signal and the reflected data signal in different time zones, so that the receiver can demodulate the reflected reference signal and the reflected data signal from the reflected signal according to different time zones.
  • the signal time granularity of the excitation signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the excitation signal includes a first time zone and a second time zone with different signal time granularity, which is beneficial for the reflector to select the corresponding time zone for modulation according to the signal time granularity corresponding to the reflected reference signal and the reflected data signal, respectively, to reduce communication System overhead of the system.
  • the excitation signal adopts comb mapping in the first time region, and adopts continuous mapping in the second time region.
  • the above design facilitates the identification and judgment of the first time zone and the second time zone according to different mapping methods.
  • the sub-carrier interval taken by the excitation signal in the first time region is K times the sub-carrier interval taken in the second time region; or, the excitation signal is in the
  • the length of the orthogonal frequency division multiplexing OFDM symbol adopted in the first time zone is 1/K times the length of the OFDM symbol adopted in the second time zone, where K is an integer.
  • the reflector modulates a reflection reference signal and a reflection data signal on the excitation signal according to the determined reflection signal pattern, including: the reflector modulates a reflection reference signal and a reflection data signal according to the determined reflection signal pattern , Modulating the reflected reference signal on the first time zone of the excitation signal, and modulating the reflected data signal on the second time zone of the excitation signal.
  • the above design facilitates the receiver to estimate the channel of the reflected data signal according to the channel (frequency band) of the reflected reference signal in the first time zone, realizes the coherent demodulation of the reflected data signal from multiple reflectors, and improves the reading performance of the reflected communication .
  • the first sequence mapped on the excitation signal is continuous in the first time region, and the second sequence mapped on the excitation signal is continuous in the second time region; or, the The third sequence mapped on the excitation signal is continuous in the first time region and the second time region.
  • the above design adopts a longer sequence, which is beneficial to improve the synchronization performance of the receiver and the exciter and improve the detection performance of the reflector compared to a single OFDM symbol in the existing communication system.
  • the reflector determining a reflection signal pattern in the reflection signal pattern set includes: the reflector determining a reflection signal pattern in the reflection signal pattern set according to the identification information of the reflector Signal pattern; or, the reflector determines a reflection in the reflection signal pattern set according to the identification information of the reflector and the correspondence between the identification information of the reflector and the reflection signal pattern in the reflection signal pattern set Signal pattern; or, the reflector determines a reflection signal pattern in the reflection signal pattern set according to the reflection signal indication information received from the exciter or receiver, wherein the reflection signal indication information includes instructions for indicating Indication information of one reflection signal pattern in the reflection signal pattern set.
  • an embodiment of the present application provides a communication method, the method includes: an exciter generates an excitation signal, the excitation signal includes a first time zone and a second time zone, the excitation signal is in the first time zone The time granularity of the signal in the second time zone may be different; the exciter sends the excitation signal to the reflector.
  • the reflector can respectively modulate the reflected reference signal and the reflected data signal in different time areas, so that the receiver can demodulate the reflected reference signal and the reflected data signal from the reflected signal according to different time areas.
  • the signal time granularity of the excitation signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the excitation signal includes a first time zone and a second time zone with different signal time granularity, which is beneficial for the reflector to select the corresponding time zone for modulation according to the signal time granularity corresponding to the reflected reference signal and the reflected data signal, respectively, to reduce communication System overhead of the system.
  • the excitation signal adopts comb mapping in the first time region, and adopts continuous mapping in the second time region.
  • the above design facilitates the identification and judgment of the first time zone and the second time zone according to different mapping methods.
  • the sub-carrier interval taken by the excitation signal in the first time region is K times the sub-carrier interval taken in the second time region; or, the excitation signal is in the
  • the length of the orthogonal frequency division multiplexing OFDM symbol adopted in the first time zone is 1/K times the length of the OFDM symbol adopted in the second time zone, where K is an integer.
  • the first sequence mapped on the excitation signal is continuous in the first time region, and the second sequence mapped on the excitation signal is continuous in the second time region; or, the The third sequence mapped on the excitation signal is continuous in the first time region and the second time region.
  • the above design adopts a longer sequence, which is beneficial to improve the synchronization performance of the receiver and the exciter and improve the detection performance of the reflector compared to a single OFDM symbol in the existing communication system.
  • an embodiment of the present application provides a communication method, the method includes: a receiver receives a reflected signal from a reflector; the receiver detects a reflected reference signal modulated on the reflected signal according to a set of reflected signal patterns, The set of reflected signal patterns includes multiple reflected signal patterns, and the reflected reference signals in the multiple reflected signal patterns do not overlap in the time domain; The reflected data signal modulated on the reflected signal is demodulated.
  • the reflected reference signals in different reflected signal patterns may be located in different channels (frequency bands), and the reflected reference signal and the reflected data signal are modulated on the excitation signal by the same reflector. Can be on the same channel.
  • the reflected signal pattern set includes multiple reflected signal patterns, and the reflected reference signals in the multiple reflected signal patterns do not overlap in the time domain and are orthogonal to each other.
  • the multiple reflectors can be based on different reflected signal patterns.
  • the reflection signal is sent.
  • the reflection reference signal modulated on the reflection signal sent by multiple reflectors does not overlap in the time domain.
  • the receiver can detect (or demodulate) the reflection reference signal sent by the multiple reflectors, and According to the channel where the reflected reference signal is detected, the reflected data signal sent by the corresponding reflector is demodulated, which can avoid the conflict of the reflected signals sent by multiple reflectors.
  • the reflected signal includes a first time area and a second time area, and the signal time granularity of the reflected signal in the first time area and the second time area may be different.
  • the reflector can respectively modulate the reflected reference signal and the reflected data signal in different time zones, so that the receiver can demodulate the reflected reference signal and the reflected data signal from the reflected signal according to different time zones.
  • the signal time granularity of the reflected signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the excitation signal includes a first time zone and a second time zone with different signal time granularity, which is beneficial for the reflector to select the corresponding time zone for modulation according to the signal time granularity corresponding to the reflected reference signal and the reflected data signal, respectively, to reduce communication System overhead of the system.
  • the receiver detects the reflection reference signal modulated on the reflection signal according to the reflection signal pattern set, including: the receiver detects the reflection reference signal modulated on the reflection signal according to the reflection signal pattern set, in the first part of the reflection signal The time zone detects the reflected reference signal modulated on the reflected signal; the receiver demodulates the reflected data signal modulated on the reflected signal according to the channel on which the reflected reference signal is detected, including: the receiver detects To the channel of the reflected reference signal, demodulate the reflected data signal modulated on the reflected signal in the second time region of the reflected signal.
  • the above design facilitates the receiver to estimate the channel of the reflected data signal according to the channel of the reflected reference signal in the first time zone, realizes the coherent demodulation of the reflected data signal of multiple reflectors, and improves the reading performance of the reflected communication.
  • an embodiment of the present application provides a communication device that has the function of implementing the method described in the first aspect.
  • the function may be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store a program or instruction executed by the processor.
  • the program or instruction is executed by the processor, the device can execute the first aspect described above. The method described.
  • the device could be a reflector.
  • an embodiment of the present application provides a communication device that has the function of implementing the method described in the second aspect.
  • the function may be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store a program or instruction executed by the processor.
  • the program or instruction is executed by the processor, the device can execute the above-mentioned second aspect. Methods.
  • the device could be an exciter.
  • an embodiment of the present application provides a communication device that has the function of implementing the method described in the third aspect.
  • the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program or instruction executed by the processor.
  • the program or instruction is executed by the processor, the device can execute the above-mentioned third aspect. Methods.
  • the device could be a reflector.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a program or instruction.
  • the program or instruction is executed, the method described in the first aspect or The method described in the second aspect or the method described in the third aspect is implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, cause the method described in the first aspect or the method described in the second aspect or the method described in the third aspect to Be realized.
  • an embodiment of the present application provides a chip that is used to execute a computer program or instruction stored in a memory to implement the method described in the first aspect or the method described in the second aspect or the method described in the third aspect. The method described.
  • FIG. 1 is a schematic diagram of a communication architecture provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a communication architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of subcarriers and subcarrier widths provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the signal time granularity of the excitation signal provided by an embodiment of the application.
  • 6A and 6B are schematic diagrams of the time-frequency structure of an excitation signal provided by an embodiment of the application.
  • FIGS. 7A and 7B are schematic diagrams of excitation signal mapping provided by an embodiment of this application.
  • 8A, 8B, and 8C are schematic diagrams of excitation signal mapping provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a configuration reflection communication process provided by an embodiment of the application.
  • 10A and 10B are schematic diagrams of the structure of the reflected signal pattern set provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of excitation signal time-frequency and reflection signal patterns provided by an embodiment of the application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a reflector provided by an embodiment of the application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 15 is a schematic block diagram of an exciter provided by an embodiment of the application.
  • FIG. 16 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic block diagram of a receiver provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of the structure of an exciter provided by an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a receiver provided by an embodiment of the application.
  • FIG. 20 is a schematic structural diagram of a reflector provided by an embodiment of the application.
  • the embodiments of this application can be applied to various mobile communication systems, such as: new radio (NR) system, long term evolution (LTE) system, advanced long term evolution (LTE-A) Systems, universal mobile telecommunication systems (UMTS), evolved long term evolution (eLTE) systems, future communication systems, and other communication systems.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication systems
  • eLTE evolved long term evolution
  • future communication systems and other communication systems.
  • the communication system architecture applied in the embodiment of the present application may be as shown in FIG. 1, and includes: an exciter, a reflector, and a receiver.
  • the exciter may also have other names, such as helper, interrogator, reader, user equipment (UE), etc.
  • UE user equipment
  • reflectors may also have other names, such as tags, backscatter devices, passive devices, semi-passive devices, scattered signal devices (
  • ambient signal device, radio frequency identification (RFID) tags, etc. are all referred to as reflectors in the embodiments of the present application.
  • the receiver may also have other names, for example, it may be called an access point, a base station, etc. For the convenience of description, all are called receivers in the embodiments of the present application.
  • reflection communication may also be referred to as passive communication, passive communication, ambient communication, and so on.
  • the excitation signal sent by the exciter can be a single-tone signal (ie a continuous sine wave) or a multi-tone signal (ie a signal with a certain bandwidth).
  • the excitation signal can carry the data sent to the receiver, or it can Does not carry the data sent to the receiver.
  • the excitation signal sent by the exciter is a signal known to the reflector. There may be at least one gap in the duration of the excitation signal, and the at least one gap may be periodic or aperiodic.
  • the reflector After the reflector receives the excitation signal, it can modulate the data to be sent onto the excitation signal to obtain the reflected signal, and send the reflected signal to the receiver.
  • the data sent by the reflector may be collected temperature data, humidity data, etc., which is not limited in the embodiment of the present application.
  • the reflector may be a passive device, that is, no power supply is required during the process of receiving the excitation signal and sending the reflected signal; the reflector may also be a semi-active device, that is, when receiving the excitation signal or sending the reflected signal Power supply is needed during the process.
  • Fig. 1 is only an example.
  • the exciter and receiver can also be integrated into the same physical entity. As shown in Fig. 2, in radio-frequency identification (RFID) ) In the system, the exciter and receiver are integrated in the same node, which is called a reader.
  • RFID radio-frequency identification
  • the receiver cannot directly send data to the reflector. If the receiver needs to send data to the reflector, it needs to send the data to the exciter first, and the exciter forwards it to the reflector. reflector.
  • the exciter can be a terminal device and the receiver is a network device; or the exciter is a network device and the receiver is a terminal device; or both the exciter and the receiver are user equipment ; Or both the exciter and the receiver are network devices.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) terminal.
  • Wireless terminal in control wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), and wireless terminal in transportation safety.
  • the network device may be a wireless access device, such as an evolved Node B (eNB), a gNB in 5G, a radio network controller (RNC) or a Node B (Node B, NB), Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless security
  • eNB evolved Node B
  • gNB in 5G
  • RNC radio network controller
  • Node B Node B
  • BSC Base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • the access point (AP) wireless relay node, wireless backhaul node, etc. in a true (wireless fidelity, WiFi) system.
  • Modulation, demodulation, modulation is the process of processing the data of the signal source and adding it to the carrier to make it into a form suitable for channel transmission. Different modes correspond to different modulation methods, such as multi-carrier modulation or single-carrier modulation, phase-shift keying (PSK) modulation or amplitude-shift keying (ASK) modulation, and so on.
  • Demodulation is the inverse process of modulation. The original data is recovered from the signal. Demodulation can sometimes be called detection.
  • Orthogonal frequency division multiplexing is a multi-carrier transmission waveform of frequency division multiplexing.
  • Each signal (also called each carrier/subcarrier) involved in multiplexing is Orthogonal.
  • OFDM technology converts high-speed data streams into multiple parallel low-speed data streams through serial/parallel conversion, and then distributes them to several sub-carriers of different frequencies for transmission.
  • the OFDM technology uses mutually orthogonal sub-carriers, so that the frequency spectrum of the sub-carriers overlap, which greatly improves the spectrum utilization.
  • Sub-carrier In the multi-carrier waveform, the transmitted signal is a bandwidth signal. There are many signals of different frequencies in the bandwidth signal, and the intervals of these frequencies are all the same. These different frequencies are called subcarriers. The data of network equipment and terminal equipment can be modulated onto these sub-carriers, and these sub-carriers are orthogonal for a period of time. Taking the 15KHz subcarrier spacing (SCS), 30KHz SCS, 60KHz SCS currently supported by cellular systems as examples, the subcarriers and subcarrier widths are shown in Figure 3. Each space in the frequency domain is a subcarrier, which can be used to transfer data.
  • SCS subcarrier spacing
  • 60KHz SCS currently supported by cellular systems
  • Reference signal reference signal, RS
  • demodulation reference signal demodulation reference signal
  • channel state information reference signal channel state information reference signal
  • phase tracking Reference signal phase tracking reference signal, PTRS
  • the reference signal is used to obtain a known signal that is affected by the outside world (for example, spatial channel, transmitting or receiving device non-ideality) during transmission, and is generally used for channel estimation, auxiliary signal demodulation, and detection.
  • DMRS and CSI-RS are used to obtain channel information
  • PTRS is used to obtain phase change information
  • reference signals are also referred to as reference symbols, reference bits, and so on.
  • data signals are also referred to as data symbols, data bits, etc. If it is sent by a reflector, additional restrictions are added in front. For example, the reference signal sent by the reflector is called “reflected reference signal”; the data signal sent by the reflector is called “reflected data signal”.
  • “/" can indicate that the associated objects are in an "or” relationship.
  • A/B can indicate A or B; and "and/or” can be used to describe that there are three types of associated objects.
  • the relationship, for example, A and/or B can mean that: A alone exists, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations, or illustrations, and embodiments or design solutions described as “exemplary” or “for example” should not be interpreted as It is more preferable or advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • Fig. 4 is a schematic diagram of a communication process provided by an embodiment of the application, and the process includes:
  • S401 The exciter sends an excitation signal to the reflector, and the reflector receives the excitation signal from the exciter.
  • the excitation signal may adopt a signal time granularity (time or duration of each signal), that is, the reflector modulates the excitation signal to reflect the reference signal and the signal time granularity of the reflected data signal.
  • the excitation signal sent by the exciter may include a first time zone and a second time zone with different signal time granularity, as shown in FIG. 5, The signal time granularity may be smaller than the signal time granularity in the second time zone.
  • the first time zone of the excitation signal is used for the reflector to modulate the reflected reference signal
  • the second time zone is used for the reflector to modulate the reflected data signal.
  • the excitation signal may be comb-shaped mapping in the first time region, and continuous in the second time region. Mapping.
  • the frequency domain density of the comb mapping taken by the excitation signal in the first time region may be 1/N, and N may be a positive integer such as 2, 3, 4, 5, etc., that is, the excitation signal in the first time region, every time N subcarriers are mapped with excitation signal information (or data) on one subcarrier.
  • N may be a positive integer such as 2, 3, 4, 5, etc., that is, the excitation signal in the first time region, every time N subcarriers are mapped with excitation signal information (or data) on one subcarrier.
  • N Taking N as 2 as an example, as shown in FIG. 6A, the excitation signal is in the first time region, and every two subcarriers is mapped with the excitation signal information on one subcarrier.
  • the subcarrier spacing taken by the excitation signal in the first time zone is different from the subcarrier spacing taken in the second time zone, that is, the OFDM symbol length taken by the excitation signal in the first time zone is different from that in the first time zone.
  • the length of the OFDM symbol adopted in the second time zone is different.
  • the sub-carrier interval taken by the excitation signal in the first time zone is K times the sub-carrier spacing taken in the second time zone, or the corresponding OFDM symbol length taken by the excitation signal in the first time zone is that in the second time zone.
  • the area takes 1/K times the length of the OFDM symbol, where K is an integer such as 2, 3, 4, and 5.
  • K is an integer such as 2, 3, 4, and 5.
  • the subcarrier interval taken by the excitation signal in the first time area is twice the subcarrier interval taken in the second time area, and the OFDM symbol length taken in the first time area It is 1/2 times the length of the OFDM symbol taken in the second time zone.
  • the third sequence (such as a pseudo-random sequence) mapped on the excitation signal is in the first time zone and the second time zone.
  • the time zone is continuous.
  • the sequence S mapping method may be as follows: first, in the frequency domain, the subcarriers are sequentially mapped on the subcarriers in increasing order of subcarriers (or frequencies), and the subcarriers may also be called resources. (resource element, RE); then in the reflected communication time slot (a time unit one level larger than the OFDM symbol), the OFDM symbol is sequentially mapped in increasing order (or time order); and finally in the reflected communication frame (compared to the reflected communication Within the time slot, which is a higher level of time unit), the mapping is performed in the increasing order of the reflected communication time slot in turn; until the subcarriers (resources) occupied by the excitation signal are mapped.
  • resources resource element
  • the first time region in FIG. 7A is a comb-shaped mapping, so when mapping in the first time region, the mapping is performed sequentially at comb-shaped intervals; in the second time region, it is continuous mapping, so When mapping in the second time zone, the mapping can be carried out in sequence; between the first time zone and the second time zone, according to the OFDM symbol index (if crossing time slots, the last OFDM symbol time of the previous time slot The last sub-carrier and the first sub-carrier of the first OFDM symbol time of the next slot are "sequentially") increase for mapping.
  • the first sequence (such as a pseudo-random sequence) mapped on the excitation signal is continuous in the first time region
  • the second sequence (such as a pseudo-random sequence) mapped on the excitation signal is continuous in the second time region .
  • the first time area and the second time area are mapped to different/independent sequences S and Y, respectively.
  • the specific mapping sequence of sequence S is as follows: firstly, in the frequency domain, the sequence S is sequentially mapped on the subcarriers in increasing order of subcarriers (or frequencies).
  • the mapping is performed sequentially in the increasing order of the reflected communication time slot; until the subcarriers (resources) in the first time region in the excitation signal are mapped. It should be noted that the first time region in FIG.
  • mapping 8A is a comb mapping, so when mapping in the first time region, the mapping is performed sequentially at comb-shaped intervals; in the second time region, it is continuous mapping, so When mapping in the second time zone, it is sufficient to map sequentially one by one.
  • the specific mapping sequence of the Y sequence is: first in the frequency domain in the increasing order of sub-carriers (or frequency) and successively mapped on the sub-carriers; then in the reflected communication slot time (a time unit one level larger than the OFDM symbol) On the second time area of the OFDM symbol, it is mapped in increasing order of OFDM symbols (or time in increasing order); finally in the reflected communication frame (a time unit one level larger than the reflected communication time slot), it is sequentially mapped in increasing order of reflected communication time slot Perform mapping; until the subcarriers (resources) in the second time region in the excitation signal are mapped.
  • the K OFDM symbols can also be mapped to K different/independent sequences S 0 , S 1 , ...S K-1 respectively .
  • S K-1 of the K OFDM symbols on the first time zone in each reflection communication time slot and reflection communication frame is: First In the frequency domain, they are successively mapped on the subcarriers in increasing order of subcarriers (or frequencies); then in the first time area within the reflected communication slot time (a time unit one level larger than the OFDM symbol), press OFDM symbol increasing sequence (or time increasing sequence) mapping; finally in the reflected communication frame (a time unit one level larger than the reflected communication slot), the mapping is performed in the increasing sequence of the reflected communication slot; until the first in the excitation signal
  • the mapping of sub-carriers in a time zone is completed.
  • different OFDM symbols in the second time region may also adopt different sequences, which are similar to the sequence mapping manner in the first time region in FIG. 8C, and will not be repeated here.
  • At least one sequence carried on the excitation signal can be independently generated in each reflection communication time slot, that is, the sequence between the reflection communication time slots is not continuous.
  • at least one sequence carried on the excitation signal can be independently generated in each reflection communication frame, that is, the sequence between the reflection communication frames is not continuous.
  • the sequence discontinuity means that when the sequence is generated, at least one of the following parameters is different: the initial setting value (initial value) of the generating formula or function, the formula or function, the coefficient in the formula or the function (when the formula is linear In the case of a polynomial, the coefficient of the polynomial).
  • the bit corresponding to the sequence is c(n)
  • the generated formula can be as follows:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • Nc are the starting positions.
  • N can be any other prime number.
  • the controller sends excitation signal configuration information and/or reflection signal configuration information to the exciter and/or receiver, and sends reflection signal configuration information to the reflector, where the excitation signal configuration information includes: Information of the excitation signal in the first time zone and the second time zone: frequency and time information (including signal time granularity and length, period), sub-carrier spacing; the first time zone and the second time zone sending signal information (time domain, frequency One or more of the information required for the sequence generation of the domain mapping), etc.; the reflected signal configuration information includes the reflected data signal and the reflected reference signal information: rate, start time, time length, period, reflected data bit time width, One or more of the reflected data bit rate, the reflected reference bit time width, and the reflected reference bit rate.
  • the excitation signal configuration information includes: Information of the excitation signal in the first time zone and the second time zone: frequency and time information (including signal time granularity and length, period), sub-carrier spacing; the first time zone and the second time zone sending signal information (time domain, frequency
  • the excitation signal configuration information and/or reflected signal configuration information sent by the controller to the exciter or receiver can be through radio resource control (radio resource control, RRC) signaling, medium access control-control element (medium access control-control element) , MAC CE), medium access control-protocol data unit (MAC PDU), downlink control information (DCI), system message, etc.
  • the reflection signal configuration information sent by the controller to the reflector is notified to the reflector through at least one of the reflection link control information of the exciter, the reflection link radio resource control message, and the reflection link medium access control message.
  • the reflection link refers to the communication link from the exciter to the reflector, or the communication link from the exciter to the reflector to the receiver.
  • the controller may be a receiver or an exciter or a third-party control device, where the excitation signal and/or reflected signal configuration information is sent to the receiver, and the receiver can perform the excitation signal. Cancellation and/or demodulation of reflected signals.
  • the receiver needs to send data to the reflector, it generally sends the data to the exciter first, and then forwards the data to the reflector.
  • the receiver when the receiver is a controller, the receiver can send the excitation signal configuration information and/or the reflected signal configuration information to the exciter, and send the reflected signal configuration information through the exciter To the reflector; as shown in Figure 9(B), when the exciter is the controller, the exciter can directly send the excitation signal configuration information and/or the reflected signal configuration information to the receiver, and send the reflected signal configuration information To the reflector; as shown in Figure 9(C), when the third-party control device is the controller, the controller can directly send the excitation signal configuration information and/or the reflected signal configuration information to the exciter and receiver, and The reflected signal configuration information is sent to the reflector via the exciter.
  • the reflector determines a reflection signal pattern in the reflection signal pattern set.
  • the reflection signal pattern set includes a plurality of reflection signal patterns, and the reflection reference signals in the plurality of reflection signal patterns do not overlap in the time domain.
  • the reflected signal pattern may include the reflected reference signal and the reflected data signal, and the reflected reference signal and the reflected data signal included in any reflected signal image may be located in the same channel (frequency band). .
  • the channels corresponding to different reflected signal images can be different.
  • the reflector modulates the reflected reference signal on the first time zone of the excitation signal, and modulates the reflected data signal on the second time zone of the excitation signal. That is, the reflector reflects the reference signal in the first time zone and the data signal in the second time zone.
  • the length of the first time zone and the second time zone, the signal time granularity of the reference signal reflected in the first time zone, and the signal time granularity of the data signal reflected in the first time zone can be based on the reflected signal received from the exciter
  • the configuration information is determined.
  • the signal time granularity of the reference signal reflected by the reflector in the first time zone and the signal time granularity of the data signal reflected in the first time zone are usually related to the signal time granularity of the excitation signal in the first time zone and the signal time granularity in the second time zone.
  • the signal time granularity of the area is consistent.
  • the signal time granularity (or reflector bit or reflector symbol time length) of the reflected reference signal in the first time zone is the signal time granularity of the reflected data signal (or reflector bit or reflector symbol time length) in the second time zone Symbol time length) 1/K, where K is an integer.
  • the set of reflected signal patterns provided by the embodiment of the present application may be as shown in FIG. 10A or As shown in FIG. 10B, the reflection signal pattern 1, the reflection signal pattern 2, the reflection signal pattern 3, and the reflection reference signal (ie, the reflector reference signal) in the reflection signal pattern 4 in the reflection signal pattern set do not overlap (mutually) in the time domain. Orthogonal), the reflected signal pattern 1, the reflected signal pattern 2, the reflected signal pattern 3, and the reflected data signal (that is, the reflector data signal) in the reflected signal pattern 4 may overlap in the time domain.
  • the reflector may store a plurality of different reflection signal pattern sets.
  • the time is 1/3 of the time of reflecting the data signal
  • the reflector may determine a reflection signal pattern in the reflection signal pattern set according to the indication information received from the exciter or the receiver, or the reflector identification information.
  • the identification information of the reflector is the electronic product code (EPC) of the reflector.
  • the reflector determines a reflected signal pattern in the set of reflected signal patterns according to the last 2 bits of the EPC, such as the EPC rear
  • the 2-bit 00 corresponds to the reflected signal pattern 1
  • the 01 corresponds to the reflected signal pattern 2
  • the 10 corresponds to the reflected signal pattern 3
  • the 11 corresponds to the reflected signal pattern 4.
  • the reflector determines a reflection signal pattern in the reflection signal pattern set according to the correspondence between at least one of the following parameters and the reflection signal pattern in the reflection signal pattern set (that is, determining a time pattern, a code pattern, or a time-code combination).
  • One or more of patterns, etc. reflector identification, reflection communication identification, reflection communication frame, reflection communication time slot number, random value generated by the reflector, etc.
  • the reflector modulates a reflection reference signal and a reflection data signal on the excitation signal according to the determined reflection signal pattern to obtain a reflection signal.
  • the reflector is based on the reflected signal pattern 2 in the time-frequency (time domain and frequency domain) of the reflected reference signal in the first time region.
  • Position modulate the reflected reference signal on the first time zone of the excitation signal, and according to the reflected signal pattern 2 at the time-frequency (time domain and frequency domain) position of the reflected data signal in the second time zone, in the second time zone of the excitation signal Modulate the reflected data signal on the area to obtain the reflected signal.
  • the reflector sends the reflected signal to a receiver, and the receiver receives the reflected signal.
  • S405 The receiver detects the reflection reference signal modulated on the reflection signal according to the reflection signal pattern set.
  • the receiver After the receiver receives the reflection signal sent by the reflector, it can detect (demodulate) the modulation on the reflection signal in the first time zone of the reflection signal according to the channels (frequency bands) corresponding to the multiple reflection signal patterns in the reflection signal pattern set.
  • the reflected reference signal is based on whether the reflected reference signal is detected, and the channel through which the reflector sends the reflected data signal is estimated. Reflect the data signal. For example, as shown in FIG.
  • the receiver detects a reflected reference signal in a certain channel, it means that the reflector sends a reflected data signal (ie reflector data signal) in this channel, and the receiver can respond to the reflected data signal according to the channel where the reflected reference signal is detected. Perform demodulation.
  • the receiver demodulates the reflected data signal modulated on the reflected signal according to the channel on which the reflected reference signal is detected.
  • the receiver After the receiver determines the channel with the reflected data signal sent by the reflector according to whether the reflected reference signal is detected, it demodulates the reflected data signal modulated on the reflected signal on the corresponding channel to obtain the reflected data reflected by the reflector. For example, the receiver demodulates the reflected data signal modulated on the second time zone of the reflected signal received by the channel according to the channel on which the reflected reference signal is detected, so as to obtain the reflected data reflected by the reflector.
  • each network element includes a hardware structure and/or software module (or unit) corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 12 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application, and the communication device 1200 may exist in the form of software.
  • the apparatus 1200 may include: a processing unit 1202 and a transceiver unit 1203.
  • the processing unit 1202 is used to implement corresponding processing functions.
  • the transceiver unit 1203 is used to support the communication between the device 1200 and other network entities.
  • the transceiving unit 1203 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1200 may further include a storage unit 1201 for storing program codes and/or data of the apparatus 1200.
  • the apparatus 1200 may be the reflection device in any of the foregoing embodiments (for example, the reflection device is the reflection device in Embodiment 1), or may also be a component such as a chip provided in the reflection device.
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the reflection device in the foregoing method examples. Alternatively, the processing unit 1202 mainly executes the internal actions of the reflection device in the method example, and the transceiving unit 1203 can support the communication between the apparatus 1200 and the exciter and transceiver.
  • the transceiver unit 1203 is configured to receive the excitation signal from the exciter;
  • the processing unit 1202 is configured to determine a reflection signal pattern in the reflection signal pattern set, wherein the reflection signal pattern set includes A plurality of reflection signal patterns, where the reflection reference signals in the plurality of reflection signal patterns do not overlap in the time domain;
  • the processing unit 1202 can also be used to modulate the reflected reference signal and the reflected data signal on the excitation signal according to the determined reflected signal pattern to obtain the reflected signal; the transceiving unit 1203 is also used to transmit the signal to the receiver Send the reflected signal.
  • the excitation signal includes a first time zone and a second time zone, and the excitation signal has a different signal time granularity in the first time zone and the second time zone.
  • the signal time granularity of the excitation signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the excitation signal may adopt comb mapping in the first time region, and may adopt continuous mapping in the second time region.
  • the subcarrier interval taken by the excitation signal in the first time zone may be K times the subcarrier interval taken in the second time zone; or the excitation signal taken in the first time zone
  • the length of the orthogonal frequency division multiplexing OFDM symbol may be 1/K times the length of the OFDM symbol taken in the second time zone, where K is an integer.
  • the processing unit 1202 when the processing unit 1202 modulates the reflected reference signal and the reflected data signal on the excitation signal according to the determined reflected signal pattern, it may be specifically based on the determined reflected signal pattern, The reflected reference signal is modulated on the first time region of the excitation signal, and the reflected data signal is modulated on the second time region of the excitation signal.
  • the first sequence mapped on the excitation signal is continuous in the first time region, and the second sequence mapped on the excitation signal is continuous in the second time region; or
  • the third sequence mapped on the signal is continuous in the first time zone and the second time zone.
  • the processing unit 1202 when it determines a reflection signal pattern in the reflection signal pattern set, it may specifically determine a reflection signal pattern in the reflection signal pattern set according to the identification information of the reflector; or According to the identification information of the reflector and the corresponding relationship between the identification information of the reflector and the reflection signal pattern in the reflection signal pattern set, determine a reflection signal pattern in the reflection signal pattern set; or according to the response from the exciter or The reflection signal indication information received by the receiver determines a reflection signal pattern in the reflection signal pattern set, wherein the reflection signal indication information includes indication information for indicating a reflection signal pattern in the reflection signal pattern set.
  • an embodiment of the present application further provides a reflector 1300.
  • the reflector 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • instructions or programs or data are stored in the memory 1320, and the memory 1320 may be used to implement the functions of the storage unit 1201 in the foregoing embodiment.
  • the processor 1310 is configured to read instructions or programs or data stored in the memory 1320. When the instructions or programs stored in the memory 1320 are executed, the processor 1310 is used to perform the operations performed by the processing unit 1202 in the foregoing embodiment, and the transceiver 1330 is used to perform the operations performed by the transceiving unit 1203 in the foregoing embodiment.
  • the communication device 1200 or the reflector 1300 of the embodiment of the present application may correspond to the reflector in the communication method (FIG. 4) of the embodiment of the present application, and the operation and/or operation of each module in the communication device 1200 or the reflector 1300 Or the function is to realize the corresponding process of each method in FIG. 4, and for the sake of brevity, it will not be repeated here.
  • FIG. 14 shows a possible exemplary block diagram of another communication device involved in an embodiment of the present application, and the communication device 1400 may exist in the form of software.
  • the apparatus 1400 may include: a processing unit 1402 and a transceiver unit 1403.
  • the processing unit 1402 is used to implement corresponding processing functions.
  • the transceiver unit 1403 is used to support the communication between the device 1400 and other network entities.
  • the transceiving unit 1403 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1400 may further include a storage unit 1401 for storing program codes and/or data of the device 1400.
  • the device 1400 may be the exciter in any of the foregoing embodiments (for example, the exciter is the exciter in Embodiment 1), or may also be a component such as a chip provided in the exciter.
  • the processing unit 1402 can support the device 1400 to perform the actions of the exciters in the foregoing method examples. Alternatively, the processing unit 1402 mainly executes the internal actions of the exciter in the method example, and the transceiver unit 1403 can support the communication between the device 1400 and the reflector and receiver.
  • the processing unit 1402 is configured to generate an excitation signal.
  • the excitation signal includes a first time zone and a second time zone.
  • the excitation signal is in the first time zone and in the first time zone.
  • the signal time granularity of the two time zones is different; the transceiver unit 1403 is used to send the excitation signal to the reflector.
  • the signal time granularity of the excitation signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the excitation signal adopts comb mapping in the first time region, and adopts continuous mapping in the second time region.
  • the sub-carrier interval taken by the excitation signal in the first time zone may be K times the sub-carrier interval taken in the second time zone; or the excitation signal taken in the first time zone
  • the length of the orthogonal frequency division multiplexing OFDM symbol may be 1/K times the length of the OFDM symbol taken in the second time zone, where K is an integer.
  • the first sequence mapped on the excitation signal is continuous in the first time region, and the second sequence mapped on the excitation signal is continuous in the second time region; or
  • the third sequence mapped on the signal is continuous in the first time zone and the second time zone.
  • an embodiment of the present application further provides an exciter 1500.
  • the exciter 1500 includes a processor 1510, a memory 1520, and a transceiver 1530.
  • instructions or programs or data are stored in the memory 1520, and the memory 1520 may be used to implement the functions of the storage unit 1401 in the foregoing embodiment.
  • the processor 1510 is configured to read instructions or programs or data stored in the memory 1520. When the instructions or programs stored in the memory 1520 are executed, the processor 1510 is used to perform the operations performed by the processing unit 1402 in the foregoing embodiment, and the transceiver 1530 is used to perform the operations performed by the transceiving unit 1403 in the foregoing embodiment.
  • the communication device 1400 or the exciter 1500 of the embodiment of the present application may correspond to the exciter in the communication method (FIG. 4) of the embodiment of the present application, and the operation and/or operation of each module in the communication device 1400 or the exciter 1500 Or the function is to realize the corresponding process of each method in FIG. 4, and for the sake of brevity, it will not be repeated here.
  • FIG. 16 shows a possible exemplary block diagram of another communication device involved in an embodiment of the present application, and the communication device 1600 may exist in the form of software.
  • the apparatus 1600 may include: a processing unit 1602 and a transceiver unit 1603.
  • the processing unit 1602 is used to implement corresponding processing functions.
  • the transceiver unit 1603 is used to support the communication between the device 1600 and other network entities.
  • the transceiving unit 1603 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1600 may further include a storage unit 1601 for storing program codes and/or data of the apparatus 1600.
  • the apparatus 1600 may be the receiver in any of the foregoing embodiments (for example, the receiver is the receiver in Embodiment 1), or may also be a component such as a chip provided in the receiver.
  • the processing unit 1602 may support the apparatus 1600 to perform the actions of the receiver in the foregoing method examples.
  • the processing unit 1602 mainly performs the internal actions of the receiver in the method example, and the transceiving unit 1603 can support the communication between the device 1600 and the exciter and reflector.
  • the transceiving unit 1603 is configured to receive the reflection signal from the reflector; the processing unit 1602 is configured to detect the reflection reference signal modulated on the reflection signal according to the reflection signal pattern set, wherein the The reflection signal pattern set includes a plurality of reflection signal patterns, and the reflection reference signals in the plurality of reflection signal patterns do not overlap in the time domain; the processing unit 1602 is further configured to: The reflected data signal modulated on the reflected signal is demodulated.
  • the reflected signal includes a first time area and a second time area
  • the signal time granularity of the reflected signal in the first time area and the second time area may be different.
  • the signal time granularity of the reflected signal in the first time zone may be smaller than the signal time granularity in the second time zone.
  • the processing unit 1602 when the processing unit 1602 detects the reflected reference signal modulated on the reflected signal based on the reflected signal pattern set, it may specifically be based on the reflected signal pattern set, at the first time of the reflected signal.
  • the area detects the reflection reference signal modulated on the reflection signal; when the processing unit 1602 demodulates the reflection data signal modulated on the reflection signal according to the channel on which the reflection reference signal is detected, it may specifically be based on the detected reflection signal.
  • the channel of the reference signal demodulates the reflected data signal modulated on the reflected signal in the second time region of the reflected signal.
  • an embodiment of the present application further provides a receiver 1700.
  • the receiver 1700 includes a processor 1710, a memory 1720, and a transceiver 1730.
  • the memory 1720 stores instructions or programs or data
  • the memory 1720 may be used to implement the functions of the storage unit 1601 in the foregoing embodiment.
  • the processor 1710 is configured to read instructions or programs or data stored in the memory 1720. When the instructions or programs stored in the memory 1720 are executed, the processor 1710 is used to perform the operations performed by the processing unit 1602 in the foregoing embodiment, and the transceiver 1730 is used to perform the operations performed by the transceiving unit 1603 in the foregoing embodiment.
  • the communication device 1600 or the receiver 1700 in the embodiment of the present application may correspond to the receiver in the communication method (FIG. 4) of the embodiment of the present application, and the operation and/or operation of each module in the communication device 1600 or the receiver 1700 Or the function is to realize the corresponding process of each method in FIG. 4, and for the sake of brevity, it will not be repeated here.
  • Figure 18 is a schematic diagram of the structure of an exciter provided by this application.
  • the signal transmitting and receiving unit in the exciter is used for signal transmitting and receiving.
  • the excitation signal generating unit is used to generate the transmitted excitation signal.
  • the data signal generating unit is used to generate the transmitted data signal.
  • a computer-readable storage medium is provided with a program or instruction stored thereon, and when the program or instruction is executed, the method on the exciter side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the exciter side in the foregoing method embodiment can be executed.
  • a chip is provided for executing a computer program or instruction stored in a memory.
  • the method on the exciter side in the foregoing method embodiment can be executed.
  • FIG. 19 is a schematic structural diagram of a receiver provided by this application.
  • the signal receiving unit of the receiver is used for receiving signals, and the receiving signal processing unit is used for processing the received signals.
  • a computer-readable storage medium is provided with a program or instruction stored thereon, and when the program or instruction is executed, the method on the receiver side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the receiver side in the foregoing method embodiment can be executed.
  • a chip is provided for executing a computer program or instruction stored in a memory.
  • the method on the receiver side in the foregoing method embodiment can be executed.
  • FIG 20 is a schematic structural diagram of a reflector provided by this application.
  • the reflector includes data reception and demodulation, energy collection and management, signal modulation and reflection, control logic or a processor (further including a storage unit and an optional channel coding module) .
  • the reflector can also be connected with the sensor or sensor data, so that the reflector can transmit the data collected by the sensor.
  • the data reflected by the reflector can be an identification (for example, RFID, EPC), or other data (for example, data such as temperature and humidity collected by a sensor).
  • the internal circuit of the reflector is connected with the energy collection and management module; when reflecting the signal, the internal circuit of the reflector is connected with the signal modulation reflection module.
  • the control logic or processor or called a microprocessor in the reflector mainly performs receiving data processing and reflection data processing.
  • a computer-readable storage medium is provided, and a program or instruction is stored thereon.
  • the program or instruction is executed, the method on the reflector side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the reflector side in the foregoing method embodiment can be executed.
  • a chip is provided for executing a computer program or instruction stored in a memory.
  • the method on the reflector side in the foregoing method embodiment can be executed.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域, 公开了一种通信方法及装置, 用以避免多个反射器同时反射信号时, 信号冲突的问题。该方法包括: 反射器接收来自激励器的激励信号; 所述反射器在反射信号图案集合中确定一个反射信号图案, 其中所述反射信号图案集合中包括多个反射信号图案, 所述多个反射信号图案中的反射参考信号在时域上不重叠; 所述反射器根据确定的所述反射信号图案, 在所述激励信号上调制反射参考信号和反射数据信号, 获得反射信号; 所述反射器向接收器发送所述反射信号。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年02月27日提交中国国家知识产权局、申请号为202010124344.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
反射通信(backscatter communication)是一种极低功耗、低成本的被动式通信技术,适用于对功耗较敏感的物联网(internet of things,IoT)等场景中。反射通信技术中,可以包括三个节点:激励器、反射器以及接收器。其中,激励器与反射器也可以集成到同一个节点,该节点可以称为读写器。激励器可以发送无线信号,激励器发送的无线信号也可以称为激励信号,激励信号可以为单音信号或多音信号等类型的信号,不承载任何数据。激励器发送的激励信号为反射器已知的信号。反射器接收到激励信号之后,可以将需要发送的数据调制到激励信号上,获得反射信号,并向接收器发送反射信号。接收器接收到反射信号之后,可以解调出承载于反射信号上的数据。
然而,现有反射通信中,当多个反射器同时被激活时,则可能同时反射信号,导致信号冲突,使得多个反射器的接入都失败,从而降低读取效率,如造成时间、频率资源和功率的浪费,导致额外的时延等。
发明内容
本申请实施例提供一种通信方法及装置,用以解决现有技术中多个反射器同时反射信号时,信号冲突的问题。
第一方面,本申请实施例提供一种通信方法,该方法包括:反射器接收来自激励器的激励信号;所述反射器在反射信号图案集合中确定一个反射信号图案,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;所述反射器根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,获得反射信号;所述反射器向接收器发送所述反射信号。可选的,在本申请实施例中,反射信号图案集合中,不同反射信号图案中的反射参考信号可以位于不同信道(频段),同一反射器在激励信号上调制的反射参考信号和反射数据信号可以位于同一信道。
本申请实施例中,在反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠,相互正交,多个反射器可以基于不同的反射信号图案进行反射信号的发送,多个反射器发送的反射信号上调制的反射参考信号在时域上不重叠,接收器可以实现对多个反射器发送的反射参考信号进行检测(或解调),并根据检 测到反射参考信号的信道,对相应反射器发送的反射数据信号进行解调,能够避免多个反射器发送的反射信号发生冲突。
在一种可能的设计中,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域和在所述第二时间区域的信号时间粒度可以不同。上述设计,反射器可以分别在不同时间区域进行反射参考信号和反射数据信号的调制,便于接收器根据不同时间区域,在反射信号中解调出反射参考信号和反射数据信号。
在一种可能的设计中,所述激励信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。上述设计,激励信号包括信号时间粒度不同的第一时间区域和第二时间区域,有利于反射器根据反射参考信号和反射数据信号分别对应的信号时间粒度,选择相应的时间区域进行调制,降低通信系统的系统开销。
在一种可能的设计中,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。上述设计,有利于根据映射方式的不同,对第一时间区域和第二时间区域进行识别和判断。
在一种可能的设计中,所述激励信号在所述第一时间区域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。上述设计,有利于根据子载波间隔或OFDM符号长度的不同,对第一时间区域和第二时间区域进行识别和判断。
在一种可能的设计中,所述反射器根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,包括:所述反射器根据确定的所述反射信号图案,在所述激励信号的第一时间区域上调制反射参考信号,在所述激励信号的第二时间区域上调制反射数据信号。上述设计,便于接收器根据第一时间区域的反射参考信号的信道(频段),估计反射数据信号的信道,实现对多个反射器的反射数据信号的相干解调,提升反射通信的读取性能。
在一种可能的设计中,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。上述设计,采用更长的序列,相比现有通信系统中的一个OFDM符号单独一段序列,有利于提高接收器与激励器同步性能,并提高反射器的检测性能。
在一种可能的设计中,所述反射器在反射信号图案集合中确定一个反射信号图案,包括:所述反射器根据所述反射器的标识信息,在所述反射信号图案集合中确定一个反射信号图案;或,所述反射器根据所述反射器的标识信息以及反射器的标识信息与所述反射信号图案集合中的反射信号图案的对应关系,在所述反射信号图案集合中确定一个反射信号图案;或,所述反射器根据从所述激励器或接收器接收的反射信号指示信息,在所述反射信号图案集合中确定一个反射信号图案,其中所述反射信号指示信息包括用于指示所述反射信号图案集合中一个反射信号图案的指示信息。上述设计,有利于反射器对反射信号图像的准确、快速确定。
第二方面,本申请实施例提供一种通信方法,该方法包括:激励器生成激励信号,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域和在所述第二时间区域的信号时间粒度可以不同;所述激励器向反射器发送所述激励信号。上述 设计,反射器可以分别在不同时间区域进行反射参考信号和反射数据信号的调制,便于接收器根据不同时间区域,在反射信号中解调出反射参考信号和反射数据信号。
在一种可能的设计中,所述激励信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。上述设计,激励信号包括信号时间粒度不同的第一时间区域和第二时间区域,有利于反射器根据反射参考信号和反射数据信号分别对应的信号时间粒度,选择相应的时间区域进行调制,降低通信系统的系统开销。
在一种可能的设计中,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。上述设计,有利于根据映射方式的不同,对第一时间区域和第二时间区域进行识别和判断。
在一种可能的设计中,所述激励信号在所述第一时间区域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。上述设计,有利于根据子载波间隔或OFDM符号长度的不同,对第一时间区域和第二时间区域进行识别和判断。
在一种可能的设计中,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。上述设计,采用更长的序列,相比现有通信系统中的一个OFDM符号单独一段序列,有利于提高接收器与激励器同步性能,并提高反射器的检测性能。
第三方面,本申请实施例提供一种通信方法,该方法包括:接收器接收来自反射器的反射信号;所述接收器根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;所述接收器根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调。可选的,在本申请实施例中,反射信号图案集合中,不同反射信号图案中的反射参考信号可以位于不同信道(频段),同一反射器在激励信号上调制的反射参考信号和反射数据信号可以位于同一信道。
上述设计,在反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠,相互正交,多个反射器可以基于不同的反射信号图案进行反射信号的发送,多个反射器发送的反射信号上调制的反射参考信号在时域上不重叠,接收器可以实现对多个反射器发送的反射参考信号进行检测(或解调),并根据检测到反射参考信号的信道,对相应反射器发送的反射数据信号进行解调,能够避免多个反射器发送的反射信号发生冲突。
在一种可能的设计中,所述反射信号包括第一时间区域和第二时间区域,所述反射信号在所述第一时间区域和在所述第二时间区域的信号时间粒度可以不同。上述设计,反射器可以分别在不同时间区域进行反射参考信号和反射数据信号的调制,便于接收器根据不同时间区域,在反射信号中解调出反射参考信号和反射数据信号。
在一种可能的设计中,所述反射信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。上述设计,激励信号包括信号时间粒度不同的第一时间区域和第二时间区域,有利于反射器根据反射参考信号和反射数据信号分别对应的信号时间粒度,选择相应的时间区域进行调制,降低通信系统的系统开销。
在一种可能的设计中,所述接收器根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,包括:所述接收器根据反射信号图案集合,在所述反射信号的第一时间区域检测所述反射信号上调制的反射参考信号;所述接收器根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调,包括:所述接收器根据检测到反射参考信号的信道,在所述反射信号的第二时间区域对所述反射信号上调制的反射数据信号进行解调。上述设计,便于接收器根据第一时间区域的反射参考信号的信道,估计反射数据信号的信道,实现对多个反射器的反射数据信号的相干解调,提升反射通信的读取性能。
第四方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面所述的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序或指令,当所述程序或指令被处理器执行时,所述装置可以执行上述第一方面所述的方法。
在一个可能的设计中,该装置可以为反射器。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第二方面所述的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序或指令,当程序或指令被处理器执行时,所述装置可以执行上述第二方面所述的方法。
在一个可能的设计中,该装置可以为激励器。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面所述的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序或指令,当程序或指令被处理器执行时,所述装置可以执行上述第三方面所述的方法。
在一个可能的设计中,该装置可以为反射器。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序或指令,当所述程序或指令被执行时,使得第一方面所述的方法或第二方面所述的方法或第三方面所述的方法被实现。
第八方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面所述的方法或第二方面所述的方法或第三方面所述的方法被实现。
第九方面,本申请实施例提供一种芯片,所述芯片用于执行存储器中存储的计算机程序或指令,实现如第一方面所述的方法或第二方面所述的方法或第三方面所述的方法。
上述第四方面至第九方面所能达到的技术效果请参照上述第一方面或第二方面或第三方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的通信架构示意图;
图2为本申请实施例提供的通信架构示意图;
图3为本申请实施例提供的子载波和子载波宽度示意图;
图4为本申请实施例提供的通信过程示意图;
图5为本申请实施例提供的激励信号的信号时间粒度示意图;
图6A和图6B为本申请实施例提供的激励信号时频结构示意图;
图7A和图7B为本申请实施例提供的激励信号映射示意图;
图8A、图8B和图8C为本申请实施例提供的激励信号映射示意图;
图9为本申请实施例提供的配置反射通信过程示意图;
图10A和图10B为本申请实施例提供的反射信号图案集合结构示意图;
图11为本申请实施例提供的激励信号时频和反射信号图案示意图;
图12为本申请实施例提供的通信装置的示意性框图;
图13为本申请实施例提供的反射器的示意性框图;
图14为本申请实施例提供的通信装置的示意性框图;
图15为本申请实施例提供的激励器的示意性框图;
图16为本申请实施例提供的通信装置的示意性框图;
图17为本申请实施例提供的接收器的示意性框图;
图18为本申请实施例提供的激励器结构示意图;
图19为本申请实施例提供的接收器结构示意图;
图20为本申请实施例提供的反射器结构示意图。
具体实施方式
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。示例性的,本申请实施例所应用的通信系统架构可以如图1所示,包括:激励器、反射器和接收器。
需要说明的是,激励器也可能存在其他名称,例如可以称为协助器(helper)、询问器(interrogator)、读写器(reader)、用户设备(user equipment,UE)等,为了描述方便,本申请实施例中均称为激励器。相应的,反射器也可能存在其他名称,例如可以称为标签(tag)、反射设备(backscatter device)、无源设备(passive device)、半有源设备(semi-passive device)、散射信号设备(ambient signal device)、射频识别(radio frequency identification,RFID)标签(tag)等,为了描述方便,本申请实施例中均称为反射器。接收器也可能存在其他名称,例如可以称为接入点、基站等,为了描述方便,本申请实施例中均称为接收器。相应的,在本申请实施例中,反射通信也可以称为被动通信(passive communication),无源通信,散射通信(ambient communication)等。
图1中,激励器发送的激励信号,可以为单音信号(即连续的正弦波)或多音信号(即 具有一定带宽的信号),激励信号中可以携带发送给接收器的数据,也可以不携带发送给接收器的数据。激励器发送的激励信号为反射器已知的信号。激励信号的持续时间段内可以有至少一个缝隙(gap),该至少一个缝隙可以是周期的,也可以是非周期的。
反射器接收到激励信号之后,可以将需要发送的数据调制到激励信号上,获得反射信号,并向接收器发送反射信号。反射器发送的数据可以为采集到的温度数据、湿度数据等,本申请实施例对此并不限定。本申请实施例中,反射器可以为无源设备,即在接收激励信号以及发送反射信号的过程中不需要电源供电;反射器也可以为半有源设备,即在接收激励信号或发送反射信号的过程中需要电源供电。需要理解的是,图1只是示例,在一种可能的实现方式中,激励器和接收器也可以集成到同一个物理实体中,如图2所示,在射频标识(radio-frequency identification,RFID)系统中,激励器和接收器集成于同一个节点,被称为读写器。
需要说明的是,在图1所示通信系统中,接收器不可以直接向反射器发送数据,接收器若需要向反射器发送数据,则需要先将数据发送至激励器,由激励器转发至反射器。
当反射通信应用于移动通信系统,例如5G中时,激励器可以为终端设备、接收器为网络设备;或激励器为网络设备、接收器为终端设备;或激励器和接收器均为用户设备;或激励器和接收器均为网络设备。其中所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。所述网络设备可以为无线接入设备,例如演进型节点B(evolved Node B,eNB)、5G中的gNB、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点等。
在介绍本申请实施例之前,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、调制、解调,调制就是对信号源的数据进行处理加到载波上,使其变为适合于信道传输的形式的过程。不同的模式就对应于不同的调制方法,例如多载波调制还是单载波调制,相移键控(phase-shift keying,PSK)调制还是振幅键控(amplitude-shift keying,ASK)调制等等。解调即调制的逆过程,从信号中恢复原始数据,解调有时也可以称为检测。
2)、正交频分复用(orthogonal frequency division multiplex,OFDM),是一种频分复用的多载波传输波形,参与复用的各路信号(也称为各路载波/子载波)是正交的。OFDM技术是通过串/并转换将高速的数据流变成多路并行的低速数据流,再将它们分配到若干个不同频率的子载波上传输。OFDM技术利用了相互正交的子载波,从而子载波的频谱是重叠的,大大的提高了频谱利用率。
3)、子载波,在多载波波形当中,传输的信号为带宽信号,带宽信号中有很多不同频率的信号,这些频率的间隔都是相同的。这些不同频率称为子载波。网络设备与终端设备 的数据可以调制到这些子载波上,这些子载波之间在一段时间内是正交的。以蜂窝系统现在支持的15KHz子载波间隔(subcarrier spacing,SCS)、30KHz SCS、60KHz SCS为例,子载波和子载波宽度如图3所示,每一个频率域的空格为一个子载波,可以用来传输数据。
4)、参考信号(reference signal,RS),根据功能参考信号可以分为解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PTRS)等。是指发送端或者接收端已知或按照预定的规则可以推断信号所在的时间和频率位置,以及时间和频率上承载的信号/符号所经历的信道或者其他不可预期的现象。参考信号用于获取信号在传输中所受外界(例如,空间信道、发送或接收端器件非理想性)影响的已知信号,一般用于进行信道估计、辅助信号解调、检测。例如DMRS和CSI-RS用于获取信道信息,PTRS用于获取相位变化信息。在本申请中,参考信号也称为参考符号、参考比特等。本申请中,数据信号,也称为数据符号、数据比特等。如果是反射器发送的,则在前面再加上限制,例如反射器发送的参考信号称为“反射参考信号”;反射器发送的数据信号称为“反射数据信号”。
需要说明的是,本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图详细说明本申请实施例。另外,需要理解,在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
【实施例一】
图4为本申请实施例提供的一种通信过程示意图,所述过程包括:
S401:激励器向反射器发送激励信号,反射器接收来自激励器的激励信号。
在本申请实施例中,激励信号可以采取一个信号时间粒度(每个信号的时间或时长),即反射器在激励信号上调制反射参考信号和反射数据信号的信号时间粒度一致。可选的,为了降低反射参考信号给通信系统带来的开销,激励器发送的激励信号可以包括信号时间粒度不同第一时间区域和第二时间区域,如图5所示,第一时间区域的信号时间粒度可以小于在第二时间区域的信号时间粒度,激励信号的第一时间区域用于反射器调制反射参考信号、第二时间区域用于反射器调制反射数据信号。
可选的,为了便于反射器和接收器对激励信号不同时间区域的识别和判断,在一种可 能的实施中,激励信号可以在第一时间区域采取梳状映射,在第二时间区域采取连续映射。
示例性的,激励信号在第一时间区域采取的梳状映射的频域密度可以为1/N,N可以为2、3、4、5等正整数,即激励信号在第一时间区域,每N个子载波在1个子载波上映射有激励信号的信息(或数据)。以N为2为例,如图6A所示,激励信号在第一时间区域,每2个子载波在1个子载波上映射有激励信号的信息。
在另一种可能的实施中,激励信号在第一时间区域采取的子载波间隔与在第二时间区域采取的子载波间隔不同,也即激励信号在第一时间区域采取的OFDM符号长度与在第二时间区域采取的OFDM符号长度不同。
示例性的,激励信号在第一时间区域采取的子载波间隔为第二时间区域采取的子载波间隔的K倍,或相应的激励信号在第一时间区域采取的OFDM符号长度为在第二时间区域采取的OFDM符号长度的1/K倍,其中K为2、3、4、5等整数。以K为2为例,如图6B所示,激励信号在第一时间区域采取的子载波间隔为在第二时间区域采取的子载波间隔的2倍,在第一时间区域采取的OFDM符号长度为在第二时间区域采取的OFDM符号长度的1/2倍。
另外,为了提高接收器与激励器同步性能,并提高反射器的检测性能,在一种可能的实施中,激励信号上映射的第三序列(如伪随机序列)在第一时间区域和第二时间区域连续。
示例性的,如图7A和图7B所示,序列S映射方式可以为,首先在频域上按子载波(或频率)增序依次映射在子载波上,所述子载波也可以称为资源(resource element,RE);然后在反射通信时隙(比OFDM符号更大一级的时间单位)上,依次按OFDM符号增序(或者时间增序)映射;最后在反射通信帧(比反射通信时隙更大一级的时间单位)内,依次按反射通信时隙增序进行映射;直到激励信号所占的子载波(资源)映射完毕。需要注意的是,图7A中的第一时间区域内是梳状映射,因此在第一时间区域进行映射时,是依次按照梳状间隔进行映射;在第二时间区域内是连续映射,因此在第二时间区域内映射时,依次连续映射即可;在第一时间区域和第二时间区域之间,则按OFDM符号索引(如果跨时隙时,前一个时隙最后的一个OFDM符号时间的最后一个子载波,和后一个时隙的第一个OFDM符号时间的第一个子载波之间是“依次”)增加进行映射。
在另一种可能的实施中,激励信号上映射的第一序列(如伪随机序列)在第一时间区域连续,激励信号上映射的第二序列(如伪随机序列)在第二时间区域连续。
示例性的,如图8A和图8B所示,第一时间区域和第二时间区域分别映射不同的/独立的序列S和Y。在反射通信过程中,各个反射通信时隙、反射通信帧中的第一时间区域上,序列S具体映射顺序为:首先在频域上按子载波(或频率)增序依次映射在子载波上;然后在反射通信时隙(比OFDM符号更大一级的时间单位)内的第一时间区域上,依次按OFDM符号增序(或者时间增序)映射;最后在反射通信帧(比反射通信时隙更大一级的时间单位)内,依次按反射通信时隙增序进行映射;直到激励信号中的第一时间区域内的子载波(资源)映射完毕。需要注意的是,图8A中的第一时间区域内是梳状映射,因此在第一时间区域进行映射时,是依次按照梳状间隔进行映射;在第二时间区域内是连续映射,因此在第二时间区域内映射时,依次连续映射即可。Y序列的具体映射顺序为:首先在频域上按子载波(或频率)增序依次连续映射在子载波上;然后在反射通信时隙时间(比 OFDM符号更大一级的时间单位)内的第二时间区域上,依次按OFDM符号增序(或者时间增序)映射;最后在反射通信帧(比反射通信时隙更大一级的时间单位)内,依次按反射通信时隙增序进行映射;直到激励信号中的第二时间区域内的子载波(资源)映射完毕。
可选的,如图8C所示,假设第一时间区域内有K个OFDM符号,K个OFDM符号还可以分别映射K个不同的/独立的序列S 0、S 1、…S K-1。在反射通信过程中,各个反射通信时隙、反射通信帧中的第一时间区域上的K个OFDM符号,分别对应的序列S 0、S 1、…S K-1的具体映射顺序为:首先在频域上按子载波(或频率)增序依次连续映射在子载波上;然后在反射通信时隙时间(比OFDM符号更大一级的时间单位)内的第一时间区域上,依次按OFDM符号增序(或者时间增序)映射;最后在反射通信帧(比反射通信时隙更大一级的时间单位)内,依次按反射通信时隙增序进行映射;直到激励信号中的第一时间区域内的子载波映射完毕。另外,第二时间区域内不同OFDM符号,也可以分别采取不同的序列,与图8C中第一时间区域内的序列映射方式类似,不再赘述。
另外,需要理解的是,在本申请图7A或图7B或图8A或图8B或图8C所示的,仅为部分实现方式。在另外实现方法下,激励信号上承载的至少一个序列,可以在各个反射通信时隙内独立生成,即反射通信时隙之间的序列不连续。在另外实现方法下,激励信号上承载的至少一个序列,可以在各个反射通信帧内独立生成,即反射通信帧之间的序列不连续。本申请实施例中,序列不连续是指序列生成时,以下至少一个参数不相同:生成公式或函数的初始设置值(初始值)、公式或函数、公式或函数中的系数(当公式是线性多项式时,多项式的系数)。例如序列对应的比特为c(n),生成的公式可以如下:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中涉及的初始值为:x 1(n)和x 2(n),n=0,1,…,30,以及Nc,Nc为起始位置。
生成公式的系数为以上第二个和第三个公式中右侧的系数,即
Figure PCTCN2020141645-appb-000001
Figure PCTCN2020141645-appb-000002
中的系数c i,j,其中i∈{1,2},c i,j∈{0,1},N=31。当然更一般地,N可以为其它任意质数。
另外,在进行反射通信之前,控制器向激励器和/或接收器发送有激励信号配置信息和/或反射信号配置信息,向反射器发送有反射信号配置信息,其中激励信号配置信息包括:第一时间区域和第二时间区域激励信号的信息:频率和时间信息(包括信号时间粒度和长度、周期)、子载波间隔;第一时间区域和第二时间区域发送信号的信息(时域、频域映射的序列生成所需要的信息)等中的一项或多项;反射信号配置信息包括反射数据信号和反射参考信号信息:速率、起始时间、时间长度、周期、反射数据比特时间宽度、反射数据比特速率、反射参考比特时间宽度、反射参考比特速率等中的一项或多项。
控制器发送给激励器或接收器的激励信号配置信息和/或反射信号配置信息可以通过无线资源控制(radio resource control,RRC)信令、媒介接入控制-控制元素(medium access control-control element,MAC CE)、媒介接入控制-协议数据单元(medium access control–protocol data unit,MAC PDU)、下行控制信息(downlink control information,DCI)、系统消息等中的至少一项指示。控制器发送给反射器的反射信号配置信息是通过激励器的反射链路控制信息、反射链路无线资源控制消息、反射链路媒介接入控制消息等中的至少一个 通知给反射器的。反射链路是指激励器到反射器之间的通信链路,或激励器到反射器到接收器之间的通信链路。
在本申请实施例中,如图9所示,控制器可以为接收器或激励器或第三方控制设备,其中激励信号和/或反射信号配置信息发送给接收器,可以供接收器进行激励信号消除和/或反射信号解调。另外需要理解的是,接收器若需要向反射器发送数据,一般先将数据发送至激励器,由激励器转发至反射器。如图9中的(A)所示,当接收器为控制器时,可以由接收器将激励信号配置信息和/或反射信号配置信息发送给激励器,并经由激励器将反射信号配置信息发送给反射器;如图9中的(B)所示,当激励器为控制器时,激励器可以直接将激励信号配置信息和/或反射信号配置信息发送给接收器,将反射信号配置信息发送给反射器;如图9中的(C)所示,当第三方控制设备为控制器时,控制器可以直接将激励信号配置信息和/或反射信号配置信息发送给激励器和接收器,并经由激励器将反射信号配置信息发送给反射器。
S402:所述反射器在反射信号图案集合中确定一个反射信号图案。
其中,所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠。另外需要理解的是,在本申请实施例中,在反射信号图案中可以包括反射参考信号和反射数据信号,任意一个反射信号图像中包括的反射参考信号和反射数据信号可以位于同一信道(频段)。不同反射信号图像对应的信道可以不同。
在本申请实施例中,反射器在激励信号的第一时间区域上调制反射参考信号,在激励信号的第二时间区域上调制反射数据信号。即反射器在第一时间区域反射参考信号,在第二时间区域反射数据信号。其中第一时间区域和第二时间区域的长度、在第一时间区域反射参考信号的信号时间粒度、以及在第一时间区域反射数据信号的信号时间粒度,可以根据从激励器接收到的反射信号配置信息确定。其中反射器在第一时间区域反射参考信号的信号时间粒度、以及在第一时间区域反射数据信号的信号时间粒度,通常与激励信号在第一时间区域的信号时间粒度和在所述第二时间区域的信号时间粒度相符。
示例性的:第一时间区域内的反射参考信号的信号时间粒度(或反射器比特或反射器符号时间长度)为第二时间区域内的反射数据信号的信号时间粒度(或反射器比特或反射器符号时间长度)的1/K,其中K为整数。
以第一时间区域内的反射参考信号的信号时间粒度为第二时间区域内的反射数据信号的信号时间粒度的1/4为例,本申请实施例提供的反射信号图案集合可以如图10A或图10B所示,反射信号图案集合中的反射信号图案1、反射信号图案2、反射信号图案3以及反射信号图案4中的反射参考信号(即反射器参考信号)在时域上不重叠(相互正交),反射信号图案1、反射信号图案2、反射信号图案3以及反射信号图案4中的反射数据信号(即反射器数据信号)可以在时域上重叠。
另外,在本申请实施例中,反射器可以存储多个不同的反射信号图案集合。例如K=1对应反射参考信号的时间(或时长)与反射数据信号的时间相同;K=2对应反射参考信号的时间是反射数据信号的时间的1/2;K=3对应反射参考信号的时间是反射数据信号的时间的1/3;K=4对应反射参考信号的时间是反射数据信号的时间的1/4。
在本申请实施例中,反射器可以根据从激励器或接收器接收的指示信息,或反射器标识信息,在反射信号图案集合中确定一个反射信号图案。如图11所示,反射器的标识信息为反射器的电子产品编码(electronic product code,EPC),反射器根据EPC的后2比特, 在反射信号图案集合中确定一个反射信号图案,如EPC后2比特为00对应反射信号图案1、为01对应反射信号图案2、为10对应反射信号图案3、为11对应反射信号图案4。
可选的,反射器根据以下至少一个参数与反射信号图案集合中的反射信号图案的对应关系,在反射信号图案集合中确定一个反射信号图案(即确定时间图案、码图案、或时间-码联合图案等中的一项或多项):反射器标识、反射通信标识、反射通信帧、反射通信时隙号、反射器生成的随机值等。
S403:所述反射器根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,获得反射信号。
仍以图11为例,假设反射器确定的反射信号图案为图11中的反射信号图案2,反射器根据反射信号图案2在反射参考信号在第一时间区域的时频(时域和频域)位置,在激励信号的第一时间区域上调制反射参考信号,根据反射信号图案2在反射数据信号在第二时间区域的时频(时域和频域)位置,在激励信号的第二时间区域上调制反射数据信号,获得反射信号。
S404:所述反射器向接收器发送所述反射信号,所述接收器接收所述反射信号。
S405:所述接收器根据反射信号图案集合,检测所述反射信号上调制的反射参考信号。
接收器接收到反射器发送的反射信号后,可以根据反射信号图案集合中多个反射信号图案对应的信道(频段),在反射信号的第一时间区域上检测(解调)反射信号上调制的反射参考信号,根据是否检测到反射参考信号,估计反射器发送反射数据信号的信道,即如果在某一信道上检测到反射信号上调制的反射参考信号,则说明反射器在该信道上发送有反射数据信号。示例的,如图11所示,在反射信号图案1、反射信号图案2、反射信号图案3、以及反射信号图案4中,反射参考信号(即反射器参考信号)的时域不重叠,接收器可以同时在反射信号图案1、反射信号图案2、反射信号图案3、以及反射信号图案4分别对应的信号1、信道2、信道3和信道4检测反射参考信号,不会出现信号冲突。当接收器在某一信道检测到反射参考信号,则说明反射器在该信道发送有反射数据信号(即反射器数据信号),接收器即可根据检测到反射参考信号的信道,对反射数据信号进行解调。
S406:所述接收器根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调。
接收器根据是否检测到反射参考信号,确定出反射器发送有反射数据信号的信道后,对相应信道上反射信号上调制的反射数据信号进行解调,即可获得反射器反射的反射数据。示例的,接收器根据检测到反射参考信号的信道,对该信道接收的反射信号的第二时间区域上调制的反射数据信号进行解调,即可获得反射器反射的反射数据。
【实施例二】
上述主要从激励器、反射器和接收器之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,各网元包括了执行各个功能相应的硬件结构和/或软件模块(或单元)。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图12示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该通信装置1200可以以软件的形式存在。装置1200可以包括:处理单元1202和收发单元1203。
一种可能的设计中,处理单元1202用于实现相应的处理功能。收发单元1203用于支持装置1200与其他网络实体的通信。可选地,收发单元1203可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
该装置1200可以为上述任一实施例中的反射设备(比如,反射设备为实施例一中的反射设备)、或者还可以为设置在反射设备中的芯片等部件。处理单元1202可以支持装置1200执行上文中各方法示例中反射设备的动作。或者,处理单元1202主要执行方法示例中的反射设备内部动作,收发单元1203可以支持装置1200与激励器和收发器之间的通信。
具体地,在一个实施例中,收发单元1203,用于接收来自激励器的激励信号;处理单元1202,用于在反射信号图案集合中确定一个反射信号图案,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;
所述处理单元1202,还可以用于根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,获得反射信号;所述收发单元1203,还用于向接收器发送所述反射信号。
在一种可能的设计中,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域和在所述第二时间区域的信号时间粒度不同。具体地,所述激励信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。
在一种可能的设计中,所述激励信号在所述第一时间区域可以采取梳状映射,在所述第二时间区域可以采取连续映射。具体地,所述激励信号在所述第一时间区域采取的子载波间隔可以为在所述第二时间区域采取的子载波间隔的K倍;或所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度可以为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
在一种可能的设计中,所述处理单元1202在根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号时,具体可以根据确定的所述反射信号图案,在所述激励信号的第一时间区域上调制反射参考信号,在所述激励信号的第二时间区域上调制反射数据信号。
在一种可能的设计中,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
在一种可能的设计中,所述处理单元1202在反射信号图案集合中确定一个反射信号图案时,具体可以根据反射器的标识信息,在所述反射信号图案集合中确定一个反射信号图案;或根据反射器的标识信息以及反射器的标识信息与所述反射信号图案集合中的反射信号图案的对应关系,在所述反射信号图案集合中确定一个反射信号图案;或根据从所述激励器或接收器接收的反射信号指示信息,在所述反射信号图案集合中确定一个反射信号图案,其中所述反射信号指示信息包括用于指示所述反射信号图案集合中一个反射信号图案的指示信息。
如图13所示,本申请实施例还提供一种反射器1300,该反射器1300包括处理器1310,存储器1320与收发器1330。一种可能的设计中,存储器1320中存储指令或程序或数据,存储器1320可以用于实现上述实施例中存储单元1201的功能。处理器1310用于读取存储器1320中存储的指令或程序或数据。存储器1320中存储的指令或程序被执行时,该处理器1310用于执行上述实施例中处理单元1202执行的操作,收发器1330用于执行上述实施例中收发单元1203执行的操作。
应理解,本申请实施例的通信装置1200或反射器1300可对应于本申请实施例的通信方法(图4)中的反射器,并且通信装置1200或反射器1300中的各个模块的操作和/或功能分别为了实现图4中的各个方法的相应流程,为了简洁,在此不再赘述。
在采用集成的单元(模块)的情况下,图14示出了本申请实施例中所涉及的又一种通信装置的可能的示例性框图,该通信装置1400可以以软件的形式存在。装置1400可以包括:处理单元1402和收发单元1403。一种可能的设计中,处理单元1402用于实现相应的处理功能。收发单元1403用于支持装置1400与其他网络实体的通信。可选地,收发单元1403可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1400还可以包括存储单元1401,用于存储装置1400的程序代码和/或数据。
该装置1400可以为上述任一实施例中的激励器(比如,激励器为实施例一中的激励器)、或者还可以为设置在激励器中的芯片等部件。处理单元1402可以支持装置1400执行上文中各方法示例中激励器的动作。或者,处理单元1402主要执行方法示例中的激励器内部动作,收发单元1403可以支持装置1400与反射器和接收器之间的通信。
具体地,在一个实施例中,处理单元1402,用于生成激励信号,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域和在所述第二时间区域的信号时间粒度不同;收发单元1403,用于向反射器发送所述激励信号。
在一种可能的设计中,所述激励信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。
在一种可能的设计中,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。具体的,所述激励信号在所述第一时间区域采取的子载波间隔可以为在所述第二时间区域采取的子载波间隔的K倍;或所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度可以为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
在一种可能的设计中,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
如图15所示,本申请实施例还提供一种激励器1500,该激励器1500包括处理器1510,存储器1520与收发器1530。一种可能的设计中,存储器1520中存储指令或程序或数据,存储器1520可以用于实现上述实施例中存储单元1401的功能。处理器1510用于读取存储器1520中存储的指令或程序或数据。存储器1520中存储的指令或程序被执行时,该处理器1510用于执行上述实施例中处理单元1402执行的操作,收发器1530用于执行上述实施例中收发单元1403执行的操作。
应理解,本申请实施例的通信装置1400或激励器1500可对应于本申请实施例的通信 方法(图4)中的激励器,并且通信装置1400或激励器1500中的各个模块的操作和/或功能分别为了实现图4中的各个方法的相应流程,为了简洁,在此不再赘述。
在采用集成的单元(模块)的情况下,图16示出了本申请实施例中所涉及的又一种通信装置的可能的示例性框图,该通信装置1600可以以软件的形式存在。装置1600可以包括:处理单元1602和收发单元1603。
一种可能的设计中,处理单元1602用于实现相应的处理功能。收发单元1603用于支持装置1600与其他网络实体的通信。可选地,收发单元1603可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1600还可以包括存储单元1601,用于存储装置1600的程序代码和/或数据。
该装置1600可以为上述任一实施例中的接收器(比如,接收器为实施例一中的接收器)、或者还可以为设置在接收器中的芯片等部件。处理单元1602可以支持装置1600执行上文中各方法示例中接收器的动作。或者,处理单元1602主要执行方法示例中的接收器内部动作,收发单元1603可以支持装置1600与激励器和反射器之间的通信。
具体地,在一个实施例中,收发单元1603,用于接收来自反射器的反射信号;处理单元1602,用于根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;所述处理单元1602,还用于根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调。
在一种可能的设计中,所述反射信号包括第一时间区域和第二时间区域,所述反射信号在所述第一时间区域和在所述第二时间区域的信号时间粒度可以不同。具体地,所述反射信号在所述第一时间区域的信号时间粒度可以小于在所述第二时间区域的信号时间粒度。
在一种可能的设计中,所述处理单元1602在根据反射信号图案集合,检测所述反射信号上调制的反射参考信号时,具体可以根据反射信号图案集合,在所述反射信号的第一时间区域检测所述反射信号上调制的反射参考信号;所述处理单元1602在根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调时,具体可以根据检测到反射参考信号的信道,在所述反射信号的第二时间区域对所述反射信号上调制的反射数据信号进行解调。
如图17所示,本申请实施例还提供一种接收器1700,该接收器1700包括处理器1710,存储器1720与收发器1730。一种可能的设计中,存储器1720中存储指令或程序或数据,存储器1720可以用于实现上述实施例中存储单元1601的功能。处理器1710用于读取存储器1720中存储的指令或程序或数据。存储器1720中存储的指令或程序被执行时,该处理器1710用于执行上述实施例中处理单元1602执行的操作,收发器1730用于执行上述实施例中收发单元1603执行的操作。
应理解,本申请实施例的通信装置1600或接收器1700可对应于本申请实施例的通信方法(图4)中的接收器,并且通信装置1600或接收器1700中的各个模块的操作和/或功能分别为了实现图4中的各个方法的相应流程,为了简洁,在此不再赘述。
图18为本申请提供的一种激励器结构示意图,激励器中信号发射和接收单元用于信 号的发射和接收。激励信号生成单元用于产生发射的激励信号。数据信号生成单元用于产生发射的数据信号。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有程序或指令,该程序或指令被执行时可以执行上述方法实施例中激励器侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中激励器侧的方法。
作为本实施例的另一种形式,提供一种芯片,用于执行存储器中存储的计算机程序或指令,该计算机程序或指令被执行时可以执行上述方法实施例中激励器侧的方法。
图19为本申请提供的一种接收器结构示意图,接收器的信号接收单元用于接收信号,接收信号处理单元用于处理接收到的信号。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有程序或指令,该程序或指令被执行时可以执行上述方法实施例中接收器侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中接收器侧的方法。
作为本实施例的另一种形式,提供一种芯片,用于执行存储器中存储的计算机程序或指令,该计算机程序或指令被执行时可以执行上述方法实施例中接收器侧的方法。
图20为本申请提供的一种反射器结构示意图,反射器包含数据接收解调、能量收集和管理、信号调制反射、控制逻辑或处理器(进一步包含存储单元,以及可选的信道编码模块)。反射器还可以与传感器或者传感器数据进行连接,使得反射器可以传输传感器采集的数据。反射器反射的数据可以是标识(例如RFID、EPC),也可以是其它数据(例如传感器sensor采集的温度、湿度等数据)。在接收能量时,反射器内部电路与能量收集和管理模块连接;在反射信号时,反射器内部电路与信号调制反射模块连通。当然,某些传感器具备同时进行能量收集和信号调制反射。反射器中的控制逻辑或处理器(或称为微处理器)主要进行接收数据处理和反射数据处理。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有程序或指令,该程序或指令被执行时可以执行上述方法实施例中反射器侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中反射器侧的方法。
作为本实施例的另一种形式,提供一种芯片,用于执行存储器中存储的计算机程序或指令,该计算机程序或指令被执行时可以执行上述方法实施例中反射器侧的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    反射器接收来自激励器的激励信号;
    所述反射器在反射信号图案集合中确定一个反射信号图案,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;
    所述反射器根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,获得反射信号;
    所述反射器向接收器发送所述反射信号。
  2. 如权利要求1所述的方法,其特征在于,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度。
  3. 如权利要求2所述的方法,其特征在于,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。
  4. 如权利要求2所述的方法,其特征在于,所述激励信号在所述第一时间区域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,
    所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
  5. 如权利要求2-4中任一项所述的方法,其特征在于,所述反射器根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,包括:
    所述反射器根据确定的所述反射信号图案,在所述激励信号的第一时间区域上调制反射参考信号,在所述激励信号的第二时间区域上调制反射数据信号。
  6. 如权利要求2-5中任一项所述的方法,其特征在于,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,
    所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
  7. 如权利要求1所述的方法,其特征在于,所述反射器在反射信号图案集合中确定一个反射信号图案,包括:
    所述反射器根据所述反射器的标识信息以及反射器的标识信息与所述反射信号图案集合中的反射信号图案的对应关系,在所述反射信号图案集合中确定一个反射信号图案;或,
    所述反射器根据从所述激励器或接收器接收的反射信号指示信息,在所述反射信号图案集合中确定一个反射信号图案,其中所述反射信号指示信息包括用于指示所述反射信号图案集合中一个反射信号图案的指示信息。
  8. 一种通信方法,其特征在于,包括:
    激励器生成激励信号,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度;
    所述激励器向反射器发送所述激励信号。
  9. 如权利要求8所述的方法,其特征在于,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。
  10. 如权利要求8所述的方法,其特征在于,所述激励信号在所述第一时间区域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,
    所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
  11. 如权利要求8-10中任一项所述的方法,其特征在于,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,
    所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
  12. 一种通信方法,其特征在于,包括:
    接收器接收来自反射器的反射信号;
    所述接收器根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;
    所述接收器根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调。
  13. 如权利要求12所述的方法,其特征在于,所述反射信号包括第一时间区域和第二时间区域,所述反射信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度。
  14. 如权利要求13所述的方法,其特征在于,所述接收器根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,包括:
    所述接收器根据反射信号图案集合,在所述反射信号的第一时间区域检测所述反射信号上调制的反射参考信号;
    所述接收器根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调,包括:
    所述接收器根据检测到反射参考信号的信道,在所述反射信号的第二时间区域对所述反射信号上调制的反射数据信号进行解调。
  15. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收来自激励器的激励信号;
    处理单元,用于在反射信号图案集合中确定一个反射信号图案,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;
    所述处理单元,还用于根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号,获得反射信号;
    所述收发单元,还用于向接收器发送所述反射信号。
  16. 如权利要求15所述的通信装置,其特征在于,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度。
  17. 如权利要求16所述的通信装置,其特征在于,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。
  18. 如权利要求16所述的通信装置,其特征在于,所述激励信号在所述第一时间区 域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,
    所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
  19. 如权利要求16-18中任一项所述的通信装置,其特征在于,所述处理单元在根据确定的所述反射信号图案,在所述激励信号上调制反射参考信号和反射数据信号时,具体用于:
    根据确定的所述反射信号图案,在所述激励信号的第一时间区域上调制反射参考信号,在所述激励信号的第二时间区域上调制反射数据信号。
  20. 如权利要求16-19中任一项所述的通信装置,其特征在于,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,
    所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
  21. 如权利要求15所述的通信装置,其特征在于,所述处理单元在反射信号图案集合中确定一个反射信号图案时,具体用于:
    根据反射器的标识信息以及反射器的标识信息与所述反射信号图案集合中的反射信号图案的对应关系,在所述反射信号图案集合中确定一个反射信号图案;或,
    根据从所述激励器或接收器接收的反射信号指示信息,在所述反射信号图案集合中确定一个反射信号图案,其中所述反射信号指示信息包括用于指示所述反射信号图案集合中一个反射信号图案的指示信息。
  22. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于生成激励信号,所述激励信号包括第一时间区域和第二时间区域,所述激励信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度;
    收发单元,用于向反射器发送所述激励信号。
  23. 如权利要求22所述的通信装置,其特征在于,所述激励信号在所述第一时间区域采取梳状映射,在所述第二时间区域采取连续映射。
  24. 如权利要求22所述的通信装置,其特征在于,所述激励信号在所述第一时间区域采取的子载波间隔为在所述第二时间区域采取的子载波间隔的K倍;或,
    所述激励信号在所述第一时间区域采取的正交频分复用OFDM符号长度为在所述第二时间区域采取的OFDM符号长度的1/K倍,其中K为整数。
  25. 如权利要求22-24中任一项所述的通信装置,其特征在于,所述激励信号上映射的第一序列在所述第一时间区域连续,所述激励信号上映射的第二序列在所述第二时间区域连续;或,
    所述激励信号上映射的第三序列在所述第一时间区域和第二时间区域连续。
  26. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收来自反射器的反射信号;
    处理单元,用于根据反射信号图案集合,检测所述反射信号上调制的反射参考信号,其中所述反射信号图案集合中包括多个反射信号图案,所述多个反射信号图案中的反射参考信号在时域上不重叠;
    所述处理单元,还用于根据检测到反射参考信号的信道,对所述反射信号上调制的反 射数据信号进行解调。
  27. 如权利要求26所述的通信装置,其特征在于,所述反射信号包括第一时间区域和第二时间区域,所述反射信号在所述第一时间区域的信号时间粒度小于在所述第二时间区域的信号时间粒度。
  28. 如权利要求27所述的通信装置,其特征在于,所述处理单元在根据反射信号图案集合,检测所述反射信号上调制的反射参考信号时,具体用于:
    根据反射信号图案集合,在所述反射信号的第一时间区域检测所述反射信号上调制的反射参考信号;
    所述处理单元在根据检测到反射参考信号的信道,对所述反射信号上调制的反射数据信号进行解调时,具体用于:
    根据检测到反射参考信号的信道,在所述反射信号的第二时间区域对所述反射信号上调制的反射数据信号进行解调。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在被一个或多个处理器执行时实现如权利要求1-7或8-11或12-14中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在被一个或多个处理器执行时实现如权利要求1-7或8-11或12-14中任一项所述的方法。
  31. 一种通信系统,其特征在于,包括权利要求15-21任一项所述的通信装置、权利要求22-25任一项所述的通信装置、和权利要求26-28任一项所述的通信装置。
  32. 一种芯片,其特征在于,所述芯片用于执行存储器中存储的计算机程序或指令,实现如权利要求1-7或8-11或12-14中任一项所述的方法。
  33. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1-7或8-11或12-14中任一项所述的方法。
PCT/CN2020/141645 2020-02-27 2020-12-30 一种通信方法及装置 WO2021169586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20921922.9A EP4087204A4 (en) 2020-02-27 2020-12-30 COMMUNICATION METHOD AND DEVICE
US17/891,716 US20220390393A1 (en) 2020-02-27 2022-08-19 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010124344.9A CN113315729A (zh) 2020-02-27 2020-02-27 一种通信方法及装置
CN202010124344.9 2020-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/891,716 Continuation US20220390393A1 (en) 2020-02-27 2022-08-19 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021169586A1 true WO2021169586A1 (zh) 2021-09-02

Family

ID=77370380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141645 WO2021169586A1 (zh) 2020-02-27 2020-12-30 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220390393A1 (zh)
EP (1) EP4087204A4 (zh)
CN (1) CN113315729A (zh)
WO (1) WO2021169586A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137718A1 (zh) * 2022-01-21 2023-07-27 Oppo广东移动通信有限公司 同步控制方法、终端设备、网络设备、芯片和存储介质
WO2023142831A1 (zh) * 2022-01-27 2023-08-03 华为技术有限公司 通信方法、装置、设备以及存储介质
WO2023236857A1 (zh) * 2022-06-07 2023-12-14 维沃移动通信有限公司 信息指示方法、通信设备
WO2024000596A1 (en) * 2022-07-01 2024-01-04 Zte Corporation Method, device and computer program product for wireless communication
WO2024017049A1 (zh) * 2022-07-18 2024-01-25 维沃移动通信有限公司 Bsc设备的识别方法、装置及通信设备
WO2024037446A1 (zh) * 2022-08-17 2024-02-22 维沃移动通信有限公司 信号处理方法、装置及通信设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092365A1 (en) * 2021-11-25 2023-06-01 Zte Corporation Signal structure designs for wireless communication and sensing
CN116366400A (zh) * 2021-12-27 2023-06-30 维沃移动通信有限公司 信道估计方法、装置、终端、网络侧设备及介质
WO2023133840A1 (zh) * 2022-01-14 2023-07-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和供能节点
CN116865844A (zh) * 2022-03-25 2023-10-10 维沃软件技术有限公司 反向散射通信的方法、装置及设备
WO2023245598A1 (en) * 2022-06-24 2023-12-28 Qualcomm Incorporated Transmitting reflected signals that indicate data multiplexed with reference signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170193256A1 (en) * 2016-01-04 2017-07-06 Electronics And Telecommunications Research Institute Rfid tag and method of controlling the same
CN109995413A (zh) * 2019-05-06 2019-07-09 西安交通大学 一种中继辅助的环境反向散射通信方法
CN110635826A (zh) * 2019-09-09 2019-12-31 华中科技大学 一种多天线背向散射标签的通信方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170193256A1 (en) * 2016-01-04 2017-07-06 Electronics And Telecommunications Research Institute Rfid tag and method of controlling the same
CN109995413A (zh) * 2019-05-06 2019-07-09 西安交通大学 一种中继辅助的环境反向散射通信方法
CN110635826A (zh) * 2019-09-09 2019-12-31 华中科技大学 一种多天线背向散射标签的通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087204A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137718A1 (zh) * 2022-01-21 2023-07-27 Oppo广东移动通信有限公司 同步控制方法、终端设备、网络设备、芯片和存储介质
WO2023142831A1 (zh) * 2022-01-27 2023-08-03 华为技术有限公司 通信方法、装置、设备以及存储介质
WO2023236857A1 (zh) * 2022-06-07 2023-12-14 维沃移动通信有限公司 信息指示方法、通信设备
WO2024000596A1 (en) * 2022-07-01 2024-01-04 Zte Corporation Method, device and computer program product for wireless communication
WO2024017049A1 (zh) * 2022-07-18 2024-01-25 维沃移动通信有限公司 Bsc设备的识别方法、装置及通信设备
WO2024037446A1 (zh) * 2022-08-17 2024-02-22 维沃移动通信有限公司 信号处理方法、装置及通信设备

Also Published As

Publication number Publication date
US20220390393A1 (en) 2022-12-08
EP4087204A1 (en) 2022-11-09
EP4087204A4 (en) 2023-06-14
CN113315729A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2021169586A1 (zh) 一种通信方法及装置
US11297598B2 (en) Method and device for transmitting signals
US11716156B2 (en) Method and apparatus for determining pathloss in wireless communication system
CN110447188B (zh) 无线通信系统中解码利用发射分集方法发射v2x信号的方法以及使用该方法的终端
CN111492703A (zh) 用于ss/pbch块频率位置指示的方法和装置
CN115001923B (zh) 基于序列的信号处理方法及装置
CN114556842B (zh) 信号传输的方法和装置、反射器以及接收器
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2020253660A1 (zh) 一种同步方法及装置
CN108633007A (zh) 传输控制信息的方法、设备和系统
CN113573409A (zh) 一种通信方法及装置
US20210328842A1 (en) Sequence-based signal processing method and apparatus
WO2020248806A1 (zh) 背反射通信方法及装置
WO2019029367A1 (zh) 一种通信方法及设备
WO2021119941A1 (zh) 反射通信的方法和通信装置
CN113473641A (zh) 一种通信方法和通信装置
CN114698110A (zh) 资源映射方法、装置及设备
WO2024114563A1 (zh) 一种通信方法及装置
WO2023216878A1 (zh) 通信方法及装置、存储介质
US20230088279A1 (en) Communication method and device, and storage medium
WO2022193189A1 (zh) 一种传输信号方法及装置
RU2776872C2 (ru) Способ и устройство для указания частотного местоположения блока ss/pbch
WO2023241407A1 (zh) 同步方法及通信装置
WO2023236995A1 (zh) 信号传输方法、装置、通信设备及可读存储介质
WO2024067191A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020921922

Country of ref document: EP

Effective date: 20220802

NENP Non-entry into the national phase

Ref country code: DE