WO2020253660A1 - 一种同步方法及装置 - Google Patents

一种同步方法及装置 Download PDF

Info

Publication number
WO2020253660A1
WO2020253660A1 PCT/CN2020/096227 CN2020096227W WO2020253660A1 WO 2020253660 A1 WO2020253660 A1 WO 2020253660A1 CN 2020096227 W CN2020096227 W CN 2020096227W WO 2020253660 A1 WO2020253660 A1 WO 2020253660A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
sequence
data
reflected signal
synchronization
Prior art date
Application number
PCT/CN2020/096227
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
邵华
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020253660A1 publication Critical patent/WO2020253660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0029Gold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a synchronization method and device.
  • Backscatter communication is a passive communication technology with extremely low power consumption and low cost, which is suitable for scenarios such as the Internet of Things (IoT) that are sensitive to power consumption.
  • IoT Internet of Things
  • three nodes can be included: exciter, reflector, and receiver.
  • the exciter and reflector can also be integrated into the same node, which can be called a reader.
  • the exciter can send a wireless signal, and the wireless signal sent by the exciter can also be called an excitation signal.
  • the excitation signal can be a single-tone signal or a multi-tone signal, and does not carry any data.
  • the excitation signal sent by the exciter is a signal known by the reflector.
  • the reflector After the reflector receives the excitation signal, it can modulate the data to be sent onto the excitation signal to obtain the reflected signal, and send the reflected signal to the receiver. After the receiver receives the reflected signal, it can demodulate the data carried on the reflected signal.
  • the asynchronous transmission mode is adopted, and the communication between the sending end and the receiving end does not need to be synchronized.
  • the exciter can be a terminal device, and the reflector can be a radio frequency identification module in the terminal device, or
  • the receiver can be a base station.
  • the reflected signals of multiple reflectors will be received. Since the clock frequencies of different reflectors may have deviations, there may be interference between reflected signals between different reflectors received by the base station.
  • the base station schedules reflector 1 for uplink transmission at time 1, and schedules reflector 2 for uplink transmission at time 2.
  • the transmission duration of uplink transmission is T, between time 1 and time 2.
  • Interval T Since the clock frequency of reflector 1 is 20% lower than the clock frequency specified in the standard, the transmission time of the reflected signal sent by reflector 1 is actually 1.2T, resulting in the base station receiving both reflector 1 and reflector 2 at time 2. At this time, the reflected signal sent by reflector 1 will cause interference to the reflected signal sent by reflector 2.
  • the embodiments of the present application provide a synchronization method and device to achieve signal synchronization.
  • an embodiment of the present application provides a synchronization method, including: a reflector receives an excitation signal from an exciter; modulating the data to be transmitted and a synchronization sequence in the excitation signal to obtain a reflected signal; wherein The transmission duration of the transmitted data is greater than the first duration, and/or the data volume of the to-be-transmitted data is greater than the first data volume; the reflector sends the reflected signal to the receiver.
  • the reflected signal sent by the reflector includes a synchronization sequence, which can make the receiver
  • the frequency deviation is determined according to the synchronization sequence, thereby realizing signal synchronization according to the frequency deviation, and reducing the mutual interference between the reflected signals received by the receiver.
  • the synchronization sequence is transmitted at a period of the second duration; or, within the transmission duration of the data, the synchronization sequence is The third duration is transmitted periodically.
  • the probability of the receiver successfully receiving the synchronization sequence can be improved.
  • the number of repeated transmissions of the synchronization sequence in a period is K, and K is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, a gold sequence, and a ZC sequence
  • the synchronization sequence is a sequence determined according to the identifier of the reflector
  • the synchronization sequence is a sequence according to the receiver Identify the determined sequence.
  • the starting position of the first transmission of the synchronization sequence in the reflected signal is a position of the first duration after the starting position of the reflected signal.
  • the method further includes: the reflector receives first indication information from the exciter, and the first indication information is used to indicate the clock frequency of the reflected signal and the preset clock Frequency deviation between frequencies.
  • the reflector determines the frequency deviation according to the first indication information, so that the clock frequency of the reflected signal can be adjusted and the error of the reflected signal can be reduced.
  • the frequency deviation is determined according to the synchronization sequence.
  • the first duration is a preset duration, or the first duration is a duration configured by the receiver;
  • the first amount of data is a preset amount of data, or
  • the first data amount is the data amount configured by the receiver.
  • an embodiment of the present application provides a device that has the function of implementing the reflector in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the above method.
  • the processor can be used to The data to be transmitted and the synchronization sequence are modulated in the signal to obtain the reflected signal.
  • the transceiver is used to realize the communication between the above-mentioned device and the exciter and the receiver.
  • the transceiver can be used to receive the excitation signal from the exciter and send the reflected signal to the receiver.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • the device may include corresponding functional modules, such as a processing unit, a communication unit, etc., which are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a synchronization method, including: a receiver receives a reflected signal from a reflector; the reflected signal includes data and a synchronization sequence, wherein the transmission duration of the data is greater than the first duration, and /Or the data amount of the data is greater than the first data amount; the receiver determines the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization sequence.
  • the receiver when the reflected signal sent by the reflector includes a synchronization sequence, the receiver can determine the frequency deviation of the reflected signal according to the synchronization sequence, thereby achieving signal synchronization according to the frequency deviation, and reducing the interference between the reflected signals received by the receiver. Interfere with each other.
  • the synchronization sequence is transmitted at a period of the second duration; or, within the transmission duration of the data, the synchronization sequence is The third duration is transmitted periodically.
  • the probability of the receiver successfully receiving the synchronization sequence can be improved.
  • the number of repeated transmissions of the synchronization sequence in a period is K, and K is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, a gold sequence, and a ZC sequence
  • the synchronization sequence is a sequence determined according to the identifier of the reflector
  • the synchronization sequence is a sequence according to the receiver Identify the determined sequence.
  • the duration between the start position of the first transmission of the synchronization sequence in the reflected signal and the start position of the reflected signal is the first duration.
  • the method further includes: the receiver sends first indication information to the exciter, where the first indication information is used to indicate the frequency deviation.
  • the frequency deviation is determined according to the synchronization sequence.
  • the first duration is a preset duration, or the first duration is a duration configured by the receiver;
  • the first amount of data is a preset amount of data, or
  • the first data amount is the data amount configured by the receiver.
  • an embodiment of the present application provides a device that has the function of implementing the receiver in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processor and a transceiver, and the processor is configured to process the device to perform the corresponding functions in the above method.
  • the processor can be used to perform synchronization according to the The sequence determines the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency.
  • the transceiver is used to realize the communication between the above-mentioned device, the exciter and the reflector.
  • the transceiver may be used to receive the reflected signal from the reflector.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • the device may include corresponding functional modules, such as a processing unit, a communication unit, etc., which are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a synchronization method, including: a reflector receives an excitation signal from an exciter; the reflector modulates a synchronization sequence in the excitation signal to obtain a reflected signal; The reflector sends the reflected signal; the reflector receives the first indication information from the exciter; the first indication information is used to indicate the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency.
  • the reflected signal sent by the reflector includes a synchronization sequence, so that the receiver can determine the frequency deviation according to the synchronization sequence, thereby achieving signal synchronization according to the frequency deviation, and reducing the mutual interference between the reflected signals received by the receiver.
  • the synchronization sequence is transmitted at a cycle of the fourth duration; or, within the transmission duration of the data, the synchronization sequence is The fifth duration is transmitted periodically.
  • the probability of the receiver successfully receiving the synchronization sequence can be improved.
  • the number of repeated transmissions of the synchronization sequence in a period is H, and H is an integer greater than or equal to 1.
  • the reliability of the synchronization sequence transmission can be improved by repeatedly transmitting the synchronization sequence H times.
  • the synchronization sequence is an M sequence, a gold sequence, or a ZC sequence, or the synchronization sequence is a sequence determined according to the identifier of the reflector, or the synchronization sequence is according to the receiver The sequence of the identity is determined.
  • the starting position of the first transmission of the synchronization sequence in the reflected signal is a position of a sixth duration after the starting position of the reflected signal.
  • the sixth duration is a preset duration, or the sixth duration is a duration configured by the receiver.
  • the frequency deviation is determined according to the synchronization sequence.
  • an embodiment of the present application provides a device, which has the function of implementing the reflector in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the above method.
  • the processor can be used to The synchronization sequence is modulated in the signal to obtain the reflected signal.
  • the transceiver is used to realize the communication between the above-mentioned device and the exciter and the receiver.
  • the transceiver can be used to receive the excitation signal from the exciter; the reflector modulates the synchronization sequence in the excitation signal to obtain Reflected signal; sending the reflected signal to the receiver.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • the device may include corresponding functional modules, such as a processing unit, a communication unit, etc., which are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a synchronization method, including: an exciter generates an excitation signal including a synchronization sequence; wherein the transmission duration of the excitation signal is greater than the seventh duration; and the exciter sends the excitation signal to the reflector. Excitation signal.
  • the excitation signal sent by the exciter includes a synchronization sequence, so that the receiver can determine the frequency deviation according to the synchronization sequence, thereby achieving signal synchronization according to the frequency deviation and reducing the receiver Interference between received signals.
  • the synchronization sequence is transmitted with an eighth duration as a period.
  • the probability of the receiver successfully receiving the synchronization sequence can be improved.
  • the number of repeated transmissions of the synchronization sequence in a period is L, and L is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, or a gold sequence, or a ZC sequence, or the synchronization sequence is a sequence determined according to the identifier of the reflector, or the synchronization sequence is according to the receiver The sequence of the identity is determined.
  • the start position of the first transmission of the synchronization sequence in the excitation signal is a position of the seventh duration after the start position of the reflected signal.
  • the seventh duration is a preset duration, or the seventh duration is a duration configured by the receiver.
  • an embodiment of the present application provides a device that has the function of implementing the exciter in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the above method.
  • the processor can be used to generate a synchronization sequence ⁇ stimulus signal.
  • the transceiver is used to implement the communication between the above-mentioned device, the receiver and the reflector.
  • the transceiver may be used to send the excitation signal to the reflector.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • the device may include corresponding functional modules, such as a processing unit, a communication unit, etc., which are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a computer-readable storage medium, which stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer executes any of the above A possible design approach.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes any of the above-mentioned possible design methods.
  • an embodiment of the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory to implement any of the above-mentioned possible design methods.
  • an embodiment of the present application provides a chip including one or more processors.
  • the one or more processors are used to read and execute the computer program stored in the memory, so as to implement any of the above-mentioned possible design methods.
  • the chip should include one or more memories coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer programs
  • the code includes computer instructions, and when the one or more processors execute the computer instructions, the device is caused to execute any of the above-mentioned possible design methods.
  • the chip further includes a communication interface, and the one or more processors are connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • an embodiment of the present application provides a synchronization device.
  • the synchronization device includes a processor coupled to a memory: the processor is configured to execute a computer program or instruction stored in the memory, So that the device executes any of the above-mentioned possible design methods.
  • Fig. 1 is a schematic diagram of interference of reflected signals in the prior art
  • FIG. 2 shows a schematic diagram of a communication system applicable to the method provided in the embodiment of the present application
  • FIG. 3 is a schematic flowchart of a synchronization method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a synchronization sequence provided by an embodiment of this application.
  • 5(a) to 5(b) are schematic diagrams of a synchronization symbol provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a reflected signal provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a reflected signal provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a reflected signal provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a reflected signal provided by an embodiment of the application.
  • FIG. 10 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a reflected signal provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • 15 is a schematic diagram of a reflected signal provided by an embodiment of the application.
  • FIG. 16 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a synchronization device provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a synchronization device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a synchronization device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a synchronization device provided by an embodiment of the application.
  • FIG. 21 is a schematic structural diagram of a synchronization device provided by an embodiment of the application.
  • FIG. 22 is a schematic structural diagram of a synchronization device provided by an embodiment of the application.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE Evolved Long Term Evolution
  • FIG. 2 shows a schematic diagram of a communication system applicable to the method provided in the embodiment of the present application.
  • the communication system includes an exciter 201, a reflector 202, and a receiver 203.
  • the exciter 201 may also have other names, such as helper, interrogator, reader, user equipment (UE), etc., for the convenience of description In the embodiments of this application, they are all called exciters.
  • the reflector 202 may also have other names, for example, it may be called a tag, a reflective device (backscatter device), a passive device (passive device), a semi-active device (semi-passive device), and a scattering signal device. (ambient signal device), radio frequency identification (RFID) tags, etc., for ease of description, all are referred to as reflectors in the embodiments of the present application.
  • the receiver 203 may also have other names, for example, it may be called an access point, a base station, etc. For the convenience of description, all are called receivers in the embodiments of the present application.
  • the excitation signal sent by the exciter 201 can be a single-tone signal (that is, a continuous sine wave) or a multi-tone signal (that is, a signal with a certain bandwidth), and the excitation signal can carry data sent to the receiver 203.
  • the data sent to the receiver 203 may not be carried.
  • the excitation signal sent by the exciter 201 is a signal known by the reflector 202. There may be at least one gap in the duration of the excitation signal, and the at least one gap may be periodic or aperiodic.
  • the reflector 202 After the reflector 202 receives the excitation signal, it can modulate the data to be sent onto the excitation signal to obtain the reflected signal, and send the reflected signal to the receiver 203.
  • the data sent by the reflector 202 may be collected temperature data, humidity data, etc., which is not limited in the embodiment of the present application.
  • the reflector 202 may be a passive device, that is, it does not require power supply during the process of receiving excitation signals and sending reflected signals; the reflector 202 may also be a semi-active device, that is, when receiving excitation signals or sending reflected signals. The process of reflecting the signal requires power supply.
  • Fig. 2 is only an example, and in a possible implementation manner, the exciter and the reflector can also be integrated into the same physical entity, which will not be repeated here.
  • the receiver cannot directly send data to the reflector. If the receiver needs to send data to the reflector, it needs to send the data to the exciter first, and the exciter forwards it to reflector.
  • the exciter 201 can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, Augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical, and smart grid (smart grid)
  • the receiver 203 may be a wireless access device, such as an evolved Node B (eNB), gNB in 5G, a radio network controller (RNC) or Node B (NB), base station Controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) system access point (access point, AP), wireless relay node, wireless backhaul node, etc.
  • eNB evolved Node B
  • NB radio network controller
  • NB base station Controller
  • BTS base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • wireless fidelity wireless fidelity
  • WiFi wireless fidelity
  • AP wireless relay node
  • wireless backhaul node wireless backhaul node, etc.
  • FIG. 3 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • the method includes:
  • Step 301 The exciter sends an excitation signal.
  • the excitation signal may be a single-tone signal or a multi-tone signal, which is not limited in the embodiment of the present application.
  • Step 302 The reflector receives the excitation signal from the exciter.
  • Step 303 The reflector modulates the data to be transmitted and the synchronization sequence in the excitation signal to obtain the reflected signal, and sends the reflected signal to the receiver.
  • the transmission duration of the data to be transmitted is greater than the first duration, and/or the data amount of the data to be transmitted is greater than the first data amount.
  • the reflected signal sent by the reflector may not include the synchronization sequence.
  • the first duration is less than the transmission duration of the reflected signal.
  • the reflector when the transmission duration of the data to be transmitted is greater than or equal to the first duration, and/or the data amount of the data to be transmitted is greater than or equal to the first data amount At this time, the reflector modulates the data to be transmitted and the synchronization sequence in the excitation signal.
  • the reflected signal sent by the reflector may not include the synchronization sequence.
  • the synchronization sequence can be implemented in multiple ways.
  • the synchronization sequence can be an M sequence, a gold sequence, a ZC (Zadoff-chu) sequence, or a reflector
  • the sequence determined by the identifier of the receiver may also be a sequence determined according to the identifier of the receiver.
  • the above are just examples, and there may be other implementations of the synchronization sequence.
  • the length of the synchronization sequence is not limited.
  • the length of the synchronization sequence can be ⁇ 1,2,3,4,5,6,7,8,9,10,11,12,13,31 ,61,62,63,139,127 ⁇
  • the unit can be nanoseconds (ns) or milliseconds (ms) or microseconds ( ⁇ s) or seconds (s), etc., and can also be time slots, subframes or frame.
  • the synchronization sequence is a sequence known by the receiver.
  • the receiver demodulates the received reflected signal and can determine whether the reflected signal includes the synchronization sequence according to the demodulation result.
  • the synchronization sequence is: 11001100.
  • the receiver demodulates the reflected signal, if the demodulated bit sequence includes 11001100, it can be determined that the synchronization sequence is demodulated.
  • the reflector may not send a synchronization sequence in the reflected signal, but send a synchronization symbol instead of the synchronization sequence, that is, when the transmission duration of the data to be transmitted is greater than the first duration, or when the transmission duration of the data to be transmitted.
  • the amount of data is greater than the first amount of data, or when the transmission duration of the data to be transmitted is greater than the first duration and when the amount of data to be transmitted is greater than the first amount of data, modulate the data in the excitation signal and Synchronize symbols to obtain reflected signals.
  • the synchronization sequence and the synchronization symbol have the following differences: the synchronization sequence is a sequence known by the receiver, and for the synchronization symbol, the synchronization symbol is a signal waveform known by the receiver.
  • the synchronization sequence adopts different coding methods, and the obtained signal waveforms are different. For example, when the synchronization sequence is 0101, if return-to-zero (RZ) coding, non-return-to-zero (NRZ) coding, and Manchester coding are used, they have different waveforms. For details, refer to FIG. 4.
  • the receiver When receiving the reflected signal, the receiver does not determine whether there is a synchronization sequence based on the waveform of the signal, but determines whether there is a known synchronization sequence in the demodulated bit sequence.
  • the receiver when the receiver receives the reflected signal, it judges whether there is a signal waveform corresponding to the known synchronization symbol in the reflected signal, and if it exists, it can be determined that the synchronization symbol is received.
  • the bit sequence corresponding to the synchronization symbol may be known to the receiver or unknown to the receiver.
  • the synchronization symbol can be as shown in Figure 5(a).
  • the receiver When the receiver receives the reflected signal 1 as shown in Figure 5(b), since the signal waveform shown in Figure 5(a) does not exist in the reflected signal 1, it can be determined that the reflected signal 1 does not include a synchronization symbol; Correspondingly, when the receiver receives the reflected signal 2 as shown in Figure 5(b), since the reflected signal 2 has the signal waveform shown in Figure 5(a), it can be determined that the reflected signal 2 includes the synchronization symbol .
  • the synchronization symbols and data can be encoded using different encoding methods.
  • encoding data use a coding method in which 1 bit can be represented by only one level, such as non-return-to-zero (NRZ) coding
  • NTZ non-return-to-zero
  • 1 bit is represented by the same level, a high level represents 1, and a low level represents 0
  • one bit can have at least two levels of encoding, such as Manchester encoding.
  • the synchronization symbol is Manchester coded
  • 1 bit is not represented by the same level, a transition from high to low represents 1, and a transition from low to high represents 0.
  • an encoding manner in which one bit can have at least two levels such as Manchester encoding
  • an encoding method in which 1 bit can be represented by only one level is adopted, for example, non-return-to-zero encoding is adopted.
  • Synchronization symbols and data can also be coded by other coding methods, which will not be illustrated one by one here.
  • Step 304 The receiver receives the reflected signal from the reflector.
  • the reflected signal includes data and a synchronization sequence, wherein the transmission duration of the data is greater than the first duration, and/or the data amount of the data is greater than the first data amount.
  • Step 305 The receiver determines the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization sequence.
  • the receiver may determine the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization symbol.
  • the reflected signal sent by the reflector includes a synchronization sequence or a synchronization symbol.
  • the receiver determines the frequency deviation according to the synchronization sequence or the synchronization symbol, thereby realizing signal synchronization according to the frequency deviation, and reducing the mutual interference between the reflected signals received by the receiver.
  • the receiver may send first indication information to the exciter, where the first indication information is used to indicate the frequency deviation.
  • the first indication information may be an index value corresponding to a frequency deviation, and index values corresponding to different frequency deviations may be pre-configured, for example, frequency deviation 1 corresponds to index value 1, and frequency deviation 2 corresponds to index value 2.
  • the first indication information is the index value 1.
  • the first indication information may also be the frequency deviation itself, which is not limited in the embodiment of the present application.
  • the exciter sends the first indication information to the reflector.
  • the reflector receives the first indication information, it can adjust the clock frequency of the reflected signal according to the frequency deviation indicated by the first indication information, so that the clock frequency of the reflected signal is equal to the preset clock frequency, thereby solving the problem of The problem of unsynchronized signals caused by frequency deviation. It should be noted that how to adjust the clock frequency of the reflector can refer to the description in the prior art, which is not limited in the embodiment of the present application, and will not be repeated here.
  • the transmission time of the reflected signal sent again by the reflector is close to the transmission time without frequency deviation, thereby reducing the interference between the reflected signals of different reflectors.
  • reflector 1 sends a reflected signal at time 1, and reflector 2 sends a reflected signal at time 2.
  • the transmission time of the reflected signal is T, and there is an interval T between time 1 and time 2. Since the clock frequency of the reflector 1 is 20% lower than the clock frequency specified in the standard, the transmission time of the reflected signal sent by the reflector 1 is actually 1.2T, which will cause interference to the reflected signal sent by the reflector 2. After the reflector 1 adjusts the frequency deviation of the reflected signal, the transmission duration of the transmitted reflected signal becomes T, which can reduce the interference to the reflected signal transmitted by the reflector 2.
  • the unit of the first duration may be nanoseconds (ns) or milliseconds (ms), microseconds ( ⁇ s) or seconds (s), etc., for example, the first duration is 5 ms.
  • the unit of the first duration may also be a symbol or a time slot or a subframe or a frame or a superframe, which is not limited in this embodiment of the present application.
  • the first duration is 5 symbols.
  • the first duration may be a preset duration, a duration configured by the exciter, or a duration configured by the receiver.
  • the first duration is a preset duration, it can be one of one or more preset durations.
  • the receiver may send the first duration to the exciter, and then forward the first duration from the exciter to the reflector. The above is just an example, and there may be other ways to determine the first duration, which will not be described one by one here.
  • the unit of the first data amount may be a bit (bit) or a byte (byte), etc., which is not limited in the embodiment of the present application.
  • the first data amount may be a preset data amount, a data amount configured by the exciter, or a data amount configured by the receiver, etc., which will not be repeated here.
  • the reflector can transmit the synchronization sequence once in the reflected signal, or periodically transmit multiple synchronization sequences in the reflected signal, or transmit multiple synchronization sequences non-periodically in the reflected signal.
  • the time length between the starting position of the first transmission of the synchronization sequence in the reflected signal and the starting position of the reflected signal may be the first time length.
  • the reflected signal includes data and a synchronization sequence, and the distance between the start position of the synchronization sequence and the start position of the reflected signal is the first duration.
  • the reflector when the reflected signal includes synchronization symbols, can transmit the synchronization symbols once in the reflected signal, or periodically transmit multiple synchronization symbols in the reflected signal, or in the reflected signal. Aperiodic transmission of multiple synchronization symbols. Further optionally, the time length between the starting position of the first transmission of the synchronization symbol in the reflected signal and the starting position of the reflected signal may be the first time length.
  • the reflector may transmit the synchronization sequence periodically within the transmission time length of the reflected signal.
  • the synchronization sequence exists within the transmission duration of the entire reflected signal, it can be as shown in FIG. 8.
  • the transmission time length of the data is T1
  • the transmission time length of the reflected signal is T2
  • the synchronization sequence takes the second time length as the period and is distributed within the transmission time length of the reflected signal.
  • the second duration may be a preset duration, the duration of the exciter configuration, or the duration of the receiver configuration, etc., which is not limited in the embodiment of the present application.
  • the second duration when it is a preset duration, it may be one of multiple preset durations, and the preset multiple durations may include 1ms, 2ms, 3ms, 4ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the second duration can also be determined according to other methods, and will not be illustrated one by one here.
  • the reflector may transmit the synchronization sequence with the third period as the period during the data transmission period.
  • the synchronization sequence exists within the data transmission duration, it can be as shown in FIG. 9.
  • the transmission time length of the data is T1
  • the transmission time length of the reflected signal is T2
  • the synchronization sequence takes the third time length as the period, and is distributed within the transmission time length of the data.
  • the third duration may be a preset duration, the duration of the exciter configuration, or the duration of the receiver configuration, etc., which is not limited in the embodiment of the present application.
  • the third duration when it is a preset duration, it may be one of multiple preset durations, and the preset multiple durations may include 1ms, 2ms, 3ms, 4ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the third time length can also be determined according to other methods, and will not be illustrated one by one here.
  • the reflector may transmit the synchronization symbol with the second time period as a period within the transmission time length of the reflected signal.
  • the reflector may transmit the synchronization symbol with the third period as the period during the data transmission period.
  • the number of repeated transmissions of the synchronization sequence may be K, and K is an integer greater than or equal to 1.
  • the value of K can be a preset value, a value configured by the exciter, or a value configured by the receiver. K can also be one of one or more fixed values specified by the agreement.
  • the number of repeated transmissions of the synchronization symbol may also be K each time the reflector transmits the synchronization symbol, which will not be repeated here.
  • the reflector may also send a reflection signal including only the synchronization sequence to the receiver, so that the receiver completes signal synchronization according to the synchronization sequence, which will be described in detail below.
  • FIG. 10 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • the method includes:
  • Step 1001 The exciter sends an excitation signal.
  • the excitation signal may be a single-tone signal or a multi-tone signal, which is not limited in the embodiment of the present application.
  • Step 1002 The reflector receives the excitation signal from the exciter.
  • Step 1003 The reflector modulates the synchronization sequence or synchronization symbol in the excitation signal to obtain a reflected signal.
  • the synchronization sequence is a sequence known by the receiver.
  • the synchronization sequence can be an M sequence, a gold sequence, a ZC sequence, or a reflector-based
  • the sequence determined by the identifier may also be a sequence determined according to the identifier of the receiver. The above are just examples, and there may be other implementations of the synchronization sequence, which will not be illustrated here.
  • the inserted synchronization symbol or the inserted synchronization sequence can be periodic or aperiodic.
  • the size of the period can be related to its frequency error, that is, the period of inserting the synchronization signal is determined according to the frequency error.
  • the size of the period can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 13, 14, 15, 16, all or part of the value, and the unit can be Symbol of reflector or orthogonal frequency division multiplexing system, reflector or time slot of orthogonal frequency division multiplexing system, reflector or subframe of orthogonal frequency division multiplexing system, reflector or orthogonal frequency division multiplexing System frame, any one of milliseconds.
  • Step 1004 The reflector sends the reflected signal to the receiver.
  • Step 1005 The receiver receives the reflected signal from the reflector, and determines the first indication information according to the synchronization sequence or synchronization symbol in the reflected signal.
  • the first indication information is used to indicate the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency.
  • Step 1006 The receiver sends the first indication information to the exciter.
  • Step 1007 The exciter receives the first indication information from the receiver, and sends the first indication information to the reflector.
  • the reflected signal sent by the reflector includes the synchronization sequence or synchronization symbol, so that the receiver can determine the frequency deviation according to the synchronization sequence or the synchronization symbol, thereby achieving signal synchronization according to the frequency deviation, and reducing the reflection signal received by the receiver. Interference between each other.
  • the receiver may send first indication information to the exciter, where the first indication information is used to indicate the frequency deviation.
  • the first indication information may be the index value of the frequency deviation, or the frequency deviation itself, which is not limited in the embodiment of the present application.
  • the exciter sends the first indication information to the reflector.
  • the reflector receives the first indication information, it can adjust the clock frequency of the reflected signal according to the frequency deviation indicated by the first indication information. For specific adjustments, please refer to the description in the prior art, which will not be omitted here. Repeat.
  • the process from step 1001 to step 1008 can be executed N times, that is, the reflector can send N reflection signals to the receiver and receive the first indication information corresponding to each reflection signal.
  • N is an integer greater than zero.
  • the reflector After the reflector adjusts the clock frequency according to the frequency deviation indicated by the N first indication information corresponding to the N reflection signals, it may send a reflection signal including data when it needs to send data. At this time, the reflected signal sent by the reflector may not include the synchronization sequence. For example, taking N as 2 as an example, refer to Figure 11.
  • Step 1101 The reflector sends a reflected signal 1 to the receiver, and the reflected signal 1 includes a synchronization sequence or a synchronization symbol.
  • step 1101 the reflector receives the excitation signal 1, and the reflection signal 1 is determined according to the received excitation signal 1, which is not shown in the figure.
  • Step 1102 The receiver determines the frequency deviation 1 according to the reflected signal 1, and sends instruction information 1 indicating the frequency deviation 1 to the exciter.
  • the frequency deviation 1 is the frequency difference between the clock frequency of the reflected signal 1 and the preset clock frequency.
  • Step 1103 The exciter sends instruction information 1 to the reflector.
  • Step 1104 The reflector adjusts the clock frequency according to the frequency deviation 1 indicated by the instruction information 1, and sends the reflected signal 2 to the receiver again.
  • the reflected signal 2 includes a synchronization sequence or a synchronization symbol.
  • step 1104 the reflector receives the excitation signal 2, and the reflection signal 2 is determined according to the received excitation signal 2, which is not shown in the figure.
  • Step 1105 The receiver determines the frequency deviation 2 according to the reflected signal 2, and sends instruction information 2 indicating the frequency deviation 2 to the exciter.
  • the frequency deviation 2 is the frequency difference between the clock frequency of the reflected signal 2 and the preset clock frequency.
  • Step 1106 The exciter sends instruction information 2 to the reflector.
  • Step 1107 The reflector adjusts the clock frequency according to the frequency deviation 2 indicated by the instruction information 2.
  • the transmission power of the reflected signal 1 and the transmission power of the reflected signal 2 may be the same or different.
  • the clock frequency of the reflected signal 1 and the clock frequency of the reflected signal 2 may be the same or different.
  • Step 1108 When the reflector determines that data needs to be sent, the reflector sends a reflected signal 3 including data to the receiver.
  • the reflected signal 3 does not include synchronization sequences or synchronization symbols.
  • the reflected signal 3 in step 1108 is determined according to the received excitation signal 3, which is not shown in the figure.
  • the reflector sends N reflected signals before sending data, and adjusts the clock frequency according to the N frequency deviations corresponding to the N reflected signals, so there is no need to carry the synchronization sequence in the reflected signal of the transmitted data. Or synchronization symbols, which can improve the efficiency of data transmission.
  • the reflector can transmit a synchronization sequence once in the reflected signal, or periodically transmit multiple synchronization sequences in the reflected signal, or transmit multiple synchronization sequences aperiodically in the reflected signal.
  • the reflector may transmit the synchronization sequence periodically with the fourth period as the transmission period of the reflected signal.
  • the reflector may transmit the synchronization sequence with the fifth time period as a period during the data transmission time length.
  • the synchronization sequence exists within the data transmission duration, refer to FIG. 7 for details.
  • the fourth time length and the fifth time length may be a preset time length, may also be the time length of the exciter configuration, or the time length of the receiver configuration, etc., which are not limited in the embodiment of the present application.
  • the fourth duration when it is a preset duration, it may be one of multiple preset durations, and the preset multiple durations may include 1ms, 2ms, 3ms, 4ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • each time the reflector transmits the synchronization sequence may be H, and H is an integer greater than or equal to 1.
  • the value of H can be a preset value, a value configured by the exciter, or a value configured by the receiver. H can also be one of one or more fixed values specified in the agreement.
  • the time length between the starting position of the first transmission of the synchronization sequence in the reflected signal and the starting position of the reflected signal may be the sixth time length.
  • the sixth duration may be the preset duration, the duration of the exciter configuration, or the duration of the receiver configuration, which is not limited in the embodiment of the present application.
  • the reflector transmits the synchronization sequence.
  • the reflector may not transmit the reflection signal including the synchronization sequence, which will be described in detail below.
  • FIG. 12 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • the method includes:
  • Step 1201 The exciter sends an excitation signal.
  • the excitation signal may be a single-tone signal or a multi-tone signal, which is not limited in the embodiment of the present application.
  • Step 1202 The reflector receives the excitation signal from the exciter.
  • Step 1203 The reflector determines the reflected signal according to the excitation signal, and sends the reflected signal to the receiver.
  • the transmission duration of the data to be transmitted when the transmission duration of the data to be transmitted is greater than the first duration, the transmission duration of the data included in the reflected signal is less than or equal to the first duration; and/or, when the amount of data to be transmitted is greater than the first duration; When the amount of data is one, the amount of data included in the reflected signal is less than or equal to the first amount of data.
  • the transmission duration of the data to be transmitted is greater than or equal to the first duration
  • the transmission duration of the data included in the reflected signal is less than the first duration
  • the data amount of the data to be transmitted is greater than or equal to the first data amount
  • the data amount of the data included in the reflected signal is less than the first data amount
  • the reflector When the transmission duration of the data to be transmitted is greater than the first duration, the reflector does not transmit data after the first position of the reflected signal, and the duration between the first position and the starting position of the reflected signal is the first duration .
  • the reflector transmits at most the first data amount of data in the reflected signal.
  • the first duration is less than the transmission duration of the reflected signal.
  • the specific content of the first duration reference may be made to the description in the flow of FIG. 3, which will not be repeated here.
  • Step 1204 The receiver receives the reflected signal from the reflector.
  • the transmission duration of the reflected signal received by the receiver is greater than the first duration, the data after the first duration in the reflected signal is no longer received, and/or when the data amount of the data demodulated by the receiver from the reflected signal is equal to At the first data amount, the data included in the reflected signal is no longer demodulated.
  • the standard stipulates that the transmission time of the reflected signal is T. Due to the deviation of the clock frequency of the reflector, the actual transmission time of the reflected signal sent is greater than T. In this case, the receiver only demodulates the received reflection The data within the transmission duration T in the signal.
  • the transmission time of the reflected signal is specified in the standard as 10 ms. Since the clock frequency of the reflector has a frequency deviation, when the frequency deviation is -20%, the transmission time of the reflected signal actually sent is 12 ms. After the receiver receives the reflected signal, it only demodulates the data in the first 10 ms of the reflected signal, and no other data is demodulated.
  • the exciter may also send an excitation signal including a synchronization sequence, which will be described in detail below.
  • FIG. 14 is a schematic flowchart of a synchronization method provided by an embodiment of this application.
  • the method includes:
  • Step 1401 The exciter generates an excitation signal including a synchronization sequence.
  • the transmission duration of the excitation signal is greater than the seventh duration, that is, when the exciter determines that the transmission duration of the excitation signal is greater than the seventh duration, a synchronization sequence is generated in the excitation signal.
  • the exciter may also generate the excitation signal including the synchronization symbol, and the specific content of the synchronization symbol can refer to the previous description, which will not be repeated here.
  • the exciter determines that the transmission duration of the excitation signal is greater than or equal to the seventh duration, the exciter generates an excitation signal including a synchronization sequence or a synchronization symbol.
  • the exciter determines that the transmission duration of the excitation signal is less than the seventh duration, the excitation signal generated by the exciter does not include the synchronization sequence or the synchronization symbol.
  • the seventh time length can be a preset time length, can also be a time length configured by the exciter, or a time length configured by a receiver, which will not be illustrated one by one here.
  • the synchronization sequence is a sequence known by the receiver, and there can be many specific implementations of the synchronization sequence.
  • the synchronization sequence can be an M sequence, a gold sequence, a ZC sequence, or an exciter-based
  • the sequence determined by the identifier may be a sequence determined according to the identifier of the reflector, or may also be a sequence determined according to the identifier of the receiver. The above are just examples, and there may be other implementations of the synchronization sequence, which will not be illustrated here.
  • the exciter may not generate an excitation signal including a synchronization sequence, but instead generate an excitation signal including a synchronization symbol.
  • the specific content of the synchronization symbol reference may be made to the description of the synchronization symbol in the process shown in FIG. 3, which is not repeated here.
  • Step 1402 The exciter sends the excitation signal to the reflector.
  • Step 1403 The reflector modulates data in the excitation signal to obtain a reflected signal.
  • the reflector when the reflector modulates data, it does not modulate the data at the position corresponding to the synchronization sequence, so that the synchronization sequence can be retained in the reflected signal.
  • the reflector when the reflector modulates data in the excitation signal, it modulates the data at a position other than the synchronization sequence, and the finally obtained reflected signal also includes the synchronization sequence.
  • Step 1404 The reflector sends the reflected signal to the receiver.
  • Step 1405 When the reflected signal includes a synchronization sequence, the receiver determines the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization sequence.
  • the receiver determines the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization symbol, which is not repeated here.
  • Step 1406 The receiver sends first indication information to the exciter.
  • the first indication information is used to indicate the frequency deviation.
  • the frequency deviation indicated by the first indication information adjusts the clock frequency of the reflected signal.
  • For the specific adjustment please refer to the description in the prior art, which will not be repeated here.
  • Step 1407 The exciter sends the first indication information to the reflector.
  • the excitation signal sent by the exciter includes a synchronization sequence, so that the receiver can determine the frequency deviation according to the synchronization sequence, thereby achieving signal synchronization according to the frequency deviation. Reduce the mutual interference between the reflected signals received by the receiver.
  • the exciter can transmit the synchronization sequence once in the excitation signal, or periodically transmit multiple synchronization sequences in the excitation signal, or transmit multiple synchronization sequences aperiodically in the excitation signal.
  • the time length between the start position of the first transmission of the synchronization sequence in the excitation signal and the start position of the excitation signal may be the seventh time length.
  • the transmission period of the synchronization sequence may be the eighth duration.
  • the eighth duration may be the preset duration, the duration of the exciter configuration, or the duration of the receiver configuration, etc., which is not limited in the embodiment of the present application.
  • the eighth duration is a preset duration, it can be one of multiple preset durations, and the multiple preset durations can include 1ms, 2ms, 3ms, 4ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the eighth duration can also be determined according to other methods, and will not be illustrated one by one here.
  • each time the exciter transmits the synchronization sequence may be L, and L is an integer greater than or equal to 1.
  • the value of L can be a preset value, a value configured by the exciter, or a value configured by the receiver. L can also be one of one or more fixed values specified by the agreement.
  • the reflector can also be synchronized directly according to the synchronization sequence or synchronization symbol sent by the exciter. At this time, after the reflector receives the excitation signal including the synchronization sequence or synchronization symbol, it does not send the reflected signal to the receiver.
  • FIG. 16 is a schematic flowchart of a synchronization method provided by an embodiment of this application. The method includes:
  • Step 1601 The exciter sends an excitation signal.
  • the excitation signal may include a synchronization sequence or a synchronization symbol, and the specific content of the synchronization sequence and the synchronization symbol may refer to the description in step 303, which is not repeated here.
  • the synchronization sequence or synchronization symbol may be sent periodically.
  • the period of the synchronization sequence or synchronization symbol in the excitation signal obtained by the reflector is TA, where the value of TA can be part of the value of 1, 2, 3, 4, 5, 6, 7, 8 or all Value, the unit can be the symbol of the reflector or the orthogonal frequency division multiplexing system, the time slot of the reflector or the orthogonal frequency division multiplexing system, the subframe of the reflector or the orthogonal frequency division multiplexing system, the reflector or Orthogonal frequency division multiplexing system frame, any one of milliseconds.
  • Step 1602 The reflector receives the excitation signal from the exciter and synchronizes according to the synchronization sequence or synchronization symbol in the excitation signal.
  • the reflector can determine the clock frequency of the excitation signal according to the synchronization sequence or the synchronization symbol, and then adjust the clock frequency of the reflected signal sent by the reflector itself according to the clock frequency of the excitation signal to ensure that the clock frequency of the excitation signal is the same as the clock frequency of the reflection signal. So as to achieve signal synchronization.
  • an embodiment of the present application also provides a synchronization device, which can have the functions provided by the reflector in the above method embodiment and can be used to perform the steps performed by the reflector .
  • the functions can be realized by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the synchronization device 1700 shown in FIG. 17 may include a processing unit 1701 and a communication unit 1702, and the processing unit 1701 and the communication unit 1702 are coupled to each other.
  • the communication unit 1702 is used to receive the excitation signal from the exciter
  • the processing unit 1701 is configured to modulate the data to be transmitted and the synchronization sequence in the excitation signal to obtain a reflected signal; wherein the transmission time length of the data to be transmitted is greater than the first time length, and/or the data to be transmitted The amount of data is greater than the first amount of data;
  • the communication unit 1702 is configured to send the reflected signal to the receiver.
  • the synchronization sequence is transmitted at a period of the second duration
  • the synchronization sequence is transmitted with the third duration as a period.
  • the number of repeated transmissions of the synchronization sequence in a period is K, and K is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, a gold sequence, and a ZC sequence
  • the synchronization sequence is a sequence determined according to the identifier of the reflector
  • the synchronization sequence is a sequence according to the receiver Identify the determined sequence.
  • the starting position of the first transmission of the synchronization sequence in the reflected signal is a position of the first duration after the starting position of the reflected signal.
  • the communication unit 1702 is further configured to:
  • the first duration is a preset duration, or the first duration is a duration configured by the receiver;
  • the first data amount is a preset data amount, or the first data amount is a data amount configured by the receiver.
  • the communication unit 1702 is used to receive the excitation signal from the exciter
  • the processing unit 1701 is configured to modulate a synchronization sequence or a synchronization symbol in the excitation signal to obtain a reflected signal; the reflector sends the reflected signal to a receiver;
  • the communication unit 1702 is configured to receive first indication information from the exciter; the first indication information is used to indicate the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency.
  • the synchronization sequence is transmitted at a cycle of the fourth duration; or, within the transmission duration of the data, the synchronization sequence is The fifth duration is transmitted periodically.
  • the number of repeated transmissions of the synchronization sequence in a period is H, and H is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, a gold sequence, or a ZC sequence, or the synchronization sequence is a sequence determined according to the identifier of the reflector, or the synchronization sequence is according to the receiver The sequence of the identity is determined.
  • the starting position of the first transmission of the synchronization sequence in the reflected signal is a position of a sixth duration after the starting position of the reflected signal.
  • the sixth duration is a preset duration, or the sixth duration is a duration configured by the receiver.
  • the frequency deviation is determined according to the synchronization sequence or synchronization symbol.
  • FIG. 18 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device shown in FIG. 18 may be a hardware circuit implementation of the device shown in FIG. 17.
  • the device can be applied to any of the above flowcharts to perform the function of the reflector in the above method embodiment.
  • FIG. 18 only shows the main components of the device.
  • the device may be a reflector, or a chip or chip system in the reflector.
  • the device 1800 includes a processor 1801, a memory 1802, a transceiver 1803, and the like.
  • the processor 1801 is configured to process the device to perform the corresponding functions in the above methods.
  • the transceiver 1803 is used to implement communication between the above-mentioned device, the exciter and the receiver.
  • the memory 1802 is used to couple with the processor 1801, and it stores necessary program instructions and data for the device.
  • the transceiver 1803 is used to receive the excitation signal from the exciter
  • the processor 1801 is configured to modulate the data to be transmitted and the synchronization sequence in the excitation signal to obtain a reflected signal; wherein the transmission duration of the data to be transmitted is greater than the first duration, and/or the data to be transmitted The amount of data is greater than the first amount of data;
  • the transceiver 1803 is configured to send the reflected signal to the receiver.
  • the processor 1801 and the transceiver 1803 may also perform other functions. For details, refer to the description in the flow shown in FIG. 3, which will not be repeated here.
  • the transceiver 1803 is configured to receive the excitation signal from the exciter
  • the processor 1801 is configured to modulate a synchronization sequence or a synchronization symbol in the excitation signal to obtain a reflected signal; the reflector sends the reflected signal to a receiver;
  • the transceiver 1803 is configured to receive first indication information from the exciter; the first indication information is used to indicate the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency.
  • the processor 1801 and the transceiver 1803 may also perform other functions. For details, refer to the description in the flow shown in FIG. 10, which is not repeated here.
  • an embodiment of the present application also provides a synchronization device, which can have the functions provided by the receiver in the above method embodiment, and can be used to execute the steps performed by the receiver .
  • the functions can be realized by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the synchronization device 1900 as shown in FIG. 19 may include a processing unit 1901 and a communication unit 1902, and the processing unit 1901 and the communication unit 1902 are coupled to each other.
  • the communication unit 1902 is configured to receive the reflected signal from the reflector; the reflected signal includes data and a synchronization sequence, wherein the transmission duration of the data is greater than the first duration, and/or the data amount of the data is greater than the first data the amount;
  • the processing unit 1901 is configured to determine the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization sequence.
  • the synchronization sequence is transmitted at a period of the second duration; or, within the transmission duration of the data, the synchronization sequence is The third duration is transmitted periodically.
  • the number of repeated transmissions of the synchronization sequence in a period is K, and K is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, a gold sequence, and a ZC sequence
  • the synchronization sequence is a sequence determined according to the identifier of the reflector
  • the synchronization sequence is a sequence according to the receiver Identify the determined sequence.
  • the starting position of the first transmission of the synchronization sequence in the reflected signal is a position of the first duration after the starting position of the reflected signal.
  • the communication unit 1902 is further configured to:
  • the receiver sends first indication information to the exciter, where the first indication information is used to indicate the frequency deviation.
  • the first duration is a preset duration, or the first duration is a duration configured by the receiver;
  • the first data amount is a preset data amount, or the first data amount is a data amount configured by the receiver.
  • FIG. 20 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device shown in FIG. 20 may be a hardware circuit implementation of the device shown in FIG. 19.
  • the device can be applied to the flowcharts shown in FIGS. 3 to 16 to perform the function of the receiver in the above method embodiment.
  • FIG. 20 only shows the main components of the device.
  • the device may be a base station.
  • the device 2000 includes a processor 2001, a memory 2002, a transceiver 2003, an antenna 2004, and the like.
  • the processor 2001 is configured to process the device to perform corresponding functions in the above-mentioned methods.
  • the transceiver 2003 is used to implement the communication between the above-mentioned device, the exciter and the receiver.
  • the memory 2002 is used for coupling with the processor 2001, and it stores the necessary program instructions and data of the device.
  • the transceiver 2003 is used to receive the reflected signal from the reflector;
  • the reflected signal includes data and synchronization Sequence, wherein the transmission duration of the data is greater than the first duration, and/or the data amount of the data is greater than the first data amount;
  • the processor 2001 is configured to determine the frequency deviation between the clock frequency of the reflected signal and the preset clock frequency according to the synchronization sequence.
  • an embodiment of the present application also provides a synchronization device, which can have the functions provided by the exciter in the above method embodiment and can be used to execute the steps performed by the exciter .
  • the functions can be realized by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the synchronization device 2100 shown in FIG. 21 may include a processing unit 2101 and a communication unit 2102, and the processing unit 2101 and the communication unit 2102 are coupled to each other.
  • the processing unit 2101 is configured to generate an excitation signal including a synchronization sequence; wherein the transmission duration of the excitation signal is greater than the seventh duration;
  • the communication unit 2102 is configured to send the excitation signal to the reflector.
  • the synchronization sequence is transmitted with an eighth duration as a period.
  • the number of repeated transmissions of the synchronization sequence in a period is L, and L is an integer greater than or equal to 1.
  • the synchronization sequence is an M sequence, or a gold sequence, or a ZC sequence, or the synchronization sequence is a sequence determined according to the identifier of the reflector, or the synchronization sequence is according to the receiver The sequence of the identity is determined.
  • the start position of the first transmission of the synchronization sequence in the excitation signal is a position of the seventh duration after the start position of the reflected signal.
  • the seventh duration is a preset duration, or the seventh duration is a duration configured by the receiver.
  • FIG. 22 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device shown in FIG. 22 may be a hardware circuit implementation of the device shown in FIG. 21. This device can be applied to the processes shown in Fig. 3 to Fig. 16 to perform the function of the exciter in the above method embodiment.
  • FIG. 22 only shows the main components of the device.
  • the device may be a terminal device, or a device in a terminal device, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may also include other circuit structures and/or discrete Device.
  • taking the device as a terminal device as an example, as shown in FIG.
  • the device 2200 includes a processor 2201, a memory 2202, a transceiver 2203, an antenna 2204, and an input/output device 2205.
  • the processor 2201 is mainly used to process communication protocols and communication data, and to control the entire wireless device, execute software programs, and process data of the software programs, for example, to support the wireless device to perform the actions described in the above method embodiments, etc. .
  • the memory 2202 is mainly used to store software programs and data.
  • the transceiver 2203 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna 2204 is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device 2205 such as a touch screen, a display screen, a keyboard, etc., is mainly used to receive data input by the user and output data to the user.
  • the processor 2201 is configured to process the device to perform the corresponding functions in the foregoing methods.
  • the transceiver 2203 is used to implement the communication between the above-mentioned device, the exciter and the receiver.
  • the memory 2202 is used for coupling with the processor 2201, and it stores the necessary program instructions and data of the device.
  • the processor 2201 is configured to generate an excitation signal including a synchronization sequence; wherein the transmission duration of the excitation signal is greater than the seventh duration;
  • the transceiver 2203 is configured to send the excitation signal to the reflector.
  • an embodiment of the present application also provides a chip.
  • the chip is connected to the memory, and is used to read and execute the software program stored in the memory to implement any of the above-mentioned possible design methods.
  • the embodiment of the application also provides a computer storage medium on which some instructions are stored. When these instructions are called for execution, the computer can execute any of the above method embodiments and method embodiments.
  • One possible implementation is the steps performed by the reflector or exciter.
  • the readable storage medium is not limited, for example, it may be RAM (random-access memory, random access memory), ROM (read-only memory, read-only memory), etc.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run by a computer, the computer can make the computer execute any of the above method embodiments and method embodiments. The steps performed by the reflector or exciter in the implementation mode.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种同步方法及装置,其中方法包括:反射器接收来自激励器的激励信号;在所述激励信号中调制待传输的数据数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;所述反射器向接收器发送所述反射信号。

Description

一种同步方法及装置
相关申请的交叉引用
本申请要求在2019年06月19日提交中国专利局、申请号为201910532240.9、申请名称为“一种同步方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种同步方法及装置。
背景技术
反向散射通信(backscatter communication)是一种极低功耗、低成本的被动式通信技术,适用于对功耗较敏感的物联网(internet of things,IoT)等场景中。反向散射通信技术中,可以包括三个节点:激励器、反射器以及接收器。其中,激励器与反射器也可以集成到同一个节点,该节点可以称为读写器。激励器可以发送无线信号,激励器发送的无线信号也可以称为激励信号,激励信号可以为单音信号或多音信号等类型的信号,不承载任何数据。激励器发送的激励信号为反射器已知的信号。反射器接收到激励信号之后,可以将需要发送的数据调制到激励信号上,获得反射信号,并向接收器发送反射信号。接收器接收到反射信号之后,可以解调出承载于反射信号上的数据。
目前,反向散射通信技术中,采用的是异步传输模式,发送端域接收端之间的通信不需要同步。当反向散射通信技术应用于移动通信系统时,例如第五代(the fifth generation,5G)移动通信系统,激励器可以为终端设备,反射器可以为终端设备中的一个射频识别模块,也可以为一个独立的射频识别芯片,接收器可以为基站。对于基站,会接收到的多个反射器的反射信号。由于不同反射器的时钟频率可能存在偏差,因此基站接收到的不同反射器之间的反射信号之间可能存在干扰。举例来说,如图1所示,假设基站调度反射器1在时刻1进行上行传输,调度反射器2在时刻2进行上行传输,上行传输的传输时长均为T,时刻1与时刻2之间间隔T。由于反射器1的时钟频率比标准中规定的时钟频率小20%,因此反射器1发送的反射信号的传输时长实际为1.2T,导致基站在时刻2同时接收到反射器1和反射器2发送的反射信号,此时反射器1发送的反射信号会对反射器2发送的反射信号造成干扰。
因此,当反向散射通信技术应用于移动通信系统时,如何实现同步,是一个亟待解决的问题。
发明内容
本申请实施例提供一种同步方法及装置,用以实现信号同步。
第一方面,本申请实施例提供一种同步方法,包括:反射器接收来自激励器的激励信号;在所述激励信号中调制待传输的数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;所 述反射器向接收器发送所述反射信号。
上述方法流程中,当待传输的数据的传输时长大于第一时长,和/或当所述数据的数据量大于第一数据量时,反射器发送的反射信号中包括同步序列,可以使得接收器根据同步序列确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
上述方法中,通过周期性传输同步序列,能够提高接收器成功接收同步序列的概率。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
上述方法中,通过重复传输K次同步序列,能够提高同步序列传输的可靠性。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
一种可能的实现方式中,所述方法还包括:所述反射器接收来自所述激励器的第一指示信息,所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
上述方法中,反射器根据第一指示信息确定频率偏差,从而可以调整反射信号的时钟频率,降低反射信号的误差。
一种可能的实现方式中,所述频率偏差为根据所述同步序列确定的。
一种可能的实现方式中,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
第二方面,本申请实施例提供一种装置,该装置具有实现上述方法中反射器的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能,例如所述处理器可以用于在所述激励信号中调制待传输的数据以及同步序列,获得反射信号。所述收发器用于实现上述装置与激励器以及接收器之间的通信,例如所述收发器可以用于接收来自激励器的激励信号,并向接收器发送所述反射信号。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的设计中,该装置可以包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
第三方面,本申请实施例提供一种同步方法,包括:接收器接收来自反射器的反射信号;所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量;所述接收器根据所述同步序列确定所述反射信号的 时钟频率与预设时钟频率之间的频率偏差。
上述方法流程中,当反射器发送的反射信号中包括同步序列时,接收器可以根据同步序列确定反射信号的频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
上述方法中,通过周期性传输同步序列,能够提高接收器成功接收同步序列的概率。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
上述方法中,通过重复传输K次同步序列,能够提高同步序列传输的可靠性。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置与所述反射信号的起始位置之间的时长为所述第一时长。
一种可能的实现方式中,所述方法还包括:所述接收器向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。
一种可能的实现方式中,所述频率偏差为根据所述同步序列确定的。
一种可能的实现方式中,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
第四方面,本申请实施例提供一种装置,该装置具有实现上述方法中接收器的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能,例如所述处理器可以用于根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。所述收发器用于实现上述装置与激励器以及反射器之间的通信,例如所述收发器可以用于接收来自反射器的反射信号。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的设计中,该装置可以包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
第五方面,本申请实施例提供一种同步方法,包括:反射器接收来自激励器的激励信号;所述反射器在所述激励信号中调制同步序列,获得反射信号;所述反射器向接收器发送所述反射信号;所述反射器接收来自所述激励器的第一指示信息;所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
上述方法流程中,反射器发送的反射信号中包括同步序列,可以使得接收器根据同步序列确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第四时长为周期进行传输的;或者,在所述数据的传输时长内,所述同步序列是以所述第五时长为周期进行传输的。
上述方法中,通过周期性传输同步序列,能够提高接收器成功接收同步序列的概率。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为H,H为大于或等于1的整数。
上述方法中,通过重复传输H次同步序列,能够提高同步序列传输的可靠性。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,或者所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的第六时长的位置。
一种可能的实现方式中,所述第六时长为预设的时长,或者,所述第六时长为所述接收器配置的时长。
一种可能的实现方式中,所述频率偏差为根据所述同步序列确定的。
第六方面,本申请实施例提供一种装置,该装置具有实现上述方法中反射器的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能,例如所述处理器可以用于在所述激励信号中调制同步序列,获得反射信号。所述收发器用于实现上述装置与激励器以及接收器之间的通信,例如所述收发器可以用于接收来自激励器的激励信号;所述反射器在所述激励信号中调制同步序列,获得反射信号;向接收器发送所述反射信号。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的设计中,该装置可以包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
第七方面,本申请实施例提供一种同步方法,包括:激励器生成包括同步序列的激励信号;其中,所述激励信号的传输时长大于第七时长;所述激励器向反射器发送所述激励信号。
上述方法流程中,当激励信号的传输时长大于第七时长时,激励器发送的激励信号中包括同步序列,可以使得接收器根据同步序列确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的信号之间的互相干扰。
一种可能的实现方式中,在所述激励信号的传输时长内,所述同步序列是以第八时长为周期进行传输的。
上述方法中,通过周期性传输同步序列,能够提高接收器成功接收同步序列的概率。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为L,L为大于或等于1的整数。
上述方法中,通过重复传输L次同步序列,能够提高同步序列传输的可靠性。
一种可能的实现方式中,所述同步序列为M序列,或者gold序列,或者ZC序列,或者所述同步序列为根据反射器的标识确定的序列,或者所述同步序列为根据所述接收器的 标识确定的序列。
一种可能的实现方式中,所述同步序列在所述激励信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的第七时长的位置。
一种可能的实现方式中,所述第七时长为预设的时长,或者,所述第七时长为所述接收器配置的时长。
第八方面,本申请实施例提供一种装置,该装置具有实现上述方法中激励器的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能,例如所述处理器可以用于生成包括同步序列的激励信号。所述收发器用于实现上述装置与接收器以及反射器之间的通信,例如所述收发器可以用于向反射器发送所述激励信号。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的设计中,该装置可以包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的方法。
第十一方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
第十二方面,本申请实施例提供一种芯片,包括一个或者多个处理器。该一个或者多个处理器用于读取并执行存储器中存储的计算机程序,以实现上述任一种可能的设计中的方法。可选地,该芯片该包括一个或者多个存储器,所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述装置执行上述任一种可能的设计中的方法。进一步可选地,该芯片还包括通信接口,该一个或者多个处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
第十三方面,本申请实施例提供一种同步装置,所述同步装置包括处理器,所述处理器与存储器耦合:所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行上述任一种可能的设计中的方法。
附图说明
图1为现有技术中反射信号的干扰示意图;
图2示出了适用于本申请实施例提供的方法的通信系统的示意图;
图3为本申请实施例提供的一种同步方法流程示意图;
图4为本申请实施例提供的一种同步序列示意图;
图5(a)至5(b)为本申请实施例提供的一种同步符号示意图;
图6为本申请实施例提供的一种反射信号示意图;
图7为本申请实施例提供的一种反射信号示意图;
图8为本申请实施例提供的一种反射信号示意图;
图9为本申请实施例提供的一种反射信号示意图;
图10为本申请实施例提供的一种同步方法流程示意图;
图11为本申请实施例提供的一种同步方法流程示意图;
图12为本申请实施例提供的一种同步方法流程示意图;
图13为本申请实施例提供的一种反射信号示意图;
图14为本申请实施例提供的一种同步方法流程示意图;
图15为本申请实施例提供的一种反射信号示意图;
图16为本申请实施例提供的一种同步方法流程示意图;
图17为本申请实施例提供的一种同步装置结构示意图;
图18为本申请实施例提供的一种同步装置结构示意图;
图19为本申请实施例提供的一种同步装置结构示意图;
图20为本申请实施例提供的一种同步装置结构示意图;
图21为本申请实施例提供的一种同步装置结构示意图;
图22为本申请实施例提供的一种同步装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
为便于理解本申请实施例,首先以图2中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图2示出了适用于本申请实施例提供的方法的通信系统的示意图。如图2所示,该通信系统包括激励器201、反射器202和接收器203。
需要说明的是,激励器201也可能存在其他名称,例如可以称为协助器(helper)、询问器(interrogator)、读写器(reader)、用户设备(user equipment,UE)等,为了描述方便,本申请实施例中均称为激励器。相应的,反射器202也可能存在其他名称,例如可以称为标签(tag)、反射设备(backscatter device)、无源设备(passive device)、半有源设备(semi-passive device)、散射信号设备(ambient signal device)、射频识别(radio frequency identification,RFID)标签(tag)等,为了描述方便,本申请实施例中均称为反射器。接收器203也可能存在其他名称,例如可以称为接入点、基站等,为了描述方便,本申请实施例中均称为接收器。
图2中,激励器201发送的激励信号,可以为单音信号(即连续的正弦波)或多音信号(即具有一定带宽的信号),激励信号中可以携带发送给接收器203的数据,也可以不携带发送给接收器203的数据。激励器201发送的激励信号为反射器202已知的信号。激 励信号的持续时间段内可以有至少一个缝隙(gap),该至少一个缝隙可以是周期的,也可以是非周期的。
反射器202接收到激励信号之后,可以将需要发送的数据调制到激励信号上,获得反射信号,并向接收器203发送反射信号。反射器202发送的数据可以为采集到的温度数据、湿度数据等,本申请实施例对此并不限定。本申请实施例中,反射器202可以为无源设备,即在接收激励信号以及发送反射信号的过程中不需要电源供电;反射器202也可以为半有源设备,即在接收激励信号或发送反射信号的过程中需要电源供电。需要说明的是,图2只是示例,在一种可能的实现方式中,激励器和反射器也可以集成到同一个物理实体中,在此不再赘述。
需要说明的是,在图2所示通信系统中,接收器不可以直接向反射器发送数据,接收器若需要向反射器发送数据,则需要先将数据发送至激励器,由激励器转发至反射器。
当反向散射通信应用于移动通信系统,例如5G中时,激励器201可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。接收器203可以为无线接入设备,例如演进型节点B(evolved Node B,eNB)、5G中的gNB、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
实施例一:
参见图3,为本申请实施例提供的一种同步方法流程示意图。该方法包括:
步骤301:激励器发送激励信号。
如前所述,激励信号可以是单音信号,也可以是多音信号,本申请实施例对此并不限定。
步骤302:反射器接收来自激励器的激励信号。
步骤303:反射器在所述激励信号中调制待传输的数据以及同步序列,获得反射信号,并向接收器发送所述反射信号。
其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量。
相应的,当数据的传输时长小于或等于第一时长时,和/或当所述数据的数据量小于或等于第一数据量时,反射器发送的反射信号中可以不包括同步序列。其中,第一时长小于反射信号的传输时长。
以上只是示例,在另一种可能的实现方式中,当所述待传输的数据的传输时长大于或 等于第一时长,和/或所述待传输的数据的数据量大于或等于第一数据量时,反射器在所述激励信号中调制待传输的数据以及同步序列。当数据的传输时长小于第一时长时,和/或当所述数据的数据量小于第一数据量时,反射器发送的反射信号中可以不包括同步序列。
需要说明的是,本申请实施例中,同步序列的具体实现方式可以有多种,例如同步序列可以为M序列,可以为gold序列,可以为ZC(Zadoff-chu)序列,可以为根据反射器的标识确定的序列,还可以为根据接收器的标识确定的序列。以上只是示例,同步序列还可能存在其他实现方式。本申请实施例中,对同步序列的长度并不限定,例如同步序列的长度可以是{1,2,3,4,5,6,7,8,9,10,11,12,13,31,61,62,63,139,127}中的部分或者全部的值,其单位可以为纳秒(ns)或者毫秒(ms)或者微妙(μs)或者秒(s)等,还可以为时隙、子帧或者帧。
同步序列是接收器已知的序列,接收器对接收到的反射信号进行解调,可以根据解调结果,确定反射信号中是否包括同步序列时。举例来说,同步序列为:11001100。接收器对反射信号进行解调时,如果解调出的比特序列中包括11001100,则可以确定解调出同步序列。
本申请实施例中,反射器在反射信号中也可以不发送同步序列,而是发送同步符号代替同步序列,即当待传输的数据的传输时长大于第一时长时,或者当待传输的数据的数据量大于第一数据量时,或者,当待传输的数据的传输时长大于第一时长且当待传输的数据的数据量大于第一数据量时,在所述激励信号中调制所述数据以及同步符号,获得反射信号。
同步序列和同步符号存在以下区别:同步序列是接收器已知的序列,而对于同步符号,同步符号是接收器已知的信号波形。同步序列采用不同编码方式,获得的信号波形不同。例如同步序列为0101时,如果采用归零(Return Zero,RZ)编码、非归零(Non Return Zero,NRZ)编码以及曼彻斯特编码时,具有不同的波形,具体可以参考图4所示。接收器在接收反射信号时,不是根据信号的波形确定是否存在同步序列,而是判断解调后的比特序列中是否存在已知的同步序列。相应的,针对同步符号,接收器在接收反射信号时,是判断反射信号中是否存在已知的同步符号对应的信号波形,如果存在,则可以确定接收到同步符号。而对于同步符号对应的比特序列,可以是接收器已知的,也可以是接收器未知的。举例来说,同步符号可以如图5(a)所示。当接收器接收到如图5(b)中所示的反射信号1时,由于反射信号1中不存在图5(a)所示的信号波形,所以可以确定反射信号1中不包括同步符号;相应的,当接收器接收到如图5(b)中所示的反射信号2时,由于反射信号2中存在图5(a)所示的信号波形,所以可以确定反射信号2中包括同步符号。
当反射信号中包括同步符号时,同步符号与数据可以使用不同的编码方式进行编码。一种可能的实现方式中,对数据进行编码时,采用1个比特可以只用一个电平表示的编码方式,例如采用非归零(Non Return Zero,NRZ)编码,数据采用非归零编码时,1个比特用同一个电平表示,高电平表示1,低电平表示0;对同步符号进行编码时,采用1个比特可以有至少两种电平表示的编码方式,例如曼彻斯特编码。其中,同步符号采用曼彻斯特编码时,1个比特不是用同一个电平表示,电平由高向低跳变表示1,电平由低向高跳变表示0。同理,另一种可能的实现方式中,对数据进行编码时,也可以采用1个比特可以有至少两种电平表示的编码方式,例如曼彻斯特编码。对同步符号进行编码时,采用1个比特可以只用一个电平表示的编码方式,例如采用非归零编码。同步符号与数据还可 以采用其他编码方式进行编码,在此不再逐一举例说明。
步骤304:接收器接收来自反射器的反射信号。
所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量。
步骤305:接收器根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
另一种实现方式中,当反射信号中包括同步符号时,接收器可以根据所述同步符号确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
上述方法流程中,当待传输的数据的传输时长大于第一时长,和/或当所述数据的数据量大于第一数据量时,反射器发送的反射信号中包括同步序列或同步符号,可以使得接收器根据同步序列或同步符号确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
接收器确定所述频率偏差之后,接收器可以向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。举例来说,第一指示信息可以为频率偏差对应的索引值,可以预先配置不同频率偏差对应的索引值,例如频率偏差1对应索引值1,频率偏差2对应索引值2。接收器确定的频率偏差为频率偏差1时,第一指示信息为索引值1,当然第一指示信息也可以为该频率偏差本身,本申请实施例对此并不限定。
激励器将第一指示信息发送至反射器。反射器接收到所述第一指示信息时,可以根据所述第一指示信息指示的频率偏差调整所述反射信号的时钟频率,使得反射信号的时钟频率等于预设的时钟频率,从而可以解决由于频率偏差导致的信号不同步的问题。需要说明的是,反射器具体如何调整时钟频率,可以参考现有技术中的描述,本申请实施例对此并不限定,在此不再赘述。
反射器根据第一指示信息调整反射信号的时钟频率之后,反射器再次发送的反射信号的传输时长,接近无频率偏差时的传输时长,从而降低不同反射器的反射信号之间的干扰。
举例来说,如图6所示,反射器1在时刻1发送反射信号,反射器2在时刻2进发送反射信号,反射信号的传输时长均为T,时刻1与时刻2之间间隔T。由于反射器1的时钟频率比标准中规定的时钟频率小20%,因此反射器1发送的反射信号的传输时长实际为1.2T,会对反射器2发送的反射信号造成干扰。当反射器1对反射信号的频率偏差进行调整后,发送的反射信号的传输时长变为T,从而可以降低对反射器2发送的反射信号造成干扰。
本申请实施例中,第一时长的单位可以为纳秒(ns)或者毫秒(ms)或者微妙(μs)或者秒(s)等,例如,第一时长为5ms。第一时长的单位还可以为符号或者时隙或者子帧或者帧或者超帧等,本申请实施例对此并不限定,例如第一时长为5个符号。
第一时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长。第一时长是预设的时长时,可以是预设的一个或多个时长中的一个,例如第一时长的取值为预设的集合A中的任意一个值,集合A={1,2,3,4,5,6,7,8,12,16,24,20,32,64},其它情况在此不再赘述。第一时长是接收器配置的时长时,接收器可以将第一时长发送至激励器,再由激励器转发至反射器。以上只是示例,第一时长还可以存在其他确定方式,在此不再逐一举例说明。
相应的,本申请实施例中,第一数据量的单位可以为比特(bit)或者字节(byte)等, 本申请实施例对此并不限定。第一数据量可以是预设的数据量,也可以是激励器配置的数据量,还可以是接收器配置的数据量等,在此不再赘述。
当反射信号中包括同步序列号时,反射器可以在反射信号中传输一次同步序列,也可以在反射信号中周期性传输多次同步序列,还可以在反射信号中非周期性传输多次同步序列。在传输同步序列时,同步序列在反射信号中第一次传输的起始位置与所述反射信号的起始位置之间的时长可以为第一时长。举例来说,如图7所示,反射信号中包括数据和同步序列,同步序列的起始位置距离反射信号的起始位置为第一时长。
另一种可能的实施方式中,当反射信号中包括同步符号时,反射器可以在反射信号中传输一次同步符号,也可以在反射信号中周期性传输多次同步符号,还可以在反射信号中非周期性传输多次同步符号。进一步可选的,同步符号在反射信号中第一次传输的起始位置与所述反射信号的起始位置之间的时长可以为第一时长。
本申请实施例中,反射器在反射信号中周期性传输同步序列的该情况下,一种可能的实现方式中,反射器可以在反射信号的传输时长内,以第二时长为周期传输同步序列。举例来说,同步序列存在于整个反射信号的传输时长内时,可以如图8所示。图8中,数据的传输时长为T1,反射信号的传输时长为T2,同步序列以第二时长为周期,分布在反射信号的传输时长内。
第二时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长等,本申请实施例对此并不限定。举例来说,第二时长是预设的时长时,可以为预设的多个时长中的一个,预设的多个时长可以包括1ms、2ms、3ms、4ms、5ms、10ms、20ms、40ms、80ms、160ms等。第二时长也可以根据其他方式确定,在此不再逐一举例说明。
另一种可能的实现方式中,反射器可以在数据的传输时长内,以第三时长为周期传输同步序列。举例来说,同步序列存在于数据的传输时长内时,可以如图9所示。图9中,数据的传输时长为T1,反射信号的传输时长为T2,同步序列以第三时长为周期,分布在数据的传输时长内。
第三时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长等,本申请实施例对此并不限定。举例来说,第三时长是预设的时长时,可以为预设的多个时长中的一个,预设的多个时长可以包括1ms、2ms、3ms、4ms、5ms、10ms、20ms、40ms、80ms、160ms等。第三时长也可以根据其他方式确定,在此不再逐一举例说明。
相应的,当反射信号中包括同步符号时,反射器可以在反射信号的传输时长内,以第二时长为周期传输同步符号。或者,反射器可以在数据的传输时长内,以第三时长为周期传输同步符号。
本申请实施例中,当反射信号中包括同步序列时,反射器在每次传输同步序列时,同步序列的重复传输次数可以为K,K为大于或等于1的整数。K的取值可以是预设的值,也可以是激励器配置的值,还可以是接收器配置的值。K也可以是协议规定的一个或多个固定的数值中的一个,例如K的值可以为1~2048中的任意一个整数值,K还可以是预设的集合B中的任意一个整数值,集合B={1,2,4,8,16,32,64,128,256,512,1024,2048}。以上只是示例,还可以存在其他方式确定K,在此不再逐一举例说明。
相应的,当反射信号中包括同步符号时,反射器在每次传输同步符号时,同步符号的重复传输次数也可以为K,在此不再赘述。
实施例二:
本申请实施例中,反射器还可以向接收器发送只包括同步序列的反射信号,从而使得接收器根据同步序列完成信号同步,下面将详细描述。
参见图10,为本申请实施例提供的一种同步方法流程示意图。该方法包括:
步骤1001:激励器发送激励信号。
如前所述,激励信号可以是单音信号,也可以是多音信号,本申请实施例对此并不限定。
步骤1002:反射器接收来自激励器的激励信号。
步骤1003:反射器在所述激励信号中调制同步序列或同步符号,获得反射信号。
需要说明的是,同步序列是接收器已知的序列,同步序列的具体实现方式可以有多种,例如同步序列可以为M序列,可以为gold序列,可以为ZC序列,可以为根据反射器的标识确定的序列,还可以为根据接收器的标识确定的序列。以上只是示例,同步序列还可能存在其他实现方式,在此不再逐一举例说明。
同步符号的具体内容,可以参考图3所示的流程中的描述,在此不再赘述。
插入同步符号或者插入的同步序列可以是周期的,也可以是非周期的。其周期的大小可以与其频率误差有关,即根据其频率的误差确定插入同步信号的周期。其周期的大小可以为1,2,3,4,5,6,7,8,9,10,11,12,14,13,14,15,16中的全部或者部分值,其单位可以为反射器或正交频分复用系统的符号,反射器或正交频分复用系统的时隙,反射器或正交频分复用系统的子帧,反射器或正交频分复用系统的帧,毫秒中的任意一个。
步骤1004:反射器向接收器发送所述反射信号。
步骤1005:接收器接收来自反射器的反射信号,并根据所述反射信号中的同步序列或同步符号确定第一指示信息。
所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
步骤1006:接收器向激励器发送所述第一指示信息。
步骤1007:激励器接收来自接收器的第一指示信息,并向反射器发送所述第一指示信息。
上述方法流程中,反射器发送的反射信号中包括同步序列或同步符号,可以使得接收器根据同步序列或同步符号确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
接收器确定所述频率偏差之后,接收器可以向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。第一指示信息可以为频率偏差的索引值,也可以为频率偏差本身,本申请实施例对此并不限定。
激励器将第一指示信息发送至反射器。反射器接收到所述第一指示信息时,可以根据所述第一指示信息指示的频率偏差调整所述反射信号的时钟频率,具体如何调整,可以参考现有技术中的描述,在此不再赘述。
需要说明的是,步骤1001至步骤1008的流程可以执行N次,即反射器可以向接收器发送N个反射信号,并接收每个反射信号对应的第一指示信息,N为大于0的整数。反射器根据N个反射信号对应的N个第一指示信息指示的频率偏差调整时钟频率后,可以在需要发送数据时,发送包括数据的反射信号。此时,反射器发送的反射信号中可以不包括同步序列。举例来说,以N为2为例,参考如图11所示。
步骤1101:反射器向接收器发送反射信号1,反射信号1中包括同步序列或同步符号。
需要说明的是,步骤1101之前,反射器接收到激励信号1,反射信号1是根据接收到的激励信号1确定的,图中不再示出。
步骤1102:接收器根据反射信号1确定频率偏差1,并向激励器发送指示频率偏差1的指示信息1。
所述频率偏差1为反射信号1的时钟频率与预设时钟频率的频率差值。
步骤1103:激励器向反射器发送指示信息1。
步骤1104:反射器根据指示信息1指示的频率偏差1调整时钟频率,并再次向接收器发送反射信号2。
其中,反射信号2中包括同步序列或同步符号。
需要说明的是,步骤1104之前,反射器接收到激励信号2,反射信号2是根据接收到的激励信号2确定的,图中不再示出。
步骤1105:接收器根据反射信号2确定频率偏差2,并向激励器发送指示频率偏差2的指示信息2。
所述频率偏差2为反射信号2的时钟频率与预设时钟频率的频率差值。
步骤1106:激励器向反射器发送指示信息2。
步骤1107:反射器根据指示信息2指示的频率偏差2调整时钟频率。
需要说明的是,反射信号1的发送功率与反射信号2的发送功率可以相同,也可以不同。进一步的,反射信号1的时钟频率与反射信号2的时钟频率可以相同,也可以不同。
步骤1108:反射器在确定需要发送数据时,反射器向接收器发送包括数据的反射信号3。
需要说明的是,反射信号3不包括同步序列或同步符号。步骤1108中的反射信号3是根据接收到的激励信号3确定的,图中不再示出。
通过上述方法流程,反射器在发送数据之前,通过发送N个反射信号,并根据N个反射信号对应的N个频率偏差,调整时钟频率,从而不需要在发送数据的反射信号中,携带同步序列或同步符号,从而可以提高数据出传输效率。
和图3所示的流程类似,反射器可以在反射信号中传输一次同步序列,也可以在反射信号中周期性传输多次同步序列,还可以在反射信号中非周期性传输多次同步序列。本申请实施例中,反射器在反射信号中周期性传输同步序列的该情况下,一种可能的实现方式中,反射器可以在反射信号的传输时长内,以第四时长为周期传输同步序列,具体可以参考图6所示。
另一种可能的实现方式中,反射器可以在数据的传输时长内,以第五时长为周期传输同步序列。举例来说,同步序列存在于数据的传输时长内时,具体可以参考图7所示。
其中,第四时长以及第五时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长等,本申请实施例对此并不限定。举例来说,第四时长是预设的时长时,可以为预设的多个时长中的一个,预设的多个时长可以包括1ms、2ms、3ms、4ms、5ms、10ms、20ms、40ms、80ms、160ms等。
本申请实施例中,反射器在每次传输同步序列时,同步序列的重复传输次数可以为H,H为大于或等于1的整数。H的取值可以是预设的值,也可以是激励器配置的值,还可以是接收器配置的值。H也可以是协议规定的一个或多个固定的数值中的一个,例如H的值 可以为1~2048中的任意一个整数值,H还可以是预设的集合B中的任意一个整数值,集合B={1,2,4,8,16,32,64,128,256,512,1024,2048}。以上只是示例,还可以存在其他方式确定H,在此不再逐一举例说明。
示例性的,同步序列在反射信号中第一次传输的起始位置与所述反射信号的起始位置之间的时长可以为第六时长。第六时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长,本申请实施例对此并不限定。
实施例三:
前面的实施例中,描述了反射器如何发送同步序列,在另一种可能的实施例中,反射器也可以不发送包括同步序列的反射信号,下面将详细描述。
参见图12,为本申请实施例提供的一种数据传输方法流程示意图。该方法包括:
步骤1201:激励器发送激励信号。
如前所述,激励信号可以是单音信号,也可以是多音信号,本申请实施例对此并不限定。
步骤1202:反射器接收来自激励器的激励信号。
步骤1203:反射器根据所述激励信号确定反射信号,并向接收器发送所述反射信号。
其中,当待传输的数据的传输时长大于第一时长时,所述反射信号中包括的数据的传输时长小于或等于所述第一时长;和/或,当待传输的数据的数据量大于第一数据量时,所述反射信号中包括的数据的数据量小于或等于所述第一数据量。
以上只是示例,在另一种可能的实现方式中,当待传输的数据的传输时长大于或等于第一时长时,所述反射信号中包括的数据的传输时长小于所述第一时长;和/或,当待传输的数据的数据量大于或等于第一数据量时,所述反射信号中包括的数据的数据量小于所述第一数据量。
当待传输的数据的传输时长大于第一时长时,反射器不在反射信号的第一位置之后再传输数据,第一位置与所述反射信号的起始位置之间的时长为所述第一时长。相应的,当待传输的数据的数据量大于第一数据量时,反射器在反射信号中最多传输第一数据量的数据。
其中,第一时长小于反射信号的传输时长。第一时长的具体内容可以参考图3的流程中的描述,在此不再赘述。
步骤1204:接收器接收来自反射器的反射信号。
当接收器接收的反射信号的传输时长大于第一时长时,不再接收反射信号中位于第一时长之后的数据,和/或,当接收器从反射信号中解调出的数据的数据量等于第一数据量时,不再解调所述反射信号中包括的数据。举例来说,标准中规定反射信号的传输时长为T,由于反射器存在时钟频率的偏差,导致发送的反射信号的实际传输时长大于T,在该情况下,接收器只解调接收到的反射信号中位于传输时长T之内的数据。
举例来说,如图13所示,假设标准中规定反射信号的传输时长为10ms。由于反射器的时钟频率存在频率偏差,当频率偏差为-20%时,实际发送的反射信号的传输时长为12ms。接收器接收到反射信号之后,只解调反射信号的前10ms中的数据,其它数据不再解调。
实施例四:
本申请实施例中,还可以由激励器发送包括同步序列的激励信号,下面将详细描述。
参见图14,为本申请实施例提供的一种同步方法流程示意图。该方法包括:
步骤1401:激励器生成包括同步序列的激励信号。
其中,所述激励信号的传输时长大于第七时长,即激励器确定激励信号出传输时长大于第七时长时,在激励信号中生成同步序列。另一种可能的实现方式中,当激励信号的传输时长大于第七时长时,激励器也可以生成包括同步符号的激励信号,同步符号的具体内容可以参考前面的描述,在此不再赘述。
以上只是示例,在另一种可能的实现方式中,当激励器确定激励信号出传输时长大于或等于第七时长时,激励器生成包括同步序列或同步符号的激励信号。当激励器确定激励信号出传输时长小于第七时长时,激励器生成的激励信号不包括同步序列或同步符号。
第七时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长,在此不再逐一举例说明。
需要说明的是,同步序列是接收器已知的序列,同步序列的具体实现方式可以有多种,例如同步序列可以为M序列,可以为gold序列,可以为ZC序列,可以为根据激励器的标识确定的序列,可以为根据反射器的标识确定的序列,还可以为根据接收器的标识确定的序列。以上只是示例,同步序列还可能存在其他实现方式,在此不再逐一举例说明。
需要说明的是,激励器也可以不生成包括同步序列的激励信号,而是生成包括同步符号的激励信号。关于同步符号的具体内容,可以参考图3所示的流程中关于同步符号的描述,在此不再赘述。
步骤1402:激励器向反射器发送所述激励信号。
步骤1403:反射器在所述激励信号中调制数据,获得反射信号。
需要说明的是,反射器在调制数据时,不在同步序列对应的位置调制数据,从而使得的同步序列可以保留在反射信号中。
举例来说,如图15所示,反射器在激励信号中调制数据时,将数据调制在除同步序列之外的位置,最终获得的反射信号中也包括同步序列。
步骤1404:反射器向接收器发送所述反射信号。
步骤1405:当反射信号中包括同步序列时,接收器根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
另一种可能的实现方式中,当反射信号中包括同步符号时,接收器根据所述同步符号确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差,在此不再赘述。
步骤1406:接收器向激励器发送第一指示信息。
所述第一指示信息用于指示所述频率偏差。第一指示信息指示的频率偏差调整所述反射信号的时钟频率,具体如何调整,可以参考现有技术中的描述,在此不再赘述。
步骤1407:激励器向反射器发送所述第一指示信息。
上述方法流程中,当待传输的激励信号的传输时长大于第七时长时,激励器发送的激励信号中包括同步序列,可以使得接收器根据同步序列确定频率偏差,从而根据频率偏差实现信号同步,降低接收器接收到的反射信号之间的互相干扰。
激励器可以在激励信号中传输一次同步序列,也可以在激励信号中周期性传输多次同步序列,还可以在激励信号中非周期性传输多次同步序列。在传输同步序列时,同步序列在激励信号中第一次传输的起始位置与所述激励信号的起始位置之间的时长可以为第七时长。
本申请实施例中,激励器在激励信号中周期性传输同步序列的该情况下,同步序列的 传输周期可以为第八时长。第八时长可以是预设的时长,也可以是激励器配置的时长,还可以是接收器配置的时长等,本申请实施例对此并不限定。举例来说,第八时长是预设的时长时,可以为预设的多个时长中的一个,预设的多个时长可以包括1ms、2ms、3ms、4ms、5ms、10ms、20ms、40ms、80ms、160ms等。第八时长也可以根据其他方式确定,在此不再逐一举例说明。
本申请实施例中,激励器在每次传输同步序列时,同步序列的重复传输次数可以为L,L为大于或等于1的整数。L的取值可以是预设的值,也可以是激励器配置的值,还可以是接收器配置的值。L也可以是协议规定的一个或多个固定的数值中的一个,例如L的值可以为1~2048中的任意一个整数值,L还可以是预设的集合B中的任意一个整数值,集合B={1,2,4,8,16,32,64,128,256,512,1024,2048}。以上只是示例,还可以存在其他方式确定L,在此不再逐一举例说明。
本申请实施例中,反射器也可以直接根据激励器发送的同步序列或同步符号进行同步,此时反射器接收到包括同步序列或同步符号的激励信号之后,不向接收器发送反射信号,下面详细描述。参见图16,为本申请实施例提供的一种同步方法流程示意图。该方法包括:
步骤1601:激励器发送激励信号。
激励信号中可以包括同步序列或同步符号,同步序列以及同步符号的具体内容,可以参考步骤303中的描述,在此不再赘述。
同步序列或同步符号可以是周期性发送的。举例来说,反射器获得的激励信号中的同步序列或同步符号的周期为TA,其中TA的值可以为1,2,3,4,5,6,7,8中的部分值或者全部的值,其单位可以为反射器或正交频分复用系统的符号,反射器或正交频分复用系统的时隙,反射器或正交频分复用系统的子帧,反射器或正交频分复用系统的帧,毫秒中的任意一个。
步骤1602:反射器接收来自激励器的激励信号,并根据激励信号中的同步序列或同步符号进行同步。
反射器可以根据同步序列或同步符号确定激励信号的时钟频率,再根据激励信号的时钟频率调整反射器自身发送的反射信号的时钟频率,可以保证激励信号的时钟频率与反射信号的时钟频率相同,从而实现信号同步。
基于与以上方法实施例相同的发明构思,本申请实施例还提供了一种同步装置,该装置可具备上述方法实施例中的由反射器具备的功能,并可用于执行由反射器执行的步骤。所述功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图17所示的同步装置1700可包括处理单元1701以及通信单元1702,处理单元1701以及通信单元1702之间相互耦合。
当同步装置1700执行图3所示的流程中,反射器执行的功能时:
通信单元1702,用于接收来自激励器的激励信号;
处理单元1701,用于在所述激励信号中调制待传输的数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;
所述通信单元1702,用于向接收器发送所述反射信号。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第二时长 为周期进行传输的;
或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
一种可能的实现方式中,所述通信单元1702还用于:
接收来自所述激励器的第一指示信息,所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
一种可能的实现方式中,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
当同步装置1700执行图10所示的流程中,反射器执行的功能时:
通信单元1702,用于接收来自激励器的激励信号;
处理单元1701,用于在所述激励信号中调制同步序列或同步符号,获得反射信号;所述反射器向接收器发送所述反射信号;
通信单元1702,用于接收来自所述激励器的第一指示信息;所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第四时长为周期进行传输的;或者,在所述数据的传输时长内,所述同步序列是以所述第五时长为周期进行传输的。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为H,H为大于或等于1的整数。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,或者所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的第六时长的位置。
一种可能的实现方式中,所述第六时长为预设的时长,或者,所述第六时长为所述接收器配置的时长。
一种可能的实现方式中,所述频率偏差为根据所述同步序列或同步符号确定的。
图18是本申请实施例提供的一种装置的结构示意图。图18所示的装置可以为图17所示的装置的一种硬件电路的实现方式。该装置可适用于上述任一流程图中,执行上述方法实施例中反射器的功能。为了便于说明,图18仅示出了该装置的主要部件。可选的,该装置可以是反射器,也可以是反射器中的芯片或者芯片系统。可选的,以该装置为反射器为例,如图18所示,该装置1800包括处理器1801、存储器1802、收发器1803等。
所述处理器1801被配置为处理该装置执行上述方法中相应的功能。所述收发器1803 用于实现上述装置与激励器以及接收器之间的通信。所述存储器1802用于与处理器1801耦合,其保存该装置必要的程序指令和数据。
一种可能的实现方式中,当同步装置1800执行图3所示的流程中反射器执行的功能时:收发器1803,用于接收来自激励器的激励信号;
处理器1801,用于在所述激励信号中调制待传输的数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;
收发器1803,用于向接收器发送所述反射信号。
处理器1801、收发器1803还可以执行其他功能,具体参考图3所示的流程中的描述,在此不再赘述。
一种可能的实现方式中,当同步装置1800执行图10所示的流程中反射器执行的功能时:收发器1803,用于接收来自激励器的激励信号;
处理器1801,用于在所述激励信号中调制同步序列或同步符号,获得反射信号;所述反射器向接收器发送所述反射信号;
收发器1803,用于接收来自所述激励器的第一指示信息;所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
处理器1801、收发器1803还可以执行其他功能,具体参考图10所示的流程中的描述,在此不再赘述。
基于与以上方法实施例相同的发明构思,本申请实施例还提供了一种同步装置,该装置可具备上述方法实施例中的由接收器具备的功能,并可用于执行由接收器执行的步骤。所述功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图19所示的同步装置1900可包括处理单元1901以及通信单元1902,处理单元1901以及通信单元1902之间相互耦合。
通信单元1902,用于接收来自反射器的反射信号;所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量;
处理单元1901,用于根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
一种可能的实现方式中,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
一种可能的实现方式中,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
一种可能的实现方式中,所述通信单元1902还用于:
所述接收器向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。
一种可能的实现方式中,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
图20是本申请实施例提供的一种装置的结构示意图。图20所示的装置可以为图19所示的装置的一种硬件电路的实现方式。该装置可适用于图3至图16所示出的流程图中,执行上述方法实施例中接收器的功能。为了便于说明,图20仅示出了该装置的主要部件。可选的,该装置可以是基站。可选的,以该装置为20为例,如图20所示,该装置2000包括处理器2001、存储器2002、收发器2003、天线2004等。
所述处理器2001被配置为处理该装置执行上述方法中相应的功能。所述收发器2003用于实现上述装置与激励器以及接收器之间的通信。所述存储器2002用于与处理器2001耦合,其保存该装置必要的程序指令和数据。
在一种可能的实现方式中,当同步装置2000执行图3所示的流程中接收器执行的功能时:收发器2003,用于接收来自反射器的反射信号;所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量;
处理器2001,用于根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
图20所示的装置2000所具有的其他功能,具体可以参考图3所示的流程中关于接收器的描述,在此不再赘述。
基于与以上方法实施例相同的发明构思,本申请实施例还提供了一种同步装置,该装置可具备上述方法实施例中的由激励器具备的功能,并可用于执行由激励器执行的步骤。所述功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图21所示的同步装置2100可包括处理单元2101以及通信单元2102,处理单元2101以及通信单元2102之间相互耦合。
处理单元2101,用于生成包括同步序列的激励信号;其中,所述激励信号的传输时长大于第七时长;
通信单元2102,用于向反射器发送所述激励信号。
一种可能的实现方式中,在所述激励信号的传输时长内,所述同步序列是以第八时长为周期进行传输的。
一种可能的实现方式中,所述同步序列在一个周期内的重复传输次数为L,L为大于或等于1的整数。
一种可能的实现方式中,所述同步序列为M序列,或者gold序列,或者ZC序列,或者所述同步序列为根据反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
一种可能的实现方式中,所述同步序列在所述激励信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的第七时长的位置。
一种可能的实现方式中,所述第七时长为预设的时长,或者,所述第七时长为所述接收器配置的时长。
图22是本申请实施例提供的一种装置的结构示意图。图22所示的装置可以为图21所示的装置的一种硬件电路的实现方式。该装置可适用于图3至图16所示的流程中,执 行上述方法实施例中激励器的功能。为了便于说明,图22仅示出了该装置的主要部件。可选的,该装置可以是终端设备,也可以是终端设备中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。可选的,以该装置为终端设备为例,如图22所示,该装置2200包括处理器2201、存储器2202、收发器2203、天线2204以及输入输出装置2205。处理器2201主要用于对通信协议以及通信数据进行处理,以及对整个无线装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线装置执行上述方法实施例中所描述的动作等。存储器2202主要用于存储软件程序和数据。收发器2203主要用于基带信号与射频信号的转换以及对射频信号的处理。天线2204主要用于收发电磁波形式的射频信号。输入输出装置2205,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
所述处理器2201被配置为处理该装置执行上述方法中相应的功能。所述收发器2203用于实现上述装置与激励器以及接收器之间的通信。所述存储器2202用于与处理器2201耦合,其保存该装置必要的程序指令和数据。
在一种可能的实现方式中,处理器2201,用于生成包括同步序列的激励信号;其中,所述激励信号的传输时长大于第七时长;
收发器2203,用于向反射器发送所述激励信号。
图22所示的装置2200所具有的其他功能,具体可以参考图14所示的流程中关于激励器的描述,在此不再赘述。
基于与上述实施例相同构思,本申请实施例还提供了一种芯片。所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
基于与上述方法实施例相同构思,本申请实施例还提供了一种计算机存储介质,其上存储有一些指令,这些指令被调用执行时,可以使得计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由反射器或者激励器所执行的步骤。本申请实施例中,对可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
基于与上述方法实施例相同构思,本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品被计算机运行时,可以使得计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由反射器或者激励器所执行的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种同步方法,其特征在于,包括:
    反射器接收来自激励器的激励信号;
    在所述激励信号中调制待传输的数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;
    所述反射器向接收器发送所述反射信号。
  2. 根据权利要求1所述的方法,其特征在于,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;
    或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
  3. 根据权利要求2所述的方法,其特征在于,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    所述反射器接收来自所述激励器的第一指示信息,所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
    所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
  8. 一种同步方法,其特征在于,包括:
    接收器接收来自反射器的反射信号;所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量;
    所述接收器根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
  9. 根据权利要求8所述的方法,其特征在于,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;
    或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
  10. 根据权利要求9所述的方法,其特征在于,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
  11. 根据权利要求8至10任一所述的方法,其特征在于,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
  12. 根据权利要求8至11任一所述的方法,其特征在于,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
  13. 根据权利要求8至12任一所述的方法,其特征在于,所述方法还包括:
    所述接收器向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。
  14. 根据权利要求8至13任一所述的方法,其特征在于,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
    所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
  15. 一种同步装置,其特征在于,包括:
    通信单元,用于接收来自激励器的激励信号;
    处理单元,用于在所述激励信号中调制待传输的数据以及同步序列,获得反射信号;其中,所述待传输的数据的传输时长大于第一时长,和/或所述待传输的数据的数据量大于第一数据量;
    所述通信单元,用于向接收器发送所述反射信号。
  16. 根据权利要求15所述的装置,其特征在于,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;
    或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
  17. 根据权利要求16所述的装置,其特征在于,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
  18. 根据权利要求15至17任一所述的装置,其特征在于,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
  19. 根据权利要求15至18任一所述的装置,其特征在于,所述同步序列在所述反射信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
  20. 根据权利要求15至19任一所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述激励器的第一指示信息,所述第一指示信息用于指示所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
  21. 根据权利要求15至20任一所述的装置,其特征在于,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
    所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
  22. 一种同步装置,其特征在于,包括:
    通信单元,用于接收来自反射器的反射信号;所述反射信号包括数据和同步序列,其中,所述数据的传输时长大于第一时长,和/或所述数据的数据量大于第一数据量;
    处理单元,用于根据所述同步序列确定所述反射信号的时钟频率与预设时钟频率之间的频率偏差。
  23. 根据权利要求22所述的装置,其特征在于,在所述反射信号的传输时长内,所述同步序列是以第二时长为周期进行传输的;
    或者,在所述数据的传输时长内,所述同步序列是以所述第三时长为周期进行传输的。
  24. 根据权利要求23所述的装置,其特征在于,所述同步序列在一个周期内的重复传输次数为K,K为大于或等于1的整数。
  25. 根据权利要求22至24任一所述的装置,其特征在于,所述同步序列为M序列,gold序列,ZC序列,所述同步序列为根据所述反射器的标识确定的序列,或者所述同步序列为根据所述接收器的标识确定的序列。
  26. 根据权利要求22至25任一所述的装置,其特征在于,所述同步序列在所述反射 信号中第一次传输的起始位置为位于所述反射信号的起始位置之后的所述第一时长的位置。
  27. 根据权利要求22至26任一所述的装置,其特征在于,所述通信单元还用于:
    所述接收器向激励器发送第一指示信息,所述第一指示信息用于指示所述频率偏差。
  28. 根据权利要求22至27任一所述的装置,其特征在于,所述第一时长为预设的时长,或者,所述第一时长为所述接收器配置的时长;
    所述第一数据量为预设的数据量,或者所述第一数据量为所述接收器配置的数据量。
  29. 一种同步装置,其特征在于,包括处理器,所述处理器与存储器耦合:
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至14中任一项所述的方法。
  30. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至14中任意一项所述的方法被执行。
PCT/CN2020/096227 2019-06-19 2020-06-15 一种同步方法及装置 WO2020253660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910532240.9 2019-06-19
CN201910532240.9A CN112118086B (zh) 2019-06-19 2019-06-19 一种同步方法及装置

Publications (1)

Publication Number Publication Date
WO2020253660A1 true WO2020253660A1 (zh) 2020-12-24

Family

ID=73795066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096227 WO2020253660A1 (zh) 2019-06-19 2020-06-15 一种同步方法及装置

Country Status (2)

Country Link
CN (1) CN112118086B (zh)
WO (1) WO2020253660A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978825A (zh) * 2022-03-23 2022-08-30 北京交通大学 一种反向散射通信符号定时同步系统及方法
WO2023125402A1 (zh) * 2021-12-27 2023-07-06 维沃移动通信有限公司 通信方法、装置、终端、网络侧设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208728B (zh) * 2021-04-13 2024-01-30 上海华为技术有限公司 一种信号同步方法以及相关设备
WO2023133840A1 (zh) * 2022-01-14 2023-07-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和供能节点
WO2023137718A1 (zh) * 2022-01-21 2023-07-27 Oppo广东移动通信有限公司 同步控制方法、终端设备、网络设备、芯片和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180032768A1 (en) * 2016-07-29 2018-02-01 University Of Massachusetts Systems and methods for asymmetric backscatter communications
CN108141646A (zh) * 2015-08-12 2018-06-08 华盛顿大学 反向散射装置及结合反向散射装置的网络系统
CN108496094A (zh) * 2016-01-26 2018-09-04 华盛顿大学 包含单边带操作的实例的反向散射装置
CN109462430A (zh) * 2019-01-04 2019-03-12 电子科技大学 多天线共生无线通信系统、信号传输及波束赋形优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013885B4 (de) * 2004-03-16 2012-08-30 Atmel Automotive Gmbh Verfahren sowie Modulationssteuereinrichtung zur drahtlosen Datenübertragung
CN105119671A (zh) * 2015-07-01 2015-12-02 中国电子科技集团公司第四十一研究所 一种适用于复杂调制与相位相干体制的多通道散射参数测试电路及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141646A (zh) * 2015-08-12 2018-06-08 华盛顿大学 反向散射装置及结合反向散射装置的网络系统
CN108496094A (zh) * 2016-01-26 2018-09-04 华盛顿大学 包含单边带操作的实例的反向散射装置
US20180032768A1 (en) * 2016-07-29 2018-02-01 University Of Massachusetts Systems and methods for asymmetric backscatter communications
CN109462430A (zh) * 2019-01-04 2019-03-12 电子科技大学 多天线共生无线通信系统、信号传输及波束赋形优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUGI JIN; KAWAKITA YUUSUKE; EGAWA KIYOSHI; ICHIKAWA HARUHISA: "Perfectly Synchronized Streaming from Digitally Modulated Multiple Backscatter Sensor Tags", 2018 IEEE INTERNATIONAL CONFERENCE ON RFID TECHNOLOGY & APPLICATION (RFID-TA), 26 September 2018 (2018-09-26), pages 1 - 6, XP033462228 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125402A1 (zh) * 2021-12-27 2023-07-06 维沃移动通信有限公司 通信方法、装置、终端、网络侧设备及介质
CN114978825A (zh) * 2022-03-23 2022-08-30 北京交通大学 一种反向散射通信符号定时同步系统及方法
CN114978825B (zh) * 2022-03-23 2023-09-22 北京交通大学 一种反向散射通信符号定时同步系统及方法

Also Published As

Publication number Publication date
CN112118086B (zh) 2022-05-10
CN112118086A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2020253660A1 (zh) 一种同步方法及装置
WO2021169586A1 (zh) 一种通信方法及装置
CN112311422B (zh) 一种信号传输方法及装置
CN108024325A (zh) 无线通信方法和装置
CN113573409A (zh) 一种通信方法及装置
WO2021119941A1 (zh) 反射通信的方法和通信装置
EP3820070A1 (en) Reference signal sending and receiving method, device, and apparatus
CN106165470B (zh) 信息传输方法、设备和系统
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2022206503A1 (zh) 用于网络设备中数据信号传输的方法和装置
CN111479333A (zh) 通信方法和通信装置
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
WO2024125400A1 (zh) 传输方法、装置、终端及网络侧设备
WO2024125438A1 (zh) 信号传输方法、装置及设备
WO2024012226A1 (zh) 一种下行数据的控制信息的接收、发送方法及装置
WO2023125020A1 (zh) 一种数据传输方法及通信装置
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2024125393A1 (zh) 传输方法、装置、终端及网络侧设备
WO2024114313A1 (zh) 一种通信方法及装置
WO2023125402A1 (zh) 通信方法、装置、终端、网络侧设备及介质
WO2023103904A1 (zh) 传输数据的方法及其装置
US12021770B2 (en) Method and device to provide a reference signal sending or receiving mechanism
WO2024125403A1 (zh) 传输方法、装置、终端及网络侧设备
US20240056217A1 (en) Signal generation method, signal processing method, and related device
US20240205914A1 (en) Communication method and related apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827525

Country of ref document: EP

Kind code of ref document: A1