WO2021204275A1 - 一种反馈信息的发送方法及装置 - Google Patents

一种反馈信息的发送方法及装置 Download PDF

Info

Publication number
WO2021204275A1
WO2021204275A1 PCT/CN2021/086288 CN2021086288W WO2021204275A1 WO 2021204275 A1 WO2021204275 A1 WO 2021204275A1 CN 2021086288 W CN2021086288 W CN 2021086288W WO 2021204275 A1 WO2021204275 A1 WO 2021204275A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
dcis
dai
harq
feedback information
Prior art date
Application number
PCT/CN2021/086288
Other languages
English (en)
French (fr)
Inventor
马蕊香
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21785163.3A priority Critical patent/EP4120607A4/en
Publication of WO2021204275A1 publication Critical patent/WO2021204275A1/zh
Priority to US17/959,748 priority patent/US20230026094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method and device for sending feedback information.
  • Ultra-reliable and low-latency communication is one of the three typical services of the fifth generation mobile communication (5th generation, 5G) system. Its main application scenarios include: unmanned driving, remote Medical treatment, etc., these application scenarios put forward more stringent requirements in terms of reliability and delay.
  • the specific requirements of the URLLC business include: data transmission reliability up to 99.999%, transmission delay less than 1ms, and to reduce instruction overhead as much as possible while meeting the requirements of high reliability and low delay.
  • one of the measures to ensure the reliability of the URLLC service is to repeat multiple physical downlink control channels (PDCCH) to improve the reliability of the PDCCH.
  • the multiple repeated PDCCHs carry the same downlink control information (DCI), which is used to schedule the same or multiple repeated physical downlink shared channels (PDSCH). Since the terminal device schedules one or multiple repeated PDSCHs for one PDCCH, it only needs to send one piece of feedback information. When multiple PDCCH repetitions occur, how the terminal device should send feedback information, there is currently no relevant solution.
  • the embodiments of the present application provide a method and device for sending feedback information, which are used to improve the reliability of feedback information and avoid the problem of inconsistent understanding of feedback information between network equipment and terminal equipment.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the network device.
  • the method may include: the network device sends M DCIs to the terminal device, the M DCIs are used to schedule N transmissions of the first data, the M DCIs correspond to L HARQ-ACK codebooks, and the M, L Is an integer greater than equal to 2, and the N is a positive integer; the network device receives feedback information for the first data from the terminal device, the feedback information is included in the first HARQ-ACK codebook, and the first HARQ-ACK code This is one HARQ-ACK codebook among the L HARQ-ACK codebooks.
  • the M DCIs can correspond to L HARQ-ACK codebooks
  • the feedback information of the terminal device for the first data is only included in one HARQ-ACK of the L HARQ-ACK codebooks It is sent in the codebook, rather than in each HARQ-ACK codebook, therefore, the uplink resource overhead can be effectively saved.
  • M DCIs correspond to L HARQ-ACK codebooks, including: M DCIs are carried in L CORESET groups, and each CORESET group corresponds to one HARQ-ACK codebook; A HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first CORESET group, and the first CORESET group is a CORESET group among the L CORESET groups.
  • the first CORESET group is a CORESET group with the smallest group identifier or the highest position in the time domain among the L CORESET groups.
  • the first CORESET group is the CORESET group where the first CORESET is located; wherein, when the TCIs used in the N transmissions of the first data are all the same, the TCI of the first CORESET is the same as that of the first CORESET.
  • N transmissions of one data use the same TCI; when at least two of the N transmissions of the first data use different TCIs, the TCI of the first CORESET is the same as the first or last transmission of the first data.
  • the TCI used for transmission is the same.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first DCI; wherein, the first DCI is the highest position in the time domain among the M DCIs DCI; or, the time unit for sending the feedback information of the first data indicated by the first DCI is the first one of the time units for sending the feedback information of the first data indicated by the DCI in the M DCIs Or, the size of the time-frequency resource used to send the feedback information of the first data indicated by the first DCI is the size of the time-frequency resource used to send the feedback information of the first data indicated by the DCI in the M DCIs Or, the size of the time-frequency resource used for sending the feedback information of the first data indicated by the first DCI is the time-frequency resource used for sending the feedback information of the first data indicated by the DCI of the M DCIs The size of the resource is the smallest; or, the first DCI is carried on a first CORESET, and the first CORESET is the CORESET with
  • other HARQ-ACK codebooks except the first HARQ-ACK codebook in the L HARQ-ACK codebooks do not include feedback information for the first data.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (such as a chip or a circuit) configured in the terminal device.
  • the method may include: a terminal device receives M downlink DCIs from a network device, each DCI of the M DCIs is used to schedule N transmissions of the first data, and the M DCIs correspond to L HARQ-ACK codes
  • the M and L are integers greater than or equal to 2
  • the N is a positive integer
  • the terminal device sends feedback information for the first data to the network device, and the feedback information is included in the first HARQ-ACK codebook
  • the first HARQ-ACK codebook is one HARQ-ACK codebook among the L HARQ-ACK codebooks.
  • M DCIs correspond to L HARQ-ACK codebooks, including: M DCIs are carried in L CORESET groups, and each CORESET group corresponds to one HARQ-ACK codebook; A HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first CORESET group, and the first CORESET group is a CORESET group among the L CORESET groups.
  • the first CORESET group is a CORESET group with the smallest group identifier or the highest position in the time domain among the L CORESET groups.
  • the first CORESET group is the CORESET group where the first CORESET is located; wherein, when the TCIs used in the N transmissions of the first data are all the same, the TCI of the first CORESET is the same as that of the first CORESET.
  • N transmissions of one data use the same TCI; when at least two of the N transmissions of the first data use different TCIs, the TCI of the first CORESET is the same as the first or last transmission of the first data.
  • the TCI used for transmission is the same.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first DCI; wherein, the first DCI is the highest position in the time domain among the M DCIs DCI; or, the time unit for sending the feedback information of the first data indicated by the first DCI is the first one of the time units for sending the feedback information of the first data indicated by the DCI in the M DCIs Or, the size of the time-frequency resource for sending the feedback information of the first data indicated by the first DCI is the largest among the time-frequency resources for sending the feedback information of the first data indicated by the DCI in the M DCIs Or, the size of the time-frequency resource used to send the feedback information of the first data indicated by the first DCI is the smallest of the time-frequency resources used to send the feedback information of a piece of data indicated by the DCI in the M DCIs Or, the first DCI is carried on a first CORESET, and the first CORESET is the CORESET with the smallest CORESET
  • other HARQ-ACK codebooks except the first HARQ-ACK codebook in the L HARQ-ACK codebooks do not include feedback information for the first data.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the network device.
  • the method may include: the network device sends M DCIs to the terminal device, each DCI of the M DCIs is used to schedule N transmissions of the first data, and the DAI field included in each DCI of the M DCIs The values of are the same, the M is an integer greater than or equal to 2, and the N is a positive integer; the network device receives the feedback information for the first data from the terminal device, and the feedback information is contained in the HARQ-ACK codebook , The position of the feedback information in the HARQ-ACK codebook is determined according to the first DCI of the M DCIs.
  • the terminal device can generate a HARQ-ACK codebook according to the M DCIs, and the HARQ-ACK codebook contains the terminal
  • the feedback information of the device for the first data, and the first position of the feedback information in the HARQ-ACK codebook may be determined according to the first DCI in the M DCIs, specifically, it may be determined according to the DAI field in the first DCI OK, so as to effectively save uplink resource overhead.
  • the DAI field includes a first DAI and a second DAI; each of the M DCIs includes the same value of the DAI field, including: the M The value of the first DAI included in each of the DCIs is the same, and the value of the second DAI included in each of the M DCIs is the same; wherein, the value of the first DAI is used for Indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring occasion and the cell where the first DCI is located.
  • the second DAI value is used to indicate that the terminal equipment is scheduled until the PDCCH monitoring occasion where the first DCI is located. The total number of times.
  • the DAI field includes the first DAI; each of the M DCIs includes the same value of the DAI field, including: The value of the first DAI included in each DCI is the same; where the value of the first DAI is used to indicate the cumulative count value of the number of times the terminal device is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located.
  • the first DCI is the DCI with the highest position in the time domain among the M DCIs; or, the time unit indicated by the first DCI for sending feedback information of the first data Is the first time unit indicated by the DCI in the M DCIs for sending the feedback information of the first data; or, the time-frequency resource indicated by the first DCI for sending the feedback information of the first data
  • the size of is the largest among the time-frequency resources used to send the feedback information of the first data indicated by the DCI in the M DCIs; or the size of the feedback information used to send the first data indicated by the first DCI
  • the size of the time-frequency resource is the smallest of the time-frequency resources indicated by the DCI in the M DCIs for sending the feedback information of the first data; or, the first DCI is carried on the first CORESET, and the first CORESET It is the CORESET with the smallest CORESET identifier among the CORESETs carrying the M DCIs.
  • the CORESET group in which the CORESET carrying the first DCI is located is the CORESET group with the smallest group identifier or the highest position in the time domain among the CORESET groups carrying the M DCIs.
  • the M DCIs are carried in L CORESET groups, and the L is an integer greater than or equal to 2; the method further includes: the network device sends a first indication to the terminal device Information, the first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (for example, a chip or a circuit) configured in the terminal device.
  • the method may include: a terminal device receives M DCIs from a network device, each DCI of the M DCIs is used to schedule N transmissions of the first data, and the DAI included in each DCI of the M DCIs
  • the values of the fields are all the same, the M is an integer greater than or equal to 2, and the N is a positive integer; the terminal device sends feedback information for the first data to the network device, and the feedback information is included in the HARQ-ACK codebook ,
  • the position of the feedback information in the HARQ-ACK codebook is determined according to the first DCI of the M DCIs.
  • the DAI field includes a first DAI and a second DAI; each of the M DCIs includes the same value of the DAI field, including: the M The value of the first DAI included in each of the DCIs is the same, and the value of the second DAI included in each of the M DCIs is the same; wherein, the value of the first DAI is When indicating the PDCCH monitoring timing and the cell where the first DCI is located, the cumulative count value of the number of times the terminal equipment is scheduled, the value of the second DAI is used to indicate the PDCCH monitoring timing until the first DCI is located, the terminal equipment The total number of times that have been scheduled.
  • the DAI field includes the first DAI; the value of the DAI field included in each of the M DCIs is the same, including: The value of the first DAI included in each DCI is the same; where the value of the first DAI is used to indicate the cumulative count of the number of times the terminal equipment is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located .
  • the first DCI is the DCI with the highest position in the time domain among the M DCIs; or, the time unit indicated by the first DCI for sending feedback information of the first data Is the first time unit indicated by the DCI in the M DCIs for sending the feedback information of the first data; or, the time-frequency resource indicated by the first DCI for sending the feedback information of the first data
  • the size of is the largest among the time-frequency resources indicated by the DCI in the M DCIs for sending the feedback information of the first data; or the first DCI indicates the time-frequency resources for sending the feedback information of the first data
  • the size of the resource is the smallest among the time-frequency resources indicated by the DCI in the M DCIs for sending the feedback information of the first data; or, the first DCI is carried on the first CORESET, and the first CORESET is the bearer Among the CORESETs of the M DCIs, the CORESET identifies the smallest CORESET.
  • the CORESET group in which the CORESET carrying the first DCI is located is the CORESET group with the smallest group identifier or the highest position in the time domain among the CORESET groups carrying the M DCIs.
  • the M DCIs are carried in L CORESET groups, and the L is an integer greater than or equal to 2; the method further includes: the terminal device receives the first data from the network device. Indication information, where the first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the network device.
  • the method may include: a network device sends M DCIs to a terminal device, each of the M DCIs is used to schedule N transmissions of the first data, and the M DCIs include a first DCI and a second DCI, The value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI.
  • the M is an integer greater than or equal to 2, and the N is a positive integer; the network device receives the data from the terminal device For the feedback information of the first data, the feedback information is included in the HARQ-ACK codebook, the feedback information occupies M positions in the HARQ-ACK codebook, and each of the M positions corresponds to the M One of the DCIs.
  • the terminal device may send M pieces of feedback information for the first data, and the M pieces of feedback information are included in the same In one HARQ-ACK codebook, the M pieces of feedback information respectively correspond to M DCIs. In this way, the reliability of the feedback information is effectively enhanced.
  • the DAI field includes a first DAI and a second DAI; the value of the DAI field in the first DCI is the same as the value of the DAI field in the second DCI
  • the difference includes: the value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI, and the value of the second DAI in the first DCI is different from the value of the second DAI in the second DCI
  • the value of the first DCI is different; the value of the first DAI in the first DCI is used to indicate the cumulative count value of the number of times the terminal device is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located; in the second DCI
  • the value of the first DAI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring occasion and the cell where the second DCI is located; the value of the second DAI in the first DCI is used to indicate the end of the second DCI A PDCCH monitoring occasion where the DCI is
  • the DAI field includes the first DAI; the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, including: The value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI; wherein, the value of the first DAI in the first DCI is used to indicate the PDCCH monitoring timing until the first DCI is located The cumulative count value of the number of times the terminal equipment is scheduled and the cell where the terminal equipment is located; the value of the first DAI in the second DCI is used to indicate the cumulative number of times the terminal equipment is scheduled until the PDCCH monitoring timing and the cell where the second DCI is located Count value.
  • the M DCIs are carried in the L control resource set CORESET group, and the L is an integer greater than or equal to 2; the method further includes: the network device sends the first An indication information, the first indication information indicating that the feedback information in the L CORESET groups are fed back together.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (for example, a chip or a circuit) configured in the terminal device.
  • the method may include: a terminal device receives M DCIs from a network device, each DCI of the M DCIs is used to schedule N transmissions of the first data, and the M DCIs include a first DCI and a second DCI , The value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, the M is an integer greater than or equal to 2, and the N is a positive integer; the terminal device sends to the network device For the feedback information of the first data, the feedback information is included in the HARQ-ACK codebook, the feedback information occupies M positions in the HARQ-ACK codebook, and each of the M positions corresponds to the M One of the DCIs.
  • the DAI field includes a first DAI and a second DAI; the value of the DAI field in the first DCI is the same as the value of the DAI field in the second DCI
  • the difference includes: the value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI, and the value of the second DAI in the first DCI is different from the value of the second DAI in the second DCI
  • the value of the first DCI is different; the value of the first DAI in the first DCI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located;
  • the value of a DAI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring occasion and the cell where the second DCI is located; the value of the second DAI in the first DCI is used to indicate the end of the first DCI
  • the PDCCH monitoring occasion where the DCI is located is the total number
  • the DAI field includes the first DAI; the value of the downlink allocation index DAI field in the first DCI is different from the value of the DAI field in the second DCI , Including: the value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI; wherein, the value of the first DAI in the first DCI is used to indicate the end of the first DCI PDCCH monitoring timing and cell, the cumulative count of the number of times the terminal equipment is scheduled; the value of the first DAI in the second DCI is used to indicate the PDCCH monitoring timing and the cell where the second DCI is located, and the terminal equipment is scheduled The cumulative count value of the number of times.
  • the M DCIs are carried in the L control resource sets CORESET group, and the L is an integer greater than or equal to 2; the method further includes: the terminal device receives the information from the network device The first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the method further includes: the terminal device divides the first DCI and the second DCI by the DAI domain The remaining bit fields outside are combined and decoded.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the network device.
  • the method may include: the network device sends M DCIs to the terminal device, each of the M DCIs is used to schedule N transmissions of the first data, and the M DCIs correspond to L HARQ-ACK codebooks,
  • the M DCIs include a first DCI and a second DCI, the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, and the M and L are greater than or equal to 2
  • An integer the N is a positive integer; the network device receives L HARQ-ACK codebooks from the terminal device, and each HARQ-ACK codebook includes feedback information for the first data.
  • the terminal device can send L HARQ-ACK codebooks, and each HARQ-ACK codebook in the L HARQ-ACK codebooks Both include feedback information for the first data, so that the reliability of the feedback information can be effectively enhanced.
  • at least two of the M DCIs have different values for the DAI indication field of the DCI, it is possible to prevent the problem of ambiguity in the DAI indication during the generation process of the HARQ-ACK codebook, and to ensure that the network equipment and the terminal equipment Have a consistent understanding of the number of bits of feedback information.
  • the M DCIs corresponding to L HARQ-ACK codebooks include: the M DCIs are carried in L CORESET groups, and each CORESET group corresponds to one HARQ-ACK code Book.
  • the DAI field includes a first DAI and a second DAI; the value of the DAI field in the first DCI and the value of the DAI field in the second DCI
  • the difference includes: the value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI, and the value of the second DAI in the first DCI is different from the value of the second DAI in the second DCI
  • the value of the first DCI is different; the value of the first DAI in the first DCI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located;
  • the value of a DAI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring time and the cell where the second DCI is located; the value of the second DAI in the first DCI is used to indicate the end of the first DCI
  • the PDCCH monitoring occasion where the DCI is located is the total number of times the
  • the DAI field includes the first DAI; the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, including: The value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI; wherein, the value of the first DAI in the first DCI is used to indicate the PDCCH monitoring timing until the first DCI is located The cumulative count value of the number of times the terminal equipment is scheduled and the cell where the terminal equipment is located; the value of the first DAI in the second DCI is used to indicate the cumulative number of times the terminal equipment is scheduled until the PDCCH monitoring timing and the cell where the second DCI is located Count value.
  • the method further includes: the network device sends second indication information to the terminal device, the second indication information instructing the feedback information corresponding to the L CORESET groups to be fed back respectively.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (such as a chip or a circuit) configured in the terminal device.
  • the method may include: a terminal device receives M DCIs from a network device, each DCI of the M DCIs is used to schedule N transmissions of the first data, and the M DCIs correspond to L HARQ-ACK codebooks
  • the M DCIs include a first DCI and a second DCI, the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, and the M and L are greater than or equal to 2.
  • An integer of, the N is a positive integer; the terminal device sends L HARQ-ACK codebooks to the network device, and each HARQ-ACK codebook includes feedback information for the first data.
  • the M DCIs corresponding to L HARQ-ACK codebooks include: the M DCIs are carried in L CORESET groups, and each CORESET group corresponds to one HARQ-ACK code Book.
  • the DAI field includes a first DAI and a second DAI; the value of the DAI field in the first DCI and the value of the DAI field in the second DCI
  • the difference includes: the value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI, and the value of the second DAI in the first DCI is different from the value of the second DAI in the second DCI
  • the value of the first DCI is different; the value of the first DAI in the first DCI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located;
  • the value of a DAI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring time and the cell where the second DCI is located; the value of the second DAI in the first DCI is used to indicate the end of the first DCI
  • the PDCCH monitoring occasion where the DCI is located is the total number of times the
  • the DAI field includes the first DAI; the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, including: The value of the first DAI in the first DCI is different from the value of the first DAI in the second DCI; wherein the value of the first DAI in the first DCI is used to indicate the end of the PDCCH monitoring where the first DCI is located Timing and cell, the cumulative count of the number of times the terminal equipment is scheduled; the value of the first DAI in the second DCI is used to indicate the PDCCH monitoring timing and cell where the second DCI is located, and the number of times the terminal equipment is scheduled Cumulative count value.
  • the method further includes: the terminal device receives second indication information from the network device, the second indication information instructing the feedback information corresponding to the L CORESET groups to be fed back respectively.
  • the method further includes: the terminal device converts the remaining ones of the first DCI and the second DCI except for the DAI domain The bit field is combined and decoded.
  • an embodiment of the present application provides a communication device, which may also have the function of a network device in any possible design of the foregoing first aspect or the first aspect, or may have the capability to implement the foregoing third aspect or the first aspect.
  • the function of a network device in any possible design of the three aspects, or the function of a network device in any possible design of the fifth aspect or the fifth aspect, or the seventh aspect or the seventh aspect The function of a network device in any possible design.
  • the device may be a network device or a chip included in the network device.
  • the device has the function of realizing the terminal device in any possible design of the foregoing second aspect or the second aspect, or has the function of realizing the terminal device in any possible design of the foregoing fourth aspect or the fourth aspect, or It has the function of realizing the terminal device in any possible design of the aforementioned sixth aspect or the sixth aspect, or has the function of realizing the terminal device in any possible design of the aforementioned eighth aspect or the eighth aspect.
  • the device may be a terminal device or a chip included in the terminal device.
  • the functions of the above-mentioned communication device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units or means corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect or any of the first aspects of the design.
  • the processing module is configured to support the device to perform the corresponding function of the network device in the first aspect
  • the transceiver module is used to support communication between the device and other communication devices. For example, when the device is a network device, it can send M DCIs to the terminal device and receive feedback information from the terminal device.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the device.
  • the processing module may be a processor
  • the transceiving module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute computer program instructions stored in the memory, so that the device executes the method in any possible design of the first aspect or the first aspect, or executes the second aspect or the second aspect.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device or terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , Enabling the chip system to implement the method in any possible design of the first aspect or the first aspect, or implement the method in any possible design of the second aspect or the second aspect, or implement the method in the foregoing first aspect
  • the method in any possible design of the third aspect or the third aspect, or the method in any possible design of the foregoing fourth aspect or the fourth aspect, or the realization of any of the foregoing fifth aspect or the fifth aspect A method in a possible design, or a method in a possible design that implements the sixth aspect or the sixth aspect, or a method in a possible design that implements the seventh aspect or the seventh aspect , Or implement the eighth aspect or any one of the possible design methods of the eighth aspect.
  • the chip system further includes an interface circuit, which is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes any of the above-mentioned first aspect or the first aspect.
  • a method in a possible design, or a method in any possible design of the second aspect or the second aspect, or a method in any possible design of the third aspect or the third aspect Or implement the method in any possible design of the foregoing fourth aspect or the fourth aspect, or implement the method in any possible design of the foregoing fifth aspect or the fifth and fourth aspects, or implement the foregoing sixth aspect Or any one of the possible design methods of the sixth aspect, or implement any one of the above-mentioned seventh aspect or the seventh aspect, or implement any one of the above-mentioned eighth aspect or the eighth aspect Possible design methods.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • the computer executes the
  • an embodiment of the present application provides a communication system, which includes the network device and at least one terminal device described in the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of scheduling downlink data for terminal equipment in an embodiment of the application
  • FIG. 3 is a schematic diagram of sending multiple repeated PDCCHs provided in an embodiment of the application.
  • FIG. 4 is a schematic diagram of CORESET provided in an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for sending feedback information according to an embodiment of the application
  • FIG. 6 is a specific example of a method for sending feedback information provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of another method for sending feedback information according to an embodiment of the application.
  • FIG. 8 is a specific example of another method for sending feedback information provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of another method for sending feedback information according to an embodiment of the application.
  • FIG. 10 is a specific example of yet another method for sending feedback information provided by an embodiment of the application.
  • FIG. 11 is a schematic flowchart of yet another method for sending feedback information according to an embodiment of the application.
  • FIG. 12 is a specific example of yet another method for sending feedback information provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is another schematic structural diagram of a communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
  • LTE long term evolution
  • FDD frequency division duplex
  • NR new radio
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the communication system includes a network device and at least one terminal device (terminals 1 to 6 shown in FIG. 1).
  • the network device can communicate with at least one terminal device (such as the terminal device 1) through uplink (UL) and downlink (DL).
  • UL uplink
  • DL downlink
  • the network device in FIG. 1 may be an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • 4G 4th generation
  • 5G 5th generation
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 1 can also correspond to the access network equipment in the future mobile communication system.
  • the embodiment of the present application does not limit the number of network devices and the number of terminal devices included in the communication system. .
  • the network device in FIG. 1 and each of some or all of the terminal devices in at least one terminal device can implement the technical solutions provided in the embodiments of the present application.
  • the various terminal devices shown in FIG. 1 are only partial examples of terminal devices, and it should be understood that the terminal devices in the embodiments of the present application are not limited thereto.
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air ( For example, airplanes, balloons, satellites, etc.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device can be a mobile phone or a tablet Computers, computers with wireless transceiver functions, mobile Internet equipment, wearable devices, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and intelligence Wireless terminals in the power grid, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Terminal devices may sometimes be referred to as user equipment (user equipment, UE), mobile stations, remote stations, etc.
  • the embodiments of the present application do not limit the specific technology, device form, and name adopted by the terminal device.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable device is not only a kind of hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device in the embodiments of the present application may also be an on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units.
  • the vehicle passes through the built-in on-board module, on-board module, and Components, on-board chips, or on-board units can implement the method of the present application.
  • Network equipment also called access network equipment, is a device in the network used to connect terminal equipment to the wireless network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a RAN node (or device).
  • the network equipment may be an evolved NodeB (eNodeB) in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A), or it may be a next generation node in a 5G NR system.
  • eNodeB evolved NodeB
  • LTE-A evolved LTE system
  • 5G NR 5G NR
  • B gNodeB
  • TRP transmission reception point
  • BBU baseband unit
  • AP WiFi access point
  • CU central unit
  • DU distributed unit
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • DU mainly supports radio link control (RLC) layer protocol, medium access control (MAC) layer protocol and physical layer protocol.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the descriptions of “first” and “second” do not limit the objects to be different.
  • the network device may send a PDCCH to the terminal device, and the PDCCH carries the DCI.
  • the PDCCH can be used to schedule the PDSCH for the terminal equipment, and the PDSCH carries the downlink data sent to the terminal equipment.
  • the terminal device may receive the DCI carried in the PDCCH, determine the time unit where the PDSCH is located and the specific time domain resources occupied by the PDSCH in the time unit according to the time domain resource indication information in the DCI, and then receive the downlink data carried in the PDSCH.
  • the time domain resource indication information can be used to indicate a row in a time domain resource table.
  • Each row in the time domain resource table includes an indication information K0 and a starting and length indication value (SLIV) indication information.
  • the indication information K0 is used to indicate the number of time units that differ between the time unit where the PDSCH is located and the time unit where the PDCCH is located; Start symbol and length.
  • the time unit is a slot
  • the value of the indication information K0 is 1, and if the time unit where the PDCCH is located is slot(n), then the time unit where the PDSCH is located is slot(n+1).
  • the SLIV indication information indicates that the PDSCH starts from the second symbol and has a length of 2 symbols, it means that the PDSCH occupies the second symbol and the third symbol in slot(n+1).
  • the time unit may be a time slot (slot) or a sub-slot (sub-slot), which is not specifically limited.
  • one slot includes 14 symbols
  • the extended cyclic prefix one slot includes 12 symbols.
  • the sub-slot may include 2 symbols or 7 symbols.
  • the sub-slots can also be called mini-slots.
  • the number of symbols included in one sub-slot is less than the number of symbols included in the time slot, and the specific number of symbols included in one sub-slot can be indicated by high-level signaling sent by the network device. After receiving the high-level signaling instructions, the terminal equipment can know the number of symbols included in a sub-slot.
  • high-level signaling can indicate that the number of symbols in a sub-slot is 2 symbols or 7 symbols; or it can indicate a slot as 2 symbols multiplied by 7, indicating that a slot contains 7 sub-slots, and each sub-slot
  • the number of symbols in a slot is 2 symbols; or one slot can be indicated as 7 symbols multiplied by 2, indicating that a slot includes 2 sub-slots, and the number of symbols in each sub-slot is 7 symbols.
  • the place where "time slot" appears can be replaced by "sub-time slot”.
  • the symbols or time-domain symbols mentioned in the embodiments of this application are all orthogonal frequency division multiplexing (OFDM) symbols.
  • the terminal device After receiving the downlink data carried in the PDSCH, the terminal device can send feedback information to the network device according to the result of data decoding.
  • the feedback information may be an acknowledgement (acknowledgement, ACK) used to indicate a successful data reception, or a negative acknowledgement (NACK) used to indicate a failure of data reception.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the terminal device can also determine the time unit for sending the feedback information according to the indication information K1 in the DCI.
  • the indication information K1 is used to indicate the number of time units that differ between the time unit for sending the feedback information and the time unit for receiving the PDSCH. . This means that the timing relationship of n+K1 needs to be satisfied between the terminal device receiving the downlink data and sending the feedback information to the network device. In other words, if the terminal device receives the PDSCH in slot(n), the terminal device should send feedback information to the network device in slot(n+K1).
  • the indication information K1 may indicate a value in a K1 set, and the K1 set may be configured by a network device through high-level signaling or may also be predefined. For example, assuming that the network device configuration K1 set is ⁇ 1,2,3,4,5,6,7,8 ⁇ , the indication information K1 in the DCI occupies 3 bits, then if the indication information K1 indicates "001", it can indicate The value of K1 is 2.
  • the high-level signaling refers to signaling sent by a high-level protocol layer
  • the high-level protocol layer may include at least one protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: MAC layer, RLC layer, PDCP layer, RRC layer, and non-access stratum (NAS).
  • the network equipment can also indicate the number of PDSCH repetitions through high-level signaling. That is, the DCI carried in one PDCCH can schedule multiple repeated PDSCHs. In other words, one DCI can schedule multiple transmissions of one PDSCH. These repeated PDSCHs carry the same downlink data sent to the terminal equipment.
  • the terminal device may send feedback information to the network device according to the decoding result of the downlink data carried in the multiple PDSCHs. That is, multiple repeated PDSCHs can correspond to the same feedback information. If the terminal device successfully decodes the downlink data carried by one or more of the multiple repeated PDSCHs, it can feed back an ACK to the network device. If the decoding of the downlink data carried by the multiple repeated PDSCHs fails, the NACK can be fed back to the network device.
  • multiple repeated PDSCHs can occupy consecutive time units in the time domain, and each PDSCH appears only once in a time unit, and each PDSCH is within a time unit. Same time domain location.
  • the time unit for the terminal device to send the feedback information to the network device is determined according to the last PDSCH among the multiple repeated PDSCHs.
  • the terminal device can receive the first PDSCH in slot(n+1), receive the second PDSCH in slot(n+2), and then send feedback information to the network device in slot(n+3) .
  • the terminal device does not send feedback information one by one, but may generate a hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook from multiple feedback information to be sent together .
  • HARQ-ACK codebook includes a group of consecutive bits obtained by concatenating the ACK or NACK that needs to be fed back in a time unit.
  • the network device may also repeatedly send multiple PDCCHs, and multiple DCIs carried in the multiple PDCCHs repeatedly sent may be used to schedule the same PDSCH or multiple repeated PDSCHs.
  • the multiple PDCCHs that are repeatedly sent may be repeated in the time domain and/or the frequency domain. Wherein, repetition in the time domain may mean that multiple PDCCHs are repeated at different PDCCH monitoring occasions in the time domain; repetition in the frequency domain may mean that multiple PDCCHs are repeated at different frequency domain resource positions in the frequency domain.
  • the network device repeatedly sends two PDCCHs at different PDCCH monitoring occasions in the time domain, and the DCI carried in each PDCCH can be used for scheduling in the time domain.
  • Two repeated PDSCHs in the example shown in part (b) of Figure 3, the network device repeatedly sends two PDCCHs on different frequency domain resources in the frequency domain, and each PDCCH is used to schedule two PDCCHs in the time domain.
  • Duplicate PDSCH in this application, the PDCCH scheduling PDSCH is equivalent to the DCI scheduling PDSCH carried in the PDCCH.
  • the multiple PDCCHs that are repeatedly sent may also belong to different control resource set (CORESET) groups.
  • CORESET control resource set
  • the network device may send the X1th indication information to the terminal device.
  • the X1th indication information indicates one or more CORESETs.
  • the X1th indication information may contain the following information: the identification of each CORESET, the identification of each CORESET The number of time-domain symbols (for example, one symbol, two symbols, or three symbols can be selected), the frequency-domain resource location of each CORESET, etc.
  • the terminal device can determine the identity of each CORESET in the multiple CORESETs, the frequency domain resource location of each CORESET, and the number of time domain symbols of each CORESET according to the received X1th indication information.
  • the network device may also send X2-th indication information to the terminal device, where the X2-th indication information indicates one or more search spaces.
  • the X2th indication information may include at least one of the following information: the identification of each search space, the identification of the CORESET associated with each search space, and the period of each search space in the time domain, Bias, and blind detection patterns.
  • the period can be, for example, 2 slots; the offset refers to which slot in the period, such as the second; the pattern indicates the specific positions in the determined slot for blind detection, which can be indicated by the 14-bit bitmap bitmap.
  • the indication 1010101010101010 means that blind PDCCH detection needs to be started at the positions of the 1, 3, 5, 7, 9, 11, and 13 symbols in a slot.
  • time-domain positions are called the time-domain starting positions of the search space .
  • the terminal device can determine the identities of the multiple search spaces and the time domain starting positions of the multiple search spaces according to the received X2th indication information. Since each search space is associated with a CORESET, the time domain start position of the search space is determined, and the time domain start position of CORESET is determined. The start position of the time domain position of CORESET is the search associated with the CORESET After the time domain starting position of the space and the starting position of the CORESET time domain are determined, combined with the number of CORESET symbols, the time domain position of CORESET can be determined, and the time domain position of CORESET can also be called the PDCCH monitoring opportunity.
  • the number of time-domain symbols of CORESET p is 3, the search space s is configured with a period of 2 slots, the offset is the second, and the 14-bit bitmap is 10001000100000.
  • the search space s is associated with CORESET p, then It can be determined that the time-domain starting position of the search space is the first, fifth, and ninth symbol of the second slot in every two slots, and the starting position of the time-domain position of CORESET p is every 2
  • the first, fifth, and ninth symbols in the second slot in each slot, and the number of symbols in CORESET p is 3 symbols, then the time domain position of CORESET is that of the second slot in every two slots Symbols 1-3, 5-7, 9-11.
  • the PDCCH monitoring timings are in slot 1 and slot 3.
  • Each slot has 3 PDCCH monitoring timings, and each PDCCH monitoring timing has 3 symbols.
  • the terminal equipment can perform blind detection at the determined PDCCH monitoring timing. After receiving the PDCCH, the terminal equipment can determine the time-frequency position of the CORESET or the PDCCH received in which CORESET the time-frequency position of the PDCCH is received. Determine which CORESET the PDCCH bears on, that is, determine which CORESET bears the DCI carried by the PDCCH, or determine which CORESET the PDCCH belongs to, or determine which CORESET the DCI carried by the PDCCH belongs to, or the other way around, the CORESET Carry the PDCCH or the DCI.
  • the network device may send the X1th indication information to the terminal device.
  • the X1th indication information indicates one or more CORESETs.
  • the X1th indication information may contain the following information:
  • the group corresponding to the CORESET group where each CORESET is located Identification (denoted as CORESETGroupIndex).
  • the CORESET group may also be referred to as a CORESET pool. Therefore, the group identifier corresponding to the CORESET group where each CORESET is located may also be referred to as the pool identifier (denoted as CORESETPoolIndex) of the CORESET pool where each CORESET is located.
  • the terminal device receives the X1th indication information, and therefore determines the group ID corresponding to the CORESET group in which each CORESET of the multiple CORESETs is located.
  • the candidate values of the group identifier can be 0 to W-1, where W represents several CORESET groups, which are CORESET group 0 to CORESET group W-1, respectively, and W is an integer greater than or equal to 2. Because a CORESET can only belong to one CORESET group, a CORESET group can include multiple CORESETs.
  • the network device indicates 3 CORESETs for the terminal device, and their identifiers are 1, 2, and 3 respectively.
  • the transmission configuration indication (TCI) information involved in the embodiments of the present application is used to indicate quasi co-location (QCL) information of a signal or channel.
  • the channel may be a PDCCH or a PDSCH
  • the signal may be a channel state information reference signal (channel state information-reference signal, CSI-RS), a demodulation reference signal (demodulation reference signal, DMRS), and a tracking reference signal One or more of (tracking reference signal, TRS).
  • the QCL information refers to the spatial correlation parameters (also referred to as spatial correlation characteristics) of downlink signals (such as PDCCH/PDSCH/CSI-RS/DMRS/TRS). Quasi co-location can also be referred to as quasi co-location or co-location.
  • QCL information may also be referred to as QCL hypothesis information.
  • the QCL information can be used to assist in describing the terminal equipment receiving beamforming information and the receiving process.
  • TCI information refers to the quasi co-located QCL relationship between the reference signal included in the TCI and the channel or signal. It is mainly used to indicate the relationship between the spatial characteristic parameters and the reference signal included in the TCI when the signal or channel is received. Information such as spatial characteristic parameters are the same, similar or similar.
  • a TCI state can be configured with one or more reference signals that are referenced, and the associated QCL type (QCL type).
  • QCL types can be divided into four categories: A/B/C/D, which are different combinations or choices of ⁇ Doppler shift, Doppler spread, average delay, delay spread, and spatial Rx parameter ⁇ .
  • the TCI status includes QCL information, or the TCI status is used to indicate QCL information.
  • the X1th indication information for a certain CORESET may indicate the TCI of each CORESET and indicate the reference signal of the CORESET QCL.
  • the transmission configuration indication TCI adopted by the PDSCH can be indicated by the DCI scheduling the PDSCH.
  • the network device configures a TCI table for the terminal device, and a row in the TCI table may include two TCI states, for example, TCI1 and TCI2, respectively.
  • the TCI used for the first transmission and the second transmission are TCI1 and TCI2 respectively; if the DCI schedules 4 transmissions, the 4 PDSCHs are used
  • the TCI can be TCI1, TCI2, TCI1, TCI2, or TCI1, TCI1, TCI2, TCI2; if the DCI schedules 8 transmissions, the TCI used by the 8 PDSCHs can be TCI1, TCI2, TCI1, TCI2, TCI1, TCI2, TCI1, TCI2 or TCI1, TCI1, TCI2, TCI2, TCI1, TCI1, TCI2, TCI2.
  • a row in the TCI table may also include one TCI state, for example, it may be TCI1. If the row is indicated in the DCI, and the DCI schedules PDSCH N transmissions, the TCIs used by the N PDSCHs are all TCI 1.
  • multiple DCIs carried in multiple PDCCHs that are repeatedly sent may correspond to one or multiple HARQ-ACK codebooks.
  • FIG. 5 is a schematic diagram of a method for sending feedback information according to an embodiment of this application.
  • the method specifically includes:
  • Step S501 The network device sends M DCIs to the terminal device.
  • Each DCI of the M DCIs is used to schedule N transmissions of the first data.
  • the M DCIs correspond to L HARQ-ACK codebooks, and M, L Is an integer greater than or equal to 2, and N is a positive integer.
  • the network device sending M DCIs to the terminal device can be understood as the network device sending M PDCCHs to the terminal device, where each PDCCH carries one DCI of the M DCIs.
  • the M DCIs are repeated DCIs, that is, the network device sends M repeated PDCCHs to the terminal device, and each PDCCH carries one DCI of the M repeated DCIs.
  • the value of the indication information K0 in the M DCIs may be the same.
  • the time unit where one of the M PDCCHs is located can be used as the reference point of K0 to determine the time unit where the PDSCH is located.
  • the time unit of the PDCCH with the frontmost or the backmost position in the time domain among the M PDCCHs may be used as the reference point of K0.
  • each DCI in the M DCIs is used to schedule N transmissions of the first data, which can be understood as when the value of N is 1, each PDCCH in the M PDCCHs is used to schedule the same PDSCH The PDSCH is used to carry the first data, so as to realize the scheduling of one transmission of the first data.
  • the value of N is greater than 1
  • each of the M PDCCHs is used to schedule N repeated PDSCHs, and each of the N repeated PDSCHs is used to carry the first data, thereby realizing scheduling N transmissions of the first data.
  • One DCI of the 2 DCIs is used to schedule N transmissions of the first data, and the other DCI of the 2 DCIs is also used To schedule N transmissions of the first data.
  • M DCI corresponding to L HARQ-ACK codebooks refers to a many-to-many relationship between M DCIs and L HARQ-ACK codebooks.
  • each DCI in the M DCIs can correspond to one HARQ-ACK codebook, and the HARQ-ACK codebooks corresponding to different DCIs in the M DCIs may be the same or different, which is not limited.
  • the M DCIs corresponding to L HARQ-ACK codebooks may have the following multiple possible implementation manners.
  • M DCIs corresponding to L HARQ-ACK codebooks may be: the M DCIs are carried in L CORESET groups, and each CORESET group corresponds to one HARQ-ACK codebook, and L The CORESET group has a total of L HARQ-ACK codebooks. Since each DCI is carried in one CORESET group among the L CORESET groups, each DCI is made to correspond to one HARQ-ACK codebook among the L HARQ-ACK codebooks.
  • the HARQ-ACK codebook corresponding to a DCI refers to the HARQ-ACK codebook corresponding to the CORESET group that carries the DCI.
  • a CORESET group may include one or more CORESETs.
  • M DCIs carried in L CORESET groups may mean that M DCIs are carried in CORESETs included in L CORESET groups, or The CORESETs carrying the M DCIs belong to L CORESET groups.
  • the network equipment configures 5 CORESETs for the terminal equipment, and the corresponding identifiers are 0-4, which are recorded as CORESET 0 to CORESET 4.
  • CORESET 0 to CORESET 2 belong to CORESET group
  • CORESET 3 to CORESET 4 belong to CORESET group 1.
  • 3 of the 4 DCIs are carried in CORESET 0 to CORESET2 respectively, which means that the 3 DCIs are carried in CORESET group 0
  • the other DCI is carried in CORESET 3, which means that the DCI is carried in CORESET group 1, so that 4 DCIs are carried in 2 CORESET groups.
  • the HARQ-ACK codebook corresponding to a CORESET group refers to the feedback information of the data scheduled by the DCI received from one or more CORESETs included in the CORESET group. If it needs to be fed back in the same time unit, the Their feedback information is contained in the same HARQ-ACK codebook and sent, and this HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group.
  • the terminal device can generate a corresponding HARQ-ACK codebook for each CORESET group of the L CORESET groups to which the CORESETs used to carry the M DCIs belong.
  • a network device configures 5 CORESETs for terminal devices, and the corresponding identifiers are 0-4, which are recorded as CORESET 0 to CORESET 4.
  • CORESET 0 to CORESET 2 belong to CORESET group
  • CORESET 3 to CORESET 4 belong to CORESET group 1. If one DCI is received in CORESET 0, CORESET 1, and CORESET 2, and each of the three DCIs indicates that the feedback information of the scheduled data is fed back in slot(n), then in slot(n), Since these 3 DCIs are carried on the same CORESET group, the feedback information of the data scheduled by these 3 DCIs will be included in the same HARQ-ACK codebook for transmission.
  • This HARQ-ACK codebook corresponds to the CORESET group 0 HARQ-ACK codebook.
  • each DCI of the M DCIs can be indicated by the indication information K1
  • the feedback information can generate a HARQ-ACK codebook. Therefore, M DCIs corresponding to L HARQ-ACK codebooks can also be that the indicated time unit for sending feedback information is the feedback information of the data scheduled by one or more DCIs in the same time unit.
  • the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the one or more DCIs.
  • the M DCIs indicate a total of L time units for sending feedback information
  • the terminal device may generate a corresponding HARQ-ACK codebook for each of the L time units.
  • the terminal device may generate a HARQ-ACK codebook in the first time unit, and the HARQ-ACK code This is the HARQ-ACK codebook corresponding to the DCI, and the HARQ-ACK codebook includes the feedback information of the data scheduled by the DCI; if the other DCI in the M DCIs indicates the time unit for sending the feedback information is The second time unit, the terminal device can also generate another HARQ-ACK codebook in the second time unit, and the other HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the other DCI, and the The other HARQ-ACK codebook includes the feedback information of the data scheduled by the other DCI.
  • the time unit may refer to a time slot or a sub-slot.
  • the specific method of generating the HARQ-ACK codebook in each time unit please refer to the description in Chapter 9 of the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) technical specification (TS) 38.213.
  • each DCI of the M DCIs can also be indicated by priority indication information
  • the priority of the feedback information used to send its scheduled data is required in the same time unit.
  • the sent feedback information of the same priority can generate a HARQ-ACK codebook. Therefore, M DCIs corresponding to L HARQ-ACK codebooks can also be that the feedback information of the data scheduled by one or more DCIs with the same priority of the feedback information indicated in the same time unit is in the same HARQ -Send in the ACK codebook, the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the one or more DCIs.
  • the terminal device can, within each time unit indicated by the M DCIs for sending feedback information, for each priority of the feedback information indicated by each DCI that needs to send the feedback information in the time unit, Generate a corresponding HARQ-ACK codebook respectively. After considering various combinations of the time units indicated by the M DCIs for sending feedback information and the priority of the indicated feedback information, the terminal device generates a total of L HARQ-ACK codebooks.
  • the M DCIs can indicate the priority of the L feedback information in total, and the terminal device can target each priority of the L feedback information. Generate a corresponding HARQ-ACK codebook respectively.
  • the terminal device can respond to Priority 0 generates a HARQ-ACK codebook, the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the DCI, and the HARQ-ACK codebook includes the feedback information of the data scheduled by the DCI; if M Another DCI in the DCI indicates that the time unit used to send feedback information is also the first time unit, and indicates that the priority of the feedback information is priority 1, then the terminal device can also target priority 1 in the first time unit.
  • the other HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the other DCI, and the other HARQ-ACK codebook includes the data scheduled by the other DCI Feedback.
  • the terminal device generates two HARQ-ACK codebooks for the two priorities in the first time unit, and the two HARQ-ACK codebooks respectively correspond to the two DCIs.
  • the specific method of generating the HARQ-ACK codebook corresponding to each priority within one time unit please refer to the description in Chapter 9 of the 3GPP protocol specification TS38.213.
  • the group identification used to send the feedback information of the scheduled data is required in the same time unit.
  • the sent feedback information of the same group identifier may generate a HARQ-ACK codebook, and the group identifier is used to indicate to which feedback group the feedback information of the data scheduled by the DCI belongs.
  • M DCIs corresponding to L HARQ-ACK codebooks can also be:
  • the feedback information of the data scheduled by one or more DCIs with the same indication of the feedback information group identifier is included in the same HARQ -Send in the ACK codebook
  • the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the one or more DCIs.
  • the terminal device can, within each time unit indicated by the M DCIs for sending feedback information, target each group ID of the group ID of the feedback information indicated by each DCI that needs to send the feedback information in the time unit, Generate a corresponding HARQ-ACK codebook respectively. Taking into account the various combinations of the time units for sending feedback information indicated by the M DCIs and the group identifiers of the indicated feedback information, the terminal device generates a total of L HARQ-ACK codebooks.
  • M DCIs can indicate a total of L feedback information group IDs, and the terminal device can generate one for each group ID of the L group IDs.
  • Corresponding HARQ-ACK codebook corresponds to the time units for sending feedback information indicated by M DCIs.
  • the terminal device can target The group ID 0 generates a HARQ-ACK codebook, the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the DCI, and the HARQ-ACK codebook includes the feedback information of the data scheduled by the DCI.
  • the terminal device can also target Group ID 1 generates another HARQ-ACK codebook, the other HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the other DCI, and the other HARQ-ACK codebook includes the other DCI scheduling Feedback information of the data.
  • the terminal device generates two HARQ-ACK codebooks for the two group identities in the first time unit, and the two HARQ-ACK codebooks respectively correspond to the two DCIs.
  • the group identifier of the feedback information may be referred to as the group identifier of the HARQ-ACK codebook.
  • M DCI corresponding to L HARQ-ACK codebooks may also have more possible implementation manners, and examples are not given here.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and/or N.
  • the values of M and/or N involved in the embodiments of the present application may also be predefined, and the predefined may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing or Pre-burning, etc., will not be described in detail below.
  • Step S502 The terminal device receives M DCIs from the network device.
  • Each of the M DCIs may also be used to indicate the time domain resource location of one scheduled PDSCH or N repeated PDSCHs.
  • the terminal device may receive N first data, that is, N copies of the first data, at the time domain resource location indicated by the DCI.
  • the terminal device may generate feedback information for the first data according to the decoding result of the N copies of the first data, and the feedback information may be ACK or NACK. If the terminal device decodes one or more of the N copies of the first data successfully, the feedback information is ACK; if the terminal device fails to decode the N copies of the first data, the feedback information is NACK.
  • Step S503 The terminal device sends feedback information of the first data to the network device, where the feedback information is included in the first HARQ-ACK codebook, and the first HARQ-ACK codebook is one of the L HARQ-ACK codebooks.
  • a HARQ-ACK codebook A HARQ-ACK codebook.
  • M DCIs can correspond to L HARQ-ACK codebooks.
  • the terminal device may include the feedback information for the first data in one of the L HARQ-ACK codebooks, instead of sending it in each HARQ-ACK codebook All the texts are sent, therefore, the uplink resource overhead can be effectively saved. That is, in the L HARQ-ACK codebooks, other HARQ-ACK codebooks other than the first HARQ-ACK codebook may not include feedback information for the first data.
  • the first HARQ-ACK codebook containing feedback information for the first data may be ,
  • the HARQ-ACK codebook corresponding to the first CORESET group, and the first CORESET group is one of the L CORESET groups.
  • the first CORESET group may be a CORESET group with the smallest group identifier or the frontmost position in the time domain among the L CORESET groups.
  • the time domain position of the CORESET group can be understood as the time domain position of the CORESET included in the CORESET group.
  • the CORESET group with the first time domain position may refer to the time domain position of the CORESET included in the L CORESET groups One of the top CORESET groups.
  • the time domain positions of the CORESET groups included in the K CORESET groups in the L CORESET groups are all the first, then the CORESET group with the smallest group identifier among the K CORESET groups can be determined as the first CORESET group, and K is An integer less than or equal to L. It is understandable that the time domain position of CORESET can be determined by the time domain parameters of the search space associated with it, where the time domain parameters may include period, offset, and pattern.
  • the group ID of the CORESET group where the CORESET carrying the first DCI 1 is located is 0, and the CORESET carrying the second DCI 1 is located If the group ID of the CORESET group is 1, then the CORESET group 0 with the smaller group ID is selected as the first CORESET group.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0, and the feedback information of the terminal device for the first data will be included in the HARQ-ACK codebook corresponding to CORESET group 0 and sent.
  • the group ID of the CORESET group where the CORESET carrying the first DCI 1 is located is 0, and the CORESET carrying the second DCI 1
  • the group ID of the CORESET group is 1, and the CORESET contained in CORESET group 0 and CORESET group 1 are both the first in the time domain, so at this time, CORESET group 0 with the smaller group ID is selected as the first CORESET group.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0, and the feedback information of the terminal device for the first data will be included in the HARQ-ACK codebook corresponding to CORESET group 0 and sent.
  • the first CORESET group may be the CORESET group where the first CORESET is located; wherein, when the TCIs used in the N transmissions of the first data are all the same, the TCI of the first CORESET is the same as that of the first CORESET.
  • N transmissions of one data use the same TCI, that is, the first CORESET refers to the CORESET of the CORESET carrying the M DCIs that has the same TCI as the TCI used for the N transmissions of the first data.
  • the TCI of the first CORESET is the same as the TCI used in the first or last transmission of the first data, that is, the first CORESET is It refers to the CORESET whose TCI of the CORESET in the CORESET carrying the M DCIs is the same as the TCI used in the first transmission or the last transmission of the first data.
  • each DCI of the M DCIs includes a TCI indicator field, and the TCI indicator field is used to indicate the TCI used for N transmissions of the first data.
  • the value of the TCI indication field in each DCI of the M DCIs is the same.
  • two DCIs 1 are repeated. It is assumed that the TCIs used for the N transmissions of the first data indicated to be scheduled in the two DCIs are all TCI1. If the TCI carrying the CORESET of the first DCI 1 is TCI1, and the TCI carrying the CORESET of the second DCI 1 is TCI2, then the CORESET carrying the first DCI 1 is selected as the first CORESET, and the CORESET where the CORESET is located is selected. Group 0 is used as the first CORESET group because the TCI of this CORESET is the same as the TCI used for the N transmissions of the first data scheduled.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0, and the feedback information of the terminal device for the first data will be included in the HARQ-ACK codebook corresponding to CORESET group 0 and sent.
  • two DCIs 1 are repeated, assuming that the two DCIs 1 indicate that the scheduled first data N transmissions use different TCIs, for example, two DCIs 1 indicate The first transmission of the scheduled first data uses TCI1, and the second transmission of the scheduled first data uses TCI2. If the TCI that carries the CORESET of the first DCI 1 is TCI1, and the TCI of the CORESET that carries the second DCI 1 is TCI2, then the TCI based on the first CORESET is the same as the TCI used in the first transmission of the first data.
  • the CORESET that carries the first DCI 1 is selected as the first CORESET, and the CORESET group 0 where the CORESET is located is selected as the first CORESET group, because the TCI of the CORESET is the same as the TCI used for the first transmission of the scheduled first data .
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0, and the feedback information of the terminal device for the first data will be included in the HARQ-ACK codebook corresponding to CORESET group 0 and sent.
  • the first HARQ-ACK codebook containing the feedback information for the first data may also be the HARQ-ACK codebook corresponding to the first DCI.
  • the HARQ-ACK codebook corresponding to the first DCI may be the HARQ-ACK codebook corresponding to the CORESET group where the CORESET carrying the first DCI is located, or may also be the HARQ-ACK codebook indicated in the first DCI for sending
  • the time unit may be a time slot or a sub-slot.
  • the first DCI may be the DCI with the highest position in the time domain among the M DCIs.
  • the first DCI 1 can be As the first DCI.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0 where the first DCI 1 is located.
  • the DCI with the lowest frequency domain position among the M DCIs can be used as the first DCI, or the CORESET identifier of the M DCIs is the smallest.
  • DCI serves as the first DCI.
  • the B is less than or equal to M integers.
  • the frequency The first DCI 1 with a lower position is used as the first DCI, or the first DCI 1 in CORESET1 may be used as the first DCI based on the principle of selecting the DCI with the smallest ID of the CORESET.
  • the first HARQ-ACK codebook is the HARQ-ACK codebook corresponding to CORESET group 0 where the first DCI1 is located.
  • the time unit for sending the feedback information of the first data indicated by the first DCI is the time unit for sending the feedback information of the first data indicated by the DCI in the M DCIs.
  • the frontmost among the time units, that is, the first DCI is the frontmost DCI indicated in the M DCIs for sending the feedback information of the first data.
  • two DCIs 1 are repeated. If the first DCI 1 indicates that the feedback information of the scheduled first data is sent in the first sub-slot, the second DCI 1 indicates that the feedback information of the scheduled first data is sent in the second sub-slot. In this case, the first DCI 1 can be used as the first DCI.
  • the first HARQ-ACK codebook is in the first The HARQ-ACK codebook sent in the sub-slot.
  • the size of the time-frequency resource used to send the feedback information of the first data indicated by the first DCI is the size of the time-frequency resource used to send the first data indicated by the DCI in the M DCIs.
  • the size of the time-frequency resource of the feedback information is the largest.
  • two DCIs 1 are repeated. If the first DCI 1 contains a resource indication information indicating the time-frequency resource used to send the feedback information, the terminal device will respond according to the feedback
  • the number of information bits and the indication information in the DCI determine the time-frequency resource 1 for sending the feedback information. Assume that the time-frequency resource 1 corresponds to 2 symbols in the time domain, and corresponds to 5 RB resource blocks (resource block, RB) in the frequency domain. ,
  • the time-frequency resource 1 occupies a total of 10 RBs, and the second DCI 1 contains a resource indication information indicating the time-frequency resource used to send the feedback information.
  • the terminal device determines the number of bits of the feedback information and the indication information in the DCI
  • the time-frequency resource 2 for sending feedback information. Assuming that the time-frequency resource resource 1 corresponds to 2 symbols in the time domain and 3RB in the frequency domain, the time-frequency resource 1 occupies a total of 6 RBs.
  • the first DCI 1 As the first DCI, correspondingly, the first HARQ-ACK codebook is the HARQ-ACK codebook sent on the 5 RBs indicated by the first DCI1.
  • the size of the time-frequency resource used to send the feedback information of the first data indicated by the first DCI is the size of the time-frequency resource used to send the first data indicated by the DCI in the M DCIs.
  • the size of the time-frequency resource of the feedback information is the smallest.
  • two DCIs 1 are repeated. If the first DCI 1 contains a resource indication information indicating the time-frequency resource used to send the feedback information, the terminal device will respond according to the feedback
  • the number of information bits and the indication information in the DCI determine the time-frequency resource 1 for sending the feedback information. Assume that the time-frequency resource 1 corresponds to 2 symbols in the time domain, and corresponds to 5 RB resource blocks (resource block, RB) in the frequency domain. ,
  • the time-frequency resource 1 occupies a total of 10 RBs, and the second DCI 1 contains a resource indication information indicating the time-frequency resource used to send the feedback information.
  • the terminal device determines the number of bits of the feedback information and the indication information in the DCI
  • the time-frequency resource 2 for sending feedback information. Assuming that the time-frequency resource resource 1 corresponds to 2 symbols in the time domain and 3RB in the frequency domain, the time-frequency resource 1 occupies a total of 6 RBs.
  • the second DCI 1 As the first DCI, correspondingly, the first HARQ-ACK codebook is the HARQ-ACK codebook sent on the 3 RBs indicated by the second DCI1.
  • the first DCI is carried on a first CORESET
  • the first CORESET is the CORESET with the smallest CORESET identifier among the CORESETs carrying the M DCIs.
  • the first DCI 1 is carried on CORESET 1
  • the second DCI 1 is carried on CORESET 2.
  • the first DCI 1 is used as the first DCI because the ID of CORESET 1 is small.
  • the first HARQ-ACK codebook may be the HARQ-ACK codebook corresponding to the CORESET group in which the CORESET 1 belongs.
  • Step S504 The network device receives feedback information for the first data from the terminal device.
  • FIG. 7 is a schematic diagram of another method for sending feedback information provided by an embodiment of this application.
  • the method specifically includes:
  • Step S701 The network device sends M DCIs to the terminal device, where each DCI of the M DCIs is used to schedule N transmissions of the first data, and each DCI of the M DCIs includes a downlink allocation index ( The values of the downlink assignment index (DAI) fields are all the same, the M is an integer greater than or equal to 2, and the N is a positive integer.
  • DCI downlink assignment index
  • step S701 the specific implementation of the M DCIs and how each DCI schedules N transmissions of the first data can refer to the description in step S501 in the first embodiment, which will not be repeated here.
  • the DCI includes a DAI field.
  • the DAI field is used by the terminal device to determine the number or number of data scheduled by the network device, and then determine a HARQ-ACK codebook based on the number or number of data scheduled The number of feedback information that needs to be included in the, and the position of the feedback information of each scheduled data in the HARQ-ACK codebook.
  • the number of feedback information included in the HARQ-ACK codebook can also be understood as the number of bits included in the HARQ-ACK codebook.
  • the DAI field may include a first DAI and/or a second DAI.
  • the first DAI and the second DAI refer to two indications contained in the DAI field, where the first DAI may also be referred to as counter DAI or C-DAI for short, and the second DAI can also be called total DAI or T-DAI for short. If the DAI field includes the first DAI and the second DAI, the indication information in the DAI field can be recorded as (first DAI, second DAI) or (C-DAI, T-DAI).
  • the DAI domain may include the first DAI and the second DAI.
  • the value of the DAI field included in each of the M DCIs may be the same as that, the value of the first DAI included in each of the M DCIs is the same, and the value of the first DAI included in each of the M DCIs
  • the value of the second DAI included in each DCI is also the same.
  • the value of the first DAI is used to indicate the cumulative count value of the number of times the terminal equipment is scheduled until the PDCCH monitoring occasion and the cell where the first DCI is located
  • the value of the second DAI is used to indicate the end of the first DCI The PDCCH monitoring timing, the total number of times the terminal device is scheduled.
  • the value of the first DAI is used to indicate the cumulative count value of the number of times that the network device schedules data for the terminal device until the PDCCH monitoring opportunity and the cell where the first DCI is located.
  • the value of the second DAI is used to indicate the total number of times that the network device schedules data for the terminal device until the PDCCH monitoring opportunity where the first DCI is located.
  • the DAI domain may include the first DAI, and the DAI domain may also include the second DAI or may not include the second DAI, which is not limited by this application.
  • the value of the DAI field included in each DCI in the M DCIs is the same, or the value of the first DAI included in each DCI in the M DCIs is the same; where The value of the first DAI is used to indicate the cumulative count value of the number of times that the terminal device is scheduled until the PDCCH monitoring occasion and the cell where the first DCI is located.
  • this application does not limit whether the value of the second DAI included in each of the M DCIs is the same. If the value of the second DAI included in each of the M DCIs is also the same, then the implementation manner is actually the same as the foregoing first implementation manner. If there are two DCIs in the M DCIs The values of the included second DAI are not the same, then the value of the second DAI in each DCI can be used to indicate the total number of times that the terminal device is scheduled until the PDCCH monitoring opportunity where the DCI itself is located.
  • the first DCI involved in the above two possible implementation manners may be the DCI with the highest position in the time domain among the M DCIs; or, it may also be the DCI indicated in the M DCIs for sending the first DCI.
  • the DCI with the smallest time-frequency resource indicated in the M DCIs for sending the feedback information of the first data may also be the DCI carried on the first CORESET, where the first CORESET refers to carrying the M DCIs Among the CORESETs of DCI, the CORESET with the smallest CORESET identifier; or, the CORESET group in which the CORESET carrying the first DCI is located may also be the CORESET group with the smallest group identifier or the highest position in the time domain among the CORESET groups carrying the M DCIs .
  • first DCI may be the same as that in Embodiment 1.
  • first DCI in step S503 of Embodiment 1 please refer to the description of the first DCI in step S503 of Embodiment 1, which will not be repeated here.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and/or N.
  • the values of M and/or N involved in the embodiments of the present application may also be predefined.
  • Step S702 The terminal device receives M DCIs from the network device.
  • Step S703 The terminal device sends feedback information of the first data to the network device.
  • the feedback information is included in the HARQ-ACK codebook.
  • the position of the feedback information in the HARQ-ACK codebook is based on the first DCI in the M DCIs. Sure.
  • the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the M DCIs. That is, the HARQ-ACK codebooks corresponding to the M DCIs are the same HARQ-ACK codebook.
  • the codebook corresponding to the HARQ-ACK corresponding to each of the M DCIs can be determined according to the method described in the first embodiment.
  • the M DCIs may be carried in L CORESET groups, that is, the CORESETs carrying the M DCIs may belong to L CORESET groups, and L is a positive integer.
  • L is a positive integer.
  • the network device may send first indication information to the terminal device, and the first indication information is used to indicate the joint feedback of the feedback information in the L CORESET groups.
  • the joint feedback refers to the The feedback information of the downlink data scheduled by the DCI received at the PDCCH monitoring occasions in the L CORESET groups is jointly sent in the same HARQ-ACK codebook. That is, the L CORESET groups correspond to the same HARQ-ACK codebook, and the HARQ-ACK codebook is a HARQ-ACK codebook used for joint feedback.
  • the terminal device may combine the feedback information of the N data scheduled by the M DCIs in one HARQ-ACK code Feedback in this book.
  • the position of the feedback information of the first data in the HARQ-ACK codebook is determined according to the first DCI in the M DCIs.
  • the position of the data feedback information in the HARQ-ACK codebook can refer to the description in step S503 in the first embodiment, which will not be repeated here.
  • the network device has scheduled data for the terminal device n times, that is, the feedback information of the first data will be in the HARQ-ACK Occupies the nth position in the codebook.
  • the number of bits contained in the feedback information is not limited in the embodiments of the present application. Therefore, the feedback information of the first data occupying the nth position in the HARQ-ACK codebook does not necessarily indicate that the feedback information of the first data
  • the feedback information occupying the nth bit position in the HARQ-ACK codebook or the first data is the nth bit in the HARQ-ACK codebook, because one piece of feedback information may include one or more bits.
  • the terminal device can generate a HARQ-ACK codebook according to M DCIs, for example, a HARQ-ACK codebook for joint feedback, and include the feedback information for the first data in the HARQ-ACK codebook. It is sent at the first location, and the first location is determined according to the first DCI, specifically according to the DAI field in the first DCI, thereby effectively saving uplink resource overhead.
  • the terminal device Since the value of the DAI field included in each DCI in the M DCIs is the same, when the terminal device receives DCIs other than the first DCI in the M DCIs, it can be considered that no new DCI has been received, that is, it can be considered What is received is a copy of the first DCI, not a new DCI. Since the position occupied by the feedback information of the first data in the HARQ-ACK codebook is determined only according to the DAI indication information in the first DCI of the M DCIs, it can effectively avoid sending multiple repeated DCIs.
  • the DAI indication information indicates the problem of ambiguity, thereby improving the reliability of the feedback information, so that the network equipment and terminal equipment have a consistent understanding of the number of bits of the feedback information, and avoiding large-scale retransmissions.
  • Step S704 The network device receives feedback information for the first data from the terminal device.
  • the terminal device can generate the HARQ-ACK codebook according to the first DCI 1, DCI 2, DCI 3, and DCI 4.
  • the position of the feedback information of the data scheduled by the two first DCI 1 in the HARQ-ACK codebook is based on the first DCI 1, DCI 2, DCI 3, and DCI 4.
  • the DAI indication information in one DCI 1 is determined.
  • the HARQ-ACK codebook includes a total of 4 bits, and the feedback information of the two DCI 1 scheduled data is in the HARQ -ACK codebook occupies the first bit position.
  • FIG. 9 is a schematic diagram of another method for sending feedback information according to an embodiment of this application.
  • the method specifically includes:
  • Step S901 The network device sends M DCIs to the terminal device.
  • Each DCI of the M DCIs is used to schedule N transmissions of the first data.
  • the M DCIs include the first DCI and the second DCI.
  • the value of the DAI field in one DCI is different from the value of the DAI field in the second DCI.
  • the M is an integer greater than or equal to 2, and the N is a positive integer.
  • step S901 the specific implementation of the M DCIs and how each DCI schedules N transmissions of the first data can refer to the description in step S501 in the first embodiment, which will not be repeated here.
  • the DAI field in the DCI may include the first DAI and/or the second DAI, and the first DAI and the second DAI refer to two indication information contained in the DAI field, where the first DAI may also It is called counter DAI or C-DAI for short, and the second DAI can also be called total DAI or T-DAI for short. If the DAI field includes the first DAI and the second DAI, the indication information in the DAI field can be recorded as (first DAI, second DAI) or (C-DAI, T-DAI).
  • the DAI domain may include the first DAI and the second DAI.
  • the difference between the value of the DAI field in the first DCI and the value of the DAI field in the second DCI among the M DCIs may be that the value of the first DAI in the first DCI is different from the value in the second DCI.
  • the value of the first DAI is different, and the value of the second DAI in the first DCI is also different from the value of the second DAI in the second DCI.
  • the value of the first DAI in the first DCI can be used to indicate the cumulative count of the number of times the terminal device is scheduled until the PDCCH monitoring opportunity and the cell where the first DCI is located; the value of the first DAI in the second DCI It can be used to indicate the cumulative count of the number of times the terminal equipment is scheduled until the PDCCH monitoring time and the cell where the second DCI is located; the value of the second DAI in the first DCI can be used to indicate the PDCCH monitoring until the first DCI is located Opportunity, the total number of times the terminal device is scheduled; the value of the second DAI in the second DCI can be used to indicate the total number of times the terminal device is scheduled until the PDCCH monitoring occasion where the second DCI is located.
  • the cumulative count value of the number of times the terminal device is scheduled can also be understood as the cumulative count value of the number of times the network device dispatches data for the terminal device; the total number of times the terminal device is scheduled can also be understood as the network device The total number of times the terminal device schedules data.
  • the value of the first DAI in each DCI of the M DCIs is used to indicate the number of times the terminal equipment is scheduled until the PDCCH monitoring opportunity and the cell where the DCI itself is located. Cumulative count value; the value of the second DAI in each DCI is used to indicate the total number of times the terminal device is scheduled until the PDCCH monitoring opportunity where the DCI itself is located.
  • the DAI domain may include the first DAI, and the DAI domain may also include the second DAI or may not include the second DAI, which is not limited by this application.
  • the value of the DAI field in the first DCI among the M DCIs is different from the value of the DAI field in the second DCI.
  • the value of the first DAI in the first DCI is different from the value of the second DCI.
  • the value of the first DAI in the first DCI is different; the value of the first DAI in the first DCI is used to indicate the cumulative count value of the number of times the terminal device is scheduled until the PDCCH monitoring timing and the cell where the first DCI is located; The value of the first DAI in the second DCI is used to indicate the cumulative count value of the number of times the terminal device is scheduled until the PDCCH monitoring opportunity and the cell where the second DCI is located.
  • the values of the DAI indication fields in any two DCIs of the M DCIs are different.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and/or N.
  • the values of M and/or N involved in the embodiments of the present application may also be predefined.
  • Step S902 The terminal device receives M DCIs from the network device.
  • the terminal device may combine and decode the remaining bit fields in the M DCIs except for the DAI field, so as to improve the reliability of the PDCCH.
  • Step S903 The terminal device sends feedback information of the first data to the network device.
  • the feedback information is contained in the HARQ-ACK codebook.
  • the feedback information occupies M positions in the HARQ-ACK codebook. Each position corresponds to one DCI of the M DCIs.
  • the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the M DCIs. That is, the HARQ-ACK codebooks corresponding to the M DCIs are the same HARQ-ACK codebook.
  • the codebook corresponding to the HARQ-ACK corresponding to each of the M DCIs can be determined according to the method described in the first embodiment.
  • the M DCIs may be carried in L CORESET groups, that is, the CORESETs carrying the M DCIs belong to L CORESET groups, and L is a positive integer.
  • the network device may send first indication information to the terminal device, and the first indication information is used to indicate the joint feedback of the feedback information in the L CORESET groups.
  • the joint feedback refers to the The feedback information of the downlink data scheduled by the DCI received at the PDCCH monitoring occasions in the L CORESET groups is jointly sent in the same HARQ-ACK codebook. That is, the L CORESET groups correspond to the same HARQ-ACK codebook, and the HARQ-ACK codebook is a HARQ-ACK codebook used for joint feedback.
  • the terminal device may generate feedback information of the first data according to the value of the DAI field in each DCI of the M DCIs, and include the feedback information of the first data in a HARQ-ACK
  • the codebook is sent to the network device, for example, a HARQ-ACK codebook for joint feedback. In this way, the uplink resource overhead is effectively saved.
  • the terminal device may send M pieces of feedback information for the first data scheduled by the M DCIs, thereby enhancing the reliability of the feedback information.
  • the M pieces of feedback information means that the feedback information of the first data includes M parts or M copies.
  • the M pieces of feedback information occupy different M positions in the same HARQ-ACK codebook, and each piece of feedback information corresponds to one of the M DCIs.
  • the position of each piece of feedback information in the HARQ-ACK codebook is determined by the DAI indication information in its corresponding DCI.
  • the DAI indication information in the first DCI of the M DCIs indicates that until the first DCI, the network device has scheduled data for the terminal device n times, that is, the piece of feedback information corresponding to the first DCI is in HARQ -ACK codebook occupies the nth position.
  • a piece of feedback information corresponding to a certain DCI occupies the nth position in the HARQ-ACK codebook does not necessarily mean that the The feedback information corresponding to the DCI occupies the nth bit position in the HARQ-ACK codebook or the feedback information corresponding to the DCI is the nth bit in the HARQ-ACK codebook, because a piece of feedback information may Contains one or more bits.
  • Step S904 The network device receives feedback information for the first data from the terminal device.
  • the terminal device can generate a joint HARQ-ACK codebook according to the first DCI 1, DCI 2, DCI 3, the second DCI 1, and DCI 4.
  • the feedback information of the data scheduled by the two first DCI 1 is in the HARQ -The position in the ACK codebook is determined according to the value of the DAI field in the first DCI 1 and the value of the DAI field in the second DCI 1.
  • the HARQ-ACK codebook includes a total of 5 bits, and the feedback information of the two DCI 1 scheduled data is in this
  • the HARQ-ACK codebook occupies a total of 2 bits.
  • the DAI field in the first DCI 1 (specifically the value of the first DAI, namely C-DAI)
  • the feedback information corresponding to the first DCI 1 is in the HARQ-ACK codebook Occupy the first bit position
  • the value of the DAI field in the second DCI 1 (specifically the value of the first DAI, namely C-DAI)
  • the feedback information corresponding to the second DCI 1 is in the HARQ -ACK codebook occupies the 4th bit position.
  • the terminal device sends a total of 2 bits of feedback information for two DCI 1 scheduled data, which is equivalent to sending a piece of corresponding feedback information for each DCI 1. If there is only one feedback information corresponding to DCI 1 in the feedback information corresponding to two DCI 1 being ACK, then the network device can consider that the terminal device decodes the data scheduled by the two DCI 1 successfully.
  • FIG. 11 is a schematic diagram of another method for sending feedback information according to an embodiment of this application.
  • the method specifically includes:
  • Step S1101 The network device sends M DCIs to the terminal device.
  • Each DCI of the M DCIs is used to schedule N transmissions of the first data.
  • the M DCIs correspond to L HARQ-ACK codebooks.
  • the M DCIs include a first DCI and a second DCI.
  • the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI.
  • the M and L are integers greater than or equal to 2, and the N Is a positive integer.
  • step S1101 the specific implementation manners of the M DCIs, how each DCI schedules N transmissions of the first data, and how the M DCIs correspond to L HARQ-ACK codebooks can be referred to in Embodiment 1.
  • the description in step S501 in step S501 will not be repeated here.
  • step S901 in the third embodiment for the specific implementation manner in which the value of the DAI field in the first DCI in the M DCIs is different from the value of the DAI field in the second DCI, please refer to the description in step S901 in the third embodiment, which will not be repeated here. .
  • the values of the DAI indication fields in any two DCIs of the M DCIs are different.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and/or N.
  • the values of M and/or N involved in the embodiments of the present application may also be predefined.
  • Step S1102 the terminal device receives M DCIs from the network device.
  • the terminal device may combine and decode the remaining bit fields in the M DCIs except for the DAI field, so as to improve the reliability of the PDCCH.
  • Step S1103 The terminal device sends L HARQ-ACK codebooks to the network device, and each HARQ-ACK codebook includes feedback information for the first data.
  • the M DCIs correspond to L HARQ-ACK codebooks.
  • the terminal device can separately send the feedback information for the first data included in each HARQ-ACK codebook in the L HARQ-ACK codebooks, the reliability of the feedback information can be effectively enhanced.
  • at least two of the M DCIs have different values for the DAI indication field of the DCI, it is possible for the terminal equipment to avoid the problem of ambiguity in the DAI indication during the process of generating the HARQ-ACK codebook, and to ensure that the network equipment Consistent understanding of the number of bits of feedback information with terminal equipment to avoid large-scale retransmissions.
  • each HARQ-ACK codebook includes feedback information for the first data, which may mean that the terminal device sends M feedback information for the first data in L HARQ-ACK codebooks, respectively.
  • Information, each piece of feedback information corresponds to one of the M DCIs. That is, the terminal device may generate a piece of feedback information of the first data for each DCI of the M DCIs, and generate a total of M pieces of feedback information of the first data.
  • the M pieces of feedback information are distributed in L HARQ-ACK codebooks according to the correspondence between M DCIs and L HARQ-ACK codebooks.
  • the position in the HARQ-ACK codebook corresponding to the DCI is determined according to the DAI indication information indicated by the DAI field in the DCI. For example, if the DAI indication information in the first DCI of the M DCIs indicates that the first DCI has been reached, the network device has scheduled data for the terminal device n times, that is, the piece of feedback information corresponding to the first DCI is in the first DCI.
  • a HARQ-ACK codebook occupies the nth position, and the first HARQ-ACK codebook refers to the HARQ-ACK codebook corresponding to the first DCI in the L HARQ-ACK codebooks.
  • the M DCIs may be carried in L CORESET groups, that is, the CORESETs carrying the M DCIs belong to L CORESET groups, and L is a positive integer.
  • the network device may send second indication information to the terminal device, and the second indication information is used to instruct the feedback information in the L CORESET groups to separately feedback, and the separate feedback refers to
  • the feedback information of the downlink data scheduled by the DCI received at the PDCCH monitoring occasion in each CORESET group is sent in a HARQ-ACK codebook corresponding to the CORESET group. That is, each CORESET group corresponds to one HARQ-ACK codebook among the L HARQ-ACK codebooks.
  • Step S1104 The network device receives L HARQ-ACK codebooks from the terminal device.
  • two DCI 1 are repeated, and the values of the DAI fields in the two DCI 1 are different.
  • the first DCI 1 and DCI 4 are carried in CORESET 1, and DCI 2, DCI 3, and the second DCI 1 are carried in CORESET 2.
  • CORESET 1 belongs to CORESET group
  • CORESET 2 belongs to CORESET group 1
  • the network device instructs the HARQ-ACK codebooks corresponding to the two CORESET groups to feed back separately.
  • the terminal device can generate a HARQ-ACK codebook according to the first DCI 1 and DCI 4, and generate another HARQ-ACK codebook according to the DCI 2, DCI 3, and the second DCI 1.
  • the position of the feedback information of the data scheduled by the first DCI 1 in the first HARQ-ACK codebook can be determined according to the value of the DAI field in the first DCI 1; the second DCI 1 scheduled The position of the data feedback information in the second HARQ-ACK codebook can be determined according to the value of the DAI field in the second DCI 1.
  • the first HARQ-ACK codebook includes a total of 2 bits
  • the second HARQ-ACK codebook includes a total of 3 bits.
  • the terminal device sends a total of 2 bits of feedback information for the two DCI 1 scheduled data, and this bit of feedback information is respectively included in the two separately sent HARQ-ACK codebooks.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device 1300 includes: a transceiver module 1310 and a processing module 1320.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device.
  • the transceiver module 1310 is configured to send M DCIs to the terminal device, and the M DCIs are used to schedule the first data.
  • N transmissions the M DCIs correspond to L HARQ-ACK codebooks, the M and L are integers greater than equal to 2, and the N is a positive integer;
  • the processing module 1320 is configured to receive through the transceiver module 1310 Feedback information for the first data from the terminal device, the feedback information is included in the first HARQ-ACK codebook, and the first HARQ-ACK codebook is one HARQ-ACK in the L HARQ-ACK codebooks Codebook.
  • the transceiver module 1310 is used to send M DCIs to the terminal device, and each DCI of the M DCIs is used to schedule the first data
  • the value of the DAI field included in each of the M DCIs is the same, the M is an integer greater than or equal to 2, and the N is a positive integer; the processing module 1320 is configured to pass
  • the transceiver module 1310 receives feedback information for the first data from the terminal device, the feedback information is included in the HARQ-ACK codebook, and the position of the feedback information in the HARQ-ACK codebook is based on the first data in the M DCIs.
  • a DCI is determined.
  • the transceiver module 1310 is used to send M DCIs to the terminal device, and each DCI of the M DCIs is used to schedule the first data
  • the M DCIs include a first DCI and a second DCI, the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, and the M is greater than or An integer equal to 2, the N is a positive integer;
  • the processing module 1320 is configured to receive feedback information for the first data from the terminal device through the transceiver module 1310, and the feedback information is contained in the HARQ-ACK codebook.
  • the feedback information occupies M positions in the HARQ-ACK codebook, and each position of the M positions corresponds to one DCI of the M DCIs.
  • the transceiver module 1310 is used to send M DCIs to the terminal device, and each DCI of the M DCIs is used to schedule the first data N transmissions, the M DCIs correspond to L HARQ-ACK codebooks, the M DCIs include the first DCI and the second DCI, and the value of the DAI field in the first DCI is the same as that in the second DCI The value of the DAI field is different, the M and L are integers greater than or equal to 2, and the N is a positive integer; the processing module 1320 is configured to receive L HARQ-ACKs from the terminal device through the transceiver module 1310 Codebook, and each HARQ-ACK codebook includes feedback information for the first data.
  • the processing module 1320 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver module 1310 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 5, FIG. 7, FIG. 9 or FIG.
  • FIG. 14 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may be specifically a type of network equipment, such as a base station, for implementing the functions of the network equipment in any of the foregoing method embodiments.
  • the network equipment includes: one or more radio frequency units, such as a remote radio unit (RRU) 1401 and one or more baseband units (BBU) (also known as digital units, digital units, DU) )1402.
  • the RRU 1401 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 14011 and a radio frequency unit 14012.
  • the RRU 1401 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the 1402 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1401 and the BBU 1402 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1402 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1402 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1402 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access indication, or may respectively support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1402 may further include a memory 14021 and a processor 14022, and the memory 14021 is used to store necessary instructions and data.
  • the processor 14022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 14021 and the processor 14022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 1500 includes a transceiver module 1510 and a processing module 1520.
  • the communication device can be used to implement the functions related to terminal equipment in any of the foregoing method embodiments.
  • the communication device may be a terminal device, a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles.
  • the transceiver module 1510 is configured to receive M DCIs from a network device, and each DCI of the M DCIs is used For scheduling N transmissions of the first data, the M DCIs correspond to L HARQ-ACK codebooks, the M and L are integers greater than or equal to 2, and the N is a positive integer; the processing module 1520 is configured to: Send feedback information for the first data to the network device through the transceiver module 1510, the feedback information is included in the first HARQ-ACK codebook, and the first HARQ-ACK codebook is the L HARQ-ACK codebooks A HARQ-ACK codebook in.
  • the transceiver module 1510 is configured to receive M DCIs from the network device, and each DCI of the M DCIs is used to schedule the first N times of data transmission, the value of the DAI field included in each of the M DCIs is the same, the M is an integer greater than or equal to 2, and the N is a positive integer; the processing module 1520 is configured to: Send feedback information for the first data to the network device through the transceiver module 1510.
  • the feedback information is included in the HARQ-ACK codebook.
  • the position of the feedback information in the HARQ-ACK codebook is based on the first data in the M DCIs.
  • a DCI is determined.
  • the transceiver module 1510 is configured to receive M DCIs from the network device, and each DCI of the M DCIs is used to schedule the first N times of data transmission, the M DCIs include a first DCI and a second DCI, the value of the DAI field in the first DCI is different from the value of the DAI field in the second DCI, and the M is greater than Or an integer equal to 2, the N is a positive integer; the processing module 1520 is configured to send feedback information for the first data to the network device through the transceiver module 1510, and the feedback information is contained in the HARQ-ACK codebook.
  • the feedback information occupies M positions in the HARQ-ACK codebook, and each position of the M positions corresponds to one DCI of the M DCIs.
  • the transceiver module 1510 is configured to receive M DCIs from the network device, and each DCI of the M DCIs is used to schedule the first N times of data transmission, the M DCIs correspond to L HARQ-ACK codebooks, the M DCIs include a first DCI and a second DCI, and the value of the DAI field in the first DCI is the same as the value of the second DCI The value of the DAI field is different, the M and L are integers greater than or equal to 2, and the N is a positive integer; the processing module 1520 is configured to send L HARQ-ACKs to the network device through the transceiver module 1510 Codebook, and each HARQ-ACK codebook includes feedback information for the first data.
  • processing module 1520 involved in the communication device may be implemented by a processor or processor-related circuit components
  • transceiver module 1510 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 5, FIG. 7, FIG. 9 or FIG.
  • FIG. 16 is a schematic diagram of another structure of another communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory. Of course, it may also include a radio frequency circuit, an antenna, an input and output device, and so on.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 16 only one memory and processor are shown in FIG. 16. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1610 as the sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1610 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1620 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiment may be completed by a logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Abstract

一种反馈信息的发送方法及装置,该方法包括:网络设备向终端设备发送用于调度第一数据的N次传输的M个DCI,并在第一HARQ-ACK码本中接收终端设备发送的针对第一数据的反馈信息。所述M个DCI对应L个HARQ-ACK码本,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。终端设备从L个HARQ-ACK码本中选择其中的一个HARQ-ACK码本用于发送第一数据的反馈信息,而不是在每个HARQ-ACK码本中都发送,从而有效节省上行资源开销。

Description

一种反馈信息的发送方法及装置
相关申请的交叉引用
本申请要求在2020年04月10日提交中国国家知识产权局、申请号为202010281670.0、申请名称为“一种反馈信息的发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种反馈信息的发送方法及装置。
背景技术
超可靠低延迟通信(ultra-reliable and low-latency communication,URLLC),是第五代移动通信(5th generation,5G)系统的三大典型业务之一,其主要应用场景包括:无人驾驶,远程医疗等,这些应用场景在可靠性及时延方面提出了更加严格的需求。URLLC业务具体的需求包括:数据传输可靠性达到99.999%,传输时延低于1ms,以及在满足高可靠性及低时延要求下,尽可能减小指令开销。
现有技术中,保证URLLC业务的可靠性的举措之一为,将多个物理下行控制信道(physical downlink control channel,PDCCH)进行重复,以提高PDCCH的可靠性。这多个重复的PDCCH承载有相同的下行控制信息(downlink control information,DCI),用于调度同一个或重复的多个物理下行共享信道(physical downlink shared channel,PDSCH)。由于终端设备针对一个PDCCH调度的一个或重复的多个PDSCH,只需要发送一个反馈信息就可以。当出现多个PDCCH重复时,终端设备应如何发送反馈信息,目前还没有相关的解决方案。
发明内容
本申请实施例提供一种反馈信息的发送方法及装置,用于提高反馈信息的可靠性,避免网络设备与终端设备对反馈信息理解不一致的问题。
第一方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,所述M个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M、L为大于等2的整数,所述N为正整数;网络设备接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在第一HARQ-ACK码本中,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
本申请实施例中,尽管所述M个DCI可对应L个HARQ-ACK码本,但终端设备针对第一数据的反馈信息只包含在所述L个HARQ-ACK码本中的一个HARQ-ACK码本中发送,而不是在每个HARQ-ACK码本中都发送,因此,可有效节省上行资源开销。
在第一方面的一种可能的设计中,M个DCI对应L个HARQ-ACK码本,包括:M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本;第一 HARQ-ACK码本为第一CORESET组对应的HARQ-ACK码本,该第一CORESET组为所述L个CORESET组中的一个CORESET组。
在第一方面的一种可能的设计中,第一CORESET组为所述L个CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
在第一方面的一种可能的设计中,第一CORESET组为第一CORESET所在的CORESET组;其中,当第一数据的N次传输采用的TCI均相同时,该第一CORESET的TCI与第一数据的N次传输采用的TCI相同;当第一数据的N次传输中至少有两次传输所采用的TCI不同时,该第一CORESET的TCI与第一数据的第一次传输或最后一次传输采用的TCI相同。
在第一方面的一种可能的设计中,第一HARQ-ACK码本为第一DCI对应的HARQ-ACK码本;其中,第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,第一DCI指示的用于发送第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时间单元中最靠前的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源的大小中最大的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源的大小中最小的;或者,第一DCI承载在第一CORESET上,该第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
在第一方面的一种可能的设计中,所述L个HARQ-ACK码本中除第一HARQ-ACK码本之外的其它HARQ-ACK码本中不包括针对第一数据的反馈信息。
第二方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个下行DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M、L为大于或等于2的整数,所述N为正整数;终端设备向网络设备发送针对第一数据的反馈信息,该反馈信息包含在第一HARQ-ACK码本中,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
在第二方面的一种可能的设计中,M个DCI对应L个HARQ-ACK码本,包括:M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本;第一HARQ-ACK码本为第一CORESET组对应的HARQ-ACK码本,该第一CORESET组为所述L个CORESET组中的一个CORESET组。
在第二方面的一种可能的设计中,第一CORESET组为所述L个CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
在第二方面的一种可能的设计中,第一CORESET组为第一CORESET所在的CORESET组;其中,当第一数据的N次传输采用的TCI均相同时,该第一CORESET的TCI与第一数据的N次传输采用的TCI相同;当第一数据的N次传输中至少有两次传输所采用的TCI不同时,该第一CORESET的TCI与第一数据的第一次传输或最后一次传输采用的TCI相同。
在第二方面的一种可能的设计中,第一HARQ-ACK码本为第一DCI对应的HARQ-ACK码本;其中,第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,第 一DCI指示的用于发送第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时间单元中最靠前的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源中最大的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送一数据的反馈信息的时频资源中最小的;或者,第一DCI承载在第一CORESET上,该第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
在第二方面的一种可能的设计中,所述L个HARQ-ACK码本中除第一HARQ-ACK码本之外的其它HARQ-ACK码本中不包括针对第一数据的反馈信息。
第三方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;网络设备接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
本申请实施例中,由于网络设备发送M个DCI中的DAI域的取值均相同,因此,终端设备可以根据M个DCI生成的一个HARQ-ACK码本,该HARQ-ACK码本中包含终端设备针对第一数据的反馈信息,且该反馈信息在该HARQ-ACK码本中的第一位置可根据M个DCI中的第一DCI确定,具体来说可以是根据第一DCI中的DAI域确定,从而有效节省上行资源开销。
在第三方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:所述M个DCI中的每个DCI包括的第一DAI的取值均相同,且所述M个DCI中的每个DCI包括的第二DAI的取值均相同;其中,该第一DAI的值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值,该第二DAI的值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第三方面的一种可能的设计中,所述DAI域包括第一DAI;所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:所述M个DCI中的每个DCI包括的第一DAI的取值均相同;其中,该第一DAI的值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第三方面的一种可能的设计中,第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,第一DCI指示的用于发送第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时间单元中最靠前的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源中最大的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源中最小的;或者,第一DCI承载在第一CORESET上,该第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
在第三方面的一种可能的设计中,承载第一DCI的CORESET所在的CORESET组为 承载所述M个DCI的CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
在第三方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,所述L为大于或等于2的整数;该方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
第四方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;终端设备向网络设备发送针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
在第四方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:所述M个DCI中的每个DCI包括的第一DAI的取值均相同,且所述M个DCI中的每个DCI包括的第二DAI的取值均相同;其中,该第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值,该第二DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第四方面的一种可能的设计中,所述DAI域包括第一DAI;所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:所述M个DCI中的每个DCI包括的第一DAI的取值均相同;其中,该第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第四方面的一种可能的设计中,第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,第一DCI指示的用于发送第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时间单元中最靠前的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源中最大的;或者,第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源中最小的;或者,第一DCI承载在第一CORESET上,该第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
在第四方面的一种可能的设计中,承载第一DCI的CORESET所在的CORESET组为承载所述M个DCI的CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
在第四方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,所述L为大于或等于2的整数;该方法还包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
第五方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI 中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;网络设备接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
本申请实施例中,由于M个DCI中至少存在两个DCI中的DAI指示域的取值不同,因此,终端设备可以发送针对第一数据的M份反馈信息,该M份反馈信息包含在同一个HARQ-ACK码本中,该M份反馈信息分别与M个DCI对应。如此,有效增强反馈信息的可靠性。
在第五方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同,且第一DCI中的第二DAI的取值与第二DCI中的第二DAI的取值不同;其中,第一DCI中的第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第一DCI中第二DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数;第二DCI中第二DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第五方面的一种可能的设计中,所述DAI域包括第一DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第五方面的一种可能的设计中,所述M个DCI承载在L个控制资源集合CORESET组,所述L为大于或等于2的整数;该方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
第六方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;终端设备向网络设备发送针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
在第六方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同,且第一DCI中的第二DAI的取值与第二DCI中的第二DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区, 终端设备被调度的次数的累计计数值;第一DCI中第二DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数;第二DCI中第二DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第六方面的一种可能的设计中,所述DAI域包括第一DAI;所述第一DCI中的下行分配索引DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第六方面的一种可能的设计中,所述M个DCI承载在L个控制资源集合CORESET组,所述L为大于或等于2的整数;该方法还包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
在第六方面的一种可能的设计中,终端设备接收来自网络设备的M个下行控制信息DCI后,该方法还包括:终端设备将第一DCI和第二DCI中的除所述DAI域之外剩余的比特域进行合并译码。
第七方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;网络设备接收来自终端设备的L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括针对第一数据的反馈信息。
本申请实施例中,由于M个DCI可对应L个HARQ-ACK码本,终端设备可以发送L个HARQ-ACK码本,该L个HARQ-ACK码本中的每个HARQ-ACK码本中均包括针对第一数据的反馈信息,从而可有效增强反馈信息的可靠性。此外,由于M个DCI中至少有两个DCI的DAI指示域的取值不同,因此,可使HARQ-ACK码本的生成过程中,不会出现DAI指示模糊的问题,保证网络设备与终端设备对反馈信息的比特数有一致理解。
在第七方面的一种可能的设计中,所述M个DCI对应L个HARQ-ACK码本包括:所述M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本。
在第七方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同,且第一DCI中的第二DAI的取值与第二DCI中的第二DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第一DCI中第二DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数;第二DCI中第二DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第七方面的一种可能的设计中,所述DAI域包括第一DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值 与第二DCI中的第一DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第七方面的一种可能的设计中,该方法还包括:网络设备向终端设备发送第二指示信息,该第二指示信息指示所述L个CORESET组对应的反馈信息分别反馈。
第八方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;终端设备向网络设备发送L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括针对第一数据的反馈信息。
在第八方面的一种可能的设计中,所述M个DCI对应L个HARQ-ACK码本包括:所述M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本。
在第八方面的一种可能的设计中,所述DAI域包括第一DAI和第二DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同,且第一DCI中的第二DAI的取值与第二DCI中的第二DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第一DCI中第二DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数;第二DCI中第二DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机,终端设备被调度的总次数。
在第八方面的一种可能的设计中,所述DAI域包括第一DAI;所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:第一DCI中的第一DAI的取值与第二DCI中的第一DAI的取值不同;其中,第一DCI中述第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
在第八方面的一种可能的设计中,该方法还包括:终端设备接收来自网络设备的第二指示信息,该第二指示信息指示所述L个CORESET组对应的反馈信息分别反馈。
在第八方面的一种可能的设计中,终端设备接收来自网络设备的M个DCI后,该方法还包括:终端设备将第一DCI和第二DCI中的除所述DAI域之外剩余的比特域进行合并译码。
第九方面,本申请实施例提供一种通信装置,该装置也可以具有实现上述第一方面或第一方面的任一种可能的设计中网络设备的功能,或者具有实现上述第三方面或第三方面的任一种可能的设计中网络设备的功能,或者具有实现上述第五方面或第五方面的任一种可能的设计中网络设备的功能,或者具有实现上述第七方面或第七方面的任一种可能的设计中网络设备的功能。该装置可以为网络设备,也可以为网络设备中包括的芯片。
该装置具有实现上述第二方面或第二方面的任一种可能的设计中终端设备的功能,或具有实现上述第四方面或第四方面的任一种可能的设计中终端设备的功能,或具有实现上述第六方面或第六方面的任一种可能的设计中终端设备的功能,或具有实现上述第八方面或第八方面的任一种可能的设计中终端设备的功能。该装置可以为终端设备,也可以为终端设备中包括的芯片。
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种设计中网络设备相应的功能,或者执行上述第二方面或第二方面的任一种设计中终端设备相应的功能,或者执行上述第三方面或第三方面的任一种可能的设计中网络设备相应的功能,或者执行上述第四方面或第四方面的任一种可能的设计中终端设备相应的功能,或者执行上述第五方面或第五方面的任一种可能的设计中网络设备相应的功能,或者执行上述第六方面或第六方面的任一种可能的设计中终端设备相应的功能,或者执行上述第七方面或第七方面的任一种可能的设计中网络设备相应的功能,或者执行上述第八方面或第八方面的任一种可能的设计中终端设备相应的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为网络设备时,可向终端设备发送M个DCI,以及接收来自终端设备的反馈信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,收发模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法,或者执行上述第三方面或第三方面的任一种可能的设计中的方法,或者执行上述第四方面或第四方面的任一种可能的设计中的方法,或者执行上述第五方面或第五方面的任一种可能的设计中的方法,或者执行上述第六方面或第六方面的任一种可能的设计中的方法,或者执行上述第七方面或第七方面的任一种可能的设计中的方法,或者执行上述第八方面或第八方面的任一种可能的设计中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为网络设备或终端设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备或终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第十方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法,或实现上述第二方面或第二方面的任一种可能的设计中的方法,或实现上述第三方面或第三方面的任一种可能的设计中的方法,或实现上述第四方面或第四方面的任一种可能的设计中的方法,或实现上述第五方面或第五方面的任一种可能的设计中的方法,或实现上述第六方面或第六方面的任一种可能的设计中的方法,或实现上述第七方面或第七方面的任一种可能的设计中的方法,或实现上述第八方面或第八方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第十一方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法,或执行上述第五方面或第五四方面的任一种可能的设计中的方法,或执行上述第六方面或第六方面的任一种可能的设计中的方法,或执行上述第七方面或第七方面的任一种可能的设计中的方法,或执行上述第八方面或第八方面的任一种可能的设计中的方法。
第十二方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法,或执行上述第五方面或第五方面的任一种可能的设计中的方法,或执行上述第六方面或第六方面的任一种可能的设计中的方法,或执行上述第七方面或第七方面的任一种可能的设计中的方法,或执行上述第八方面或第八方面的任一种可能的设计中的方法。
第十三方面,本申请实施例提供一种通信系统,该通信系统包括上述各方面中所述的网络设备和至少一个终端设备。
附图说明
图1为本申请实施例适用的一种通信系统的结构示意图;
图2为本申请实施例中为终端设备调度下行数据的示意图;
图3为本申请实施例中提供的发送多个重复的PDCCH的示意图;
图4为本申请实施例中提供的CORESET的示意图;
图5为本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图6为本申请实施例提供的一种反馈信息的发送方法的一个具体示例;
图7为本申请实施例提供的另一种反馈信息的发送方法的流程示意图;
图8为本申请实施例提供的另一种反馈信息的发送方法的一个具体示例;
图9为本申请实施例提供的又一种反馈信息的发送方法的流程示意图;
图10为本申请实施例提供的又一种反馈信息的发送方法的一个具体示例;
图11为本申请实施例提供的又一种反馈信息的发送方法的流程示意图;
图12为本申请实施例提供的又一种反馈信息的发送方法的一个具体示例;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的一种通信装置的另一结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图;
图16为本申请实施例提供的另一种通信装置的另一结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请实施例提供的一种通信系统的结构示意图,该通信系统中包括网络设备和至少一个终端设备(如图1中所示出的终端1至6)。网络设备可通过上行链路(uplink,UL)和下行链路(downlink,DL)与至少一个终端设备(如终端设备1)进行通信。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代(4th generation,4G)移动通信系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然,本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图1中的网络设备也可以对应未来的移动通信系统中的接入网设备。
应理解,该通信系统中也可以存在多个网络设备,且一个网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中包括的网络设备的数量以及终端设备的数量均不作限定。图1中的网络设备以及至少一个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例所提供的技术方案。另外,图1中所示出的各种终端设备仅为终端设备的部分示例,应理解,本申请实施例中的终端设备不限于此。
下面对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。所述终端设备可以是手机、平板电脑、带无线收发功能的电脑、移动互联网设备、可穿戴设备、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅 是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备,也称接入网设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为RAN节点(或设备)。所述网络设备可以是LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB),或者也可以是5G NR系统中的下一代基站(next generation node B,gNodeB),或者还可以是传输接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)或WiFi接入点(access point,AP)等,再或者还可以是集中式单元(central unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。在接入网设备包括CU和DU的分离部署场景中,CU支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU主要支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
3)需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
下面对本申请实施例中涉及的终端设备发送反馈信息的过程进行说明。
如图2的(a)部分所示,网络设备可以向终端设备发送PDCCH,该PDCCH中承载有DCI。PDCCH可用于为终端设备调度PDSCH,该PDSCH中承载有发送给终端设备的下行数据。
终端设备可接收PDCCH中承载的DCI,根据DCI中的时域资源指示信息,确定PDSCH所在的时间单元以及PDSCH在该时间单元中占用的具体时域资源,进而接收PDSCH中承载的下行数据。该时域资源指示信息可用于指示一个时域资源表格中的一行,该时域资源表格中的每一行均包括一个指示信息K0和一个开始与长度指示值(starting and length  indication value,SLIV)指示信息。其中,指示信息K0用于指示PDSCH所在的时间单元与PDCCH所在的时间单元之间相差的时间单元的个数;SLIV指示信息用于指示PDSCH在其所在的时间单元中具体占用的时域资源的开始符号和长度。例如,假设时间单元为一个时隙(slot),指示信息K0的取值为1,如果PDCCH所在的时间单元为slot(n),那么PDSCH所在的时间单元为slot(n+1)。进一步地,如果SLIV指示信息指示PDSCH从第2个符号开始,长度为2个符号,那么则表示PDSCH占用slot(n+1)中的第2个符号和第3个符号。
本申请实施例中,所述时间单元可以为一个时隙(slot),也可以为一个子时隙(sub-slot),具体并不限定。其中,在正常循环前缀下,一个时隙中包括14个符号,在扩展循环前缀下,一个时隙中包括12个符号。子时隙可包括2个符号或7个符号。子时隙也可以叫做迷你时隙mini-slot。一个子时隙中包括的符号个数是小于时隙中包括的符号个数,具体一个子时隙中包括的符号的个数可以通过网络设备发送的高层信令指示。终端设备收到高层信令指示后,便可以知道一个子时隙中包括的符号个数。例如,高层信令可以指示子时隙的符号个数为2符号,或者7符号;或者可以通过指示将一个slot指示为2符号乘以7,指示出一个时隙包含7个子时隙,每个子时隙的符号个数为2符号;或者还可以通过指示将一个slot指示为7符号乘以2,指示出一个时隙包含2个子时隙,每个子时隙的符号个数为7符号。在本申请的实施例中,出现“时隙”的地方都可以用“子时隙”代替。本申请实施例中所提及的符号或时域符号均为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
终端设备接收到PDSCH中承载的下行数据后,可根据数据译码的结果,向网络设备发送反馈信息。该反馈信息可以为用于表示数据接收成功的确认应答(acknowledgement,ACK),或者是用于表示数据接收失败的否定应答(negative acknowledgement,NACK)。
终端设备还可根据DCI中的指示信息K1,确定发送反馈信息的时间单元,该指示信息K1用于指示终端设备发送反馈信息的时间单元与接收PDSCH的时间单元之间相差的时间单元的个数。这表示终端设备接收到下行数据到向网络设备发送反馈信息之间需要满足n+K1的定时关系。也就是说,如果终端设备在slot(n)中接收到PDSCH,那么终端设备应在slot(n+K1)上向网络设备发送反馈信息。在具体实施中,指示信息K1可指示一个K1集合中的一个值,该K1集合可以是网络设备通过高层信令配置的或者也可以是预定义的。例如,假设网络设备配置K1集合为{1,2,3,4,5,6,7,8},DCI中的指示信息K1占用3比特,那么如果指示信息K1指示“001”,则可表示K1的取值为2。
本申请实施例中,所述高层信令是指高层协议层发出的信令,所述高层协议层可包括物理层之上的至少一个协议层。具体的,高层协议层可以包括下列协议层中的至少一个:MAC层、RLC层、PDCP层、RRC层和非接入层(non access stratum,NAS)。
进一步地,网络设备还可通过高层信令指示PDSCH的重复次数,也就是说,一个PDCCH中承载的DCI可调度多个重复的PDSCH,换句话说,一个DCI可调度一个PDSCH的多次传输,这些重复的PDSCH中承载有发送给终端设备的相同的下行数据。终端设备可根据对多个PDSCH中承载的下行数据的译码结果,向网络设备发送反馈信息。即,多个重复的PDSCH可对应同一个反馈信息,若终端设备对该多个重复的PDSCH中的一个或多个PDSCH承载的下行数据译码成功,则可向网络设备反馈ACK,若终端设备对该多个重复的PDSCH承载的下行数据都译码失败,则可向网络设备反馈NACK。
如图2的(b)部分所示,多个重复的PDSCH可在时域上占据连续的时间单元,且每个PDSCH在一个时间单元中仅出现一次,且每个PDSCH在一个时间单元内的相同时域位置。相应的,终端设备向网络设备发送反馈信息的时间单元根据该多个重复的PDSCH中的最后一个PDSCH确定。例如,假设PDSCH的重复次数为2次,PDSCH在一个时隙(slot)中仅出现一次,如果终端设备在slot(n)接收到PDCCH,该PDCCH承载的DCI指示K0的取值为1,K1的取值为1,那么终端设备可在slot(n+1)接收第一个PDSCH,在slot(n+2)接收第二个PDSCH,然后在slot(n+3)向网络设备发送反馈信息。
在实际应用中,终端设备并不是一个一个的发送反馈信息,而是可能将多个要一起发送的反馈信息生成一个混合自动重传请求确认(hybrid automatic repeat request-acknowledgement,HARQ–ACK)码本。HARQ-ACK码本包括需要在一个时间单元中反馈的ACK或NACK串联得到的一组连续的比特。
为了保证PDCCH信道的可靠性,网络设备也可以重复发送多个PDCCH,该重复发送的多个PDCCH中承载的多个DCI可以用于调度同一个PDSCH或者多个重复的PDSCH。该重复发送的多个PDCCH可以在时域和/或频域上重复。其中,在时域上重复可以是指多个PDCCH在时域上的不同PDCCH监测时机上重复;在频域上重复可以是指多个PDCCH在频域上的不同的频域资源位置上重复。例如,在图3的(a)部分所示的示例中,网络设备在时域上不同的PDCCH监测时机中重复发送的两个PDCCH,每个PDCCH中承载的DCI可以均用于调度时域上两个重复的PDSCH;在图3的(b)部分所示的示例中,网络设备在频域上的不同频域资源上重复发送的两个PDCCH,每个PDCCH用于调度时域上两个重复的PDSCH。本申请中,PDCCH调度PDSCH与PDCCH中承载的DCI调度PDSCH是等价的含义。
可选的,该重复发送的多个PDCCH也可以属于不同的控制资源集合(control resource set,CORESET)组(group)。
网络设备可以向终端设备发送第X1指示信息,该第X1指示信息指示一个或者多个CORESET,针对每个CORESET,该第X1指示信息中可以包含下列信息:每个CORESET的标识,每个CORESET的时域符号个数(例如可以选择是1个符号,2个符号,或者3个符号),每个CORESET的频域资源位置等。终端设备根据接收到的该第X1指示信息,可以确定多个CORESET中每个CORESET的标识,以及每个CORESET的频域资源位置、每个CORESET的时域符号个数。
网络设备还可以向终端设备发送第X2指示信息,该第X2指示信息指示一个或多个搜索空间。针对每个搜索空间,该第X2指示信息中可以包含下列信息中的至少一个:每个搜索空间的标识,每个搜索空间关联的CORESET的标识,以及每个搜索空间在时域上的周期,偏置,以及盲检测图案(pattern)。周期例如可以是2个slot;偏置是指在周期中的哪一个slot,比如第2个;pattern指示在该确定的slot中的具体哪些位置进行盲检测,具体可通过14bit的比特图bitmap指示,例如指示10101010101010,表示在一个slot中需要在第1、3、5、7、9、11、13个符号的位置开始进行PDCCH盲检测,这些时域位置称为搜索空间的时域起始位置。终端设备根据接收到的该第X2指示信息,可以确定多个搜索空间的标识,以及多个搜索空间的时域起始位置。由于每一个搜索空间关联了一个CORESET,则确定出了搜索空间的时域起始位置也就确定了CORESET的时域位置起始位 置,CORESET的时域位置的起始位置就是该CORESET关联的搜索空间的时域起始位置,CORESET的时域位置的起始位置确定了之后,结合CORESET的符号个数,则可以确定CORESET的时域位置,而CORESET的时域位置也可以叫做PDCCH监测时机。
例如图4所示,CORESET p的时域符号个数为3,搜索空间s的配置为周期为2slot,偏置为第2个,且14bit的bitmap为10001000100000,假设搜索空间s关联CORESET p,则可确定出搜索空间的时域起始位置为每2个slot中的第2个slot中的第1,第5,第9个符号,则CORESET p的时域位置的起始位置就是为每2个slot中的第2个slot中的第1,第5,第9个符号,CORESET p的符号个数为3符号,则CORESET的时域位置为每2个slot中的第2个slot中的第1-3,第5-7,第9-11个符号。例如,可以确定PDCCH监测时机在slot 1和slot 3中,每个slot有3个PDCCH监测时机,每个PDCCH监测时机有3个符号。
终端设备可以在确定出的PDCCH监测时机进行盲检测,终端设备接收到PDCCH后,可以根据接收该PDCCH的时频位置是哪个CORESET的时频位置,或者说在哪个CORESET中接收到的PDCCH,确定出该PDCCH承载在哪个CORESET上,即确定出该PDCCH承载的DCI承载在哪个CORESET上,或者说确定PDCCH属于哪个CORESET,或者说确定PDCCH承载的DCI属于哪个CORESET,也可以反过来说,该CORESET承载了该PDCCH或者该DCI。
网络设备可以向终端设备发送第X1指示信息,该第X1指示信息指示一个或者多个CORESET,针对每个CORESET,该第X1指示信息中可以包含下列信息:每个CORESET所在的CORESET组对应的组标识(记为CORESETGroupIndex)。所述CORESET组也可以称为CORESET池(pool),因此,每个CORESET所在的CORESET组对应的组标识也可以叫做每个CORESET所在的CORESET池的池标识(记为CORESETPoolIndex)。终端设备接收该第X1指示信息,因此确定了多个CORESET中每个CORESET所在的CORESET组对应的组标识。组标识的候选值可以为0到W-1,其中W是代表有几个CORESET组,分别为CORESET组0至CORESET组W-1,W为大于或者等于2的整数。因为一个CORESET只能属于一个CORESET组,一个CORESET组中可以包括多个CORESET。
例如,W=2,网络设备为终端设备指示了3个CORESET,它们的标识分别为1、2、3,我们将3个CORESET分别记为CORESET1,CORESET2,CORESET3,并且指示它们的组标识分别为0,1,1。即CORESET1是属于CORESET group 0,CORESET 2和CORESET3都属于CORESET group1。如果针对任意一个CORESET。该第X1指示信息中不包含该CORESET对应的组标识,则认为该CORESET是属于CORESET group 0。
前述确定PDCCH或者DCI承载的CORESET后,根据该CORESET所属的CORESET组可以确定该PDCCH或者DCI承载在哪个CORESET组中。
本申请实施例中所涉及的传输配置指示(transmission configuration indication,TCI)信息,用于指示信号或信道的准共址(quasi co-location,QCL)信息。其中,所述信道可以是PDCCH或者是PDSCH,所述信号可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS),解调参考信号(demodulation reference signal,DMRS),跟踪参考信号(tracking reference signal,TRS)中的一种或多种。所述QCL信息是指下 行信号(如PDCCH/PDSCH/CSI-RS/DMRS/TRS)的空间相关参数(还可以称为空间相关特性)。准共址,也可以称为准共站、同位置。QCL信息也可以称为QCL假设信息。QCL信息可以用于辅助描述终端设备接收波束赋形信息以及接收流程。
TCI信息是指TCI中包括的参考信号与该信道或信号之间需要满足的准共址QCL关系,主要用于指示接收信号或信道时,其空间特性参数等信息与TCI中包括的参考信号的空间特性参数等信息相同、相似或相近。
一个TCI状态(TCI state)可以配置一个或多个被引用的参考信号,及所关联的QCL类型(QCL type)。QCL类型又可以分为A/B/C/D四个类别,分别是{Doppler shift,Doppler spread,average delay,delay spread,spatial Rx parameter}的不同组合或选择。TCI状态包括QCL信息,或者TCI状态用于指示QCL信息。
针对某个CORESET的第X1指示信息中可以指示每个CORESET的TCI,指示与该CORESET QCL的参考信号。
PDSCH采用的传输配置指示TCI可以通过调度PDSCH的DCI指示。具体的,网络设备会给终端设备配置一个TCI表格,该TCI表格中的一行可以包括2个TCI状态,例如分别为TCI1和TCI2。如果DCI中指示了该行,且该DCI调度PDSCH的两次传输,则第一次传输和第二次传输采用的TCI分别为TCI1和TCI2;如果该DCI调度4次传输,则4次PDSCH采用的TCI可以依次为TCI1,TCI2,TCI1,TCI2,或者TCI1,TCI1,TCI2,TCI2;如果该DCI调度8次传输,则8次PDSCH采用的TCI可以依次为TCI1,TCI2,TCI1,TCI2,TCI1,TCI2,TCI1,TCI2或者TCI1,TCI1,TCI2,TCI2,TCI1,TCI1,TCI2,TCI2。
该TCI表格中的一行也可以包括1个TCI状态,例如可以为TCI1。如果该DCI中指示了该行,且该DCI调度PDSCH N次传输,则该N个PDSCH采用的TCI都是TCI 1。
可选的,重复发送的多个PDCCH中承载的多个DCI可以对应一个或多个HARQ-ACK码本。
实施例一
请参考图5,为本申请实施例提供的一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S501、网络设备向终端设备发送M个DCI,该M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,M、L为大于或等于2的整数,N为正整数。
本申请实施例中,网络设备向终端设备发送M个DCI可以理解为,网络设备向终端设备发送M个PDCCH,其中每个PDCCH分别承载所述M个DCI中的一个DCI。可选的,所述M个DCI为重复的DCI,即网络设备向终端设备发送M个重复的PDCCH,每个PDCCH分别承载所述M个重复的DCI中的一个DCI。可选的,所述M个DCI中指示信息K0的取值可以相同。当M个DCI中的指示信息K0的取值相同时,可以以所述M个PDCCH中的某一个PDCCH所在的时间单元作为K0的参考点,确定PDSCH所在的时间单元。例如,可以以所述M个PDCCH中时域位置最靠前或最靠后的一个PDCCH所在的时间单元作为K0的参考点。
进一步地,M个DCI中的每个DCI用于调度第一数据的N次传输可以理解为,当N的取值为1时,所述M个PDCCH中的每个PDCCH用于调度同一个PDSCH,该PDSCH 用于承载第一数据,从而实现调度第一数据的一次传输。当N的取值大于1时,所述M个PDCCH中的每个PDCCH用于调度N个重复的PDSCH,该N个重复的PDSCH中的每个PDSCH均用于承载第一数据,从而实现调度第一数据的N次传输。
例如,M=2时,表示网络设备向终端设备发送了2个重复的DCI,该2个DCI中的一个DCI用于调度第一数据的N次传输,2个DCI中的另外一个DCI也用于调度第一数据的N次传输。
本申请实施例中,M个DCI对应L个HARQ-ACK码本是指,M个DCI与L个HARQ-ACK码本之间的一种多对多的关系。其中,M个DCI中的每个DCI均可对应一个HARQ-ACK码本,M个DCI中不同DCI对应的HARQ-ACK码本可能相同或不同,并不限定。
鉴于此,在具体实施中,所述M个DCI对应L个HARQ-ACK码本可具有如下多种可能的实现方式。
在一种可能的实现方式中,M个DCI对应L个HARQ-ACK码本可以为:所述M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本,L个CORESET组共有L个HARQ-ACK码本。由于每个DCI承载在所述L个CORESET组中的一个CORESET组中,因此使得每个DCI对应L个HARQ-ACK码本中的一个HARQ-ACK码本。一个DCI对应的HARQ-ACK码本是指,承载该DCI的CORESET组对应的HARQ-ACK码本。
具体的,如前所述,一个CORESET组可包括一个或多个CORESET,如此,M个DCI承载在L个CORESET组中可以是指,M个DCI承载在L个CORESET组包括的CORESET中,或者承载所述M个DCI的CORESET属于L个CORESET组。
例如,网络设备为终端设备配置了5个CORESET,对应的标识分别为0-4,记为CORESET 0至CORESET 4。其中,CORESET 0至CORESET 2属于CORESET组0,CORESET 3至CORESET 4属于CORESET组1。假设M=4,4个DCI分别承载在CORESET0至CORESET 3中,具体的,该4个DCI中有3个DCI分别承载在CORESET 0至CORESET2中,则表示该3个DCI承载在CORESET组0中,而另1个DCI承载在CORESET 3中,则表示该DCI承载在CORESET组1中,因此使得4个DCI承载在2个CORESET组中。
进一步的,一个CORESET组对应的HARQ-ACK码本是指,从该CORESET组包括的一个或多个CORESET中接收的DCI所调度的数据的反馈信息,如果需要在同一个时间单元反馈,则将它们的反馈信息包含在同一个HARQ-ACK码本中发送,这个HARQ-ACK码本即为该CORESET组对应的HARQ-ACK码本。
如此,终端设备可针对用于承载所述M个DCI的CORESET所属的L个CORESET组中的每个CORESET组,分别生成一个对应的HARQ-ACK码本。
例如,网络设备为终端设备配置了5个CORESET,对应的标识分别为0-4,记为CORESET 0至CORESET 4,其中CORESET 0至CORESET2属于CORESET组0,CORESET 3至CORESET 4属于CORESET组1。若在CORESET 0、CORESET 1以及CORESET2中分别接收到1个DCI,且这3个DCI中的每个DCI均指示调度的数据的反馈信息在slot(n)反馈,则在slot(n)中,由于这个3个DCI承载在相同的CORESET组上,则这3个DCI调度的数据的反馈信息会包含在同一个HARQ-ACK码本中发送,这个HARQ-ACK码本即为该CORESET组0对应的HARQ-ACK码本。
若在CORESET 3和CORESET 4中分别接收到1个DCI,且这2个DCI中的每个DCI均指示调度的数据的反馈信息在slot(n)反馈,则在slot n中,这2个DCI调度的数据的反馈信息会包含在同一个HARQ-ACK码本中发送,这个HARQ-ACK码本即为该CORESET组1对应的码本。也就是说,在slot(n)中会有2个HARQ-ACK码本发送,一个HARQ-ACK码本对应CORESET组0,另一个HARQ-ACK码本对应CORESET组1。
在另一种可能的实现方式中,由于M个DCI中的每个DCI都可通过指示信息K1指示出,用于发送其调度的数据的反馈信息的时间单元,且在同一个时间单元发送的反馈信息可以生成一个HARQ-ACK码本。因此,M个DCI对应L个HARQ-ACK码本还可以为,将指示的用于发送反馈信息的时间单元为同一时间单元的一个或多个DCI所调度的数据的反馈信息包含在同一个HARQ-ACK码本中发送,该HARQ-ACK码本即为该一个或者多个DCI对应的HARQ-ACK码本。
如此,M个DCI共指示出用于发送反馈信息的L个时间单元,终端设备可以针对L个时间单元中的每个时间单元,分别生成一个对应的HARQ-ACK码本。
例如,若M个DCI中的某个DCI指示用于发送反馈信息的时间单元为第一时间单元,则终端设备可在该第一时间单元内生成一个HARQ-ACK码本,该HARQ-ACK码本即为该DCI对应的HARQ-ACK码本,且该HARQ-ACK码本中包括该DCI调度的数据的反馈信息;若M个DCI中的另一个DCI指示用于发送反馈信息的时间单元为第二时间单元,则终端设备还可在该第二时间单元内生成另一个HARQ-ACK码本,该另一个HARQ-ACK码本即为该另一个DCI对应的HARQ-ACK码本,且该另一个HARQ-ACK码本中包括该另一个DCI调度的数据的反馈信息。此处,所述时间单元可以是指时隙或子时隙。具体在每个时间单元内生成HARQ-ACK码本的方式可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)技术规范(technical specification,TS)38.213中第9章的描述。
在另一种可能的实现方式中,由于M个DCI中的每个DCI还可通过优先级指示信息指示出,用于发送其调度的数据的反馈信息的优先级,且在同一个时间单元要发送的同一优先级的反馈信息可以生成一个HARQ-ACK码本。因此,M个DCI对应L个HARQ-ACK码本还可以为,将在同一个时间单元中,指示的反馈信息的优先级相同的一个或多个DCI所调度的数据的反馈信息在同一个HARQ-ACK码本中发送,该HARQ-ACK码本即为该一个或者多个DCI对应的HARQ-ACK码本。
如此,终端设备可在M个DCI指示的用于发送反馈信息的每个时间单元内,针对需要在该时间单元发送反馈信息的各个DCI所指示的反馈信息的优先级中的每个优先级,分别生成一个对应的HARQ-ACK码本。考虑到M个DCI指示的用于发送反馈信息的时间单元与指示的反馈信息的优先级的各种组合后,终端设备共生成L个HARQ-ACK码本。
若M个DCI指示的用于发送反馈信息的时间单元相同,那么M个DCI可共指示出L个反馈信息的优先级,终端设备可以针对L个反馈信息的优先级中的每个优先级,分别生成一个对应的HARQ-ACK码本。
例如,若M个DCI中的某个DCI指示用于发送反馈信息的时间单元为第一时间单元,且指示反馈信息的优先级为优先级0,则终端设备可在该第一时间单元内针对优先级0生成一个HARQ-ACK码本,该HARQ-ACK码本即为该DCI对应的HARQ-ACK码本,且该HARQ-ACK码本中包括该DCI调度的数据的反馈信息;若M个DCI中的另一个DCI指示用于发送反馈信息的时间单元也为第一时间单元,且指示反馈信息的优先级为优先级 1,则终端设备还可在该第一时间单元内针对优先级1生成另一个HARQ-ACK码本,该另一个HARQ-ACK码本即为该另一个DCI对应的HARQ-ACK码本,且该另一个HARQ-ACK码本中包括该另一个DCI调度的数据的反馈信息。如此,终端设备在第一时间单元内针对两个优先级分别生成了两个HARQ-ACK码本,且两个HARQ-ACK码本分别与两个DCI对应。具体在一个时间单元内生成每个优先级对应的HARQ-ACK码本的方式可以参考3GPP协议规范TS38.213中第9章的描述。
在另一种可能的实现方式中,由于M个DCI中的每个DCI都可通过组标识指示信息指示出,用于发送其调度的数据的反馈信息的组标识,且在同一个时间单元要发送的同一组标识的反馈信息可以生成一个HARQ-ACK码本,所述组标识用于指示DCI调度的数据的反馈信息属于哪个反馈组。因此,M个DCI对应L个HARQ-ACK码本还可以为,将在同一个时间单元中,指示的反馈信息组标识相同的一个或多个DCI所调度的数据的反馈信息包含在同一个HARQ-ACK码本中发送,该HARQ-ACK码本即为该一个或者多个DCI对应的HARQ-ACK码本。
如此,终端设备可在M个DCI指示的用于发送反馈信息的每个时间单元内,针对需要在该时间单元发送反馈信息的各个DCI所指示的反馈信息的组标识中的每个组标识,分别生成一个对应的HARQ-ACK码本。考虑到M个DCI指示的用于发送反馈信息的时间单元与指示的反馈信息的组标识的各种组合后,终端设备共生成L个HARQ-ACK码本。
若M个DCI指示的用于发送反馈信息的时间单元相同,那么M个DCI可共指示出L个反馈信息的组标识,终端设备可以针对L个组标识中的每个组标识,分别生成一个对应的HARQ-ACK码本。
例如,若M个DCI中的某个DCI指示用于发送反馈信息的时间单元为第一时间单元,且指示反馈信息的组标识为组标识0,则终端设备可在该第一时间单元内针对组标识0生成一个HARQ-ACK码本,该HARQ-ACK码本即为该DCI对应的HARQ-ACK码本,且该HARQ-ACK码本中包括该DCI调度的数据的反馈信息。若M个DCI中的另一个DCI指示用于发送反馈信息的时间单元也为第一时间单元,且指示反馈信息的组标识为组标识1,则终端设备还可在该第一时间单元内针对组标识1生成另一个HARQ-ACK码本,该另一个HARQ-ACK码本即为该另一个DCI对应的HARQ-ACK码本,且该另一个HARQ-ACK码本中包括该另一个DCI调度的数据的反馈信息。如此,终端设备在第一时间单元内针对两个组标识分别生成了两个HARQ-ACK码本,且两个HARQ-ACK码本分别与两个DCI对应。具体在一个时间单元内生成每个组标识对应的HARQ-ACK码本的方式可以参考3GPP协议规范TS 38.213中第9章的描述。所述反馈信息的组标识,可以称为是HARQ-ACK码本的组标识。
应理解,本申请实施例中,M个DCI对应L个HARQ-ACK码本还可以具有更多种可能的实现方式,在此不再一一举例。
可选的,网络设备还可以向终端设备发送第三指示信息,该第三指示信息用于指示M和/或N的取值。或者,本申请实施例中所涉及的M和/或N的取值还可以是预定义的,所述预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化或预烧制等,下文不再赘述。
步骤S502、终端设备接收来自网络设备的M个DCI。
所述M个DCI中的每个DCI还可用于指示,调度的一个PDSCH或N个重复的PDSCH 的时域资源位置。如此,终端设备在接收到所述M个DCI后,可在DCI指示的时域资源位置处接收N个第一数据,即第一数据的N个副本。
进而,终端设备可根据对第一数据的N个副本的译码结果,生成针对第一数据的反馈信息,该反馈信息可以为ACK或NACK。若终端设备对第一数据的N个副本中的一个或多个副本译码成功,则该反馈信息为ACK;若终端设备对第一数据的N个副本都译码失败,则该反馈信息为NACK。
步骤S503、终端设备向网络设备发送第一数据的反馈信息,该反馈信息包含在第一HARQ-ACK码本中,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
如前所述,M个DCI可对应L个HARQ-ACK码本。本申请实施例中,由于终端设备可将针对第一数据的反馈信息包含在所述L个HARQ-ACK码本中的其中一个HARQ-ACK码本中发送,而不是在每个HARQ-ACK码本中都发送,因此,可有效节省上行资源开销。也就是说,所述L个HARQ-ACK码本中除所述第一HARQ-ACK码本之外的其它HARQ-ACK码本中可以不包括针对第一数据的反馈信息。
本申请实施例中,若M个DCI承载在L个CORESET组中,每个CORESET组对应一个HARQ-ACK码本,那么该包含针对第一数据的反馈信息的第一HARQ-ACK码本可以为,第一CORESET组对应的HARQ-ACK码本,该第一CORESET组为所述L个CORESET组中的其中一个CORESET组。
在一种可能的实现方式中,该第一CORESET组可以为所述L个CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。这里,CORESET组的时域位置可以理解为CORESET组中包括的CORESET的时域位置,如此,时域位置最靠前的一个CORESET组可以是指,L个CORESET组中包括的CORESET的时域位置最靠前的其中一个CORESET组。如果L个CORESET组中有K个CORESET组包括的CORESET组的时域位置都是最靠前的,那么可以将K个CORESET组中组标识最小的CORESET组,确定为第一CORESET组,K为小于或等于L的整数。可以理解的是,CORESET的时域位置可以通过与其关联的搜索空间的时域参数确定,这里的时域参数可以包括周期、偏置和图案pattern。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,其中承载第一个DCI 1的CORESET所在的CORESET组的组标识为0,承载第二个DCI 1的CORESET所在的CORESET组的组标识为1,那么此时选择组标识较小的CORESET组0作为第一CORESET组。相应的,第一HARQ-ACK码本为CORESET组0对应的HARQ-ACK码本,终端设备针对第一数据的反馈信息将包含在CORESET组0对应的HARQ-ACK码本中发送。
再例如,在图6的(a)部分所示的示例中,两个DCI 1重复,其中承载第一个DCI 1的CORESET所在的CORESET组的组标识为0,承载第二个DCI 1的CORESET所在的CORESET组的组标识为1,CORESET组0和CORESET组1包含的CORESET在时域上都是最靠前的,那么此时选择组标识较小的CORESET组0作为第一CORESET组。相应的,第一HARQ-ACK码本为CORESET组0对应的HARQ-ACK码本,终端设备针对第一数据的反馈信息将包含在CORESET组0对应的HARQ-ACK码本中发送。
在另一种可能的实现方式中,该第一CORESET组可以为第一CORESET所在的CORESET组;其中,当第一数据的N次传输采用的TCI均相同时,该第一CORESET的 TCI与第一数据的N次传输采用的TCI相同,即第一CORESET是指承载所述M个DCI的CORESET中CORESET的TCI与第一数据的N次传输采用的TCI相同的那个CORESET。
当第一数据的N次传输中至少有两次传输所采用的TCI不同时,该第一CORESET的TCI与第一数据的第一次传输或最后一次传输采用的TCI相同,即第一CORESET是指承载所述M个DCI的CORESET中CORESET的TCI与第一数据的第一次传输或最后一次传输采用的TCI相同的那个CORESET。
需要说明的是,所述第一数据的N次传输采用的TCI可通过DCI中的TCI指示域来指示。即,所述M个DCI的每个DCI中均包括一个TCI指示域,该TCI指示域用于指示第一数据的N次传输采用的TCI。所述M个DCI中的每个DCI中TCI指示域的取值相同。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,假设两个DCI 1中指示调度的第一数据的N次传输采用的TCI均为TCI1。若承载第一个DCI 1的CORESET的TCI为TCI1,承载第二个DCI 1的CORESET的TCI为TCI2,那么此时选择承载第一个DCI 1的CORESET作为第一CORESET,选择该CORESET所在的CORESET组0作为第一CORESET组,因为该CORESET的TCI与调度的第一数据的N次传输采用的TCI相同。相应的,第一HARQ-ACK码本为CORESET组0对应的HARQ-ACK码本,终端设备针对第一数据的反馈信息将包含在CORESET组0对应的HARQ-ACK码本中发送。
再例如,在图6的(a)部分所示的示例中,两个DCI 1重复,假设两个DCI 1中指示调度的第一数据的N次传输采用的TCI不同,例如两个DCI 1指示调度的第一数据的第一次传输采用TCI1,调度的第一数据的第二次传输采用TCI2。若承载第一个DCI 1的CORESET的TCI为TCI1,承载第二个DCI 1的CORESET的TCI为TCI2,那么此时基于第一CORESET的TCI与第一数据的第一次传输采用的TCI相同的原则,选择承载第一个DCI 1的CORESET作为第一CORESET,选择该CORESET所在的CORESET组0作为第一CORESET组,因为该CORESET的TCI与调度的第一数据的第一次传输采用的TCI相同。相应的,第一HARQ-ACK码本为CORESET组0对应的HARQ-ACK码本,终端设备针对第一数据的反馈信息将包含在CORESET组0对应的HARQ-ACK码本中发送。
本申请实施例中,包含针对第一数据的反馈信息的第一HARQ-ACK码本还可以为,第一DCI对应的HARQ-ACK码本。应理解,所述第一DCI对应的HARQ-ACK码本可以为,承载第一DCI的CORESET所在的CORESET组对应的HARQ-ACK码本,或者也可以为在第一DCI所指示的用于发送针对第一数据的反馈信息的时间单元上发送的HARQ-ACK码本,所述时间单元可以为时隙或子时隙。第一DCI对应的HARQ-ACK码本的其他具体实施方式可以参照前面步骤S501中关于每个DCI对应的HARQ-ACK码本的多种实现方式的说明,在此不再赘述。
在一种可能的实现方式中,该第一DCI可以为所述M个DCI中时域位置最靠前的DCI。例如,在图6的(a)部分所示的示例中,两个DCI 1重复,第一个DCI 1在时域上位于第二个DCI 1的前面,此时,可将第一个DCI 1作为第一DCI。相应的,第一HARQ-ACK码本为第一个DCI 1所在的CORESET组0对应的HARQ-ACK码本。
若M个DCI中的B个DCI的时域位置均是最靠前的,则可以将M个DCI中频域位置最低的DCI作为第一DCI,或者将M个DCI中所在的CORESET的标识最小的DCI作为第一DCI。所述B为小于或等于M个整数。
例如,在图6的(b)部分所示的示例中,两个DCI 1重复,两个DCI 1的时域位置相 同,此时,可以基于选择频域位置较低的DCI的原则,将频率位置较低的第一个DCI 1作为第一DCI,或者也可以基于选择所在的CORESET的标识最小的DCI的原则,将CORESET1中的第一个DCI 1作为第一DCI。相应的,第一HARQ-ACK码本为第一个DCI1所在的CORESET组0对应的HARQ-ACK码本。
在另一种可能的实现方式中,该第一DCI指示的用于发送第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时间单元中最靠前的,即第一DCI为所述M个DCI中指示的用于发送第一数据的反馈信息的时间单元最靠前的那个DCI。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,若第一个DCI 1指示调度的第一数据的反馈信息在第一个子时隙中发送,第二个DCI 1指示调度的第一数据的反馈信息在第二个子时隙中发送,此时,可将第一个DCI 1作为第一DCI,相应的,第一HARQ-ACK码本为在第一个子时隙中发送的HARQ-ACK码本。
在又一种可能的实现方式中,该第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源的大小中最大的。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,若第一个DCI 1中包含一个资源指示信息,指示用于发送反馈信息的时频资源,终端设备根据反馈信息的比特数以及该DCI中的指示信息确定出发送反馈信息的时频资源1,假设时频资源1在时域上对应2个符号,在频域上对应5RB资源块(resource block,RB),则时频资源1共占10RB,第二个DCI 1中包含一个资源指示信息,指示用于发送反馈信息的时频资源,终端设备根据反馈信息的比特数以及该DCI中的指示信息确定出发送反馈信息的时频资源2,假设时频资源资源1在时域上对应2个符号,在频域上对应3RB,则时频资源1共占6RB,此时,可将第一个DCI 1作为第一DCI,相应的,第一HARQ-ACK码本为在第一个DCI 1指示的5个RB上发送的HARQ-ACK码本。
在又一种可能的实现方式中,该第一DCI指示的用于发送第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送第一数据的反馈信息的时频资源的大小中最小的。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,若第一个DCI 1中包含一个资源指示信息,指示用于发送反馈信息的时频资源,终端设备根据反馈信息的比特数以及该DCI中的指示信息确定出发送反馈信息的时频资源1,假设时频资源1在时域上对应2个符号,在频域上对应5RB资源块(resource block,RB),则时频资源1共占10RB,第二个DCI 1中包含一个资源指示信息,指示用于发送反馈信息的时频资源,终端设备根据反馈信息的比特数以及该DCI中的指示信息确定出发送反馈信息的时频资源2,假设时频资源资源1在时域上对应2个符号,在频域上对应3RB,则时频资源1共占6RB,此时,可将第二个DCI 1作为第一DCI,相应的,第一HARQ-ACK码本为在第二个DCI 1指示的3个RB上发送的HARQ-ACK码本。
在又一种可能的实现方式中,该第一DCI承载在第一CORESET上,该第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
例如,在图6的(a)部分所示的示例中,两个DCI 1重复,其中第一个DCI 1承载在CORESET 1上,第二个DCI 1承载在CORESET 2上,此时,可将第一个DCI 1作为第一 DCI,因为CORESET 1的标识较小。相应的,第一HARQ-ACK码本可以为该CORESET 1所在的CORESET组对应的HARQ-ACK码本。
步骤S504、网络设备接收来自终端设备的针对第一数据的反馈信息。
实施例二
请参考图7,为本申请实施例提供的另一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S701、网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的下行分配索引(downlink assignment index,DAI)域的取值均相同,所述M为大于或等于2的整数,所述N为正整数。
在步骤S701中,所述M个DCI的具体实施方式,以及每个DCI如何调度第一数据的N次传输可参考实施例一中步骤S501中的描述,在此不再重复。
本申请实施例中,DCI中包括一个DAI域,该DAI域用于终端设备判断网络设备为其调度的数据的次数或数量,进而根据调度的数据的次数或数量,确定一个HARQ-ACK码本中需要包括的反馈信息的数量,以及每个调度的数据的反馈信息在该HARQ-ACK码本中的位置。HARQ-ACK码本中包括的反馈信息的数量也可以理解为HARQ-ACK码本包括的比特数。
在具体实施中,该DAI域可包括第一DAI和/或第二DAI,该第一DAI和第二DAI是指DAI域中包含的两个指示信息,其中,第一DAI还可称为counter DAI或者简称为C-DAI,第二DAI还可以称为total DAI或者简称为T-DAI。若该DAI域中包括第一DAI和第二DAI,那么该DAI域中的指示信息可以记作(第一DAI,第二DAI)或(C-DAI,T-DAI)。
在一种可能的实现方式中,DAI域可包括第一DAI和第二DAI。相应的,所述M个DCI中的每个DCI包括的DAI域的取值均相同可以为,M个DCI中的每个DCI包括的第一DAI的取值均相同,且M个DCI中的每个DCI包括的第二DAI的取值也相同。其中,该第一DAI的值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值,该第二DAI的值用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数。
换言之,该第一DAI的值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,网络设备为该终端设备调度数据的次数的累计计数值。该第二DAI的值用于指示截止到第一DCI所在的PDCCH监测时机,网络设备为该终端设备调度数据的总次数。具体第一DAI和第二DAI的指示内容可以参照3GPP协议规范TS 38.213V16.0.0(2019-12)第9章的描述。
在另一种可能的实现方式中,DAI域可包括第一DAI,该DAI域中还可包括第二DAI或者也可以不包括第二DAI,本申请并不限定。相应的,所述M个DCI中的每个DCI包括的DAI域的取值均相同还可以为,所述M个DCI中的每个DCI包括的第一DAI的取值均相同;其中,该第一DAI的值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
应注意,在该实现方式中,在DAI域中包括第二DAI的情况下,本申请对所述M个 DCI中的每个DCI中包括的第二DAI的取值是否相同不作限定。若所述M个DCI中的每个DCI中包括的第二DAI的取值也相同,那么该实现方式实际上与上述第一种实现方式一样,若所述M个DCI中存在两个DCI中包括的第二DAI的取值不相同,那么每个DCI中的第二DAI的取值可用于指示截止到该DCI自身所在的PDCCH监测时机,终端设备被调度的总次数。
在上述两种可能的实现方式中所涉及的第一DCI,可以为所述M个DCI中时域位置最靠前的DCI;或者,也可以为所述M个DCI中指示的用于发送第一数据的反馈信息的时间单元最靠前的DCI;或者,也可以为所述M个DCI中指示的用于发送第一数据的反馈信息的时频资源最大的DCI;或者,也可以为所述M个DCI中指示的用于发送第一数据的反馈信息的时频资源最小的DCI;或者也可以为承载在第一CORESET上的DCI,此处该第一CORESET是指承载所述M个DCI的CORESET中CORESET标识最小的CORESET;或者,承载该第一DCI的CORESET所在的CORESET组还可以为承载所述M个DCI的CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
应注意,上述第一DCI的具体实施方式可与实施例一中相同,具体请参见实施例一的步骤S503中对第一DCI的描述,在此不再重复。
可选的,网络设备还可以向终端设备发送第三指示信息,该第三指示信息用于指示M和/或N的取值。或者本申请实施例中所涉及的M和/或N的取值还可以是预定义的。
步骤S702、终端设备接收来自网络设备的M个DCI。
步骤S703、终端设备向网络设备发送第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
本申请实施例中,所述HARQ-ACK码本为所述M个DCI对应的HARQ-ACK码本。即,所述M个DCI对应的HARQ-ACK码本为同一个HARQ-ACK码本。其中M个DCI中的每个DCI对应的HARQ-ACK对应的码本可以根据实施例一中所述的方法确定。
所述M个DCI可以承载在L个CORESET组中,即承载所述M个DCI的CORESET可以属于L个CORESET组,L为正整数。具体M个DCI承载在L个CORESET组中的具体实施方式可以参照实施例一中的描述。
在此基础上,网络设备可向终端设备发送第一指示信息,该第一指示信息用于指示所述L个CORESET组中的反馈信息联合反馈(joint feedback),所述联合反馈是指将在L个CORESET组中的PDCCH监测时机上接收的DCI所调度的下行数据的反馈信息联合在同一个HARQ-ACK码本中发送。即,所述L个CORESET组对应同一个HARQ-ACK码本,该HARQ-ACK码本是一个用于联合反馈的HARQ-ACK码本。相应的,当所述M个DCI指示所述M个DCI调度的数据在同一个时间单元反馈时,终端设备可将所述M个DCI调度的N个数据的反馈信息联合在一个HARQ-ACK码本中反馈。
具体的,第一数据的反馈信息在HARQ-ACK码本中的位置根据所述M个DCI中的第一DCI确定可以理解为,根据第一DCI中DAI域指示的DAI指示信息,确定第一数据的反馈信息在该HARQ-ACK码本中的位置。所述第一DCI的确定方式可参考实施例一中步骤S503中的描述,在此不再重复。
例如,若第一DCI中的第一DAI(即C-DAI)指示截止到第一DCI,网络设备为该终端设备调度了n次数据,即那么第一数据的反馈信息将在该HARQ-ACK码本中占据第n 个位置。
应理解,本申请实施例中对反馈信息中包含的比特数不作限定,因此,第一数据的反馈信息在HARQ-ACK码本中占据第n个位置并不一定表示,第一数据的反馈信息在该HARQ-ACK码本中占据第n个比特位置或者第一数据的反馈信息为该HARQ-ACK码本中的第n个比特,因为一个反馈信息可能包含一个或多个比特。
可以看出,本申请实施例中,当网络设备发送用于调度第一数据的N次传输的M个DCI时,由于该M个DCI中每个DCI中包括的DAI指示域的取值均相同,因此,终端设备可根据M个DCI生成一个HARQ-ACK码本,例如一个用于联合反馈的HARQ-ACK码本,并将针对第一数据的反馈信息包含在该HARQ-ACK码本中的第一位置上发送,该第一位置根据第一DCI确定,具体来说是根据第一DCI中的DAI域确定,从而有效节省上行资源开销。
由于M个DCI中每个DCI中包括的DAI域的取值均相同,当终端设备接收到M个DCI中除第一DCI之外的其他DCI时,可以认为没有接收到新的DCI,即认为接收到的是第一DCI的副本,而不认为是一个新的DCI。由于仅根据M个DCI中第一DCI中的DAI指示信息,确定该第一数据的反馈信息在HARQ-ACK码本所占的位置,因此,可以有效避免发送多个重复的DCI时,DCI中的DAI指示信息指示模糊的问题,从而提高反馈信息的可靠性,使得网络设备和终端设备对反馈信息的比特数有一致理解,避免发生大规模重传。
步骤S704、网络设备接收来自终端设备的针对第一数据的反馈信息。
例如,在图8所示的示例中,两个DCI 1重复,其中,两个DCI 1中的DAI域的取值相同,因此可以将第二个DCI 1看做是第一个DCI 1的副本。终端设备可根据第一个DCI 1、DCI 2、DCI 3和DCI 4,生成HARQ-ACK码本,两个第一DCI 1调度的数据的反馈信息在该HARQ-ACK码本中的位置根据第一个DCI 1中的DAI指示信息确定。
若每个反馈信息占据1比特,根据图8中所示的各个DCI中DAI域的取值可知,该HARQ-ACK码本共包括4比特,两个DCI 1调度的数据的反馈信息在该HARQ-ACK码本中占据第1个比特位置。
实施例三
请参考图9,为本申请实施例提供的又一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S901、网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与第二DCI中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数。
在步骤S901中,所述M个DCI的具体实施方式,以及每个DCI如何调度第一数据的N次传输可参考实施例一中步骤S501中的描述,在此不再重复。
同实施例二类似,DCI中的DAI域可包括第一DAI和/或第二DAI,该第一DAI和第二DAI是指DAI域中包含的两个指示信息,其中,第一DAI还可称为counter DAI或者简称为C-DAI,第二DAI还可以称为total DAI或者简称为T-DAI。若该DAI域中包括第一DAI和第二DAI,那么该DAI域中的指示信息可以记作(第一DAI,第二DAI)或(C-DAI, T-DAI)。
在一种可能的实现方式中,DAI域可包括第一DAI和第二DAI。相应的,所述M个DCI中的第一DCI中的DAI域的取值与第二DCI中的DAI域的取值不同可以为,第一DCI中第一DAI的取值与第二DCI中第一DAI的取值不同,且第一DCI中第二DAI的取值与第二DCI中第二DAI的取值也不同。
其中,第一DCI中第一DAI的取值可用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值可用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第一DCI中第二DAI的取值可用于指示截止到第一DCI所在的PDCCH监测时机,终端设备被调度的总次数;第二DCI中第二DAI的取值可用于指示截止到第二DCI所在的PDCCH监测时机,终端设备被调度的总次数。
需要说明的是,终端设备被调度的次数的累计计数值还可以理解为,网络设备为该终端设备调度数据的次数的累计计数值;终端设备被调度的总次数还可以理解为,网络设备为该终端设备调度数据的总次数。
但应注意,在该实施例三中,M个DCI中的每个DCI中第一DAI的取值用于指示截止到该DCI自身所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;每个DCI中第二DAI的取值用于指示截止到该DCI自身所在的PDCCH监测时机,终端设备被调度的总次数。
在另一种可能的实现方式中,DAI域可包括第一DAI,该DAI域中还可包括第二DAI或者也可以不包括第二DAI,本申请并不限定。相应的,所述M个DCI中的第一DCI中的DAI域的取值与第二DCI中的DAI域的取值不同还可以为,第一DCI中第一DAI的取值与第二DCI中第一DAI的取值不同;其中,第一DCI中第一DAI的取值用于指示截止到第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;第二DCI中第一DAI的取值用于指示截止到第二DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
应注意,在该实现方式中,在该DAI域中包括第二DAI的情况下,本申请对所述M个DCI中的每个DCI中包括的第二DAI的取值是否相同不作限定。
可选的,所述M个DCI中的任意两个DCI中DAI指示域的取值均不同。
可选的,网络设备还可以向终端设备发送第三指示信息,该第三指示信息用于指示M和/或N的取值。或者,本申请实施例中所涉及的M和/或N的取值还可以是预定义的。
步骤S902、终端设备接收来自网络设备的M个DCI。
可选的,终端设备在接收到所述M个DCI后,可将所述M个DCI中的除所述DAI域之外剩余的比特域进行合并译码,从而提高PDCCH的可靠性。
步骤S903、终端设备向网络设备发送第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
本申请实施例中,所述HARQ-ACK码本为所述M个DCI对应的HARQ-ACK码本。即,所述M个DCI对应的HARQ-ACK码本为同一个HARQ-ACK码本。其中M个DCI中的每个DCI对应的HARQ-ACK对应的码本可以根据实施例一中所述的方法确定。
所述M个DCI可以承载在L个CORESET组中,即承载所述M个DCI的CORESET 属于L个CORESET组,L为正整数。
在此基础上,网络设备可向终端设备发送第一指示信息,该第一指示信息用于指示所述L个CORESET组中的反馈信息联合反馈(joint feedback),所述联合反馈是指将在L个CORESET组中的PDCCH监测时机上接收的DCI所调度的下行数据的反馈信息联合在同一个HARQ-ACK码本中发送。即,所述L个CORESET组对应同一个HARQ-ACK码本,该HARQ-ACK码本是一个用于联合反馈的HARQ-ACK码本。
本申请实施例中,终端设备可根据所述M个DCI中每个DCI中的DAI域的取值,生成第一数据的反馈信息,并将该第一数据的反馈信息包含在一个HARQ-ACK码本中发送给网络设备,例如一个用于联合反馈的HARQ-ACK码本,如此,有效节省上行资源开销。
由于M个DCI中至少存在两个DCI中的DAI指示域的取值不同,因此,终端设备可针对M个DCI调度的第一数据发送M份反馈信息,从而增强反馈信息的可靠性。具体的,所述M份反馈信息是指第一数据的反馈信息包含M个部分或M个副本。该M份反馈信息在相同的HARQ-ACK码本中占据不同的M个位置,每份反馈信息分别与M个DCI中的一个DCI相对应。每份反馈信息在该HARQ-ACK码本中的位置由其对应的DCI中的DAI指示信息确定。例如,M个DCI中的第一DCI中的DAI指示信息,指示截止到该第一DCI,网络设备为该终端设备调度了n次数据,即那么第一DCI对应的那份反馈信息则在HARQ-ACK码本中占据第n个位置。
应理解,本申请实施例中对一份反馈信息中包含的比特数不作限定,因此,某个DCI对应的一份反馈信息在HARQ-ACK码本中占据第n个位置并不一定表示,该DCI对应的那份反馈信息在该HARQ-ACK码本中占据第n个比特位置或者该DCI对应的那份反馈信息为该HARQ-ACK码本中的第n个比特,因为一份反馈信息可能包含一个或多个比特。
步骤S904、网络设备接收来自终端设备的针对第一数据的反馈信息。
例如,在图10所示的示例中,两个DCI 1重复,其中,两个DCI 1中的DAI域的取值不同。终端设备可根据第一个DCI 1、DCI 2、DCI 3、第二个DCI 1和DCI 4,生成一个联合的HARQ-ACK码本,两个第一DCI 1调度的数据的反馈信息在该HARQ-ACK码本中的位置根据第一个DCI 1中的DAI域的取值和第二个DCI 1中的DAI域的取值确定。
若每个反馈信息占据1比特,根据图10中所示的各个DCI中的DAI域的取值可知,该HARQ-ACK码本共包括5比特,两个DCI 1调度的数据的反馈信息在该HARQ-ACK码本中共占据2个比特。其中,根据第一个DCI 1中DAI域的取值(具体是第一DAI的取值,即C-DAI),可确定该第一个DCI 1对应的反馈信息在该HARQ-ACK码本中占据第1个比特位置,根据第二个DCI 1中DAI域的取值(具体是第一DAI的取值,即C-DAI),可确定该第二个DCI 1对应的反馈信息在该HARQ-ACK码本中占据第4个比特位置。
也就是说,终端设备针对两个DCI 1调度的数据共发送了2比特的反馈信息,相当于针对每个DCI 1都发送了一份对应的反馈信息。若两个DCI 1对应的反馈信息中只要存在一个DCI 1对应的反馈信息为ACK,那么网络设备就可认为终端设备对两个DCI 1调度的数据译码成功。
实施例四
请参考图11,为本申请实施例提供的又一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S1101、网络设备向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,该第一DCI中DAI域的取值与第二DCI中DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数。
在步骤S1101中,所述M个DCI的具体实施方式,以及每个DCI如何调度第一数据的N次传输,所述M个DCI如何对应L个HARQ-ACK码本,均可参考实施例一中步骤S501中的描述,在此不再重复。
类似的,所述M个DCI中第一DCI中DAI域的取值与第二DCI中DAI域的取值不同的具体实施方式可参考实施例三中步骤S901中的描述,在此不再重复。
可选的,所述M个DCI中的任意两个DCI中DAI指示域的取值均不同。
可选的,网络设备还可以向终端设备发送第三指示信息,该第三指示信息用于指示M和/或N的取值。或者,本申请实施例中所涉及的M和/或N的取值还可以是预定义的。
步骤S1102、终端设备接收来自网络设备的M个DCI。
可选的,终端设备在接收到所述M个DCI后,可将所述M个DCI中的除所述DAI域之外剩余的比特域进行合并译码,从而提高PDCCH的可靠性。
步骤S1103、终端设备向网络设备发送L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括针对第一数据的反馈信息。
如前所述,所述M个DCI对应L个HARQ-ACK码本。本申请实施例中,由于终端设备可将针对第一数据的反馈信息,包含在L个HARQ-ACK码本中的每个HARQ-ACK码本分别发送,因此可有效增强反馈信息的可靠性。此外,由于M个DCI中至少有两个DCI的DAI指示域的取值不同,因此,可使终端设备在生成HARQ-ACK码本的过程中,不会出现DAI指示模糊的问题,保证网络设备与终端设备对反馈信息的比特数有一致理解,避免发生大规模重传。
需要说明的是,所述每个HARQ-ACK码本中均包括针对第一数据的反馈信息可以是指,终端设备分别在L个HARQ-ACK码本中发送了针对第一数据的M份反馈信息,每份反馈信息分别与M个DCI中的一个DCI对应。也就是说,终端设备可针对M个DCI中的每个DCI分别生成第一数据的一份反馈信息,共生成第一数据的M份反馈信息。该M份反馈信息根据M个DCI与L个HARQ-ACK码本之间的对应关系,分布在L个HARQ-ACK码本中。
具体的,针对M个DCI中的每个DCI生成的一份反馈信息,在该DCI对应的HARQ-ACK码本中的位置,根据该DCI中DAI域指示的DAI指示信息确定。例如,若M个DCI中的第一DCI中的DAI指示信息,指示截止到该第一DCI,网络设备为该终端设备调度了n次数据,即那么第一DCI对应的那份反馈信息在第一HARQ-ACK码本中占据第n个位置,该第一HARQ-ACK码本是指L个HARQ-ACK码本中第一DCI对应的HARQ-ACK码本。
本申请实施例中,所述M个DCI可以承载在L个CORESET组中,即承载所述M个DCI的CORESET属于L个CORESET组,L为正整数。
在此基础上,网络设备可向终端设备发送第二指示信息,该第二指示信息用于指示所述L个CORESET组中的反馈信息分别反馈(separate feedback),所述分别反馈是指将在每个CORESET组中的PDCCH监测时机上接收的DCI所调度的下行数据的反馈信息在该 CORESET组对应的一个HARQ-ACK码本中发送。即,每个CORESET组分别对应L个HARQ-ACK码本中的一个HARQ-ACK码本。
步骤S1104、网络设备接收来自终端设备的L个HARQ-ACK码本。
例如,在图12所示的示例中,两个DCI 1重复,其中,两个DCI 1中的DAI域的取值不同。第一个DCI 1与DCI 4承载在CORESET 1中,DCI 2、DCI 3和第二个DCI 1承载在CORESET 2中。假设CORESET 1属于CORESET组0,CORESET 2属于CORESET组1,且网络设备指示了两个CORESET组对应的HARQ-ACK码本分别反馈。那么,终端设备可根据第一个DCI 1和DCI 4生成一个HARQ-ACK码本,根据DCI 2、DCI 3和第二个DCI 1生成另一个HARQ-ACK码本。如此,第一个DCI 1调度的数据的反馈信息在该第一个HARQ-ACK码本中的位置,可根据第一个DCI 1中的DAI域的取值确定;第二个DCI 1调度的数据的反馈信息在第二个HARQ-ACK码本中的位置,可根据第二个DCI 1中的DAI域的取值确定。
若每个反馈信息占据1比特,根据图12中所示的各个DCI中的DAI域的取值可知,第一个HARQ-ACK码本共包括2比特,第二个HARQ-ACK码本共包括3比特。其中,根据第一个DCI 1中DAI域的取值(具体是第一DAI的取值,即C-DAI),可确定该第一个DCI 1对应的反馈信息在第一个HARQ-ACK码本中占据第1个比特位置;根据第二个DCI 1中DAI域的取值(具体是第一DAI的取值,即C-DAI),可确定该第二个DCI 1对应的反馈信息在第二个HARQ-ACK码本中占据第3个比特位置。也就是说,终端设备针对两个DCI 1调度的数据共发送了2比特的反馈信息,且这比特的反馈信息分别包含在独立发送的两个HARQ-ACK码本中。
本申请实施例还提供一种通信装置,请参考图13,为本申请实施例提供的一种通信装置的结构示意图。该通信装置1300包括:收发模块1310和处理模块1320。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片。
示例性的,当该通信装置作为网络设备,执行图5中所示的方法实施例时,收发模块1310用于,向终端设备发送M个DCI,所述M个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M、L为大于等2的整数,所述N为正整数;处理模块1320用于,通过所述收发模块1310接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在第一HARQ-ACK码本中,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
当该通信装置作为网络设备,执行图7中所示的方法实施例时,收发模块1310用于,向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;处理模块1320用于,通过所述收发模块1310接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
当该通信装置作为网络设备,执行图9中所示的方法实施例时,收发模块1310用于,向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI 中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;处理模块1320用于,通过所述收发模块1310接收来自终端设备的针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
当该通信装置作为网络设备,执行图11中所示的方法实施例时,收发模块1310用于,向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;处理模块1320用于,通过所述收发模块1310接收来自终端设备的L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括针对第一数据的反馈信息。
该通信装置中涉及的处理模块1320可以由处理器或处理器相关电路组件实现,收发模块1310可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图5、图7、图9或图11中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图14,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1402。所述RRU 1401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线14011和射频单元14012。所述RRU 1401部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1402部分主要用于进行基带处理,对基站进行控制等。所述RRU 1401与BBU 1402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1402可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1402还可以包括存储器14021和处理器14022,所述存储器14021用于存储必要的指令和数据。所述处理器14022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器14021和处理器14022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供另一种通信装置,请参考图15,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1500包括:收发模块1510和处理模块1520。该通信装置可用于实现上述任一方法实施例中涉及终端设备的功能。例如,该通信装置可以是终端设备,还可以是终端设备中包括的芯片,也可以是包括终端设备的装置,如各种类型的车辆等。
示例性的,当该通信装置作为终端设备,执行图5中所示的方法实施例时,收发模块 1510用于,接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M、L为大于或等于2的整数,所述N为正整数;处理模块1520用于,通过所述收发模块1510向网络设备发送针对第一数据的反馈信息,该反馈信息包含在第一HARQ-ACK码本中,该第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
当该通信装置作为网络设备,执行图7中所示的方法实施例时,收发模块1510用于,接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;处理模块1520用于,通过所述收发模块1510向网络设备发送针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
当该通信装置作为网络设备,执行图9中所示的方法实施例时,收发模块1510用于,接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;处理模块1520用于,通过所述收发模块1510向网络设备发送针对第一数据的反馈信息,该反馈信息包含在HARQ-ACK码本中,该反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
当该通信装置作为网络设备,执行图11中所示的方法实施例时,收发模块1510用于,接收来自网络设备的M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,该第一DCI中的DAI域的取值与该第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;处理模块1520用于,通过所述收发模块1510向网络设备发送L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括针对第一数据的反馈信息。
应理解,该通信装置中涉及的处理模块1520可以由处理器或处理器相关电路组件实现,收发模块1510可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图5、图7、图9或图11中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图16,为本申请实施例中提供的另一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图16中,终端设备以手机作为例子。如图16所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。 当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图16所示,终端设备包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发电路。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元1610用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中涉及的各种数字编号仅为描述方便进行的区分,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (37)

  1. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个混合自动重传请求确认HARQ-ACK码本,所述M、L为大于或等于2的整数,所述N为正整数;
    接收来自所述终端设备的所述第一数据的反馈信息,所述反馈信息包含在第一HARQ-ACK码本中,所述第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
  2. 根据权利要求1所述的方法,其特征在于,所述M个DCI对应L个混合自动重传请求确认HARQ-ACK码本,包括:
    所述M个DCI承载在L个控制资源集合CORESET组中,每个CORESET组对应一个HARQ-ACK码本;
    所述第一HARQ-ACK码本为第一CORESET组对应的HARQ-ACK码本,所述第一CORESET组为所述L个CORESET组中的一个CORESET组。
  3. 根据权利要求2所述的方法,其特征在于,所述第一CORESET组为所述L个CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
  4. 根据权利要求2所述的方法,其特征在于,所述第一CORESET组为第一CORESET所在的CORESET组;
    其中,当所述第一数据的N次传输采用的传输配置指示TCI均相同时,所述第一CORESET的TCI与所述第一数据的N次传输采用的TCI相同;
    当所述第一数据的N次传输中至少有两次传输所采用的TCI不同时,所述第一CORESET的TCI与所述第一数据的第一次传输或最后一次传输采用的TCI相同。
  5. 根据权利要求1所述的方法,其特征在于,所述第一HARQ-ACK码本为第一DCI对应的HARQ-ACK码本;
    其中,所述第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时间单元中最靠前的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源的大小中最大的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源的大小中最小的;或者,
    所述第一DCI承载在第一CORESET上,所述第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述L个HARQ-ACK码本中除所述第一HARQ-ACK码本之外的其它HARQ-ACK码本中不包括所述第一数据的反馈信息。
  7. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个混合自动重传请求确认HARQ-ACK码本,所述M、L为大于或等于2的整数,所述N为正整数;
    向所述网络设备发送所述第一数据的反馈信息,所述反馈信息包含在第一HARQ-ACK码本中,所述第一HARQ-ACK码本为所述L个HARQ-ACK码本中的一个HARQ-ACK码本。
  8. 根据权利要求7所述的方法,其特征在于,所述M个DCI对应L个混合自动重传请求确认HARQ-ACK码本,包括:
    所述M个DCI承载在L个控制资源集合CORESET组中,每个CORESET组对应一个HARQ-ACK码本;
    所述第一HARQ-ACK码本为第一CORESET组对应的HARQ-ACK码本,所述第一CORESET组为所述L个CORESET组中的一个CORESET组。
  9. 根据权利要求8所述的方法,其特征在于,所述第一CORESET组为所述L个CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
  10. 根据权利要求8所述的方法,其特征在于,所述第一CORESET组为第一CORESET所在的CORESET组;
    其中,当所述第一数据的N次传输采用的传输配置指示TCI均相同时,所述第一CORESET的TCI与所述第一数据的N次传输采用的TCI相同;
    当所述第一数据的N次传输中至少有两次传输所采用的TCI不同时,所述第一CORESET的TCI与所述第一数据的第一次传输或最后一次传输采用的TCI相同。
  11. 根据权利要求7所述的方法,其特征在于,所述第一HARQ-ACK码本为第一DCI对应的HARQ-ACK码本;
    其中,所述第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时间单元中最靠前的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源的大小中最大的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源的大小中最小的;或者,
    所述第一DCI承载在第一CORESET上,所述第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述L个HARQ-ACK码本中除所述第一HARQ-ACK码本之外的其它HARQ-ACK码本中不包括所述第一数据的反馈信息。
  13. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的下行分配索引DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;
    接收来自所述终端设备的所述第一数据的反馈信息,所述反馈信息包含在混合自动重传请求确认HARQ-ACK码本中,所述反馈信息在所述HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
  14. 根据权利要求13所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,所述L为大于或等于2的整数;
    所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  15. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI中的每个DCI包括的下行分配索引DAI域的取值均相同,所述M为大于或等于2的整数,所述N为正整数;
    向所述网络设备发送所述第一数据的反馈信息,所述反馈信息包含在混合自动重传请求确认HARQ-ACK码本中,所述反馈信息在HARQ-ACK码本的位置根据所述M个DCI中的第一DCI确定。
  16. 根据权利要求15所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,所述L为大于或等于2的整数;
    所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述DAI域包括第一DAI和第二DAI;
    所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:
    所述M个DCI中的每个DCI包括的所述第一DAI的取值均相同,且所述M个DCI中的每个DCI包括的所述第二DAI的取值均相同;
    其中,所述第一DAI的值用于指示截止到所述第一DCI所在的物理下行控制信道PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值,所述第二DAI的值用于指示截止到所述第一DCI所在的PDCCH监测时机,所述终端设备被调度的总次数。
  18. 根据权利要求13至16中任一项所述的方法,其特征在于,所述DAI域包括第一DAI;
    所述M个DCI中的每个DCI包括的DAI域的取值均相同,包括:
    所述M个DCI中的每个DCI包括的所述第一DAI的取值均相同;
    其中,所述第一DAI的值用于指示截止到所述第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述第一DCI为所述M个DCI中时域位置最靠前的DCI;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时间单元是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时间单元中最靠前的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源中最大的;或者,
    所述第一DCI指示的用于发送所述第一数据的反馈信息的时频资源的大小是所述M个DCI中的DCI所指示的用于发送所述第一数据的反馈信息的时频资源中最小的;或者,
    所述第一DCI承载在第一控制资源集合CORESET上,所述第一CORESET是承载所述M个DCI的CORESET中CORESET标识最小的CORESET。
  20. 根据权利要求13至18中任一项所述的方法,其特征在于,承载所述第一DCI的CORESET所在的CORESET组为承载所述M个DCI的CORESET组中组标识最小或者时域位置最靠前的一个CORESET组。
  21. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,所述第一DCI中的下行分配索引DAI域的取值与所述第二DCI中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;
    接收来自所述终端设备的所述第一数据的反馈信息,所述反馈信息包含在HARQ-ACK码本中,所述反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
  22. 根据权利要求21所述的方法,其特征在于,所述M个DCI承载在L个控制资源集合CORESET组,所述L为大于或等于2的整数;
    所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  23. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI包括第一DCI和第二DCI,所述第一DCI中的下行分配索引DAI域的取值与所述第二DCI中的DAI域的取值不同,所述M为大于或等于2的整数,所述N为正整数;
    向所述网络设备发送所述第一数据的反馈信息,所述反馈信息包含在混合自动重传请求确认HARQ-ACK码本中,所述反馈信息在HARQ-ACK码本中占用M个位置,所述M个位置中的每一个位置分别对应所述M个DCI中的一个DCI。
  24. 根据权利要求23所述的方法,其特征在于,所述M个DCI承载在L个控制资源集合CORESET组,所述L为大于或等于2的整数;
    所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述DAI域包括第一DAI和第二DAI;
    所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:
    所述第一DCI中的所述第一DAI的取值与所述第二DCI中的所述第一DAI的取值不同,且所述第一DCI中的所述第二DAI的取值与所述第二DCI中的所述第二DAI的取值不同;
    其中,所述第一DCI中的所述第一DAI的取值用于指示截止到所述第一DCI所在的 物理下行控制信道PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;
    所述第二DCI中所述第一DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机及所在小区,所述终端设备被调度的次数的累计计数值;
    所述第一DCI中所述第二DAI的取值用于指示截止到所述第一DCI所在的PDCCH监测时机,所述终端设备被调度的总次数;
    所述第二DCI中所述第二DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机,所述终端设备被调度的总次数。
  26. 根据权利要求21至24中任一项所述的方法,其特征在于,所述DAI域包括第一DAI;
    所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:
    所述第一DCI中的所述第一DAI的取值与所述第二DCI中的所述第一DAI的取值不同;
    其中,所述第一DCI中所述第一DAI的取值用于指示截止到所述第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;
    所述第二DCI中所述第一DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机及所在小区,所述终端设备被调度的次数的累计计数值。
  27. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个混合自动重传请求确认HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,所述第一DCI中的下行分配索引DAI域的取值与所述第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;
    接收来自所述终端设备的L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括所述第一数据的反馈信息。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息指示所述L个CORESET组对应的反馈信息分别反馈。
  29. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI中的每个DCI用于调度第一数据的N次传输,所述M个DCI对应L个混合自动重传确认HARQ-ACK码本,所述M个DCI包括第一DCI和第二DCI,所述第一DCI中的下行分配索引DAI域的取值与所述第二DCI中的DAI域的取值不同,所述M、L为大于或等于2的整数,所述N为正整数;
    向所述网络设备发送L个HARQ-ACK码本,且每个HARQ-ACK码本中均包括所述第一数据的反馈信息。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述L个CORESET组对应的反馈信息分别反馈。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述M个DCI对应L个HARQ-ACK码本,包括:
    所述M个DCI承载在L个控制资源集合CORESET组中,每个CORESET组对应一个HARQ-ACK码本。
  32. 根据权利要求27至31中任一项所述的方法,其特征在于,所述DAI域包括第一DAI和第二DAI;
    所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:
    所述第一DCI中的所述第一DAI的取值与所述第二DCI中的所述第一DAI的取值不同,且所述第一DCI中的所述第二DAI的取值与所述第二DCI中的第二DAI的取值不同;
    其中,所述第一DCI中所述第一DAI的取值用于指示截止到所述第一DCI所在的物理下行控制信道PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;
    所述第二DCI中所述第一DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机及所在小区,所述终端设备被调度的次数的累计计数值;
    所述第一DCI中所述第二DAI的取值用于指示截止到所述第一DCI所在的PDCCH监测时机,所述终端设备被调度的总次数;
    所述第二DCI中所述第二DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机,所述终端设备被调度的总次数。
  33. 根据权利要求27至31中任一项所述的方法,其特征在于,所述DAI域包括第一DAI;
    所述第一DCI中的DAI域的取值与所述第二DCI中的DAI域的取值不同,包括:
    所述第一DCI中的所述第一DAI的取值与所述第二DCI中的所述第一DAI的取值不同;
    其中,所述第一DCI中所述第一DAI的取值用于指示截止到所述第一DCI所在的PDCCH监测时机及所在小区,终端设备被调度的次数的累计计数值;
    所述第二DCI中所述第一DAI的取值用于指示截止到所述第二DCI所在的PDCCH监测时机及所在小区,所述终端设备被调度的次数的累计计数值。
  34. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求1至33中任一项所述方法的单元。
  35. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至33中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,实现如权利要求1至33中任一项所述的方法。
  37. 一种通信系统,其特征在于,包括第一通信装置和第二通信装置;
    其中,所述第一通信装置被配置用于执行如权利要求1至6、13至14、17至22、25至28、31至33中任一项所述的方法;所述第二通信装置被配置用于执行如权利要求7至12、15至20、23至26、29至33中任一项所述的方法。
PCT/CN2021/086288 2020-04-10 2021-04-09 一种反馈信息的发送方法及装置 WO2021204275A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21785163.3A EP4120607A4 (en) 2020-04-10 2021-04-09 METHOD AND DEVICE FOR TRANSMITTING FEEDBACK INFORMATION
US17/959,748 US20230026094A1 (en) 2020-04-10 2022-10-04 Feedback Information Sending Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281670.0 2020-04-10
CN202010281670.0A CN113517959B (zh) 2020-04-10 2020-04-10 一种反馈信息的发送方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/959,748 Continuation US20230026094A1 (en) 2020-04-10 2022-10-04 Feedback Information Sending Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021204275A1 true WO2021204275A1 (zh) 2021-10-14

Family

ID=78022998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086288 WO2021204275A1 (zh) 2020-04-10 2021-04-09 一种反馈信息的发送方法及装置

Country Status (4)

Country Link
US (1) US20230026094A1 (zh)
EP (1) EP4120607A4 (zh)
CN (1) CN113517959B (zh)
WO (1) WO2021204275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220052824A1 (en) * 2019-02-15 2022-02-17 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and apparatus therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082059A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 Harq-ack反馈信息的传输方法及相关装置
CN110061816A (zh) * 2018-08-31 2019-07-26 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法
CN110535570A (zh) * 2019-01-18 2019-12-03 中兴通讯股份有限公司 一种传输信息的方法和装置
CN110876204A (zh) * 2018-08-31 2020-03-10 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557231B (zh) * 2018-06-04 2021-02-12 华为技术有限公司 传输信息的方法和通信设备
JP7093856B2 (ja) * 2018-06-28 2022-06-30 オッポ広東移動通信有限公司 フィードバック情報の伝送方法及び装置
CN110875814B (zh) * 2018-09-03 2023-05-02 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
CN110535609B (zh) * 2019-08-02 2023-11-24 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082059A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 Harq-ack反馈信息的传输方法及相关装置
CN110061816A (zh) * 2018-08-31 2019-07-26 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法
CN110876204A (zh) * 2018-08-31 2020-03-10 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法
CN110535570A (zh) * 2019-01-18 2019-12-03 中兴通讯股份有限公司 一种传输信息的方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP PROTOCOL SPECIFICATION TS 38.213, December 2019 (2019-12-01)
3GPP) TECHNICAL SPECIFICATION (TECHNICAL SPECIFICATION, TS) 38.213
OPPO: "PDCCH enhancement for URLLC", 3GPP DRAFT; R1-2000479, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20200224 - 20200228, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852879 *
See also references of EP4120607A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220052824A1 (en) * 2019-02-15 2022-02-17 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and apparatus therefor
US11949625B2 (en) * 2019-02-15 2024-04-02 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and apparatus therefor

Also Published As

Publication number Publication date
CN113517959A (zh) 2021-10-19
EP4120607A4 (en) 2023-08-09
EP4120607A1 (en) 2023-01-18
US20230026094A1 (en) 2023-01-26
CN113517959B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11683817B2 (en) Method and apparatus for communicating a data communication with an offset
CN110912656B (zh) 一种通信方法及装置
US11855925B2 (en) Uplink control information sending and receiving method and apparatus
WO2019029639A1 (zh) 通信方法和通信装置
JP2022511201A (ja) 信号の送信に関与するユーザ機器およびネットワークノード
WO2021043174A1 (zh) 一种通信方法及装置
WO2018024068A1 (zh) 一种动态确定上行dmrs的传输位置的方法及设备
WO2020216130A1 (zh) 一种通信方法及装置
CN111130727B (zh) 一种数据传输方法及终端设备
US20230028448A1 (en) Feedback information sending method and apparatus
CN111867070A (zh) 通信方法和通信装置
WO2014110759A1 (en) Flexible usage of special subframe for long term evolution time division duplex downlink-uplink
CN110730513B (zh) 一种通信方法及装置
CN112218375A (zh) 确定资源分配的方法和装置
WO2019014923A1 (zh) 传输数据的方法、终端设备和网络设备
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
CN112312441B (zh) 一种通信方法和通信装置
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
WO2019105330A1 (zh) 在非授权传输中识别用户设备的方法、装置、设备及系统
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置
WO2023050260A1 (zh) 无线通信方法和设备
WO2022016477A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021785163

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE