WO2023050260A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2023050260A1
WO2023050260A1 PCT/CN2021/122053 CN2021122053W WO2023050260A1 WO 2023050260 A1 WO2023050260 A1 WO 2023050260A1 CN 2021122053 W CN2021122053 W CN 2021122053W WO 2023050260 A1 WO2023050260 A1 WO 2023050260A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
offset
srs resource
slot offset
resource group
Prior art date
Application number
PCT/CN2021/122053
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180099425.0A priority Critical patent/CN117501773A/zh
Priority to PCT/CN2021/122053 priority patent/WO2023050260A1/zh
Priority to EP21958839.9A priority patent/EP4362585A1/en
Publication of WO2023050260A1 publication Critical patent/WO2023050260A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • uplink and downlink resources can be transmitted through high-level signaling and physical layer signaling. to indicate and adjust. Therefore, a time slot (slot) or certain symbols on a slot may be used for transmission in different directions at different times, for example, it may be used for uplink transmission at a certain time, and used for downlink transmission at a certain time.
  • slot time slot
  • certain symbols on a slot may be used for transmission in different directions at different times, for example, it may be used for uplink transmission at a certain time, and used for downlink transmission at a certain time.
  • the slot offset (slot offset) between the trigger signaling used to trigger the SRS transmission and the SRS transmission is configured by high-layer signaling.
  • radio resource control Radio Resource Control, RRC
  • RRC Radio Resource Control
  • RRC signaling is equivalent to, before the RRC signaling reconfigures the time slot offset to other values, the time slot offset between each trigger signaling and SRS transmission is Unchanged, the relative positions of the time slot for receiving trigger signaling and the time slot for sending SRS are fixed, which increases the limitation of aperiodic SRS triggering and corresponding SRS transmission and reduces the system flexibility.
  • Embodiments of the present application provide a wireless communication method and device, which can reduce restrictions on aperiodic SRS triggering and corresponding SRS transmission and improve system flexibility.
  • the present application provides a wireless communication method, including:
  • the first control information includes a first field and a second field, and the first field is used to indicate to trigger the first device to perform aperiodic SRS transmission based on at least one sounding reference signal SRS resource group;
  • the first SRS resource group is an SRS resource group configured with at least one time slot offset in the at least one SRS resource group
  • the first control information further includes a second field
  • the second field is used for Indicate the first time slot offset corresponding to the first SRS resource group in the at least one time slot offset
  • the first target time slot is based on the first time slot offset and/or the second time slot
  • the gap offset is determined.
  • the present application provides a wireless communication method, including:
  • the first control information includes a first field and a second field, and the first field is used to indicate to trigger the first device to perform aperiodic SRS transmission based on at least one sounding reference signal SRS resource group;
  • the first SRS resource group is an SRS resource group configured with at least one time slot offset in the at least one SRS resource group
  • the first control information further includes a second field
  • the second field is used for Indicate the first time slot offset corresponding to the first SRS resource group in the at least one time slot offset
  • the first target time slot is based on the first time slot offset and/or the second time slot
  • the gap offset is determined.
  • a first device configured to execute the method in the above first aspect or various implementations thereof.
  • the first device includes a functional module configured to execute the method in the foregoing first aspect or each implementation manner thereof.
  • a second device configured to execute the method in the foregoing second aspect or various implementations thereof.
  • the second device includes a functional module configured to execute the method in the foregoing second aspect or each implementation manner thereof.
  • a first device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
  • a second device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the value of the second field is designed as the first time slot offset in at least one time slot offset of the configured first SRS resource group used to indicate the trigger, which avoids fixed trigger signaling and
  • the time slot offset between SRS transmissions is equivalent to the relative position of the time slot used to receive trigger signaling and the time slot used to send SRS is selectable or determinable, correspondingly, it can reduce aperiodic SRS triggering and Corresponding to the limitation of SRS transmission and increase the system flexibility.
  • Figure 1 is an example of the application scenario of this application.
  • Fig. 2 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic block diagram of a first device provided by an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a second device provided by an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • UMTS Universal Mobile Communication System
  • 5G communication system also known as New Radio (NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wear
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • the communication device may include a network device 120 and a terminal device 110 having a communication function, and the network device 120 and the terminal device 110 may be the devices described above, which will not be repeated here;
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the Sounding Reference Signal (SRS) signal is an important reference signal in the 5G/NR system and is widely used in various functions in the NR system.
  • SRS can be used in the following scenarios:
  • precoding matrix indicator precoding matrix indicator, PMI
  • modulation coding scheme Modulation Coding Scheme
  • SRS resource indication Sounding Reference Signal Resource Indicator, SRI
  • MCS determination MRS resource indication
  • a network device can configure one or more SRS resource groups (SRS Resource set) for a terminal device, and each SRS Resource set can configure one or more SRS resources (SRS resource).
  • SRS Resource set SRS resource groups
  • SRS resource SRS resource groups
  • SRS transmission can be classified into periodic (Periodic), semi-persistent (Semi-persistent), and aperiodic (Aperiodic).
  • Periodic SRS refers to SRS transmitted periodically. Its period and time slot offset are configured by RRC signaling. Once the terminal device receives the corresponding configuration parameters, it sends SRS at a certain period until the RRC configuration becomes invalid.
  • the spatial relation information (Spatial Relation Info) of the periodic SRS is also configured by RRC signaling.
  • the spatial correlation information may indicate a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), a synchronization signal/physical broadcast channel block (Synchronization Signal/PBCH Block, SSB) or a reference SRS.
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal/PBCH Block
  • the transmission beam of the periodic SRS may be indicated in an implicit manner.
  • the terminal device determines the transmission beam of the periodic SRS according to the indicated CSI-RS/SSB.
  • the terminal device may determine the transmission beam used for transmitting the SRS on the SRS resource according to the spatial correlation information of the SRS resource.
  • the semi-persistent SRS is also an SRS for periodic transmission.
  • the period and slot offset (slot offset) are configured by RRC signaling, but its activation and deactivation signaling is carried by MAC CE.
  • the terminal device After receiving the activation signaling, the terminal device starts to transmit the SRS until it receives the deactivation signaling.
  • the space-related information (transmission beam) of the semi-persistent SRS is carried together by the MAC CE that activates the SRS.
  • the terminal device After receiving the cycle and time slot offset configured by RRC, the terminal device determines the time slot that can be used to transmit SRS according to the following formula:
  • T SRS and T OFFSET are the configured period and offset, n f and are the radio frame and slot numbers, respectively.
  • Aperiodic SRS transmission means that the network device can trigger the SRS transmission of the terminal device through DCI.
  • the trigger signaling used to trigger aperiodic SRS transmission can be carried by DCI for scheduling PUSCH/PDSCH in UE-specific search space or common search space (Common search space), or through DCI format 2_3 in common search space. bearer.
  • the value of the SRS request field For example, if the value of the SRS request field is 11, the SRS trigger signaling indicates to use the SRS resource group whose higher layer parameter SRS resource trigger (aperiodicSRS-ResourceTrigger) is set to 3.
  • the terminal device After receiving the aperiodic SRS trigger signaling (for example, DCI), the terminal device performs SRS transmission on the SRS resource group indicated by the trigger signaling.
  • the slot offset (slot offset) between the trigger signaling and the SRS transmission can be configured by higher layer signaling (RRC).
  • RRC higher layer signaling
  • the network device instructs the terminal device in advance through high-level signaling the configuration parameters of each SRS resource group, including time-frequency resources, sequence parameters, power control parameters, and the like.
  • the terminal device can also determine the transmission beam used to transmit the SRS on the resource through the space related information of the resource, and the space related information can be configured for each SRS through RRC resource.
  • slot offset can be configured by high-level signaling, which is equivalent to, before RRC signaling reconfigures other values, every The time slot offset between the secondary trigger signaling and SRS transmission is constant, resulting in a fixed relative position between the time slot for receiving trigger signaling and the time slot for sending SRS, adding aperiodic SRS triggering and The corresponding SRS transmission is restrictive and reduces system flexibility.
  • time slot offset is k
  • the SRS needs to be triggered to be transmitted on time slot n+k
  • the corresponding trigger signaling can only be sent on time slot n, which limits the timing of sending the trigger signaling.
  • Scheduling work for network devices adds additional unnecessary constraints.
  • when a certain time slot or some symbols on a certain time slot are dynamically changed from uplink transmission to downlink transmission, it may make a certain aperiodic SRS transmission impossible. For example, if time slot n+k is changed to be used for downlink transmission, the trigger SRS signaling sent on time slot n is invalid, or the trigger signaling cannot be sent on time slot n.
  • each SRS resource group can be configured with at least one (for example, 4) time slot offsets, and the network device can indicate which of the time slot offsets is finally adopted through the indication field in the DCI.
  • the indication field can be designed with a maximum of 2 bits (bit), in other words, each time the corresponding aperiodic SRS transmission is triggered, the corresponding indication field in the DCI can indicate one of the time slot offsets.
  • Fig. 2 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed interactively by a first device and a second device.
  • the first device shown in FIG. 2 may be the terminal device shown in FIG. 1
  • the second device shown in FIG. 2 may be the access network device shown in FIG. 1 .
  • both the first device and the second device may also be terminal devices, which is not limited in this application.
  • the method 200 may include:
  • the first control information includes a first field and a second field, and the first field is used to indicate to trigger the first device to perform aperiodic SRS transmission based on at least one sounding reference signal SRS resource group;
  • the first SRS resource group is configured with at least one time slot offset SRS resource group in the at least one SRS resource group
  • the first control information further includes a second field
  • the second field is used to indicate The first time slot offset corresponding to the first SRS resource group in the at least one time slot offset
  • the first target time slot is based on the first time slot offset and/or the second time slot The offset is fixed.
  • the first device receives the first control information sent by the second device (the second device may be a network device or a second terminal device), and the first device is based on the second domain determines the first time slot offset corresponding to the first SRS resource group; then, the first device based on the first time slot offset corresponding to the first SRS resource group and/or the first The second time slot offset corresponding to the SRS resource group determines the first target time slot corresponding to the first SRS resource group; finally, the first device performs the first target time slot corresponding to the first SRS resource group Aperiodic SRS transmission is performed on the SRS.
  • the first SRS resource group corresponding to the first SRS resource group configured with at least one time slot offset
  • the first time slot offset corresponding to the first SRS resource group is not 0, then the first SRS resource group corresponding to the first The target time slot may be determined based on a first time slot offset corresponding to the first SRS resource group and a second time slot offset corresponding to the first SRS resource group.
  • the value of the second field is designed as the first time slot offset in at least one time slot offset configured for the first SRS resource group used to indicate triggering, so as to avoid fixed trigger signaling and
  • the time slot offset between SRS transmissions is equivalent to the relative position of the time slot used to receive trigger signaling and the time slot used to send SRS is optional or determinable, correspondingly, the restriction of SRS transmission can be reduced And increase system flexibility.
  • the at least one time slot offset involved in this application is different from the second time slot offset. That is to say, the second time slot offset is in addition to the at least one time slot offset. Or in other words, for the first SRS resource group, the at least one time slot offset and the second time slot offset may be configured at the same time. Of course, for a certain SRS resource group, only one second time slot offset may be configured, and neither the at least one time slot offset nor the second time slot offset may be configured. Applications are not limited to this.
  • the second slot offset may be configured through an RRC parameter of an SRS resource set (SRS resource set), for example, the RRC parameter may be a slot offset (slotOffset) parameter.
  • the second time slot offset for one SRS resource group always exists.
  • the one SRS resource group may be an offset value configured through the RRC, and if no offset value is configured through the RRC, the second offset value corresponding to the one SRS resource group may be 0.
  • the first time slot offset involved in this application may be 0, that is, for the first SRS resource group configured with at least one time slot offset in the at least one SRS resource group, the first SRS
  • the first time slot offset corresponding to the resource group may be 0, which means that the first target time slot corresponding to the first SRS resource group is determined only based on the second time slot offset corresponding to the first SRS resource group In other words, when sending the first SRS resource group, the second field or the first time slot offset corresponding to the first SRS resource group is not considered.
  • the present application does not specifically limit the transmission manner of the SRS resource groups in the at least one SRS resource group that are not configured with the at least one time slot offset.
  • the first device may according to The second time slot offset corresponding to the certain SRS resource group determines the time slot corresponding to the certain SRS resource group, and then performs SRS transmission on the time slot corresponding to the certain SRS resource group, which is equivalent to certain
  • the SRS resource group does not use the transmission method based on the first time slot offset, that is, does not consider the second field, and uses the transmission method based on the first time slot offset for other SRS resource groups, that is, according to The value of the second field is used for SRS transmission, which is beneficial to provide flexibility in network implementation.
  • the aperiodic SRS transmission in this application is transmitted on the first BWP.
  • the at least one SRS resource group may be the SRS resource group corresponding to the first BWP.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the term "indication” involved in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the method 200 may also include:
  • the number of bits occupied by the second field is determined.
  • the term "the number of bits occupied by the value of the second field" involved in this application can be understood as the number of bits occupied by the second field or the size of the second field, etc. The descriptions with the same or similar meanings are not specifically limited in this application.
  • the first device if the first device does not receive the first indication information, it is determined that the second field occupies 0 bits; and/or, if the second device does not send or configure the first indication information, it is determined that the second field occupies 0 bits; wherein, the first indication information is used to indicate that the first control information includes the second field, or the first indication information is used to indicate that the The number of bits occupied by the second field.
  • the presence or absence of the second field in the first control information and/or the size of the second field can be determined according to the first indication information sent by the second device, which means that the network can directly pass Signaling determines whether the second field exists or its size can simplify design and reduce terminal processing complexity.
  • the first indication information is used to indicate that the first control information includes the second field.
  • the first device receives the first indication information, determine that the second field occupies a first number of bits.
  • the first number may be 2 or other numerical values.
  • the first indication information is designed to indicate that the first control information includes the second field, so that there are only two cases of the second field, that is, the case of non-existence and the case of presence, That is to say, the number of bits occupied by the second field is a fixed value, which is beneficial to reduce the signaling overhead of the first indication information, and also reduces the complexity of the protocol.
  • the first indication information is used to indicate the number of bits occupied by the second field.
  • the first device receives the first indication information and the first indication information indicates a first value, then determine that the second field occupies a second number of bits; and/or, if After receiving the first indication information and the first indication information indicates a second value, the first device determines that the second field occupies a third number of bits.
  • the second quantity may be 1 or other numerical values
  • the third quantity may be 2 or other numerical values.
  • the first indication information is designed to indicate the number of bits occupied by the second field, so that the second field has three situations, and in some cases, 1 bit in the DCI can be saved. bit overhead.
  • the first indication information is transmitted through RRC signaling, or the first indication information is transmitted through MAC CE signaling.
  • the first indication information may also be used to indicate whether the first control information includes the second field, which is not specifically limited in the present application.
  • the number of bits occupied by the second field is determined based on the first configuration fields of the second SRS resource group in all SRS resource groups configured with the at least one time slot offset; wherein, the The first configuration field is used to configure the at least one slot offset for the SRS resource group.
  • the presence or absence of the second field in the first control information and/or the size of the second field may be based on the first The configuration of the first configuration field of the two SRS resource groups is determined, which prevents the network device from sending information for determining the size of the second field, which is beneficial to save signaling overhead.
  • the first SRS resource group involved in this application may also be defined based on the first configuration domain, which is not limited in this application.
  • the first SRS resource group configures the at least one SRS resource group with an SRS resource group having a first configuration field, and the first configuration field is used to configure the at least one time slot offset for the SRS resource group.
  • the first SRS resource group involved in this application is any SRS in the SRS resource group configured with the at least one time slot offset in the at least one SRS resource group triggered by the first domain A resource group
  • the second SRS resource group involved in this application is any SRS resource group configured with the at least one time slot offset.
  • all the SRS resource groups configured with the at least one time slot offset may be all SRS resource groups at different granularities, which is not specifically limited in this application.
  • the first SRS resource group is the SRS resource group triggered by the first domain, but this application does not limit whether the second SRS resource group is the SRS resource group of the first domain SRS resource group.
  • the second SRS resource group may be the SRS resource group triggered by the first domain, or may not be the SRS resource group triggered by the first domain.
  • the all configured with the at least one SRS resource group includes the SRS resource group configured with the at least one time slot offset among the at least one SRS resource group triggered by the first domain, that is, the all The SRS resource group configured with the at least one time slot offset includes all the first SRS resource groups.
  • the second SRS resource group may be: the first BWP corresponding to the at least one SRS resource group, all activated BWPs, all configured BWPs, the carrier where the first BWP is located, all activated carriers, or configured
  • the granularity of all carriers includes all SRS resource groups configured with the at least one time slot offset.
  • the first configuration field may indicate 0 (that is, no configuration), 1, 2, 3 or 4 values.
  • the first configuration domain is configured by at least one of the following:
  • the first configuration field is designed as a list structure, a sequence structure, or a bitmap, which is beneficial to a simple signaling structure and reduces terminal processing complexity. Further, designing the first configuration field as a bitmap can also provide good scalability for the first configuration field, for example, it can be extended to more than 4 values.
  • the syntax elements of the first configuration field are described below by taking the configuration of the first configuration field through a sequence structure as an example.
  • the1stField represents the first configuration field.
  • MaxValue1 indicates the maximum value range of each element in the first configuration domain, and optionally, its value may be 4, 8, 16 or 32.
  • each element in the first configuration field can be 0, its related syntax can be transformed into the following syntax:
  • MaxValue1 represents the maximum value range of each element in the first configuration domain, and optionally, its value can be 4, 8, 16 or 32, or 3, 7, 16 or 32, or 3 , 7, 15 or 31, the application does not specifically limit this.
  • the second SRS resource group is the SRS resource group with the largest number of time slot offsets configured in the first configuration field among all SRS resource groups configured with the at least one time slot offset.
  • the number of bits occupied by the second field and the number of slot offsets configured by the second resource group meet one of the following conditions:
  • a represents the number of bits occupied by the second field
  • K represents the number of slot offsets configured by the second SRS resource group.
  • the N SRS resource groups in the M SRS resource groups are configured with the first configuration field, and all the SRS resource groups configured with the
  • the SRS resource group with at least one time slot offset is taken as an example of the N SRS resource groups, where k_1, k_2,..., k_N elements are respectively configured in each first configuration field, and K is recorded as ⁇ k_1, k_2 ,...,k_N ⁇ , the size of the second domain is a bits, where a is the smallest integer that satisfies the condition 2 a ⁇ K or 2 a ⁇ K+1.
  • the number of bits occupied by the second domain may not be determined according to the first SRS resource group on the first BWP, for example, it may also be determined according to The SRS resource group configured with the at least one time slot offset in the SRS resource group determines the number of bits occupied by the second field.
  • the number of bits occupied by the second field may also be determined according to all configured carriers or according to the SRS resource groups configured with the at least one time slot offset on all activated carriers.
  • the number of bits occupied by the second field may also be determined according to the SRS resource group configured with the at least one time slot offset on the carrier where the first BWP is configured.
  • the number of bits occupied by the second field can be determined through the first indication information or the configuration of the first configuration field of the second SRS resource group, but the present application is not limited thereto.
  • the number of bits occupied by the second field may also be set as a fixed value.
  • the fixed value may be a protocol specified value.
  • the method 200 may also include:
  • the value of the second field corresponds to an element in the first configuration field.
  • the first time slot offset is determined in a fixed corresponding manner, which is beneficial to reducing the complexity of protocol and product implementation.
  • the information of the second field may be 00, 01, 10, 11, and the corresponding value range may be 0, 1, 2, 3.
  • at least one time slot offset includes four time slot offsets, which are recorded as A, B, C, and D respectively.
  • X may also be determined according to the index of the at least one time slot offset, for example, if the index of the at least one time slot offset starts from 0, then X represents the value of the second field, and at this time
  • the value of the second field is 0, corresponding to the offset A of the 0th time slot, the value of the second field is 1, corresponding to the offset B of the first time slot, and the value of the second field is 2, corresponding to the second
  • the time slot offset C the value of the second field is 3, corresponding to the third time slot offset D; if the index of the at least one time slot offset starts from 1, then X represents the value of the second field Add 1 to the value.
  • the value of the second field is 0, which corresponds to the offset A of the first time slot.
  • the value of the second field is 1, which corresponds to the offset B of the second time slot.
  • the value of the second field is 2, corresponding to the offset C of the third time slot, and the value of the second field is 3, corresponding to the offset D of the fourth time slot
  • the X-th time slot offset in the at least one time slot offset is determined as the first time slot offset in an order from large to small or from small to large; or according to The configuration order of the at least one time slot offset is to determine the Xth time slot offset in the at least one time slot offset as the first time slot offset.
  • the first SRS resource group which are 0, 4, 2, and 1 respectively.
  • the first slot The offset to the 4th time slot is 0, 1, 2, 4 in sequence.
  • the offset from the 1st time slot to the 4th time slot is 4, 2, 1, 0.
  • the first to fourth time slot offsets are 0, 4, 2, 1 in sequence.
  • the first device may determine the X-th time slot offset in the at least one time slot offset as the first time slot offset in ascending order, that is, The first device may determine a time slot offset of 1 as the first time slot offset; or the first device may determine the X-th time slot offset in the at least one time slot offset in descending order
  • the first time slot offset is determined as the first time slot offset, that is, the first device may determine a time slot offset of 2 as the first time slot offset; or the first device may determine the at least one time slot offset according to the configuration of the at least one time slot offset sequence, determine the X-th time slot offset in the at least one time slot offset as the first time slot offset, that is, the first device may determine a time slot offset of 4 as the first time slot offset shift.
  • the configuration order of the at least one time slot offset is the order of the at least one time slot offset in the first configuration field of the first SRS resource group.
  • the configuration sequence of the at least one slot offset may be the configuration sequence in the RRC signaling SRS-ResourceSet.
  • the method 200 may also include:
  • the first correspondence includes at least one value and a time slot offset corresponding to each value in the at least one value, and the at least one value includes the second field value of .
  • the value of the second field may correspond to an element in the first configuration field.
  • the first time slot offset is determined through a more flexible first correspondence, which means that the first time slot offset can be determined through information configured by the network, which is conducive to improving the first time slot offset. Offset flexibility.
  • the value range of the second field may include: 00, 01, 10, 11, assuming that the first configuration field of a certain first SRS resource group is configured with 4
  • the first time slot offsets are respectively recorded as time slot offset 1, time slot offset 2, time slot offset 3, and time slot offset 4.
  • the first correspondence may include slot offset 1 corresponding to 00, slot offset 2 corresponding to 01, slot offset 3 corresponding to 10, and slot offset 4 corresponding to 11. If the value of the second field is 00, the time slot offset 1 corresponding to 00 may be determined as the first time slot offset.
  • different first SRS resource groups in the at least one SRS resource group may correspond to different or identical first correspondences.
  • the first correspondence is stipulated in a protocol or configured by the second device.
  • the "agreement agreed” may refer to the definition in the agreement.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not specifically limited in this application.
  • the first correspondence is configured through radio resource control RRC signaling or medium access control control element MAC CE.
  • the method 200 may also include:
  • Y Represents the value of the second field, or Y represents the value of the second field plus 1, N represents the number of the at least one time slot offset, and mod represents a modulo operation; or the at least one time slot
  • the Nth slot offset in the slot offset is determined as the first slot offset; or the first slot offset in the at least one slot offset is determined as the first time slot offset; or determine the first time slot offset as 0; or do not consider the second field when sending the first SRS resource group; or do not consider the first SRS resource group when sending the first SRS resource group The first time slot offset.
  • the first device may perform any of the following:
  • Y Represents the value of the second field, or Y represents the value of the second field plus 1, N represents the number of the at least one time slot offset, and mod represents a modulo operation; or the at least one time slot
  • the Nth slot offset in the slot offset is determined as the first slot offset; or the first slot offset in the at least one slot offset is determined as the first time slot offset; or determine the first time slot offset as 0; or do not consider the second field when sending the first SRS resource group; or do not consider the first SRS resource group when sending the first SRS resource group The first time slot offset.
  • the mod (Y, N)th time slot offset in the at least one time slot offset is determined as the first time slot offset Slot offset; if the number of the at least one time slot offset starts from 1, then the mod(Y, N)+1th time slot offset in the at least one time slot offset is determined as the first One slot offset.
  • the first time slot offset is determined below based on one of the numbering methods (for example, the number of at least one time slot offset is selected from 1, or the number of at least one time slot offset is from 0);
  • the numbering methods for example, the number of at least one time slot offset is selected from 1, or the number of at least one time slot offset is from 0;
  • another numbering method to determine the first time slot offset please refer to the relevant content.
  • a similar solution can be used to determine the first time slot offset based on another numbering method. To avoid repetition, the following The solution of determining the first time slot offset based on another numbering manner is not described again.
  • the mod (Y, N)th slot offset or the mod (Y, N)+1 slot offset in the at least one slot offset is determined as the first time slot offset gap offset, even if the value of the second field (marked as Y) is greater than or equal to or greater than the number of elements in the first configuration field (marked as N), the second field with different values can indicate the same Or a different first time slot offset, which is beneficial to improve the indication effect of the second field;
  • the Nth time slot offset in the at least one time slot offset is determined as the first time slot offset or determine the first slot offset as 0; or do not consider the second domain when sending the first SRS resource group; or do not consider the first SRS resource group when sending the first SRS resource group
  • the time slot offset is beneficial to simplify the process of determining the first time slot offset, thereby reducing the complexity of protocol and product implementation.
  • the first SRS resource group in the at least one SRS resource group is configured with 2 time slot offsets (denoted as the first time slot offset and the second time slot offset respectively)
  • the The second field occupies 2 bits, and the value range of the second field can be 0, 1, 2, 3, Y represents the value of the second field, and the second fields with values of 0 and 1 are respectively It is used to indicate the offset of the 2 time slots.
  • the time slot offset corresponding to the first SRS resource group is the first time slot offset in the two first SRS resource groups .
  • the value of the second field is 1, the first time slot offset corresponding to the first SRS resource group is the second time slot offset among the two time slot offsets.
  • the second field may be used to indicate any of the following:
  • the mod(2, 2)+1th slot offset in the 2 slot offsets as the first slot offset, that is, the first slot in the 2 slot offsets
  • the offset is determined as the first slot offset; or the second slot offset in the at least one slot offset is determined as the first slot offset; or the at least one
  • the first time slot offset in the time slot offset is determined as the first time slot offset; or the first time slot offset is determined as 0; or the first SRS resource group is not sent Considering the second field; or not considering the first slot offset when sending the first SRS resource group.
  • the second field may be used to indicate any of the following:
  • the mod(3,2)+1th slot offset in the 2 slot offsets as the first slot offset, that is, the second slot in the 2 slot offsets
  • the offset is determined as the first slot offset; or the second slot offset in the at least one slot offset is determined as the first slot offset; or the at least one
  • the first time slot offset in the time slot offset is determined as the first time slot offset; or the first time slot offset is determined as 0; or the first SRS resource group is not sent Considering the second field; or not considering the first slot offset when sending the first SRS resource group.
  • the multiple SRS resource groups in the multiple SRS resource groups need to be transmitted from different time slots, or transmitted on different symbols in the same time slot.
  • the time slot offsets corresponding to the SRS resource groups are different, and it cannot be guaranteed that the multiple SRS resource groups are not on the same time slot.
  • the second time slot Based on the offset the corresponding first target time slot is determined based on the first time slot offset. Therefore, the present application offsets the first time slot corresponding to the different first SRS resource groups among the multiple first SRS resource groups.
  • the first time slot offsets corresponding to different first SRS resource groups among the multiple first SRS resource groups may be the same or different, for example, if the value of the second field ( Denoted as Y) is greater than or equal to or greater than the number of elements in the first configuration field (denoted as N), and the second field with different values may also indicate the same or different first time slot offset.
  • the mod (Y, N)th slot offset or the mod (Y, N)th slot offset or the mod (Y, N) + 1 slot offset determined as the first slot offset; or according to the configuration sequence of the at least one slot offset, the mod(Y, N)th one of the at least one slot offset
  • the time slot offset or the mod(Y, N)+1th time slot offset is determined as the first time slot offset.
  • the first SRS resource group which are 0, 4, 2, and 1 respectively.
  • the first slot The offset to the 4th time slot is 0, 1, 2, 4 in sequence.
  • the offset from the 1st time slot to the 4th time slot is 4, 2, 1, 0.
  • the first to fourth time slot offsets are 0, 4, 2, 1 in sequence.
  • the first device may shift the at least one time slot to the mod(Y, N)+1th time slot in ascending order
  • the offset is determined as the first time slot offset, that is, the first device may determine a time slot offset of 1 as the first time slot offset; or the first device may determine the first time slot offset in descending order.
  • the mod(Y, N)+1th slot offset in the at least one slot offset that is, the first device may determine the slot offset 2 as the first slot offset; or the first device may According to the configuration order of the at least one time slot offset, the mod(Y, N)+1th time slot in the at least one time slot offset is offset, that is, the first device can determine the time slot offset by 4 is the first time slot offset.
  • the configuration sequence of the at least one slot offset may be the configuration sequence in the RRC signaling SRS-ResourceSet.
  • all the first SRS resource groups in the at least one SRS resource group are configured with the same number of time slot offsets; or all the SRS resource groups in the at least one SRS resource group are configured with the same Amount of slot offset.
  • the first SRS resource group is designed to be configured with the same number of time slot offsets, which means that the first configuration fields in all SRS resource groups configured with the first configuration field are configured with the same number of Elements, that is, constrain the configuration, which is beneficial to reduce the complexity of network configuration and reduce the complexity of network device implementation.
  • the SRS resource groups in the at least one SRS resource group are designed to be configured with the same number of time slot offsets, which is equivalent to configuring the same number of elements in the first configuration field in all SRS resource groups, and also for The configuration is constrained, which is beneficial to reduce the complexity of network configuration and the implementation complexity of network devices.
  • the first SRS resource group is configured with a time slot offset of 2 a , where a represents the number of bits occupied by the second field.
  • the first SRS resource group is designed to be configured with 2a time slot offsets, which is equivalent to configuring the first configuration field in all SRS resource groups configured with the first configuration field with 2a
  • This element is beneficial to simplify the protocol design and avoid some additional rules in the follow-up, thus reducing the complexity of product implementation.
  • the method 200 may also include:
  • a T th available time slot starting from or after the first time slot is determined as the first target time slot, where T represents the first time slot offset.
  • the T-th available time slot starting from or after the first time slot is the first time slot.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first time slot meets the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first time slot meets the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the first device determines to send the certain first SRS resource group on time slot n'.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • time slot Corresponding time slot The Tth available slot at or after the start.
  • time slot Corresponding time slot The first T-th available time slot can be understood as: is the starting time slot, and the Tth available time slot is obtained.
  • time slot Corresponding time slot The following T-th available time slot can be understood as: The next first time slot is the starting time slot, and the Tth available time slot is obtained.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the first device determines to send the certain first SRS resource group on time slot n'.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • time slot Corresponding time slot The Tth available slot at or after the start.
  • time slot Corresponding time slot The first T-th available time slot can be understood as: is the starting time slot, and the Tth available time slot is obtained.
  • time slot Corresponding time slot The following T-th available time slot can be understood as: The next first time slot is the starting time slot, and the Tth available time slot is obtained.
  • the method 200 may also include:
  • each of the one or more SRS resource groups is configured with at least one SRS resource, and the The one or more SRS resource groups include the at least one SRS resource group.
  • the first device receives configuration information sent by the second device (the second device may be a network device or a second terminal device) through RRC signaling, which is used to configure the one or more SRS resource groups , each SRS resource group contains one or more SRS resources, and the SRS resources are configured through RRC signaling SRS-Resource, and each SRS resource group is aperiodic, that is, the resource type (resourceType) corresponding to each SRS resource group is non-periodic period (aperiodic).
  • the first SRS resource group is one of the one or more SRS resource groups.
  • the at least one SRS resource group includes multiple SRS resource groups whose usage domain is configured as antenna switching, and different SRS resource groups in the multiple SRS resource groups correspond to different transmission time slots.
  • the multiple SRS resource groups correspond to a certain "xTyR" type antenna switching configuration.
  • the usage domains of some of the SRS resource groups in the at least one SRS resource group are configured as antenna switching, or, the usage domains of all the SRS resource groups in the at least one SRS resource group are configured as antenna switching.
  • the multiple SRS resource groups correspond to a certain "xTyR" type antenna switching configuration.
  • the SRS resource group in the one or more SRS resource groups may be configured as any one of ⁇ beamManagement, codebook, nonCodebook, antennaSwitching ⁇ .
  • the transmission time slot is the first target time slot.
  • the transmission time slot is the second target time slot.
  • each SRS resource group in the plurality of SRS resource groups is configured with a corresponding trigger state.
  • the SRS resource groups among the plurality of SRS resource groups may be configured with different triggering states, which is conducive to relaxing protocol restrictions and increasing the flexibility of network configuration and triggering.
  • the SRS resource groups in the plurality of SRS resource groups are configured with one or more (marked as M) trigger states, where each trigger state corresponds to a value of the SRS request (request) field in the DCI , that is, a code point (code point).
  • the one or more trigger states can be triggered through the aperiodic SRS resource group trigger (aperiodicSRS-ResourceTrigger) and the aperiodic SRS resource group trigger list (aperiodicSRS-ResourceSet IE) in the SRS resource group information element (SRS-ResourceSet IE).
  • ResourceTriggerList where aperiodicSRS-ResourceTrigger is configured with one value, and aperiodicSRS-ResourceTriggerList is configured with one or more values.
  • the multiple SRS resource groups are configured with the same number of time slot offsets.
  • the multiple SRS resource groups correspond to a certain "xTyR" type antenna switching configuration.
  • the multiple SRS resource groups are designed to be configured with the same number of time slot offsets, which is equivalent to reducing the complexity of terminal antenna switching by increasing restrictions.
  • the method 200 may also include:
  • the capability information is used to indicate that the first device supports configuring a first configuration field for an SRS resource group, and the first configuration field is used to configure a time slot offset for an SRS resource group; and/or the capability information It is used to indicate that the first device supports including the second field in the control information; and/or the capability information is used to indicate that the first device supports dynamic time slot offset.
  • the capability information may also be used to indicate whether the first device supports configuring a first configuration field for an SRS resource group, and the first configuration field is used to configure a time slot for an SRS resource group offset; and/or the capability information is used to indicate whether the first device supports including the second field in the control information; and/or the capability information is used to indicate whether the first device supports dynamic time Gap offset, which is not specifically limited in this application.
  • the capability information is reported through radio resource control RRC signaling or medium access control control element MAC CE.
  • the capability information of the first device may be reported in any of the following manners:
  • the capability information is reported for each terminal device.
  • the capability information is designed to be reported for frequency bands (bands), that is, different frequency bands can independently report corresponding capabilities (perbands), which allows the first device to have greater degrees of freedom.
  • the first device A device may support dynamic time slot offset in one or some frequency bands, and other frequency bands may not support dynamic time slot offset, so that more first devices may support dynamic time slot offset.
  • the capability information is designed to be reported for band combinations, that is, different frequency band combinations can be reported independently (per band per band combination), which allows the first device to have greater freedom, such as the first
  • the device may support dynamic time slot offset on one or some frequency band combinations, while other frequency band combinations do not support dynamic time slot offset, so that more first devices can support dynamic time slot offset.
  • the capability information is designed to be independently reported according to each frequency band in a band combination, that is, the frequency bands in different frequency band combinations can be reported independently, which allows the first device to achieve greater freedom, such as the first A device may not support dynamic time slot offset under a certain CA, but certain frequency bands support dynamic time slot offset under another CA combination, so that more first devices can support dynamic time slot offset.
  • the capability information is designed to be independently reported according to each carrier in each frequency band in a band combination, that is, different carrier CCs in frequency bands in different frequency band combinations can be independently reported (per CC per band per band combination ); equivalently, different combinations of frequency bands are reported independently, and different carriers on a frequency band can also be reported independently, which allows the first device to have a greater degree of freedom, so that more first devices can support dynamic time Gap offset.
  • the capability information is designed to be reported according to the frequency range (Frequency range), that is, different FRs can be reported independently (per FR), for example, FR1 and FR2 are reported independently, which can allow the first device to achieve a greater degree of freedom, For example, the first device does not support dynamic time slot offset at low frequency (FR1), but supports dynamic time slot offset at FR2 (high frequency), so that more first devices can support dynamic time slot offset.
  • Frequency range Frequency range
  • FR1 and FR2 are reported independently, which can allow the first device to achieve a greater degree of freedom,
  • the first device does not support dynamic time slot offset at low frequency (FR1), but supports dynamic time slot offset at FR2 (high frequency), so that more first devices can support dynamic time slot offset.
  • the capability information is designed to be reported for the UE (per UE), that is, if the UE reports the capability information, this capability can be supported in each frequency band, which can reduce the signaling overhead of the capability report of the first device.
  • the capability information may be reported for each frequency band combination in any of the following manners:
  • the first control information is at least one of the following formats: downlink control information format 0_1DCI format 0_1, downlink control information format 0_2DCI format 0_2, downlink control information format 1_1DCI format 1_1, downlink control information format 1_2DCI format 1_2 or downlink control information format 2_3DCI format 2_3.
  • a third SRS resource group in the at least one SRS resource group perform aperiodic SRS transmission based on the third SRS resource group on the second target time slot;
  • the third SRS resource group is an SRS resource group in which the at least one SRS resource group is not configured with the at least one time slot offset, and the second target time slot is determined based on the second time slot offset of.
  • the third SRS resource group is an SRS resource group for which the at least one SRS resource group is not configured with a first configuration field, and the first configuration field is used to configure the at least one time slot offset for the SRS resource group.
  • the second time slot offset corresponding to the third SRS resource group always exists.
  • the second time slot offset corresponding to the third SRS resource group may be the offset value configured by the RRC, if no offset value is configured by the RRC, then the second slot offset corresponding to the third SRS resource group The second offset value may be 0.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the second target time slot
  • k represents the second time slot offset.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the second target time slot.
  • the solution of the present application will be described in conjunction with specific embodiments.
  • the terminal device reports capability information to the network device, where the capability information is used to indicate that the terminal device supports configuring a first configuration field for the SRS resource group, and the first configuration field is used to configure a time slot offset for the SRS resource group; and /or the capability information is used to indicate that the terminal device supports including the second field in the control information; and/or the capability information is used to indicate that the terminal device supports dynamic time slot offset.
  • the network device configures 3 (taking 3 as an example, more numbers) aperiodic SRS resource groups (denoted as SRS resource group 1, SRS resource group 2, and SRS resource group 3) for the first BWP for the terminal device, namely
  • the resourceType in each SRS resource group is configured as aperiodic.
  • SRS resource group 1 does not configure the first configuration field
  • SRS resource group 2 indicates two elements in the first configuration field (where the first and second elements are denoted as x0, x1 respectively)
  • SRS resource group 3 first configuration Four elements are indicated in the field (the first to fourth elements are denoted as y0, y1, y2, y3, respectively).
  • the network device sends the first control information to the terminal device to trigger aperiodic SRS transmission on the first BWP, where the second field in the first control information occupies a bit.
  • the number of the a bits is determined according to one of the following methods:
  • the terminal device may determine the number of bits occupied by the second field based on the first indication information.
  • the first indication information is used to indicate that the first control information includes the second field. Specifically, if the terminal device does not receive the first indication information, determine that the second field occupies 0 bits; and/or, if the network device does not send or configure the first indication information , then determine that the second field occupies 0 bits; and/or, if the terminal device receives the first indication information, determine that the second field occupies a first number of bits.
  • the first number may be 2 or other numerical values.
  • the first indication information is designed to indicate that the first control information includes the second field, so that there are only two cases of the second field, that is, the case of non-existence and the case of presence, That is to say, the number of bits occupied by the second field is a fixed value, which is beneficial to reduce the signaling overhead of the first indication information, and also reduces the complexity of the protocol.
  • the number of a bits may be determined in the following manner:
  • Mode 1-1 If the terminal device does not receive the first indication information sent by the network device, or the network device does not send or configure the first indication information, the size of the second field is 0 bits, that is, it does not exist.
  • Mode 1-2 If the network device sends or configures the first indication information to the terminal device, or the terminal device receives the first indication information sent or configured by the network device, the size of the second field is 2 bits.
  • the terminal device determines the number of bits occupied by the second field based on the first indication information.
  • the first indication information is used to indicate the number of bits occupied by the second field.
  • the terminal device does not receive the first indication information, determine that the second field occupies 0 bits; and/or, if the network device does not send or configure the first indication information, then determine that the second field occupies 0 bits; and/or, if the terminal device receives the first indication information and the first indication information indicates the first value, then determine that the second field The field occupies a second number of bits; and/or, if the terminal device receives the first indication information and the first indication information indicates a second value, determine that the second field occupies a third number of bits bit.
  • the second quantity may be 1 or other numerical values
  • the third quantity may be 2 or other numerical values.
  • the first indication information is designed to indicate the number of bits occupied by the second field, so that the second field has three situations, and in some cases, 1 bit in the DCI can be saved. bit overhead.
  • the number of a bits may be determined in the following manner:
  • Mode 2-1 If the terminal device does not receive the first indication information sent by the network or the network device does not send or configure the first indication information, the size of the second field is 0 bits, that is, it does not exist.
  • Mode 2-2 If the network device sends or configures the first indication information to the terminal device, or the terminal device receives the first indication information sent or configured by the network device, and the first indication information is the first value, then the second The field size is 1 bit.
  • Mode 2-3 If the network device sends or configures the first indication information to the terminal device, or the terminal device receives the first indication information sent or configured by the network device, and the first indication information is the second value, then the second The field size is 2 bits.
  • the terminal device determines the number of bits occupied by the second field based on the first configuration fields of the second SRS resource group in all SRS resource groups configured with the at least one time slot offset; wherein, the first configuration field It is used to configure the at least one time slot offset for the SRS resource group.
  • the presence or absence of the second field in the first control information and/or the size of the second field may be based on the first The configuration of the first configuration field of the two SRS resource groups is determined, which prevents the network device from sending information for determining the size of the second field, which is beneficial to save signaling overhead.
  • the terminal device determines the number of bits occupied by the second field based on the number of timeslot offsets configured in the second SRS resource group; Among the shifted SRS resource groups, the SRS resource group with the largest number of time slot offsets configured through the first configuration field. For example, the number of bits occupied by the second field and the number of slot offsets configured by the second resource group meet one of the following conditions:
  • a represents the number of bits occupied by the second field
  • K represents the number of slot offsets configured by the second SRS resource group.
  • the N SRS resource groups in the M SRS resource groups are configured with the first configuration field, and all the SRS resource groups configured with the
  • the SRS resource group with at least one time slot offset is taken as an example of the N SRS resource groups, where k_1, k_2,..., k_N elements are respectively configured in each first configuration field, and K is recorded as ⁇ k_1, k_2 ,...,k_N ⁇ , the size of the second domain is a bits, where a is the smallest integer that satisfies the condition 2 a ⁇ K or 2 a ⁇ K+1.
  • the number of bits occupied by the second domain may not be determined according to the first SRS resource group on the first BWP, for example, it may also be determined according to The SRS resource group configured with the at least one time slot offset in the SRS resource group determines the number of bits occupied by the second field.
  • the number of bits occupied by the second field may also be determined according to all configured carriers or according to the SRS resource groups configured with the at least one time slot offset on all activated carriers.
  • the number of bits occupied by the second field may also be determined according to the SRS resource group configured with the at least one time slot offset on the carrier where the first BWP is configured.
  • the number of a bits can be determined in the following manner:
  • the terminal device may perform aperiodic SRS transmission based on the third SRS resource group on the second target time slot; wherein , the third SRS resource group is an SRS resource group for which the at least one SRS resource group is not configured with the at least one time slot offset, and the second target time slot is determined based on the second time slot offset .
  • the SRS resource group 1 may be used as an example of the third SRS resource group mentioned above.
  • the first control information triggers the aperiodic SRS transmission of the SRS resource group 1, and then it is transmitted on the time slot n'.
  • the time slot n' satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • k Indicates the second slot offset.
  • the time slot n' satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset .
  • the terminal device performs aperiodic SRS transmission based on the first SRS resource group on the first target time slot, and performs aperiodic SRS transmission;
  • the first SRS resource group is configured with at least one time slot offset SRS resource group in the at least one SRS resource group, and the first control information further includes a second field, and the second field is used to indicate The first time slot offset corresponding to the first SRS resource group in the at least one time slot offset, the first target time slot is based on the first time slot offset and/or the second time slot The offset is fixed.
  • the SRS resource group 2 may be used as an example of the first SRS resource group mentioned above.
  • the first control information triggers the aperiodic SRS transmission of the SRS resource group 2, and then it is transmitted on the time slot n'.
  • the time slot n' may be determined based on the first time slot offset corresponding to the SRS resource group 2 and the second time slot offset corresponding to the SRS resource group 2. If the value of the second field is recorded as f, then:
  • the number of the at least one time slot offset configured by the SRS resource group 2 is greater than or equal to or greater than the value of the second field
  • the number of the at least one time slot offset configured by the SRS resource group 2 (that is, 2) is less than or equal to the value of the second field, then perform any of the following (the following example assumes x0, x1 corresponds to the first and second slot offsets respectively):
  • N the number of the at least one time slot offset
  • the terminal device transmits the aperiodic SRS transmission corresponding to the SRS resource group 2 on the time slot n', wherein the time slot n' satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • slot n' is the slot The Tth available slot at or after the start.
  • the terminal device transmits the aperiodic SRS transmission corresponding to the SRS resource group 2 on the time slot n', wherein the time slot n' satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • slot n' is the slot The Tth available slot at or after the start.
  • the terminal device performs aperiodic SRS transmission based on the first SRS resource group on the first target time slot, and performs aperiodic SRS transmission;
  • the first SRS resource group is configured with at least one time slot offset SRS resource group in the at least one SRS resource group, and the first control information further includes a second field, and the second field is used to indicate The first time slot offset corresponding to the first SRS resource group in the at least one time slot offset, the first target time slot is based on the first time slot offset and/or the second time slot The offset is fixed.
  • the SRS resource group 3 may be used as an example of the first SRS resource group mentioned above.
  • the first control information triggers the aperiodic SRS transmission of the SRS resource group 3, and then it is transmitted on the time slot n'.
  • the time slot n' may be determined based on the first time slot offset corresponding to the SRS resource group 3 and the second time slot offset corresponding to the SRS resource group 3. If the number (that is, 4) of the at least one time slot offset configured by the SRS resource group 3 is greater than or equal to or greater than the value of the second field, then set the Xth one of the at least one time slot offset The time slot offset is determined as the first time slot offset, and X represents the value of the second field, or X represents the value of the second field plus 1.
  • the terminal device transmits the aperiodic SRS transmission corresponding to the SRS resource group 3 on the time slot n', wherein the time slot n' satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • slot n' is the slot The Tth available slot at or after the start.
  • the terminal device transmits the aperiodic SRS transmission corresponding to the SRS resource group 3 on the time slot n', wherein the time slot n' satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • slot n' is the slot The Tth available slot at or after the start.
  • Available slot refers to the uplink (UL) symbol and flexible symbol (flexible symbol) in a slot can transmit all SRS resources in this SRS resource group, optional, and this slot is the same as the first
  • the interval between control messages is greater than or equal to the minimum requirement stipulated in the protocol (ie the minimum timing requirement between triggering PDCCH and all the SRS resources in the resource set)
  • the available time slot refers to the downlink symbols (DL symbols) in a slot and all SRS resources in the SRS resource group having no time domain overlap (overlapping).
  • the interval between this time slot and the first control information is greater than or equal to the minimum requirement specified in the protocol (ie the minimum timing requirement between triggering PDCCH and all the SRS resources in the resource set).
  • the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the user equipment in the cell For the first direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction from the user equipment in the cell to the station, for example, “downlink signal” indicates that the signal transmission direction is the first direction.
  • the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
  • Fig. 3 is a schematic block diagram of a first device 300 according to an embodiment of the present application.
  • the first device 300 may include:
  • a receiving unit 310 configured to receive first control information sent by the second device
  • the first control information includes a first field and a second field, and the first field is used to indicate to trigger the first device to perform aperiodic SRS transmission based on at least one sounding reference signal SRS resource group;
  • the sending unit 320 is configured to perform aperiodic SRS transmission based on the first SRS resource group in the first target time slot for the first SRS resource group in the at least one SRS resource group, and perform aperiodic SRS transmission;
  • the first SRS resource group is an SRS resource group configured with at least one time slot offset in the at least one SRS resource group
  • the first control information further includes a second field
  • the second field is used for Indicate the first time slot offset corresponding to the first SRS resource group in the at least one time slot offset
  • the first target time slot is based on the first time slot offset and/or the second time slot
  • the gap offset is determined.
  • the sending unit 320 is also used to:
  • the number of bits occupied by the second field is determined.
  • the sending unit 320 is specifically configured to:
  • the first device does not receive the first indication information, determine that the second field occupies 0 bits; and/or,
  • the second device does not send or configure the first indication information, determine that the second field occupies 0 bits;
  • the first indication information is used to indicate that the first control information includes the second field, or the first indication information is used to indicate the number of bits occupied by the second field.
  • the first indication information is used to indicate that the first control information includes the second field
  • the sending unit 320 is specifically used for:
  • the first device receives the first indication information, determine that the second field occupies a first number of bits.
  • the first indication information is used to indicate the number of bits occupied by the second field
  • the sending unit 320 is specifically used for:
  • the first device receives the first indication information and the first indication information indicates a first value, then determine that the second field occupies a second number of bits; and/or,
  • the first device receives the first indication information and the first indication information indicates a second value, determine that the second field occupies a third number of bits.
  • the sending unit 320 is specifically configured to:
  • the first configuration field is used to configure the at least one time slot offset for the SRS resource group.
  • the first configuration domain is configured by at least one of the following:
  • the second SRS resource group is the SRS resource with the largest number of time slot offsets configured in the first configuration field among all SRS resource groups configured with the at least one time slot offset Group.
  • the number of bits occupied by the second field and the number of slot offsets configured by the second resource group meet one of the following conditions:
  • a represents the number of bits occupied by the second field
  • K represents the number of slot offsets configured by the second SRS resource group.
  • the sending unit 320 is also used to:
  • the sending unit 320 is specifically configured to:
  • an Xth time slot offset in the at least one time slot offset is determined as the first time slot offset.
  • the sending unit 320 is also used to:
  • the first correspondence includes at least one value and a time slot offset corresponding to each value in the at least one value, and the at least one value includes the value of the second field.
  • the first correspondence is stipulated in a protocol or configured by the second device.
  • the first correspondence is configured through radio resource control RRC signaling or medium access control control element MAC CE.
  • the sending unit 320 is specifically configured to:
  • Y Represents the value of the second field, or Y represents the value of the second field plus 1, N represents the number of the at least one time slot offset, and mod represents a modulo operation;
  • the first time slot offset is not considered when sending the first SRS resource group.
  • the sending unit 320 is specifically configured to:
  • the mod (Y, N)th slot offset or the mod (Y, N)+1 slot offset in the at least one slot offset determined as the first slot offset.
  • all the first SRS resource groups in the at least one SRS resource group are configured with the same number of time slot offsets; or all the SRS resource groups in the at least one SRS resource group are configured with the same Amount of slot offset.
  • the first SRS resource group is configured with a time slot offset of 2 a , where a represents the number of bits occupied by the second field.
  • the sending unit 320 is also used to:
  • the first time slot is determined by the time slot where the first control information is located and the second time slot offset.
  • the sending unit 320 is specifically configured to:
  • T Determining the T th available time slot starting from or after the first time slot as the first target time slot, where T represents the offset of the first time slot.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first time slot satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • the receiving unit 310 is also used for:
  • each of the one or more SRS resource groups is configured with at least one SRS resource, and the The one or more SRS resource groups include the at least one SRS resource group.
  • the at least one SRS resource group includes multiple SRS resource groups whose usage domain is configured as antenna switching, and different SRS resource groups in the multiple SRS resource groups correspond to different transmission time slots.
  • each SRS resource group in the plurality of SRS resource groups is configured with a corresponding trigger state.
  • the plurality of SRS resource groups are configured with the same number of slot offsets.
  • the sending unit 320 is also used to:
  • the capability information is used to indicate that the first device supports configuring a first configuration field for an SRS resource group, and the first configuration field is used to configure a time slot offset for an SRS resource group; and/or the capability information It is used to indicate that the first device supports including the second field in the control information; and/or the capability information is used to indicate that the first device supports dynamic time slot offset.
  • the capability information is reported through radio resource control RRC signaling or medium access control control element MAC CE.
  • the sending unit 320 is specifically configured to:
  • the capability information is reported for each terminal device.
  • the sending unit 320 is specifically configured to:
  • the first control information is at least one of the following formats: downlink control information format 0_1DCI format 0_1, downlink control information format 0_2DCI format 0_2, downlink control information format 1_1DCI format 1_1, downlink control information format 1_2DCI format 1_2 or downlink control information format 2_3DCI format 2_3.
  • a third SRS resource group in the at least one SRS resource group perform aperiodic SRS transmission based on the third SRS resource group on the second target time slot;
  • the third SRS resource group is an SRS resource group in which the at least one SRS resource group is not configured with the at least one time slot offset, and the second target time slot is determined based on the second time slot offset of.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the second target time slot
  • k represents the second time slot offset.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the second target time slot.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the first device 300 shown in FIG. 3 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the first device 300 are for realizing the For the sake of brevity, the corresponding processes in each method in 2 will not be repeated here.
  • Fig. 4 is a schematic block diagram of a second device 400 according to an embodiment of the present application.
  • the second device 400 may include:
  • a sending unit 410 configured to send first control information to the first device
  • the first control information includes a first field and a second field, and the first field is used to indicate to trigger the first device to perform aperiodic SRS transmission based on at least one sounding reference signal SRS resource group;
  • the receiving unit 420 is configured to perform aperiodic SRS transmission based on the first SRS resource group in the first target time slot for the first SRS resource group in the at least one SRS resource group, and perform aperiodic SRS transmission;
  • the first SRS resource group is an SRS resource group configured with at least one time slot offset in the at least one SRS resource group
  • the first control information further includes a second field
  • the second field is used for Indicate the first time slot offset corresponding to the first SRS resource group in the at least one time slot offset
  • the first target time slot is based on the first time slot offset and/or the second time slot
  • the gap offset is determined.
  • the receiving unit 420 is also used for:
  • the number of bits occupied by the second field is determined.
  • the sending unit 410 is further configured to:
  • the first indication information is used by the first device to determine the number of bits occupied by the second field.
  • the first indication information is used to indicate that the first control information includes the second field.
  • the first indication information is used to indicate the number of bits occupied by the second field.
  • the receiving unit 420 is specifically configured to:
  • the first configuration field is used to configure the at least one time slot offset for the SRS resource group.
  • the first configuration domain is configured by at least one of the following:
  • the second SRS resource group is the SRS resource with the largest number of time slot offsets configured in the first configuration field among all SRS resource groups configured with the at least one time slot offset Group.
  • the number of bits occupied by the second field and the number of slot offsets configured by the second resource group meet one of the following conditions:
  • a represents the number of bits occupied by the second field
  • K represents the number of slot offsets configured by the second SRS resource group.
  • the receiving unit 420 is specifically configured to:
  • the receiving unit 420 is specifically configured to:
  • an Xth time slot offset in the at least one time slot offset is determined as the first time slot offset.
  • the receiving unit 420 is also used for:
  • the first correspondence includes at least one value and a time slot offset corresponding to each value in the at least one value, and the at least one value includes the value of the second field.
  • the first correspondence is stipulated in a protocol or configured by the second device.
  • the first correspondence is configured through radio resource control RRC signaling or medium access control control element MAC CE.
  • the receiving unit 420 is also used for:
  • Y Represents the value of the second field, or Y represents the value of the second field plus 1, N represents the number of the at least one time slot offset, and mod represents a modulo operation;
  • the first time slot offset is not considered when sending the first SRS resource group.
  • the receiving unit 420 is specifically configured to:
  • the mod (Y, N)th slot offset or the mod (Y, N)+1 slot offset in the at least one slot offset determined as the first slot offset.
  • all the first SRS resource groups in the at least one SRS resource group are configured with the same number of time slot offsets; or all the SRS resource groups in the at least one SRS resource group are configured with the same Amount of slot offset.
  • the first SRS resource group is configured with a time slot offset of 2 a , where a represents the number of bits occupied by the second field.
  • the receiving unit 420 is also used for:
  • the first time slot is determined by the time slot where the first control information is located and the second time slot offset.
  • the receiving unit 420 is specifically configured to:
  • T Determining the T th available time slot starting from or after the first time slot as the first target time slot, where T represents the offset of the first time slot.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first time slot satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n 1 represents the first time slot
  • k represents the offset of the second time slot.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the first target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offsetPDCCH are respectively dependent on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the first target time slot
  • k represents the second time slot offset
  • z represents the number of time slots for which the offset is determined based on the first time slot offset.
  • the z represents the number of time slots for which the offset is determined based on the first time slot offset, including: z represents the Tth available time slot starting from or after n1 ;
  • T represents the first time slot offset
  • n 1 satisfies the following conditions:
  • n the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n 1 represents the first time slot
  • k represents the second time slot offset.
  • the sending unit 410 is further configured to:
  • each of the one or more SRS resource groups is configured with at least one SRS resource
  • the The one or more SRS resource groups include the at least one SRS resource group.
  • the at least one SRS resource group includes multiple SRS resource groups whose usage domain is configured as antenna switching, and different SRS resource groups in the multiple SRS resource groups correspond to different transmission time slots.
  • each SRS resource group in the plurality of SRS resource groups is configured with a corresponding trigger state.
  • the plurality of SRS resource groups are configured with the same number of slot offsets.
  • the receiving unit 420 is also used for:
  • the capability information is used to indicate that the first device supports configuring a first configuration field for an SRS resource group, and the first configuration field is used to configure a time slot offset for an SRS resource group; and/or the capability information It is used to indicate that the first device supports including the second field in the control information; and/or the capability information is used to indicate that the first device supports dynamic time slot offset.
  • the capability information is reported through radio resource control RRC signaling or medium access control control element MAC CE.
  • the receiving unit 420 is specifically configured to:
  • the capability information reported by the first device for each terminal device is received.
  • the receiving unit 420 is specifically configured to:
  • the first control information is at least one of the following formats: downlink control information format 0_1DCI format 0_1, downlink control information format 0_2DCI format 0_2, downlink control information format 1_1DCI format 1_1, downlink control information format 1_2DCI format 1_2 or downlink control information format 2_3DCI format 2_3.
  • a third SRS resource group in the at least one SRS resource group perform aperiodic SRS transmission based on the third SRS resource group on the second target time slot;
  • the third SRS resource group is an SRS resource group in which the at least one SRS resource group is not configured with the at least one time slot offset, and the second target time slot is determined based on the second time slot offset of.
  • the first device does not configure a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • n ' represents the second target time slot
  • k represents the second time slot offset.
  • the first device is configured with a time slot offset for carrier aggregation CA, and the second target time slot satisfies the following conditions:
  • n represents the time slot where the first control information is located
  • ⁇ SRS represents the subcarrier spacing configuration corresponding to the SRS
  • ⁇ PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the first control information
  • ⁇ offset, PDCCH respectively depend on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and ⁇ offset
  • SRS are the time slot offsets for carrier aggregation CA that are configured by the upper layer for transmitting SRS, respectively and ⁇ offset
  • n' represents the second target time slot.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the second device 400 shown in FIG. 4 may correspond to the corresponding subject in the method 200 of the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the second device 400 are for realizing the For the sake of brevity, the corresponding processes in each method in 2 will not be repeated here.
  • the functional modules may be implemented in the form of hardware, may also be implemented by instructions in the form of software, and may also be implemented by a combination of hardware and software modules.
  • each step of the method embodiment in the embodiment of the present application can be completed by an integrated logic circuit of the hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the embodiment of the present application can be directly embodied as hardware
  • the decoding processor is executed, or the combination of hardware and software modules in the decoding processor is used to complete the execution.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit mentioned above may be implemented by a processor and a transceiver, respectively.
  • Fig. 5 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may include a processor 510 .
  • processor 510 may invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the memory 520 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530 .
  • the processor 510 can control the transceiver 530 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • the communication device 500 may be the first device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first device in each method of the embodiment of the application, that is, the implementation of the present application
  • the communication device 500 in this example may correspond to the first device 300 in the embodiment of the present application, and may correspond to a corresponding subject in performing the method 200 according to the embodiment of the present application, and for the sake of brevity, details are not repeated here.
  • the communication device 500 may be the second device in the embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the second device in each method of the embodiment of the present application. That is to say, the communication device 500 in the embodiment of the present application may correspond to the second device 400 in the embodiment of the present application, and may correspond to the corresponding subject in performing the method 200 according to the embodiment of the present application. Let me repeat.
  • a chip is also provided in the embodiment of the present application.
  • the chip may be an integrated circuit chip, which has signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610 .
  • processor 610 may invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the second device in the embodiment of the present application, and the chip can realize the corresponding process implemented by the second device in each method of the embodiment of the present application, and can also realize the For the sake of brevity, the corresponding processes implemented by the first device in each method will not be repeated here.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • Processors mentioned above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the storage mentioned above includes but is not limited to:
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the implementation shown in method 200. example method.
  • the computer-readable storage medium can be applied to the second device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the first device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the method of the embodiment shown in the method 200 .
  • the computer program may be applied to the second device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the second device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the first device and the second device mentioned above to form the communication system 100 shown in FIG. 1 , which is not repeated here for brevity. repeat.
  • system and the like in this document may also be referred to as “network management architecture” or “network system”.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Abstract

提供了一种无线通信方法和设备。该方法包括:接收第二设备发送的第一控制信息;第一控制信息包括第一域,用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;针对至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于第一SRS资源组进行非周期SRS传输;第一SRS资源组为至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,第一控制信息还包括第二域,用于指示至少一个时隙偏移中的第一SRS资源组对应的第一时隙偏移,第一目标时隙是基于第一时隙偏移和/或第二时隙偏移确定的。该方法能够降低非周期SRS触发以及对应的SRS传输的限制性并提升系统灵活性。

Description

无线通信方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和设备。
背景技术
在新空口(New Radio,NR)系统中,为了支持各种可能的部署场景,以及未来各种新型业务类型,系统设计非常灵活,例如,上下行的资源可以通过高层信令以及物理层信令来指示和调整。因此,针对一个时隙(slot)或一个slot上的某些符号在不同的时刻可能可以用于不同方向的传输,例如,某个时刻可以用于上行传输,某个时刻用于下行传输。
但是,针对非周期探测参考信号(Sounding Reference Signal,SRS),用于触发进行SRS传输的触发信令与SRS传输之间的时隙偏移(slot offset)是由高层信令配置。例如无线资源控制(Radio Resource Control,RRC)信令,相当于,在RRC信令将时隙偏移重新配置为其他取值之前,每次触发信令与SRS传输之间的时隙偏移是不变的,导致用于接收触发信令的时隙和用于发送SRS的时隙相对位置是固定的,增加了非周期SRS触发以及对应的SRS传输的限制性并降低了系统灵活性。
发明内容
本申请实施例提供了一种无线通信方法和设备,能够降低非周期SRS触发以及对应的SRS传输的限制性并提升系统灵活性。
第一方面,本申请提供了一种无线通信方法,包括:
接收第二设备发送的第一控制信息;
其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
第二方面,本申请提供了一种无线通信方法,包括:
向第一设备发送第一控制信息;
其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
第三方面,提供了一种第一设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述第一设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种第二设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述第二设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种第一设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种第二设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,将所述第二域的取值设计为用于指示触发的第一SRS资源组配置的至少一个时隙偏移中的第一时隙偏移,避免了固定触发信令与SRS传输之间的时隙偏移,相当于,用于接收触发信令的时隙和用于发送SRS的时隙相对位置是可选择或可确定的,相应的,能够降低非周期SRS触发以及对应的SRS传输的限制性并增加系统灵活性。
附图说明
图1是本申请应用场景的示例。
图2是本申请实施例提供的无线通信方法的示意性流程图。
图3是本申请实施例提供的第一设备的示意性框图。
图4是本申请实施例提供的第二设备的示意性框图。
图5是本申请实施例提供的通信设备的示意性框图。
图6是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实 施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于对本申请实施例的理解,下面对SRS进行介绍。
探测参考信号(Sounding Reference Signal,SRS)信号是5G/NR系统中重要的参考信号,广泛用于NR系统中的各种功能中,例如,SRS可以用于以下场景:
1.用于下行信道状态信息的获取(UE sounding procedure for DL CSI acquisition);
2.用于上行波束管理;用于上行传输的频域调度和预编码确定;
3.用于定位功能;
4.配合基于码本(codebook-based)的上行传输;
例如,用于频域调度和Rank/预编码矩阵指示(precoding matrix indicator,PMI)/调制编码方式(Modulation Coding Scheme,MCS)的确定。
5.配合基于非码本(Non-Codebook based)的上行传输;
例如,用于包括频域调度和SRS资源指示(Sounding Reference Signal Resource Indicator,SRI)/MCS的确定。
网络设备可以给一个终端设备配置一个或多个SRS资源组(SRS Resource set),每个SRS Resource set可以配置1个或多个SRS资源(SRS resource)。
SRS的传输可以分为周期性(Periodic)、半持续(Semi-persistent)、非周期(Aperiodic)。
周期SRS是指周期性传输的SRS,其周期和时隙偏移由RRC信令配置,终端设备一旦接收到相应的配置参数,就按照一定的周期发送SRS,直到所述RRC配置失效。周期性SRS的空间相关信息(Spatial Relation Info)也由RRC信令配置。所述空间相关信息可以指示一个信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),同步信号/物理广播信道块(Synchronization Signal/PBCH Block,SSB)或者参考SRS。例如,可以通过隐式的方式来指示周期SRS的发送波束。例如,终端设备根据指示的CSI-RS/SSB来确定周期SRS的发送波束。再如,终端设备可以通过SRS资源的空间相关信息确定在SRS资源上传输SRS所用的发送波束。
半持续性SRS也是周期性传输的SRS,周期和时隙偏移(slot offset)由RRC信令配置,但其激活和去激活信令是通过MAC CE承载的。终端设备在接收到激活信令后开始传输SRS,直到接收到去激活信令为止。半持续SRS的空间相关信息(发送波束)通过激活SRS的MAC CE一起承载。
终端设备接收到RRC配置的周期和时隙偏移后,根据以下公式确定能够用于传输SRS的时隙:
Figure PCTCN2021122053-appb-000001
其中,T SRS和T OFFSET为配置的周期和偏移,n f
Figure PCTCN2021122053-appb-000002
分别为无线帧和时隙编号。
非周期SRS传输指网络设备可以通过DCI触发终端设备的SRS传输。用于触发非周期SRS传输的触发信令既可以通过UE专属搜索空间或公共搜索空间(Common search space)中用于调度 PUSCH/PDSCH的DCI承载,也可以通过公共搜索空间中的DCI format 2_3来承载。
表1 SRS触发信令
Figure PCTCN2021122053-appb-000003
如表1所示,SRS请求域的值。例如,若SRS请求域的值为11,则SRS的触发信令指示使用更高层参数SRS资源触发(aperiodicSRS-ResourceTrigger)设置为3的SRS资源组。
终端设备接收到非周期SRS触发信令(例如DCI)后,在触发信令所指示的SRS资源组上进行SRS传输。其中,触发信令与SRS传输之间的时隙偏移(slot offset)可以由高层信令(RRC)配置。网络设备预先通过高层信令指示终端设备每个SRS资源组的配置参数,包括时频资源、序列参数、功率控制参数等。另外,对于触发的SRS资源组中的每个SRS资源,终端设备还可以通过该资源的空间相关信息确定在该资源上传输SRS所用的发送波束,该空间相关信息可通过RRC配置给每个SRS资源。
如前所述,针对非周期探测参考信号(Sounding Reference Signal,SRS),其时隙偏移(slot offset)可以由高层信令配置,相当于,在RRC信令重新配置其他取值之前,每次触发信令与SRS传输之间的时隙偏移是不变的,导致用于接收触发信令的时隙和用于发送SRS的时隙相对位置是固定的,增加了非周期SRS触发以及对应的SRS传输的限制性并降低了系统灵活性。
例如,假设时隙偏移为k,如果要触发SRS在时隙n+k上传输,那么对应的触发信令只能在时隙n上发送,这就限制了发送触发信令的时机,给网络设备的调度工作增加了额外不必要的限制。再如,当某个时隙,或者某个时隙上某些符号被动态地从可以上行传输变成下行传输时,可能会使得某次非周期SRS无法传输。例如,若时隙n+k被更改为用于下行传输,则在时隙n上发送的触发SRS信令是无效的,或者不能在时隙n上发送触发信令。
基于此,本申请引入了通过DCI来动态指示时隙偏移。即每个SRS资源组可以配置至少一个(例如4个)时隙偏移,网络设备可以通过DCI中的指示域指示最终采用其中哪个时隙偏移。可选的,所述指示域可以设计为最多2个比特(bit),换言之,每次触发对应的非周期SRS传输时,DCI中对应的指示域可以指示其中的一个时隙偏移。
图2示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由第一设备和第二设备交互执行。图2中所示的第一设备可以是如图1所示的终端设备,图2中所示的第二设备可以是如图1所示的接入网设备。当然,所述第一设备和所述第二设备也可以都是终端设备,本申请对此不作限定。
如图2所示,所述方法200可包括:
S210,接收第二设备发送的第一控制信息;
其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
S220,针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
换言之,所述第一设备接收所述第二设备(第二设备可以是网络设备,也可以是第二终端设备)发送的所述第一控制信息,所述第一设备基于所述第二域的取值确定所述第一SRS资源组对应的第一时隙偏移;然后,所述第一设备基于所述第一SRS资源组对应的第一时隙偏移和/或所述第一SRS资源组对应的第二时隙偏移,确定所述第一SRS资源组对应的第一目标时隙;最后,所述第一设备在所述第一SRS资源组对应的第一目标时隙上进行非周期SRS传输。
例如,针对配置有至少一个时隙偏移的第一SRS资源组,若所述第一SRS资源组对应的第一时隙偏移不为0,则所述第一SRS资源组对应的第一目标时隙可以是基于所述第一SRS资源组对应的第一 时隙偏移和所述第一SRS资源组对应的第二时隙偏移确定的。
本实施例中,将所述第二域的取值设计为用于指示触发的第一SRS资源组配置的至少一个时隙偏移中的第一时隙偏移,避免了固定触发信令与SRS传输之间的时隙偏移,相当于,用于接收触发信令的时隙和用于发送SRS的时隙相对位置是可选择或可确定的,相应的,能够降低SRS传输的限制性并增加系统灵活性。
需要说明的是,本申请中涉及的所述至少一个时隙偏移不同于所述第二时隙偏移。也即是说,所述第二时隙偏移是所述至少一个时隙偏移之外的。或者说,针对第一SRS资源组,可同时配置有所述至少一个时隙偏移和所述第二时隙偏移。当然,针对某一个SRS资源组,也可仅配置有一个所述第二时隙偏移,还可以既不配置所述至少一个时隙偏移也不配置所述第二时隙偏移,本申请对此不作限定。可选的,所述第二时隙偏移可以是通过SRS资源组(SRS resource set)的RRC参数来配置的,例如所述RRC参数可以是时隙偏移(slotOffset)参数。
值得注意的是,针对一个SRS资源组的第二时隙偏移,其是始终存在的,作为示例,如果针对所述一个SRS资源组通过RRC配置了偏移值,则所述一个SRS资源组对应的第二时隙偏移可以为通过所述RRC配置的偏移值,如果没有通过RRC配置偏移值,则所述一个SRS资源组对应的第二偏移值可以为0。
此外,本申请中涉及的第一时隙偏移可以为0,也就是说,针对所述至少一个SRS资源组中配置有至少一个时隙偏移的第一SRS资源组,所述第一SRS资源组对应的第一时隙偏移可以为0,相当于,所述第一SRS资源组对应的第一目标时隙是仅基于所述第一SRS资源组对应的第二时隙偏移确定的,或者说,发送所述第一SRS资源组时不考虑所述第二域或不考虑所述第一SRS资源组对应的第一时隙偏移。
当然,本申请对所述至少一个SRS资源组中未配置有所述至少一个时隙偏移的SRS资源组的传输方式不作具体限定。
例如,在一种可实现的方式中,如果某一个SRS资源组没有配置第一配置域,即该某一个SRS资源组中未配置有所述至少一个时隙偏移,则第一设备可以根据该某一个SRS资源组对应的第二时隙偏移确定该某一个SRS资源组对应的时隙,进而在该某一个SRS资源组对应的时隙上进行SRS传输,相当于,可以针对某些SRS资源组采用不使用基于所述第一时隙偏移的传输方式,即不考虑第二域的方式,针对另外一些SRS资源组使用基于所述第一时隙偏移的传输方式,即根据第二域的取值进行SRS传输,有利于提供网络实现的灵活性。
可选的,本申请中的非周期SRS传输是在第一BWP上传输的。
换言之,所述至少一个SRS资源组可以是第一BWP对应的SRS资源组。
还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。本申请实施例中涉及的术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。在一些实施例中,所述方法200还可包括:
确定所述第二域占用的比特数目。
需要说明的是,本申请涉及的术语“所述第二域的取值占用的比特数目”可以理解为所述第二域占用的比特数目或所述第二域的大小(size)等其他具有相同或类似含义的描述,本申请对此不作具体限定。
在一些实现方式中,若所述第一设备未收到第一指示信息,则确定所述第二域占用0个比特;和/或,若所述第二设备未发送或未配置第一指示信息,则确定所述第二域占用0个比特;其中,所述第一指示信息用于指示所述第一控制信息包括所述第二域,或所述第一指示信息用于指示所述第二域占用的比特数目。
本实施例中,所述第一控制信息中的第二域的存在与否和/或所述第二域的大小可根据第二设备发送的第一指示信息确定,相当于,网络可直接通过信令确定第二域是否存在或者其大小,可以简化设计,降低终端处理复杂度。
可选的,所述第一指示信息用于指示所述第一控制信息包括所述第二域。可选的,若所述第一设备收到所述第一指示信息,则确定所述第二域占用第一数量个比特。例如,所述第一数量可以为2或其他数值。
本实施例中,将所述第一指示信息设计为用于指示所述第一控制信息包括所述第二域,可以使得第二域只有两种情况,即不存在的情况和存在的情况,相当于,所述第二域占用的比特数目为固定值,有利于降低第一指示信息的信令开销,同时也是降低协议复杂度。
可选的,所述第一指示信息用于指示所述第二域占用的比特数目。可选的,若所述第一设备收到所述第一指示信息且所述第一指示信息指示第一取值,则确定所述第二域占用第二数量个比特;和/或,若所述第一设备收到所述第一指示信息且所述第一指示信息指示第二取值,则确定所述第二域占用第三数量个比特。例如,所述第二数量可以为1或其他数值,所述第三数量可以为2或其他数值。
本实施例中,将所述第一指示信息设计为用于指示所述第二域占用的比特数目,可以使得第二域有3种情况,在一些情况下,能够在可以节约DCI中的1比特开销。
可选的,所述第一指示信息通过RRC信令传输,或者所述第一指示信息通过MAC CE信令传输。
当然,在其他可替代实施例中,所述第一指示信息还可以用于指示所述第一控制信息是否包括所述第二域,本申请对此不作具体限定。
在实施例中,当第二域占用0个比特时,第一控制信息中不存在第二域。
在一些实现方式中,基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
本实施例中,所述第一控制信息中的第二域的存在与否和/或所述第二域的大小可基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域的配置情况确定,避免了网络设备发送用于确定所述第二域大小的信息,有利于节约信令开销。
需要说明的是,本申请涉及的所述第一SRS资源组也可以基于所述第一配置域进行定义,本申请对此不作限定。例如,所述第一SRS资源组为所述至少一个SRS资源组配置有第一配置域的SRS资源组,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
需要说明的是,本申请中涉及的第一SRS资源组为所述第一域触发的所述至少一个SRS资源组中配置有所述至少一个时隙偏移的SRS资源组中的任一SRS资源组,本申请涉及的第二SRS资源组为配置有所述至少一个时隙偏移的任一SRS资源组。本申请中,所述所有配置有所述至少一个时隙偏移的SRS资源组可以是在不同粒度下的所有SRS资源组,本申请对此不作具体限定。例如,所述第一SRS资源组为所述第一域触发的SRS资源组,但本申请对所述第二SRS资源组是否为所述第一域SRS资源组的SRS资源组不作限定。也即是说,所述第二SRS资源组可以是所述第一域触发的SRS资源组,也可以不是所述第一域触发的SRS资源组。或者说,所述所有配置有所述至少一个SRS资源组包括所述第一域触发的所述至少一个SRS资源组中配置有所述至少一个时隙偏移的SRS资源组,即所述所有配置有所述至少一个时隙偏移的SRS资源组包括所有的所述第一SRS资源组。再如,所述第二SRS资源组可以是:以所述至少一个SRS资源组对应的第一BWP、所有激活BWP、配置的所有BWP、所述第一BWP所在的载波、所有激活载波或配置的所有载波为粒度,包括的配置有所述至少一个时隙偏移的所有SRS资源组。
示例性的,所述第一配置域可以指示0个(即不配置),1个,2个,3个或4个取值。
可选的,所述第一配置域通过以下中的至少一项配置:
列表结构、序列结构、比特位图。
本实施例中,将所述第一配置域设计为列表结构、序列结构、比特位图,有利于简单信令结构,降低终端处理复杂度。进一步的,将所述第一配置域设计为比特位图,还可以为所述第一配置域提供良好的扩展性,例如扩展到4个以上取值。
示例性的,下面以所述第一配置域通过序列结构配置为例,对所述第一配置域的语法元素进行说明。
Figure PCTCN2021122053-appb-000004
其中,the1stField表示第一配置域。MaxValue1表示第一配置域中每个元素的最大取值范围,可选的,其取值可以为4、8、16或32。
当然,上述第一配置域的位置和最大取值范围仅为示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,可以包含在其上面一样中的[[]]中,也可以在外面,还可以独立添加一个[[]]。
再如,在其他可替代实施例中,若所述第一配置域中每个元素的取值可以为0,其相关语法可变形为以下语法:
the1stField SEQUENCE(SIZE(1..4))OF INTEGER(0..MaxValue1)OPTIONAL;
其中,MaxValue1表示第一配置域中每个元素的最大取值范围,可选的,其取值可以为4、8、16或32,也可以为3、7、16或32,还可以为3、7、15或31,本申请对此不作具体限定。
可选的,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。例如,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
2 a≥K,或2 a≥K+1;
其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
示例性的,若所述至少一个SRS资源组为第一BWP上M个SRS资源组,所述M个SRS资源组中的N个SRS资源组配置了第一配置域,以所有配置有所述至少一个时隙偏移的SRS资源组为所述N个SRS资源组为例,其中每个第一配置域中分别配置了k_1,k_2,…,k_N个元素,把K记为{k_1,k_2,…,k_N}中的最大值,则第二域的大小为a比特,其中a为满足条件2 a≥K或2 a≥K+1的最小整数。当SRS资源组配置没有第一配置域时(即N=0时),a=0(此时K=0),即第二域不存在。
当然,在其他可替代实施例中,也可以不是根据第一BWP上的第一SRS资源组来确定所述第二域占用的比特数目,例如还可以根据配置的所有载波(无论是否激活)上的SRS资源组中配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。再如,还可以根据配置的所有载波上或者根据所有激活载波上的配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。再如,还可以根据配置第一BWP所在的载波上的配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。
当然,上文中,描述了可以通过所述第一指示信息或所述第二SRS资源组的第一配置域的配置情况确定所述第二域占用的比特数目,但本申请不限于此。例如,在其他可替代实施例中,还可以将所述第二域占用的比特数目设置为固定值。可选的,该固定值可以是协议规定数值。
在一些实施例中,所述方法200还可包括:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
换言之,如果某个第一SRS资源组配置有所述第一配置域,则所述第二域的取值对应第一配置域中的一个元素。本实施例中,通过固定的对应方式确定所述第一时隙偏移,有利于降低协议和产品实现复杂度。
示例性地,假设所述第二域占用2比特,则所述第二域的信息可以为00,01,10,11,其对应的取值范围可以是0,1,2,3。为讨论方便,以此为例:假设至少一个时隙偏移包含四个时隙偏移,分别记为A,B,C,D。可选的,X也可以根据所述至少一个时隙偏移的索引确定,例如若所述至少一个时隙偏移的索引从0开始,则X表示所述第二域的取值,此时第二域的取值0,对应第0个时隙偏移A,第二域的取值为1,对应第1个时隙偏移B,第二域的取值为2,对应第2个时隙偏移C,第二域的取值为3,对应第3个时隙偏移D;若所述至少一个时隙偏移的索引从1开始,则X表示所述第二域的取值加1,此时第二域的取值0,对应第1个时隙偏移A,第二域的取值为1,对应第2个时隙偏移B,第二域的取值为2,对应第3个时隙偏移C,第二域的取值为3,对应第4个时隙偏移D。
在一些实现方式中,按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移;或按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移。
示例性地,假设针对第一SRS资源组配置了4个时隙偏移,其分别为0,4,2,1,此时,若按照由小到大的顺序排列,则第1个时隙偏移到第4个时隙偏移依次为0,1,2,4,若按照由大到小的顺序排列,则第1个时隙偏移到第4个时隙偏移依次为4,2,1,0,若按照所述至少一个时隙偏移的配置顺序,则第1个时隙偏移到第4个时隙偏移依次为0,4,2,1。进一步的,若X=2,则第一设备可以按照由小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移确定为所述第一时隙偏移,即第一设备可以将时隙偏移1确定为所述第一时隙偏移;或者第一设备可以按照由大到小的顺序,将所述至少一个时隙偏移中第X个时隙偏移确定为所述第一时隙偏移,即第一设备可以将时隙偏移2确定为所述第一时隙偏移;或第一设备可以按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移确定为所述第一时隙偏移,即第一设备可以将时隙偏移4确定为所述第一时隙偏移。
可选的,所述至少一个时隙偏移的配置顺序为所述至少一个时隙偏移在所述第一SRS资源组的第一配置域中的顺序。
可选的,所述至少一个时隙偏移的配置顺序可以是RRC信令SRS-ResourceSet中的配置顺序。
在一些实施例中,所述方法200还可包括:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,基于第一对应关系,将所述第二域的取值对应的时隙偏移确定为所述第一时隙偏移;其中,所述第一对应关系包括至少一个取值和所述至少一个取值中每一个取值对应的时隙偏移,所述至少一个取值包括所述第二域的取值。
换言之,如果某个第一SRS资源组配置有所述第一配置域,则所述第二域的取值可以对应第一配置域中的一个元素。本实施例中,通过更灵活的第一对应关系确定所述第一时隙偏移,相当于可以通过网络配置的信息确定所述第一时隙偏移,有利于提升所述第一时隙偏移的灵活性。
示例性地,假设所述第二域占用2比特,所述第二域的取值范围可以包括:00,01,10,11,假设某个第一SRS资源组的第一配置域配置有4个第一时隙偏移,分别记为时隙偏移1,时隙偏移2,时隙偏移3,时隙偏移4。此时,所述第一对应关系可包括00对应的时隙偏移1,01对应的时隙偏移2,10对应的时隙偏移3以及11对应的时隙偏移4。若所述第二域的取值为00,则可以将00对应的时隙偏移1确定为所述第一时隙偏移。
可选的,所述至少一个SRS资源组中的不同第一SRS资源组可对应有不同或相同的第一对应关系。
可选的,所述第一对应关系为协议约定的或所述第二设备配置的。
需要说明的是,在本申请实施例中,所述"协议约定的"可以是指协议中定义的。可选地,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做具体限定。
可选的,所述第一对应关系通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE配置。
在一些实施例中,所述方法200还可包括:
若所述至少一个时隙偏移的数量小于等于或小于所述第二域的取值,执行以下中的任一项:
将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移。
换言之,若所述第二域的取值(记为Y)大于等于或大于第一配置域的元素个数(记为N),则所述第一设备可执行以下中的任一项:
将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移。
示例性地,若所述至少一个时隙偏移的编号从0开始,则将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移,确定为所述第一时隙偏移;若所述至少一个时隙偏移的编号从1开始,则将所述至少一个时隙偏移中第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
为便于描述,下文基于其中一种编号方式(例如选择至少一个时隙偏移的编号从1,或者至少一个时隙偏移的编号从0),确定所述第一时隙偏移;对于基于另一种编号方式来确定所述第一时隙偏移的方案可参考相关内容,换言之,可以类似的方案基于另一种编号方式来确定所述第一时隙偏移,为避免重复,后续不再针对基于另一种编号方式来确定所述第一时隙偏移的方案进行赘述。
本实施例中,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,即使所述第二域的取值(记为Y)大于等于或大于第一配置域的元素个数(记为N),通过取值不同的所述第二域也可以指示相同或不同的第一时隙偏移,有利于提升所述第二域的指示效果;将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移,或将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移,有利于简化所述第一时隙偏移的确定过程,进而有利于降低协议和产品实现复杂度。
示例性地,假设所述至少一个SRS资源组中的第一SRS资源组配置有2个时隙偏移(分别记为第 1个时隙偏移,第2个时隙偏移),所述第二域占用2比特,所述第二域的取值范围可以是0,1,2,3,Y表示所述第二域的取值,取值为0和1的所述第二域分别用于指示所述2个时隙偏移。此时,若所述第二域的取值为0,则所述第一SRS资源组对应的时隙时隙偏移为所述2个第一SRS资源组中的第1个时隙偏移。若所述第二域的取值为1,则所述第一SRS资源组对应的第一时隙偏移为所述2个时隙偏移中的第2个时隙偏移。
若所述第二域的取值为2,则所述第二域可用于指示以下中的任一项:
将所述2个时隙偏移中第mod(2,2)+1个时隙偏移确定为所述第一时隙偏移,即将所述2个时隙偏移中第1个时隙偏移确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第2个时隙偏移,确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第1个时隙偏移,确定为所述第一时隙偏移;或将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移。
若所述第二域的取值为3,则所述第二域可用于指示以下中的任一项:
将所述2个时隙偏移中第mod(3,2)+1个时隙偏移确定为所述第一时隙偏移,即将所述2个时隙偏移中第2个时隙偏移确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第2个时隙偏移,确定为所述第一时隙偏移;或将所述至少一个时隙偏移中的第1个时隙偏移,确定为所述第一时隙偏移;或将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移。
简言之,本实施例中,所述第二域的取值是0时,可以对应到第1个时隙偏移;所述第二域的取值是1时,可以对应到第2个时隙偏移;所述第二域的是2时,可以通过取模操作对应到第1个时隙偏移;所述第二域的取值是3时,可以通过取模操作对应到第2个时隙偏移。
需要说明的是,一般情况下,需要将所述多个SRS资源组中不同的SRS资源组从不同的时隙上传输,或者在同一个时隙不同的符号上传输,然而,即使所述多个SRS资源组对应的时隙偏移不同,也不能保证所述多个SRS资源组不在同一个时隙上,然而,本实施例对第一SRS资源组来说,是在基于第二时隙偏移的基础上基于第一时隙偏移确定其对应的第一目标时隙的,因此,本申请对多个第一SRS资源组中不同的第一SRS资源组对应的第一时隙偏移不作要求,即所述多个第一SRS资源组中不同的第一SRS资源组对应的第一时隙偏移可以相同,也可以不相同,例如,若所述第二域的取值(记为Y)大于等于或大于第一配置域的元素个数(记为N),通过取值不同的所述第二域也可以指示相同或不相同的第一时隙偏移。
在一些实现方式中,按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移;或按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
示例性地,假设针对第一SRS资源组配置了4个时隙偏移,其分别为0,4,2,1,此时,若按照由小到大的顺序排列,则第1个时隙偏移到第4个时隙偏移依次为0,1,2,4,若按照由大到小的顺序排列,则第1个时隙偏移到第4个时隙偏移依次为4,2,1,0,若按照所述至少一个时隙偏移的配置顺序,则第1个时隙偏移到第4个时隙偏移依次为0,4,2,1。进一步的,若mod(Y,N)+1=2,则第一设备可以按照由小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)+1个时隙偏移确定为所述第一时隙偏移,即第一设备可以将时隙偏移1确定为所述第一时隙偏移;或者第一设备可以按照由大到小的顺序,将所述至少一个时隙偏移中第mod(Y,N)+1个时隙偏移,即第一设备可以将时隙偏移2确定为所述第一时隙偏移;或第一设备可以按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)+1个时隙偏移,即第一设备可以将时隙偏移4确定为所述第一时隙偏移。
可选的,所述至少一个时隙偏移的配置顺序可以是RRC信令SRS-ResourceSet中的配置顺序。
在一些实施例中,所述至少一个SRS资源组中的所有所述第一SRS资源组配置有相同数量的时隙偏移;或所述至少一个SRS资源组中的所有SRS资源组配置有相同数量的时隙偏移。
本实施例中,将所述第一SRS资源组设计为配置有相同数量的时隙偏移,相当于,所有配置了第一配置域的SRS资源组中的第一配置域配置有相同数目的元素,即对配置进行了约束,有利于降低网络配置的复杂度,并降低网络设备实现复杂度。
类似的,将所述至少一个SRS资源组中的SRS资源组设计为配置有相同数量的时隙偏移,相当于,所有SRS资源组中的第一配置域配置有相同数目的元素,同样对配置进行了约束,有利于降低网络配置的复杂度,并降低网络设备实现复杂度。
在一些实施例中,所述第一SRS资源组配置有2 a个时隙偏移,a表示所述第二域占用的比特数目。
本实施例中,将所述第一SRS资源组设计为配置有2 a个时隙偏移,相当于,所有配置了第一配置 域的SRS资源组中的第一配置域配置有有2 a个元素,有利于简化协议设计,以及有利于避免后续的一些额外规则,从而可以降低产品实现复杂度。
在一些实施例中,所述方法200还可包括:
基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙;其中,所述第一时隙由所述第一控制信息所在的时隙和所述第二时隙偏移确定。
在一些实现方式中,将所述第一时隙开始或之后的第T个可用时隙,确定为所述第一目标时隙,T表示所述第一时隙偏移。
可选的,若T=0,则所述第一时隙开始或之后的第T个可用时隙为所述第一时隙。
可选的,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000005
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
可选的,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000006
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000007
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000008
和μ offset
Figure PCTCN2021122053-appb-000009
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000010
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000011
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
换言之,如果某个SRS资源组配置有第一配置域,则所述第一设备确定在时隙n’上发送所述某个第一SRS资源组。
可选的,若某个SRS资源组没有配置第一配置域,则z=0。
可选的,若某个SRS资源组对应的第一时隙偏移为0(即T=0),则z=0。
可选的,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000012
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
简言之,时隙
Figure PCTCN2021122053-appb-000013
对应时隙
Figure PCTCN2021122053-appb-000014
开始或之后的第T个可用时隙。
其中,时隙
Figure PCTCN2021122053-appb-000015
对应时隙
Figure PCTCN2021122053-appb-000016
开始的第T个可用时隙,可以理解为:以时隙
Figure PCTCN2021122053-appb-000017
为起始时隙,得到的第T个可用时隙。时隙
Figure PCTCN2021122053-appb-000018
对应时隙
Figure PCTCN2021122053-appb-000019
之后的第T个可用时隙,可以理解为:以时隙
Figure PCTCN2021122053-appb-000020
之后的第一个时隙为起始时隙,得到的第T个可用时隙。
假设T=1,且时隙n’和时隙n 1都是可用时隙,则n’=n 1或n’=n 1+1。
换言之,假设T=1,且时隙
Figure PCTCN2021122053-appb-000021
和时隙
Figure PCTCN2021122053-appb-000022
都是可用时隙。
示例性的,若时隙
Figure PCTCN2021122053-appb-000023
对应时隙
Figure PCTCN2021122053-appb-000024
开始的第T个可用时隙,则n’为
Figure PCTCN2021122053-appb-000025
示例性的,若时隙
Figure PCTCN2021122053-appb-000026
对应时隙
Figure PCTCN2021122053-appb-000027
之后的第T个可用时隙,则n’为
Figure PCTCN2021122053-appb-000028
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000029
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000030
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000031
和μ offset
Figure PCTCN2021122053-appb-000032
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000033
和μ offset,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
换言之,如果某个第一SRS资源组配置有第一配置域,则所述第一设备确定在时隙n’上发送所述某个第一SRS资源组。
可选的,若某个SRS资源组没有配置第一配置域,则z=0。
可选的,若某个SRS资源组对应的第一时隙偏移为0(即T=0),则z=0。
可选的,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000034
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000035
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000036
和μ offset
Figure PCTCN2021122053-appb-000037
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000038
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
简言之,时隙
Figure PCTCN2021122053-appb-000039
对应时隙
Figure PCTCN2021122053-appb-000040
开始或之后的第T个可用时隙。
其中,时隙
Figure PCTCN2021122053-appb-000041
对应时隙
Figure PCTCN2021122053-appb-000042
开始的第T个可用时隙,可以理解为:以时隙
Figure PCTCN2021122053-appb-000043
为起始时隙,得到的第T个可用时隙。时隙
Figure PCTCN2021122053-appb-000044
对应时隙
Figure PCTCN2021122053-appb-000045
之后的第T个可用时隙,可以理解为:以时隙
Figure PCTCN2021122053-appb-000046
之后的第一个时隙为起始时隙,得到的第T个可用时隙。
假设T=1,且时隙n’和时隙n 1都是可用时隙,则n’=n 1或n’=n 1+1。
换言之,假设T=1,且时隙
Figure PCTCN2021122053-appb-000047
和时隙
Figure PCTCN2021122053-appb-000048
都是可用时隙。
示例性的,若时隙
Figure PCTCN2021122053-appb-000049
对应时 隙
Figure PCTCN2021122053-appb-000050
开始的第T个可用时隙,则n’为
Figure PCTCN2021122053-appb-000051
示例性的,若时隙
Figure PCTCN2021122053-appb-000052
对应时隙
Figure PCTCN2021122053-appb-000053
之后的第T个可用时隙,则n’为
Figure PCTCN2021122053-appb-000054
在一些实施例中,所述方法200还可包括:
接收所述第二设备发送的配置信息,所述配置信息用于配置一个或多个SRS资源组,所述一个或多个SRS资源组中的每一个SRS资源组配置有至少一个SRS资源,所述一个或多个SRS资源组包括所述至少一个SRS资源组。
示例性的,第一设备接收第二设备(第二设备可以是网络设备,也可以是第二终端设备)通过RRC信令发送的配置信息,其用于配置所述一个或多个SRS资源组,每个SRS资源组包含1个或多个SRS资源,SRS资源通过RRC信令SRS-Resource配置,每个SRS资源组是非周期的,即每个SRS资源组对应的资源类型(resourceType)为非周期(aperiodic)。其中,所述第一SRS资源组是所述一个或多个SRS资源组中的一个。
可选的,所述至少一个SRS资源组包括用途域配置为天线切换的多个SRS资源组,所述多个SRS资源组中不同的SRS资源组对应不同的传输时隙。其中所述多个SRS资源组对应某个“xTyR”类型的天线切换配置。
示例性的,所述至少一个SRS资源组中的部分SRS资源组的用途域配置为天线切换,或者,所述至少一个SRS资源组中的全部SRS资源组的用途域配置为天线切换。示例性的,所述多个SRS资源组对应某个“xTyR”类型的天线切换配置。示例性的,所述一个或多个SRS资源组中的SRS资源组可配置为{beamManagement,codebook,nonCodebook,antennaSwitching}中的任意一个。
应理解,所述多个SRS资源组中的某一个SRS资源组为上文所述的第一SRS资源组时,所述传输时隙即为所述第一目标时隙。所述多个SRS资源组中的某一个SRS资源组为下文所述的第三SRS资源组时,所述传输时隙即为所述第二目标时隙。
可选的,所述多个SRS资源组中的每一个SRS资源组配置有对应的触发状态。
本实施例中,所述多个SRS资源组中的SRS资源组可以配置有不同的触发状态,有利于放松协议限制,增加网络配置和触发的灵活性。
示例性的,所述多个SRS资源组中的SRS资源组配置有1个或多个(记为M个)触发状态,其中每个触发状态对应DCI中SRS请求(request)域的一个取值,即一个码点(code point)。可选的,所述1个或多个触发状态可通过SRS资源组信元(SRS-ResourceSet IE)中的非周期SRS资源组触发(aperiodicSRS-ResourceTrigger)和非周期SRS资源组触发列表(aperiodicSRS-ResourceTriggerList)来配置,其中aperiodicSRS-ResourceTrigger配置1个值,aperiodicSRS-ResourceTriggerList配置1个或多个值。
可选的,所述多个SRS资源组配置有相同数量的时隙偏移。其中所述多个SRS资源组对应某个“xTyR”类型的天线切换配置。
本实施例中,将所述多个SRS资源组设计为配置有相同数量的时隙偏移,相当于通过增加限制降低了终端天线切换的复杂度。
在一些实施例中,所述方法200还可包括:
上报所述第一设备的能力信息;
其中,所述能力信息用于指示所述第一设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备支持动态时隙偏移。
当然,在其他可替代实施例中,所述能力信息也可用于指示所述第一设备是否支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备是否支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备是否支持动态时隙偏移,本申请对此不作具体限定。
可选的,所述能力信息通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE上报。
可选的,可以按照以下方式中的任一项上报所述第一设备的能力信息:
针对每一个频段组合上报所述能力信息;或
针对每一个频段范围上报所述能力信息;或
针对每一个频段上报所述能力信息;或
针对每一个载波上报所述能力信息;或
针对每一个终端设备上报所述能力信息。
本实施例中,将所述能力信息设计为针对频段(band)上报,即不同的频段可以独立上报对应的能力(perband),可以让第一设备实现具有更大的自由度,例如所述第一设备可以在某个或者某些频段上支持动态时隙偏移,其他频段上不支持动态时隙偏移,从而可以让更多的第一设备来支持动态时隙偏移。
将所述能力信息设计为针对频段组合(band combination)上报,即不同的频段组合可以独立上报(per band per band combination),可以让第一设备实现具有更大的自由度,例如所述第一设备可以在某个或者某些频段组合上支持动态时隙偏移,其他频段组合上不支持动态时隙偏移,从而可以让更多的第一设备来支持动态时隙偏移。
将所述能力信息设计为按照频段组合(band combination)中的每个频段独立上报,即不同的频段组合中的频段可以独立上报,可以让第一设备实现具有更大的自由度,例如第一设备可以在某个CA下不支持动态时隙偏移,但是在另一个CA组合下某些频段支持动态时隙偏移,从而可以让更多的第一设备来支持动态时隙偏移。
将所述能力信息设计为按照频段组合(band combination)中的每个频段上每个载波独立上报,即不同的频段组合中的频段中的不同载波CC可以独立上报(per CC per band per band combination);相当于,不同的频段组合独立上报,并且一个频段上的不同载波也可以独立上报,可以让第一设备实现具有更大的自由度,从而可以让更多的第一设备来支持动态时隙偏移。
将所述能力信息设计为按照频段范围(Frequency range)上报的,即不同的FR可以独立上报(per FR),例如FR1和FR2各自独立上报,可以让第一设备实现具有更大的自由度,例如第一设备低频(FR1)不支持动态时隙偏移,但是在FR2(高频)支持动态时隙偏移,从而可以让更多的第一设备来支持动态时隙偏移。
将所述能力信息设计为针对UE上报的(per UE),就是说如果UE上报所述能力信息,则在各个频段上都可以支持这个能力,可以降低第一设备能力上报的信令开销。
可选的,可以按照以下方式中的任一项针对每一个频段组合上报所述能力信息:
针对所述每一个频段组合中的每一个频段,上报所述能力信息;或
针对所述每一个频段组合中每一个频段上的每一个载波,上报所述能力信息。
在一些实施例中,所述第一控制信息为以下格式中的至少一项:下行控制信息格式0_1DCI format 0_1、下行控制信息格式0_2DCI format 0_2、下行控制信息格式1_1DCI format 1_1、下行控制信息格式1_2DCI format 1_2或下行控制信息格式2_3DCI format 2_3。
在一些实施例中,针对所述至少一个SRS资源组中的第三SRS资源组,在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;
其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源组,所述第二目标时隙是基于所述第二时隙偏移确定的。
换言之,所述第三SRS资源组为所述至少一个SRS资源组未配置第一配置域的SRS资源组,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
值得注意的是,针对所述第三SRS资源组对应的所述第二时隙偏移,其是始终存在的,作为示例,如果针对所述第三SRS资源组通过RRC配置了偏移值,则所述第三SRS资源组对应的所述第二时隙偏移可以为通过所述RRC配置的偏移值,如果没有通过RRC配置偏移值,则所述第三SRS资源组对 应的所述第二偏移值可以为0。
可选的,所述第一设备未针对载波聚合CA配置时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000055
其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第二目标时隙,k表示所述第二时隙偏移。
可选的,所述第一设备针对载波聚合CA配置有时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000056
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000057
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000058
和μ offset
Figure PCTCN2021122053-appb-000059
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000060
和μ offset,n’表示所述第二目标时隙。
下面以第一设备为终端设备,第二设备为网络设备为例,结合具体实施例对本申请的方案进行说明。
终端设备向网络设备上报能力信息,所述能力信息用于指示所述终端设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述终端设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述终端设备支持动态时隙偏移。
网络设备给终端设备针对第一BWP配置3个(以3为例,可以是更多数量)非周期SRS资源组(分别记为SRS资源组1,SRS资源组2,SRS资源组3),即每个SRS资源组中的resourceType配置为aperiodic。其中SRS资源组1没有配置第一配置域,SRS资源组2第一配置域中指示了2个元素(其中第一和第二个元素分别记为x0,x1),SRS资源组3第一配置域中指示了4个元素(其中第一到第四个元素分别记为y0,y1,y2,y3)。
网络设备向终端设备发送第一控制信息,触发在第一BWP上的非周期SRS传输,其中第一控制信息中的第二域占用的a比特。
其中,所述a比特的数目根据以下方式之一确定:
方式1:
终端设备可基于第一指示信息确定所述第二域占用的比特数目。
其中,所述第一指示信息用于指示所述第一控制信息包括所述第二域。具体地,若所述终端设备未收到所述第一指示信息,则确定所述第二域占用0个比特;和/或,若所述网络设备未发送或未配置所述第一指示信息,则确定所述第二域占用0个比特;和/或,若所述终端设备收到所述第一指示信息,则确定所述第二域占用第一数量个比特。例如,所述第一数量可以为2或其他数值。本实施例中,将所述第一指示信息设计为用于指示所述第一控制信息包括所述第二域,可以使得第二域只有两种情况,即不存在的情况和存在的情况,相当于,所述第二域占用的比特数目为固定值,有利于降低第一指示信息的信令开销,同时也是降低协议复杂度。
示例性的,结合本实施例,可以按照以下方式确定所述a比特的数目:
方式1-1:若终端设备未收到网络设备发送的第一指示信息,或网络设备未发送或配置第一指示信息,则第二域大小为0比特,即不存在。
方式1-2:若网络设备给终端设备发送或配置了第一指示信息,或终端设备收到了网络设备发送或配置的第一指示信息,则第二域大小为2比特。
方式2:
终端设备基于第一指示信息确定所述第二域占用的比特数目。
其中,所述第一指示信息用于指示所述第二域占用的比特数目。可选的,若所述终端设备未收到所述第一指示信息,则确定所述第二域占用0个比特;和/或,若所述网络设备未发送或未配置所述第一指示信息,则确定所述第二域占用0个比特;和/或,若所述终端设备收到所述第一指示信息且所述第一指示信息指示第一取值,则确定所述第二域占用第二数量个比特;和/或,若所述终端设备收到所述 第一指示信息且所述第一指示信息指示第二取值,则确定所述第二域占用第三数量个比特。例如,所述第二数量可以为1或其他数值,所述第三数量可以为2或其他数值。本实施例中,将所述第一指示信息设计为用于指示所述第二域占用的比特数目,可以使得第二域有3种情况,在一些情况下,能够在可以节约DCI中的1比特开销。
示例性的,结合本实施例,可以按照以下方式确定所述a比特的数目:
方式2-1:若终端设备未接收到网络发送的第一指示信息或者网络设备未发送或配置第一指示信息,则第二域大小为0比特,即不存在。
方式2-2:若网络设备给终端设备发送或配置了第一指示信息,或终端设备收到了网络设备发送或配置的第一指示信息,并且第一指示信息为第一取值,则第二域大小为1比特。
方式2-3:若网络设备给终端设备发送或配置了第一指示信息,或终端设备收到了网络设备发送或配置的第一指示信息,并且第一指示信息为第二取值,则第二域大小为2比特。
方式3:
终端设备基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。本实施例中,所述第一控制信息中的第二域的存在与否和/或所述第二域的大小可基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域的配置情况确定,避免了网络设备发送用于确定所述第二域大小的信息,有利于节约信令开销。
例如,终端设备基于第二SRS资源组配置的时隙偏移的数量,确定所述第二域占用的比特数目;其中,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。例如,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
2 a≥K,或2 a≥K+1;
其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
示例性的,若所述至少一个SRS资源组为第一BWP上M个SRS资源组,所述M个SRS资源组中的N个SRS资源组配置了第一配置域,以所有配置有所述至少一个时隙偏移的SRS资源组为所述N个SRS资源组为例,其中每个第一配置域中分别配置了k_1,k_2,…,k_N个元素,把K记为{k_1,k_2,…,k_N}中的最大值,则第二域的大小为a比特,其中a为满足条件2 a≥K或2 a≥K+1的最小整数。当SRS资源组配置没有第一配置域时(即N=0时),a=0(此时K=0),即第二域不存在。
当然,在其他可替代实施例中,也可以不是根据第一BWP上的第一SRS资源组来确定所述第二域占用的比特数目,例如还可以根据配置的所有载波(无论是否激活)上的SRS资源组中配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。再如,还可以根据配置的所有载波上或者根据所有激活载波上的配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。再如,还可以根据配置第一BWP所在的载波上的配置有所述至少一个时隙偏移的SRS资源组,确定所述第二域占用的比特数目。
结合本实施例,可以按照以下方式确定所述a比特的数目:
终端设备可根据3个SRS资源组中第一配置域指示的元素数量的最大值确定,即最大个数为4个,此时所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足2 a≥K;其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。也即是说,2 2=4,即所述第二域大小为2比特。
实施例1:
本实施例中,针对上文涉及的所述至少一个SRS资源组中的第三SRS资源组,终端设备可在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源组,所述第二目标时隙是基于所述第二时隙偏移确定的。
结合本实施例来说,所述SRS资源组1可作为上文涉及的第三SRS资源组的示例。
换言之,所述第一控制信息触发了SRS资源组1的非周期SRS传输,则在时隙n’上传输。
具体地,若所述第一设备未针对载波聚合CA配置时隙偏移,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000061
其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所 述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,k表示所述第二时隙偏移。
若所述第一设备针对载波聚合CA配置有时隙偏移,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000062
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000063
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000064
和μ offset
Figure PCTCN2021122053-appb-000065
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000066
和μ offset
实施例2:
本实施例中,针对所述至少一个SRS资源组中的第一SRS资源组,终端设备在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
结合本实施例来说,所述SRS资源组2可作为上文涉及的第一SRS资源组的一个示例。
换言之,所述第一控制信息触发了SRS资源组2的非周期SRS传输,则在时隙n’上传输。
此时,时隙n’可以是基于所述SRS资源组2对应的第一时隙偏移和所述SRS资源组2对应的第二时隙偏移确定的。如果第二域的取值记为f,则:
若所述SRS资源组2配置的所述至少一个时隙偏移的数量(即2)大于等于或大于所述第二域的取值,则将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值(若x0,x1分别对应第0个和第1个时隙偏移),或X表示所述第二域的取值加1(若x0,x1分别对应第1个和第2个时隙偏移)。例如,f=0时,对应x0(记为T);再如,f=1时,对应x1(记为T)。
若所述SRS资源组2配置的所述至少一个时隙偏移的数量(即2)小于或小于等于所述第二域的取值,则执行以下中的任一项(下面例子假设x0,x1分别对应第1个和第2个时隙偏移):
方式1:
将所述至少一个时隙偏移中第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算。例如f=2时,对应x0(记为T),mod(2,2)+1=1。再如f=3时,对应x1(记为T),mod(3,2)+2=2。
方式2:
将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移,N表示所述至少一个时隙偏移的数量。例如f=2时,对应x1(记为T);f=3时,对应x1(记为T)。
方式3:
将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移。例如,f=2时,对应x0(记为T);f=3时,对应x0(记为T)。
方式4:
将所述第一时隙偏移确定为0;或发送所述第一SRS资源组时不考虑所述第二域;或发送所述第一SRS资源组时不考虑所述第一时隙偏移。例如f=2或3时,不对应。即仅采用第二时隙偏移确定在时隙n’上发送非周期SRS。
若网络设备没有给终端终端配置ca-SlotOffset,终端设备在时隙n’上传输SRS资源组2对应的非周期SRS传输,其中,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000067
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
简言之,时隙n’为时隙
Figure PCTCN2021122053-appb-000068
开始或之后的第T个可用时隙。
若网络设备给终端终端配置ca-SlotOffset,终端设备在时隙n’上传输SRS资源组2对应的非周期SRS传输,其中,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000069
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000070
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000071
和μ offset
Figure PCTCN2021122053-appb-000072
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000073
和μ offset,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
简言之,时隙n’为时隙
Figure PCTCN2021122053-appb-000074
开始或之后的第T个可用时隙。
实施例3:
本实施例中,针对所述至少一个SRS资源组中的第一SRS资源组,终端设备在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
结合本实施例来说,所述SRS资源组3可作为上文涉及的第一SRS资源组的一个示例。
换言之,第一控制信息触发了SRS资源组3的非周期SRS传输,则在时隙n’上传输。
此时,时隙n’可以是基于所述SRS资源组3对应的第一时隙偏移和所述SRS资源组3对应的第二时隙偏移确定的。若所述SRS资源组3配置的所述至少一个时隙偏移的数量(即4)大于等于或大于所述第二域的取值,则将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
例如,如果第二域的取值记为f,则:
f=0时,对应y0(记为T);
f=1时,对应y1(记为T);
f=2时,对应y2(记为T);
f=3时,对应y3(记为T)。
若网络设备没有给终端终端配置ca-SlotOffset,终端设备在时隙n’上传输SRS资源组3对应的非周期SRS传输,其中,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000075
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
简言之,时隙n’为时隙
Figure PCTCN2021122053-appb-000076
开始或之后的第T个可用时隙。
若网络设备给终端终端配置ca-SlotOffset,终端设备在时隙n’上传输SRS资源组3对应的非周期SRS传输,其中,所述时隙n’满足以下条件:
Figure PCTCN2021122053-appb-000077
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000078
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000079
和μ offset
Figure PCTCN2021122053-appb-000080
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000081
和μ offset,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
简言之,时隙n’为时隙
Figure PCTCN2021122053-appb-000082
开始或之后的第T个可用时隙。
下面对本申请涉及的可用时隙的范围进行示例性说明。
可用时隙(available slot)指的是一个时隙中的上行(UL)符号和灵活符号(flexible symbol)能够传输这个SRS资源组中的所有SRS资源,可选的,并且这个时隙与第一控制信息之间的间隔大于或大于等于协议规定的最低要求(即the minimum timing requirement between triggering PDCCH and all the SRS resources in the resource set)
或者说,可用时隙指的是一个slot中的下行符号(DL symbols)与这个SRS资源组中的所有SRS资源都没有时域上的重叠(overlapping)。可选的,并且这个时隙与第一控制信息之间的间隔大于或大于等于协议规定的最低要求(即the minimum timing requirement between triggering PDCCH and all the SRS resources in the resource set)。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图2,详细描述了本申请的方法实施例,下文结合图3至图6,详细描述本申请的装置实施例。
图3是本申请实施例的第一设备300的示意性框图。
如图3所示,所述第一设备300可包括:
接收单元310,用于接收第二设备发送的第一控制信息;
其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
发送单元320,用于针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
在一些实施例中,所述发送单元320还用于:
确定所述第二域占用的比特数目。
在一些实施例中,所述发送单元320具体用于:
若所述第一设备未收到第一指示信息,则确定所述第二域占用0个比特;和/或,
若所述第二设备未发送或未配置第一指示信息,则确定所述第二域占用0个比特;
其中,所述第一指示信息用于指示所述第一控制信息包括所述第二域,或所述第一指示信息用于指示所述第二域占用的比特数目。
在一些实施例中,所述第一指示信息用于指示所述第一控制信息包括所述第二域;
其中,所述发送单元320具体用于:
若所述第一设备收到所述第一指示信息,则确定所述第二域占用第一数量个比特。
在一些实施例中,所述第一指示信息用于指示所述第二域占用的比特数目;
其中,所述发送单元320具体用于:
若所述第一设备收到所述第一指示信息且所述第一指示信息指示第一取值,则确定所述第二域占用第二数量个比特;和/或,
若所述第一设备收到所述第一指示信息且所述第一指示信息指示第二取值,则确定所述第二域占用第三数量个比特。
在一些实施例中,所述发送单元320具体用于:
基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;
其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
在一些实施例中,所述第一配置域通过以下中的至少一项配置:
列表结构、序列结构、比特位图。
在一些实施例中,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。
在一些实施例中,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
2 a≥K,或2 a≥K+1;
其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
在一些实施例中,所述发送单元320还用于:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
在一些实施例中,所述发送单元320具体用于:
按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移;或
按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移。
在一些实施例中,所述发送单元320还用于:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,基于第一对应关系,将所述第二域的取值对应的时隙偏移确定为所述第一时隙偏移;
其中,所述第一对应关系包括至少一个取值和所述至少一个取值中每一个取值对应的时隙偏移,所述至少一个取值包括所述第二域的取值。
在一些实施例中,所述第一对应关系为协议约定的或所述第二设备配置的。
在一些实施例中,所述第一对应关系通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE配置。
在一些实施例中,所述发送单元320具体用于:
若所述至少一个时隙偏移的数量小于等于或小于所述第二域的取值,执行以下中的任一项:
将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或
将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或
将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或
将所述第一时隙偏移确定为0;或
发送所述第一SRS资源组时不考虑所述第二域;或
发送所述第一SRS资源组时不考虑所述第一时隙偏移。
在一些实施例中,所述发送单元320具体用于:
按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移;或
按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
在一些实施例中,所述至少一个SRS资源组中的所有所述第一SRS资源组配置有相同数量的时隙偏移;或所述至少一个SRS资源组中的所有SRS资源组配置有相同数量的时隙偏移。
在一些实施例中,所述第一SRS资源组配置有2 a个时隙偏移,a表示所述第二域占用的比特数目。
在一些实施例中,所述发送单元320还用于:
基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙;
其中,所述第一时隙由所述第一控制信息所在的时隙和所述第二时隙偏移确定。
在一些实施例中,所述发送单元320具体用于:
将所述第一时隙开始或之后的第T个可用时隙,确定为所述第一目标时隙,T表示所述第一时隙偏移。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000083
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000084
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000085
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000086
和μ offset
Figure PCTCN2021122053-appb-000087
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000088
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000089
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
在一些实施例中,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000090
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000091
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000092
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000093
和μ offset
Figure PCTCN2021122053-appb-000094
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000095
和μ offset,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
在一些实施例中,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000096
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000097
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000098
和μ offset
Figure PCTCN2021122053-appb-000099
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000100
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述接收单元310还用于:
接收所述第二设备发送的配置信息,所述配置信息用于配置一个或多个SRS资源组,所述一个或多个SRS资源组中的每一个SRS资源组配置有至少一个SRS资源,所述一个或多个SRS资源组包括所述至少一个SRS资源组。
在一些实施例中,所述至少一个SRS资源组包括用途域配置为天线切换的多个SRS资源组,所述多个SRS资源组中不同的SRS资源组对应不同的传输时隙。
在一些实施例中,所述多个SRS资源组中的每一个SRS资源组配置有对应的触发状态。
在一些实施例中,所述多个SRS资源组配置有相同数量的时隙偏移。
在一些实施例中,所述发送单元320还用于:
上报所述第一设备的能力信息;
其中,所述能力信息用于指示所述第一设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备支持动态时隙偏移。
在一些实施例中,所述能力信息通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE上报。
在一些实施例中,所述发送单元320具体用于:
针对每一个频段组合上报所述能力信息;或
针对每一个频段范围上报所述能力信息;或
针对每一个频段上报所述能力信息;或
针对每一个载波上报所述能力信息;或
针对每一个终端设备上报所述能力信息。
在一些实施例中,所述发送单元320具体用于:
针对所述每一个频段组合中的每一个频段,上报所述能力信息;或
针对所述每一个频段组合中每一个频段上的每一个载波,上报所述能力信息。
在一些实施例中,所述第一控制信息为以下格式中的至少一项:下行控制信息格式0_1DCI format 0_1、下行控制信息格式0_2DCI format 0_2、下行控制信息格式1_1DCI format 1_1、下行控制信息格式1_2DCI format 1_2或下行控制信息格式2_3DCI format 2_3。
在一些实施例中,针对所述至少一个SRS资源组中的第三SRS资源组,在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;
其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源 组,所述第二目标时隙是基于所述第二时隙偏移确定的。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000101
其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第二目标时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000102
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000103
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000104
和μ offset
Figure PCTCN2021122053-appb-000105
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000106
和μ offset,n’表示所述第二目标时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图3所示的第一设备300可以对应于执行本申请实施例的方法200中的相应主体,并且第一设备300中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,为了简洁,在此不再赘述。
图4是本申请实施例的第二设备400的示意性框图。
如图4所示,所述第二设备400可包括:
发送单元410,用于向第一设备发送第一控制信息;
其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
接收单元420,用于针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
在一些实施例中,所述接收单元420还用于:
确定所述第二域占用的比特数目。
在一些实施例中,所述发送单元410还用于:
向所述第一设备发送第一指示信息;
其中,所述第一指示信息用于所述第一设备确定所述第二域占用的比特数目。
在一些实施例中,所述第一指示信息用于指示所述第一控制信息包括所述第二域。
在一些实施例中,所述第一指示信息用于指示所述第二域占用的比特数目。
在一些实施例中,所述接收单元420具体用于:
基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;
其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
在一些实施例中,所述第一配置域通过以下中的至少一项配置:
列表结构、序列结构、比特位图。
在一些实施例中,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。
在一些实施例中,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
2 a≥K,或2 a≥K+1;
其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
在一些实施例中,所述接收单元420具体用于:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
在一些实施例中,所述接收单元420具体用于:
按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移;或
按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移。
在一些实施例中,所述接收单元420还用于:
若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,基于第一对应关系,将所述第二域的取值对应的时隙偏移确定为所述第一时隙偏移;
其中,所述第一对应关系包括至少一个取值和所述至少一个取值中每一个取值对应的时隙偏移,所述至少一个取值包括所述第二域的取值。
在一些实施例中,所述第一对应关系为协议约定的或所述第二设备配置的。
在一些实施例中,所述第一对应关系通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE配置。
在一些实施例中,所述接收单元420还用于:
若所述至少一个时隙偏移的数量小于等于或小于所述第二域的取值,执行以下中的任一项:
将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或
将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或
将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或
将所述第一时隙偏移确定为0;或
发送所述第一SRS资源组时不考虑所述第二域;或
发送所述第一SRS资源组时不考虑所述第一时隙偏移。
在一些实施例中,所述接收单元420具体用于:
按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移;或
按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或者第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
在一些实施例中,所述至少一个SRS资源组中的所有所述第一SRS资源组配置有相同数量的时隙偏移;或所述至少一个SRS资源组中的所有SRS资源组配置有相同数量的时隙偏移。
在一些实施例中,所述第一SRS资源组配置有2 a个时隙偏移,a表示所述第二域占用的比特数目。
在一些实施例中,所述接收单元420还用于:
基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙;
其中,所述第一时隙由所述第一控制信息所在的时隙和所述第二时隙偏移确定。
在一些实施例中,所述接收单元420具体用于:
将所述第一时隙开始或之后的第T个可用时隙,确定为所述第一目标时隙,T表示所述第一时隙偏移。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000107
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一时隙满足以下条件:
Figure PCTCN2021122053-appb-000108
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000109
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000110
和μ offset
Figure PCTCN2021122053-appb-000111
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000112
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000113
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
在一些实施例中,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000114
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000115
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000116
和μ offsetPDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000117
和μ offset
Figure PCTCN2021122053-appb-000118
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000119
和μ offset,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
在一些实施例中,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
其中,T表示所述第一时隙偏移,n 1满足以下条件:
Figure PCTCN2021122053-appb-000120
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000121
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000122
和μ offset
Figure PCTCN2021122053-appb-000123
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000124
和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
在一些实施例中,所述发送单元410还用于:
向所述第一设备发送配置信息,所述配置信息用于配置一个或多个SRS资源组,所述一个或多个SRS资源组中的每一个SRS资源组配置有至少一个SRS资源,所述一个或多个SRS资源组包括所述至少一个SRS资源组。
在一些实施例中,所述至少一个SRS资源组包括用途域配置为天线切换的多个SRS资源组,所述多个SRS资源组中不同的SRS资源组对应不同的传输时隙。
在一些实施例中,所述多个SRS资源组中的每一个SRS资源组配置有对应的触发状态。
在一些实施例中,所述多个SRS资源组配置有相同数量的时隙偏移。
在一些实施例中,所述接收单元420还用于:
接收所述第一设备上报的能力信息;
其中,所述能力信息用于指示所述第一设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备支持动态时隙偏移。
在一些实施例中,所述能力信息通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE上报。
在一些实施例中,所述接收单元420具体用于:
接收所述第一设备针对每一个频段组合上报的所述能力信息;或
接收所述第一设备针对每一个频段范围上报的所述能力信息;或
接收所述第一设备针对每一个频段上报的所述能力信息;或
接收所述第一设备针对每一个载波上报的所述能力信息;或
接收所述第一设备针对每一个终端设备上报的所述能力信息。
在一些实施例中,所述接收单元420具体用于:
针对所述每一个频段组合中的每一个频段,接收所述第一设备上报的所述能力信息;或
针对所述每一个频段组合中每一个频段上的每一个载波,接收所述第一设备上报的所述能力信息。
在一些实施例中,所述第一控制信息为以下格式中的至少一项:下行控制信息格式0_1DCI format 0_1、下行控制信息格式0_2DCI format 0_2、下行控制信息格式1_1DCI format 1_1、下行控制信息格式1_2DCI format 1_2或下行控制信息格式2_3DCI format 2_3。
在一些实施例中,针对所述至少一个SRS资源组中的第三SRS资源组,在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;
其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源组,所述第二目标时隙是基于所述第二时隙偏移确定的。
在一些实施例中,所述第一设备未针对载波聚合CA配置时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000125
其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第二目标时隙,k表示所述第二时隙偏移。
在一些实施例中,所述第一设备针对载波聚合CA配置有时隙偏移,所述第二目标时隙满足以下条件:
Figure PCTCN2021122053-appb-000126
其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
Figure PCTCN2021122053-appb-000127
和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000128
和μ offset
Figure PCTCN2021122053-appb-000129
和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2021122053-appb-000130
和μ offset,n’表示所述第二目标时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图4所示的第二设备400可以对应于执行本申请实施例的方法200中的相应主体,并且第二设备400中的各 个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图5是本申请实施例的通信设备500示意性结构图。
如图5所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图5,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图5,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的第一设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的第一设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的第二设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的第二设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图6是根据本申请实施例的芯片600的示意性结构图。
如图6所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图6,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
请继续参见图6,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图6,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,也可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还 包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200所示实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200所示实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的第一设备和第二设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述 方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (84)

  1. 一种无线通信方法,其特征在于,应用于第一设备,包括:
    接收第二设备发送的第一控制信息;
    其中,所述第一控制信息包括第一域,所述第一域用于指示触发所述第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
    针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
    其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述第二域占用的比特数目。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述第二域占用的比特,包括:
    若所述第一设备未收到第一指示信息,则确定所述第二域占用0个比特;和/或,
    若所述第二设备未发送或未配置第一指示信息,则确定所述第二域占用0个比特;
    其中,所述第一指示信息用于指示所述第一控制信息包括所述第二域,或所述第一指示信息用于指示所述第二域占用的比特数目。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息用于指示所述第一控制信息包括所述第二域;
    其中,所述确定所述第二域占用的比特数目,包括:
    若所述第一设备收到所述第一指示信息,则确定所述第二域占用第一数量个比特。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息用于指示所述第二域占用的比特数目;
    其中,所述确定所述第二域占用的比特数目,包括:
    若所述第一设备收到所述第一指示信息且所述第一指示信息指示第一取值,则确定所述第二域占用第二数量个比特;和/或,
    若所述第一设备收到所述第一指示信息且所述第一指示信息指示第二取值,则确定所述第二域占用第三数量个比特。
  6. 根据权利要求2所述的方法,其特征在于,所述确定所述第二域占用的比特数目,包括:
    基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;
    其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
  7. 根据权利要求6所述的方法,其特征在于,所述第一配置域通过以下中的至少一项配置:
    列表结构、序列结构、比特位图。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。
  9. 根据权利要求8所述的方法,其特征在于,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
    2 a≥K,或2 a≥K+1;
    其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
  11. 根据权利要求10所述的方法,其特征在于,所述将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,包括:
    按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移;或
    按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,基于第一对应关系,将所述第 二域的取值对应的时隙偏移确定为所述第一时隙偏移;
    其中,所述第一对应关系包括至少一个取值和所述至少一个取值中每一个取值对应的时隙偏移,所述至少一个取值包括所述第二域的取值。
  13. 根据权利要求12所述的方法,其特征在于,所述第一对应关系为协议约定的或所述第二设备配置的。
  14. 根据权利要求12所述的方法,其特征在于,所述第一对应关系通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE配置。
  15. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量小于等于或小于所述第二域的取值,执行以下中的任一项:
    将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或
    将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或
    将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或
    将所述第一时隙偏移确定为0;或
    发送所述第一SRS资源组时不考虑所述第二域;或
    发送所述第一SRS资源组时不考虑所述第一时隙偏移。
  16. 根据权利要求15所述的方法,其特征在于,所述将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,包括:
    按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移;或
    按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述至少一个SRS资源组中的所有所述第一SRS资源组配置有相同数量的时隙偏移;或所述至少一个SRS资源组中的所有SRS资源组配置有相同数量的时隙偏移。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述第一SRS资源组配置有2 a个时隙偏移,a表示所述第二域占用的比特数目。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述方法还包括:
    基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙;
    其中,所述第一时隙由所述第一控制信息所在的时隙和所述第二时隙偏移确定。
  20. 根据权利要求19所述的方法,其特征在于,所述基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙,包括:
    将所述第一时隙开始或之后的第T个可用时隙,确定为所述第一目标时隙,T表示所述第一时隙偏移。
  21. 根据权利要求19所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一时隙满足以下条件:
    Figure PCTCN2021122053-appb-100001
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  22. 根据权利要求19所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一时隙满足以下条件:
    Figure PCTCN2021122053-appb-100002
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100003
    和μ offset,PDCCH 分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100004
    和μ offset
    Figure PCTCN2021122053-appb-100005
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100006
    和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  23. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100007
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
  24. 根据权利要求23所述的方法,其特征在于,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
    其中,T表示所述第一时隙偏移,n 1满足以下条件:
    Figure PCTCN2021122053-appb-100008
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  25. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100009
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100010
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100011
    和μ offset
    Figure PCTCN2021122053-appb-100012
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100013
    和μ offset,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
  26. 根据权利要求25所述的方法,其特征在于,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
    其中,T表示所述第一时隙偏移,n 1满足以下条件:
    Figure PCTCN2021122053-appb-100014
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100015
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100016
    和μ offset
    Figure PCTCN2021122053-appb-100017
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100018
    和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  27. 根据权利要求1至26中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第二设备发送的配置信息,所述配置信息用于配置一个或多个SRS资源组,所述一个或多个SRS资源组中的每一个SRS资源组配置有至少一个SRS资源,所述一个或多个SRS资源组包括所述至少一个SRS资源组。
  28. 根据权利要求27所述的方法,其特征在于,所述至少一个SRS资源组包括用途域配置为天线切换的多个SRS资源组,所述多个SRS资源组中不同的SRS资源组对应不同的传输时隙。
  29. 根据权利要求27所述的方法,其特征在于,所述多个SRS资源组中的每一个SRS资源组配置 有对应的触发状态。
  30. 根据权利要求27所述的方法,其特征在于,所述多个SRS资源组配置有相同数量的时隙偏移。
  31. 根据权利要求1至30中任一项所述的方法,其特征在于,所述方法还包括:
    上报所述第一设备的能力信息;
    其中,所述能力信息用于指示所述第一设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备支持动态时隙偏移。
  32. 根据权利要求31所述的方法,其特征在于,所述能力信息通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE上报。
  33. 根据权利要求31所述的方法,其特征在于,所述上报所述第一设备的能力信息,包括:
    针对每一个频段组合上报所述能力信息;或
    针对每一个频段范围上报所述能力信息;或
    针对每一个频段上报所述能力信息;或
    针对每一个载波上报所述能力信息;或
    针对每一个终端设备上报所述能力信息。
  34. 根据权利要求33所述的方法,其特征在于,所述针对每一个频段组合上报所述能力信息,包括:
    针对所述每一个频段组合中的每一个频段,上报所述能力信息;或
    针对所述每一个频段组合中每一个频段上的每一个载波,上报所述能力信息。
  35. 根据权利要求1至34中任一项所述的方法,其特征在于,所述第一控制信息为以下格式中的至少一项:下行控制信息格式0_1DCI format 0_1、下行控制信息格式0_2DCI format 0_2、下行控制信息格式1_1DCI format 1_1、下行控制信息格式1_2DCI format 1_2或下行控制信息格式2_3DCI format 2_3。
  36. 根据权利要求1至35中任一项所述的方法,其特征在于,所述方法还包括:
    针对所述至少一个SRS资源组中的第三SRS资源组,在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;
    其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源组,所述第二目标时隙是基于所述第二时隙偏移确定的。
  37. 根据权利要求36所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第二目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100019
    其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第二目标时隙,k表示所述第二时隙偏移。
  38. 根据权利要求36所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第二目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100020
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100021
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100022
    和μ offset
    Figure PCTCN2021122053-appb-100023
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100024
    和μ offset,n’表示所述第二目标时隙。
  39. 一种无线通信方法,其特征在于,应用于第二设备,包括:
    向第一设备发送第一控制信息;
    其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
    针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
    其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    确定所述第二域占用的比特数目。
  41. 根据权利要求40所述的方法,其特征在于,所述确定所述第二域占用的比特,包括:
    向所述第一设备发送第一指示信息;
    其中,所述第一指示信息用于所述第一设备确定所述第二域占用的比特数目。
  42. 根据权利要求41所述的方法,其特征在于,所述第一指示信息用于指示所述第一控制信息包括所述第二域。
  43. 根据权利要求41所述的方法,其特征在于,所述第一指示信息用于指示所述第二域占用的比特数目。
  44. 根据权利要求40所述的方法,其特征在于,所述确定所述第二域占用的比特数目,包括:
    基于所有配置有所述至少一个时隙偏移的SRS资源组中的第二SRS资源组的第一配置域,确定所述第二域占用的比特数目;
    其中,所述第一配置域用于为SRS资源组配置所述至少一个时隙偏移。
  45. 根据权利要求44所述的方法,其特征在于,所述第一配置域通过以下中的至少一项配置:
    列表结构、序列结构、比特位图。
  46. 根据权利要求44或45所述的方法,其特征在于,所述第二SRS资源组为所有配置有所述至少一个时隙偏移的SRS资源组中的通过所述第一配置域配置的时隙偏移的数量最多的SRS资源组。
  47. 根据权利要求46所述的方法,其特征在于,所述第二域占用的比特数目和所述第二资源组配置的时隙偏移的数量满足以下条件之一:
    2 a≥K,或2 a≥K+1;
    其中,a表示所述第二域占用的比特数目,K表示所述第二SRS资源组配置的时隙偏移的数量。
  48. 根据权利要求39至47中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,X表示所述第二域的取值,或X表示所述第二域的取值加1。
  49. 根据权利要求48所述的方法,其特征在于,所述将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移,包括:
    按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移;或
    按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第X个时隙偏移,确定为所述第一时隙偏移。
  50. 根据权利要求39至47中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量大于等于或大于所述第二域的取值,基于第一对应关系,将所述第二域的取值对应的时隙偏移确定为所述第一时隙偏移;
    其中,所述第一对应关系包括至少一个取值和所述至少一个取值中每一个取值对应的时隙偏移,所述至少一个取值包括所述第二域的取值。
  51. 根据权利要求50所述的方法,其特征在于,所述第一对应关系为协议约定的或所述第二设备配置的。
  52. 根据权利要求50所述的方法,其特征在于,所述第一对应关系通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE配置。
  53. 根据权利要求39至47中任一项所述的方法,其特征在于,所述方法还包括:
    若所述至少一个时隙偏移的数量小于等于或小于所述第二域的取值,执行以下中的任一项:
    将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,Y表示所述第二域的取值,或Y表示所述第二域的取值加1,N表示所述至少一个时隙偏移的数量,mod表示取模运算;或
    将所述至少一个时隙偏移中的第N个时隙偏移,确定为所述第一时隙偏移;或
    将所述至少一个时隙偏移中的第一个时隙偏移,确定为所述第一时隙偏移;或
    将所述第一时隙偏移确定为0;或
    发送所述第一SRS资源组时不考虑所述第二域;或
    发送所述第一SRS资源组时不考虑所述第一时隙偏移。
  54. 根据权利要求53所述的方法,其特征在于,所述将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移,包括:
    按照由大到小或有小到大的顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移;或
    按照所述至少一个时隙偏移的配置顺序,将所述至少一个时隙偏移中第mod(Y,N)个时隙偏移或第mod(Y,N)+1个时隙偏移,确定为所述第一时隙偏移。
  55. 根据权利要求39至54中任一项所述的方法,其特征在于,所述至少一个SRS资源组中的所有所述第一SRS资源组配置有相同数量的时隙偏移;或所述至少一个SRS资源组中的所有SRS资源组配置有相同数量的时隙偏移。
  56. 根据权利要求39至55中任一项所述的方法,其特征在于,所述第一SRS资源组配置有2 a个时隙偏移,a表示所述第二域占用的比特数目。
  57. 根据权利要求39至56中任一项所述的方法,其特征在于,所述方法还包括:
    基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙;
    其中,所述第一时隙由所述第一控制信息所在的时隙和所述第二时隙偏移确定。
  58. 根据权利要求57所述的方法,其特征在于,所述基于第一时隙和所述第一时隙偏移,确定所述第一目标时隙,包括:
    将所述第一时隙开始或之后的第T个可用时隙,确定为所述第一目标时隙,T表示所述第一时隙偏移。
  59. 根据权利要求57所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一时隙满足以下条件:
    Figure PCTCN2021122053-appb-100025
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  60. 根据权利要求57所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一时隙满足以下条件:
    Figure PCTCN2021122053-appb-100026
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100027
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100028
    和μ offset
    Figure PCTCN2021122053-appb-100029
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100030
    和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  61. 根据权利要求39至56中任一项所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第一目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100031
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
  62. 根据权利要求61所述的方法,其特征在于,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
    其中,T表示所述第一时隙偏移,n 1满足以下条件:
    Figure PCTCN2021122053-appb-100032
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  63. 根据权利要求39至56中任一项所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第一目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100033
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100034
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100035
    和μ offset
    Figure PCTCN2021122053-appb-100036
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100037
    和μ offset,n’表示所述第一目标时隙,k表示所述第二时隙偏移,z表示基于所述第一时隙偏移确定偏移的时隙的数量。
  64. 根据权利要求63所述的方法,其特征在于,所述z表示基于所述第一时隙偏移确定偏移的时隙的数量,包括:z表示n 1开始或之后的第T个可用时隙;
    其中,T表示所述第一时隙偏移,n 1满足以下条件:
    Figure PCTCN2021122053-appb-100038
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100039
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100040
    和μ offset
    Figure PCTCN2021122053-appb-100041
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100042
    和μ offset,n 1表示所述第一时隙,k表示所述第二时隙偏移。
  65. 根据权利要求39至64中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送配置信息,所述配置信息用于配置一个或多个SRS资源组,所述一个或多个SRS资源组中的每一个SRS资源组配置有至少一个SRS资源,所述一个或多个SRS资源组包括所述至少一个SRS资源组。
  66. 根据权利要求65所述的方法,其特征在于,所述至少一个SRS资源组包括用途域配置为天线切换的多个SRS资源组,所述多个SRS资源组中不同的SRS资源组对应不同的传输时隙。
  67. 根据权利要求65所述的方法,其特征在于,所述多个SRS资源组中的每一个SRS资源组配置有对应的触发状态。
  68. 根据权利要求65所述的方法,其特征在于,所述多个SRS资源组配置有相同数量的时隙偏移。
  69. 根据权利要求39至68中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一设备上报的能力信息;
    其中,所述能力信息用于指示所述第一设备支持针对SRS资源组配置第一配置域,所述第一配置域用于为SRS资源组配置时隙偏移;和/或所述能力信息用于指示所述第一设备支持在控制信息中包括所述第二域;和/或所述能力信息用于指示所述第一设备支持动态时隙偏移。
  70. 根据权利要求69所述的方法,其特征在于,所述能力信息通过无线资源控制RRC信令或媒体接入控制控制元素MAC CE上报。
  71. 根据权利要求9所述的方法,其特征在于,所述接收所述第一设备上报的能力信息,包括:
    接收所述第一设备针对每一个频段组合上报的所述能力信息;或
    接收所述第一设备针对每一个频段范围上报的所述能力信息;或
    接收所述第一设备针对每一个频段上报的所述能力信息;或
    接收所述第一设备针对每一个载波上报的所述能力信息;或
    接收所述第一设备针对每一个终端设备上报的所述能力信息。
  72. 根据权利要求71所述的方法,其特征在于,所述接收所述第一设备针对每一个频段组合上报的所述能力信息,包括:
    针对所述每一个频段组合中的每一个频段,接收所述第一设备上报的所述能力信息;或
    针对所述每一个频段组合中每一个频段上的每一个载波,接收所述第一设备上报的所述能力信息。
  73. 根据权利要求39至72中任一项所述的方法,其特征在于,所述第一控制信息为以下格式中的至少一项:下行控制信息格式0_1DCI format 0_1、下行控制信息格式0_2DCI format 0_2、下行控制信息格式1_1DCI format 1_1、下行控制信息格式1_2DCI format 1_2或下行控制信息格式2_3DCI format 2_3。
  74. 根据权利要求39至73中任一项所述的方法,其特征在于,所述方法还包括:
    针对所述至少一个SRS资源组中的第三SRS资源组,在第二目标时隙上基于所述第三SRS资源组进行非周期SRS传输;
    其中,所述第三SRS资源组为所述至少一个SRS资源组未配置所述至少一个时隙偏移的SRS资源组,所述第二目标时隙是基于所述第二时隙偏移确定的。
  75. 根据权利要求74所述的方法,其特征在于,所述第一设备未针对载波聚合CA配置时隙偏移,所述第二目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100043
    其中,n表示所述第一控制信息所在的时隙,u SRS表示SRS对应的子载波间隔配置,u PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,n’表示所述第二目标时隙,k表示所述第二时隙偏移。
  76. 根据权利要求74所述的方法,其特征在于,所述第一设备针对载波聚合CA配置有时隙偏移,所述第二目标时隙满足以下条件:
    Figure PCTCN2021122053-appb-100044
    其中,n表示所述第一控制信息所在的时隙,μ SRS表示SRS对应的子载波间隔配置,μ PDCCH表示所述第一控制信息使用的物理下行控制信道PDCCH对应的子载波间隔配置,
    Figure PCTCN2021122053-appb-100045
    和μ offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100046
    和μ offset
    Figure PCTCN2021122053-appb-100047
    和μ offset,SRS分别是取决于上层配置的用于传输SRS的针对载波聚合CA的时隙偏移的
    Figure PCTCN2021122053-appb-100048
    和μ offset,n’表示所述第二目标时隙。
  77. 一种第一设备,其特征在于,包括:
    接收单元,用于接收第二设备发送的第一控制信息;
    其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
    发送单元,用于针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
    其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
  78. 一种第二设备,其特征在于,包括:
    发送单元,用于向第一设备发送第一控制信息;
    其中,所述第一控制信息包括第一域和第二域,所述第一域用于指示触发第一设备基于至少一个探测参考信号SRS资源组进行非周期SRS传输;
    接收单元,用于针对所述至少一个SRS资源组中的第一SRS资源组,在第一目标时隙上基于所述第一SRS资源组进行非周期SRS传输,进行非周期SRS传输;
    其中,所述第一SRS资源组为所述至少一个SRS资源组中配置有至少一个时隙偏移的SRS资源组,所述第一控制信息还包括第二域,所述第二域用于指示所述至少一个时隙偏移中的所述第一SRS资源组对应的第一时隙偏移,所述第一目标时隙是基于所述第一时隙偏移和/或第二时隙偏移确定的。
  79. 一种第一设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至38中任一项所述的方法。
  80. 一种第二设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求39至76中任一项所述的方法。
  81. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至38中任一项所述的方法或如权利要求39至76中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至76中任一项所述的方法。
  83. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至76中任一项所述的方法。
  84. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至76中任一项所述的方法。
PCT/CN2021/122053 2021-09-30 2021-09-30 无线通信方法和设备 WO2023050260A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180099425.0A CN117501773A (zh) 2021-09-30 2021-09-30 无线通信方法和设备
PCT/CN2021/122053 WO2023050260A1 (zh) 2021-09-30 2021-09-30 无线通信方法和设备
EP21958839.9A EP4362585A1 (en) 2021-09-30 2021-09-30 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122053 WO2023050260A1 (zh) 2021-09-30 2021-09-30 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2023050260A1 true WO2023050260A1 (zh) 2023-04-06

Family

ID=85780370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122053 WO2023050260A1 (zh) 2021-09-30 2021-09-30 无线通信方法和设备

Country Status (3)

Country Link
EP (1) EP4362585A1 (zh)
CN (1) CN117501773A (zh)
WO (1) WO2023050260A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190254061A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质
CN111245587A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备
WO2021168645A1 (en) * 2020-02-25 2021-09-02 Qualcomm Incorporated Beam switching techniques for uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190254061A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质
CN111245587A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备
WO2021168645A1 (en) * 2020-02-25 2021-09-02 Qualcomm Incorporated Beam switching techniques for uplink transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "Discussion on SRS Enhancements", 3GPP TSG RAN WG1 #102-E, R1-2005487, 7 August 2020 (2020-08-07), XP051914956 *
VIVO: "Further discussion on SRS enhancement", 3GPP TSG RAN WG1 #104B-E, R1- 2102511, 6 April 2021 (2021-04-06), XP051993115 *

Also Published As

Publication number Publication date
CN117501773A (zh) 2024-02-02
EP4362585A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
WO2020143441A1 (zh) 通信方法、通信装置及存储介质
WO2020199856A1 (zh) 信息传输的方法和通信装置
CN113068259B (zh) 无线通信方法和设备
JP7287494B2 (ja) 信号送受信方法、装置及びシステム
WO2020248101A1 (zh) 上报csi的方法和终端设备
US20220256574A1 (en) Communication method and communication apparatus
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2021017765A1 (zh) 通信方法和通信装置
WO2020233370A1 (zh) 一种通信方法及设备
WO2023050260A1 (zh) 无线通信方法和设备
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2022061735A1 (zh) 无线通信方法和设备
WO2022061733A1 (zh) 无线通信方法和设备
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置
WO2022036719A1 (zh) 无线通信方法和设备
WO2022099556A1 (zh) 无线通信方法和设备
WO2023065365A1 (zh) 无线通信方法、终端设备和网络设备
WO2022061777A1 (zh) 无线通信方法和设备
WO2024026779A1 (zh) 数据传输方法及装置、终端设备、网络设备
WO2023178482A1 (zh) 信息传输方法、终端设备和网络设备
US20230379961A1 (en) Priority handling for aperiodic csi on pucch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021958839

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958839

Country of ref document: EP

Effective date: 20231228

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006225

Country of ref document: BR