WO2022061777A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2022061777A1
WO2022061777A1 PCT/CN2020/117919 CN2020117919W WO2022061777A1 WO 2022061777 A1 WO2022061777 A1 WO 2022061777A1 CN 2020117919 W CN2020117919 W CN 2020117919W WO 2022061777 A1 WO2022061777 A1 WO 2022061777A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
srs
signaling
time slot
trigger
Prior art date
Application number
PCT/CN2020/117919
Other languages
English (en)
French (fr)
Inventor
史志华
田杰娇
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102897.2A priority Critical patent/CN115804181A/zh
Priority to PCT/CN2020/117919 priority patent/WO2022061777A1/zh
Publication of WO2022061777A1 publication Critical patent/WO2022061777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to wireless communication methods and devices.
  • the network device can trigger the terminal device to transmit aperiodic SRS through aperiodic SRS trigger signaling.
  • the aperiodic SRS trigger signaling can only trigger the transmission of the aperiodic SRS on the uplink corresponding to the cell X.
  • this triggering method has many limitations for scenarios with multiple cells. For example, a carrier aggregation (Carrier Aggregation, CA) scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • the embodiments of the present application provide a wireless communication method and device, which can realize the triggered transmission of aperiodic SRS across cells (or across carriers) in a multi-cell scenario.
  • a wireless communication method including:
  • Receive first indication information where the first indication information is used to indicate that the aperiodic sounding reference signal SRS trigger signaling on the first cell is used to trigger the SRS on at least one second cell, and the first indication information is connected through a medium Incoming control control element MAC CE signaling bearer.
  • a wireless communication method including:
  • Send first indication information where the first indication information is used to indicate that the aperiodic sounding reference signal SRS trigger signaling on the first cell is used to trigger the SRS on at least one second cell, and the first indication information is connected through the medium.
  • Incoming control control element MAC CE signaling bearer
  • a wireless communication method including:
  • Receive second indication information where the second indication information is used to indicate that the sounding reference signal SRS on the first cell can be triggered by aperiodic SRS trigger signaling on at least one third cell, and the second indication information is triggered by a media connection.
  • Incoming control control element MAC CE signaling bearer Incoming control control element MAC CE signaling bearer.
  • a wireless communication method including:
  • Send second indication information where the second indication information is used to indicate that the sounding reference signal SRS on the first cell can be triggered by aperiodic SRS trigger signaling on at least one third cell, and the second indication information is used through the media connection.
  • Incoming control control element MAC CE signaling bearer
  • a terminal device configured to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each implementation manner thereof.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • a terminal device for executing the method in the third aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the third aspect or each implementation manner thereof.
  • a network device for executing the method in the fourth aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the fourth aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the third aspect or each of its implementations.
  • a twelfth aspect provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above fourth aspect or each of its implementations.
  • a thirteenth aspect provides a chip for implementing any one of the above-mentioned first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to fourth aspects or each of its implementations method in .
  • a fourteenth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to fourth aspects or each of its implementations.
  • a fifteenth aspect provides a computer program product, comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the above-mentioned first to fourth aspects or implementations thereof.
  • a sixteenth aspect provides a computer program that, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to fourth aspects or the respective implementations thereof.
  • the aperiodic SRS triggering signaling on the first cell can trigger the SRS transmission of the terminal device on at least one second cell, in other words, it can realize the multi-cell scenario. Triggered transmission of aperiodic SRS across cells (or across carriers).
  • FIG. 1 is an example of a system framework provided by an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a wireless communication method provided by an embodiment of the present application.
  • 3 to 25 are schematic diagrams of MAC CE provided by embodiments of the present application.
  • FIG. 26 is another schematic interaction diagram of the wireless communication method provided by the embodiment of the present application.
  • FIG. 27 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 28 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 29 is another schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 30 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 31 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 32 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • Universal mobile communication system Universal mobile communication system
  • Mobile Telecommunication System Universal mobile communication system
  • UMTS Universal mobile communication system
  • 5G communication system also known as New Radio (New Radio, NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • a device having a communication function in the network/system can be referred to as a communication device.
  • the communication device may include a network device 120 and a terminal device 110 with a communication function, and the network device 120 and the terminal device 110 may be the devices described above, which will not be repeated here;
  • the communication device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the embodiment of the present application provides a wireless communication method, which can be used to determine a time slot for sending an SRS.
  • the Sounding Reference Signal (SRS) signal is an important reference signal in the 5G/NR system and is widely used in various functions in the NR system.
  • the SRS can be used in the following scenarios:
  • Non-Codebook based 7. Cooperate with the uplink transmission based on non-codebook (Non-Codebook based).
  • a network device can configure one or more SRS resource groups (SRS Resource sets) for a terminal device, and each SRS Resource set can configure one or more SRS resources (SRS resources).
  • SRS Resource sets SRS resource groups
  • SRS resources SRS resources
  • the transmission of the SRS can be divided into periodic (Periodic), semi-persistent (Semi-persistent), and aperiodic (Aperiodic).
  • Periodic SRS refers to periodically transmitted SRS, and its period and time slot offset are configured by RRC signaling. Once the terminal device receives the corresponding configuration parameters, it will send SRS according to a certain period until the RRC configuration is invalid.
  • the spatial correlation information (Spatial Relation Info) of the periodic SRS is also configured by RRC signaling.
  • the spatial correlation information may indicate a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), a synchronization signal/physical broadcast channel block (Synchronization Signal/PBCH Block, SSB) or a reference SRS.
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchrononization Signal/PBCH Block
  • the transmission beam of the periodic SRS may be indicated in an implicit manner.
  • the terminal device determines the transmission beam of the periodic SRS according to the indicated CSI-RS/SSB.
  • the terminal device may determine the transmission beam used for transmitting the SRS on the SRS resource through the spatial correlation information of the SRS resource.
  • the period and slot offset of semi-persistent SRS are configured by RRC signaling, but its activation and deactivation signaling is carried by MAC CE.
  • the terminal device starts to transmit SRS after receiving the activation signaling until it receives the deactivation signaling.
  • the spatially related information (transmission beam) of the semi-persistent SRS is carried along with the MAC CE that activates the SRS.
  • the terminal equipment After receiving the period and time slot offset configured by RRC, the terminal equipment determines the time slot that can be used to transmit SRS according to the following formula:
  • T SRS and T offset are the configured period and offset, n f and are radio frames and time slots, respectively.
  • Aperiodic SRS transmission means that the network device can trigger the SRS transmission of the terminal device through DCI.
  • the trigger signaling for triggering aperiodic SRS transmission can be either through the DCI bearer for scheduling PUSCH/PDSCH in the UE-specific search space or the common search space (Common search space), or through the DCI format 2_3 in the common search space. bear.
  • DCI format 2_3 can not only be used to trigger aperiodic SRS transmission, but also can be used to configure a power control command (TPC) command of SRS on a group of UEs or a group of carriers at the same time.
  • TPC power control command
  • the SRS trigger signaling indicates to use the SRS resource group with the higher layer parameter aperiodic SRS-ResourceTrigger set to 3 for SRS transmission.
  • the terminal device After receiving the aperiodic SRS trigger signaling (eg DCI), the terminal device performs SRS transmission on the aperiodic SRS resource group indicated by the trigger signaling.
  • the time slot offset (slot offset) between the trigger signaling and the SRS transmission may be configured by higher layer signaling (RRC).
  • RRC higher layer signaling
  • the network device pre-instructs the terminal device configuration parameters of each SRS resource group through high-level signaling, including time-frequency resources, sequence parameters, power control parameters, and the like.
  • the terminal device can also determine the transmission beam used for transmitting the SRS on the resource through the spatial correlation information of the resource, and the spatial correlation information can be configured for each SRS through RRC resource.
  • the uplink and downlink resources can be transmitted through high-level signaling and physical layer signaling. to indicate and adjust. Therefore, some symbols in a slot or a slot may be used for transmission in different directions at different times, for example, a certain time can be used for uplink transmission, and a certain time can be used for downlink transmission.
  • slot offset can be configured by high-level signaling, which is equivalent to before the RRC signaling reconfigures other values.
  • the time slot offset between each trigger signaling and SRS transmission is constant, resulting in a fixed relative position between the time slot used to receive the trigger signaling and the time slot used to send the SRS, which increases the restriction and Reduced system flexibility.
  • the time slot offset is k
  • the SRS is to be triggered to transmit on slot n+k
  • the corresponding trigger signaling can only be sent on slot n, which limits the timing of sending trigger signaling, and gives the network device
  • the scheduling of jobs adds additional unnecessary constraints.
  • a certain aperiodic SRS may not be transmitted. For example, if slot n+k is changed to be used for downlink transmission, the trigger SRS signaling sent on slot n is invalid, or the trigger signaling cannot be sent on slot n.
  • the terminal device can transmit SRS on slot n+k or the first valid slot after that.
  • SRS SRS on slot n+k or the first effective slot after that.
  • the effective slot is not It is fixed and needs to be determined according to related configurations or factors (eg, uplink and downlink time slot configuration and/or indication).
  • an embodiment of the present application provides a wireless communication method.
  • a time slot that can or can be used to transmit an SRS is referred to as a valid time slot (valid slot).
  • FIG. 2 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed interactively by a terminal device and a network device.
  • the terminal device shown in FIG. 2 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 2 may be the access network device shown in FIG. 1 .
  • the method 200 may include:
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate that the aperiodic sounding reference signal SRS trigger signaling on the first cell is used to trigger the SRS on at least one second cell, so The first indication information is carried by the medium access control control element MAC CE signaling.
  • the terminal device may trigger the terminal device to send SRS on the at least one second cell.
  • the cell involved in the embodiments of the present application may be equivalent to the carrier.
  • a cell may be equivalent to a component carrier (Component Carrier, CC) in a CA scenario.
  • the first indication information may be used to indicate that the aperiodic SRS triggering signaling on the first carrier is used to trigger the SRS on at least one second carrier.
  • the at least one second cell may be a cell, a group of cells, or a plurality of cells, which is not specifically limited in this application.
  • the at least one second cell is a second cell
  • the first indication information is used to indicate that the aperiodic SRS trigger signaling on the first cell can be used to trigger the SRS on another cell .
  • the at least one second cell is a group of cells
  • the first indication information can be used to indicate that the aperiodic SRS trigger signaling on the first cell can be used to trigger the SRS on a group of cells.
  • the at least one second cell is a plurality of cells
  • the first indication information can be used to indicate that the SRS triggering command on the first cell can be used to trigger the SRS on the multiple cells.
  • the group of cells or the plurality of cells may include the first cell or may not include the first cell, which is not specifically limited in this embodiment of the present application.
  • the aperiodic SRS triggering signaling on the first cell can trigger the SRS transmission of the terminal device on at least one second cell, in other words, the cross-cell (or Triggered transmission of aperiodic SRS across carriers).
  • the first indication information is used to indicate aperiodic SRS trigger signaling on the first cell or the first bandwidth part BWP of the first cell, used to trigger the The SRS on the first cell or the at least one second cell corresponding to the first BWP.
  • the first cell or the at least one second cell corresponding to the first BWP may be understood as: the first indication information is configured for the first cell or the first BWP, and The first indication information indicates the at least one second cell. Equivalently, for different cells, or for different BWPs of one cell, or for different BWPs of one cell, the cells that are configured to activate the aperiodic SRS at the same time may be different. Thereby, the flexibility of configuration can be improved, thereby improving the optimization performance of the network device.
  • the first indication information is used to indicate a first trigger state, or an aperiodic SRS trigger signal on the first cell or the first bandwidth part BWP on the first cell
  • the first trigger state in the command is used to trigger the SRS on the at least one second cell corresponding to the first trigger state.
  • the first indication information is configured for the first trigger state, and the first indication information indicates the at least one second cell.
  • two different trigger states may trigger aperiodic SRS transmission on different cells.
  • trigger state 1 may trigger aperiodic SRS transmission on cell 0 and cell 1
  • trigger state 2 may trigger aperiodic SRS transmission on cell 0, cell 1, and cell 2.
  • the first indication information involved in this embodiment of the present application may be configured for a terminal device.
  • the first indication information is configured for the trigger state of the terminal device. That is, the correspondence between the first trigger state indicated by the first indication information and the at least one second cell is applicable to each cell of the terminal device, or to each BWP of each cell of the terminal device.
  • the first indication information involved in the embodiments of the present application may be configured for a target cell group (Cell group) of the terminal device.
  • the first indication information is configured for a trigger state on a target cell group of the terminal device. That is, the correspondence between the first trigger state indicated by the first indication information and the at least one second cell is applicable to each cell of the one target cell group, or to each BWP of each cell of the one target cell group.
  • the target cell group may refer to a cell group under a dual connection (Dual Connection, DC).
  • a dual connection for example, a master cell group (MCG, Master Cell group), or a secondary cell group (SCG, Secondary Cell group).
  • MCG Master Cell group
  • SCG Secondary Cell group
  • the at least one second cell involved in this application or the cell group formed in at least one third cell can be understood as a cell group formed by one or more cells that can be triggered by an aperiodic SRS trigger signaling; for example, the following The involved first cell group, the second cell group, the cell group indicated by the first indication information, or the cell group indicated by the second information.
  • the first trigger state is a non-zero trigger state.
  • the first indication information is used to indicate aperiodicity on the first cell of the terminal device or the first cell of the target cell group (Cell Group) of the terminal device
  • SRS trigger signaling is used to trigger the SRS on the at least one second cell corresponding to the terminal device or the target cell group.
  • the first indication information is configured for the terminal device or a target cell group including the first cell, and the first indication information indicates the at least one second cell. Equivalently, for different cells or different cells in the same target cell group, the cells that activate the aperiodic SRS at the same time may be the same. Therefore, the network device and the terminal device are simple to implement and process, and the implementation complexity can be reduced.
  • the first indication information is used to indicate the at least one second cell, wherein the aperiodic SRS trigger signaling on the first cell is used to trigger the at least one first cell SRS on the second cell.
  • the first indication information indicates that the at least one second cell is used to trigger the aperiodic SRS triggering signaling on the first cell to trigger the SRS on the at least one second cell.
  • the at least one second cell is all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 2, 4, 8 or 32.
  • the at least one second cell is the first cell and all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the first indication information indicates the first cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each of the at least one bit corresponds to a cell in the first cell group, and one of the at least one bit is on The value of is used to indicate whether the cell corresponding to the one bit belongs to the first cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the method 200 may further include:
  • Receive the first RRC signaling and switch or determine the length of the at least one bit according to the first RRC signaling.
  • the MAC CE signaling may include R, a serving cell ID (Serving Cell ID), a bandwidth part ID (Bandwidth Part ID, BWP ID), and C 0 to C 7 .
  • R represents a reserved bit (Reserved bit), for example, its value may be 0.
  • the serving cell identity may be the identity of the first cell described above.
  • the cell identifier may also be a cell number or an index (index). No additional explanation will be made subsequently.
  • the serving cell identity can be used to indicate which cell the MAC CE described above is used for (indicates the identity of the Serving Cell for which the MAC CE applies).
  • the serving cell identifier may occupy 5 bits.
  • the BWP ID may be the identifier of the first BWP described above, that is, the identifier of the first BWP on the first cell.
  • the BWP ID can be used to indicate which BWP this MAC CE applies to (indicates a DL BWP for which the MAC CE applies).
  • the BWP ID may occupy 2 bits.
  • C 0 to C 7 are respectively the bits corresponding to the identifiers of the cells in the first cell group described above.
  • C 0 to C 7 respectively correspond to 8 cells.
  • C i in C 0 to C 7 corresponds to a cell whose serving cell index (ServCellIndex) is i, and if the value of C i is 1, it means that the cell whose serving cell index (ServCellIndex) is i corresponding to C i belongs to the In a cell group, for example, the aperiodic SRS trigger signaling transmitted on the BWP indicated by the BWP ID of the cell indicated by the serving cell identifier can trigger the aperiodic SRS transmission on the cell of ServCellIndex i; if the value of C i is 0, indicating that the cell whose serving cell index (ServCellIndex) is i corresponding to C i does not belong to the first cell group, for example, indicates that the aperiodic SRS transmitted on the BWP indicated by the BWP ID of the cell indicated by the serving cell identifier Trigger signaling does not trigger aperiodic SRS
  • the value of C i is 0, it indicates that the cell whose serving cell index (ServCellIndex) corresponding to C i is i belongs to the first cell group, for example, indicates that the serving cell identifier
  • the aperiodic SRS trigger signaling transmitted on the BWP indicated by the BWP ID of the indicated cell can trigger the aperiodic SRS transmission on the cell of ServCellIndex i; if the value of C i is 1, it means that C i corresponds to the serving cell index (ServCellIndex)
  • the cell of i does not belong to the first cell group, for example, it means that the aperiodic SRS trigger signaling transmitted on the BWP indicated by the BWP ID of the cell indicated by the serving cell identifier does not trigger the aperiodic SRS on the cell of ServCellIndex i SRS transmission.
  • FIG. 3 is only an example of the present application, and should not be construed as a limitation of the present application.
  • the BWP ID in the MAC CE signaling may also be optional information. That is, the MAC CE signaling may include three Rs, a serving cell identifier, and C 0 to C 7 .
  • C 0 to C 7 in the MAC CE signaling can be changed from left to right to right to left.
  • the positions of the three Rs may also be changed from being located in front of the serving cell to being located behind the serving cell identifier.
  • the length of the bitmap in the MAC CE signaling may also be 16 bits. That is, the MAC CE signaling may include one R, a serving cell identity, a BWP ID, and C 0 to C 15 .
  • the BWP ID in the MAC CE signaling may also be optional information. That is, the MAC CE signaling may include three Rs, a serving cell identifier, and C 0 to C 15 .
  • the length of the bitmap in the MAC CE signaling may also be 24 bits. That is, the MAC CE signaling may include one R, a serving cell identifier, a BWP ID, and C 0 to C 23 .
  • the BWP ID in the MAC CE signaling may also be optional information. That is, the MAC CE signaling may include three Rs, a serving cell identifier, and C 0 to C 23 .
  • the length of the bitmap in the MAC CE signaling may also be 32 bits. That is, the MAC CE signaling may include one R, a serving cell identity, a BWP ID, and C 0 to C 31 .
  • the BWP ID in the MAC CE signaling may also be optional information. That is, the MAC CE signaling may include three Rs, a serving cell identifier, and C 0 to C 31 .
  • the MAC CE signaling may also include other information.
  • the position of each piece of information in the MAC CE signaling can be changed, for example, R can be placed at the end of the first line, or can be placed in front of the first line.
  • the arrangement order of the cells in the first cell group may be from small to large or from large to small according to the cell identifiers. In other words, as long as the terminal device and the network device have a consistent understanding of the arrangement order of the cells in the first cell group, the present application does not specifically limit the arrangement order of the cells in the first cell group.
  • the format of the MAC CE signaling may be determined based on the maximum value of the serving cell index (ServCellIndex) configured by the terminal device.
  • ServCellIndex serving cell index
  • the network device and/or the terminal device may switch or determine the length of the at least one bit according to the above-mentioned first RRC signaling, that is, switch or determine the format of the MAC CE signaling. For example, if the maximum value of ServCellIndex configured by the terminal device is less than 8, a MAC CE with a bitmap length of 8 bits can be used; if the maximum value of ServCellIndex configured by the terminal device is greater than or equal to 8 and less than 16, the bitmap can be used The length of the picture is the MAC CE of 16 bits; if the maximum value of the ServCellIndex configured by the terminal device is greater than or equal to 16 and less than 24, the MAC CE with the length of the bitmap of 24 bits can be used; if the maximum value of the ServCellIndex configured by the terminal device is If the value is greater than or equal to 24, the MAC CE with a length of 32 bits of the bitmap can be used.
  • the division granularity of the length of the bitmap can also be greater than 8.
  • the maximum value of the ServCellIndex configured by the terminal device is greater than or equal to 8 and less than 32, a MAC CE with a bitmap length of 16 bits or 32 bits can be used.
  • the X bits may include the reserved bits other than the bitmap for indicating the first cell group.
  • the reserved bits may also be referred to as remaining bits.
  • the first indication information indicates the first cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the first cell group.
  • the MAC CE signaling further includes at least one of the following:
  • first information used to indicate the number of cells in the first cell group
  • the MAC CE signaling may include 3 Rs and serving cell IDs (Serving Cell IDs) 0-K.
  • R represents a reserved bit (reserved bit), for example, its value may be 0.
  • the serving cell identifier 0 represents the identifier of the first cell described above.
  • serving cell identity 0 may be used to indicate which cell the MAC CE described above is used for (indicates the identity of the Serving Cell for which the MAC CE applies).
  • the serving cell identifier 0 may occupy 5 bits.
  • the serving cell identifiers 1 to K represent the identifiers of the cells in the first cell group described above.
  • the serving cell identifier i can be used to indicate a serving cell index X (ServCellIndex X), indicating the cell indicated by the serving cell identifier 0
  • the aperiodic SRS trigger signaling transmitted on the ServCellIndex can trigger the aperiodic SRS transmission on the cell of ServCellIndex X.
  • the serving cell identifier i may occupy 5 bits.
  • i may be equal to X, or may be different from X, which is not specifically limited in this application.
  • FIG. 13 is only an example of the present application, and should not be construed as a limitation of the present application.
  • the MAC CE signaling may also include a BWP ID. That is, the MAC CE signaling may include a serving cell ID (Serving Cell ID) 0 and BWP ID serving cell IDs 1 to K.
  • a serving cell ID Serving Cell ID
  • BWP ID serving cell ID
  • the BWP ID may be the identifier of the first BWP described above, that is, the identifier of the first BWP on the first cell.
  • the BWP ID can be used to indicate which BWP this MAC CE applies to (indicates a DL BWP for which the MAC CE applies).
  • the BWP ID may occupy 2 bits.
  • the serving cell identifier i can be used to indicate a serving cell index X (ServCellIndex X), indicating that the serving cell identifier 0 indicates
  • the aperiodic SRS trigger signaling transmitted on the BWP indicated by the BWP ID of the cell may trigger the aperiodic SRS transmission on the cell of ServCellIndex X.
  • the serving cell identifier i may occupy 5 bits.
  • i may be equal to X, or may be different from X, which is not specifically limited in this application.
  • the MAC CE signaling may further include first information, such as part or all of X0, X1, and X2. That is, the MAC CE signaling may include the first information and BWP ID serving cell identifiers 0-K.
  • some or all of the bits in X0, X1, and X2 are used to indicate the number K of Serving cell IDs.
  • the MAC CE signaling may also include the first information and the BWP ID, such as X0, X1, and X2. That is, the MAC CE signaling may include serving cell identifier 0, first information, and BWP ID serving cell identifiers 1 to K.
  • the bits occupied by the first information may be greater than three.
  • some or all of the bits in X0, X1, X2, X3, and X4 can be used to indicate the number K of Serving cell IDs.
  • the MAC CE signaling may also include other information.
  • the position of each piece of information in the MAC CE signaling can be changed, for example, R can be placed at the end of the first line, or can be placed in front of the first line.
  • the arrangement order of the cells in the first cell group may be from top to bottom according to the cell identifier, or may be from bottom to top. In other words, as long as the terminal device and the network device have a consistent understanding of the arrangement order of the cells in the first cell group, the present application does not specifically limit the arrangement order of the cells in the first cell group.
  • the MAC CE signaling shown in FIG. 3 to FIG. 17 includes the identifier of the first cell described above, where the first indication information is configured for a terminal device or a cell group including the first cell In the case of , the MAC CE signaling may not include the identity of the first cell or the identity of the first BWP.
  • the MAC CE signaling includes C 0 to C 7 .
  • C 0 to C 7 in the MAC CE signaling can be changed from left to right to right to left.
  • the MAC CE signaling includes C 0 to C 15 .
  • the MAC CE signaling includes C 0 to C 23 .
  • the MAC CE signaling includes C 0 to C 31 .
  • the MAC CE signaling includes service identifiers 1 to K.
  • the MAC CE signaling includes first information and service identifiers 1-K.
  • the first information may be part or all of X0, X1, and X2.
  • the MAC CE signaling includes first information and service identifiers 1-K.
  • the first information may be part or all of X0, X1, X2, X3, and X4.
  • the method 200 may further include:
  • Receive second RRC signaling where the second RRC signaling is used to configure at least one cell, and the at least one cell includes the first cell and the at least one second cell.
  • the terminal device receives the second RRC signaling sent by the network device.
  • the network device sends the second RRC signaling to the terminal device to configure the at least one cell.
  • SRS transmission needs to be performed based on an SRS resource group (SRS-ResourceSet) or an SRS resource (SRS-Resource).
  • the SRS sent by the terminal device may be an SRS resource group or an SRS corresponding to an SRS resource.
  • the slot offset of the SRS corresponding to the SRS resource group is configured for the SRS resource group, and the slot offset corresponding to the SRS resource is configured for the SRS resource.
  • the SRS corresponding to the SRS resource group introduced above may also be referred to as a common SRS.
  • the usage field in the SRS resource group may be configured as one of beam management (beamManagement), codebook (codebook), non-codebook (nonCodebook), and antenna switching (antennaSwitching).
  • the SRS corresponding to the SRS resource may also be an SRS used for positioning, which is configured through RRC signaling SRS-PosResource-r16, and the corresponding SRS resource group is configured through RRC signaling SRS-PosResourceSet-r16.
  • SRS-PosResource-r16 RRC signaling SRS-PosResourceSet-r16.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one second cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource groups involved in the various embodiments of the present application are all aperiodic SRS resource groups, and the SRS resources are all aperiodic SRS resources.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through the SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis is from 1 to N-1 the integer.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is determined based on the capability of the terminal device to report to the network device.
  • the second time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of one second cell in the at least one second cell, and the first time slot is the aperiodic SRS
  • the time slot where the trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling value;
  • the SRS corresponding to the SRS resource group of the one second cell is sent.
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the time slot corresponding to the SRS resource group of the one second cell
  • the offset k is the activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each of the at least one second cell is configured with a slot offset
  • the one slot offset is the slot offset k.
  • the second time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one second cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS resource groups involved in the various embodiments of the present application are all aperiodic SRS resource groups, and the SRS resources are all aperiodic SRS resources.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is determined based on the capability of the terminal device to report to the network device.
  • the third time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of one second cell in the at least one second cell, and the first time slot is the The time slot where the aperiodic SRS trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the trigger in the aperiodic SRS trigger signaling the value of the state;
  • the SRS corresponding to the SRS resource in the SRS resource group of the one second cell is sent.
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the SRS resources in the SRS resource group of the one second cell
  • the corresponding slot offset k' is an activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each second cell in the at least one second cell is configured with a slot offset, and the one slot offset is the slot offset k'.
  • the third time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the valid time slot may also be understood as a time slot available for uplink transmission.
  • the time slot that can be used for uplink transmission can be understood as a time slot only used for uplink transmission, that is, it is always used for uplink transmission, it can also be understood as a time slot containing an uplink symbol (uplink symbol), and it can also be understood as a time slot containing flexible symbols.
  • the time slot of (flexible symbol) can also be understood as a flexible time slot (flexible slot), and it can also be understood as a time slot that is occasionally unavailable for uplink transmission, for example, a time slot that is occasionally used for downlink transmission.
  • whether the time slot that can be used for uplink transmission in this application can actually be used for uplink transmission depends on whether it collides with other signal transmissions.
  • the first indication information is configured for the first cell or the first BWP.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • cell aggregation Carrier Aggregation, CA
  • a cells are configured therein.
  • the network device carries the SRS configuration information through RRC signaling, and configures one or more SRS resource groups, and each SRS resource group includes one or more SRS resources.
  • the SRS resource group on cell Z is configured through RRC signaling SRS-ResourceSet, and the SRS resources are configured through RRC signaling SRS-Resource.
  • the usage field in the SRS-ResourceSet signaling may be configured as one of beam management (beamManagement), codebook (codebook), non-codebook (nonCodebook), and antenna switching (antennaSwitching).
  • beamManagement beam management
  • codebook codebook
  • nonCodebook non-codebook
  • antenna switching antenna switching
  • each trigger state corresponds to a value of the SRS request field in the aperiodic SRS trigger signaling, that is, a code point.
  • the above multiple trigger states are configured by aperiodicSRS-ResourceTrigger and/or aperiodicSRS-ResourceTriggerList in the SRS-ResourceSet IE, wherein aperiodicSRS-ResourceTrigger is configured with one value, and aperiodicSRS-ResourceTriggerList is configured with one or more values.
  • aperiodicSRS-ResourceTrigger is an integer ranging from 1 to N-1.
  • the value of each element in aperiodicSRS-ResourceTriggerLis is an integer ranging from 1 to N-1.
  • N may be equal to the number of aperiodic SRS trigger states (maxNrofSRS-TriggerStates), which is 4.
  • the value of N is determined to be 4 or greater (eg, 8 or 16) according to the configuration information sent by the network device; of course, in other alternative embodiments, other names may be used.
  • the configuration information indicates the terminal equipment through RRC signaling or MAC CE signaling.
  • the terminal device informs the network device through the terminal device capability reporting information that it can support more aperiodic SRS trigger states (Maximum number of SRS trigger states), that is, N is greater than 4, so that the network device can determine N based on the capability reported by the terminal device. .
  • aperiodic SRS trigger states Maximum number of SRS trigger states
  • the RRC signaling is configured through SRS-Config.
  • the network device For the cell Z or the BWP Y of the cell Z, the network device indicates through the first indication information which cells can trigger the SRS on the aperiodic SRS trigger signaling transmitted on the cell Z or the BWP Y of the cell Z.
  • the aperiodic SRS trigger signaling sent on the cell Z or the BWP Y of the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the terminal device does not receive the first indication information, the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent in cell Z or the BWP Y of cell Z triggers the terminal device to operate in the group.
  • Corresponding aperiodic SRS transmissions on all active cells in the cell For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. It can more flexibly control which cells can trigger aperiodic SRS transmission by an aperiodic SRS trigger signaling, instead of triggering aperiodic SRS transmission on all active cells, which can not only improve the flexibility of network equipment to trigger SRS, but also improve the system performance.
  • a group of cells is indicated by a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number of group cells is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent in cell Z or the BWP Y of cell Z triggers the terminal device to operate in the group. Corresponding aperiodic SRS transmissions on all active cells in the cell. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z or BWP Y of cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives the aperiodic SRS trigger signaling (referred to as the first signaling) on the cell Z or the BWP Y of the cell Z, and the trigger state corresponding to the first signaling is greater than 0 (the value of which is recorded as value, referred to as value for short). is the first value), that is, a non-zero trigger state, the corresponding aperiodic SRS is sent on the cell determined above.
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value of the first signaling is sent, because it is configured in the aperiodic SRS resource group on Z' There is a trigger state, so each Z' has an aperiodic SRS resource group corresponding to the first signaling value value.
  • the corresponding SRS resource group is configured with one slot offset (slot offset) or multiple slot offsets.
  • the terminal device receives the aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z, and the terminal device determines the corresponding time slot offset of the cell Z' according to the time slot offset corresponding to the SRS resource group where the SRS resource is located. SRS resources are transmitted on slot n'.
  • aperiodic SRS trigger signaling such as DCI
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated).
  • the time slot offset k corresponding to the SRS resource group of the k (in the case where the SRS resource group is configured with multiple time slot offsets), the determined SRS transmission slot, that is, slot n'.
  • slot n can be determined using the following formula:
  • the u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • the u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the trigger signaling
  • the k represents the corresponding SRS resource group. slot offset, where n represents the first slot.
  • slot n’ can be determined based on the following formula:
  • the u SRS represents the subcarrier spacing configuration corresponding to the SRS
  • the u PDCCH represents the subcarrier spacing configuration corresponding to the physical downlink control channel PDCCH used by the trigger signaling
  • the and the u offset, PDCCH respectively depends on the time slot offset for carrier aggregation CA configured by the upper layer for receiving the physical downlink control channel PDCCH and u offset
  • the and the u offset, the SRS respectively depends on the slot offset for carrier aggregation CA configured by the upper layer for transmitting the SRS and u offset
  • the k represents the slot offset corresponding to the SRS resource group
  • the n represents the first slot.
  • u offset may be the relevant parameters of the slot offset for CA specified in the communication standard.
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated
  • the time slot offset k corresponding to the SRS resource group of the k (when the SRS resource group is configured with multiple time slot offsets), the kth or k+1th effective time slot on cell Z' after the time slot where the aperiodic SRS trigger signaling is located is slot n '.
  • the valid time slot is a time slot that can transmit the SRS.
  • the first indication information is configured for an aperiodic SRS trigger state.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • step 1 in Embodiment 2 reference may be made to Step 1 in Embodiment 1, and to avoid repetition, details are not repeated here.
  • the network device For cell Z or BWP Y of cell Z, the network device indicates through the first indication information that the aperiodic SRS trigger state S on cell Z or BWP Y of cell Z can trigger SRS on one or more cells.
  • the aperiodic SRS trigger signaling on the cell Z or the BWP Y of the cell Z corresponds to the aperiodic SRS trigger state S
  • the SRS on the one or more cells is triggered.
  • the aperiodic SRS triggering state is a non-zero state.
  • corresponding different cells may be configured for different aperiodic SRS triggering states.
  • the trigger state S corresponding to the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device For the non-zero aperiodic SRS trigger state S, the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent on the cell Z, if this is not
  • the trigger state corresponding to the zero aperiodic trigger signaling is S
  • the aperiodic SRS transmission corresponding to the terminal equipment on all active cells in the group of cells is triggered. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device For the non-zero aperiodic SRS trigger state S, the network device indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent by the network device on cell Z, If the trigger state corresponding to the non-zero aperiodic trigger signaling is S, the aperiodic SRS transmission corresponding to the terminal equipment on all active cells in the group of cells is triggered. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) on cell Z, and the trigger state S>0 corresponding to the first signaling (the value of which is recorded as value, referred to as the first value for short) ), that is, a non-zero trigger state, the corresponding aperiodic SRS is sent on the cell determined above.
  • aperiodic SRS trigger signaling referred to as the first signaling
  • the trigger state S>0 corresponding to the first signaling the value of which is recorded as value, referred to as the first value for short
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value value of the first signaling is sent.
  • a trigger state is configured in the aperiodic SRS resource group on Z', so there is an aperiodic SRS resource group corresponding to the first signaling value value on each Z'.
  • the corresponding SRS resource group is configured with one slot offset (slot offset) or multiple slot offsets.
  • the terminal device receives the aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z, and the terminal device determines the corresponding time slot offset of the cell Z' according to the time slot offset corresponding to the SRS resource group where the SRS resource is located. SRS resources are transmitted on slot n'.
  • aperiodic SRS trigger signaling such as DCI
  • the time slot offset offset corresponding to the SRS resource group (the value is represented by k, this way corresponds to the case of configuring a time slot offset for the SRS resource group, or activating a time slot offset), or the MAC
  • the time slot offset k corresponding to the SRS resource group activated by the signaling (in the case that the SRS resource group is configured with one or more time slot offsets), or the time corresponding to the SRS resource group indicated by the aperiodic SRS trigger signaling
  • the slot offset k (in the case where the SRS resource group is configured with multiple slot offsets), the determined SRS transmission slot, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated
  • the time slot offset k corresponding to the SRS resource group of the k (when the SRS resource group is configured with multiple time slot offsets), the kth or k+1th effective time slot on cell Z' after the time slot where the aperiodic SRS trigger signaling is located is slot n '.
  • the valid time slot is a time slot that can transmit the SRS.
  • the first indication information is configured for the terminal device or a cell group including the first cell, that is, the target cell group mentioned above.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • step 1 in Embodiment 3 reference may be made to Step 1 in Embodiment 1, and to avoid repetition, details are not repeated here.
  • the network device For a terminal device or a target cell group, the network device indicates through the first indication information which cells on which the aperiodic SRS triggering signaling can trigger the SRS on the terminal device, or on which cells corresponding to the target cell group can trigger the SRS. SRS.
  • the aperiodic SRS triggering signaling sent on cell Z is used to indicate which cells can trigger the aperiodic SRS transmission on which cells.
  • the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, then the terminal equipment cell Z, or any cell Z in the cell group, sends an aperiodic SRS
  • the trigger signaling triggers corresponding aperiodic SRS transmission by the terminal equipment on all active cells in the group of cells.
  • the corresponding aperiodic SRS is configured for the corresponding active cell. It can more flexibly control which cells can trigger aperiodic SRS transmission by an aperiodic SRS trigger signaling, instead of triggering aperiodic SRS transmission on all active cells, which can not only improve the flexibility of network equipment to trigger SRS, but also improve the system performance.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, then the terminal equipment cell Z, or any cell Z in the cell group, sends the aperiodic SRS
  • the trigger signaling triggers corresponding aperiodic SRS transmission by the terminal equipment on all active cells in the group of cells. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) on cell Z, and the value corresponding to the first signaling is greater than 0 (the value is recorded as value), then on the previously determined cell
  • the corresponding aperiodic SRS is sent.
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value of the first signaling is sent, because it is configured in the aperiodic SRS resource group on Z' There is a trigger state, so each Z' has an aperiodic SRS resource group corresponding to the first signaling value value.
  • the corresponding SRS resource group is configured with one slot offset (slot offset) or multiple slot offsets.
  • the terminal device receives aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of cell Z, and the terminal device determines the slot corresponding to cell Z according to the time slot offset corresponding to the SRS resource group where the SRS resource is located. Transmission of SRS resources on n'
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated).
  • the time slot offset k corresponding to the SRS resource group of the k (in the case where the SRS resource group is configured with multiple time slot offsets), the determined SRS transmission slot, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated
  • the time slot offset k corresponding to the SRS resource group of the k (when the SRS resource group is configured with multiple time slot offsets), the kth or k+1th effective time slot on cell Z' after the time slot where the aperiodic SRS trigger signaling is located is slot n '.
  • the valid time slot is a time slot that can transmit the SRS.
  • the solution in which the first indication information is used to trigger the SRS corresponding to the SRS resource group has been described above with reference to Embodiment 1 to Embodiment 3.
  • the following describes the first indication information used to trigger the SRS resource in combination with Embodiment 4 to Embodiment 6.
  • the corresponding SRS is described.
  • the first indication information is configured for the first cell or the first BWP.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • cell aggregation Carrier Aggregation, CA
  • a cells are configured therein.
  • the network device carries the SRS configuration information through RRC signaling, and configures one or more SRS resource groups, and each SRS resource group includes one or more SRS resources.
  • the SRS resource group is configured through RRC signaling SRS-PosResourceSet-r16, and the SRS resources are configured through RRC signaling SRS-PosResource-r16.
  • each trigger state corresponds to a value of the SRS request field in the aperiodic SRS trigger signaling, that is, a code point.
  • multiple trigger states are configured through aperiodicSRS-ResourceTriggerList-r16 in SRS-PosResourceSet-r16.
  • the value of each element in aperiodicSRS-ResourceTriggerList-r16 is an integer ranging from 1 to N-1.
  • N may be equal to the number of aperiodic SRS trigger states (maxNrofSRS-TriggerStates), which is 4.
  • the value of N is determined to be 4 or greater (eg, 8 or 16) according to the configuration information sent by the network device; of course, in other alternative embodiments, other names may be used.
  • the configuration information indicates the terminal equipment through RRC signaling or MAC CE signaling.
  • the terminal device informs the network device through the terminal device capability reporting information that it can support more aperiodic SRS trigger states (Maximum number of SRS trigger states), that is, N is greater than 4, so that the network device can determine N based on the capability reported by the terminal device. .
  • aperiodic SRS trigger states Maximum number of SRS trigger states
  • the RRC signaling is configured through SRS-Config
  • the network device For the cell Z or the BWP Y of the cell Z, the network device indicates through the first indication information which cells can trigger the SRS on the aperiodic SRS trigger signaling transmitted on the cell Z or the BWP Y of the cell Z.
  • the aperiodic SRS trigger signaling sent on the cell Z or the BWP Y of the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the terminal device does not receive the first indication information, the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent in cell Z or the BWP Y of cell Z triggers the terminal device to operate in the group.
  • Corresponding aperiodic SRS transmissions on all active cells in the cell For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. It can more flexibly control which cells can trigger aperiodic SRS transmission by an aperiodic SRS trigger signaling, instead of triggering aperiodic SRS transmission on all active cells, which can not only improve the flexibility of network equipment to trigger SRS, but also improve the system performance.
  • a group of cells is indicated by a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number of group cells is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent in cell Z or the BWP Y of cell Z triggers the terminal device to operate in the group. Corresponding aperiodic SRS transmissions on all active cells in the cell. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z or BWP Y of cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) on cell Z, and the trigger state corresponding to the first signaling is greater than 0 (the value of which is recorded as value, referred to as the first value for short) , that is, a non-zero trigger state, the corresponding aperiodic SRS is sent on the cell determined above.
  • aperiodic SRS trigger signaling referred to as the first signaling
  • the trigger state corresponding to the first signaling is greater than 0 (the value of which is recorded as value, referred to as the first value for short) , that is, a non-zero trigger state
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value of the first signaling is sent, because it is configured in the aperiodic SRS resource group on Z' There is a trigger state, so each Z' has an aperiodic SRS resource group corresponding to the first signaling value value.
  • the corresponding SRS resource is configured with 1 slot offset (slot offset) or multiple slot offsets
  • the terminal device receives aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z, and the terminal device determines the transmission on the slot n' corresponding to the cell Z' according to the time slot offset corresponding to the SRS resource.
  • SRS trigger signaling such as DCI
  • time slot offset k corresponding to the SRS resource in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated
  • SRS activated by the MAC signaling The time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple time slot offsets), determine the transmission slot of the SRS, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource (in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated), or the SRS activated by the MAC signaling
  • the time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple timeslot offsets)
  • the kth or k+1th effective timeslot on cell Z' after the timeslot where the aperiodic SRS trigger signaling is located is slot n'.
  • the valid time slot is a time slot that can transmit the SRS.
  • the first indication information is configured for an aperiodic SRS trigger state.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • step 1 in Embodiment 5 reference may be made to Step 1 in Embodiment 3, and to avoid repetition, details are not repeated here.
  • the network device For cell Z or BWP Y of cell Z, the network device indicates through the first indication information that the aperiodic SRS trigger state S on cell Z or BWP Y of cell Z can trigger SRS on one or more cells.
  • the aperiodic SRS trigger signaling on the cell Z or the BWP Y of the cell Z corresponds to the aperiodic SRS trigger state S
  • the SRS on the one or more cells is triggered.
  • the aperiodic SRS triggering state is a non-zero state.
  • corresponding different cells may be configured for different aperiodic SRS triggering states.
  • the trigger state S corresponding to the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device For the non-zero aperiodic SRS trigger state S, the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent on cell Z, if this is not
  • the trigger state corresponding to the zero aperiodic trigger signaling is S
  • the aperiodic SRS transmission corresponding to the terminal equipment on all active cells in the group of cells is triggered. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device For the non-zero aperiodic SRS trigger state S, the network device indicates a group of cells through MAC CE signaling, the group of cells includes one or more cells, and the aperiodic SRS trigger signaling sent by the network device on cell Z, If the trigger state corresponding to the non-zero aperiodic trigger signaling is S, the aperiodic SRS transmission corresponding to the terminal equipment on all active cells in the group of cells is triggered. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) on the cell Z, and the trigger state S>0 corresponding to the first signaling (the value of which is recorded as value, referred to as the first value for short) ), that is, a non-zero trigger state, the corresponding aperiodic SRS is sent on the cell determined above.
  • aperiodic SRS trigger signaling referred to as the first signaling
  • the trigger state S>0 corresponding to the first signaling the value of which is recorded as value, referred to as the first value for short
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value value of the first signaling is sent.
  • a trigger state is configured in the aperiodic SRS resource group on Z', so there is an aperiodic SRS resource group corresponding to the first signaling value value on each Z'.
  • the corresponding SRS resource is configured with 1 slot offset (slot offset) or multiple slot offsets
  • the terminal device receives aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z, and the terminal device determines the transmission on the slot n' corresponding to the cell Z' according to the time slot offset corresponding to the SRS resource.
  • SRS trigger signaling such as DCI
  • time slot offset k corresponding to the SRS resource in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated
  • SRS activated by the MAC signaling The time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple time slot offsets), determine the transmission slot of the SRS, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource (in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated), or the SRS activated by the MAC signaling
  • the time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple timeslot offsets)
  • the kth or k+1th effective timeslot on cell Z' after the timeslot where the aperiodic SRS trigger signaling is located is slot n'.
  • the valid time slot is a time slot that can transmit the SRS.
  • the first indication information is configured for the terminal device or a cell group including the first cell, that is, the target cell group described above.
  • step 1
  • step 1 in Embodiment 5 reference may be made to Step 1 in Embodiment 3, and to avoid repetition, details are not repeated here.
  • the network device For a terminal device, or for a target cell group, the network device indicates through the first indication information which cells on which the aperiodic SRS triggering signaling can trigger the SRS on the terminal device, or on which cells corresponding to the target cell group can trigger the SRS. SRS.
  • the aperiodic SRS triggering signaling sent on cell Z is used to indicate which cells can trigger the aperiodic SRS transmission on which cells.
  • the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the original triggering method is used.
  • the network device may instruct the terminal device to use the first indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the first indication information.
  • the network device indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, then the terminal equipment cell Z, or any cell Z in the cell group, sends an aperiodic SRS
  • the trigger signaling triggers the corresponding aperiodic SRS transmission of the terminal equipment on all active cells in the group of cells.
  • the corresponding aperiodic SRS is configured for the corresponding active cell. It can more flexibly control which cells can trigger aperiodic SRS transmission by an aperiodic SRS trigger signaling, instead of triggering aperiodic SRS transmission on all active cells, which can not only improve the flexibility of network equipment to trigger SRS, but also improve the system performance.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network device indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, then the terminal equipment cell Z, or any cell Z in the cell group, sends the aperiodic SRS
  • the trigger signaling triggers the corresponding aperiodic SRS transmission of the terminal equipment on all active cells in the group of cells. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. In addition, aperiodic SRS transmission corresponding to cell Z is triggered.
  • aperiodic SRS triggering signaling on cell Z can trigger aperiodic SRS transmission on cell Z only if the group of cells indicated by MAC CE signaling includes cell Z ;
  • Option 2 is based on 1, regardless of whether the group of cells indicated by MAC CE signaling includes cell Z, the aperiodic SRS trigger signaling on cell Z can trigger aperiodic SRS transmission on cell Z; equivalent to, all The above MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) on cell Z, and the value corresponding to the first signaling is greater than 0 (the value is recorded as value), then on the previously determined cell
  • the corresponding aperiodic SRS is sent.
  • the aperiodic SRS corresponding to the SRS resource group corresponding to the value of the first signaling is sent, because it is configured in the aperiodic SRS resource group on Z' There is a trigger state, so each Z' has an aperiodic SRS resource group corresponding to the first signaling value value.
  • the corresponding SRS resource is configured with 1 slot offset (slot offset) or multiple slot offsets
  • the terminal device receives aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z, and the terminal device determines the transmission on the slot n' corresponding to the cell Z' according to the time slot offset corresponding to the SRS resource.
  • SRS trigger signaling such as DCI
  • time slot offset k corresponding to the SRS resource in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated
  • SRS activated by the MAC signaling The time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple time slot offsets), determine the transmission slot of the SRS, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource (in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated), or the SRS activated by the MAC signaling
  • the time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple timeslot offsets)
  • the kth or k+1th effective timeslot on cell Z' after the timeslot where the aperiodic SRS trigger signaling is located is slot n'.
  • the valid time slot is a time slot that can transmit the SRS.
  • FIG. 26 shows a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application, and the method 300 may be executed interactively by a terminal device and a network device.
  • the terminal device shown in FIG. 26 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 26 may be the access network device shown in FIG. 1 .
  • the method 300 may include:
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to indicate that the sounding reference signal SRS on the first cell can be triggered by aperiodic SRS trigger signaling on at least one third cell, so The second indication information is carried by the medium access control control element MAC CE signaling.
  • the terminal device can trigger the terminal device in the first cell Send SRS on it.
  • the cell involved in the embodiments of the present application may be equivalent to the carrier.
  • a cell may be equivalent to a component carrier (Component Carrier, CC) in a CA scenario.
  • the second indication information can be used to indicate that the sounding reference signal SRS on the first carrier can be triggered by aperiodic SRS trigger signaling on at least one third carrier.
  • the at least one third cell may be a cell, a group of cells, or a plurality of cells, which is not specifically limited in this application.
  • the second indication information is used to indicate that the SRS on the first cell can be triggered by aperiodic SRS trigger signaling on another cell .
  • the at least one third cell is a group of cells, it is equivalent to that the second indication information can be used to indicate that the SRS on the first cell can be triggered by the aperiodic SRS on any cell in the group of cells. signaling trigger.
  • the at least one third cell is a plurality of cells, it is equivalent to that the first indication information can be used to indicate that the SRS on the first cell can pass the SRS on any cell in the plurality of cells. Trigger command trigger.
  • the group of cells or the plurality of cells may include the first cell or may not include the first cell, which is not specifically limited in this embodiment of the present application.
  • the SRS on the first cell can be triggered by the aperiodic SRS triggering command on the at least one third cell, in other words, the cross-cell (or cross-carrier) can be realized in the multi-cell scenario. ) trigger transmission of aperiodic SRS.
  • the second indication information is used to indicate the at least one third cell, wherein aperiodic SRS trigger signaling on the at least one third cell is used to trigger the first SRS on a cell.
  • the at least one third cell is all active cells in the second cell group.
  • the maximum number of cells in the second cell group is 2, 4, 8 or 32.
  • the at least one third cell is all active cells in the first cell and the second cell group.
  • the maximum number of cells in the second cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the second indication information indicates the second cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each bit of the at least one bit corresponds to a cell in the second cell group, and the value of each bit is used for Indicates whether the cell corresponding to each bit belongs to the second cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the method 300 may further include:
  • Receive third RRC signaling and switch or determine the length of the at least one bit according to the third RRC signaling.
  • the second indication information indicates the second cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the second cell group.
  • the MAC CE signaling further includes at least one of the following:
  • the method 300 may further include:
  • Fourth RRC signaling is received, where the fourth RRC signaling is used to configure at least one cell, and the at least one cell includes the first cell and the at least one third cell.
  • the network device sends the fourth RRC signaling to the terminal device to configure the at least one cell.
  • SRS transmission needs to be performed based on an SRS resource group (SRS-ResourceSet) or an SRS resource (SRS-Resource).
  • the SRS sent by the terminal device may be an SRS resource group or an SRS corresponding to an SRS resource.
  • the slot offset of the SRS corresponding to the SRS resource group is configured for the SRS resource group, and the slot offset corresponding to the SRS resource is configured for the SRS resource.
  • the SRS corresponding to the SRS resource group introduced above may also be referred to as a common SRS.
  • the usage field in the SRS resource group may be configured as one of beam management (beamManagement), codebook (codebook), non-codebook (nonCodebook), and antenna switching (antennaSwitching).
  • the SRS corresponding to the SRS resource may also be an SRS used for positioning, which is configured through RRC signaling SRS-PosResource-r16, and the corresponding SRS resource group is configured through RRC signaling SRS-PosResourceSet-r16.
  • SRS-PosResource-r16 RRC signaling SRS-PosResourceSet-r16.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one third cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource groups involved in the various embodiments of the present application are all aperiodic SRS resource groups, and the SRS resources are all aperiodic SRS resources.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through the SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis Takes an integer from 1 to N-1.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is determined based on the capability of the terminal device to report to the network device.
  • the SRS resource group of the first cell is configured with at least one time slot offset; the method 300 may further include:
  • the fourth time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of the first cell, the first time slot is the time slot where the aperiodic SRS trigger signaling is located, and the The SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource group of the first cell is sent.
  • the SRS resource group of the first cell is configured with multiple timeslot offsets
  • the timeslot offset k corresponding to the SRS resource group of the first cell is an activated timeslot among the multiple timeslot offsets gap offset.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k.
  • the fourth time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one third cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS resource groups involved in the various embodiments of the present application are all aperiodic SRS resource groups, and the SRS resources are all aperiodic SRS resources.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is determined based on the capability of the terminal device to report to the network device.
  • the fifth time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of the first cell, where the first time slot is the time where the aperiodic SRS trigger signaling is located slot, the SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource in the SRS resource group of the first cell is sent.
  • the SRS resources in the SRS resource group of the first cell are configured with multiple timeslot offsets
  • the timeslot offset k' corresponding to the SRS resources in the SRS resource group of the first cell is the multiple timeslot offsets k' Activated slot offset in slot offset.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k'.
  • the fifth time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the valid time slot may also be understood as a time slot available for uplink transmission.
  • the time slot that can be used for uplink transmission can be understood as a time slot only used for uplink transmission, that is, it is always used for uplink transmission, it can also be understood as a time slot containing an uplink symbol (uplink symbol), and it can also be understood as a time slot containing flexible symbols.
  • the time slot of (flexible symbol) can also be understood as a flexible time slot (flexible slot), and it can also be understood as a time slot that is occasionally unavailable for uplink transmission, for example, a time slot that is occasionally used for downlink transmission.
  • whether the time slot that can be used for uplink transmission in this application can actually be used for uplink transmission depends on whether it collides with other signal transmissions.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • cell aggregation Carrier Aggregation, CA
  • a cells are configured therein.
  • the network device carries the SRS configuration information through RRC signaling, and configures one or more SRS resource groups, and each SRS resource group includes one or more SRS resources.
  • the SRS resource group on cell Z is configured through RRC signaling SRS-ResourceSet, and the SRS resources are configured through RRC signaling SRS-Resource.
  • the usage field in the SRS-ResourceSet signaling may be configured as one of beam management (beamManagement), codebook (codebook), non-codebook (nonCodebook), and antenna switching (antennaSwitching).
  • beamManagement beam management
  • codebook codebook
  • nonCodebook non-codebook
  • antenna switching antenna switching
  • each trigger state corresponds to a value of the SRS request field in the aperiodic SRS trigger signaling, that is, a code point.
  • the above multiple trigger states are configured by aperiodicSRS-ResourceTrigger and aperiodicSRS-ResourceTriggerList in the SRS-ResourceSet IE, where aperiodicSRS-ResourceTrigger is configured with one value, and aperiodicSRS-ResourceTriggerList is configured with one or more values.
  • aperiodicSRS-ResourceTrigger is an integer ranging from 1 to N-1.
  • the value of each element in aperiodicSRS-ResourceTriggerLis is an integer ranging from 1 to N-1.
  • N may be equal to the number of aperiodic SRS trigger states (maxNrofSRS-TriggerStates), which is 4.
  • the value of N is determined to be 4 or greater (eg, 8 or 16) according to the configuration information sent by the network device; of course, in other alternative embodiments, other names may be used.
  • the configuration information indicates the terminal equipment through RRC signaling or MAC CE signaling.
  • the terminal device informs the network device through the terminal device capability reporting information that it can support more aperiodic SRS trigger states (Maximum number of SRS trigger states), that is, N is greater than 4, so that the network device can determine N based on the capability reported by the terminal device. .
  • aperiodic SRS trigger states Maximum number of SRS trigger states
  • the RRC signaling is configured through SRS-Config.
  • the network device For the cell Z or the BWP Y of the cell Z, the network device indicates through the second indication information which cells the aperiodic SRS transmission of the BWP Y of the cell Z or the BWP Y of the cell Z can be triggered by the aperiodic SRS trigger signaling, so as to realize Triggering aperiodic SRS across cells reduces DCI overhead and increases system flexibility.
  • the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the terminal device does not receive the second indication information, the original triggering method is used.
  • the network device may instruct the terminal device to use the second indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the second indication information.
  • the network equipment indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, and the terminal equipment transmits aperiodic SRS signaling on all active cells in the group of cells. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. Aperiodic SRS transmission on cell Z may be triggered.
  • the aperiodic SRS trigger signaling on which cells can trigger an aperiodic SRS can be more flexibly controlled, instead of the aperiodic SRS trigger signaling on all active cells being triggered. This gives the network equipment greater flexibility and improves system performance.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network equipment indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, and the terminal equipment transmits aperiodic SRS signaling on all active cells in the group of cells.
  • aperiodic SRS is configured for the corresponding active cell.
  • Both the aperiodic SRS signaling on the cell Z and the aperiodic SRS signaling on the cell Z can trigger the aperiodic SRS transmission on the cell Z.
  • the aperiodic SRS trigger signaling on which cells can trigger an aperiodic SRS can be more flexibly controlled, instead of the aperiodic SRS trigger signaling on all active cells being triggered. This gives the network equipment greater flexibility and improves system performance. Compared with option 1, the MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) in one of the above-determined cells (referred to as Z'), and the value corresponding to the first signaling is greater than 0 (referred to as the value of value), the corresponding aperiodic SRS is sent on cell Z.
  • the corresponding SRS resource group is configured with one slot offset (slot offset) or multiple slot offsets.
  • the terminal device receives the aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z', and the terminal device determines the corresponding time slot offset of the cell Z according to the time slot offset corresponding to the SRS resource group where the SRS resource is located.
  • SRS resources are transmitted on slot n'.
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated).
  • the time slot offset k corresponding to the SRS resource group of the k (in the case where the SRS resource group is configured with multiple time slot offsets), the determined SRS transmission slot, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource group (in the case that the SRS resource group is configured with 1 time slot offset, or when one time slot offset is activated), or the MAC signaling is activated
  • the time slot offset k corresponding to the SRS resource group of the k (when the SRS resource group is configured with multiple time slot offsets), the kth or k+1th effective time slot on cell Z' after the time slot where the aperiodic SRS trigger signaling is located is slot n '.
  • the valid time slot is a time slot that can transmit the SRS.
  • step 1
  • the terminal device receives the cell configuration information sent by the network device through RRC signaling.
  • cell aggregation Carrier Aggregation, CA
  • a cells are configured therein.
  • the network device carries the SRS configuration information through RRC signaling, and configures one or more SRS resource groups, and each SRS resource group includes one or more SRS resources.
  • the SRS resource group is configured through RRC signaling SRS-PosResourceSet-r16, and the SRS resource is configured through RRC signaling SRS-PosResource-r16.
  • each trigger state corresponds to a value of the SRS request field in the aperiodic SRS trigger signaling, that is, a code point.
  • the above multiple trigger states are configured through aperiodicSRS-ResourceTriggerList-r16 in SRS-PosResourceSet-r16.
  • the value of each element in aperiodicSRS-ResourceTriggerList-r16 is an integer ranging from 1 to N-1.
  • N may be equal to the number of aperiodic SRS trigger states (maxNrofSRS-TriggerStates), which is 4.
  • the value of N is determined to be 4 or greater (eg, 8 or 16) according to the configuration information sent by the network device; of course, in other alternative embodiments, other names may be used.
  • the configuration information indicates the terminal equipment through RRC signaling or MAC CE signaling.
  • the terminal device informs the network device through the terminal device capability reporting information that it can support more aperiodic SRS trigger states (Maximum number of SRS trigger states), that is, N is greater than 4, so that the network device determines N based on the capability reported by the terminal device. .
  • aperiodic SRS trigger states Maximum number of SRS trigger states
  • the RRC signaling is configured through SRS-Config.
  • the network device For the cell Z or the BWP Y of the cell Z, the network device indicates through the second indication information which cells the aperiodic SRS transmission of the BWP Y of the cell Z or the BWP Y of the cell Z can be triggered by the aperiodic SRS trigger signaling, so as to realize Triggering aperiodic SRS across cells reduces DCI overhead and increases system flexibility.
  • the aperiodic SRS trigger signaling sent on the cell Z only triggers the SRS sent on the uplink corresponding to the cell Z.
  • the terminal device does not receive the second indication information, the original triggering method is used.
  • the network device may instruct the terminal device to use the second indication information to trigger the aperiodic SRS through RRC signaling.
  • the terminal device may report information through UE capability (capability) to indicate that the terminal device supports triggering aperiodic SRS through the second indication information.
  • the network equipment indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, and the terminal equipment transmits aperiodic SRS signaling on all active cells in the group of cells. For example, in the case where the corresponding aperiodic SRS is configured for the corresponding active cell. Aperiodic SRS transmission on cell Z may be triggered.
  • the aperiodic SRS trigger signaling on which cells can trigger an aperiodic SRS can be more flexibly controlled, instead of the aperiodic SRS trigger signaling on all active cells being triggered. This gives the network equipment greater flexibility and improves system performance.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the network equipment indicates a group of cells through MAC CE signaling, and the group of cells includes one or more cells, and the terminal equipment transmits aperiodic SRS signaling on all active cells in the group of cells.
  • aperiodic SRS is configured for the corresponding active cell.
  • Both the aperiodic SRS signaling on the cell Z and the aperiodic SRS signaling on the cell Z can trigger the aperiodic SRS transmission on the cell Z.
  • the aperiodic SRS trigger signaling on which cells can trigger an aperiodic SRS can be more flexibly controlled, instead of the aperiodic SRS trigger signaling on all active cells being triggered. This gives the network equipment greater flexibility and improves system performance. Compared with option 1, the MAC CE signaling can reduce the indication to cell Z, thereby reducing resource overhead.
  • the above MAC CE signaling indicates a group of cells through a bitmap. For example, if the corresponding bit is a specified value (for example, 1), the cell corresponding to this bit belongs to the group of cells. When the number is large, the signaling overhead can be reduced through bitmap.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the above-mentioned MAC CE signaling indicates a group of cells through cell identifiers, that is, the MAC CE signaling includes the identifier of each cell in the group of cells, and when the number of cells in the group is small, it can be used. Reduce signaling overhead.
  • the MAC CE signaling indicates at most 32, or 8, or 4, or 2 cells.
  • the MAC CE signaling indicates at most 31, or 7, or 3, or 1 cells.
  • the terminal device receives aperiodic SRS trigger signaling (referred to as the first signaling) in one of the above-determined cells (referred to as Z'), and the value corresponding to the first signaling is greater than 0 (referred to as the value of value), the corresponding aperiodic SRS is sent on cell Z.
  • the corresponding SRS resource is configured with 1 slot offset (slot offset) or multiple slot offsets
  • the terminal device receives the aperiodic SRS trigger signaling (such as DCI) on the time slot slot n of the cell Z', and the terminal device determines the transmission on the slot n' corresponding to the cell Z according to the time slot offset corresponding to the SRS resource.
  • SRS resources such as DCI
  • time slot offset k corresponding to the SRS resource in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated
  • SRS activated by the MAC signaling The time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple time slot offsets), determine the transmission slot of the SRS, that is, slot n'.
  • the slot n' can be determined with reference to the formula involved in Example 1.
  • the time slot offset k corresponding to the SRS resource (in the case that the SRS resource is configured with 1 time slot offset, or when one time slot offset is activated), or the SRS activated by the MAC signaling
  • the time slot offset k corresponding to the resource (when the SRS resource is configured with one or more time slot offsets), or the time slot offset k corresponding to the SRS resource indicated by the aperiodic SRS trigger signaling (in the case of the SRS resource In the case of configuring multiple timeslot offsets)
  • the kth or k+1th effective timeslot on cell Z' after the timeslot where the aperiodic SRS trigger signaling is located is slot n'.
  • the valid time slot is a time slot that can transmit the SRS.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell In the first direction, “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 27 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • the receiving unit 410 is configured to receive first indication information, where the first indication information is used to indicate that the aperiodic sounding reference signal SRS trigger signaling on the first cell is used to trigger the SRS on at least one second cell, the first An indication information is carried by the medium access control control element MAC CE signaling.
  • the first indication information is used to indicate aperiodic SRS trigger signaling on the first cell or the first bandwidth part BWP of the first cell, used to trigger the The SRS on the first cell or the at least one second cell corresponding to the first BWP.
  • the first indication information is used to indicate a first trigger state, or an aperiodic SRS trigger signal on the first cell or the first bandwidth part BWP on the first cell
  • the first trigger state in the command is used to trigger the SRS on the at least one second cell corresponding to the first trigger state.
  • the first trigger state is a non-zero trigger state.
  • the first indication information is used to indicate aperiodic SRS trigger signaling on the first cell of the terminal device or the first cell of the target cell group of the terminal device , which is used to trigger the SRS on the at least one second cell corresponding to the terminal device or the target cell group.
  • the first indication information is used to indicate the at least one second cell, wherein the aperiodic SRS trigger signaling on the first cell is used to trigger the at least one first cell SRS on the second cell.
  • the at least one second cell is all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 2, 4, 8 or 32.
  • the at least one second cell is the first cell and all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the first indication information indicates the first cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each of the at least one bit corresponds to a cell in the first cell group, and the at least one bit The value of one of the bits is used to indicate whether the cell corresponding to the one bit belongs to the first cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the receiving unit 410 is further configured to:
  • Receive first RRC signaling where the first RRC signaling is used to switch or determine the length of the at least one bit.
  • the first indication information indicates the first cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the first cell group.
  • the MAC CE signaling further includes at least one of the following:
  • first information used to indicate the number of cells in the first cell group
  • the receiving unit 410 is further configured to:
  • Receive second RRC signaling where the second RRC signaling is used to configure at least one cell, and the at least one cell includes the first cell and the at least one second cell.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one second cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resource group of each of the at least one second cell is configured with at least one time slot offset; the receiving unit 410 is further configured to:
  • the second time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of one second cell in the at least one second cell, and the first time slot is the aperiodic SRS
  • the time slot where the trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling value;
  • the SRS corresponding to the SRS resource group of the one second cell is sent.
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the time slot corresponding to the SRS resource group of the one second cell
  • the offset k is the activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each of the at least one second cell is configured with a slot offset, and the one slot offset is the slot offset k .
  • the second time slot is a valid time slot after the first time slot
  • the valid time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one second cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resources in the SRS resource group of each of the at least one second cell are configured with at least one time slot offset; the receiving unit 410 is further configured to:
  • the third time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of one second cell in the at least one second cell, and the first time slot is the The time slot where the aperiodic SRS trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the trigger in the aperiodic SRS trigger signaling the value of the state;
  • the SRS corresponding to the SRS resource in the SRS resource group of the one second cell is sent.
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the SRS resources in the SRS resource group of the one second cell
  • the corresponding slot offset k' is an activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each of the at least one second cell is configured with a slot offset, and the one slot offset is the slot offset k '.
  • the third time slot is a valid time slot after the first time slot, and the valid time slot is a time slot that can be used to transmit SRS.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 400 shown in FIG. 27 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 400 are respectively for the purpose of realizing the method shown in FIG. 2 .
  • the corresponding processes in each of the methods are not repeated here.
  • FIG. 28 is a schematic block diagram of a network device 500 provided by an embodiment of the present application.
  • the network device 500 may include:
  • the sending unit 510 is configured to send first indication information, where the first indication information is used to indicate that the aperiodic sounding reference signal SRS trigger signaling on the first cell is used to trigger the SRS on at least one second cell, the first An indication information is carried by the medium access control control element MAC CE signaling.
  • the first indication information is used to indicate aperiodic SRS trigger signaling on the first cell or the first bandwidth part BWP of the first cell, used to trigger the The SRS on the first cell or the at least one second cell corresponding to the first BWP.
  • the first indication information is used to indicate a first trigger state, or an aperiodic SRS trigger signal on the first cell or the first bandwidth part BWP on the first cell
  • the first trigger state in the command is used to trigger the SRS on the at least one second cell corresponding to the first trigger state.
  • the first trigger state is a non-zero trigger state.
  • the first indication information is used to indicate aperiodic SRS trigger signaling on the first cell of the terminal device or the first cell of the target cell group of the terminal device , which is used to trigger the SRS on the at least one second cell corresponding to the terminal device or the target cell group.
  • the first indication information is used to indicate the at least one second cell, wherein the aperiodic SRS trigger signaling on the first cell is used to trigger the at least one first cell SRS on the second cell.
  • the at least one second cell is all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 2, 4, 8 or 32.
  • the at least one second cell is the first cell and all active cells in the first cell group.
  • the maximum number of cells in the first cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the first indication information indicates the first cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each of the at least one bit corresponds to a cell in the first cell group, and the at least one bit The value of one of the bits is used to indicate whether the cell corresponding to the one bit belongs to the first cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the sending unit 510 is further configured to:
  • the first RRC signaling is sent, and the length of the at least one bit is switched or determined according to the first RRC signaling.
  • the first indication information indicates the first cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the first cell group.
  • the MAC CE signaling further includes at least one of the following:
  • first information used to indicate the number of cells in the first cell group
  • the sending unit 510 is further configured to:
  • Send second RRC signaling where the second RRC signaling is used to configure at least one cell, where the at least one cell includes the first cell and the at least one second cell.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one second cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resource group of each second cell in the at least one second cell is configured with at least one time slot offset; the sending unit 510 is further configured to:
  • the second time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of one second cell in the at least one second cell, and the first time slot is the aperiodic SRS
  • the time slot where the trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling value;
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the time slot corresponding to the SRS resource group of the one second cell
  • the offset k is the activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each of the at least one second cell is configured with a slot offset, and the one slot offset is the slot offset k .
  • the second time slot is a valid time slot after the first time slot
  • the valid time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one second cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one second cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resources in the SRS resource group of each of the at least one second cell are configured with at least one time slot offset; the sending unit 510 is further configured to:
  • the third time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of one second cell in the at least one second cell, and the first time slot is the The time slot where the aperiodic SRS trigger signaling is located, the SRS resource group of the one second cell is the SRS resource group corresponding to the first value, and the first value is the trigger in the aperiodic SRS trigger signaling the value of the state;
  • the SRS resource group of each second cell in the at least one second cell is configured with multiple time slot offsets, and the SRS resources in the SRS resource group of the one second cell
  • the corresponding slot offset k' is an activated slot offset among the plurality of slot offsets.
  • the SRS resource group of each of the at least one second cell is configured with a slot offset, and the one slot offset is the slot offset k '.
  • the third time slot is a valid time slot after the first time slot, and the valid time slot is a time slot that can be used to transmit SRS.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 500 shown in FIG. 28 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 500 are to achieve the For the sake of brevity, the corresponding processes in each of the methods are not repeated here.
  • FIG. 29 is a schematic block diagram of a terminal device 600 provided by an embodiment of the present application.
  • the terminal device 600 may include:
  • a receiving unit 610 configured to receive second indication information, where the second indication information is used to indicate that the sounding reference signal SRS on the first cell can be triggered by aperiodic SRS trigger signaling on at least one third cell, the first The second indication information is carried by the medium access control control element MAC CE signaling.
  • the second indication information is used to indicate the at least one third cell, wherein aperiodic SRS trigger signaling on the at least one third cell is used to trigger the first SRS on a cell.
  • the at least one third cell is all active cells in the second cell group.
  • the number of cells in the second cell group is 2, 4, 8 or 32.
  • the at least one third cell is all active cells in the first cell and the second cell group.
  • the number of cells in the second cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the second indication information indicates the second cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each bit in the at least one bit corresponds to a cell in the second cell group, and each bit The value of the bit is used to indicate whether the cell corresponding to each bit belongs to the second cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the receiving unit 610 is further configured to:
  • Receive third RRC signaling and switch or determine the length of the at least one bit according to the third RRC signaling.
  • the second indication information indicates the second cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the second cell group.
  • the MAC CE signaling further includes at least one of the following:
  • the receiving unit 610 is further configured to:
  • Fourth RRC signaling is received, where the fourth RRC signaling is used to configure at least one cell, and the at least one cell includes the first cell and the at least one third cell.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one third cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resource group of the first cell is configured with at least one time slot offset; the receiving unit 610 is further configured to:
  • the fourth time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of the first cell, the first time slot is the time slot where the aperiodic SRS trigger signaling is located, and the The SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource group of the first cell is sent.
  • the SRS resource group of the first cell is configured with multiple timeslot offsets
  • the timeslot offset k corresponding to the SRS resource group of the first cell is the multiple timeslots Active slot offset in offset.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k.
  • the fourth time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one third cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resources in the SRS resource group of the first cell are configured with at least one time slot offset; the receiving unit 610 is further configured to:
  • the fifth time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of the first cell, where the first time slot is the time where the aperiodic SRS trigger signaling is located slot, the SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource in the SRS resource group of the first cell is sent.
  • the SRS resources in the SRS resource group of the first cell are configured with multiple timeslot offsets, and the timeslot offsets corresponding to the SRS resources in the SRS resource group of the first cell k' is an activated slot offset among the plurality of slot offsets.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k'.
  • the fifth time slot is a valid time slot after the first time slot
  • the valid time slot is a time slot that can be used to transmit SRS.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 600 shown in FIG. 29 may correspond to the corresponding subject in executing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 600 are respectively for the purpose of realizing the method shown in FIG. 26 .
  • the corresponding processes in each of the methods are not repeated here.
  • FIG. 30 is a schematic block diagram of a network device 700 provided by an embodiment of the present application.
  • the network device 700 may include:
  • the sending unit 710 is configured to send second indication information, where the second indication information is used to indicate that the sounding reference signal SRS on the first cell can be triggered by aperiodic SRS trigger signaling on at least one third cell, the first The second indication information is carried by the medium access control control element MAC CE signaling.
  • the second indication information is used to indicate the at least one third cell, wherein aperiodic SRS trigger signaling on the at least one third cell is used to trigger the first SRS on a cell.
  • the at least one third cell is all active cells in the second cell group.
  • the number of cells in the second cell group is 2, 4, 8 or 32.
  • the at least one third cell is all active cells in the first cell and the second cell group.
  • the number of cells in the second cell group is 1, 2, 3, 4, 7, 8, 31 or 32.
  • the second indication information indicates the second cell group through a bitmap.
  • the MAC CE signaling includes at least one bit, each bit in the at least one bit corresponds to a cell in the second cell group, and each bit The value of the bit is used to indicate whether the cell corresponding to each bit belongs to the second cell group.
  • the MAC CE signaling further includes at least one of the following: an identifier of the first cell, an identifier of the first bandwidth part BWP of the first cell, or a reserved bit.
  • the sending unit 710 is further configured to:
  • the second indication information indicates the second cell group through a cell identifier.
  • the MAC CE signaling includes the identity of each cell in the second cell group.
  • the MAC CE signaling further includes at least one of the following:
  • the sending unit 710 is further configured to:
  • Send fourth RRC signaling where the fourth RRC signaling is used to configure at least one cell, and the at least one cell includes the first cell and the at least one third cell.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS resource group SRS-ResourceSet signaling, and the SRS of the first cell
  • the resource group and the SRS resources in different SRS resource groups in the SRS resource group of the at least one third cell are configured through different SRS resource SRS-Resource signaling.
  • the SRS resource group SRS-ResourceSet signaling or the SRS resource SRS-Resource signaling is configured through SRS configuration SRS-Config.
  • Aperiodic SRS resource triggers aperiodicSRS-ResourceTrigger and/or aperiodicSRS resource trigger list aperiodicSRS-ResourceTriggerList configuration, the aperiodicSRS-ResourceTrigger is used to configure a trigger state in the multiple non-zero trigger states, and the aperiodicSRS-ResourceTriggerList uses for configuring one or more trigger states of the plurality of non-zero trigger states.
  • the value of the aperiodicSRS-ResourceTrigger is an integer from 1 to N-1, where N represents the number of aperiodic SRS trigger states; the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resource group of the first cell is configured with at least one time slot offset; the sending unit 710 is further configured to:
  • the fourth time slot is determined based on the first time slot and the time slot offset k corresponding to the SRS resource group of the first cell, the first time slot is the time slot where the aperiodic SRS trigger signaling is located, and the The SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource group of the first cell is received.
  • the SRS resource group of the first cell is configured with multiple timeslot offsets
  • the timeslot offset k corresponding to the SRS resource group of the first cell is the multiple timeslots Active slot offset in offset.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k.
  • the fourth time slot is an effective time slot after the first time slot, and the effective time slot is a time slot that can be used to transmit SRS.
  • the SRS resource groups of different cells in the first cell and the at least one third cell are configured through different SRS-Pos resource group version 16 SRS-PosResourceSet-r16 signaling, so The SRS resources of different SRS resource groups in the SRS resource group of the first cell and the SRS resource group of the at least one third cell are configured through different SRS Pos resource version 16 SRS-PosResource-r16 signaling.
  • the SRS-PosResourceSet-r16 signaling and the SRS-PosResource-r16 are configured through the SRS configuration SRS-Config.
  • the aperiodic setting in the SRS-PosResourceSet-r16 is used.
  • SRS resource trigger list version 16 aperiodicSRS-ResourceTriggerList-r16 configuration.
  • the value of each element in the aperiodicSRS-ResourceTriggerLis is an integer from 1 to N-1; the N represents the number of aperiodic SRS trigger states.
  • the N is greater than or equal to 4; if N is greater than 4, the N is indicated by the network device to the terminal device, or the N is reported to the terminal device based on the The capabilities of the network device are determined.
  • the SRS resources in the SRS resource group of the first cell are configured with at least one time slot offset; the sending unit 710 is further configured to:
  • the fifth time slot is determined based on the first time slot and the time slot offset k' corresponding to the SRS resource in the SRS resource group of the first cell, where the first time slot is the time where the aperiodic SRS trigger signaling is located slot, the SRS resource group of the first cell is the SRS resource group corresponding to the first value, and the first value is the value of the trigger state in the aperiodic SRS trigger signaling;
  • the SRS corresponding to the SRS resource in the SRS resource group of the first cell is received.
  • the SRS resources in the SRS resource group of the first cell are configured with multiple timeslot offsets, and the timeslot offsets corresponding to the SRS resources in the SRS resource group of the first cell k' is an activated slot offset among the plurality of slot offsets.
  • the SRS resource group of the first cell is configured with a slot offset, and the one slot offset is the slot offset k'.
  • the fifth time slot is a valid time slot after the first time slot
  • the valid time slot is a time slot that can be used to transmit SRS.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 700 shown in FIG. 30 may correspond to the corresponding subject in executing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the network device 700 are for the purpose of realizing the method shown in FIG. 26 , respectively.
  • the corresponding processes in each of the methods are not repeated here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • the receiving unit or the transmitting unit referred to above may be implemented by a transceiver.
  • FIG. 31 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 may include a processor 810 .
  • the processor 810 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 800 may also include a memory 820 .
  • the memory 820 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 810 .
  • the processor 810 may call and run a computer program from the memory 820 to implement the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may also include a transceiver 830 .
  • the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of the antennas may be one or more.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 800 may be a terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 800 may correspond to the terminal device 400 or the terminal device 600 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 800 may be the network device of the embodiments of the present application, and the communication device 800 may implement the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the communication device 800 in the embodiment of the present application may correspond to the network device 500 or the network device 700 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application. This will not be repeated here.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 32 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 includes a processor 910 .
  • the processor 910 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 910 .
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip 900 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs including instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform any of the methods 200 or 300. method of an example.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When the computer program is executed by a computer, the computer can execute the method of the embodiment shown in method 200 or 300 .
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • an embodiment of the present application further provides a communication system, which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • a communication system which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • division of units, modules or components in the apparatus embodiments described above is only a logical function division, and other division methods may be used in actual implementation.
  • multiple units, modules or components may be combined or integrated.
  • To another system, or some units or modules or components can be ignored, or not implemented.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Abstract

本申请实施例提供一种无线通信方法和设备,所述方法包括:接收第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。通过所述第一指示信息,使得第一小区上的非周期SRS触发信令,可触发终端设备在至少一个第二小区上的SRS传输,换言之,能够实现针对多小区场景下的跨小区(或跨载波)的非周期SRS的触发传输。

Description

无线通信方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和设备。
背景技术
在新空口(New Radio,NR)系统中,网络设备可以通过非周期SRS触发信令触发终端设备的传输非周期SRS。
但是,如果非周期SRS触发信令在小区X上发送,则非周期SRS触发信令只能触发小区X对应上行链路上的传输非周期SRS。但是,这种触发方式针对多小区的场景有很多局限性。例如,载波聚合(Carrier Aggregation,CA)场景。
因此,如何实现针对多小区场景下的跨小区(或跨载波)非周期SRS的触发传输是本领域急需解决的技术问题。
发明内容
本申请实施例提供一种无线通信方法和设备,能够实现针对多小区场景下的跨小区(或跨载波)的非周期SRS的触发传输。
第一方面,提供了一种无线通信方法,包括:
接收第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
第二方面,提供了一种无线通信方法,包括:
发送第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
第三方面,提供了一种无线通信方法,包括:
接收第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
第四方面,提供了一种无线通信方法,包括:
发送第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
第五方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,用于执行上述第三方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第八方面,提供了一种网络设备,用于执行上述第四方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第十方面,提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第十一方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第三方面或其各实现方式中的方法。
第十二方面,提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第四方面或其各实现方式中的方法。
第十三方面,提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十五方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十六方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,通过所述第一指示信息,使得第一小区上的非周期SRS触发信令,可触发终端设备在至少一个第二小区上的SRS传输,换言之,能够实现针对多小区场景下的跨小区(或跨载波)的非周期SRS的触发传输。
此外,避免了为每个小区仅通过自己接收的非周期SRS触发信令触发SRS,不仅能够提高触发信令的灵活性,还能够降低非周期SRS触发信令(DCI)的资源消耗。
附图说明
图1是本申请实施例提供的系统框架的示例。
图2是本申请实施例提供的无线通信方法的示意性交互图。
图3至图25是本申请实施例提供的MAC CE的示意图。
图26是本申请实施例提供的无线通信方法的另一示意性交互图。
图27是本申请实施例提供的终端设备的示意性框图。
图28是本申请实施例提供的网络设备的示意性框图
图29是本申请实施例提供的终端设备的另一示意性框图。
图30是本申请实施例提供的网络设备的另一示意性框图。
图31是本申请实施例提供的通信设备的示意性框图。
图32是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例提供了一种无线通信方法,可用于确定发送SRS的时隙。
为便于对本申请实施例的理解,下面对SRS进行介绍。
探测参考信号(Sounding Reference Signal,SRS)信号是5G/NR系统中重要的参考信号,广泛用于NR系统中的各种功能中,例如,SRS可以用于以下场景:
1.用于下行信道状态信息的获取(UE sounding procedure for DL CSI acquisition)
2.用于上行传输的频域调度和预编码确定;
3.用于天线切换(Antenna Switching)功能;
4.用于载波切换(Carrier Switching)功能(UE sounding procedure between component carriers);
5.用于定位功能;
6.配合基于码本(codebook-based)的上行传输;
7.配合基于非码本(Non-Codebook based)的上行传输。
网络设备可以给一个终端设备配置一个或多个SRS资源组(SRS Resource set),每个SRS Resource set可以配置1个或多个SRS resource(SRS资源)。
SRS的传输可以分为周期性(Periodic)、半持续(Semi-persistent)、非周期(Aperiodic)。
周期SRS是指周期性传输的SRS,其周期和时隙偏移由RRC信令配置,终端设备一旦接收到相应的配置参数,就按照一定的周期发送SRS,直到所述RRC配置失效。周期性SRS的空间相关信息(Spatial Relation Info)也由RRC信令配置。所述空间相关信息可以指示一个信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),同步信号/物理广播信道块(Synchronization Signal/PBCH Block,SSB)或者参考SRS。例如,可以通过隐式的方式来指示周期SRS的发送波束。例如,终端设备根据指示的CSI-RS/SSB来确定周期SRS的发送波束。再如,终端设备可以通过SRS资源的空间相关信息确定在SRS资源上传输SRS所用的发送波束。
半持续性SRS的周期和时隙偏移(slot offset)由RRC信令配置,但其激活和去激活信令是通过MAC CE承载的。终端设备在接收到激活信令后开始传输SRS,直到接收到去激活信令为止。半持续SRS的空间相关信息(发送波束)通过激活SRS的MAC CE一起承载。
终端设备接收到RRC配置的周期和时隙偏移后,根据以下公式确定能够用于传输SRS的时隙:
Figure PCTCN2020117919-appb-000001
其中,T SRS和T offset为配置的周期和偏移,n f
Figure PCTCN2020117919-appb-000002
分别为无线帧和时隙。
非周期SRS传输指网络设备可以通过DCI触发终端设备的SRS传输。用于触发非周期SRS传输的触发信令既可以通过UE专属搜索空间或公共搜索空间(Common search space)中用于调度PUSCH/PDSCH的DCI承载,也可以通过公共搜索空间中的DCI format 2_3来承载。
其中,DCI format 2_3不仅可以用于触发非周期SRS传输,也可以同时用于配置一组UE或一组载波上的SRS的功率控制指令(TPC)命令。
表1 SRS触发信令
Figure PCTCN2020117919-appb-000003
例如,若DCI中SRS请求域的值为11,则SRS的触发信令指示使用更高层参数非周期SRS资源触发(aperiodicSRS-ResourceTrigger)设置为3的SRS资源组进行SRS传输。
终端设备接收到非周期SRS触发信令(例如DCI)后,在触发信令所指示的非周期SRS资源组上进行SRS传输。其中,触发信令与SRS传输之间的时隙偏移(slot offset)可以由高层信令(RRC)配置。网络设备预先通过高层信令指示终端设备每个SRS资源组的配置参数,包括时频资源、序列参数、功率控制参数等。另外,对于触发的SRS资源组中的每个SRS资源,终端设备还可以通过该资源的空间相关信息确定在该资源上传输SRS所用的发送波束,该空间相关信息可通过RRC配置给每个SRS资源。
在新空口(New Radio,NR)系统中,为了支持各种可能的部署场景,以及未来各种新型业务类型,系统设计非常灵活,例如,上下行的资源可以通过高层信令以及物理层信令来指示和调整。因此,针对一个时隙(slot)或一个slot上的某些符号在不同的时刻可能可以用于不同方向的传输,例如,某个时刻可以用于上行传输,某个时刻用于下行传输。
但是,如前所述,针对非周期探测参考信号(Sounding Reference Signal,SRS),其时隙偏移(slot offset)可以由高层信令配置,相当于,在RRC信令重新配置其他取值之前,每次触发信令与SRS传输之间的时隙偏移是不变的,导致用于接收触发信令的时隙和用于发送SRS的时隙相对位置是固定的,增加了限制性并降低了系统灵活性。
例如,假设时隙偏移为k,如果要触发SRS在slot n+k上传输,那么对应的触发信令只能在slot n上发送,这就限制了发送触发信令的时机,给网络设备的调度工作增加了额外不必要的限制。
再如,当某个slot,或者某个slot上某些符号被动态地从可以上行传输变成下行传输时,可能会使得某次非周期SRS无法传输。例如,若slot n+k被更改为用于下行传输,则在slot n上发送的触发SRS信令是无效的,或者不能在slot n上发送触发信令。
在本申请的一些实施例中,若网络设备在slot n上发送SRS触发信令,则终端设备可以在slot n+k或之后的第一个有效slot上传输SRS。通过在slot n+k或之后的第一个有效slot上传输SRS,虽然可以提高传输SRS的成功率,但 效率不高,还会增加网络设备的配置和调度复杂度,主要原因在于有效slot不是固定的,需要根据相关配置或因素(例如上下行时隙配置和/或指示)来确定。
进一步的,本申请实施例提供了一种无线通信方法,。
需要说明的是,本申请实施例中,将能够或可用于传输SRS的时隙称为有效时隙(valid slot)。
图2示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备和网络设备交互执行。图2中所示的终端设备可以是如图1所示的终端设备,图2中所示的网络设备可以是如图1所示的接入网设备。
如图2所示,所述方法200可包括:
S210,终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
例如,终端设备接收所述第一指示信息,并在所述第一小区上接收到所述非周期SRS触发信令后,可触发所述终端设备在所述至少一个第二小区上发送SRS。
需要说明的是,本申请实施例涉及的小区可以等同于载波。例如,小区可等同于CA场景下的成员载波(Component Carrier,CC)。换言之,所述第一指示信息可用于指示第一载波上的非周期SRS触发信令用于触发至少一个第二载波上的SRS。此外,所述至少一个第二小区可以是一个小区,也可以是一组小区,还可以是多个小区,本申请对此不作具体限定。
例如,若所述至少一个第二小区为一个第二小区,相当于,所述第一指示信息用于指示所述第一小区上的非周期SRS触发信令可用于触发另一小区上的SRS。再如,若所述至少一个第二小区为一组小区,相当于,所述第一指示信息可用于指示所述第一小区上的非周期SRS触发信令可用于触发一组小区上的SRS。再如,若所述至少一个第二小区为多个小区,相当于,所述第一指示信息可用于指示所述第一小区上的SRS触发命令可用于触发多个小区上的SRS。应理解,所述一组小区或所述多个小区可包括所述第一小区,也可不包括所述第一小区,本申请实施例对此不作具体限定。
通过所述第一指示信息,使得第一小区上的非周期SRS触发信令,可触发终端设备在至少一个第二小区上的SRS传输,换言之,能够实现针对多小区场景下的跨小区(或跨载波)的非周期SRS的触发传输。
此外,避免了为每个小区仅通过自己接收的非周期SRS触发信令触发SRS,不仅能够提高触发信令的灵活性,还能够降低非周期SRS触发信令(DCI)的资源消耗。
在本申请的一些实施例中,所述第一指示信息用于指示在所述第一小区或所述第一小区的第一带宽部分BWP上的非周期SRS触发信令,用于触发所述第一小区或所述第一BWP对应的所述至少一个第二小区上的SRS。
换言之,所述第一小区或所述第一BWP对应的所述至少一个第二小区,可以理解为:所述第一指示信息是针对所述第一小区或所述第一BWP配置的,且所述第一指示信息指示了所述至少一个第二小区。相当于,针对不同的小区,或者针对一个小区的不同BWP,或者针对一个小区的不同BWP,其配置的同时激活非周期SRS的小区可以不同。由此,可以提升配置的灵活性,进而提高网络设备优化性能。
在本申请的一些实施例中,所述第一指示信息用于指示第一触发状态,或者在所述第一小区或所述第一小区上的第一带宽部分BWP上的非周期SRS触发信令中的第一触发状态,用于触发所述第一触发状态对应的所述至少一个第二小区上的SRS。
换言之,所述第一指示信息是针对所述第一触发状态配置的,且所述第一指示信息指示了所述至少一个第二小区。相当于,两个不同的触发状态可能可以触发不同小区上的非周期SRS传输。例如触发状态1可以触发小区0和小区1上的非周期SRS传输,触发状态2可以触发小区0,小区1和小区2上的非周期SRS传输。
例如,本申请实施例中涉及的第一指示信息可以使针对终端设备配置的。换言之,所述第一指示信息是针对终端设备的触发状态配置的。即第一指示信息指示的第一触发状态与至少一个第二小区的对应关系适用于所述终端设备的各个小区,或者适用于所述终端设备的各个小区的各个BWP。
例如,本申请实施例中涉及的第一指示信息可以使针对终端设备的一个目标小区组(Cell group)配置的。换言之,所述第一指示信息是针对终端设备的一个目标小区组上的触发状态配置的。即第一指示信息指示的第一触发状态与至少一个第二小区的对应关系适用于所述一个目标小区组的各个小区,或者适用于所述一个目标小区组的各个小区的各个BWP。
需要说明的是,所述目标小区组可以指双连接(Dual Connection,DC)下的小区组。例如主小区组(MCG,Master Cell group),或者辅小区组(SCG,Secondary Cell group)。而本申请中涉及的至少一个第二小区或在至少一个第三小区形成的小区组均可以理解为一个非周期SRS触发信令可触发的一个或多个小区所形成的小区组;例如,下文涉及的第一小区组、第二小区组、第一指示信息指示的小区组、或第二信息指示的小区组。
可选的,所述第一触发状态为非零触发状态。
在本申请的一些实施例中,所述第一指示信息用于指示在终端设备的所述第一小区或所述终端设备的目标小区组(Cell Group)的所述第一小区上的非周期SRS触发信令,用于触发所述终端设备或所述目标小区组对应的所述至少一个第二小区上的SRS。
换言之,所述第一指示信息是针对所述终端设备或包括所述第一小区的目标小区组配置的,且所述第一指示信息指示了所述至少一个第二小区。相当于,针对不同的小区,或者同一个目标小区组中的不同小区,其配置的同时激活非周期SRS的小区可以是相同的。由此,网络设备和终端设备实现和处理简单,可以降低实现复杂度。
在本申请的一些实施例中,所述第一指示信息用于指示所述至少一个第二小区,其中,在所述第一小区上的非周期SRS触发信令用于触发所述至少一个第二小区上的SRS。
换言之,所述第一指示信息通过指示所述至少一个第二小区,以指示第一小区上的非周期SRS触发信令用于触发至少一个第二小区上的SRS。
本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区组中所有活跃小区。可选的,所述第一小区组中小区的最大数量为2、4、8或32。
在本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区和第一小区组中的所有活跃小区。可选的,所述第一小区组中小区的最大数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第一指示信息通过位图指示所述第一小区组。
例如,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第一小区组中的一个小区,所述至少一个比特位中的一个比特位上的取值用于指示所述一个比特位对应的小区是否属于所述第一小区组。
例如,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
例如,所述方法200还可包括:
接收第一RRC信令,根据所述第一RRC信令切换或确定所述至少一个比特位的长度。
下面结合图3至图12,对本申请实施例提供的用于承载位图的MAC CE的方案进行示例性说明。
如图3所示,所述MAC CE信令可包括R、服务小区标识(Serving Cell ID)、带宽部分标识(Bandwidth Part ID,BWP ID)以及C 0~C 7
其中,R表示预留比特(Reserved bit),例如,其取值可为0。
服务小区标识可以是上文所述的第一小区的标识。在申请的各个实施例中,小区标识,也可以是小区的编号或者索引(index)。后续不再做额外说明。
换言之,服务小区标识可用于指示上文所述的MAC CE用于哪个小区(indicates the identity of the Serving Cell for which the MAC CE applies)。例如,所述服务小区标识可占用5bit。
BWP ID可以是上文所述的第一BWP的标识,即第一小区上的第一BWP的标识。
换言之,BWP ID可用于指示这个MAC CE用于哪个BWP(indicates a DL BWP for which the MAC CE applies)。例如,所述BWP ID可占用2bit。
C 0~C 7分别为上文所述的第一小区组中的小区的标识对应的bit。
换言之,C 0~C 7分别对应8个小区。例如,C 0~C 7中的C i对应服务小区索引(ServCellIndex)为i的小区,如果C i的取值为1,表示C i对应服务小区索引(ServCellIndex)为i的小区属于所述第一小区组,例如,表示所述服务小区标识所指示的小区的BWP ID指示的BWP上传输的非周期SRS触发信令可以触发ServCellIndex i的小区上的非周期SRS传输;如果C i的取值为0,表示C i对应服务小区索引(ServCellIndex)为i的小区不属于所述第一小区组,例如,表示所述服务小区标识所指示的小区的BWP ID指示的BWP上传输的非周期SRS触发信令不触发ServCellIndex i的小区上的非周期SRS传输。
当然,在其他可替代实施例中,如果C i的取值为0,表示C i对应服务小区索引(ServCellIndex)为i的小区属于所述第一小区组,例如,表示所述服务小区标识所指示的小区的BWP ID指示的BWP上传输的非周期SRS触发信令可以触发ServCellIndex i的小区上的非周期SRS传输;如果C i的取值为1,表示C i对应服务小区索引(ServCellIndex)为i的小区不属于所述第一小区组,例如,表示所述服务小区标识所指示的小区的BWP ID指示的BWP上传输的非周期SRS触发信令不触发ServCellIndex i的小区上的非周期SRS传输。
应理解,图3仅为本申请的示例,不应理解为对本申请的限制。
例如,如图4所示,所述MAC CE信令中的BWP ID也可以为可选信息。即所述MAC CE信令可包括3个R、服务小区标识以及C 0~C 7。当然,如图5所示,所述MAC CE信令中的C 0~C 7,可从由左向右的排列顺序,变更为由右向左的排列顺序。当然,如图6所示,3个R的位置也可以从位于所述服务小区的前面,变更为位于服务小区标识的后面。
再如,如图7所示,所述MAC CE信令中的位图的长度也可以为16bit。即所述MAC CE信令可包括1个R、服务小区标识、BWP ID以及C 0~C 15。当然,如图8所示,所述MAC CE信令中的BWP ID也可以为可选信息。即所述MAC CE信令可包括3个R、服务小区标识以及C 0~C 15
再如,如图9所示,所述MAC CE信令中的位图的长度也可以为24bit。即所述MAC CE信令可包括1个R、服务小区标识、BWP ID以及C 0~C 23。当然,如图10所示,所述MAC CE信令中的BWP ID也可以为可选信息。即所述MAC CE信令可包括3个R、服务小区标识以及C 0~C 23
再如,如图11所示,所述MAC CE信令中的位图的长度也可以为32bit。即所述MAC CE信令可包括1个R、服务小区标识、BWP ID以及C 0~C 31。当然,如图12所示,所述MAC CE信令中的BWP ID也可以为可选信息。即所述MAC CE信令可包括3个R、服务小区标识以及C 0~C 31
需要说明的是,图3至图12所示的MAC CE信令的格式仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,所述MAC CE信令还可以包括其他信息。再如,在其他可替代的实施例中,所述MAC CE信令中的各个信息的位置可以更换,例如R可以放在第一行的末尾,也可以放在第一行的前面。再如,所述第一小区组中的小区的排列顺序可以按照小区标识由小到大,也可以由大到小。换言之,只要保证终端设备和网络设备对所述第一小区组中小区的排列顺序理解一致,本申请对所述第一小区组中小区的排列顺序不作具体限定。
此外,可以基于终端设备配置的服务小区索引(ServCellIndex)的最大值确定所述MAC CE信令的格式。
例如,网络设备和/或终端设备可以根据上文所述第一RRC信令切换或确定所述至少一个比特位的长度,即切换或确定所述MAC CE信令的格式。例如,若所述终端设备配置的ServCellIndex的最大值小于8,可以使用位图的长度为8bit的MAC CE;若所述终端设备配置的ServCellIndex的最大值大于等于8,且小于16,可以使用位图的长度为16bit的MAC CE;若所述终端设备配置的ServCellIndex的最大值大于等于16,且小于24,可以使用位图的长度为24bit的MAC CE;若所述终端设备配置的ServCellIndex的最大值大于等于24,可以使用位图的长度为32bit的MAC CE。
当然,也可以将可位图的长度的划分粒度也可以大于8。例如,若所述终端设备配置的ServCellIndex的最大值大 于等于8,且小于32,可以使用位图的长度为16bit或32bit的MAC CE。
需要说明的是,若前述MAC CE信令中的可用于位图的比特位的数量为X,且实际ServCellIndex最大值小于X,则X个比特位中的部分比特位可作为保留比特位。可选的,所述保留比特位可不用于实际用途。换言之,所述X个比特位可以包括所述用于指示所述第一小区组的除位图之外的保留比特位。所述保留比特位也可称为剩余的比特位。
在本申请的一些实施例中,所述第一指示信息通过小区标识指示所述第一小区组。
例如,所述MAC CE信令包括所述第一小区组中每一个小区的标识。
例如,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第一小区组中小区的数量;或
预留比特。
下面结合图13至图17,对本申请实施例提供的用于承载的小区标识的MAC CE的方案进行示例性说明。
如图13所示,所述MAC CE信令可包括3个R、服务小区标识(Serving Cell ID)0~K。
其中,R表示预留比特(reseved bit),例如,其取值可为0。
服务小区标识0表示上文所述的第一小区的标识。
换言之,服务小区标识0可用于指示上文所述的MAC CE用于哪个小区(indicates the identity of the Serving Cell for which the MAC CE applies)。例如,所述服务小区标识0可占用5bit。
服务小区标识1~K表示上文所述第一小区组中的小区的标识。
换言之,针对服务小区标识1~K中的服务小区标识i(i>=1),服务小区标识i可用于指示一个服务小区索引X(ServCellIndex X),表示所述服务小区标识0所指示的小区上传输的非周期SRS触发信令可以触发ServCellIndex X的小区上的非周期SRS传输。例如,服务小区标识i可占用5bit。当然,i可以等于X,也可以不同于X,本申请对此不作具体限定。
需要说明的是,本申请对未标注或者说明的bit不限制具体用途。例如,可以用于指示,也可用于Reserved bit。
应理解,图13仅为本申请的示例,不应理解为对本申请的限制。
例如,如图14所示,所述MAC CE信令还可包括BWP ID。即所述MAC CE信令可包括服务小区标识(Serving Cell ID)0和BWP ID服务小区标识1~K。
BWP ID可以是上文所述的第一BWP的标识,即第一小区上的第一BWP的标识。
换言之,BWP ID可用于指示这个MAC CE用于哪个BWP(indicates a DL BWP for which the MAC CE applies)。例如,所述BWP ID可占用2bit。
基于此,针对服务小区标识1~K中的服务小区标识i(i>=1),服务小区标识i可用于指示一个服务小区索引X(ServCellIndex X),表示所述服务小区标识0所指示的小区的BWP ID指示的BWP上传输的非周期SRS触发信令可以触发ServCellIndex X的小区上的非周期SRS传输。例如,服务小区标识i可占用5bit。当然,i可以等于X,也可以不同于X,本申请对此不作具体限定。
再如,如图15所示,所述MAC CE信令还可包括第一信息,例如X0,X1,X2的部分或全部。即所述MAC CE信令可包括第一信息、以及BWP ID服务小区标识0~K。
其中,X0,X1,X2中的部分或者全部bit用来指示Serving cell ID的数量K。
再如,如图16所示,所述MAC CE信令还可同时包括第一信息和BWP ID,例如X0,X1,X2。即所述MAC CE信令可包括服务小区标识0、第一信息、BWP ID服务小区标识1~K。
再如,如图17所示,所述第一信息占用的bit可大于3个。例如,X0,X1,X2,X3,X4中的部分或者全部。换言之,X0,X1,X2,X3,X4中的部分或者全部bit可用来指示Serving cell ID的数量K。
需要说明的是,图13至图17所示的MAC CE信令的格式仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,所述MAC CE信令还可以包括其他信息。再如,在其他可替代的实施例中,所述MAC CE信令中的各个信息的位置可以更换,例如R可以放在第一行的末尾,也可以放在第一行的前面。再如,所述第一小区组中的小区的排列顺序可以按照小区标识由上到下,也可以由下到上。换言之,只要保证终端设备和网络设备对所述第一小区组中小区的排列顺序理解一致,本申请对所述第一小区组中小区的排列顺序不作具体限定。
还应理解,图3至图17所示的MAC CE信令中包括上述所述的第一小区的标识,在所述第一指示信息为针对终端设备或包括所述第一小区的小区组配置的情况下,所述MAC CE信令中可不包括所述第一小区的标识或所述第一BWP的标识。
例如,如图18所示,所述MAC CE信令包括C 0~C 7
当然,如图19所示,所述MAC CE信令中的C 0~C 7,可从由左向右的排列顺序,变更为由右向左的排列顺序。
再如,如图20所示,所述MAC CE信令包括C 0~C 15
再如,如图21所示,所述MAC CE信令包括C 0~C 23
再如,如图22所示,所述MAC CE信令包括C 0~C 31
再如,如图23所示,所述MAC CE信令包括服务标识1~K。
再如,如图22所示,所述MAC CE信令包括第一信息和服务标识1~K。例如,第一信息可以是X0,X1,X2中的部分或者全部。
再如,如图22所示,所述MAC CE信令包括第一信息和服务标识1~K。例如,第一信息可以是X0,X1,X2,X3,X4中的部分或者全部。
在本申请的一些实施例中,所述方法200还可包括:
接收第二RRC信令,所述第二RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第二小区。
例如,终端设备接收网络设备发送的所述第二RRC信令。
换言之,网络设备向终端设备发送所述第二RRC信令,以配置所述至少一个小区。
需要说明的是,针对SRS,需要基于SRS资源组(SRS-ResourceSet)或SRS资源(SRS-Resource)进行传输。换言之,终端设备发送的SRS可以是SRS资源组或SRS资源对应的SRS。SRS资源组对应的SRS的时隙偏移是针对SRS资源组配置的,SRS资源对应的时隙偏移是针对SRS资源配置的。上述介绍的SRS资源组对应的SRS也可以称为普通SRS。可选的,SRS资源组中的用途(usage)域可配置为波束管理(beamManagement),码本(codebook),非码本(nonCodebook),天线切换(antennaSwitching)中的一个。SRS资源对应的SRS也可以为用于定位的SRS,通过RRC信令SRS-PosResource-r16配置,对应的SRS资源组通过RRC信令SRS-PosResourceSet-r16配置。后面为了描述简单,部分地方只以普通SRS为例来介绍,但是其方案同样适用于定位SRS。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
需要说明的是,本申请各个实施例涉及的SRS资源组均为非周期SRS资源组,SRS资源均为非周期SRS资源。
例如,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
例如,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
例如,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有至少一个时隙偏移;所述方法200还可包括:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组对应的时隙偏移k确定所述第二时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第二时隙上,发送所述一个第二小区的SRS资源组对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
例如,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
再如,所述第二时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
需要说明的是,本申请各个实施例涉及的SRS资源组均为非周期SRS资源组,SRS资源均为非周期SRS资源。
例如,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
例如,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
例如,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法200还可包括:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第三时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第三时隙上,发送所述一个第二小区的SRS资源组中的SRS资源对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
例如,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
再如,所述第三时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
需要说明的是,所述有效时隙也可以理解为可用于上行传输的时隙。所述可用于上行传输的时隙可以理解为仅用于上行传输的时隙,即一直用于上行传输,也可理解为含有上行符号(uplink symbol)的时隙,也可理解为含有灵活符号(flexible symbol)的时隙,也可以理解为灵活时隙(flexible slot),也可以理解为偶尔不可用于上行传输的时隙,例如,偶尔用于下行传输的时隙。可选的,本申请中的可用于上行传输的时隙实际能不能用于上行传输,需要看是否 与其他信号发送碰撞。
下面结合具体实施例对所述方法200的技术方案进行说明。需要说明,后续实施例中,步骤主要是为了描述相对关联的功能点,在实际实施时,部分步骤可以省略,或者不同步骤的相对顺序可以改变,或者不同步骤中的不同子过程的相对顺序可以改变,在此不做限定。
实施例1:
本实施例中,所述第一指示信息是针对所述第一小区或所述第一BWP配置的。
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
例如,小区聚合(Carrier Aggregation,CA)配置信息。其中配置有A个小区。针对A个小区中的1个或多个(记为B,B<=A)中的每一个小区(部分情况下,可能有的小区不配置对应的非周期SRS,因此写成A中的1个或多个),网络设备通过RRC信令携带SRS配置信息,配置1个或多个SRS资源组,每个SRS资源组包含1个或多个SRS资源。下面描述是针对B个小区中的某个小区进行描述,不同小区上的配置可以独立。下面以小区Z为例来描述。
可选的,小区Z上所述SRS资源组通过RRC信令SRS-ResourceSet配置,所述SRS资源通过RRC信令SRS-Resource配置。
可选的,SRS-ResourceSet信令中的用途(usage)域可配置为波束管理(beamManagement),码本(codebook),非码本(nonCodebook),天线切换(antennaSwitching)中的一个。
可选的,小区Z上所述SRS资源组配置有多个(记为M个,M>=1)触发状态。可选的,每个触发状态对应非周期SRS触发信令中SRS请求域的一个取值,即一个码点(code point)。例如表1的触发状态的取值。
可选的,上述多个触发状态通过SRS-ResourceSet IE中的aperiodicSRS-ResourceTrigger和/或aperiodicSRS-ResourceTriggerList来配置,其中aperiodicSRS-ResourceTrigger配置1个值,aperiodicSRS-ResourceTriggerList配置1个或多个值。
可选的,aperiodicSRS-ResourceTrigger取值范围为1到N-1的一个整数。
可选的,aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1的一个整数。
例如,N可以等于非周期SRS触发状态数目(maxNrofSRS-TriggerStates),取值为4。
再如,根据网络设备发送的配置信息确定N的取值为4或更大值(例如,8或16);当然,在其他可替代实施例中,可采用其他命名。通过增加非周期SRS触发信令所对应的状态数,可以提高DCI触发非周期SRS的灵活性,提高系统性能,从而可以实现跨小区触发非周期SRS,降低DCI开销,增加系统灵活性。可选的,所述配置信息通过RRC信令,或者MAC CE信令指示终端设备。可选的,终端设备通过终端设备能力上报信息通知网络设备可以支持更多的非周期SRS触发状态(Maximum number of SRS trigger states),即N大于4,以便网络设备基于终端设备上报的能力确定N。
可选的,所述RRC信令通过SRS-Config配置。
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第一指示信息指示在小区Z或小区Z的BWP Y上传输的非周期SRS触发信令可以触发哪些小区上的SRS。
可选的,网络设备未通过上述信令指示相关信息时,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,在上述MAC CE信令中,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z或小区Z的BWP Y对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit 对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z或小区Z的BWP Y上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的触发状态大于0(其取值记为value,简称为第一取值),即非零触发状态,则在前述确定的小区上发送对应的非周期SRS。
针对上述确定的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非周期SRS资源组。对应的SRS资源组配置有1个时隙偏移(slot offset)或多个时隙偏移。
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源所在的SRS资源组对应的时隙偏移确定小区Z’对应的slot n’上传输SRS资源。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可采用如下公式确定slot n’:
Figure PCTCN2020117919-appb-000004
其中,所述u SRS表示所述SRS对应的子载波间隔配置,所述u PDCCH表示所述触发信令使用的物理下行控制信道PDCCH对应的子载波间隔配置,所述k表示SRS资源组对应的时隙偏移,所述n表示所述第一时隙。
再如,可以基于以下公式确定slot n’:
Figure PCTCN2020117919-appb-000005
其中,所述u SRS表示所述SRS对应的子载波间隔配置,所述u PDCCH表示所述触发信令使用的物理下行控制信道PDCCH对应的子载波间隔配置,所述
Figure PCTCN2020117919-appb-000006
和所述u offset,PDCCH分别是取决于上层配置的用于接收物理下行控制信道PDCCH的针对载波聚合CA的时隙偏移的
Figure PCTCN2020117919-appb-000007
和u offset,所述
Figure PCTCN2020117919-appb-000008
和所述u offset,SRS分别是取决于上层配置的用于传输所述SRS的针对载波聚合CA的时隙偏移的
Figure PCTCN2020117919-appb-000009
和u offset,所述k表示SRS资源组对应的时隙偏移,所述n表示所述第一时隙。此外,
Figure PCTCN2020117919-appb-000010
和u offset可以是通信标准中规定的针对CA的时隙偏移的相关参数。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
实施例2:
本实施例中,所述第一指示信息是针对非周期SRS触发状态配置的。
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
应理解,实施例2中的步骤1可参考实施例1中的步骤1,为避免重复,此处不再赘述。
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第一指示信息指示在小区Z或小区Z的BWP Y上非周期SRS触发状态S可以触发1个或多个小区上的SRS。当小区Z或小区Z的BWP Y上非周期SRS触发信令对应非周期SRS触发状态S时,则触发所述1个或多个小区上的SRS。
可选的,上述非周期SRS触发状态为非0的状态。
可选的,针对不同的非周期SRS触发状态可以配置对应的不同小区。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令对应的触发状态S只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非 周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
针对非零非周期SRS触发状态S,网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z上发送的非周期SRS触发信令,若此非零非周期触发信令对应触发状态为S时,触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
针对非零非周期SRS触发状态S,网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,网络设备在小区Z上发送的非周期SRS触发信令,若此非零非周期触发信令对应触发状态为S时,触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的触发状态S>0(其取值记为value,简称为第一取值),即非零触发状态,则在前述确定的小区上发送对应的非周期SRS。
针对第一信令对应的触发状态S,确定上述对应的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非周期SRS资源组。对应的SRS资源组配置有1个时隙偏移(slot offset)或多个时隙偏移。
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源所在的SRS资源组对应的时隙偏移确定小区Z’对应的slot n’上传输SRS资源。
可选的,根据SRS资源组对应的时隙偏移offset(数值用k表示,这种方式对应额SRS资源组配置1个时隙偏移,或者激活一个时隙偏移的情况),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
实施例3:
本实施例中,所述第一指示信息是针对所述终端设备或包括所述第一小区的小区组配置的,即上文涉及的目标小区组。
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
应理解,实施例3中的步骤1可参考实施例1中的步骤1,为避免重复,此处不再赘述。
步骤2:
针对终端设备,或者针对一个目标小区组,网络设备通过第一指示信息指示非周期SRS触发信令可以触发终端设备的哪些小区上的SRS,或者可以触发所述目标小区组对应的哪些小区上的SRS。在实施例1中,通过信令指示在小区Z上发送的非周期SRS触发信令可以触发哪些小区上的非周期SRS传输。和实施例1相比,网络设备和终端设备实现和处理简单,降低实现复杂度。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备小区Z上,或者所述小区组中的任一小区Z上,发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备小区Z上,或者所述小区组中的任一小区Z上,发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的取值大于0(取值记为value),则在前述确定的小区上发送对应的非周期SRS。
针对上述确定的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非周期SRS资源组。对应的SRS资源组配置有1个时隙偏移(slot offset)或多个时隙偏移。
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源所在的SRS资源组对应的时隙偏移确定小区Z对应的slot n’上传输SRS资源
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
上面结合实施例1至实施例3对第一指示信息用于触发SRS资源组对应的SRS的方案进行了说明,下面结合实施例4至实施例6对所述第一指示信息用于触发SRS资源对应的SRS进行说明。
实施例4:
本实施例中,所述第一指示信息是针对所述第一小区或所述第一BWP配置的。
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
例如,小区聚合(Carrier Aggregation,CA)配置信息。其中配置有A个小区。针对A个小区中的1个或多个(记为B,B<=A)中的每一个小区(部分情况下,可能有的小区不配置对应的非周期SRS,因此写成A中的1个或多个),网络设备通过RRC信令携带SRS配置信息,配置1个或多个SRS资源组,每个SRS资源组包含1个或多个SRS资 源。下面描述是针对B个小区中的某个小区进行描述,不同小区上的配置可以独立。下面以小区Z为例来描述。
可选的,所述SRS资源组通过RRC信令SRS-PosResourceSet-r16配置,所述SRS资源通过RRC信令SRS-PosResource-r16配置。
可选的,针对至少一个所述SRS资源组(记为Set X)配置有多个(记为M个,M>=1)触发状态。可选的,每个触发状态对应非周期SRS触发信令中SRS请求域的一个取值,即一个码点(code point)。例如表1的触发状态的取值。
可选的,多个触发状态通过SRS-PosResourceSet-r16中的aperiodicSRS-ResourceTriggerList-r16来配置。
可选的,aperiodicSRS-ResourceTriggerList-r16中每个元素的取值为1到N-1的一个整数。
例如,N可以等于非周期SRS触发状态数目(maxNrofSRS-TriggerStates),取值为4。
再如,根据网络设备发送的配置信息确定N的取值为4或更大值(例如,8或16);当然,在其他可替代实施例中,可采用其他命名。通过增加非周期SRS触发信令所对应的状态数,可以提高DCI触发非周期SRS的灵活性,提高系统性能,从而可以实现跨小区触发非周期SRS,降低DCI开销,增加系统灵活性。
可选的,所述配置信息通过RRC信令,或者MAC CE信令指示终端设备。
可选的,终端设备通过终端设备能力上报信息通知网络设备可以支持更多的非周期SRS触发状态(Maximum number of SRS trigger states),即N大于4,以便网络设备基于终端设备上报的能力确定N。
可选的,所述RRC信令通过SRS-Config配置
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第一指示信息指示在小区Z或小区Z的BWP Y上传输的非周期SRS触发信令可以触发哪些小区上的SRS。
可选的,网络设备未通过上述信令指示相关信息时,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,在上述MAC CE信令中,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z或小区Z的BWP Y上发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z或小区Z的BWP Y对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的触发状态大于0(其取值记为value,简称为第一取值),即非零触发状态,则在前述确定的小区上发送对应的非周期SRS。
针对上述确定的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非周期SRS资源组。对应的SRS资源配置有1个时隙偏移(slot offset)或多个时隙偏移
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源对应的时隙偏移确定小区Z’对应的slot n’上传输SRS资源。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
实施例5:
本实施例中,所述第一指示信息是针对非周期SRS触发状态配置的。
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
应理解,实施例5中的步骤1可参考实施例3中的步骤1,为避免重复,此处不再赘述。
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第一指示信息指示在小区Z或小区Z的BWP Y上非周期SRS触发状态S可以触发1个或多个小区上的SRS。当小区Z或小区Z的BWP Y上非周期SRS触发信令对应非周期SRS触发状态S时,则触发所述1个或多个小区上的SRS。
可选的,上述非周期SRS触发状态为非0的状态。
可选的,针对不同的非周期SRS触发状态可以配置对应的不同小区。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令对应的触发状态S只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
针对非零非周期SRS触发状态S,网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,小区Z上发送的非周期SRS触发信令,若此非零非周期触发信令对应触发状态为S时,触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
针对非零非周期SRS触发状态S,网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,网络设备在小区Z上发送的非周期SRS触发信令,若此非零非周期触发信令对应触发状态为S时,触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的触发状态S>0(其取值记为value,简称为第一取值),即非零触发状态,则在前述确定的小区上发送对应的非周期SRS。
针对第一信令对应的触发状态S,确定上述对应的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非周期SRS资源组。对应的SRS资源配置有1个时隙偏移(slot offset)或多个时隙偏移
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源对应的时隙偏移确定小区Z’对应的slot n’上传输SRS资源。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
实施例6:
本实施例中,所述第一指示信息是针对所述终端设备或包括所述第一小区的小区组配置的,即上文所述的目标小区组。
步骤1:
应理解,实施例5中的步骤1可参考实施例3中的步骤1,为避免重复,此处不再赘述。
步骤2:
针对终端设备,或者针对一个目标小区组,网络设备通过第一指示信息指示非周期SRS触发信令可以触发终端设备的哪些小区上的SRS,或者可以触发所述目标小区组对应的哪些小区上的SRS。在实施例1中,通过信令指示在小区Z上发送的非周期SRS触发信令可以触发哪些小区上的非周期SRS传输。和实施例1相比,网络设备和终端设备实现和处理简单,降低实现复杂度。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第一指示信息时,采用原有触发方式。
可选的,在所述第一指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第一指示信息触发非周期SRS。
可选的,在所述第一指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第一指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备小区Z上,或者所述小区组中的任一小区Z上,发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以更灵活地控制一个非周期SRS触发信令可以触发哪些小区上的非周期SRS传输,而不是触发所有活跃小区上的非周期SRS传输,不仅能够提升网络设备触发SRS的灵活度,还能够提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备小区Z上,或者所述小区组中的任一小区Z上,发送的非周期SRS触发信令触发终端设备在所述一组小区中的所有活跃小区上对应的非周期SRS传输。例如,在对应活跃小区配置了对应的非周期SRS的情况下。此外,触发小区Z对应的非周期SRS传输。和选项1相比,针对选项1,只有在MAC CE信令指示的一组小区中包括小区Z的情况下,小区Z上的非周期SRS触发信令才可以触发小区Z上的非周期SRS传输;选项2在1基础上,无论MAC CE信令指示的一组小区中是否包括小区Z,小区Z上的非周期SRS触发信令都可以触发小区Z上的非周期SRS传输;相当于,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在小区Z上接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的取值大于0(取值记为value),则在前述确定的小区上发送对应的非周期SRS。
针对上述确定的小区中的每一个小区上(记为Z’),发送第一信令取值value对应的SRS资源组对应的非周期SRS,由于在Z’上的非周期SRS资源组里面配置有触发状态,因此每个Z’上会有和第一信令取值value对应的非 周期SRS资源组。对应的SRS资源配置有1个时隙偏移(slot offset)或多个时隙偏移
可选的,终端设备在小区Z的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源对应的时隙偏移确定小区Z’对应的slot n’上传输SRS资源。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
图26示出了根据本申请实施例的无线通信方法300的示意性流程图,所述方法300可以由终端设备和网络设备交互执行。图26中所示的终端设备可以是如图1所示的终端设备,图26中所示的网络设备可以是如图1所示的接入网设备。
如图26所示,所述方法300可包括:
S310,终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
例如,终端设备接收所述第二指示信息,并在所述至少一个第三小区上的任意小区上接收到所述非周期SRS触发信令后,可触发所述终端设备在所述第一小区上发送SRS。
需要说明的是,本申请实施例涉及的小区可以等同于载波。例如,小区可等同于CA场景下的成员载波(Component Carrier,CC)。换言之,所述第二指示信息可用于指示第一载波上的探测参考信号SRS可通过至少一个第三载波上的非周期SRS触发信令触发。此外,所述至少一个第三小区可以是一个小区,也可以是一组小区,还可以是多个小区,本申请对此不作具体限定。
例如,若所述至少一个第三小区为一个第三小区,相当于,所述第二指示信息用于指示所述第一小区上的SRS可通过另一个小区上的非周期SRS触发信令触发。再如,若所述至少一个第三小区为一组小区,相当于,所述第二指示信息可用于指示所述第一小区上的SRS可通过一组小区中任意小区上的非周期SRS触发信令触发。再如,若所述至少一个第三小区为多个小区,相当于,所述第一指示信息可用于指示所述第一小区上的SRS可通过所述多个小区中的任意小区上的SRS触发命令触发。应理解,所述一组小区或所述多个小区可包括所述第一小区,也可不包括所述第一小区,本申请实施例对此不作具体限定。
通过所述第二指示信息,使得第一小区上的SRS,可通过所述至少一个第三小区上的非周期SRS触发命令触发,换言之,能够实现针对多小区场景下的跨小区(或跨载波)的非周期SRS的触发传输。
在本申请的一些实施例中,所述第二指示信息用于指示所述至少一个第三小区,其中,在所述至少一个第三小区上的非周期SRS触发信令用于触发所述第一小区上的SRS。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第二小区组中所有活跃小区。可选的,所述第二小区组中小区的最大数量为2、4、8或32。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第一小区和所述第二小区组中的所有活跃小区。可选的,所述第二小区组中小区的最大数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第二指示信息通过位图指示所述第二小区组。
例如,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第二小区组中的一个小区,所述每一个比特位上的取值用于指示所述每一个比特位对应的小区是否属于所述第二小区组。
例如,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
在本申请的一些实施例中,所述方法300还可包括:
接收第三RRC信令,根据所述第三RRC信令切换或确定所述至少一个比特位的长度。
在本申请的一些实施例中,所述第二指示信息通过小区标识指示所述第二小区组。
例如,所述MAC CE信令包括所述第二小区组中每一个小区的标识。
例如,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第二小区组中小区的数量;或
预留比特。
在本申请的一些实施例中,所述方法300还可包括:
接收第四RRC信令,所述第四RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第三小区。
换言之,网络设备向终端设备发送所述第四RRC信令,以配置所述至少一个小区。
需要说明的是,针对SRS,需要基于SRS资源组(SRS-ResourceSet)或SRS资源(SRS-Resource)进行传输。换言之,终端设备发送的SRS可以是SRS资源组或SRS资源对应的SRS。SRS资源组对应的SRS的时隙偏移是针对SRS资源组配置的,SRS资源对应的时隙偏移是针对SRS资源配置的。上述介绍的SRS资源组对应的SRS也可以称 为普通SRS。可选的,SRS资源组中的用途(usage)域可配置为波束管理(beamManagement),码本(codebook),非码本(nonCodebook),天线切换(antennaSwitching)中的一个。SRS资源对应的SRS也可以为用于定位的SRS,通过RRC信令SRS-PosResource-r16配置,对应的SRS资源组通过RRC信令SRS-PosResourceSet-r16配置。后面为了描述简单,部分地方只以普通SRS为例来介绍,但是其方案同样适用于定位SRS。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
需要说明的是,本申请各个实施例涉及的SRS资源组均为非周期SRS资源组,SRS资源均为非周期SRS资源。
例如,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
例如,在本申请的一些实施例中,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
例如,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有至少一个时隙偏移;所述方法300还可包括:
基于第一时隙和所述第一小区的SRS资源组对应的时隙偏移k确定第四时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第四时隙上,发送所述第一小区的SRS资源组对应的SRS。
例如,所述第一小区的SRS资源组配置有多个时隙偏移,所述第一小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
再如,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
再如,所述第四时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
需要说明的是,本申请各个实施例涉及的SRS资源组均为非周期SRS资源组,SRS资源均为非周期SRS资源。
例如,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
例如,在本申请的一些实施例中,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
例如,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法300还可包括:
基于第一时隙和所第一小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第五时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第五时隙上,发送所述第一小区的SRS资源组中的SRS资源对应的SRS。
例如,所述第一小区的SRS资源组中的SRS资源配置有多个时隙偏移,所述第一小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
再如,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
再如,所述第五时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
需要说明的是,所述有效时隙也可以理解为可用于上行传输的时隙。所述可用于上行传输的时隙可以理解为仅用于上行传输的时隙,即一直用于上行传输,也可理解为含有上行符号(uplink symbol)的时隙,也可理解为含有灵活符号(flexible symbol)的时隙,也可以理解为灵活时隙(flexible slot),也可以理解为偶尔不可用于上行传输的时隙,例如,偶尔用于下行传输的时隙。可选的,本申请中的可用于上行传输的时隙实际能不能用于上行传输,需要看是否与其他信号发送碰撞。
下面结合具体实施例对所述方法200的技术方案进行说明。
实施例7:
步骤1;
终端设备接收网络设备通过RRC信令发送的小区配置信息。
例如,小区聚合(Carrier Aggregation,CA)配置信息。其中配置有A个小区。针对A个小区中的1个或多个(记为B,B<=A)中的每一个小区(部分情况下,可能有的小区不配置对应的非周期SRS,因此写成A中的1个或多个),网络设备通过RRC信令携带SRS配置信息,配置1个或多个SRS资源组,每个SRS资源组包含1个或多个SRS资 源。下面描述是针对B个小区中的某个小区进行描述,不同小区上的配置可以独立。下面以小区Z为例来描述。
可选的,小区Z上所述SRS资源组通过RRC信令SRS-ResourceSet配置,所述SRS资源通过RRC信令SRS-Resource配置。
可选的,SRS-ResourceSet信令中的用途(usage)域可配置为波束管理(beamManagement),码本(codebook),非码本(nonCodebook),天线切换(antennaSwitching)中的一个。
可选的,小区Z上所述SRS资源组配置有多个(记为M个,M>=1)触发状态。可选的,每个触发状态对应非周期SRS触发信令中SRS请求域的一个取值,即一个码点(code point)。例如表1的触发状态的取值。
可选的,上述多个触发状态通过SRS-ResourceSet IE中的aperiodicSRS-ResourceTrigger和aperiodicSRS-ResourceTriggerList来配置,其中aperiodicSRS-ResourceTrigger配置1个值,aperiodicSRS-ResourceTriggerList配置1个或多个值。
可选的,aperiodicSRS-ResourceTrigger取值范围为1到N-1的一个整数。
可选的,aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1的一个整数。
例如,N可以等于非周期SRS触发状态数目(maxNrofSRS-TriggerStates),取值为4。
再如,根据网络设备发送的配置信息确定N的取值为4或更大值(例如,8或16);当然,在其他可替代实施例中,可采用其他命名。通过增加非周期SRS触发信令所对应的状态数,可以提高DCI触发非周期SRS的灵活性,提高系统性能。
可选的,所述配置信息通过RRC信令,或者MAC CE信令指示终端设备。
可选的,终端设备通过终端设备能力上报信息通知网络设备可以支持更多的非周期SRS触发状态(Maximum number of SRS trigger states),即N大于4,以便网络设备基于终端设备上报的能力确定N。
可选的,所述RRC信令通过SRS-Config配置。
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第二指示信息指示小区Z或小区Z的BWP Y的非周期SRS传输可以通过哪些小区上的非周期SRS触发信令来触发,从而可以实现跨小区触发非周期SRS,降低DCI开销,增加系统灵活性。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第二指示信息时,采用原有触发方式。
可选的,在所述第二指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第二指示信息触发非周期SRS。
可选的,在所述第二指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第二指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备在所述一组小区中的所有活跃小区上传输的非周期SRS信令。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以触发小区Z上非周期SRS传输。可以更灵活地控制一个非周期SRS可以有哪些小区上的非周期SRS触发信令来触发,而不是让所有活跃小区上的非周期SRS触发信令都可以触发。这样给网络设备更大的灵活度,提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备在所述一组小区中的所有活跃小区上传输的非周期SRS信令。例如,在对应活跃小区配置了对应的非周期SRS的情况下。和小区Z上的非周期SRS信令,都可以触发小区Z上非周期SRS传输。可以更灵活地控制一个非周期SRS可以有哪些小区上的非周期SRS触发信令来触发,而不是让所有活跃小区上的非周期SRS触发信令都可以触发。这样给网络设备更大的灵活度,提高系统性能。和选项1相比,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在上述确定的小区中的某一个(记为Z’)接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的取值大于0(取值记为value),则在小区Z上发送对应的非周期SRS。对应的SRS资源组配置有1个时隙偏移(slot offset)或多个时隙偏移。
可选的,终端设备在小区Z’的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源所在的SRS资源组对应的时隙偏移确定小区Z对应的slot n’上传输SRS资源。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源组对应的时隙偏移k(在SRS资源组配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源组对应的时隙偏移k(在SRS资源组配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源组对应的时隙偏移k(在SRS资源组配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
上面结合实施例7对第二指示信息用于触发SRS资源组对应的SRS的方案进行了说明,下面结合实施例8对所述第二指示信息用于触发SRS资源对应的SRS进行说明。
实施例8:
步骤1:
终端设备接收网络设备通过RRC信令发送的小区配置信息。
例如,小区聚合(Carrier Aggregation,CA)配置信息。其中配置有A个小区。针对A个小区中的1个或多个(记为B,B<=A)中的每一个小区(部分情况下,可能有的小区不配置对应的非周期SRS,因此写成A中的1个或多个),网络设备通过RRC信令携带SRS配置信息,配置1个或多个SRS资源组,每个SRS资源组包含1个或多个SRS资源。下面描述是针对B个小区中的某个小区进行描述,不同小区上的配置可以独立。下面以小区Z为例来描述。
可选的,所述SRS资源组通过RRC信令SRS-PosResourceSet-r16配置,所述SRS资源通过RRC信令SRS-PosResource-r16配置。
可选的,针对至少一个所述SRS资源组(记为Set X)配置有多个(记为M个,M>=1)触发状态。可选的,每个触发状态对应非周期SRS触发信令中SRS请求域的一个取值,即一个码点(code point)。例如表1的触发状态的取值。
可选的,上述多个触发状态通过SRS-PosResourceSet-r16中的aperiodicSRS-ResourceTriggerList-r16来配置。
可选的,aperiodicSRS-ResourceTriggerList-r16中每个元素的取值为1到N-1的一个整数。
例如,N可以等于非周期SRS触发状态数目(maxNrofSRS-TriggerStates),取值为4。
再如,根据网络设备发送的配置信息确定N的取值为4或更大值(例如,8或16);当然,在其他可替代实施例中,可采用其他命名。通过增加非周期SRS触发信令所对应的状态数,可以提高DCI触发非周期SRS的灵活性,提高系统性能。
可选的,所述配置信息通过RRC信令,或者MAC CE信令指示终端设备。
可选的,终端设备通过终端设备能力上报信息通知网络设备可以支持更多的非周期SRS触发状态(Maximum number of SRS trigger states),即N大于4,以便网络设备基于终端设备上报的能力确定N。
可选的,所述RRC信令通过SRS-Config配置。
步骤2:
针对小区Z,或者小区Z的BWP Y,网络设备通过第二指示信息指示小区Z或小区Z的BWP Y的非周期SRS传输可以通过哪些小区上的非周期SRS触发信令来触发,从而可以实现跨小区触发非周期SRS,降低DCI开销,增加系统灵活性。
可选的,网络设备未通过上述信令指示相关信息时,小区Z上发送的非周期SRS触发信令只触发小区Z对应上行链路上发送的SRS。相当于,终端设备未收到所述第二指示信息时,采用原有触发方式。
可选的,在所述第二指示信息发送之前,网络设备可以通过RRC信令指示终端设备使用所述第二指示信息触发非周期SRS。
可选的,在所述第二指示信息发送之前,终端设备可通过UE能力(capability)上报信息,以指示所述终端设备支持通过所述第二指示信息触发非周期SRS。
选项1:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备在所述一组小区中的所有活跃小区上传输的非周期SRS信令。例如,在对应活跃小区配置了对应的非周期SRS的情况下。可以触发小区Z上非周期SRS传输。可以更灵活地控制一个非周期SRS可以有哪些小区上的非周期SRS触发信令来触发,而不是让所有活跃小区上的非周期SRS触发信令都可以触发。这样给网络设备更大的灵活度,提高系统性能。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
选项2:
网络设备通过MAC CE信令指示一组小区,所述一组小区包含1个或多个小区,则终端设备在所述一组小区中的所有活跃小区上传输的非周期SRS信令。例如,在对应活跃小区配置了对应的非周期SRS的情况下。和小区Z上的非周期SRS信令,都可以触发小区Z上非周期SRS传输。可以更灵活地控制一个非周期SRS可以有哪些小区上的非周期SRS触发信令来触发,而不是让所有活跃小区上的非周期SRS触发信令都可以触发。这样给网络设备更大的灵活度,提高系统性能。和选项1相比,所述MAC CE信令可以减少对小区Z的指示,从而降低资源开销。
可选的,上述MAC CE信令,通过bitmap来指示一组小区,例如对应bit如果为规定值(例如1),则这一bit对应的小区属于所述一组小区,当所述一组小区数量较多时,通过bitmap能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
可选的,上述MAC CE信令通过小区标识来指示一组小区,即所述MAC CE信令包含所述一组小区中每个小区的标识,当所述一组小区数量较少时,能够降低信令开销。
可选的,所述MAC CE信令最多指示32,或8,或4个,或2个小区。
可选的,所述MAC CE信令最多指示31,或7,或3个,或1个小区。
步骤3:
终端设备在上述确定的小区中的某一个(记为Z’)接收到非周期SRS触发信令(记为第一信令),所述第一信令对应的取值大于0(取值记为value),则在小区Z上发送对应的非周期SRS。对应的SRS资源配置有1个时隙偏移(slot offset)或多个时隙偏移
可选的,终端设备在小区Z’的时隙slot n上接收到非周期SRS触发信令(例如DCI),终端设备根据SRS资源对应的时隙偏移确定小区Z对应的slot n’上传输SRS资源。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),确定的SRS的发送slot,即slot n’。
例如,可参见实施例1中涉及的公式确定所述slot n’。
可选的,根据SRS资源对应的时隙偏移k(在SRS资源配置1个时隙偏移的情况下,或在激活了一个时隙偏移的情况下),或者MAC信令激活的SRS资源对应的时隙偏移k(在SRS资源配置有1个或多个时隙偏移的情况下),或者非周期SRS触发信令指示的SRS资源对应的时隙偏移k(在SRS资源配置多个时隙偏移的情况下),非周期SRS触发信令所在时隙之后的在小区Z’上的第k个或者第k+1个有效时隙为slot n’。由此,可以更灵活地触发非周期SRS,减少响应非周期SRS触发信令拥挤概率。可选的,所述有效时隙为可以传输所述SRS的时隙。
应理解,实施例1至实施例8中关于MAC CE信令可参见附图的具体示例,为避免重复,此处不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图2至图26,详细描述了本申请的方法实施例,下文结合图27至图32,详细描述本申请的装置实施例。
图27是本申请实施例的终端设备400的示意性框图。
如图27所示,所述终端设备400可包括:
接收单元410,用于接收第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
在本申请的一些实施例中,所述第一指示信息用于指示在所述第一小区或所述第一小区的第一带宽部分BWP上的非周期SRS触发信令,用于触发所述第一小区或所述第一BWP对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一指示信息用于指示第一触发状态,或者在所述第一小区或所述第一小区上的第一带宽部分BWP上的非周期SRS触发信令中的第一触发状态,用于触发所述第一触发状态对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一触发状态为非零触发状态。
在本申请的一些实施例中,所述第一指示信息用于指示在终端设备的所述第一小区或所述终端设备的目标小区组的所述第一小区上的非周期SRS触发信令,用于触发所述终端设备或所述目标小区组对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一指示信息用于指示所述至少一个第二小区,其中,在所述第一小区上的非周期SRS触发信令用于触发所述至少一个第二小区上的SRS。
在本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区组中所有活跃小区。
在本申请的一些实施例中,所述第一小区组中小区的最大数量为2、4、8或32。
在本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区和第一小区组中的所有活跃小区。
在本申请的一些实施例中,所述第一小区组中小区的最大数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第一指示信息通过位图指示所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应 所述第一小区组中的一个小区,所述至少一个比特位中的一个比特位上的取值用于指示所述一个比特位对应的小区是否属于所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
在本申请的一些实施例中,所述接收单元410还用于:
接收第一RRC信令,所述第一RRC信令用于切换或确定所述至少一个比特位的长度。
在本申请的一些实施例中,所述第一指示信息通过小区标识指示所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令包括所述第一小区组中每一个小区的标识。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第一小区组中小区的数量;或
预留比特。
在本申请的一些实施例中,所述接收单元410还用于:
接收第二RRC信令,所述第二RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第二小区。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
在本申请的一些实施例中,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有至少一个时隙偏移;所述接收单元410还用于:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组对应的时隙偏移k确定所述第二时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第二时隙上,发送所述一个第二小区的SRS资源组对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
在本申请的一些实施例中,所述第二时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
在本申请的一些实施例中,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述接收单元410还用于:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第三时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第三时隙上,发送所述一个第二小区的SRS资源组中的SRS资源对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述 一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
在本申请的一些实施例中,所述第三时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图27所示的终端设备400可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备400中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,为了简洁,在此不再赘述。
图28是本申请实施例提供的网络设备500的示意性框图。
如图28所示,所述网络设备500可包括:
发送单元510,用于发送第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
在本申请的一些实施例中,所述第一指示信息用于指示在所述第一小区或所述第一小区的第一带宽部分BWP上的非周期SRS触发信令,用于触发所述第一小区或所述第一BWP对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一指示信息用于指示第一触发状态,或者在所述第一小区或所述第一小区上的第一带宽部分BWP上的非周期SRS触发信令中的第一触发状态,用于触发所述第一触发状态对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一触发状态为非零触发状态。
在本申请的一些实施例中,所述第一指示信息用于指示在终端设备的所述第一小区或所述终端设备的目标小区组的所述第一小区上的非周期SRS触发信令,用于触发所述终端设备或所述目标小区组对应的所述至少一个第二小区上的SRS。
在本申请的一些实施例中,所述第一指示信息用于指示所述至少一个第二小区,其中,在所述第一小区上的非周期SRS触发信令用于触发所述至少一个第二小区上的SRS。
在本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区组中所有活跃小区。
在本申请的一些实施例中,所述第一小区组中小区的最大数量为2、4、8或32。
在本申请的一些实施例中,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区和第一小区组中的所有活跃小区。
在本申请的一些实施例中,所述第一小区组中小区的最大数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第一指示信息通过位图指示所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第一小区组中的一个小区,所述至少一个比特位中的一个比特位上的取值用于指示所述一个比特位对应的小区是否属于所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
在本申请的一些实施例中,所述发送单元510还用于:
发送第一RRC信令,根据所述第一RRC信令切换或确定所述至少一个比特位的长度。
在本申请的一些实施例中,所述第一指示信息通过小区标识指示所述第一小区组。
在本申请的一些实施例中,所述MAC CE信令包括所述第一小区组中每一个小区的标识。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第一小区组中小区的数量;或
预留比特。
在本申请的一些实施例中,所述发送单元510还用于:
发送第二RRC信令,所述第二RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第二小区。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
在本申请的一些实施例中,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有至少一个时隙偏移;所述发送单元510还用于:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组对应的时隙偏移k确定所述第二时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第二时隙上,接收所述一个第二小区的SRS资源组对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
在本申请的一些实施例中,所述第二时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
在本申请的一些实施例中,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述发送单元510还用于:
基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第三时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述一个第二小区的所述第三时隙上,接收所述一个第二小区的SRS资源组中的SRS资源对应的SRS。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
在本申请的一些实施例中,所述第三时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图28所示的网络设备500可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备500中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,为了简洁,在此不再赘述。
图29是本申请实施例提供的终端设备600的示意性框图。
如图29所示,所述终端设备600可包括:
接收单元610,用于接收第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
在本申请的一些实施例中,所述第二指示信息用于指示所述至少一个第三小区,其中,在所述至少一个第三小区上的非周期SRS触发信令用于触发所述第一小区上的SRS。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第二小区组中所有活跃小区。
在本申请的一些实施例中,所述第二小区组中小区的数量为2、4、8或32。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第一小区和所述第二小区组中的所有活跃小区。
在本申请的一些实施例中,所述第二小区组中小区的数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第二指示信息通过位图指示所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第二小区组中的一个小区,所述每一个比特位上的取值用于指示所述每一个比特位对应的小区是否属于所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
在本申请的一些实施例中,所述接收单元610还用于:
接收第三RRC信令,根据所述第三RRC信令切换或确定所述至少一个比特位的长度。
在本申请的一些实施例中,所述第二指示信息通过小区标识指示所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令包括所述第二小区组中每一个小区的标识。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第二小区组中小区的数量;或
预留比特。
在本申请的一些实施例中,所述接收单元610还用于:
接收第四RRC信令,所述第四RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第三小区。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
在本申请的一些实施例中,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有至少一个时隙偏移;所述接收单元610还用于:
基于第一时隙和所述第一小区的SRS资源组对应的时隙偏移k确定第四时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第四时隙上,发送所述第一小区的SRS资源组对应的SRS。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有多个时隙偏移,所述第一小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
在本申请的一些实施例中,所述第四时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
在本申请的一些实施例中,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述接收单元610还用于:
基于第一时隙和所第一小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第五时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第五时隙上,发送所述第一小区的SRS资源组中的SRS资源对应的SRS。
在本申请的一些实施例中,所述第一小区的SRS资源组中的SRS资源配置有多个时隙偏移,所述第一小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
在本申请的一些实施例中,所述第五时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图29所示的终端设备600可以对应于执行本申请实施例的方法300中的相应主体,并且终端设备600中的各个单元的前述和其它操作和/或功能分别为了实现图26中的各个方法中的相应流程,为了简洁,在此不再赘述。
图30是本申请实施例提供的网络设备700的示意性框图。
如图30所示,所述网络设备700可包括:
发送单元710,用于发送第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
在本申请的一些实施例中,所述第二指示信息用于指示所述至少一个第三小区,其中,在所述至少一个第三小区上的非周期SRS触发信令用于触发所述第一小区上的SRS。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第二小区组中所有活跃小区。
在本申请的一些实施例中,所述第二小区组中小区的数量为2、4、8或32。
在本申请的一些实施例中,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第一小区和所述第二小区组中的所有活跃小区。
在本申请的一些实施例中,所述第二小区组中小区的数量为1、2、3、4、7、8、31或32。
在本申请的一些实施例中,所述第二指示信息通过位图指示所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第二小区组中的一个小区,所述每一个比特位上的取值用于指示所述每一个比特位对应的小区是否属于所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
在本申请的一些实施例中,所述发送单元710还用于:
发送第三RRC信令,根据所述第三RRC信令切换或确定所述至少一个比特位的长度。
在本申请的一些实施例中,所述第二指示信息通过小区标识指示所述第二小区组。
在本申请的一些实施例中,所述MAC CE信令包括所述第二小区组中每一个小区的标识。
在本申请的一些实施例中,所述MAC CE信令还包括以下中的至少一项:
所述第一小区的标识;
所述第一小区的第一带宽部分BWP的标识;
第一信息,用于指示所述第二小区组中小区的数量;或
预留比特。
在本申请的一些实施例中,所述发送单元710还用于:
发送第四RRC信令,所述第四RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第三小区。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
在本申请的一些实施例中,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有至少一个时隙偏移;所述发送单元710还用于:
基于第一时隙和所述第一小区的SRS资源组对应的时隙偏移k确定第四时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第四时隙上,接收所述第一小区的SRS资源组对应的SRS。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有多个时隙偏移,所述第一小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
在本申请的一些实施例中,所述第四时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
在本申请的一些实施例中,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
在本申请的一些实施例中,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
在本申请的一些实施例中,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16 配置。
在本申请的一些实施例中,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
在本申请的一些实施例中,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
在本申请的一些实施例中,所述第一小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述发送单元710还用于:
基于第一时隙和所第一小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第五时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
在所述第一小区的所述第五时隙上,接收所述第一小区的SRS资源组中的SRS资源对应的SRS。
在本申请的一些实施例中,所述第一小区的SRS资源组中的SRS资源配置有多个时隙偏移,所述第一小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
在本申请的一些实施例中,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
在本申请的一些实施例中,所述第五时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图30所示的网络设备700可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备700中的各个单元的前述和其它操作和/或功能分别为了实现图26中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的接收单元或发送单元可通过收发器实现。
图31是本申请实施例的通信设备800示意性结构图。
如图31所示,所述通信设备800可包括处理器810。
其中,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图31,通信设备800还可以包括存储器820。
其中,该存储器820可以用于存储指示信息,还可以用于存储处理器810执行的代码、指令等。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
请继续参见图31,通信设备800还可以包括收发器830。
其中,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备800中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备800可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备800可对应于本申请实施例中的终端设备400或终端设备600,并可以对应于执行根据本申请实施例的方法中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备800可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备800可对应于本申请实施例中的网络设备500或网络设备700,并可以对应于执行根据本申请实施例的方法中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图32是根据本申请实施例的芯片900的示意性结构图。
如图32所示,所述芯片900包括处理器910。
其中,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图32,所述芯片900还可以包括存储器920。
其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器920可以用于存储指示信息,还可以用于存储处理器910执行的代码、指令等。存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
请继续参见图32,所述芯片900还可以包括输入接口930。
其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送 的信息或数据。
请继续参见图32,所述芯片900还可以包括输出接口940。
其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片900可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片900中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200或300所示实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200或300所示实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (148)

  1. 一种无线通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示在所述第一小区或所述第一小区的第一带宽部分BWP上的非周期SRS触发信令,用于触发所述第一小区或所述第一BWP对应的所述至少一个第二小区上的SRS。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示第一触发状态,或者在所述第一小区或所述第一小区上的第一带宽部分BWP上的非周期SRS触发信令中的第一触发状态,用于触发所述第一触发状态对应的所述至少一个第二小区上的SRS。
  4. 根据权利要求3所述的方法,其特征在于,所述第一触发状态为非零触发状态。
  5. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示在终端设备的所述第一小区或所述终端设备的目标小区组的所述第一小区上的非周期SRS触发信令,用于触发所述终端设备或所述目标小区组对应的所述至少一个第二小区上的SRS。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一指示信息用于指示所述至少一个第二小区,其中,在所述第一小区上的非周期SRS触发信令用于触发所述至少一个第二小区上的SRS。
  7. 根据权利要求6所述的方法,其特征在于,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区组中所有活跃小区。
  8. 根据权利要求7所述的方法,其特征在于,所述第一小区组中小区的最大数量为2、4、8或32。
  9. 根据权利要求6所述的方法,其特征在于,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区和第一小区组中的所有活跃小区。
  10. 根据权利要求9所述的方法,其特征在于,所述第一小区组中小区的最大数量为1、2、3、4、7、8、31或32。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述第一指示信息通过位图指示所述第一小区组。
  12. 根据权利要求11所述的方法,其特征在于,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第一小区组中的一个小区,所述至少一个比特位中的一个比特位上的取值用于指示所述一个比特位对应的小区是否属于所述第一小区组。
  13. 根据权利要求12所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收第一RRC信令,根据所述第一RRC信令切换或确定所述至少一个比特位的长度。
  15. 根据权利要求7至10中任一项所述的方法,其特征在于,所述第一指示信息通过小区标识指示所述第一小区组。
  16. 根据权利要求15所述的方法,其特征在于,所述MAC CE信令包括所述第一小区组中每一个小区的标识。
  17. 根据权利要求16所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:
    所述第一小区的标识;
    所述第一小区的第一带宽部分BWP的标识;
    第一信息,用于指示所述第一小区组中小区的数量;或
    预留比特。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二RRC信令,所述第二RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第二小区。
  19. 根据权利要求18所述的方法,其特征在于,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
  20. 根据权利要求19所述的方法,其特征在于,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
  21. 根据权利要求19或20所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
  22. 根据权利要求20所述的方法,其特征在于,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
  23. 根据权利要求22所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  24. 根据权利要求19至23中任一项所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有至少一个时隙偏移;所述方法包括:
    基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组对应的时隙偏移k确定所述第二时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述一个第二小区的所述第二时隙上,发送所述一个第二小区的SRS资源组对应的SRS。
  25. 根据权利要求24所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述第二时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  28. 根据权利要求18所述的方法,其特征在于,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
  29. 根据权利要求28所述的方法,其特征在于,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
  30. 根据权利要求28或29所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
  31. 根据权利要求30所述的方法,其特征在于,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
  32. 根据权利要求31所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  33. 根据权利要求28至32中任一项所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第三时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述一个第二小区的所述第三时隙上,发送所述一个第二小区的SRS资源组中的SRS资源对应的SRS。
  34. 根据权利要求33所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
  35. 根据权利要求33所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
  36. 根据权利要求33至35中任一项所述的方法,其特征在于,所述第三时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  37. 一种无线通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
  38. 根据权利要求37所述的方法,其特征在于,所述第一指示信息用于指示在所述第一小区或所述第一小区的第一带宽部分BWP上的非周期SRS触发信令,用于触发所述第一小区或所述第一BWP对应的所述至少一个第二小区上的SRS。
  39. 根据权利要求37所述的方法,其特征在于,所述第一指示信息用于指示第一触发状态,或者在所述第一小区或所述第一小区上的第一带宽部分BWP上的非周期SRS触发信令中的第一触发状态,用于触发所述第一触发状态对应的所述至少一个第二小区上的SRS。
  40. 根据权利要求39所述的方法,其特征在于,所述第一触发状态为非零触发状态。
  41. 根据权利要求37所述的方法,其特征在于,所述第一指示信息用于指示在终端设备的所述第一小区或所述终端设备的目标小区组的所述第一小区上的非周期SRS触发信令,用于触发所述终端设备或所述目标小区组对应的所述至少一个第二小区上的SRS。
  42. 根据权利要求37至41中任一项所述的方法,其特征在于,所述第一指示信息用于指示所述至少一个第二小区,其中,在所述第一小区上的非周期SRS触发信令用于触发所述至少一个第二小区上的SRS。
  43. 根据权利要求42所述的方法,其特征在于,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区组中所有活跃小区。
  44. 根据权利要求43所述的方法,其特征在于,所述第一小区组中小区的最大数量为2、4、8或32。
  45. 根据权利要求42所述的方法,其特征在于,若所述第一指示信息用于指示第一小区组,所述至少一个第二小区为所述第一小区和第一小区组中的所有活跃小区。
  46. 根据权利要求45所述的方法,其特征在于,所述第一小区组中小区的最大数量为1、2、3、4、7、8、31或32。
  47. 根据权利要求43至46中任一项所述的方法,其特征在于,所述第一指示信息通过位图指示所述第一小区组。
  48. 根据权利要求47所述的方法,其特征在于,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第一小区组中的一个小区,所述至少一个比特位中的一个比特位上的取值用于指示所述一个比特位对应的小区是否属于所述第一小区组。
  49. 根据权利要求48所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
  50. 根据权利要求48所述的方法,其特征在于,所述方法还包括:
    发送第一RRC信令,根据所述第一RRC信令切换或确定所述至少一个比特位的长度。
  51. 根据权利要求43至46中任一项所述的方法,其特征在于,所述第一指示信息通过小区标识指示所述第一小区组。
  52. 根据权利要求51所述的方法,其特征在于,所述MAC CE信令包括所述第一小区组中每一个小区的标识。
  53. 根据权利要求52所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:
    所述第一小区的标识;
    所述第一小区的第一带宽部分BWP的标识;
    第一信息,用于指示所述第一小区组中小区的数量;或
    预留比特。
  54. 根据权利要求37至53中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二RRC信令,所述第二RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第二小区。
  55. 根据权利要求54所述的方法,其特征在于,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
  56. 根据权利要求55所述的方法,其特征在于,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
  57. 根据权利要求55或56所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
  58. 根据权利要求57所述的方法,其特征在于,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
  59. 根据权利要求58所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  60. 根据权利要求55至59中任一项所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有至少一个时隙偏移;所述方法包括:
    基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组对应的时隙偏移k确定所述第二时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述一个第二小区的所述第二时隙上,接收所述一个第二小区的SRS资源组对应的SRS。
  61. 根据权利要求60所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
  62. 根据权利要求60所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
  63. 根据权利要求60至62中任一项所述的方法,其特征在于,所述第二时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  64. 根据权利要求54所述的方法,其特征在于,所述第一小区和所述至少一个第二小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
  65. 根据权利要求64所述的方法,其特征在于,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
  66. 根据权利要求64或65所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第二小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
  67. 根据权利要求66所述的方法,其特征在于,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
  68. 根据权利要求67所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  69. 根据权利要求64至68中任一项所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所述至少一个第二小区中的一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第三时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述一个第二小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述一个第二小区的所述第三时隙上,接收所述一个第二小区的SRS资源组中的SRS资源对应的SRS。
  70. 根据权利要求69所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有多个时隙偏移,所述一个第二小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
  71. 根据权利要求69所述的方法,其特征在于,所述至少一个第二小区中的每一个第二小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
  72. 根据权利要求69至71中任一项所述的方法,其特征在于,所述第三时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  73. 一种无线通信方法,其特征在于,包括:
    接收第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
  74. 根据权利要求73所述的方法,其特征在于,所述第二指示信息用于指示所述至少一个第三小区,其中,在所述至少一个第三小区上的非周期SRS触发信令用于触发所述第一小区上的SRS。
  75. 根据权利要求74所述的方法,其特征在于,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第二小区组中所有活跃小区。
  76. 根据权利要求75所述的方法,其特征在于,所述第二小区组中小区的数量为2、4、8或32。
  77. 根据权利要求74所述的方法,其特征在于,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第一小区和所述第二小区组中的所有活跃小区。
  78. 根据权利要求77所述的方法,其特征在于,所述第二小区组中小区的数量为1、2、3、4、7、8、31或32。
  79. 根据权利要求75至78中任一项所述的方法,其特征在于,所述第二指示信息通过位图指示所述第二小区组。
  80. 根据权利要求79所述的方法,其特征在于,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第二小区组中的一个小区,所述每一个比特位上的取值用于指示所述每一个比特位对应的小区是否属于所述第二小区组。
  81. 根据权利要求80所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
  82. 根据权利要求80所述的方法,其特征在于,所述方法还包括:
    接收第三RRC信令,根据所述第三RRC信令切换或确定所述至少一个比特位的长度。
  83. 根据权利要求75至78中任一项所述的方法,其特征在于,所述第二指示信息通过小区标识指示所述第二小区组。
  84. 根据权利要求83所述的方法,其特征在于,所述MAC CE信令包括所述第二小区组中每一个小区的标识。
  85. 根据权利要求84所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:
    所述第一小区的标识;
    所述第一小区的第一带宽部分BWP的标识;
    第一信息,用于指示所述第二小区组中小区的数量;或
    预留比特。
  86. 根据权利要求73至85中任一项所述的方法,其特征在于,所述方法还包括:
    接收第四RRC信令,所述第四RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第三小区。
  87. 根据权利要求86所述的方法,其特征在于,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
  88. 根据权利要求87所述的方法,其特征在于,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
  89. 根据权利要求87或88所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
  90. 根据权利要求89所述的方法,其特征在于,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
  91. 根据权利要求90所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  92. 根据权利要求87至91中任一项所述的方法,其特征在于,所述第一小区的SRS资源组配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所述第一小区的SRS资源组对应的时隙偏移k确定第四时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述第一小区的所述第四时隙上,发送所述第一小区的SRS资源组对应的SRS。
  93. 根据权利要求92所述的方法,其特征在于,所述第一小区的SRS资源组配置有多个时隙偏移,所述第一小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
  94. 根据权利要求92所述的方法,其特征在于,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
  95. 根据权利要求92至92中任一项所述的方法,其特征在于,所述第四时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  96. 根据权利要求87所述的方法,其特征在于,所述第一小区和所述至少一个第三小区中的不同小区的SRS资 源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
  97. 根据权利要求96所述的方法,其特征在于,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
  98. 根据权利要求96或97所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
  99. 根据权利要求98所述的方法,其特征在于,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
  100. 根据权利要求99所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  101. 根据权利要求96至100中任一项所述的方法,其特征在于,所述第一小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所第一小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第五时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述第一小区的所述第五时隙上,发送所述第一小区的SRS资源组中的SRS资源对应的SRS。
  102. 根据权利要求101所述的方法,其特征在于,所述第一小区的SRS资源组中的SRS资源配置有多个时隙偏移,所述第一小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
  103. 根据权利要求101所述的方法,其特征在于,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
  104. 根据权利要求101至103中任一项所述的方法,其特征在于,所述第五时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  105. 一种无线通信方法,其特征在于,包括:
    发送第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
  106. 根据权利要求105所述的方法,其特征在于,所述第二指示信息用于指示所述至少一个第三小区,其中,在所述至少一个第三小区上的非周期SRS触发信令用于触发所述第一小区上的SRS。
  107. 根据权利要求106所述的方法,其特征在于,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第二小区组中所有活跃小区。
  108. 根据权利要求107所述的方法,其特征在于,所述第二小区组中小区的数量为2、4、8或32。
  109. 根据权利要求106所述的方法,其特征在于,若所述第二指示信息用于指示第二小区组,所述至少一个第三小区为所述第一小区和所述第二小区组中的所有活跃小区。
  110. 根据权利要求109所述的方法,其特征在于,所述第二小区组中小区的数量为1、2、3、4、7、8、31或32。
  111. 根据权利要求107至110中任一项所述的方法,其特征在于,所述第二指示信息通过位图指示所述第二小区组。
  112. 根据权利要求111所述的方法,其特征在于,所述MAC CE信令包括至少一个比特位,所述至少一个比特位中的每一个比特位对应所述第二小区组中的一个小区,所述每一个比特位上的取值用于指示所述每一个比特位对应的小区是否属于所述第二小区组。
  113. 根据权利要求112所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:所述第一小区的标识、所述第一小区的第一带宽部分BWP的标识或预留比特。
  114. 根据权利要求112所述的方法,其特征在于,所述方法还包括:
    发送第三RRC信令,根据所述第三RRC信令切换或确定所述至少一个比特位的长度。
  115. 根据权利要求107至110中任一项所述的方法,其特征在于,所述第二指示信息通过小区标识指示所述第二小区组。
  116. 根据权利要求115所述的方法,其特征在于,所述MAC CE信令包括所述第二小区组中每一个小区的标识。
  117. 根据权利要求116所述的方法,其特征在于,所述MAC CE信令还包括以下中的至少一项:
    所述第一小区的标识;
    所述第一小区的第一带宽部分BWP的标识;
    第一信息,用于指示所述第二小区组中小区的数量;或
    预留比特。
  118. 根据权利要求105至117中任一项所述的方法,其特征在于,所述方法还包括:
    发送第四RRC信令,所述第四RRC信令用于配置至少一个小区,所述至少一个小区包括所述第一小区和所述至少一个第三小区。
  119. 根据权利要求118所述的方法,其特征在于,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS资源组SRS-ResourceSet信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组中的SRS资源通过不同的SRS资源SRS-Resource信令配置。
  120. 根据权利要求119所述的方法,其特征在于,所述SRS资源组SRS-ResourceSet信令或所述SRS资源SRS-Resource信令通过SRS配置SRS-Config配置。
  121. 根据权利要求119或120所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第三 小区的SRS资源组对应的多个触发状态,通过SRS资源组信元SRS-ResourceSet IE中的非周期SRS资源触发aperiodicSRS-ResourceTrigger和/或非周期SRS资源触发列表aperiodicSRS-ResourceTriggerList配置,所述aperiodicSRS-ResourceTrigger用于配置所述多个非零触发状态中的一个触发状态,所述aperiodicSRS-ResourceTriggerList用于配置所述多个非零触发状态中的一个或多于一个的触发状态。
  122. 根据权利要121所述的方法,其特征在于,所述aperiodicSRS-ResourceTrigger的取值为1到N-1中的整数,所述N表示非周期SRS触发状态数目;所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数。
  123. 根据权利要求122所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  124. 根据权利要求119至123中任一项所述的方法,其特征在于,所述第一小区的SRS资源组配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所述第一小区的SRS资源组对应的时隙偏移k确定第四时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述第一小区的所述第四时隙上,接收所述第一小区的SRS资源组对应的SRS。
  125. 根据权利要求124所述的方法,其特征在于,所述第一小区的SRS资源组配置有多个时隙偏移,所述第一小区的SRS资源组对应的时隙偏移k为所述多个时隙偏移中已激活的时隙偏移。
  126. 根据权利要求124所述的方法,其特征在于,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k。
  127. 根据权利要求124至126中任一项所述的方法,其特征在于,所述第四时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  128. 根据权利要求118所述的方法,其特征在于,所述第一小区和所述至少一个第三小区中的不同小区的SRS资源组通过不同的SRS-Pos资源组16版SRS-PosResourceSet-r16信令配置,所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组中不同SRS资源组的SRS资源通过不同的SRS Pos资源16版SRS-PosResource-r16信令配置。
  129. 根据权利要求128所述的方法,其特征在于,所述SRS-PosResourceSet-r16信令和SRS-PosResource-r16通过SRS配置SRS-Config配置。
  130. 根据权利要求128或129所述的方法,其特征在于,针对所述第一小区的SRS资源组和所述至少一个第三小区的SRS资源组对应的多个触发状态,通过所述SRS-PosResourceSet-r16中的非周期SRS资源触发列表16版aperiodicSRS-ResourceTriggerList-r16配置。
  131. 根据权利要求130所述的方法,其特征在于,所述aperiodicSRS-ResourceTriggerLis中每个元素的取值为1到N-1中的整数;所述N表示非周期SRS触发状态数目。
  132. 根据权利要求131所述的方法,其特征在于,所述N大于或等于4;若N大于4,所述N为网络设备指示给所述终端设备的,或者所述N为基于所述终端设备上报给所述网络设备的能力确定的。
  133. 根据权利要求128至132中任一项所述的方法,其特征在于,所述第一小区的SRS资源组中的SRS资源配置有至少一个时隙偏移;所述方法还包括:
    基于第一时隙和所第一小区的SRS资源组中的SRS资源对应的时隙偏移k’确定第五时隙,所述第一时隙为所述非周期SRS触发信令所在的时隙,所述第一小区的SRS资源组为第一取值对应的SRS资源组,所述第一取值为所述非周期SRS触发信令中的触发状态的取值;
    在所述第一小区的所述第五时隙上,接收所述第一小区的SRS资源组中的SRS资源对应的SRS。
  134. 根据权利要求133所述的方法,其特征在于,所述第一小区的SRS资源组中的SRS资源配置有多个时隙偏移,所述第一小区的SRS资源组中的SRS资源对应的时隙偏移k’为所述多个时隙偏移中已激活的时隙偏移。
  135. 根据权利要求133所述的方法,其特征在于,所述第一小区的SRS资源组配置有一个时隙偏移,所述一个时隙偏移为所述时隙偏移k’。
  136. 根据权利要求133至135中任一项所述的方法,其特征在于,所述第五时隙为所述第一时隙之后的有效时隙,所述有效时隙为可用于传输SRS的时隙。
  137. 一种终端设备,其特征在于,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
  138. 一种网络设备,其特征在于,包括:
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示第一小区上的非周期探测参考信号SRS触发信令用于触发至少一个第二小区上的SRS,所述第一指示信息通过媒体接入控制控制元素MAC CE信令承载。
  139. 一种终端设备,其特征在于,包括:
    接收单元,用于接收第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
  140. 一种网络设备,其特征在于,包括:
    发送单元,用于发送第二指示信息,所述第二指示信息用于指示第一小区上的探测参考信号SRS可通过至少一个第三小区上的非周期SRS触发信令触发,所述第二指示信息通过媒体接入控制控制元素MAC CE信令承载。
  141. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至36中任一项所述的方法。
  142. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求37至72中任一项所述的方法。
  143. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求73至104中任一项所述的方法。
  144. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求105至136中任一项所述的方法。
  145. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至36中任一项所述的方法、如权利要求37至72中任一项所述的方法、如权利要求73至104中任一项所述的方法、或如权利要求105至136中任一项所述的方法。
  146. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法、如权利要求37至72中任一项所述的方法、如权利要求73至104中任一项所述的方法、或如权利要求105至136中任一项所述的方法。
  147. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至36中任一项所述的方法、如权利要求37至72中任一项所述的方法、如权利要求73至104中任一项所述的方法、或如权利要求105至136中任一项所述的方法。
  148. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法、如权利要求37至72中任一项所述的方法、如权利要求73至104中任一项所述的方法、或如权利要求105至136中任一项所述的方法。
PCT/CN2020/117919 2020-09-25 2020-09-25 无线通信方法和设备 WO2022061777A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102897.2A CN115804181A (zh) 2020-09-25 2020-09-25 无线通信方法和设备
PCT/CN2020/117919 WO2022061777A1 (zh) 2020-09-25 2020-09-25 无线通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117919 WO2022061777A1 (zh) 2020-09-25 2020-09-25 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2022061777A1 true WO2022061777A1 (zh) 2022-03-31

Family

ID=80844655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117919 WO2022061777A1 (zh) 2020-09-25 2020-09-25 无线通信方法和设备

Country Status (2)

Country Link
CN (1) CN115804181A (zh)
WO (1) WO2022061777A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958772A (zh) * 2010-09-29 2011-01-26 中兴通讯股份有限公司 用于跨载波调度的物理下行控制信道发送方法和基站
US20190222286A1 (en) * 2018-03-22 2019-07-18 Intel Corporation Inter-cell beam management
CN110391882A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种信号传输方法和装置
CN110602670A (zh) * 2019-09-25 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958772A (zh) * 2010-09-29 2011-01-26 中兴通讯股份有限公司 用于跨载波调度的物理下行控制信道发送方法和基站
US20190222286A1 (en) * 2018-03-22 2019-07-18 Intel Corporation Inter-cell beam management
CN110391882A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种信号传输方法和装置
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
CN110602670A (zh) * 2019-09-25 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on UL Reference Signals for NR Positioning", 3GPP DRAFT; R1-1910122, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 6, XP051788929 *

Also Published As

Publication number Publication date
CN115804181A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2021062973A1 (zh) 数据传输的方法和装置
WO2018210243A1 (zh) 一种通信方法和装置
CN109152029B (zh) 一种通信方法、网络设备及用户设备
US20210160852A1 (en) Resource configuration method and terminal device
US20220210835A1 (en) Method and apparatus for determining cyclic prefix extension and user equipment
US20220030565A1 (en) Method and device for adjusting pdcch monitoring period
WO2022152068A1 (zh) 资源确定方法、通信设备和存储介质
US20240032087A1 (en) Enhanced Physical Uplink Shared Channel Transmission in Wireless Communications
US11770808B2 (en) Resource indicating method, apparatus, access network device, terminal and system
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
TW202019215A (zh) 一種載波處理方法、終端、網路設備和存儲媒介
CN111034242B (zh) 一种发送小区配置信息的方法及装置
WO2022061777A1 (zh) 无线通信方法和设备
WO2022061735A1 (zh) 无线通信方法和设备
WO2022061733A1 (zh) 无线通信方法和设备
WO2022036719A1 (zh) 无线通信方法和设备
WO2023050260A1 (zh) 无线通信方法和设备
WO2022099556A1 (zh) 无线通信方法和设备
EP4340498A1 (en) Method and apparatus for determining repeated transmission, terminal, and network side device
CN112771963B (zh) 一种信息通知的方法和装置
WO2022156436A1 (zh) 一种终端识别方法及设备
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
WO2023240630A1 (zh) 无线通信方法、终端设备以及网络设备
US20240031092A1 (en) Terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954629

Country of ref document: EP

Kind code of ref document: A1