WO2023240630A1 - 无线通信方法、终端设备以及网络设备 - Google Patents

无线通信方法、终端设备以及网络设备 Download PDF

Info

Publication number
WO2023240630A1
WO2023240630A1 PCT/CN2022/099568 CN2022099568W WO2023240630A1 WO 2023240630 A1 WO2023240630 A1 WO 2023240630A1 CN 2022099568 W CN2022099568 W CN 2022099568W WO 2023240630 A1 WO2023240630 A1 WO 2023240630A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
network device
time interval
time
Prior art date
Application number
PCT/CN2022/099568
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202280091871.1A priority Critical patent/CN118679828A/zh
Priority to PCT/CN2022/099568 priority patent/WO2023240630A1/zh
Publication of WO2023240630A1 publication Critical patent/WO2023240630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • the Sounding Reference Signal (SRS) signal is used for channel detection.
  • the network device In order to obtain the wireless propagation characteristics of the uplink channel, the network device will configure the terminal device to transmit SRS in a certain time-frequency resource. The network device can know the current channel situation by demodulating the received SRS. When a terminal device has multiple transmitting antennas or receiving antennas, the network device will configure the terminal device to sequentially transmit SRS on multiple antenna ports. After the network device receives SRS from multiple ports, it can obtain complete multiple input multiple output (Multiple Input Multiple Output, MIMO) channel spatial transmission characteristics, so that it can better perform operations such as codebook selection.
  • MIMO Multiple Input Multiple Output
  • the communication standard introduces the guard time (Guard Period, GP), and the terminal device does not perform any transmission within the GP.
  • the length of GP is one symbol or two symbols corresponding to different subcarrier spacing (SCS)
  • SCS subcarrier spacing
  • the related technology only considers the time interval requirement between the resources or resource sets of two Sounding Reference Signal (SRS), that is, it is necessary to ensure that the time interval between the two SRS resources or resource sets is greater than or Equal to GP, and when the time interval between the resources or resource sets of two SRS is greater than GP, data transmission cannot be performed within the time interval between the resources or resource sets of the two SRS.
  • SRS Sounding Reference Signal
  • the time interval between two SRS resources or resource sets is too large, if the terminal device is not allowed to transmit other signals, it will inevitably cause a waste of resources and reduce data throughput.
  • Embodiments of the present application provide a wireless communication method, terminal equipment and network equipment, which can improve resource utilization and data throughput.
  • this application provides a wireless communication method, including:
  • the sounding reference signal SRS is sent to the network device within the time unit when the antenna switching occurs in the terminal device or within each of multiple consecutive time units.
  • this application provides a wireless communication method, including:
  • the duration of the first time interval is longer than the duration of the at least one GP
  • the first time interval is the time interval between two adjacent sounding reference signal SRS resources or resource sets
  • the at least one GP A time unit is included for the terminal device to perform at least one antenna switching.
  • this application provides a wireless communication method, including:
  • the sounding reference signal SRS sent by the terminal device is received within the time unit when the antenna switching occurs on the terminal device or within each of multiple consecutive time units.
  • this application provides a wireless communication method, including:
  • the duration of the first time interval is longer than the duration of the at least one GP
  • the first time interval is the time interval between two adjacent sounding reference signal SRS resources or resource sets
  • the at least one GP A time unit is included for the terminal device to perform at least one antenna switching.
  • the present application provides a terminal device for executing the method in any one of the above first to second aspects or implementations thereof.
  • the terminal device includes a functional module for executing any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • this application provides a network device for performing any one of the above third to fourth aspects or the method in each implementation manner thereof.
  • the network device includes a functional module for executing any one of the above third to fourth aspects or the method in each implementation manner thereof.
  • the network device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit can be an input circuit or interface of the communication chip, and the sending unit can be an output circuit or interface of the communication chip.
  • this application provides a terminal device, including a transceiver, a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory to execute any one of the above-mentioned first to second aspects or the methods in their respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • this application provides a network device, including a transceiver, a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory to execute any one of the above third to fourth aspects or the methods in their respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes any one of the above-mentioned first to fourth aspects or their respective implementations. method in.
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof .
  • the present application provides a computer program product, including computer program instructions, which cause a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • SRS is sent to the network device within the time unit when the terminal device undergoes antenna switching or in each time unit of multiple consecutive time units; it is possible to consider the terminal device without introducing GP.
  • the time required to switch antennas not only avoids the impact of GP on the scheduling of network equipment, but also improves the uplink transmission performance of terminal equipment, such as improving resource utilization and data throughput.
  • the uplink information is sent to the network device so that the terminal device can reasonably utilize the idle time unit between two adjacent SRS resources or resource sets. , which can improve resource utilization and data throughput.
  • Figure 1 is an example of the system framework of the embodiment of the present application.
  • Figure 2 is a schematic diagram of SRS rotation provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the positional relationship between SRS rotation and GP provided by the embodiment of the present application.
  • Figure 4 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the network device provided by the embodiment of the present application completing demodulation through the remaining stable signals in the GP.
  • FIG. 6 is a schematic diagram of SRS rotation with GP and SRS rotation without GP provided by the embodiment of the present application.
  • Figure 7 is another schematic flow chart of the wireless communication method provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the first time interval provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the position of the at least one GP in the first time interval when the terminal device performs a single antenna switching according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the position of the at least one GP in the first time interval when the terminal device performs a single antenna switching according to the embodiment of the present application.
  • Figure 11 is a schematic diagram of a network device flexibly indicating the location of at least one GP within a first time interval to a terminal device according to an embodiment of the present application.
  • Figures 12 to 13 are schematic flowcharts of a method for a network device to indicate to a terminal device the number of GPs used by the terminal device according to the embodiment of the present application.
  • FIGS 14 and 15 are schematic block diagrams of terminal equipment according to embodiments of the present application.
  • FIGS 16 and 17 are schematic block diagrams of network devices according to embodiments of the present application.
  • Figure 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • the terms "predefined” or “preset” involved in the embodiments of this application can be pre-saved in the device (for example, including terminal equipment and network equipment) by corresponding codes, tables or other instructions that can be used to indicate This application does not limit the specific implementation method.
  • the default can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not specifically limit this.
  • instruction may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • Correspondence can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an association between the two, or it can also be a relationship between indicating and being instructed, configuring and being configured, etc.
  • Figure 1 is an example of the system framework of the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also called New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 AMF through the NG interface 1
  • access Network equipment such as the next generation wireless
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • the communication device may include a network device 120 and a terminal device 110 with communication functions.
  • the network device 120 and the terminal device 110 may be the devices described above, which will not be described again here;
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "correspondence” mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be pre-saved in the device (for example, including terminal devices and network devices) by pre-saving corresponding codes, tables or other available The method is implemented by indicating relevant information, and this application does not limit its specific implementation method. For example, predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • the Sounding Reference Signal (SRS) signal is used for channel detection.
  • the network device In order to obtain the wireless propagation characteristics of the uplink channel, the network device will configure the terminal device to transmit SRS in a certain time-frequency resource. The network device can know the current channel situation by demodulating the received SRS signal. When a terminal device has multiple transmitting antennas or receiving antennas, the network device will configure the terminal device to sequentially transmit SRS on multiple antenna ports. After the network device receives SRS from multiple ports, it can obtain complete multiple input multiple output (Multiple Input Multiple Output, MIMO) channel spatial transmission characteristics, so that it can better perform operations such as codebook selection.
  • MIMO Multiple Input Multiple Output
  • the uplink channel and the downlink channel are different, and the terminal equipment usually has more downlink antennas than uplink antennas, so the terminal equipment will also perform SRS signals on pure downlink antennas.
  • the transmission is used by network equipment to estimate the downlink channel.
  • Figure 2 is a schematic diagram of SRS rotation provided by an embodiment of the present application.
  • the terminal device has four receiving antennas (ie, antenna Ant0 ⁇ antenna Ant3), in which antenna Ant0 also serves as a transmitting antenna.
  • the network device will configure four SRS time-frequency resources (i.e., SRS resources 0 to SRS resources 3) for the terminal device.
  • the terminal device uses these four receiving antennas in turn to perform the corresponding SRS resources. transmit SRS signal.
  • the terminal device may use antenna Ant0 to send SRS on SRS resource 0, use antenna Ant1 to send SRS on SRS resource 1, use antenna Ant2 to send SRS on SRS resource 2, and use antenna Ant3 to send SRS on SRS resource 3.
  • TP Transient period
  • the length of TP varies depending on the terminal equipment, such as FR1
  • the maximum TP downloaded shall not exceed 15us.
  • the communication standard introduces a guard period (Guard Period, GP), and the terminal device does not perform any transmission within the GP.
  • Figure 3 is a schematic diagram of the positional relationship between SRS rotation and GP provided by the embodiment of the present application.
  • the terminal device needs to send SRS0 to SRS3 to the network device in turn, it needs to be separated by one GP after sending SRS0 before it can send SRS1. After sending SRS1, it needs to be separated by one GP before it can send SRS2. After sending SRS2, it needs to be separated by one GP. Only GP can send SRS3.
  • the length of GP is one symbol or two symbols corresponding to different subcarrier spacing (SCS)
  • SCS subcarrier spacing
  • the related technology only considers the time interval requirement between the resources or resource sets of two Sounding Reference Signal (SRS), that is, it is necessary to ensure that the time interval between the two SRS resources or resource sets is greater than or Equal to GP, and when the time interval between the resources or resource sets of two SRS is greater than GP, data transmission cannot be performed within the time interval between the resources or resource sets of the two SRS.
  • SRS Sounding Reference Signal
  • the time interval between two SRS resources or resource sets is too large, if the terminal device is not allowed to transmit other signals, it will inevitably cause a waste of resources and reduce data throughput.
  • embodiments of the present application provide a wireless communication method, terminal device and network device, which can improve resource utilization and data throughput.
  • FIG. 4 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application.
  • the wireless communication method 200 can be interactively executed by a terminal device and a network device.
  • the terminal device shown in FIG. 4 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 4 may be the access network device shown in FIG. 1 .
  • the method 200 may include some or all of the following content:
  • the terminal device sends an SRS to the network device within the time unit when the antenna switching occurs on the terminal device or within each of multiple consecutive time units.
  • the network device receives the SRS sent by the terminal device within the time unit when the antenna switching occurs on the terminal device or within each of multiple consecutive time units. Further, after the network device receives the SRS sent by the terminal device, it can obtain complete MIMO channel spatial transmission characteristics based on the received SRS, so that it can better perform codebook selection and other operations.
  • the SRS is sent to the network device within the time unit when the antenna switching occurs on the terminal device or within each time unit of multiple consecutive time units; it is possible to consider the terminal device without introducing GP.
  • the time required to switch antennas not only avoids the impact of GP on the scheduling of network equipment, but also improves the uplink transmission performance of terminal equipment, such as improving resource utilization and data throughput.
  • the terminal device sends a signal to the network device within the time unit when the antenna switching occurs on the terminal device or within each of multiple consecutive time units.
  • SRS is sent to make full use of the resources of the time unit when the terminal device undergoes antenna switching, thereby improving data throughput.
  • this application designs the time required for antenna switching (i.e. TP) and the time required for terminal equipment to transmit SRS within the same time unit, that is, the network equipment can pass the remaining time except TP within a single time unit.
  • the received stable signal completes the demodulation of SRS.
  • the length of the GP is 1 symbol or two symbols corresponding to different NR subcarrier spacing (SCS).
  • SCS NR subcarrier spacing
  • the GP used for antenna switching corresponding to different SCS has different lengths, and the length of the GP is one symbol or 2 symbols.
  • the terminal device transmits SRS on different antennas, for FR1 (frequency band below 7.125GHz), the required TP in hardware does not exceed 15us.
  • FR1 frequency band below 7.125GHz
  • the TP of the terminal device accounts for up to 21% under 15khz SCS and up to 42% under 30khz SCS.
  • the terminal equipment needs a certain amount of time to complete switching from one transmitting antenna to another and to adjust the hardware transmission path (such as adjusting the transmission power). During this period of time, the transmission signal of the terminal device will be in an unstable state, and the signal quality may not be guaranteed. Therefore, the terminal device cannot send any uplink information to the network device during this period of time.
  • the proportion of TP in the entire GP is not high.
  • Network equipment has the potential to complete demodulation through the remaining stable signals in the GP, especially the TP of terminal equipment. When it is lower than 15us.
  • this application designs the time unit for the terminal device to switch antennas as the time unit for sending SRS to the network device; without introducing GP, the time required for the terminal device to switch antennas can be taken into account.
  • It not only avoids the impact of GP on the scheduling of network equipment, but also improves the uplink transmission performance of terminal equipment, such as improving resource utilization and data throughput.
  • Figure 5 is a schematic diagram of the network device provided by the embodiment of the present application completing demodulation through the remaining stable signals in the GP.
  • the network device is actually capable of demodulating through the remaining stable signals in the GP within a GP except for the TP; in other words, the terminal device can be within a GP except for the TP.
  • FIG. 6 is a schematic diagram of SRS rotation with GP and SRS rotation without GP provided by the embodiment of the present application.
  • the time unit includes but is not limited to: symbol, time slot, subframe, half frame or radio frame, etc.
  • the method 200 may further include:
  • the terminal device receives the scheduling information sent by the network device; the scheduling information is used to schedule the transmission resources of the SRS.
  • the scheduling information may be carried in Downlink Control Information (DCI), Radio Resource Control (Radio Resource Control, RRC) signaling or Media Access Control (Media Access Control, MAC) control element (Control Element, CE).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the SRS transmission resource may be an SRS resource or an SRS resource set.
  • the method 200 may further include:
  • the terminal device sends first information to the network device; the first information is used to determine the transition time TP capability of the terminal device.
  • the terminal device sends the first information to a network device; accordingly, after receiving the first information, the network device determines the TP capability of the terminal device based on the first information, and Based on the TP capability, it is determined whether to schedule the terminal device to send SRS in the time unit when the antenna switch occurs on the terminal device or in each of multiple consecutive time units; or in other words, the network device is based on the The TP capability determines whether a GP for the terminal device to perform antenna conversion is reserved for the terminal device.
  • reporting the TP capability of the terminal device helps the network device rationally use or schedule transmission resources based on the TP capability, thereby improving resource utilization and data throughput.
  • the first information is used to indicate the TP of the terminal device among a plurality of candidate TPs.
  • the plurality of candidate TPs are predefined, or the plurality of candidate TPs are reported through the terminal device, or the plurality of candidate TPs are configured or indicated by the network device.
  • the network device determines the TP of the terminal device based on the first information, and determines whether to schedule the terminal device when the terminal device occurs based on the TP of the terminal device.
  • the SRS is sent within the time unit of antenna switching or in each time unit of multiple consecutive time units; or in other words, the network device may determine whether to reserve space for the terminal device based on the TP of the terminal device.
  • a GP that performs antenna conversion on the terminal device. For example, when the network device can withstand the TP of the terminal device, the terminal device can be scheduled to send the SRS in the time unit when the antenna switching occurs on the terminal device or in each of multiple consecutive time units.
  • the GP for the terminal device to perform antenna switching may not be reserved for the terminal device; otherwise, the network device does not schedule the terminal device to perform antenna switching within the time unit of the terminal device or in multiple consecutive time units.
  • SRS is sent within each time unit in the time unit, that is, the GP for antenna conversion by the terminal equipment needs to be reserved for the terminal equipment.
  • each of the plurality of candidate TPs may be less than or equal to the preset TP.
  • the preset TP may be 15us or other values. That is, the multiple candidate TPs may be multiple TPs less than or equal to 15us, such as 3us, 6us, 9us, 12us, etc.
  • the terminal device reports the supported TP to the network device according to the actual situation. After receiving the TP reported by the terminal device, the network device may decide whether to configure the terminal device with resources for transmitting SRS within the time unit when the terminal device undergoes antenna switching or in each of multiple consecutive time units. Or resource set, that is, GP is not used to receive SRS.
  • the first information may indicate the TP of the terminal device among multiple candidate TPs through the value of at least one bit.
  • the terminal device can use 2 bits to indicate the TP of the terminal device among the plurality of candidate TPs. For example, when the first information is 00, it indicates that the TP of the terminal device is 3us, when the first information is 01, it indicates that the TP of the terminal device is 6us, and when the first information is 10, it indicates that the terminal The TP of the device is 9us. When the first information is 11, it indicates that the TP of the terminal device is 12us.
  • the at least one bit may be another number of bits, and the value of the at least one bit and the candidate TP may also have other corresponding relationships. This application will No specific limitation is made.
  • the first information is used to indicate whether the TP of the terminal device is less than or equal to a first threshold, and/or the first information is used to indicate whether the TP of the terminal device is greater than or equal to the first threshold.
  • the first threshold is predefined, or the first threshold is reported through the terminal device, or the first threshold is configured or indicated by the network device.
  • the network device determines, based on whether the TP of the terminal device is less than or equal to a first threshold, whether to schedule the terminal device to perform antenna switching within the time unit of the terminal device or Send the SRS in each of multiple consecutive time units; or in other words, the network device may determine whether to reserve the terminal device based on whether the TP of the terminal device is less than or equal to the first threshold.
  • a GP that performs antenna conversion on the terminal device. For example, when the TP of the terminal device is less than or equal to the first threshold, it means that the network device can withstand the TP of the terminal device. At this time, the network device can schedule the terminal device to perform antenna switching on the terminal device.
  • SRS is sent within a time unit or within each time unit of multiple consecutive time units, that is, the GP used for antenna conversion by the terminal device may not be reserved for the terminal device; otherwise, the network device does not Scheduling the terminal equipment to send SRS within the time unit when the terminal equipment undergoes antenna switching or within each time unit of multiple consecutive time units means that the terminal equipment needs to be reserved for the terminal equipment to perform antenna switching. Converted GP.
  • the first information may indicate through 1 bit whether the TP of the terminal device is less than or equal to the first threshold, and/or the first information may indicate through the 1 bit that the TP of the terminal device is less than or equal to the first threshold. Whether the TP of the terminal device is greater than or equal to the first threshold.
  • the terminal device can use 1 bit to indicate that the terminal device TP is less than or equal to 7us; or the terminal device can use 1 bit to indicate that the terminal device TP Greater than or equal to 7us. For example, when the first information is 0, it indicates that the terminal device TP is less than or equal to 7us, and when the first information is 1, it indicates that the terminal device TP is greater than or equal to 7us. For another example, when the first information is 1, it indicates that the terminal device TP is less than or equal to 7us, and when the first information is 0, it indicates that the terminal device TP is greater than or equal to 7us.
  • the first threshold may also be a value other than 7 us, which is not specifically limited in this application.
  • the TP of the terminal device when the first information is used to indicate that the TP of the terminal device is less than or equal to the first threshold, the TP of the terminal device may be greater than the default lower limit by default.
  • the default lower limit value may be 0 or other numerical values.
  • the TP of the terminal device may be less than the default upper limit by default.
  • the default upper limit value may be a preset value.
  • the default upper limit value may be determined based on the first threshold.
  • the default upper limit value may be 2 times the first threshold value plus 1.
  • the network device may determine that the TP of the terminal device is in the range of 0-7us, The range of 0-7us includes or excludes 7us.
  • the network device may determine that the TP of the terminal device is within the range of 7-15us, and the 7-15us range includes or does not include 7us.
  • the first information is used to indicate a range in which the TP of the terminal device is located within multiple candidate ranges.
  • the plurality of candidate ranges are divided by multiple thresholds.
  • the multiple thresholds are predefined, or the multiple thresholds are reported through the terminal device, or the multiple thresholds are configured by the network device.
  • the first information may indicate the range in which the TP of the terminal device is located within the plurality of candidate ranges through at least one bit, and/or the first information may indicate the range within the plurality of candidate ranges through the at least one bit.
  • the bit indicates the range in which the TP of the terminal device is located within the multiple candidate ranges.
  • the first information may include a plurality of bits, and the plurality of bits correspond to the plurality of thresholds.
  • each of the plurality of bits is The value of is used to indicate whether the TP of the terminal device is greater than the threshold corresponding to each bit.
  • the TP of the terminal device may be greater than the default lower limit by default.
  • the default lower limit value may be 0 or other numerical values.
  • the TP of the terminal device may be smaller than the default upper limit by default.
  • the default upper limit value may be a preset value.
  • the default upper limit value may be determined based on the first threshold.
  • the default upper limit value may be the cumulative sum of the plurality of threshold values.
  • the terminal device can indicate the terminal device through 2 bits. Whether TP is greater than 5us and whether it is greater than 10us. For example, if the first information indicates that the TP of the terminal device is not greater than 5us and not greater than 10us, then the range of the TP of the terminal device is 0-5us, and the range of 0-5us includes or does not include 5us.
  • the range of the TP of the terminal device is 5-10us, the range of 5-10us includes or does not include 5us, and the range of 5-10us includes Or not including 10us. If the first information indicates that the TP of the terminal device is greater than 5us and greater than 10us, the range of the TP of the terminal device is 10-15us, and the range of 10-15us includes or does not include 10us.
  • the first information is information corresponding to the terminal device, or the first information is information corresponding to part or all of the SCS used by the terminal device.
  • the TP capability of the terminal device may be reported for the terminal device, part of the SCS used by the terminal device, or all SCSs used by the terminal device.
  • the TP of the terminal device is the default TP.
  • the network device may determine that the TP of the terminal device is the default TP.
  • the default TP is the TP corresponding to the frequency band used by the terminal device.
  • the default TP may be 15us.
  • the TP corresponding to the FR1 frequency band can also be other values, which is not specifically limited in this application.
  • terminal device reports the first information mentioned above may be instructed or activated by the network device, may be determined by the terminal device itself, or may be performed by the network device and the terminal device. The method of negotiation is determined, and this application does not specifically limit this.
  • the method 300 may include some or all of the following content:
  • S310 Send uplink information to the network device in a time unit other than at least one guard time GP in the first time interval;
  • the duration of the first time interval is longer than the duration of the at least one GP
  • the first time interval is the time interval between two adjacent SRS resources or resource sets
  • the at least one GP includes a The time unit for the terminal device to perform at least one antenna switching.
  • uplink information is sent to the network device in a time unit other than at least one GP in the first time interval, so that the terminal device can reasonably utilize the idle time between two adjacent SRS resources or resource sets. unit, thereby improving resource utilization and data throughput.
  • the terminal device may also receive downlink information sent by the terminal device in a time unit other than the at least one GP in the first time interval; or the The terminal device may also send uplink information to the network device and receive downlink information sent by the network device within a time unit other than the at least one GP in the first time interval.
  • This application does not elaborate on this. limited.
  • this application uses idle time units other than the at least one GP within the first time interval to send uplink information to the network device, which can improve resource utilization and data throughput.
  • Figure 8 is a schematic diagram of the first time interval provided by the embodiment of the present application.
  • the first time interval between two adjacent SRS resources or resource sets includes 5 symbols
  • the GP length is 1 symbol
  • the terminal device can complete antenna switching and Power adjustment, etc.
  • the first time interval is greater than GP, data transmission cannot be performed within the first time interval.
  • the method 300 may further include:
  • the terminal device determines the position of the at least one GP within the first time interval.
  • the terminal device determines the location of the at least one GP within the first time interval, and sends an uplink message to the network device in a time unit other than the at least one GP within the first time interval. information.
  • the network device determines the position of the at least one GP within the first time interval, and receives the message sent by the terminal device within a time unit other than the at least one GP within the first time interval. upstream information.
  • the terminal device can complete antenna switching and power adjustment within the first time interval.
  • the location of the GP is uncertain, it means that when the first time interval is greater than the GP, the network device cannot schedule the terminal because the network device cannot determine in which time unit the antenna switching of the terminal device occurs.
  • the device transmits data in time units not used for antenna switching, resulting in performance degradation.
  • this embodiment determines the position of the at least one GP within the first time interval, so that the network device can know in which time unit the terminal device performs antenna switching in this case, that is, the at least one GP Therefore, the remaining time units other than the at least one GP can be fully utilized to transmit uplink information or downlink information, thereby ensuring the reliability of data transmission and the success rate of data transmission.
  • the time unit for the terminal device to perform at least one antenna switching may be one time unit, for example, one symbol, or it may be two time units, for example, two symbols, or it may be Other numbers or other granular time units.
  • the multiple time units may be multiple consecutive time units.
  • the position of the at least one GP within the first time interval is predefined.
  • the position of the at least one GP within the first time interval may be predefined as at least one of the following:
  • a), b) and c) are suitable for scenarios where only one antenna switch is required, and d) and e) are suitable for scenarios where two antenna switches are required, such as switching from the transmitting antenna of SRS0 to a better-performing one. After the antenna transmits data, it switches back to the transmitting antenna of SRS1 and continues to transmit SRS.
  • Figure 9 is a schematic diagram of the position of the at least one GP in the first time interval when the terminal device performs a single antenna switching according to the embodiment of the present application.
  • the first time interval between the resources or resource sets of two adjacent SRSs (that is, the time interval between the resources or resource sets of SRS0 and the resources or resource sets of SRS1) includes 5 symbols
  • the GP length is 1 symbol, there are 5 optional GP positions.
  • the first symbol in the first time interval can be predefined as the GP used for the terminal device to perform a single antenna conversion (ie, from the GP used for The GP used when the antenna Ant0 transmitting SRS0 is converted to the antenna Ant1 used to transmit SRS1), as shown in (b) in Figure 9, the last symbol in the first time interval can be predefined as the The GP used by the terminal device for a single antenna conversion (that is, the GP used when switching from the antenna Ant0 used to send SRS0 to the antenna Ant1 used to send SRS1), as shown in (c) in Figure 9, can be predefined.
  • the symbol in the middle position within the first time interval is the GP used for the terminal device to perform a single antenna switch (that is, the GP used when switching from the antenna Ant0 used to send SRS0 to the antenna Ant1 used to send SRS1); based on Therefore, the terminal device can send uplink information to the network device on the remaining 4 symbols, such as Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • FIG. 10 is a schematic diagram of the position of the at least one GP in the first time interval when the terminal device performs a single antenna switching according to the embodiment of the present application.
  • the first time interval between the resources or resource sets of two adjacent SRSs includes 5 symbols
  • the GP length is 1 symbol
  • the first symbol and the last symbol in the first time interval can be predefined as GP( That is, the GP used when switching from the antenna Ant0 used to send SRS0 to the antenna Ant1, and the GP used when switching from the antenna Ant1 to the antenna Ant2 used to send SRS1), as shown in (b) in Figure 10, you can pre-set
  • the symbols on both sides of the middle position in the first time interval are defined as the GP used for the terminal device to perform a single antenna conversion (ie, the GP used when switching from the antenna Ant0 used to transmit SRS0 to the antenna Ant1, and GP used when switching from antenna Ant1 to antenna Ant2 for transmitting SRS1); based on this, the terminal device can send uplink information, such as PUSCH, to the network device on the remaining 3 symbols.
  • the position of the at least one GP within the first time interval can also be predefined as other positions, such as a time unit to the left or right of the middle position, or a middle position.
  • the left side of the position is separated by at least one time unit by 1 or 2 time units
  • the right side of the middle position is separated by at least one time unit by 1 or 2 time units. This application does not specifically limit this.
  • the method 300 may further include:
  • the terminal device sends second information to the network device, where the second information is used to determine the location of the at least one GP within the first time interval.
  • the network device receives the second information sent by the terminal device; after receiving the second information, the network device determines the location of the at least one GP within the first time interval based on the second information. ; Then the remaining time units other than the at least one GP can be used to transmit uplink information or downlink information based on the position of the at least one GP within the first time interval.
  • the second information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the second information may indicate the position of the at least one GP in the first time interval among multiple candidate positions through the value of at least one bit.
  • the terminal device can use 2 bits to indicate the position of the terminal device in the plurality of candidate positions. For example, when the second information is 00, it indicates that the location of the terminal device is the first candidate location, when the second information is 01, it indicates that the location of the terminal device is the second candidate location, and when the second information is 01, it indicates that the location of the terminal device is the second candidate location. When the information is 10, it indicates that the position of the terminal device is the third candidate position. When the second information is 11, it indicates that the position of the terminal device is the fourth candidate position.
  • the at least one bit may be another number of bits, and the value of the at least one bit and the candidate position may also be other corresponding relationships. This application will No specific limitation is made.
  • the second information may also indicate the position of the at least one GP within the first time interval in other ways, which is not specifically limited in this application.
  • the second information may also be used to indicate the distance of each GP in the at least one GP relative to a reference position.
  • the terminal device may send the second information to the network device.
  • the reference position may be the starting position or the ending position of the first time interval.
  • the terminal device periodically sends the second information to the network device.
  • the terminal device when the terminal device determines that the duration of the first time interval is greater than the duration of the at least one GP, the terminal device sends the second information to the network device.
  • the terminal device may also be triggered to send the second information to the network device through other events, which is not specifically limited in this application.
  • the method 300 may further include:
  • the terminal device receives third information sent by the network device, where the third information is used to determine the location of the at least one GP within the first time interval.
  • the third information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the third information may indicate the position of the at least one GP in the first time interval among multiple candidate positions through the value of at least one bit.
  • the terminal device can use 2 bits to indicate the position of the terminal device in the plurality of candidate positions. For example, when the third information is 00, it indicates that the location of the terminal device is the first candidate location, when the third information is 01, it indicates that the location of the terminal device is the second candidate location, and when the third information is 01, it indicates that the location of the terminal device is the second candidate location. When the information is 10, it indicates that the position of the terminal device is the third candidate position. When the third information is 11, it indicates that the position of the terminal device is the fourth candidate position.
  • the at least one bit may be another number of bits, and the value of the at least one bit and the candidate position may also be other corresponding relationships. This application will No specific limitation is made.
  • the multiple candidate locations are predefined, or the multiple candidate locations are reported through the terminal device, or the multiple candidate locations are configured or indicated by the network device.
  • the plurality of candidate locations may be at least one of the following:
  • a), b) and c) are suitable for scenarios where only one antenna switch is required, and d) and e) are suitable for scenarios where two antenna switches are required, such as switching from the transmitting antenna of SRS0 to a better-performing one. After the antenna transmits data, it switches back to the transmitting antenna of SRS1 and continues to transmit SRS.
  • the plurality of candidate positions may also include other positions, such as a time unit to the left or right of the middle position, or a time unit separated by at least one time unit to the left of the middle position. Or 2 time units, or 1 or 2 time units separated by at least one time unit on the right side of the middle position. This application does not specifically limit this.
  • the third information is used to indicate the distance of each GP in the at least one GP relative to a reference position.
  • the reference position is a starting position or an ending position of the first time unit.
  • the reference position may also be other positions, such as the middle position of the first time interval, which is not specifically limited in this application.
  • the network device indicates to the UE the location of at least one GP for the terminal device to perform at least one antenna conversion within the first time interval between two SRS resources or resource sets
  • the location may be flexibly indicated by the network device.
  • the third information may indicate the distance of each GP in the at least one GP relative to the reference position through the value of at least one bit.
  • the first time interval between the resources or resource sets of two adjacent SRSs includes 5 symbols.
  • the at least one GP is a single GP and the length of the single GP is 1 symbol, there are 5 optional GP positions; in this case, as shown in (a) in Figure 11, a single GP can be indicated
  • the GP is 2 symbols apart from the starting position of the first time interval (that is, the GP used when switching from the antenna Ant0 used to transmit SRS0 to the antenna Ant1 used to transmit SRS1 is the third symbol in the first time interval ).
  • the terminal device can send uplink information, such as PUSCH, to the network device on the remaining 4 symbols.
  • the terminal device can send uplink information to the network device on the remaining 4 symbols, such as Physical Uplink Shared Channel (PUSCH). Based on this, the terminal device can send uplink information, such as PUSCH, to the network device on the remaining three symbols.
  • PUSCH Physical Uplink Shared Channel
  • the terminal device may also be triggered by other events to receive the third information sent by the network device, which is not specifically limited in this application.
  • the fourth information is used by the network device to determine the number of GPs used by the terminal device.
  • the terminal device indicates through the fourth information whether the network device is configured with two GPs or one GP, that is, the terminal device indicates through the fourth information that the network device is configured for the terminal device.
  • the GP required for performing two antenna conversions is also the GP required for the terminal device to perform one antenna conversion.
  • the terminal device after receiving the scheduling information sent by the network device for scheduling the transmission resources of the two SRSs, the terminal device sends the fourth information to the network device.
  • Figure 12 is a schematic flowchart of a method 400 for a network device to indicate to a terminal device the number of GPs used by the terminal device according to the embodiment of the present application.
  • the wireless communication method 400 can be executed interactively by the terminal device and the network device.
  • the terminal device shown in FIG. 12 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 12 may be the access network device shown in FIG. 1 .
  • the method 400 may include:
  • the network device configures SRS antenna switching resources (ie, two adjacent SRS resources or resource sets) for the terminal device.
  • the terminal device When the resource interval between two SRS antenna switching (i.e., the first time interval between two adjacent SRS resources or resource sets) is greater than the GP, the terminal device notifies the network device of the number of GPs required for SRS antenna switching (i.e., the so-called GP). number of GPs used by the terminal device).
  • the network device indicates to the terminal device the location of the at least one GP within two SRS antenna switching resource intervals (ie, the first time interval).
  • the terminal device sends the fourth information to the network device while receiving the scheduling information.
  • Figure 13 is a schematic flowchart of a method 500 for a network device to indicate to a terminal device the number of GPs used by the terminal device according to the embodiment of the present application.
  • the wireless communication method 500 can be executed interactively by the terminal device and the network device.
  • the terminal device shown in FIG. 13 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 13 may be the access network device shown in FIG. 1 .
  • the method 500 may include:
  • S510 When the resource interval between two SRS antenna switching (i.e., the first time interval between two adjacent SRS resources or resource sets) is larger than the GP (for example, a single GP), the terminal device reports the required SRS antenna switching to the network device.
  • the number of GPs that is, the number of GPs used by the terminal device).
  • the network device configures SRS antenna switching resources (i.e., two adjacent SRS resources or resource sets) for the terminal device and indicates the position of the GP within the two SRS antenna switching resource intervals (i.e., the first time interval) .
  • SRS antenna switching resources i.e., two adjacent SRS resources or resource sets
  • the number of GPs used by the terminal device may also be determined by the network device or the terminal device does not need to report the number of GPs used by the terminal device.
  • the network device can independently determine the number of GPs used by the terminal device. That is, when only one GP is configured, the terminal device performs antenna switching within the matching GP. When multiple GPs are configured, the terminal device can still only When an antenna switch is performed once or multiple antenna switches are performed, and the terminal device only performs an antenna switch once, the terminal device can use the remaining GPs for data transmission or use the remaining GPs as idle resources.
  • the network device may determine the default number as the number of GPs used by the terminal device.
  • the default number can be 1, 2 or other values.
  • the at least one GP is a single GP used for a single antenna switching by the terminal device, and when the single GP includes N consecutive time units, the at least one GP is used in the first
  • the position within a time interval is at least one of the following:
  • N is an integer greater than 0.
  • the at least one GP is two GPs used for the terminal device to perform two antenna switchings, and each of the two GPs includes N consecutive time units
  • the The position of at least one GP within the first time interval includes at least one of the following:
  • each of the at least one GP includes a single time unit or a consecutive plurality of time units.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell.
  • the first direction, "uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 14 is a schematic block diagram of the terminal device 610 according to the embodiment of the present application.
  • the terminal device 610 may include:
  • the sending unit 611 is configured to send the sounding reference signal SRS to the network device within the time unit when the antenna switching occurs on the terminal device or within each of multiple consecutive time units.
  • the sending unit 611 is also used to:
  • Receive scheduling information sent by the network device is used to schedule transmission resources of the SRS.
  • the sending unit 611 is also used to:
  • the first information is used to determine the transition time TP capability of the terminal device.
  • the first information is used to indicate the TP of the terminal device among a plurality of candidate TPs.
  • the plurality of candidate TPs are predefined, or the plurality of candidate TPs are reported through the terminal device, or the plurality of candidate TPs are configured or indicated by the network device.
  • the first information is used to indicate whether the TP of the terminal device is less than or equal to a first threshold, and/or the first information is used to indicate whether the TP of the terminal device is greater than or equal to the first threshold.
  • the first threshold is predefined, or the first threshold is reported through the terminal device, or the first threshold is configured or indicated by the network device.
  • the first information is used to indicate a range in which the TP of the terminal device is located within multiple candidate ranges.
  • the plurality of candidate ranges are divided by multiple thresholds.
  • the multiple thresholds are predefined, or the multiple thresholds are reported through the terminal device, or the multiple thresholds are configured by the network device.
  • the TP capability is a capability applicable to the terminal device, or the TP capability is a capability applicable to part of the subcarrier spacing SCS or all SCS used by the terminal device.
  • the TP of the terminal device is the default TP.
  • the default TP is the TP corresponding to the frequency band used by the terminal device.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 610 shown in FIG. 14 may correspond to the corresponding subject in performing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 610 are respectively to implement the implementation of the present application.
  • the corresponding process in method 200 provided in the example is not repeated here for the sake of simplicity.
  • Figure 15 is a schematic block diagram of the terminal device 620 according to the embodiment of the present application.
  • the terminal device 620 may include:
  • the sending unit 621 is configured to send uplink information to the network device in a time unit other than at least one guard time GP in the first time interval;
  • the duration of the first time interval is longer than the duration of the at least one GP
  • the first time interval is the time interval between two adjacent sounding reference signal SRS resources or resource sets
  • the at least one GP A time unit is included for the terminal device to perform at least one antenna switching.
  • the sending unit 621 is also used to:
  • the location of the at least one GP within the first time interval is determined.
  • the position of the at least one GP within the first time interval is predefined.
  • the sending unit 621 is also used to:
  • Second information is sent to the network device, where the second information is used to determine the location of the at least one GP within the first time interval.
  • the second information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the sending unit 621 is specifically used to:
  • the second information is sent to the network device.
  • the sending unit 621 is also used to:
  • the third information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the multiple candidate locations are predefined, or the multiple candidate locations are reported through the terminal device, or the multiple candidate locations are configured or indicated by the network device.
  • the third information is used to indicate the distance of each GP in the at least one GP relative to a reference position.
  • the reference position is the starting position or the ending position of the first time unit.
  • the sending unit 621 is specifically used to:
  • the third information sent by the network device is received.
  • the sending unit 621 before determining the position of the at least one GP within the first time interval, the sending unit 621 is also used to:
  • the fourth information is used by the network device to determine the number of GPs used by the terminal device.
  • the sending unit 621 is specifically used to:
  • the fourth information is sent to the network device.
  • the at least one GP is a single GP used for a single antenna switching by the terminal device, and when the single GP includes N consecutive time units, the at least one GP is used in the first
  • the position within a time interval is at least one of the following:
  • N is an integer greater than 0.
  • the at least one GP is two GPs used for the terminal device to perform two antenna switchings, and each of the two GPs includes N consecutive time units
  • the The position of at least one GP within the first time interval includes at least one of the following:
  • each of the at least one GP includes a single time unit or a consecutive plurality of time units.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 620 shown in FIG. 15 may correspond to the corresponding subject in performing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 620 are respectively to implement the implementation of the present application.
  • the corresponding process in method 300 provided in the example is not repeated here for the sake of simplicity.
  • Figure 16 is a schematic block diagram of a network device 710 according to an embodiment of the present application.
  • the network device 710 may include:
  • the receiving unit 711 is configured to receive the sounding reference signal SRS sent by the terminal device within the time unit when the terminal device undergoes antenna switching or within each of multiple consecutive time units.
  • the receiving unit 711 is also used to:
  • the scheduling information is used to schedule transmission resources of the SRS.
  • the receiving unit 711 is also used to:
  • the terminal device Receives the first information sent by the terminal device; the first information is used to determine the conversion time TP capability of the terminal device.
  • the first information is used to indicate the TP of the terminal device among a plurality of candidate TPs.
  • the plurality of candidate TPs are predefined, or the plurality of candidate TPs are reported through the terminal device, or the plurality of candidate TPs are configured or indicated by the network device.
  • the first information is used to indicate whether the TP of the terminal device is less than or equal to a first threshold, and/or the first information is used to indicate whether the TP of the terminal device is greater than or equal to the first threshold.
  • the first threshold is predefined, or the first threshold is reported through the terminal device, or the first threshold is configured or indicated by the network device.
  • the first information is used to indicate a range in which the TP of the terminal device is located within multiple candidate ranges.
  • the plurality of candidate ranges are divided by multiple thresholds.
  • the multiple thresholds are predefined, or the multiple thresholds are reported through the terminal device, or the multiple thresholds are configured by the network device.
  • the TP capability is a capability applicable to the terminal device, or the TP capability is a capability applicable to part of the subcarrier spacing SCS or all SCS used by the terminal device.
  • the TP of the terminal device is the default TP.
  • the default TP is the TP corresponding to the frequency band used by the terminal device.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 710 shown in Figure 16 may correspond to the corresponding subject in performing the method 200 of the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 710 are respectively to implement the implementation of the present application.
  • the corresponding process in method 200 provided in the example is not repeated here for the sake of simplicity.
  • Figure 17 is a schematic block diagram of a network device 720 according to an embodiment of the present application.
  • the network device 720 may include:
  • the receiving unit 721 is configured to receive uplink information sent by the terminal device in a time unit other than at least one GP in the first time interval;
  • the duration of the first time interval is longer than the duration of the at least one GP
  • the first time interval is the time interval between two adjacent sounding reference signal SRS resources or resource sets
  • the at least one GP A time unit is included for the terminal device to perform at least one antenna switching.
  • the receiving unit 721 is also used to:
  • the location of the at least one GP within the first time interval is determined.
  • the position of the at least one GP within the first time interval is predefined.
  • the receiving unit 721 is also used to:
  • the second information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the receiving unit 721 is specifically used to:
  • the second information sent by the terminal device is received.
  • the receiving unit 721 is also used to:
  • Third information is sent to the terminal device, where the third information is used to determine the location of the at least one GP within the first time interval.
  • the third information is used to indicate the location of the at least one GP within the first time interval among a plurality of candidate locations.
  • the multiple candidate locations are predefined, or the multiple candidate locations are reported through the terminal device, or the multiple candidate locations are configured or indicated by the network device.
  • the third information is used to indicate the distance of each GP in the at least one GP relative to a reference position.
  • the reference position is the starting position or the ending position of the first time unit.
  • the receiving unit 721 is specifically used to:
  • the third information is sent to the terminal device.
  • the receiving unit 721 before determining the position of the at least one GP within the first time interval, is further configured to:
  • the fourth information is used by the network device to determine the number of GPs used by the terminal device.
  • the receiving unit 721 is specifically used to:
  • the at least one GP is a single GP used for a single antenna switching by the terminal device, and when the single GP includes N consecutive time units, the at least one GP is used in the first
  • the position within a time interval is at least one of the following:
  • N is an integer greater than 0.
  • the at least one GP is two GPs used for the terminal device to perform two antenna switchings, and each of the two GPs includes N consecutive time units
  • the The position of at least one GP within the first time interval includes at least one of the following:
  • each of the at least one GP includes a single time unit or a consecutive plurality of time units.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 720 shown in Figure 17 may correspond to the corresponding subject in performing the method 300 of the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 720 are respectively to implement the implementation of the present application.
  • the corresponding process in method 300 provided in the example is not repeated here for the sake of simplicity.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps in the above method embodiment in combination with its hardware.
  • the sending unit or receiving unit mentioned above may be implemented by a transceiver.
  • Figure 18 is a schematic structural diagram of the communication device 800 according to the embodiment of the present application.
  • the communication device 800 may include a processor 810.
  • the processor 810 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 800 may also include memory 820.
  • the memory 820 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 810 .
  • the processor 810 can call and run the computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated into the processor 810.
  • communication device 800 may also include a transceiver 830.
  • the processor 810 can control the transceiver 830 to communicate with other devices. Specifically, it can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the bus system also includes a power bus, a control bus and a status signal bus.
  • the communication device 800 can be a terminal device in the embodiment of the present application, and the communication device 800 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. That is to say, the communication device 800 in the embodiment of the present application
  • the communication device 800 may correspond to the terminal device 610 or the terminal device 620 in the embodiment of the present application, and may correspond to the corresponding subject in performing the method 200 or the method 300 according to the embodiment of the present application. For the sake of brevity, details will not be described here.
  • the communication device 800 may be a network device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the communication device 800 in the embodiment of the present application may correspond to the network device 710 or the network device 720 in the embodiment of the present application, and may correspond to the corresponding subject in performing the method 200 or the method 300 according to the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip that has signal processing capabilities and can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiments of this application.
  • the chip may also be called system-on-a-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device equipped with the chip can execute the various methods, steps and logical block diagrams disclosed in the embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 includes a processor 910 .
  • the processor 910 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 900 may also include a memory 920 .
  • the processor 910 can call and run the computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 910 .
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the chip 900 may also include an input interface 930 .
  • the processor 910 can control the input interface 930 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 900 may also include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip 900 can be applied to the network equipment in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network equipment in the various methods of the embodiment of the present application, and can also implement the various methods of the embodiment of the present application.
  • the corresponding process implemented by the terminal device will not be repeated here for the sake of simplicity.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the processors mentioned above may include but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute each method, step, and logical block diagram disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of this application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memories mentioned above include but are not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to execute the wireless wireless device provided by the present application.
  • Communication methods can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided by this application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 .
  • FIG. 1 For the sake of brevity, details will not be described again here.
  • system in this article can also be called “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in the embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • the units/modules/components described above as separate/displayed components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备以及网络设备,所述方法包括:在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送探测参考信号SRS。本申请提供的方案避免了为终端设备的天线转换过程和SRS分别配置各自的时间单元,能够提升资源利用率以及提升数据吞吐量。

Description

无线通信方法、终端设备以及网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备以及网络设备。
背景技术
在新空口(New Radio,NR)中,探测参考信号(Sounding Reference Signal,SRS)信号用于信道探测。网络设备为了获取上行信道的无线传播特性,会配置终端设备在一定的时频资源发射SRS,网络设备通过解调接收到的SRS可以知道当前信道的情况。当终端设备具有多个发射天线或接收天线的时候,网络设备将配置终端设备在多个天线端口上依次发射SRS。网络设备接收到多个端口的SRS后,可以得到完整的多输入多输出(Multiple Input Multiple Output,MIMO)信道空间传输特性,从而可以更好的进行码本选择等操作。
考虑到终端设备切换天线时需要的转换时间(Transient period,TP),通信标准引入了保护时间(Guard Period,GP),终端设备在GP内不做任何发射。
但是,由于GP的长度为对应到不同的子载波间隔(subcarrier spacing,SCS)的1个符号或两个符号,因此,GP在网络设备的调度上带来的影响则是留出了一个符号或两个符号的GP,进而降低了终端设备的数据吞吐量。
此外,相关技术只考虑了两个探测参考信号(Sounding Reference Signal,SRS)的资源或资源集之间的时间间隔的要求,即需要保证两个SRS的资源或资源集之间的时间间隔大于或等于GP,且当两个SRS的资源或资源集之间的时间间隔大于GP时,也不能在两个SRS的资源或资源集之间的时间间隔内进行数据传输。然而,当两个SRS的资源或资源集之间的时间间隔过大时,如果不允许终端设备进行其它信号的发射必然会造成资源浪费并降低了数据吞吐量。
发明内容
本申请实施例提供了一种无线通信方法、终端设备以及网络设备,能够提升资源利用率以及提升数据吞吐量。
第一方面,本申请提供了一种无线通信方法,包括:
在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送探测参考信号SRS。
第二方面,本申请提供了一种无线通信方法,包括:
在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息;
其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
第三方面,本申请提供了一种无线通信方法,包括:
在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,接收所述终端设备发送的探测参考信号SRS。
第四方面,本申请提供了一种无线通信方法,包括:
在第一时间间隔内除至少一个GP之外的时间单元内,接收终端设备发送的上行信息;
其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
第五方面,本申请提供了一种终端设备,用于执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第六方面,本申请提供了一种网络设备,用于执行上述第三方面至第四方面中的任一方面或其各实 现方式中的方法。具体地,所述网络设备包括用于执行上述第三方面至第四方面中的任一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第七方面,本申请提供了一种终端设备,包括收发器、处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该收发器包括发射机(发射器)和接收机(接收器)。
第八方面,本申请提供了一种网络设备,包括收发器、处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第三方面至第四方面中的任一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该收发器包括发射机(发射器)和接收机(接收器)。
第九方面,本申请提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十一方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送SRS;能够在不引入GP的基础上,考虑到终端设备切换天线需要的时间,相应的,不仅避免了GP在网络设备的调度上带来的影响,还能够提升终端设备的上行传输性能,例如能够提升资源利用率以及数据吞吐量。此外,在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息,使得终端设备能够合理利用相邻的两个SRS资源或资源集合之间的空闲时间单元,进而能够提升资源利用率以及数据吞吐量。
附图说明
图1是本申请实施例的系统框架的示例。
图2是本申请实施例提供的SRS轮发的示意图。
图3是本申请实施例提供的SRS轮发和GP之间的位置关系的示意图。
图4是本申请实施例提供的无线通信方法的示意性流程图。
图5是本申请实施例提供的网络设备通过GP内剩余的稳定信号完成解调的示意图。
图6是本申请实施例提供的有GP的情况下的SRS轮发和无GP的情况下的SRS轮发的示意图。
图7是本申请实施例提供的无线通信方法的另一示意性流程图。
图8是本申请实施例提供的第一时间间隔的示意图。
图9是本申请实施例提供的终端设备进行单次天线切换时所述至少一个GP在第一时间间隔内的位置的示意图。
图10是本申请实施例提供的终端设备进行单次天线切换时所述至少一个GP在第一时间间隔内的位置的示意图。
图11是本申请实施例提供的网络设备向终端设备灵活指示至少一个GP在第一时间间隔内的位置的示意图。
图12至图13是本申请实施例提供的网络设备向终端设备指示所述终端设备使用的GP的数量的方 法的示意性流程图。
图14和图15是本申请实施例的终端设备的示意性框图。
图16和图17是本申请实施例的网络设备的示意性框图。
图18是本申请实施例提供的通信设备的示意性框图。
图19是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,在本申请实施例中涉及的术语“预定义”或"预设"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预设的可以是指协议中定义的。可选地,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做具体限定。
此外,术语“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。另外,本申请实施例中涉及的描述“在……情况下”可以被解释成为“如果”或“若”或“当……时”或“响应于”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
图1是本申请实施例的系统框架的示例。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核 心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
在新空口(New Radio,NR)中,探测参考信号(Sounding Reference Signal,SRS)信号用于信道探测。网络设备为了获取上行信道的无线传播特性,会配置终端设备在一定的时频资源发射SRS,网络设备通过解调接收到的SRS号可以知道当前信道的情况。当终端设备具有多个发射天线或接收天线的时候,网络设备将配置终端设备在多个天线端口上依次发射SRS。网络设备接收到多个端口的SRS后,可以得到完整的多输入多输出(Multiple Input Multiple Output,MIMO)信道空间传输特性,从而可以更好的进行码本选择等操作。
对于时分双工(Time Division Duplexing,TDD)频段来说,上行信道和下行信道具有互异性,且终端设备通常具有的下行天线数量多余上行天线数量,因此终端设备也将在纯下行天线进行SRS信号的发射,用于网络设备对下行信道的估计。
图2是本申请实施例提供的SRS轮发的示意图。
如图2所示,终端设备具有四个接收天线(即天线Ant0~天线Ant3),其中天线Ant0同时作为发射天线。网络设备为了获取四个接收天线对应的信道特性,将为终端设备配置四个SRS时频资源(即SRS资源0~SRS资源3),终端设备依次利用这四个接收天线在其对应的SRS资源上发射SRS信号。例如终端设备可以利用天线Ant0在SRS资源0上发送SRS,利用天线Ant1在SRS资源1上发送SRS,利用天线Ant2在SRS资源2上发送SRS,以及利用天线Ant3在SRS资源3上发送SRS。
终端设备切换天线需要一定的时间,因此,当终端设备从一个天线切换到另外一个天线发射SRS信号时将需要一定的转换时间(Transient period,TP),TP的长度因终端设备而异,例如FR1下的TP最长不超过15us。考虑到TP,通信标准引入了一个保护时间(Guard Period,GP),终端设备在GP内不做任何发射。
图3是本申请实施例提供的SRS轮发和GP之间的位置关系的示意图。
如图3所示,终端设备需要向网络设备轮发SRS0~SRS3时,在发送SRS0之后需要间隔一个GP才能发送SRS1,在发送SRS1之后需要间隔一个GP才能发送SRS2,在发送SRS2之后需要间隔一个GP才能发送SRS3。
但是,由于GP的长度为对应到不同的子载波间隔(subcarrier spacing,SCS)的1个符号或两个符号,因此,GP在网络设备的调度上带来的影响则是留出了一个符号或两个符号的GP,进而降低了终端设备的数据吞吐量。
此外,相关技术只考虑了两个探测参考信号(Sounding Reference Signal,SRS)的资源或资源集之间的时间间隔的要求,即需要保证两个SRS的资源或资源集之间的时间间隔大于或等于GP,且当两个SRS的资源或资源集之间的时间间隔大于GP时,也不能在两个SRS的资源或资源集之间的时间间隔内进行数据传输。然而,当两个SRS的资源或资源集之间的时间间隔过大时,如果不允许终端设备进行其它信号的发射必然会造成资源浪费并降低了数据吞吐量。
有鉴于此,本申请实施例提供了一种无线通信方法、终端设备以及网络设备,能够提升资源利用率以及提升数据吞吐量。
图4是本申请实施例提供的无线通信方法200的示意性流程图,所述无线通信方法200可以由终端设备和网络设备交互执行。图4中所示的终端设备可以是如图1所示的终端设备,图4中所示的网络设备可以是如图1所示的接入网设备。
如图4所示,所述方法200可包括以下部分或全部内容:
S210,终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送SRS。
换言之,网络设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,接收所述终端设备发送的SRS。进一步的,网络设备收到所述终端设备发送的SRS后,可基于收到的SRS后,可以得到完整的MIMO信道空间传输特性,从而可以更好的进行码本选择等操作。
本实施例中,在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送SRS;能够在不引入GP的基础上,考虑到终端设备切换天线需要的时间,相应的,不仅避免了GP在网络设备的调度上带来的影响,还能够提升终端设备的上行传输性能,例如能够提升资源利用率以及数据吞吐量。
示例性地,在所述终端设备的TP小于GP的情况下,终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送SRS,以充分利用所述终端设备发生天线转换的时间单元的资源,进而提升数据吞吐量。
值得注意的是,本申请将天线转换需要的时间(即TP)和终端设备发射SRS需要的时间设计在同一个时间单元内,即网络设备可以通过在单个时间单元内除TP之外的剩余时间上接收到的稳定信号完成SRS的解调。
示例性地,GP的长度为对应到不同的NR子载波间隔(subcarrier spacing,SCS)的1个符号或两个符号。下面结合表1对GP的长度和SCS之间的对应关系进行示例性说明。
表1
SCS GP的长度(符号) GP的长度(us)
15khz 1 71.43
30khz 1 35.71
60khz 1 17.86
120khz 2 17.86
如表1所示,不同SCS对应的用于进行天线切换的GP的长度不同,且GP的长度为一个符号或2个符号。
然而,终端设备在不同天线上发射SRS时,对于FR1(7.125GHz以下频段)而言,其需要的TP在硬件上不超过15us。下面结合表2对TP和GP进行比较。
表2
SCS GP的长度(us) TP的长度(us) TP占GP长度的比例
15khz 71.43 15 21%
30khz 35.71 15 42%
60khz 17.86 15 84%
如表2所示,若TP的长度为15us,则终端设备的TP在15khz SCS下最多占21%,在30khz SCS下最多占42%。
考虑到TP的引入的初衷是因为终端设备需要一定的时间去完成从一个发射天线切换到另外一个发射天线,以及进行硬件发射通路的调整(比如发射功率的调整)。在这个时间段内终端设备的发射信号将处于不稳定的状态,信号质量可能无法保证,因此,终端设备不能在这段时间内向网络设备发送任何上行信息。但是,对于15khz SCS和30khz SCS来说,TP在整个GP里面所占的比例并不高,网络设备是具有通过GP内剩余的稳定信号完成解调的潜在有能力的,尤其是终端设备的TP比15us要低的时候。有鉴于此,本申请将终端设备发生天线转换的时间单元设计为用于向网络设备发送SRS的时间单元;能够在不引入GP的基础上,考虑到终端设备切换天线需要的时间,相应的,不仅避免了GP在网络设备的调度上带来的影响,还能够提升终端设备的上行传输性能,例如能够提升资源利用率以及数据吞吐量。
图5是本申请实施例提供的网络设备通过GP内剩余的稳定信号完成解调的示意图。
如图5所述,网络设备在一个GP内除TP之外的时间内,实际上是有能力通过GP内剩余的稳定信号完成解调的;换言之,终端设备可以在一个GP内除TP之外的时间内,向网络设备发送上行信息或信号的。
图6是本申请实施例提供的有GP的情况下的SRS轮发和无GP的情况下的SRS轮发的示意图。
如图6所示,假设一个GP为一个符号且用于传输SRS的时间单元为一个符号,在有GP的情况下,每两个用于传输SRS的符号之间需要间隔一个GP,然而,在无GP的情况下,可以在连续的符号上向网络设备发送SRS,终端设备只需要4个符号就可以完成SRS在四个天线端口上的轮流发射,与有GP的情况相比,可以节省3个GP,即能够提升资源利用率以及数据吞吐量。
应当理解,本申请对涉及的时间单元不作具体限定。示例性地,所述时间单元包括但不限于:符号、时隙、子帧、半帧或无线帧等。
在一些实施例中,所述方法200还可包括:
终端设备接收所述网络设备发送的调度信息;所述调度信息用于调度所述SRS的传输资源。
示例性地,所述调度信息可以携带在下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)内。
示例性地,所述SRS的传输资源可以是SRS资源或SRS资源集。
在一些实施例中,所述方法200还可包括:
终端设备向网络设备发送第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
示例性地,所述终端设备向网络设备发送所述第一信息;相应的,所述网络设备接收到所述第一信息后,基于所述第一信息确定所述终端设备的TP能力,并基于所述TP能力确定是否调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS;或者说,所述网络设备基于所述TP能力确定是否为所述终端设备预留用于所述终端设备进行天线转换的GP。
本实施例中,通过上报终端设备的TP能力,有利于网络设备基于TP能力合理使用或调度传输资源,进而能够提升资源利用率和数据吞吐量。
在一些实施例中,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
在一些实施例中,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
示例性地,所述网络设备接收到所述第一信息后,基于所述第一信息确定所述终端设备的TP,并基于所述终端设备的TP确定是否调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS;或者说,所述网络设备可基于所述终端设备的TP,确定是否为所述终端设备预留用于所述终端设备进行天线转换的GP。例如,所述网络设备可以承受所述终端设备的TP时,可以调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即可以不为所述终端设备预留用于所述终端设备进行天线转换的GP;否则,所述网络设备不调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即需要为所述终端设备预留用于所述终端设备进行天线转换的GP。
示例性地,由于终端设备的天线转换所需的时间通常会低于某一阈值,因此,所述多个候选TP中的每一个候选TP可以小于或等于预设TP。例如,所述预设TP可以是15us或其他数值。即所述多个候选TP可以是小于或等于15us的多个TP,如3us、6us、9us、12us等。终端设备根据实际情况上报支持的TP给网络设备。网络设备收到终端设备上报的TP后可以决定是否给终端设备配置在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内用于发送SRS的资源或 资源集,即不采用GP的方式接收SRS。
示例性地,所述第一信息可通过至少一个比特位的取值在多个候选TP中指示所述终端设备的TP。
举例来说,假设所述多个候选TP为3us、6us、9us、12us,此时,所述终端设备可以通过2bit来完成在多个候选TP中指示所述终端设备的TP。例如,所述第一信息为00时指示所述终端设备的TP为3us,所述第一信息为01时指示所述终端设备的TP为6us,所述第一信息为10时指示所述终端设备的TP为9us,所述第一信息为11时指示所述终端设备的TP为12us。当然,在其他可替代实施例中,所述至少一个比特为也可是其他数量个比特位,以及所述至少一个比特位的取值和候选TP之间也可以是其他对应关系,本申请对此不作具体限定。
在一些实施例中,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
在一些实施例中,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
示例性地,所述网络设备接收到所述第一信息后,基于所述终端设备的TP是否小于或等于第一阈值,确定是否调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS;或者说,所述网络设备可基于所述终端设备的TP是否小于或等于第一阈值,确定是否为所述终端设备预留用于所述终端设备进行天线转换的GP。例如,所述终端设备的TP小于或等于第一阈值时,说明所述网络设备可以承受所述终端设备的TP,此时,所述网络设备可以调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即可以不为所述终端设备预留用于所述终端设备进行天线转换的GP;否则,所述网络设备不调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即需要为所述终端设备预留用于所述终端设备进行天线转换的GP。
示例性地,所述第一信息可通过1个比特位指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息可通过所述1个比特位指示所述终端设备的TP是否大于或等于所述第一阈值。
举例来说,假设所述第一阈值为7us,此时,所述终端设备可以通过1bit来完成指示所述终端设备TP小于或等于7us;或终端设备可以通过1bit来完成指示所述终端设备TP大于或等于7us。例如,所述第一信息为0时指示所述终端设备TP小于或等于7us,所述第一信息为1时指示所述终端设备TP大于或等于7us。再如,所述第一信息为1时指示所述终端设备TP小于或等于7us,所述第一信息为0时指示所述终端设备TP大于或等于7us。当然,在其他可替代实施例中,所述第一阈值还可以是7us之外的数值,本申请对此不作具体限定。
此外,所述第一信息用于指示所述终端设备的TP小于或等于第一阈值时,所述终端设备的TP可以默认大于缺省下限值。例如,所述缺省下限值可以是0或其他数值。所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值时,所述终端设备的TP可以默认小于缺省上限值。例如,所述缺省上限值可以是预设值,再如,所述缺省上限值可以根据所述第一阈值确定。例如,所述缺省上限值可以是2倍的第一阈值加1。
举例来说,假设所述第一阈值为7us,所述第一信息用于指示所述终端设备的TP小于或等于7us时,网络设备可以确定所述终端设备的TP在0-7us范围内,0-7us范围包括或不包括7us。所述第一信息用于指示所述终端设备的TP是否大于或等于7us阈值时,网络设备可以确定所述终端设备的TP在7-15us范围内,7-15us范围包括或不包括7us。
在一些实施例中,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
在一些实施例中,所述多个候选范围通过多个阈值划分。
在一些实施例中,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
示例性地,所述网络设备接收到所述第一信息后,基于所述终端设备的TP所在的范围,确定是否调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS;或者说,所述网络设备可基于所述终端设备的TP所在的范围,确定是否为所述终端设备预留用于所述终端设备进行天线转换的GP。例如,所述网络设备可以承受所述终端设备的TP所在的范围时,所述网络设备可以调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即可以不为所述终端设备预留用于所述终端设备进行天线转换的GP;否则,所述网络设备不调度终端设备在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内发送SRS,即需要为所述终端设备预留用于所述终端设备进行天线转换的GP。
示例性地,所述第一信息可通过至少一个比特位在所述多个候选范围内指示所述终端设备的TP所 在的范围,和/或,所述第一信息可通过所述至少一个个比特位在所述多个候选范围内指示所述终端设备的TP所在的范围。
举例来说,假设所述多个候选范围包括:0-7us、7-15us,此时,终端设备可以通过1bit来完成指示所述终端设备的TP所在的范围。例如,所述第一信息为0时指示所述终端设备的TP所在的范围为0-7us,所述第一信息为1时指示所述终端设备的TP所在的范围为7-15us。再如,所述第一信息为1时指示所述终端设备的TP所在的范围为0-7us,所述第一信息为0时指示所述终端设备的TP所在的范围为7-15us。当然,在其他可替代实施例中,所述多个候选范围还可以是其他数值范围,本申请对此不作具体限定。
示例性地,所述第一信息可以包括多个比特位,所述多个比特位和所述多个阈值一一对应,在这种情况下,所述多个比特位中的每一个比特位的取值用于指示所述终端设备的TP是否大于所述每一个比特位对应的阈值。进一步的,所述终端设备的TP可以默认大于缺省下限值。例如,所述缺省下限值可以是0或其他数值。所述终端设备的TP可以默认小于缺省上限值。例如,所述缺省上限值可以是预设值,再如,所述缺省上限值可以根据所述第一阈值确定。例如,所述缺省上限值可以所述多个阈值的累计和。
举例来说,假设所述第一阈值为5us和10us,所述缺省下限值为0,所述缺省上限值为15;此时,终端设备可以通过2bit来指示所述终端设备的TP是否大于5us以及是否大于10us。例如,若所述第一信息指示所述终端设备的TP不大于5us且不大于10us,则所述终端设备的TP所在的范围为0-5us,0-5us范围包括或不包括5us。若所述第一信息指示所述终端设备的TP大于5us且不大于10us,则所述终端设备的TP所在的范围为5-10us,5-10us范围包括或不包括5us,5-10us范围包括或不包括10us。若所述第一信息指示所述终端设备的TP大于5us且大于10us,则所述终端设备的TP所在的范围为10-15us,10-15us范围包括或不包括10us。
值得注意的是,所述终端设备的TP的长短对网络设备的解调是由直接影响的,且影响的大小跟网络设备的能力有关。解调能力强的网络设备其可以承受的TP更大(也即采用很少的信号就可以完成SRS的解调),而解调能力弱的网络设备能承受的TP则更小(也即需要更多的信号才能完成SRS的解调)。因此,所述多个候选TP、所述第一阈值或所述多个阈值由所述网络设备配置时,能够使得网络设备基于终端设备上报的第一信息确定的所述终端设备的TP能力能够与网络设备可以承受的TP相匹配,进而保证数据传输的可靠性。简言之,终端设备通过所述第一信息在网络设备配置的多个候选TP中指示所述终端设备的TP,或所述终端设备通过所述第一信息指示是否低于网络设备配置的所述第一阈值,或所述终端设备通过所述第一信息在基于网络设备配置的多个阈值划分的多个候选范围内,指示所述终端设备的TP所在的范围,能够使得网络设备基于终端设备上报的第一信息确定的所述终端设备的TP能力能够与网络设备可以承受的TP相匹配,进而保证数据传输的可靠性。
在一些实施例中,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
示例性地,所述第一信息为所述终端设备对应的信息,或所述第一信息为所述终端设备使用的部分SCS或全部SCS对应的信息。换言之,可以针对所述终端设备、所述终端设备使用的部分SCS或全部SCS上报所述终端设备的TP能力。
当然,在其他可替代实施例中,也可以以其他粒度上报所述终端设备的IP能力,本申请对此不作具体限定。
在一些实施例中,所述终端设备的TP为缺省TP。
示例性地,所述网络设备未收到上文涉及的第一信息时,可以确定所述终端设备的TP为缺省TP。
在一些实施例中,所述缺省TP为所述终端设备采用的频段所对应的TP。
示例性地,针对FR1频段而言,所述缺省TP可以为15us。
当然,在其他可替代实施例中,FR1频段对应的TP也可以是其他数值,本申请对此不作具体限定。
应当理解,所述终端设备是否上报上文涉及的第一信息,可以是通过网络设备指示或激活,也可以是由所述终端设备自行确定,还可以通过所述网络设备和所述终端设备进行协商的方式确定,本申请对此不作具体限定。
图7是本申请实施例提供的无线通信方法300的示意性流程图,所述无线通信方法300可以由终端设备和网络设备交互执行。图7中所示的终端设备可以是如图1所示的终端设备,图7中所示的网络设备可以是如图1所示的接入网设备。
如图7所示,所述方法300可包括以下部分或全部内容:
S310,在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息;
其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个 SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
本实施例中,在第一时间间隔内除至少一个GP之外的时间单元内,向网络设备发送上行信息,使得终端设备能够合理利用相邻的两个SRS资源或资源集合之间的空闲时间单元,进而能够提升资源利用率以及数据吞吐量。
当然,在其他可替代实施例中,所述终端设备也可以在所述第一时间间隔内除所述至少一个GP之外的时间单元内,接收所述终端设备发送的下行信息;或所述终端设备也可以在所述第一时间间隔内除所述至少一个GP之外的时间单元内,向所述网络设备发送上行信息并接收所述网络设备发送的下行信息,本申请对此不作具体限定。
值得注意的是,本申请利用第一时间间隔内的除所述至少一个GP之外的空闲的时间单元,向网络设备发送上行信息,能够提升资源利用率以及数据吞吐量。
图8是本申请实施例提供的第一时间间隔的示意图。
如图8所示,当相邻的两个SRS的资源或资源集合之间的第一时间间隔(即SRS0的资源或资源集与SRS1的资源或资源集之间的时间间隔)包括5个符号时,若GP长度为1个符号,则GP可选的位置有5个,即S1~S5。这种情况下,如果只考虑了两个SRS的资源或资源集合之间的时间间隔的要求,即需要保证第一时间间隔大于或等于GP,从而终端设备可以在这个间隔内完成天线的切换及功率调整等。进一步的,当第一时间间隔大于GP时,也不能在第一时间间隔内进行数据传输。然而,当第一时间间隔过大时,如果不允许终端设备进行其它信号的发射必然会造成资源浪费并降低了数据吞吐量。结合图8来说,虽然GP仅占用一个符号,但由于网络设备将不去在S1到S5的符号上调度终端设备进行数据发射,由此带来的问题就是会浪费至少4个符号。有鉴于此,本申请请利用第一时间间隔内的除所述至少一个GP之外的空闲的时间单元,向网络设备发送上行信息,能够提升资源利用率以及数据吞吐量。
在一些实施例中,所述方法300还可包括:
终端设备确定所述至少一个GP在所述第一时间间隔内的位置。
示例性地,终端设备确定所述至少一个GP在所述第一时间间隔内的位置,并在所述第一时间间隔内除所述至少一个GP之外的时间单元内,向网络设备发送上行信息。相应的,网络设备确定所述至少一个GP在所述第一时间间隔内的位置,并在所述第一时间间隔内除所述至少一个GP之外的时间单元内,接收所述终端设备发送的上行信息。
值得注意的是,通过限定第一时间间隔需要大于GP,可以使得终端设备可以在所述第一时间间隔内完成天线的切换及功率调整等。但是,如果不确定GP的位置,也就意味着,对于第一时间间隔大于GP的情况下,由于所述网络设备无法确定终端设备的天线切换发生在哪个时间单元上而导致网络设备无法调度终端设备在非用于天线切换的时间单元上来进行数据传输,造成性能下降。有鉴于此,本实施例通过确定所述至少一个GP在所述第一时间间隔内的位置,使得网络设备能够知道在这种情况下终端设备在哪个时间单元上进行天线切换,即所述至少一个GP的位置,由此,就可以充分利用除所述至少一个GP意外的剩余时间单元进行上行信息或下行信息的传输,进而能够保证数据传输的可靠性以及数据传输成功率。
应当理解,本申请对用于所述终端设备进行至少一次天线切换的时间单元的数量不作具体限定。
例如,在一些实施例中,用于所述终端设备进行至少一次天线切换的时间单元可以是一个时间单元,例如,一个符号,也可以是两个时间单元,例如,两个符号,还可以是其他数量个或其他粒度的时间单元。可选的,用于所述终端设备进行至少一次天线切换的时间单元包括多个时间单元时,所述多个时间单元可以是连续的多个时间单元。
在一些实施例中,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
示例性地,所述至少一个GP在所述第一时间间隔内的位置可以预定义为以下中的至少一项:
a)、第一个时间单元;
b)、最后一个时间单元;
c)、中间位置的时间单元;
d)、第一个时间单元和最后一个时间单元;
e)、中间位置的2个时间单元;
其中,a)、b)以及c)适用于只需要进行一次天线切换的场景,d)和e)适用于需要进行两次天线切换的场景,比如从SRS0的发射天线切换到一个性能更好的天线去发射数据之后又切换回SRS1的发射天线继续发射SRS的情况。
图9是本申请实施例提供的终端设备进行单次天线切换时所述至少一个GP在第一时间间隔内的位 置的示意图。
如图9所示,当相邻的两个SRS的资源或资源集合之间的第一时间间隔(即SRS0的资源或资源集与SRS1的资源或资源集之间的时间间隔)包括5个符号时,若GP长度为1个符号,则GP可选的位置有5个。这种情况下,如图9中的(a)所示,可以预定义所述第一时间间隔内的第一个符号为用于所述终端设备进行单次天线转换的GP(即从用于发送SRS0的天线Ant0转换到用于发送SRS1的天线Ant1时使用的GP),如图9中的(b)所示,可以预定义所述第一时间间隔内的最后一个符号为用于所述终端设备进行单次天线转换的GP(即从用于发送SRS0的天线Ant0转换到用于发送SRS1的天线Ant1时使用的GP),如图9中的(c)所示,可以预定义所述第一时间间隔内的中间位置的符号为用于所述终端设备进行单次天线转换的GP(即从用于发送SRS0的天线Ant0转换到用于发送SRS1的天线Ant1时使用的GP);基于此,所述终端设备在剩余的4个符号上可以向网络设备发送上行信息,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
图10是本申请实施例提供的终端设备进行单次天线切换时所述至少一个GP在第一时间间隔内的位置的示意图。
如图10所示,当相邻的两个SRS的资源或资源集合之间的第一时间间隔(即SRS0的资源或资源集与SRS1的资源或资源集之间的时间间隔)包括5个符号时,若GP长度为1个符号,则GP可选的位置有5个。这种情况下,如图10中的(a)所示,可以预定义所述第一时间间隔内的第一个符号和最后一个符号为用于所述终端设备进行2次天线转换的GP(即从用于发送SRS0的天线Ant0转换到天线Ant1时使用的GP,以及从天线Ant1转换到用于发送SRS1的天线Ant2时使用的GP),如图10中的(b)所示,可以预定义所述第一时间间隔内的中间位置的两侧的符号为用于所述终端设备进行单次天线转换的GP(即从用于发送SRS0的天线Ant0转换到天线Ant1时使用的GP,以及从天线Ant1转换到用于发送SRS1的天线Ant2时使用的GP);基于此,所述终端设备可以在剩余的3个符号上可以向网络设备发送上行信息,例如PUSCH。
当然,在其他可替代实施例中,所述至少一个GP在所述第一时间间隔内的位置也可以预定义为其他位置,例如中间位置的左侧或右侧的时间单元,再如中间位置的左侧间隔至少一个时间单元的1个或2个时间单元,再如中间位置的右侧间隔至少一个时间单元的1个或2个时间单元,本申请对此不作具体限定。
在一些实施例中,所述方法300还可包括:
终端设备向所述网络设备发送第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
换言之,网络设备接收所述终端设备发送的第二信息;所述网络设备收到所述第二信息后,基于所述第二信息确定所述至少一个GP在所述第一时间间隔内的位置;然后可以基于所述至少一个GP在所述第一时间间隔内的位置利用除所述至少一个GP意外的剩余时间单元进行上行信息或下行信息的传输。
在一些实施例中,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
示例性地,所述第二信息可通过至少一个比特位的取值在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
举例来说,假设所述多个候选位置为4个位置,此时,所述终端设备可以通过2bit来完成在多个候选位置中指示所述终端设备的位置。例如,所述第二信息为00时指示所述终端设备的位置为第一个候选位置,所述第二信息为01时指示所述终端设备的位置为第二个候选位置,所述第二信息为10时指示所述终端设备的位置为第三个候选位置,所述第二信息为11时指示所述终端设备的位置为第四个候选位置。当然,在其他可替代实施例中,所述至少一个比特为也可是其他数量个比特位,以及所述至少一个比特位的取值和候选位置之间也可以是其他对应关系,本申请对此不作具体限定。
应当理解,所述第二信息也可通过其他方式指示所述至少一个GP在所述第一时间间隔内的位置,本申请对此不作具体限定。
例如,在其他可替代实施例中,所述第二信息也可以用于指示所述至少一个GP中的每一个GP相对参考位置的距离。例如,所述终端设备接收到用于调度所述两个SRS的资源或资源集的调度信息后,可以向网络设备发送所述第二信息。例如,所述参考位置可以为所述第一时间间隔的起始位置或结束位置。
在一些实施例中,所述终端设备周期性向所述网络设备发送所述第二信息。
在一些实施例中,所述终端设备在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述网络设备发送所述第二信息。
当然,在其他可替代实施例中,也可以通过其他事件触发所述终端设备向所述网络设备发送所述第二信息,本申请对此不作具体限定。
在一些实施例中,所述方法300还可包括:
所述终端设备接收所述网络设备发送的第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
示例性地,所述第三信息可通过至少一个比特位的取值在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
举例来说,假设所述多个候选位置为4个位置,此时,所述终端设备可以通过2bit来完成在多个候选位置中指示所述终端设备的位置。例如,所述第三信息为00时指示所述终端设备的位置为第一个候选位置,所述第三信息为01时指示所述终端设备的位置为第二个候选位置,所述第三信息为10时指示所述终端设备的位置为第三个候选位置,所述第三信息为11时指示所述终端设备的位置为第四个候选位置。当然,在其他可替代实施例中,所述至少一个比特为也可是其他数量个比特位,以及所述至少一个比特位的取值和候选位置之间也可以是其他对应关系,本申请对此不作具体限定。
在一些实施例中,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
示例性地,网络设备指示UE在两个SRS资源或资源集之间的第一时间间隔内用于终端设备进行至少一次天线转换的至少一个GP的位置时,所述至少一个GP的位置可以为在预定义的几个位置中指示的位置。
示例性地,所述多个候选位置可以为以下中的至少一项:
a)、第一个时间单元;
b)、最后一个时间单元;
c)、中间位置的时间单元;
d)、第一个时间单元和最后一个时间单元;
e)、中间位置的2个时间单元;
其中,a)、b)以及c)适用于只需要进行一次天线切换的场景,d)和e)适用于需要进行两次天线切换的场景,比如从SRS0的发射天线切换到一个性能更好的天线去发射数据之后又切换回SRS1的发射天线继续发射SRS的情况。
当然,在其他可替代实施例中,所述多个候选位置也可以包括其他位置,例如中间位置的左侧或右侧的时间单元,再如中间位置的左侧间隔至少一个时间单元的1个或2个时间单元,再如中间位置的右侧间隔至少一个时间单元的1个或2个时间单元,本申请对此不作具体限定。
在一些实施例中,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
在一些实施例中,所述参考位置为所述第一时间单元的起始位置或结束位置。
示例性地,所述参考位置为所述第一时间单元的起始位置时,所述第三信息指示的所述至少一个GP中的每一个GP相对参考位置的距离可以是:所述每一个GP相对所述参考位置向后偏移的时间单元的数量。所述参考位置为所述第一时间单元的结束位置时,所述第三信息指示的所述至少一个GP中的每一个GP相对参考位置的距离可以是:所述每一个GP相对所述参考位置向前偏移的时间单元的数量。
当然,在其他可替代实施例中,所述参考位置也可以是其他位置,例如所述第一时间间隔的中间位置,本申请对此不作具体限定。
示例性地,网络设备指示UE在两个SRS资源或资源集之间的第一时间间隔内用于终端设备进行至少一次天线转换的至少一个GP的位置时,可以是网络设备灵活指示的位置。
示例性地,所述第三信息可通过至少一个比特位的取值指示所述至少一个GP中的每一个GP相对参考位置的距离。
举例来说,假设所述至少一个GP为单个GP,此时,所述终端设备可以通过2bit指示所述单个GP相对参考位置的距离。例如,所述第三信息为00时指示所述单个GP相对所述参考位置间隔0个时间单元,所述第三信息为01时指示所述单个GP相对所述参考位置间隔1个时间单元,所述第三信息为10时指示所述单个GP相对所述参考位置间隔2个时间单元,所述第三信息为11时指示所述单个GP相对所述参考位置间隔3个时间单元。当然,在其他可替代实施例中,所述至少一个比特为也可是其他数量个比特位,以及所述至少一个比特位的取值和所述至少一个GP中的每一个GP相对参考位置的距离之间也可以是其他对应关系,本申请对此不作具体限定。
图11是本申请实施例提供的网络设备向终端设备灵活指示至少一个GP在第一时间间隔内的位置的示意图。
如图11所示,假设相邻的两个SRS的资源或资源集合之间的第一时间间隔(即SRS0的资源或资源集与SRS1的资源或资源集之间的时间间隔)包括5个符号。若所述至少一个GP为单个GP且所述单个GP的长度为1个符号,则GP可选的位置有5个;这种情况下,如图11中的(a)所示,可以指示单个GP相对所述第一时间间隔的起始位置间隔2个符号(即从用于发送SRS0的天线Ant0转换到用于发送SRS1的天线Ant1时使用的GP为第一时间间隔中的第3个符号)。基于此,所述终端设备在剩余的4个符号上可以向网络设备发送上行信息,例如PUSCH。
若所述至少一个GP为2个GP且所述2个GP中每一个GP的长度为1个符号,则GP可选的位置有5个;这种情况下,如图11中的(b)所示,可以指示2个GP相对所述第一时间间隔的起始位置分别间隔1个符号和3个符号(即从用于发送SRS0的天线Ant0转换到用于发送SRS1的天线Ant1时使用的GP为第一时间间隔中的第2个符号,从天线Ant1转换到用于发送SRS1的天线Ant2时使用的GP为第一时间间隔中的第4个符号)。基于此,所述终端设备在剩余的4个符号上可以向网络设备发送上行信息,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。基于此,所述终端设备在剩余的3个符号上可以向网络设备发送上行信息,例如PUSCH。
在一些实施例中,所述终端设备周期性接收所述网络设备发送的所述第三信息。
在一些实施例中,所述终端设备在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述网络设备发送的所述第三信息。
当然,在其他可替代实施例中,也可以通过其他事件触发所述终端设备接收所述网络设备发送的所述第三信息,本申请对此不作具体限定。
在一些实施例中,所述终端设备确定所述至少一个GP在所述第一时间间隔内的位置之前,所述300方法还可包括:
终端设备向所述网络设备发送第四信息;
其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
示例性地,所述终端设备通过所述第四信息指示所述网络设备配置两个GP还是一个GP,即所述终端设备通过所述第四信息指示所述网络设备配置用于所述终端设备进行两次天线转换所需的GP还是配置用于所述终端设备进行一次天线转换所需的GP。
在一些实施例中,所述终端设备在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,向所述网络设备发送所述第四信息。
图12是本申请实施例提供的网络设备向终端设备指示所述终端设备使用的GP的数量的方法400的示意性流程图,所述无线通信方法400可以由终端设备和网络设备交互执行。图12中所示的终端设备可以是如图1所示的终端设备,图12中所示的网络设备可以是如图1所示的接入网设备。
如图12所示,所述方法400可包括:
S410,网络设备为终端设备配置SRS天线切换资源(即相邻的两个SRS资源或资源集合)。
S420,当两个SRS天线切换资源间隔(即相邻的两个SRS资源或资源集合之间的第一时间间隔)大于GP时,终端设备告知网络设备SRS天线切换需要的GP的数量(即所述终端设备使用的GP的数量)。
S430,网络设备向终端设备指示所述至少一个GP在两个SRS天线切换资源间隔(即所述第一时间间隔)内的位置。
在一些实施例中,所述终端设备在接收所述调度信息的同时,向所述网络设备发送所述第四信息。
图13是本申请实施例提供的网络设备向终端设备指示所述终端设备使用的GP的数量的方法500的示意性流程图,所述无线通信方法500可以由终端设备和网络设备交互执行。图13中所示的终端设备可以是如图1所示的终端设备,图13中所示的网络设备可以是如图1所示的接入网设备。
如图13所示,所述方法500可包括:
S510,当两个SRS天线切换资源间隔(即相邻的两个SRS资源或资源集合之间的第一时间间隔)大于GP(例如单个GP)时,终端设备向网络设备上报SRS天线切换需要的GP的数量(即所述终端设备使用的GP的数量)。
S520,网络设备为所述终端设备配置SRS天线切换资源(即相邻的两个SRS资源或资源集合)并指示GP在两个SRS天线切换资源间隔(即所述第一时间间隔)内的位置。
当然,在其他可替代实施例中,定所述终端设备使用的GP的数量也可以由网络设备确定或者不需要终端设备上报定所述终端设备使用的GP的数量。例如,可以由网络设备自主决定所述终端设备使用的GP的数量,也即当只配置一个GP时,终端设备在配合的GP内进行天线转换,当配置多个GP时, 终端设备依然可以只进行一次天线切换或进行多次天线转换,终端设备只进行一次天线切换时,所述终端设备可以利用其余的GP进行数据传输或其余的GP作为空闲的资源。再如,终端设备不显示上报所述终端设备使用的GP的数量时,网络设备可以采用将缺省数量确定为所述终端设备使用的GP的数量。可选的,缺省数量可以是1、2或其他数值。
在一些实施例中,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
起始位置的N个时间单元;
结束位置的N个时间单元;
中间位置的时间单元;
其中,N为大于0的整数。
在一些实施例中,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
起始位置的N个时间单元和结束位置的N个时间单元;
位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
在一些实施例中,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图13,详细描述了本申请的方法实施例,下文结合图14至图18,详细描述本申请的装置实施例。
图14是本申请实施例的终端设备610的示意性框图。
如图14所示,所述终端设备610可包括:
发送单元611,用于在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送探测参考信号SRS。
在一些实施例中,所述发送单元611还用于:
接收所述网络设备发送的调度信息;所述调度信息用于调度所述SRS的传输资源。
在一些实施例中,所述发送单元611还用于:
向网络设备发送第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
在一些实施例中,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
在一些实施例中,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
在一些实施例中,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
在一些实施例中,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
在一些实施例中,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
在一些实施例中,所述多个候选范围通过多个阈值划分。
在一些实施例中,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述 多个阈值由所述网络设备配置。
在一些实施例中,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
在一些实施例中,所述终端设备的TP为缺省TP。
在一些实施例中,所述缺省TP为所述终端设备采用的频段所对应的TP。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图14所示的终端设备610可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备610中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法200中的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的终端设备620的示意性框图。
如图15所示,所述终端设备620可包括:
发送单元621,用于在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息;
其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
在一些实施例中,所述发送单元621还用于:
确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
在一些实施例中,所述发送单元621还用于:
向所述网络设备发送第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述发送单元621具体用于:
周期性向所述网络设备发送所述第二信息;或
在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述网络设备发送所述第二信息。
在一些实施例中,所述发送单元621还用于:
接收所述网络设备发送的第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
在一些实施例中,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
所述参考位置为所述第一时间单元的起始位置或结束位置。
在一些实施例中,所述发送单元621具体用于:
周期性接收所述网络设备发送的所述第三信息;或
在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述网络设备发送的所述第三信息。
在一些实施例中,所述发送单元621确定所述至少一个GP在所述第一时间间隔内的位置之前,还用于:
向所述网络设备发送第四信息;
其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
在一些实施例中,所述发送单元621具体用于:
在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,向所述网络设备发送所述第四信息;或
在接收所述调度信息的同时,向所述网络设备发送所述第四信息。
在一些实施例中,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
起始位置的N个时间单元;
结束位置的N个时间单元;
中间位置的时间单元;
其中,N为大于0的整数。
在一些实施例中,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
起始位置的N个时间单元和结束位置的N个时间单元;
位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
在一些实施例中,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图15所示的终端设备620可以对应于执行本申请实施例的方法300中的相应主体,并且终端设备620中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法300中的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的网络设备710的示意性框图。
如图16所示,所述网络设备710可包括:
接收单元711,用于在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,接收所述终端设备发送的探测参考信号SRS。
在一些实施例中,所述接收单元711还用于:
向所述终端设备发送调度信息;所述调度信息用于调度所述SRS的传输资源。
在一些实施例中,所述接收单元711还用于:
接收所述终端设备发送的第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
在一些实施例中,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
在一些实施例中,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
在一些实施例中,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
在一些实施例中,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
在一些实施例中,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
在一些实施例中,所述多个候选范围通过多个阈值划分。
在一些实施例中,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
在一些实施例中,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
在一些实施例中,所述终端设备的TP为缺省TP。
在一些实施例中,所述缺省TP为所述终端设备采用的频段所对应的TP。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图16所示的网络设备710可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备710中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法200中的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的网络设备720的示意性框图。
如图17所示,所述网络设备720可包括:
接收单元721,用于在第一时间间隔内除至少一个GP之外的时间单元内,接收终端设备发送的上行信息;
其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
在一些实施例中,所述接收单元721还用于:
确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
在一些实施例中,所述接收单元721还用于:
接收所述终端设备发送的第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述接收单元721具体用于:
周期性接收所述终端设备发送的所述第二信息;或
在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述终端设备发送的所述第二信息。
在一些实施例中,所述接收单元721还用于:
向所述终端设备发送第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
在一些实施例中,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
在一些实施例中,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
所述参考位置为所述第一时间单元的起始位置或结束位置。
在一些实施例中,所述接收单元721具体用于:
周期性向所述终端设备发送所述第三信息;或
在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述终端设备发送所述第三信息。
在一些实施例中,所述接收单元721确定所述至少一个GP在所述第一时间间隔内的位置之前,还用于:
接收所述终端设备发送的第四信息;
其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
在一些实施例中,所述接收单元721具体用于:
在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,接收所述终端设备发送的第四信息;或
在接收所述调度信息的同时,接收所述终端设备发送的第四信息。
在一些实施例中,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
起始位置的N个时间单元;
结束位置的N个时间单元;
中间位置的时间单元;
其中,N为大于0的整数。
在一些实施例中,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
起始位置的N个时间单元和结束位置的N个时间单元;
位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
在一些实施例中,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图17所示的网络设备720可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备720中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法300中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器 中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的发送单元或接收单元可由收发器实现。
图18是本申请实施例的通信设备800示意性结构图。
如图18所示,所述通信设备800可包括处理器810。
其中,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图18所示,通信设备800还可以包括存储器820。
其中,该存储器820可以用于存储指示信息,还可以用于存储处理器810执行的代码、指令等。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
如图18所示,通信设备800还可以包括收发器830。
其中,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备800中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备800可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备800可对应于本申请实施例中的终端设备610或终端设备620,并可以对应于执行根据本申请实施例的方法200或方法300中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备800可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备800可对应于本申请实施例中的网络设备710或网络设备720,并可以对应于执行根据本申请实施例的方法200或方法300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图19是根据本申请实施例的芯片900的示意性结构图。
如图19所示,所述芯片900包括处理器910。
其中,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图19所示,所述芯片900还可以包括存储器920。
其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器920可以用于存储指示信息,还可以用于存储处理器910执行的代码、指令等。存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
如图19所示,所述芯片900还可以包括输入接口930。
其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图19所示,所述芯片900还可以包括输出接口940。
其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片900可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片900中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请 实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单 元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (126)

  1. 一种无线通信方法,其特征在于,所述方法适用于终端设备,所述方法包括:
    在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送探测参考信号SRS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的调度信息;所述调度信息用于调度所述SRS的传输资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向网络设备发送第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
  5. 根据权利要求4所述的方法,其特征在于,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
  6. 根据权利要求3所述的方法,其特征在于,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
  8. 根据权利要求3所述的方法,其特征在于,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
  9. 根据权利要求8所述的方法,其特征在于,所述多个候选范围通过多个阈值划分。
  10. 根据权利要求9所述的方法,其特征在于,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
  12. 根据权利要求1或2所述的方法,其特征在于,所述终端设备的TP为缺省TP。
  13. 根据权利要求12所述的方法,其特征在于,所述缺省TP为所述终端设备采用的频段所对应的TP。
  14. 一种无线通信方法,其特征在于,所述方法适用于终端设备,所述方法包括:
    在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息;
    其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    确定所述至少一个GP在所述第一时间间隔内的位置。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  18. 根据权利要求17所述的方法,其特征在于,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  19. 根据权利要求17所述的方法,其特征在于,所述向所述网络设备发送第二信息,包括:
    周期性向所述网络设备发送所述第二信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述网络设备发送所述第二信息。
  20. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  21. 根据权利要求20所述的方法,其特征在于,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  22. 根据权利要求18或21所述的方法,其特征在于,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
  23. 根据权利要求20所述的方法,其特征在于,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
  24. 根据权利要求23所述的方法,所述参考位置为所述第一时间单元的起始位置或结束位置。
  25. 根据权利要求20所述的方法,其特征在于,所述接收所述网络设备发送的第三信息,包括:
    周期性接收所述网络设备发送的所述第三信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述网络设备发送的所述第三信息。
  26. 根据权利要求15至25中任一项所述的方法,其特征在于,所述确定所述至少一个GP在所述第一时间间隔内的位置之前,所述方法还包括:
    向所述网络设备发送第四信息;
    其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
  27. 根据权利要求26所述的方法,其特征在于,所述向所述网络设备发送第四信息,包括:
    在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,向所述网络设备发送所述第四信息;或
    在接收所述调度信息的同时,向所述网络设备发送所述第四信息。
  28. 根据权利要求14至27中任一项所述的方法,其特征在于,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
    起始位置的N个时间单元;
    结束位置的N个时间单元;
    中间位置的时间单元;
    其中,N为大于0的整数。
  29. 根据权利要求14至27中任一项所述的方法,其特征在于,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
    起始位置的N个时间单元和结束位置的N个时间单元;
    位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
  30. 根据权利要求14至29中任一项所述的方法,其特征在于,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
  31. 一种无线通信方法,其特征在于,所述方法适用于网络设备,所述方法包括:
    在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,接收所述终端设备发送的探测参考信号SRS。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送调度信息;所述调度信息用于调度所述SRS的传输资源。
  33. 根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
  34. 根据权利要求33所述的方法,其特征在于,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
  35. 根据权利要求34所述的方法,其特征在于,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
  36. 根据权利要求33所述的方法,其特征在于,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
  37. 根据权利要求36所述的方法,其特征在于,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
  38. 根据权利要求33所述的方法,其特征在于,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
  39. 根据权利要求38所述的方法,其特征在于,所述多个候选范围通过多个阈值划分。
  40. 根据权利要求39所述的方法,其特征在于,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
  41. 根据权利要求33至40中任一项所述的方法,其特征在于,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
  42. 根据权利要求31或32所述的方法,其特征在于,所述终端设备的TP为缺省TP。
  43. 根据权利要求42所述的方法,其特征在于,所述缺省TP为所述终端设备采用的频段所对应的TP。
  44. 一种无线通信方法,其特征在于,所述方法适用于网络设备,所述方法包括:
    在第一时间间隔内除至少一个GP之外的时间单元内,接收终端设备发送的上行信息;
    其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
  45. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    确定所述至少一个GP在所述第一时间间隔内的位置。
  46. 根据权利要求45所述的方法,其特征在于,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
  47. 根据权利要求45所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  48. 根据权利要求47所述的方法,其特征在于,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  49. 根据权利要求47所述的方法,其特征在于,所述接收所述终端设备发送的第二信息,包括:
    周期性接收所述终端设备发送的所述第二信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述终端设备发送的所述第二信息。
  50. 根据权利要求45所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  51. 根据权利要求50所述的方法,其特征在于,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  52. 根据权利要求48或51所述的方法,其特征在于,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
  53. 根据权利要求50所述的方法,其特征在于,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
  54. 根据权利要求53所述的方法,所述参考位置为所述第一时间单元的起始位置或结束位置。
  55. 根据权利要求50所述的方法,其特征在于,所述向所述终端设备发送第三信息,包括:
    周期性向所述终端设备发送所述第三信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述终端设备发送所述第三信息。
  56. 根据权利要求45至55中任一项所述的方法,其特征在于,所述确定所述至少一个GP在所述第一时间间隔内的位置之前,所述方法还包括:
    接收所述终端设备发送的第四信息;
    其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
  57. 根据权利要求56所述的方法,其特征在于,所述接收所述终端设备发送的第四信息,包括:
    在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,接收所述终端设备发送的第四信息;或
    在接收所述调度信息的同时,接收所述终端设备发送的第四信息。
  58. 根据权利要求44至57中任一项所述的方法,其特征在于,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
    起始位置的N个时间单元;
    结束位置的N个时间单元;
    中间位置的时间单元;
    其中,N为大于0的整数。
  59. 根据权利要求44至57中任一项所述的方法,其特征在于,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述 至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
    起始位置的N个时间单元和结束位置的N个时间单元;
    位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
  60. 根据权利要求44至59中任一项所述的方法,其特征在于,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
  61. 一种终端设备,其特征在于,包括:
    发送单元,用于在所述终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,向网络设备发送探测参考信号SRS。
  62. 根据权利要求61所述的终端设备,其特征在于,所述发送单元还用于:
    接收所述网络设备发送的调度信息;所述调度信息用于调度所述SRS的传输资源。
  63. 根据权利要求61或62所述的终端设备,其特征在于,所述发送单元还用于:
    向网络设备发送第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
  64. 根据权利要求63所述的终端设备,其特征在于,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
  65. 根据权利要求64所述的终端设备,其特征在于,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
  66. 根据权利要求63所述的终端设备,其特征在于,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
  67. 根据权利要求66所述的终端设备,其特征在于,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
  68. 根据权利要求63所述的终端设备,其特征在于,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
  69. 根据权利要求68所述的终端设备,其特征在于,所述多个候选范围通过多个阈值划分。
  70. 根据权利要求69所述的终端设备,其特征在于,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
  71. 根据权利要求63至70中任一项所述的终端设备,其特征在于,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
  72. 根据权利要求61或62所述的终端设备,其特征在于,所述终端设备的TP为缺省TP。
  73. 根据权利要求72所述的终端设备,其特征在于,所述缺省TP为所述终端设备采用的频段所对应的TP。
  74. 一种终端设备,其特征在于,包括:
    发送单元,用于在第一时间间隔内除至少一个保护时间GP之外的时间单元内,向网络设备发送上行信息;
    其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
  75. 根据权利要求74所述的终端设备,其特征在于,所述发送单元还用于:
    确定所述至少一个GP在所述第一时间间隔内的位置。
  76. 根据权利要求75所述的终端设备,其特征在于,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
  77. 根据权利要求75所述的终端设备,其特征在于,所述发送单元还用于:
    向所述网络设备发送第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  78. 根据权利要求77所述的终端设备,其特征在于,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  79. 根据权利要求77所述的终端设备,其特征在于,所述发送单元具体用于:
    周期性向所述网络设备发送所述第二信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述网络设备发送所述第二信息。
  80. 根据权利要求75所述的终端设备,其特征在于,所述发送单元还用于:
    接收所述网络设备发送的第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  81. 根据权利要求80所述的终端设备,其特征在于,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  82. 根据权利要求78或81所述的终端设备,其特征在于,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
  83. 根据权利要求80所述的终端设备,其特征在于,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
  84. 根据权利要求83所述的终端设备,所述参考位置为所述第一时间单元的起始位置或结束位置。
  85. 根据权利要求80所述的终端设备,其特征在于,所述发送单元具体用于:
    周期性接收所述网络设备发送的所述第三信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述网络设备发送的所述第三信息。
  86. 根据权利要求75至85中任一项所述的终端设备,其特征在于,所述发送单元确定所述至少一个GP在所述第一时间间隔内的位置之前,还用于:
    向所述网络设备发送第四信息;
    其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
  87. 根据权利要求86所述的终端设备,其特征在于,所述发送单元具体用于:
    在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,向所述网络设备发送所述第四信息;或
    在接收所述调度信息的同时,向所述网络设备发送所述第四信息。
  88. 根据权利要求74至87中任一项所述的终端设备,其特征在于,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
    起始位置的N个时间单元;
    结束位置的N个时间单元;
    中间位置的时间单元;
    其中,N为大于0的整数。
  89. 根据权利要求74至87中任一项所述的终端设备,其特征在于,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
    起始位置的N个时间单元和结束位置的N个时间单元;
    位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
  90. 根据权利要求74至89中任一项所述的终端设备,其特征在于,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
  91. 一种网络设备,其特征在于,包括:
    接收单元,用于在终端设备发生天线转换的时间单元内或在连续的多个时间单元中的每一个时间单元内,接收所述终端设备发送的探测参考信号SRS。
  92. 根据权利要求91所述的网络设备,其特征在于,所述接收单元还用于:
    向所述终端设备发送调度信息;所述调度信息用于调度所述SRS的传输资源。
  93. 根据权利要求91或92所述的网络设备,其特征在于,所述接收单元还用于:
    接收所述终端设备发送的第一信息;所述第一信息用于确定所述终端设备的转换时间TP能力。
  94. 根据权利要求93所述的网络设备,其特征在于,所述第一信息用于在多个候选TP中指示所述终端设备的TP。
  95. 根据权利要求94所述的网络设备,其特征在于,所述多个候选TP为预定义的,或所述多个候选TP通过所述终端设备进行上报,或所述多个候选TP由所述网络设备配置或指示。
  96. 根据权利要求93所述的网络设备,其特征在于,所述第一信息用于指示所述终端设备的TP是否小于或等于第一阈值,和/或,所述第一信息用于指示所述终端设备的TP是否大于或等于所述第一阈值。
  97. 根据权利要求96所述的网络设备,其特征在于,所述第一阈值为预定义的,或所述第一阈值通过所述终端设备进行上报,或所述第一阈值由所述网络设备配置或指示。
  98. 根据权利要求93所述的网络设备,其特征在于,所述第一信息用于在多个候选范围内指示所述终端设备的TP所在的范围。
  99. 根据权利要求98所述的网络设备,其特征在于,所述多个候选范围通过多个阈值划分。
  100. 根据权利要求99所述的网络设备,其特征在于,所述多个阈值为预定义的,或所述多个阈值通过所述终端设备进行上报,或所述多个阈值由所述网络设备配置。
  101. 根据权利要求93至100中任一项所述的网络设备,其特征在于,所述TP能力为适用于所述终端设备的能力,或所述TP能力为适用于所述终端设备使用的部分子载波间隔SCS或全部SCS的能力。
  102. 根据权利要求91或92所述的网络设备,其特征在于,所述终端设备的TP为缺省TP。
  103. 根据权利要求102所述的网络设备,其特征在于,所述缺省TP为所述终端设备采用的频段所对应的TP。
  104. 一种网络设备,其特征在于,包括:
    接收单元,用于在第一时间间隔内除至少一个GP之外的时间单元内,接收终端设备发送的上行信息;
    其中,所述第一时间间隔的时长大于所述至少一个GP的时长,所述第一时间间隔为相邻的两个探测参考信号SRS资源或资源集合之间的时间间隔,所述至少一个GP包括用于所述终端设备进行至少一次天线切换的时间单元。
  105. 根据权利要求104所述的网络设备,其特征在于,所述接收单元还用于:
    确定所述至少一个GP在所述第一时间间隔内的位置。
  106. 根据权利要求105所述的网络设备,其特征在于,所述至少一个GP在所述第一时间间隔内的位置为预定义的。
  107. 根据权利要求105所述的网络设备,其特征在于,所述接收单元还用于:
    接收所述终端设备发送的第二信息,所述第二信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  108. 根据权利要求107所述的网络设备,其特征在于,所述第二信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  109. 根据权利要求107所述的网络设备,其特征在于,所述接收单元具体用于:
    周期性接收所述终端设备发送的所述第二信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,接收所述终端设备发送的所述第二信息。
  110. 根据权利要求105所述的网络设备,其特征在于,所述接收单元还用于:
    向所述终端设备发送第三信息,所述第三信息用于确定所述至少一个GP在所述第一时间间隔内的位置。
  111. 根据权利要求110所述的网络设备,其特征在于,所述第三信息用于在多个候选位置中指示所述至少一个GP在所述第一时间间隔内的位置。
  112. 根据权利要求108或111所述的网络设备,其特征在于,所述多个候选位置为预定义的,或所述多个候选位置通过所述终端设备进行上报,或所述多个候选位置由所述网络设备配置或指示。
  113. 根据权利要求110所述的网络设备,其特征在于,所述第三信息用于指示所述至少一个GP中的每一个GP相对参考位置的距离。
  114. 根据权利要求113所述的网络设备,所述参考位置为所述第一时间单元的起始位置或结束位置。
  115. 根据权利要求110所述的网络设备,其特征在于,所述接收单元具体用于:
    周期性向所述终端设备发送所述第三信息;或
    在确定所述第一时间间隔的时长大于所述至少一个GP的时长的情况下,向所述终端设备发送所述第三信息。
  116. 根据权利要求105至115中任一项所述的网络设备,其特征在于,所述所述接收单元确定所述至少一个GP在所述第一时间间隔内的位置之前,还用于:
    接收所述终端设备发送的第四信息;
    其中,所述第四信息用于所述网络设备确定所述终端设备使用的GP的数量。
  117. 根据权利要求116所述的网络设备,其特征在于,所述接收单元具体用于:
    在接收所述网络设备发送的用于调度所述两个SRS的传输资源的调度信息之后,接收所述终端设备发送的第四信息;或
    在接收所述调度信息的同时,接收所述终端设备发送的第四信息。
  118. 根据权利要求104至117中任一项所述的网络设备,其特征在于,所述至少一个GP为用于所述终端设备进行单次天线切换的单个GP,且所述单个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置为以下中的至少一项:
    起始位置的N个时间单元;
    结束位置的N个时间单元;
    中间位置的时间单元;
    其中,N为大于0的整数。
  119. 根据权利要求104至117中任一项所述的网络设备,其特征在于,所述至少一个GP为用于所述终端设备进行两次天线切换的两个GP,且所述两个GP中的每一个GP包括连续的N个时间单元时,所述至少一个GP在所述第一时间间隔内的位置包括以下中的至少一项:
    起始位置的N个时间单元和结束位置的N个时间单元;
    位于中间位置的时间单元的一侧的N个时间单元和位于所述中间位置的时间单元的另一侧的N个时间单元。
  120. 根据权利要求104至119中任一项所述的网络设备,其特征在于,所述至少一个GP中的每一个GP包括单个时间单元或连续的多个时间单元。
  121. 一种终端设备,其特征在于,包括:
    收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述终端设备执行如权利要求1至13中任一项所述的方法或如权利要求14至30中任一项所述的方法。
  122. 一种网络设备,其特征在于,包括:
    收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述网络设备执行如权利要求31至43中任一项所述的方法或如权利要求44至60中任一项所述的方法。
  123. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法、如权利要求14至30中任一项所述的方法、如权利要求31至43中任一项所述的方法或如权利要求44至60中任一项所述的方法。
  124. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法、如权利要求14至30中任一项所述的方法、如权利要求31至43中任一项所述的方法或如权利要求44至60中任一项所述的方法。
  125. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法、如权利要求14至30中任一项所述的方法、如权利要求31至43中任一项所述的方法或如权利要求44至60中任一项所述的方法。
  126. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法、如权利要求14至30中任一项所述的方法、如权利要求31至43中任一项所述的方法或如权利要求44至60中任一项所述的方法。
PCT/CN2022/099568 2022-06-17 2022-06-17 无线通信方法、终端设备以及网络设备 WO2023240630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280091871.1A CN118679828A (zh) 2022-06-17 2022-06-17 无线通信方法、终端设备以及网络设备
PCT/CN2022/099568 WO2023240630A1 (zh) 2022-06-17 2022-06-17 无线通信方法、终端设备以及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099568 WO2023240630A1 (zh) 2022-06-17 2022-06-17 无线通信方法、终端设备以及网络设备

Publications (1)

Publication Number Publication Date
WO2023240630A1 true WO2023240630A1 (zh) 2023-12-21

Family

ID=89192903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099568 WO2023240630A1 (zh) 2022-06-17 2022-06-17 无线通信方法、终端设备以及网络设备

Country Status (2)

Country Link
CN (1) CN118679828A (zh)
WO (1) WO2023240630A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端
CN107579808A (zh) * 2016-07-05 2018-01-12 华为技术有限公司 无线通信的方法和装置
CN109644445A (zh) * 2016-11-04 2019-04-16 华为技术有限公司 一种探测参考信号的处理方法和基站以及用户设备
WO2022077322A1 (zh) * 2020-10-15 2022-04-21 富士通株式会社 探测参考信号的发送和接收方法以及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端
CN107579808A (zh) * 2016-07-05 2018-01-12 华为技术有限公司 无线通信的方法和装置
CN109644445A (zh) * 2016-11-04 2019-04-16 华为技术有限公司 一种探测参考信号的处理方法和基站以及用户设备
WO2022077322A1 (zh) * 2020-10-15 2022-04-21 富士通株式会社 探测参考信号的发送和接收方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE: "On SRS antenna port switching", 3GPP DRAFT; R4-2104831, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Online; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052175842 *

Also Published As

Publication number Publication date
CN118679828A (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
TW202021394A (zh) 一種通道監聽方法及裝置、終端設備、網路設備
TW202019213A (zh) 傳輸訊號的方法、網路設備及終端設備
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
US12063660B2 (en) Method and device for adjusting PDCCH monitoring period
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
US20220330342A1 (en) Wireless communication method, terminal device, and network device
WO2020227995A1 (zh) 一种d2d系统中的通信方法及终端设备、网络设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2022156436A1 (zh) 一种终端识别方法及设备
WO2023240630A1 (zh) 无线通信方法、终端设备以及网络设备
WO2021088063A1 (zh) 一种通信方法及装置
CN115190598A (zh) 一种信号传输方法、用户设备以及网络设备
WO2020147086A1 (zh) 一种信号传输方法、相关设备及系统
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备
WO2024007136A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022061735A1 (zh) 无线通信方法和设备
WO2022206357A1 (zh) 资源感知方法、装置及存储介质
WO2023133706A1 (zh) 一种数据传输方法及装置、终端设备、网络设备
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备
WO2022036719A1 (zh) 无线通信方法和设备
WO2022061777A1 (zh) 无线通信方法和设备
WO2022205481A1 (zh) 无线通信方法、第一设备和第二设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946311

Country of ref document: EP

Kind code of ref document: A1