WO2020199220A1 - 接收信息、发送信息的方法和设备 - Google Patents

接收信息、发送信息的方法和设备 Download PDF

Info

Publication number
WO2020199220A1
WO2020199220A1 PCT/CN2019/081605 CN2019081605W WO2020199220A1 WO 2020199220 A1 WO2020199220 A1 WO 2020199220A1 CN 2019081605 W CN2019081605 W CN 2019081605W WO 2020199220 A1 WO2020199220 A1 WO 2020199220A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
target
ssbs
target ssb
candidate
Prior art date
Application number
PCT/CN2019/081605
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/081605 priority Critical patent/WO2020199220A1/zh
Priority to CN201980094813.2A priority patent/CN113647136A/zh
Publication of WO2020199220A1 publication Critical patent/WO2020199220A1/zh
Priority to US17/481,704 priority patent/US20220007316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to methods and devices for receiving and sending information.
  • a network device can indicate the resource location of a synchronization signal block (Synchronization Signal Block, SSB) through a bitmap.
  • SSB Synchronization Signal Block
  • NR-U has more SSB candidate transmission positions to cope with the impact of LBT failure, and fewer restrictions on the number of SSBs that can actually be transmitted.
  • Y 20bit bitmap
  • the resource overhead will be too large, especially if the information is needed during initial access, the larger bit overhead will be even more undesirable .
  • a method and device for receiving and sending information are provided, which is not only applicable to NR-U scenarios, but also can reduce signaling overhead.
  • a method for receiving information including:
  • the terminal device receives indication information, where the indication information is used to indicate at least one of the following information of at least one target synchronization signal block SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • a method for sending information including:
  • the network device sends instruction information, where the instruction information is used to indicate at least one of the following information of at least one target synchronization signal block SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a communication device including a processor, a memory, and a transceiver.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the transceiver executes the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor, a memory, and a transceiver.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the transceiver executes the method in the above-mentioned second aspect or its implementation manners.
  • a chip which is used to implement the method in the first aspect or its implementation manners.
  • the chip includes: a processor and an input interface, which is used to call and run a computer program from the memory, so that the input interface executes the method in the first aspect or its implementation manners.
  • a chip which is used to implement any one of the foregoing second aspects or the methods in each of its implementation manners.
  • the chip includes: a processor and an output interface, which are used to call and run a computer program from the memory, so that the output interface executes the method in the above-mentioned second aspect or its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the terminal device can not only determine the resource location of the at least one target SSB through the indication information, but also can effectively reduce signaling overhead.
  • Figure 1 is an example of the application scenario of this application.
  • FIG. 2 and FIG. 3 are schematic block diagrams of the resource location of the actually transmitted SSB in an embodiment of the present application.
  • Fig. 4 is a schematic interaction diagram of a wireless communication method according to an embodiment of the present application.
  • 5 to 10 are schematic block diagrams of the resource location of the target SSB in the embodiments of the present application.
  • FIG. 11 is a schematic block diagram in which at least some of the target SSBs among multiple target SSBs in an embodiment of the present application are QCLs.
  • FIG. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a chip of an embodiment of the present application.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 through an air interface.
  • the terminal device 110 and the network device 120 support multi-service transmission.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G systems etc.
  • the technical solutions of the embodiments of the present application can be applied to the long-term evolution (LTE) coverage of a wide area and the NR island coverage mode.
  • LTE long-term evolution
  • a large amount of LTE is deployed below 6GHz, and there is very little spectrum below 6GHz that can be used for 5G.
  • So NR must study the frequency spectrum application above 6GHz, and the high frequency band has limited coverage and fast signal fading.
  • a tight interworking mode between LTE and NR is proposed.
  • the main application scenarios of 5G include: Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), massive machine type of communication, mMTC ).
  • eMBB aims at users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • URLLC Ultra-Reliable and Low Latency Communication
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • the network coverage in the embodiments of the present application may adopt wide-area Long Term Evolution (LTE) coverage and NR island coverage mode.
  • LTE Long Term Evolution
  • NR island coverage mode In order to protect mobile operators' early investment in LTE, a tight interworking mode between LTE and NR can be further adopted.
  • the network device 120 may be an access network device that communicates with the terminal device 110.
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices 110 (for example, UE) located in the coverage area.
  • the network device 120 may be a base station (Base Transceiver Station, BTS) in a global system of mobile communication (GSM) system or a code division multiple access (Code Division Multiple Access, CDMA), or it may be The base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system, and the network device 120 may also be the Evolutional Node B (Evolutional Node B) in the Long Term Evolution (LTE) system. eNB or eNodeB).
  • the network device 120 may also be a next generation radio access network (Next Generation Radio Access Network, NG RAN), or a base station (gNB) in an NR system, or a cloud radio access network (Cloud Radio Access).
  • Next Generation Radio Access Network Next Generation Radio Access Network
  • gNB base station
  • Cloud Radio Access Cloud Radio Access
  • CRAN public Land Mobile Network
  • PLMN Land Mobile Network
  • the terminal device 110 may be any terminal device, including but not limited to: connected via a wired line, such as via a public switched telephone network (Public Switched Telephone Networks, PSTN), digital subscriber line (Digital Subscriber Line, DSL), Digital cable, direct cable connection; and/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks , Satellite network, AM-FM broadcast transmitter; and/or another terminal device set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” or a "mobile terminal".
  • Examples of mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 110.
  • the wireless communication system 100 may also include a core network device 130 that communicates with a base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an access and mobility management function (Access and Mobility Management Function). , AMF), for example, authentication server function (Authentication Server Function, AUSF), for example, user plane function (User Plane Function, UPF), for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + a core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment. It should be understood that SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • EPC Evolved Packet Core
  • each functional unit in the communication system 100 may establish a connection through a next generation network (NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (abbreviated as N1); access Network equipment such as the next generation wireless access base station (gNB) can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) Connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short) SMF establishes control plane signaling connection; SMF can establish control plane signaling connection with PCF through NG interface 7 (abbreviated as N7).
  • N1 next generation wireless access base station
  • gNB next generation wireless access base station
  • the part shown in Figure 2 is only an exemplary architecture diagram.
  • the network architecture may also include other functional units or functional entities, such as: core network equipment may also Other functional units such as unified data management (UDM) are included, which are not specifically limited in the embodiment of the present application.
  • UDM unified data management
  • FIG. 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage of each base station may include other numbers of terminals
  • the device is not limited in this embodiment of the application.
  • the communication device may include a network device 120 and a terminal device 110 having communication functions, and the network device 120 and the terminal device 110 may be the above-mentioned devices, which will not be repeated here;
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the network device 120 may send a synchronization signal block (Synchronization Signal Block, SSB) to the terminal device 110, and the SSB is also called a synchronization signal/physical broadcast signal block (SS/PBCH block) .
  • SSB Synchronization Signal Block
  • SS/PBCH block synchronization signal/physical broadcast signal block
  • the actual number of SSBs sent by the network device 120 in one SSB transmission period depends on the implementation of the network device 120, but the maximum number of transmissions is limited to 8.
  • the protocol first predefines 8 SSB candidate transmission positions within 5 ms, which correspond to SSB indexes (index) 0 to index 7 respectively.
  • the terminal device 110 can determine the SSB transmission status through an 8-bit bitmap (bitmap) through broadcast or through radio resource control (Radio Resource Control, RRC) dedicated signaling, where each bit represents whether an SSB is sent or not. .
  • RRC Radio Resource Control
  • a bitmap of 01100110 can be used to indicate the SSB transmission situation shown in Figure 2.
  • 0 means that the SSB is not sent on the candidate transmission position
  • 1 means that the SSB is sent on the candidate transmission position.
  • the index of SSB can be up to 64, that is to say, above 6GHz, in one SSB transmission period, there are up to 64 SSB candidate transmission positions, and 64 candidate transmission positions There are up to 64 SSB transmissions at the location.
  • the way the terminal device 110 determines the transmission status of these SSBs can be similar to the situation below 6GHz, that is, the protocol first predefines 64 SSB candidate transmission positions within 5ms, corresponding to the index of the SSB. To index63.
  • the terminal device 110 may determine the specific SSB transmission situation through broadcast or RRC dedicated signaling, but the difference is that the signaling form and interpretation of the UE determining whether the SSB is transmitted and the transmission location are different.
  • the terminal device 110 may notify the terminal device 110 of the specific SSB sending location through a 16-bit bitmap in a broadcast manner.
  • the 16 bits are divided into two groups, and each group is a bitmap composed of 8 bits.
  • the 64 SSBs are also divided into 8 groups, and each group has 8 SSBs.
  • 8 bits of the 16 bits indicate which of the 8 groups of SSBs are sent by means of bitmap, and the other 8 bits of 16 bits indicate the sending of 8 SSBs in each group by means of bitmap.
  • the bitmap of 11001100 can be used to indicate the transmission status of each group of SSB shown in FIG. 3.
  • the bitmap of 01100110 can be used to indicate the SSB transmission conditions in each group shown in FIG. 3.
  • 64 SSBs are also divided into 8 groups, and each group has 8 SSBs.
  • the terminal device 110 may also determine the specific SSB sending position through a 64-bit bitmap through RRC dedicated signaling, and each bit represents whether an SSB is sent or not.
  • DRS includes synchronization signal blocks.
  • SSB Synchronization Signal Block
  • CORESET Control Resource Set
  • RMSI Remaining System Information
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • OSI System Information
  • CORESET Channel State Information Reference Signal
  • the foregoing describes the implementation manner of receiving the SSB sent by the network device 120 when the terminal device 110 works in the authorized frequency band. Because the spectrum resources of the licensed frequency band are very precious, how to realize the transmission of the SSB on the unlicensed frequency band is an urgent technical problem in this field.
  • the device Because the channel resources on the unlicensed spectrum are shared, and when using these shared resources, the device needs to listen to the idle channel before using the channel. In this case, it is difficult to ensure that the synchronization signal block is periodically transmitted and fixed at a fixed position. receive. Because the location where the sending device listens before talk (Listen Before Talk, LBT) succeeds is unpredictable, and due to the failure of the LBT, it is likely that the sending and receiving of the synchronization signal block will fail. Then, in some achievable ways, multiple candidate locations for sending SSB can be provided, so that after the successful LBT of the network device 120, there are still enough candidate locations to send SSB, and accordingly to avoid LBT failure caused by SSB reception Impact.
  • LBT Location Before Talk
  • pre-configure Y candidate positions for SSB transmission Only the candidate positions of the SSB after successful LBT can transmit the SSB on the candidate positions of the Y SSBs, and the maximum number of candidate positions for the Y SSB transmission Pass X SSB.
  • this solution will bring a large overhead.
  • the terminal device 110 when the terminal device 110 monitors the PDCCH on the Type0-PDCCH common search space, or the terminal device 110 receives the PDSCH scheduled by the Type0-PDCCH common search space, the terminal device 110 considers There will be no SSB transmission on these PDCCH resources and/or PDSCH resources.
  • the terminal device 110 monitors the PDCCH on the Type0-PDCCH common search space, or the terminal device 110 receives the PDSCH scheduled by the Type0-PDCCH common search space, the terminal device 110 considers There will be no SSB transmission on these PDCCH resources and/or PDSCH resources.
  • section 10 of 3GPP protocol 38.213 and section 5.1.4 of 38.214 please refer to section 10 of 3GPP protocol 38.213 and section 5.1.4 of 38.214.
  • the positional interval between each SSB is relatively too large, for example, a few milliseconds (such as 3ms) after the transmission of the first SSB before the second SSB is transmitted, it is likely to be in this interval During this time, other devices occupy the unlicensed spectrum channel, causing the second SSB transmission to fail. Therefore, the sending interval between two consecutive SSBs should not be too long, that is, each SSB should be sent at adjacent SSB candidate sending positions.
  • the DRS of the NR-U system can also include the PDCCH and PDSCH of the RSMI, and/or the PDCCH and PDSCH of the OSI and paging, and the CSI-RS reference signal, so the inter-SSB can be further considered
  • the inter-SSB can be further considered
  • sufficient time-frequency resources are reserved between the transmission of two adjacent SSBs for the use of the PDCCH/PDSCH of the RMSI and other channels and signals.
  • the SSBs are not adjacent to each other. In the case of sending in SSB candidate positions, the spacing positions between each SSB are also equally spaced.
  • one DRS includes more than one SSB.
  • the signal and channel resources included in the DRS need to perform resource mapping rate matching for resources of more than one SSB.
  • the first SSB and the second SSB are quasi-co-located (QCL), that is, other channels or signals associated with these two SSBs need to be based on the resources of these two SSBs Do rate matching.
  • the third SSB and the fourth SSB are QCL, that is, other channels or signals associated with the two SSBs need to be rate-matched based on the resources of the two SSBs.
  • the method of SSB transmission in the candidate positions of the 8 SSB indicated by the 8-bit bitmap in 5G NR is not applicable in NR-U, because NR-U exists
  • NR-U exists
  • This application provides an indication method by designing a specific indication mechanism, which can use fewer bits to indicate the transmission status of the SSB in a DRS cycle, which can effectively save signaling overhead.
  • the "candidate transmission position of the SSB” is also referred to as the "resource position of the candidate SSB” or “the candidate position of the SSB” or “the candidate transmission position of the SSB", which is not specifically limited in this application.
  • the network equipment can be used to send the SSB after successful LBT at the resource location of the candidate SSB.
  • the SSB actually sent by the network device to the terminal device at the resource location of the candidate SSB is called the target SSB, or the SSB actually sent by the terminal device determined by the resource location of the candidate SSB is called the target SSB.
  • the resource location of the candidate SSB may also be referred to as a resource location that can be used to send the target SSB, and the resource location may be a predefined resource location.
  • FIG. 4 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 may be executed interactively by a terminal device and a network device.
  • the terminal device shown in FIG. 4 may be the terminal device shown in FIG. 1, and the network device shown in FIG. 4 may be the access network device shown in FIG. 1.
  • the method 200 includes:
  • S210 The terminal device receives the instruction information sent by the network device.
  • the indication information is used to indicate at least one of the following information of at least one target SSB:
  • the at least one target SSB is a plurality of target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the plurality of target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the terminal device determines the resource location of the at least one target SSB through indication information
  • the first target SSB and the previous N-1 SSBs are used as The at least one target SSB, or the first target SSB and N-1 SSBs thereafter are used as the at least one target SSB.
  • the content of the indication information is defined based on the transmission characteristics of the SSB in the NR-U, so that the terminal device can not only determine the resource location of the at least one target SSB through the indication information, but also effectively Reduce signaling overhead.
  • the indication information is specifically used to indicate at least one of the following information of the at least one target SSB:
  • the at least one target SSB is a plurality of target SSBs, and in the first period, the number of candidate SSBs between two adjacent target SSBs among the plurality of target SSBs;
  • the number of candidate SSBs in the first period is a preset value.
  • the resource location of the first target SSB is the resource location of the Kth candidate SSB in the first period, where K is a non-negative integer, and K is less than or equal to the candidate SSB in the first period total.
  • the indication information may be used to indicate that the resource position of the first target SSB in the first period is the resource position of the Kth candidate SSB in the first period, where K is non-negative An integer, and K is less than or equal to the total number of candidate SSBs in the first period.
  • the first period is an SSB period or a discovery reference signal DRS period. But this application is not limited to this.
  • the number of candidate SSBs in the first period may be any positive integer.
  • the number of candidate SSBs in the first period includes, but is not limited to, 16, 20, 24, or 32.
  • the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 3, and 7, or the number of candidate SSBs spaced between two adjacent target SSBs is Any one of 0, 1, and 3, or the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 2, and 3, or the two adjacent
  • the number of candidate SSBs between two target SSBs is either 0 or 1.
  • the embodiments of the present application are not limited to this.
  • the number of candidate SSBs spaced between two adjacent target SSBs may be any one of 0, 1, and 2.
  • the selection range (for example, 0, 1, 3, and 7) of the number of candidate SSBs spaced between the two adjacent target SSBs may be specified in advance. That is, the network device sends the indication information to the terminal device, and the indication information is at least used to indicate that the at least one target SSB is multiple target SSBs, and two adjacent target SSBs among the multiple target SSBs.
  • the network device sends the indication information to the terminal device, and the indication information is at least used to indicate that the at least one target SSB is multiple target SSBs, and two adjacent target SSBs among the multiple target SSBs.
  • a value can be determined within a fixed numerical range to be used as the number of candidate SSBs between two adjacent target SSBs.
  • the network device may determine the number of candidate SSBs spaced between two adjacent target SSBs in real time according to the current channel conditions, and indicate to the terminal device.
  • the number of the at least one target SSB is any one of 1, 2, and 4, or the number of the at least one target SSB is any one of 1, 2, 4, and 8, or the at least one target SSB The number is any of 2, 4, 6, and 8.
  • the network device may determine the number of the at least one target SSB within a fixed numerical range, or not The number of the at least one target SSB is determined within a fixed numerical range.
  • the number of the at least one target SSB includes but is not limited to: 1, 2, 4, 6, or 8.
  • the number of candidate SSBs in the first period may also be other values such as 40.
  • the number of the at least one target SSB may also be other values such as 10 or 12.
  • the selection range of the number of the at least one target SSB may also be other ranges such as 1 and 2.
  • the following describes the implementation manner in which the terminal device determines the resource location of the at least one target SSB when the indication information is only used to indicate one of the following information of the at least one target SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the embodiment of the present application does not specifically limit the transmission mode of the indication information.
  • the terminal device receives the physical broadcast channel PBCH, the PBCH includes the indication information; or the terminal device receives the master information block MIB, the MIB includes all The indication information; or the terminal device receives the radio resource control RRC signaling, and the RRC signaling includes the indication information.
  • the indication information indicates at least one of the following information of the at least one target SSB through a demodulation reference signal DMRS of a different physical broadcast channel PBCH: the at least one target SSB is Multiple target SSBs, the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs; the number of the at least one target SSB; the first target SSB in the at least one target SSB Resource location.
  • the indication information can be carried by PBCH, specifically, MIB, or RRC dedicated signaling, or DCI.
  • the indication information can also be carried by DMRS of PBCH, for example, in the indication information When M1 situations need to be indicated, they are carried by the DMRS sequence of S1 PBCHs.
  • the indication information is only used to indicate that the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs among the multiple target SSBs.
  • the network device transmits instruction information to the terminal device, and the terminal device determines the number of candidate SSBs between two adjacent target SSBs among the multiple target SSBs through the instruction information.
  • the indication information may indicate that there are Z SSB candidate positions between two adjacent target SSBs actually sent in the first period (SSB period, or DRS period), and Z may be 0/1/3/ 7.
  • Z may be a positive integer.
  • one SSB candidate position is determined at intervals of Z SSB candidate positions, and the determined candidate positions of these SSBs are used as the Resource location of at least one target SSB.
  • the resource location of the at least one target SSB is used to transmit the at least one target SSB.
  • the terminal device may determine the first SSB in which LBT succeeds as the first target SSB among the at least one target SSB, or may determine the first SSB detected as the first target SSB.
  • the number of the at least one target SSB may be a value pre-configured by the network device or a value specified by the protocol. In other words, it can be specified that the total number of resource locations of the at least one target SSB is X at most. In other words, the at least one target SSB is less than or equal to the preset threshold X.
  • the X includes but is not limited to 4 and 8.
  • the terminal device may determine the resource location of the at least one target SSB according to the resource location of the first target SSB in the at least one target SSB, the number of the at least one target SSB, and the indication information.
  • 5 and 6 are schematic block diagrams of the positional relationship of the target SSB in the embodiment of the present application.
  • Y is equal to 20
  • Z is equal to 3
  • X is equal to 4.
  • the terminal device will move the candidate position numbered 4 and the candidate position numbered 4 backward every 3 candidate positions (numbered 8 candidate positions).
  • the candidate position, the candidate position numbered 12, and the candidate position numbered 16) are determined as the resource position of the at least one target SSB.
  • Y is equal to 20
  • Z is equal to 3
  • X is equal to 4.
  • the terminal device determines the first candidate SSB (candidate position numbered 0) in the detected channel occupancy time (COT) as the first target SSB among the at least one target SSB, then The terminal device divides the candidate position numbered 0 and the candidate position numbered 0 backward every 3 candidate positions (the candidate position numbered 4, the candidate position numbered 8 and the candidate position numbered 12 Location) is determined as the resource location of the at least one target SSB.
  • the terminal device may also determine the first candidate SSB in the COT that meets the following conditions as the first target SSB among the at least one target SSB: the quotient of the resource location number of the candidate SSB and D is k, where k is a positive integer, and the value of D includes but is not limited to 2, 4, and 8.
  • the indication information may be indicated by X1bit, for example, 00 means continuous transmission, 01 means 1 SSB candidate position apart, 10 means 3 SSB candidate positions apart, and 11 means 7 SSB candidate positions apart. Or, for example, 00 means continuous transmission, 01 means 1 SSB candidate position apart, 10 means 2 SSB candidate positions apart, and 11 means 3 SSB candidate positions apart.
  • FIG. 5 and FIG. 6 are only two examples of the present application, and should not be construed as limiting the present application.
  • the aforementioned X may also be equal to 2.
  • the indication information is only used to indicate the number of the at least one target SSB.
  • the indication information indicates the actual number N of SSB sent.
  • N may be 1/2/4/8, which respectively correspond to 1, 2, 4, and 8 SSB transmissions in the first period.
  • the first period may be, for example, the period of the SSB or the period of the DRS. More generally, N can be a positive integer less than or equal to X, and X is the predefined maximum number of SSBs that can be transmitted.
  • the network device transmits the instruction information to the terminal device, and the terminal device can determine the actual number of SSB transmissions through the instruction information.
  • the number Z of candidate SSBs between two adjacent target SSBs among the multiple target SSBs may be a value pre-configured by the network Or the value specified in the agreement.
  • the at least one target SSB may be continuous in the resource position of the candidate SSB. That is, after the terminal device obtains the indication information, in the predefined Y SSB candidate position information, it can determine the candidate positions of N consecutive SSBs, and use the determined resources of the candidate positions of these SSBs as the Resource location of at least one target SSB.
  • the terminal device may determine the first SSB in which the LBT is successful as the first target SSB among the at least one target SSB, and may also determine the first SSB detected as the first target SSB among the at least one target SSB.
  • the first target SSB may be determined the first SSB in which the LBT is successful as the first target SSB among the at least one target SSB.
  • the terminal device may determine the at least one target SSB according to the resource location of the first target SSB in the at least one target SSB, the number of candidate SSBs spaced between two adjacent target SSBs, and the indication information.
  • the resource location of the target SSB may be determined according to the resource location of the first target SSB in the at least one target SSB, the number of candidate SSBs spaced between two adjacent target SSBs, and the indication information. The resource location of the target SSB.
  • 9 and 10 are schematic block diagrams of the resource location of the at least one target SSB according to an embodiment of the present application.
  • the terminal device will select the candidate position numbered 4 and the candidate position numbered 4 to 3 consecutive candidate positions (the candidate position numbered 5, The candidate position numbered 6 and the candidate position numbered 7) are determined as the resource position of the at least one target SSB.
  • Y is equal to 20
  • Z is equal to 0
  • X is equal to 4.
  • the terminal device determines the first candidate SSB (the candidate position numbered 0) in the detected channel occupancy time (COT) as the first target SSB in the at least one target SSB, then The terminal device determines the candidate position numbered 0, and the candidate position numbered 0 consecutively backward 3 candidate positions (the candidate position numbered 5, the candidate position numbered 6, and the candidate position numbered 7) Is the resource location of the at least one target SSB.
  • COT channel occupancy time
  • the terminal device may also determine the first candidate SSB in the COT that meets the following conditions as the first target SSB among the at least one target SSB: the quotient of the resource location number of the candidate SSB and D is k, where k is a positive integer, and the value of D includes but is not limited to 2, 4, and 8.
  • the indication information may be indicated by X2bit.
  • the indication information may indicate that the number of the at least one target SSB is 1/2/4/8 SSB. Specifically, for example, 00 indicates that the number of the at least one target SSB is 1, 01 indicates that the number of the at least one target SSB is 2, 10 indicates that the number of the at least one target SSB is 4, and 11 indicates The number of the at least one target SSB is 8.
  • the indication information may indicate that the number of the at least one target SSB is 2/4/6/8 SSBs. Specifically, for example, 00 indicates that the number of the at least one target SSB is 2, 01 indicates that the number of the at least one target SSB is 4, 10 indicates that the number of the at least one target SSB is 6, and 11 It means that the number of the at least one target SSB is 8.
  • the indication information is only used to indicate the resource location of the first target SSB in at least one target SSB.
  • the network device transmits the instruction information to the terminal device, and the terminal device can determine the transmission position of the first target SSB to be transmitted through the instruction information.
  • the indication information indicates that the transmission position of the first transmitted SSB is the Kth among the predefined Y SSB transmission candidate positions, and K is less than or equal to Y.
  • the value of K can be 2k+1 or 2(k+1), where k is a non-negative integer.
  • the value of K can be 4k+1 or 4(k+1), where k is a non-negative integer.
  • the value of K can be 8k+1 or 8(k+1), where k is a non-negative integer. More generally, K can take a positive integer less than Y, where Y is a predefined candidate position for SSB transmission.
  • the terminal device can determine that in the predefined Y SSB candidate position information, starting from the Kth SSB candidate transmission position, one SSB candidate position is determined every interval of Z SSB candidate positions , And use the determined resources of the candidate positions of these SSBs as the resource positions of the at least one target SSB.
  • the number Z of candidate SSBs spaced between two adjacent target SSBs among the multiple target SSBs may be a network pre-configuration
  • the at least one target SSB may be continuous in the resource position of the candidate SSB. That is, after the terminal device obtains the indication information, in the predefined Y SSB candidate position information, it can determine the candidate positions of N consecutive SSBs, and use the determined resources of the candidate positions of these SSBs as the Resource location of at least one target SSB.
  • the number of the at least one target SSB may be a value pre-configured by the network device or a value specified by the protocol. In other words, it can be specified that the total number of resource locations of the at least one target SSB is X at most. In other words, the at least one target SSB is less than or equal to the preset threshold X.
  • the X includes but is not limited to 4 and 8.
  • the terminal device may determine the resource location of the at least one target SSB according to the indication information, the number of the at least one target SSB, and the number of candidate SSBs between two adjacent target SSBs.
  • the indication information may be indicated by X3bit.
  • 000 indicates that the resource location of the first target SSB is the resource location of the first candidate SSB
  • 001 indicates that the resource location of the first target SSB is the resource location of the fifth candidate SSB
  • 010 indicates the The resource position of the first target SSB is the resource position of the ninth candidate SSB
  • 011 indicates that the resource position of the first target SSB is the resource position of the 13th candidate SSB
  • 100 indicates the resource position of the first target SSB
  • the resource location is the resource location of the 17th candidate SSB.
  • 00 indicates that the resource location of the first target SSB is the resource location of the first candidate SSB
  • 01 indicates that the resource location of the first target SSB is the resource location of the fifth candidate SSB
  • 10 indicates the resource location of the fifth candidate SSB.
  • the resource location of the first target SSB is the resource location of the 9th candidate SSB
  • 11 indicates that the resource location of the first target SSB is the resource location of the 13th candidate SSB.
  • the resource location of the first target SSB may be indicated as the resource location of the 1/3/5/7/9/11/13/15th candidate SSB through 3bit information.
  • the resource location of the first target SSB may be indicated as the resource location of the 1/3/5/7/9/11/13/15/17/19th candidate SSB through 4bit information.
  • the indication information is used to indicate the transmission interval of at least one target SSB and the number of the at least one target SSB.
  • the terminal device may determine the SSB detected for the first time as the first target SSB among the at least one target SSB. Alternatively, the terminal device may determine the first candidate SSB within the detected channel occupation time COT as the first target SSB among the at least one target SSB. Alternatively, the terminal device may determine the first candidate SSB in the COT that meets the following conditions as the first target SSB among the at least one target SSB:
  • the quotient of the resource location number of the candidate SSB and D is k, where k is a positive integer, and the value of D is 2, 4, or 8.
  • the terminal device may determine the resource location of the at least one SSB according to the indication information and the resource location of the first target SSB.
  • the number of the at least one target SSB and the transmission interval can be considered at the same time.
  • the number U of the indication information is equal to 1, it means that the number of the at least one target SSB is 2 and the number of candidate SSBs between two adjacent target SSBs is 1. That is, the number of the at least one target SSB that can be indicated by the indication information is 1/2/4, and the number of candidate SSBs between two adjacent target SSBs that can be indicated can be -/0/1/3.
  • "-" can be used to indicate the number of candidate SSBs where there is no gap between two adjacent target SSBs.
  • the number of the at least one target SSB and the transmission interval can be considered at the same time.
  • the joint indication number U is equal to 1 indicating that the number of the at least one target SSB is 2 and the number of candidate SSBs spaced between two adjacent target SSBs is 0. That is, the number of the at least one target SSB that can be indicated by the indication information is 1/2/4/8, and the number of candidate SSBs between two adjacent target SSBs that can be indicated can be -/0/1.
  • "-" can be used to indicate the number of candidate SSBs where there is no gap between two adjacent target SSBs.
  • the indication information is used to indicate the transmission interval of at least one target SSB and the resource location of the first target SSB in the at least one target SSB.
  • the number of the at least one target SSB is less than or equal to a preset threshold.
  • the preset threshold is 4 or 8.
  • the terminal device may determine the resource location of the at least one target SSB according to the indication information and the quantity of the at least one target SSB.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the indication information is used to indicate the number of at least one target SSB and the resource location of the first target SSB in the at least one target SSB.
  • a candidate SSB spaced between two adjacent target SSBs can be specified.
  • the at least one target SSB is continuous in the resource position of the candidate SSB.
  • the terminal device may determine the resource location of the at least one target SSB according to the indication information and the specified candidate SSB of the interval between two adjacent target SSBs.
  • the indication information is used to indicate the following information of at least one SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the terminal device can determine the resource location of the at least one target SSB directly according to the indication information.
  • the terminal device receives the at least one target SSB according to the indication information.
  • the terminal device may detect a physical downlink control channel (Physical Downlink Control Channel, PDCCH) and/or a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) according to the indication information.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal device determines that there will be no PDSCH transmission at a resource location that overlaps the resource location of the at least one target SSB according to the indication information; and/or the terminal device according to the indication information, The PDCCH is not detected at a resource location that overlaps or partially overlaps the resource location of the at least one target SSB; and/or the terminal device detects the PDCCH according to the indication information, if the PDCCH is The resource locations of the SSB overlap or partially overlap, and the PDCCH is not detected.
  • the network device does not send PDSCH transmission at a resource location overlapping with the resource location of the at least one target SSB according to the indication information; and/or the network device does not send PDSCH transmission according to the indication information.
  • the resource location of the at least one target SSB overlaps or partially overlaps
  • the PDCCH is not sent; and/or the network device detects the PDCCH according to the indication information, if the PDCCH and the at least one target SSB The resource locations overlap or partially overlap, and the PDCCH is not sent.
  • the terminal device determines the resource location of the at least one target SSB
  • the terminal device detects the PDCCH
  • the terminal device detects the PDCCH
  • the terminal device detects the PDSCH
  • the terminal device considers that there will be no PDSCH transmission on these resources.
  • the terminal device measures the at least one target SSB according to the indication information.
  • the indication information can be partly or completely indicated in a broadcast or RRC reconfiguration message (for example, (As indicated in the measurement object configuration message).
  • the UE can reduce unnecessary SSB detection and measurement, that is, only measure the SSB for the indicated SSB candidate transmission position, thereby reducing the measurement complexity and energy consumption of the UE.
  • the terminal device receives the indication information used to detect PDCCH and/or PDSCH and the indication information used to measure SSB respectively.
  • the network device sends to the terminal device to detect and receive PDCCH and PDSCH, respectively.
  • the indication information of, and the indication information for measuring SSB is not only needs to use the indication information to detect and receive PDCCH and PDSCH, but needs to use the indication information to measure the SSB.
  • the at least one target SSB is a plurality of target SSBs, and at least part of the target SSBs of the plurality of target SSBs are QCL. That is, other channels or signals associated with the at least part of the target SSB need to perform rate matching based on the resources of the at least part of the target SSB.
  • FIG. 11 is a schematic block diagram in which at least some of the target SSBs among multiple target SSBs in an embodiment of the present application are QCLs.
  • the resource location of the at least one target SSB includes the resource location numbered 4/5/6/7.
  • the target SSB on the resource locations numbered 4 and 5 is QCL
  • the target SSB on the resource locations numbered 6 and 7 is QCL.
  • FIG. 12 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • the receiving unit 310 is configured to receive indication information, where the indication information is used to indicate at least one of the following information of at least one target synchronization signal block SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the indication information is specifically used to indicate at least one of the following information of the at least one target SSB:
  • the at least one target SSB is a plurality of target SSBs, and in the first period, the number of candidate SSBs between two adjacent target SSBs among the plurality of target SSBs;
  • the number of candidate SSBs in the first period is a preset value.
  • the first period is an SSB period or a DRS period.
  • the number of candidate SSBs in the first period is 16, 20, 24, or 32.
  • the resource position of the first target SSB is the resource position of the K-th candidate SSB in the first period, where K is a non-negative integer, and K is less than or equal to the The total number of candidate SSBs in the first period.
  • the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 3, and 7, or the two adjacent target SSBs
  • the number of candidate SSBs spaced between is any one of 0, 1, and 3, or the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 2, and 3.
  • Item, or the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0 and 1.
  • the number of the at least one target SSB is any one of 1, 2, and 4, or the number of the at least one target SSB is any one of 1, 2, 4, and 8. Item, or the number of the at least one target SSB is any one of 2, 4, 6, and 8.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the number of the at least one target SSB is the number of the at least one target SSB.
  • the terminal device further includes:
  • the determining unit is configured to determine the SSB detected for the first time as the first target SSB among the at least one target SSB.
  • the terminal device further includes:
  • the determining unit is configured to determine the first candidate SSB within the detected channel occupation time COT as the first target SSB among the at least one target SSB.
  • the terminal device further includes:
  • the determining unit is configured to determine the first candidate SSB in the COT that meets the following conditions as the first target SSB among the at least one target SSB:
  • the quotient of the resource location number of the candidate SSB and D is k, where k is a positive integer, and the value of D is 2, 4, or 8.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the number of the at least one target SSB is less than or equal to a preset threshold.
  • the preset threshold is 4 or 8.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the at least one target SSB is continuous in the resource position of the candidate SSB.
  • the receiving unit 310 is further configured to:
  • the receiving unit 310 is further configured to:
  • the physical downlink control channel PDCCH and/or the physical downlink shared channel PDSCH are detected.
  • the receiving unit 310 is specifically configured to:
  • the indication information it is determined that there will be no PDSCH transmission at the resource location overlapping with the resource location of the at least one target SSB;
  • the indication information at a resource location that overlaps or partially overlaps the resource location of the at least one target SSB, not detecting the PDCCH;
  • the PDCCH when detecting the PDCCH, if the PDCCH overlaps or partially overlaps the resource location of at least one target SSB, the PDCCH is not detected.
  • the receiving unit 310 is further configured to:
  • the indication information measure the at least one target SSB.
  • the receiving unit 310 is specifically configured to:
  • the indication information used for detecting PDCCH and/or PDSCH and the indication information used for measuring SSB are received respectively.
  • the receiving unit 310 is specifically configured to:
  • the indication information indicates at least one of the following information of the at least one target SSB through a demodulation reference signal DMRS of a different physical broadcast channel PBCH:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the terminal device 300 shown in FIG. 12 may correspond to the corresponding main body in the method 200 that executes the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the terminal device 300 are to implement For the sake of brevity, the corresponding procedures in each method of the method will not be repeated here.
  • FIG. 13 is a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 may include:
  • the sending unit 410 is configured to send indication information, where the indication information is used to indicate at least one of the following information of at least one target synchronization signal block SSB:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the indication information is specifically used to indicate at least one of the following information of the at least one target SSB:
  • the at least one target SSB is a plurality of target SSBs, and in the first period, the number of candidate SSBs between two adjacent target SSBs among the plurality of target SSBs;
  • the number of candidate SSBs in the first period is a preset value.
  • the first period is an SSB period or a discovery reference signal DRS period.
  • the number of candidate SSBs in the first period is 16 or 20 or 24 or 32.
  • the resource position of the first target SSB is the resource position of the K-th candidate SSB in the first period, where K is a non-negative integer, and K is less than or equal to the The total number of candidate SSBs in the first period.
  • the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 3, and 7, or the two adjacent target SSBs
  • the number of candidate SSBs spaced between is any one of 0, 1, and 3, or the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0, 1, 2, and 3.
  • Item, or the number of candidate SSBs spaced between two adjacent target SSBs is any one of 0 and 1.
  • the number of the at least one target SSB is any one of 1, 2, and 4, or the number of the at least one target SSB is any one of 1, 2, 4, and 8. Item, or the number of the at least one target SSB is any one of 2, 4, 6, and 8.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the number of the at least one target SSB is the number of the at least one target SSB.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the number of the at least one target SSB is less than or equal to a preset threshold.
  • the preset threshold is 4 or 8.
  • the indication information is only used to indicate at least one of the following information of the at least one target SSB:
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the at least one target SSB is continuous in the resource position of the candidate SSB.
  • the sending unit 410 is further configured to:
  • the sending unit 410 is further configured to:
  • the physical downlink control channel PDCCH and/or the physical downlink shared channel PDSCH are sent according to the instruction information.
  • the sending unit 410 is specifically configured to:
  • no PDSCH is sent at the resource location overlapping with the resource location of the at least one target SSB;
  • the indication information at a resource location that overlaps or partially overlaps the resource location of the at least one target SSB, do not send the PDCCH;
  • the PDCCH when the PDCCH is detected, if the PDCCH overlaps or partially overlaps with the resource location of at least one target SSB, the PDCCH is not sent.
  • the sending unit 410 is specifically configured to:
  • the indication information for detecting the PDCCH and/or PDSCH and the indication information for measuring the SSB are respectively sent.
  • the sending unit 410 is specifically configured to:
  • the indication information indicates at least one of the following information of the at least one target SSB through a demodulation reference signal DMRS of a different physical broadcast channel PBCH:
  • the at least one target SSB is multiple target SSBs, and the number of candidate SSBs between two adjacent target SSBs in the multiple target SSBs;
  • the resource location of the first target SSB in the at least one target SSB is not limited.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the network device 400 shown in FIG. 13 may correspond to a corresponding subject in executing the method 200 of the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 400 are to implement For the sake of brevity, the corresponding procedures in each method of the method will not be repeated here.
  • the communication device of the embodiment of the present application is described above from the perspective of functional modules in conjunction with FIG. 12 and FIG. 13. It should be understood that the functional module can be implemented in the form of hardware, can also be implemented in the form of software instructions, or can be implemented in a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application can be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in the embodiments of the present application can be directly embodied as hardware.
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the foregoing method embodiments in combination with its hardware.
  • the determining unit in the embodiment of the present application may be implemented by a processor, and the sending unit and/or receiving unit may be implemented by a transceiver.
  • FIG. 14 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 shown in FIG. 14 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the memory 520 may be used to store instruction information, and may also be used to store codes and instructions executed by the processor 510.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may be a terminal device of an embodiment of the application, and the communication device 500 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the application, that is,
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to a corresponding subject in executing the method 200 according to the embodiment of the present application.
  • details are not described herein again.
  • the communication device 500 may be a network device in an embodiment of the present application, and the communication device 500 may implement corresponding processes implemented by the network device in each method in the embodiments of the present application. That is to say, the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application. For the sake of brevity, it will not be omitted here. Repeat.
  • the various components in the communication device 500 are connected by a bus system, where in addition to a data bus, the bus system also includes a power bus, a control bus, and a status signal bus.
  • an embodiment of the present application also provides a chip, which may be an integrated circuit chip with signal processing capability, and can implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • Fig. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in FIG. 15 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes and instructions executed by the processor 610.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc. It should also be understood that the various components in the chip 600 are connected by a bus system, where in addition to a data bus, the bus system also includes a power bus, a control bus, and a status signal bus.
  • the processor may include but is not limited to:
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the storage includes but is not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DR RAM Direct Rambus RAM
  • memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device that includes multiple application programs, can cause the portable electronic device to execute the implementation shown in method 200 Example method.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for It's concise, so I won't repeat it here.
  • the embodiment of the application also provides a computer program.
  • the computer program When the computer program is executed by a computer, the computer can execute the methods in the embodiments shown in method 300 to method 500.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include a terminal device 300 as shown in FIG. 12 and a network device 400 as shown in FIG. 13.
  • the terminal device 300 can be used to implement the corresponding functions implemented by the terminal device in the above method 200
  • the network device 400 can be used to implement the corresponding functions implemented by the network device in the above method 200.
  • This will not be repeated here.
  • system in this article may also be referred to as “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or the parts that contribute to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium.
  • Including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种接收信息、发送信息的方法和设备,所述方法,包括:终端设备接收指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;所述至少一个目标SSB的数量;所述至少一个目标SSB中的第一个目标SSB的资源位置。基于以上技术方案,所述终端设备通过所述指示信息,不仅能够确定所述至少一个目标SSB的资源位置,而且能够有效降低信令开销。

Description

接收信息、发送信息的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及接收信息、发送信息的方法和设备。
背景技术
在5G NR中,网络设备可以通过位图(bitmap)的方式指示同步信号块(Synchronization Signal Block,SSB)的资源位置。
但是,NR-U存在较多的SSB的候选发送位置以应对LBT失败的影响,以及较少的实际可最多传输的SSB个数限制。而如果简单是适用一个较大的全bitmap(例如Y=20bit的bitmap),会使得资源开销过大,特别是如果在初始接入时就需要该信息的话,较大的比特开销将更加不可取。
因此,需要针对NR-U场景优化SSB的传输位置的指示方式。
发明内容
提供了一种接收信息、发送信息的方法和设备,不仅能够适用于NR-U场景,而且能够降低信令开销。
第一方面,提供了一种接收信息的方法,包括:
终端设备接收指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
第二方面,提供了一种发送信息的方法,包括:
网络设备发送指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器、存储器和收发器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述收发器执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器、存储器和收发器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述收发器执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器和输入接口,用于从存储器中调用并运行计算机程序,使得所述输入接口执行如上述第一方面或其各实现方式中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器和输出接口,用于从存储器中调用并运行计算机程序,使得所述输出接口执行如上述第二方面或其各实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,所述终端设备通过所述指示信息,不仅能够确定所述至少一个目标SSB的资源位置,而且能够有效降低信令开销。
附图说明
图1是本申请应用场景的示例。
图2和图3是本申请实施例的实际传输的SSB的资源位置的示意性框图。
图4是本申请实施例的无线通信方法的示意性交互图。
图5至图10是本申请实施例的目标SSB的资源位置的示意性框图。
图11是本申请实施例的多个目标SSB中的至少部分目标SSB是QCL的示意框图。
图12是本申请实施例的终端设备的示意性框图。
图13是本申请实施例的网络设备的示意性框图。
图14是本申请实施例的通信设备的示意性框图。
图15是本申请实施例的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
以5G系统为例,本申请实施例的技术方案可以应用于广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密连接(tight interworking)的工作模式。
5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
此外,由于完整的5G NR覆盖很难获取,因此,本申请实施例的网络覆盖可以采用广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。同时,为了保护移动运营商前期在LTE投资,进一步地可以采用LTE和NR之间紧密连接(tight interworking)的工作模式。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
可选地,该网络设备120可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),网络设备120还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。可选地,该网络设备120还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio  Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
可选地,该终端设备110可以是任意终端设备,包括但不限于:经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备110之间可以进行终端直连(Device to Device,D2D)通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。
可选地,通信系统100中的各功能单元之间可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。需要说明的是,图2所示的部分仅为示例性架构图,除过图1所示的功能单元之外,该网络架构还可以包括其他功能单元或功能实体,如:核心网络设备还可以包含统一数据管理功能(unified data management,UDM)等其他功能单元,本申请实施例不进行具体限定。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在图1所示的通信系统100中,网络设备120可以向终端设备110发送同步信号块(Synchronization Signal Block,SSB),所述SSB也称为同步信号/物理广播信号块(SS/PBCH block)。
以图1所示的通信系统100为5G NR为例,对网络设备120向终端设备110发送SSB的具体实现进行说明。
在5G NR中,对于6GHz以下的频段,SSB的index最多有8个,也就是说在6GHz以下,在一个SSB的传输周期内,最多有8个SSB的候选传输位置,而在8个候选传输位置上最多有8个SSB传输。
需要指出的是,网络设备120在一个SSB传输周期内实际发送的SSB个数取决于网络设备120的实现,只是最大传输个数受限于8个。在这种设计下,如何让终端设备110确定SSB的实际发送位置,以供终端设备110在接收PDCCH及PDSCH时做速率匹配使用。具体来说,对于6GHz以下的频段,协议先预定义了5ms内的8个SSB的候选传输位置,分别对应的是SSB的索引(index)0至index 7。终端设备110可以通过广播或者通过无线资源控制(Radio Resource Control,RRC)专有信令的方式,通过8bit的位图(bitmap)确定SSB发送情况,其中每一个bit代表一个SSB的发送与否情况。
例如,如图2所示,可用01100110的bitmap指示图2所示的SSB发送情况。其中,0表示该候选传输位置上未发送SSB,1表示该候选传输位置上发送了SSB。
在5G NR中,对于6GHz以上的频段,SSB的index最多有64个,也就是说在6GHz以上,在一个SSB的传输周期内,最多有64个SSB的候选传输位置,而在64个候选传输位置上最多有64个SSB传输。实际上,对于6GHz以上的频段,终端设备110确定这些SSB的传输情况的方式可以与6GHz以下的情况类似,即协议先预定义5ms内的64个SSB的候选传输位置,分别对应SSB的index 0至index63。终端设备110可以通过广播的方式或者通过RRC专有信令的方式确定具体的SSB发送情况,而区别在于UE确定SSB是否传输及传输位置的信令形式和解读不同。
具体而言,在6GHz以上时,终端设备110可以通过广播的方式通过16bit的bitmap通知终端设备110具体的SSB发送位置。其中,这16个bit分为两组,每组都是一个由8个bit组成的bitmap,相应地64个SSB也被分为8组,每组有8个SSB。具体实现中,16个bit中的8个bit通过bitmap的方式指示8组SSB中的哪些组被发送,16个bit中的另外8个bit通过bitmap的方式指示各个组内的8个SSB的发送情况。
例如,如图3所示。可用11001100的bitmap指示图3所示的各组SSB发送情况。可用01100110的bitmap指示图3所示的各组内的SSB发送情况。具体地,如图3所示,64个SSB也被分为8组,每组有8个SSB。其中第1、2、5、6组中有网络设备120发送的SSB,且每组中SSB的发送位置为第2、3、6、7个发送位置。
当然,终端设备110还可以通过RRC专有信令的方式通过64bit的bitmap确定具体的SSB发送位置,每一个bit代表一个SSB的发送与否情况。
需要说明的是,NR-U系统中定义了一种信道和/或信道同一描述的形式,以NR-U发现参考信号(Discovery Reference Signal,DRS)或者DRS描述为例,DRS中包括同步信号块(Synchronization Signal Block,SSB)、可以包括剩余系统信息(Remaining System Information,RMSI)的控制资源集(Control Resource Set,CORESET)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、其他系统信息(Other System Information,OSI)和/或寻呼(paging)的CORESET、PDCCH和PDSCH,以及信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
上文对终端设备110工作在授权频段时,接收网络设备120发送的SSB的实现方式进行了说明。由于授权频段频谱资源十分珍贵,因此针对非授权频段上如何实现SSB的传输是本领域急需解决的技术问题。
由于非授权频谱上的信道资源是共享的,而设备使用这些共享资源时需要先侦听到空闲信道再对信道加以利用,这种情况下,很难保证同步信号块的固定位置周期性发送及接收。因为发送设备先听后说(Listen Before Talk,LBT)成功的位置是不可预期的,且由于LBT失败的原因,很有可能造成同步信号块的发送及接收失败。继而,在一些可实现的方式中,可以提供多个发送SSB的候选位置,以方便网络设备120LBT成功后,仍然有足够的候选位置可以用来发送SSB,以及相应地避免LBT失败对SSB接收造成的影响。
举例来说,预配置Y个SSB传输的候选位置,这Y个SSB的候选位置上只有LBT成功后的SSB的候选位置上才可以传输SSB,且在这Y个SSB传输的候选位置上最多能传X个SSB。
根据上文描述可知,由于在非授权频段将在一个DRS的传输窗口内采用较多的SSB候选发送位置,因此,随之而来的问题是:在这些较多的SSB候选发送位置内如何指示SSB的实际发送位置,以供例如速率匹配等用途使用。
在一种可实现的方式中,可以沿用5G NR在授权频段的设计,即采用一个较大的bitmap来直接指示具体哪些SSB候选位置上有SSB传输,比如,当SSB候选发送位置个数为Y=20的时候,采用一个Y=20bit的bitmap来指示具体这Y=20个位置上哪些SSB被发送。显然,这种方案会带来较大的开销,即使一个DRS周期内最大的SSB发送个数受限的情况下,比如最多传输X=8个SSB的情况下,上述 方法还是需要一个很大的bitmap(比如Y=20bit)来做指示。
另外,在5G NR中,当终端设备110监测Type0-PDCCH公共搜索空间(common search space)上的PDCCH,或终端设备110在接收Type0-PDCCH common search space调度的PDSCH时,所述终端设备110认为这些PDCCH资源和/或PDSCH的资源上不会有SSB的传输,具体描述详见3GPP协议38.213第10节、38.214第5.1.4节。但是,在NR-U的研究中,这种约束对于DRS内的资源利用情况限制太大,因此所述终端设备在监测NR-U系统的RMSI的PDCCH和/或PDSCH时如何获得当前SSB的传输情况,以及在监测、解析PDCCH和/或PDSCH时如何利用该SSB的传输情况信息做速率匹配是一个急需研究和解决的问题。
需要说明的是,在5G NR中,网络设备在SSB的候选发送位置中的哪些位置可以发送SSB是取决于网络设备实现的,这是为了最大化地满足网络设备实现的灵活性。但是在NR-U中,这种灵活性是有代价的。
为了便于说明本方案的技术效果,下面对NR-U中网络设备可以在SSB的候选发送位置中的哪些位置可以发送SSB,以及如何发送SSB进行详细说明。
首先,在NR-U中,如果各个SSB之间的位置间隔相对过大,比如第一个SSB传输后过了若干毫秒(比如3ms)后才传输第二个SSB,则很有可能在这个间隔时间内由于其他设备占用了该非授权频谱信道,导致第二个SSB发送失败。所以连续两个SSB之间的发送间隔时间不应过长,即各个SSB之间应该在相邻的SSB候选发送位置上发送。
例如,在一个SSB的传输周期内,约定有Y=20个SSB的候选发送位置,而在这Y=20个候选发送位置上,只发送N=4个SSB时,这N=4个SSB在连续的4个SSB候选位置上传输。
其次,由于在NR-U系统的DRS中除了包括SSB外,还可以包括RSMI的PDCCH及PDSCH,和/或OSI以及paging的PDCCH及PDSCH,以及CSI-RS参考信号,所以可以进一步考虑SSB之间不在相邻的SSB候选位置上发送的情况,在相邻两个SSB发送之间留出足够的时频资源供RMSI的PDCCH/PDSCH、以及其他信道、信号利用。进一步地、由于DRS中每个SSB所关联的RSMI的PDCCH和PDSCH,以及OSI或paging的PDCCH及PDSCH,以及CSI-RS参考信号所占的资源大小一致,所以在考虑SSB之间不在相邻的SSB候选位置上发送的情况时,各个SSB之间的间隔位置也是等间隔的。
例如,在一个SSB的传输周期内,约定有Y=20个SSB的候选发送位置,而在这Y=20个候选发送位置上,只发送N=4个SSB时,这N=4个SSB在不连续的4个SSB候选位置上传输,每个传输SSB的候选发送位置之间间隔有Z个不传输SSB的候选发送位置。其中Z可以是非负整数。这里需要说明的是,如果Z=0,也就对应的是SSB在连续的SSB候选发送位置上发送的情况。
再次,考虑一个DRS中包括多于1个SSB的情况。在这种情况下,DRS内包括的信号、信道资源需要针对多于1个SSB的资源做资源映射的速率匹配。
例如,在一个SSB的传输周期内,约定有Y=20个SSB的候选发送位置,而在这Y=20个候选发送位置上,只发送N=4个SSB时,这N=4个SSB在连续的4个SSB候选位置上传输。其中,第1个SSB与第2个SSB是准共址(Quasi-co-located,QCL)的,也就是说,与这两个SSB相关联的其他信道或信号需要基于这两个SSB的资源做速率匹配。第3个SSB与第4个SSB是QCL的,也就是说,与这两个SSB相关联的其他信道或信号需要基于这两个SSB的资源做速率匹配。
基于上述几点考虑,在具体指示方式上,在5G NR中通过8bit的bitmap指示的在8个SSB的候选位置中的SSB发送情况的方法在NR-U中并不适用,因为NR-U存在较多的SSB的候选发送位置以应对LBT失败的影响,以及较少的实际可最多传输的SSB个数限制。而如果简单是适用一个较大的全bitmap(例如Y=20bit的bitmap),正如之前分析的,会使得资源开销过大,特别是如果在初始接入时就需要该信息的话,较大的比特开销将更加不可取。所以,进一步地,需要针对上述具体设计考虑,优化SSB的传输位置指示方式。
本申请通过设计特定的指示机制,提供了一种指示方法,其可以利用较少的比特指示在一个DRS周期内SSB的传输情况,能够有效节省信令开销。
应理解,本申请实施例中,将“SSB的候选发送位置”也称为“候选SSB的资源位置”或“SSB的候选位置”或“SSB候选传输位置”,本申请对此不做具体限定。还应理解,在NR-U中,网络设备在候选SSB的资源位置LBT成功后,均可以用于发送SSB。
此外,为了便于描述,将候选SSB的资源位置上网络设备向终端设备实际发送的SSB称为目标SSB,或者候选SSB的资源位置上终端设备确定的实际发送的SSB称为目标SSB。并且,也可以将候选SSB的资源位置称为可以用来发送目标SSB的资源位置,该资源位置可以是预先定义好的资源位置。
图4是本申请实施例的无线通信方法200的示意性交互图。所述方法200可以由终端设备和网络设备交互执行。图4中所示的终端设备可以是如图1所示的终端设备,图4中所示的网络设备可以是如图 1所示的接入网设备。
如图4所示,所述方法200包括:
S210,终端设备接收网络设备发送的指示信息。
其中,所述指示信息用于指示至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
假设所述至少一个目标SSB的数量为N,所述终端设备通过指示信息,确定所述至少一个目标SSB的资源位置时,将所述第一个目标SSB及其之前的N-1个SSB作为所述至少一个目标SSB,或将所述第一个目标SSB及其之后的N-1个SSB作为所述至少一个目标SSB。
本申请实施例中,基于NR-U中SSB的传输特点定义所述指示信息的内容,使得所述终端设备通过所述指示信息,不仅能够确定所述至少一个目标SSB的资源位置,而且能够有效降低信令开销。
具体而言,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述第一周期内所述至少一个目标SSB的数量;
所述第一周期内所述第一个目标SSB的资源位置;
其中,所述第一周期内的候选SSB的数量为预设值。
此时,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。换句话说,所述指示信息可以用于指示所述第一周期内所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
应理解,所述第一周期为SSB周期或发现参考信号DRS周期。但本申请不限于此。此外,所述第一周期内候选SSB的数量可以是任意正整数,例如,所述第一周期内的候选SSB的数量包括但不限于16、20、24或32。
所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。但本申请实施例不限于此。例如,所述相邻的两个目标SSB之间间隔的候选SSB的数量可以为0、1、2中的任一项。
具体而言,可以事先规定所述相邻的两个目标SSB之间间隔的候选SSB的数量的选择范围(例如,0、1、3和7)。即网络设备向所述终端设备发送所述指示信息,且所述指示信息至少用于指示所述至少一个目标SSB为多个目标SSB,且所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量时,可以在一个固定的数值范围内确定一个数值用作所述相邻的两个目标SSB之间间隔的候选SSB的数量。
当然,在其他可替代实施例中,也可以不规定上述数值范围。例如,网络设备可以根据当前信道情况实时确定相邻的两个目标SSB之间间隔的候选SSB的数量,并指示给所述终端设备。
所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
与上文的所述相邻的两个目标SSB之间间隔的候选SSB的数量类似,所述网络设备可以在一个固定的数值范围内确定所述至少一个目标SSB的数量,也可以不在所述固定的数值范围内确定所述至少一个目标SSB的数量。换句话说,所述至少一个目标SSB的数量包括但不限于:1、2、4、6或8。
当然,应理解,上述具体数字仅为本申请的具体示例,不应理解为对本申请的限制。
例如,所述第一周期内候选SSB的数量也可以为40等其他数值。
例如,所述至少一个目标SSB的数量也可以为10或12等其他数值。
又例如,所述至少一个目标SSB的数量的选择范围也可以是1和2等其他范围。
下面结合附图对所述指示信息仅用于指示至少一个目标SSB的以下信息中的一项时,所述终端设备确定所述至少一个目标SSB的资源位置的实现方式进行说明:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
应理解,本申请实施例对指示信息的传输方式不做具体限定。例如,在本申请的一些实施例中,所述终端设备接收所述物理广播信道PBCH,所述PBCH包括所述指示信息;或所述终端设备接收所述主信息块MIB,所述MIB包括所述指示信息;或所述终端设备接收所述无线资源控制RRC信令,所述RRC信令包括所述指示信息。在本申请的另一些实施例中,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;所述至少一个目标SSB的数量;所述至少一个目标SSB中的第一个目标SSB的资源位置。换句话说,所述指示信息可通过PBCH承载,具体来说也可通过MIB承载,或者通过RRC专用信令承载,或者通过DCI承载,此外指示信息还可通过PBCH的DMRS承载,例如在指示信息需要指示M1种情况时,通过S1个PBCH的DMRS序列承载。
实施例一:
所述指示信息仅用于指示所述至少一个目标SSB为多个目标SSB,且所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量。
即网络设备传输指示信息给终端设备,终端设备通过指示信息确定所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量。
例如,所述指示信息可以指示在第一周期(SSB周期,或DRS周期)内实际发送的两个相邻目标SSB之间间隔了Z个SSB的候选位置,Z可以为0/1/3/7,分别对应的是SSB连续传输,每2个连续的SSB候选传输位置上有一个目标SSB传输(也就是间隔1个SSB候选传输位置),每4个连续的SSB候选传输位置上有一个目标SSB传输(也就是间隔3个SSB候选传输位置),每8个连续的SSB候选传输位置上有一个目标SSB传输(也就是间隔7个SSB候选传输位置)。更一般性的,Z可取正整数。
所述终端设备获得所述指示信息后,在预定义的Y个SSB候选位置中,每间隔Z个SSB的候选位置确定一个SSB的候选位置,并将确定出的这些SSB的候选位置作为所述至少一个目标SSB的资源位置。所述至少一个目标SSB的资源位置用于传输所述至少一个目标SSB。
在一些可能实现的方式中,所述终端设备可以将LBT成功的第一个SSB确定为所述至少一个目标SSB中的第一个目标SSB,也可以将检测到的第一个SSB确定为所述至少一个目标SSB中的第一个目标SSB。
此外,所述至少一个目标SSB的数量可以是网络设备预配置的数值或协议规定的数值。换句话说,可以规定所述至少一个目标SSB的资源位置总数最多为X个。或者说,所述至少一个目标SSB小于等于预设阈值X。例如,所述X包括但不限于4和8。
进而,所述终端设备可以根据所述至少一个目标SSB中的第一个目标SSB的资源位置、所述至少一个目标SSB的数量以及所述指示信息,确定所述至少一个目标SSB的资源位置。
图5和图6是本申请实施例的目标SSB的位置关系的示意性框图。
如图5所示,Y等于20,Z等于3,X等于4。
假设终端设备在编号为4的候选位置上LBT成功,则所述终端设备将编号为4的候选位置、以及编号为4的候选位置向后每间隔3个候选位置的候选位置(编号为8的候选位置、编号为12的候选位置以及编号为16的候选位置)确定为所述至少一个目标SSB的资源位置。
如图6所示,Y等于20,Z等于3,X等于4。
所述终端设备将检测到的信道占用时间(Channel occupancy time,COT)内的第一个候选SSB(编号为0的候选位置)确定为所述至少一个目标SSB中的第一个目标SSB,则所述终端设备将编号为0的候选位置、以及编号为0的候选位置向后每间隔3个候选位置的候选位置(编号为4的候选位置、编号为8的候选位置以及编号为12的候选位置)确定为所述至少一个目标SSB的资源位置。
当然,所述终端设备也可以所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值包括但不限于2、4和8。
换句话说,当终端设备检测到一个COT后,所述终端设备确定所述至少一个目标SSB的资源位置时,以该COT内的第一个SSB候选位置编号满足index=2k或者4k或者8k(k为正整数)的SSB候选位置、及其后每间隔Z个SSB的候选位置确定一个SSB的候选位置,并作为所述至少一个目标SSB的资源位置。
本申请实施例中,所述指示信息可通过X1bit指示,例如00表示连续传输,01表示间隔1个SSB候选位置,10表示间隔3个SSB候选位置,11表示间隔7个SSB候选位置。或者,例如00表示连续传输,01表示间隔1个SSB候选位置,10表示间隔2个SSB候选位置,11表示间隔3个SSB候选位 置。
应理解,图5和图6仅为本申请的两种示例,不应理解为对本申请的限制。例如,如图7和图8所示,上述X也可以等于2。
实施例二:
所述指示信息仅用于指示所述至少一个目标SSB的数量。
即所述指示信息指示SSB的实际发送个数N。例如,N可以为1/2/4/8,即分别对应在第一周期内有1、2、4、8个SSB传输,第一周期可以是例如SSB的周期或者DRS的周期。更一般性的,N可取小于等于X的正整数,X是预定义的最多可传输的SSB个数。
网络设备传输所述指示信息给终端设备,终端设备可通过指示信息确定SSB的实际传输个数。
本申请实施例中,所述至少一个目标SSB为多个目标SSB时,所述多个目标SSB中的相邻的两个目标SSB之间间隔的候选SSB的数量Z可以是网络预配置的数值或协议规定的数值。例如,所述至少一个目标SSB在候选SSB的资源位置上可以是连续的。即所述终端设备获得所述指示信息后,在预定义的Y个SSB候选位置信息中,可以确定连续的N个SSB的候选位置,并将确定出的这些SSB的候选位置的资源作为所述至少一个目标SSB的资源位置。
此外,所述终端设备可以将LBT成功的第一个SSB确定为所述至少一个目标SSB中的第一个目标SSB,也可以将检测到的第一个SSB确定为所述至少一个目标SSB中的第一个目标SSB。
进而,所述终端设备可以根据所述至少一个目标SSB中的第一个目标SSB的资源位置、相邻两个目标SSB之间间隔的候选SSB的数量以及所述指示信息,确定所述至少一个目标SSB的资源位置。
图9和图10是本申请实施例的所述至少一个目标SSB的资源位置的示意性框图。
如图9所示,Y等于20,Z等于0,X等于4。
假设终端设备在编号为4的候选位置上LBT成功,则所述终端设备将编号为4的候选位置、以及编号为4的候选位置向后连续的3个候选位置(编号为5的候选位置、编号为6的候选位置以及编号为7的候选位置)确定为所述至少一个目标SSB的资源位置。
如图10所示,Y等于20,Z等于0,X等于4。
所述终端设备将检测到的信道占用时间(Channel occupancy time,COT)内的第一个候选SSB(编号为0的候选位置)确定为所述至少一个目标SSB中的第一个目标SSB,则所述终端设备将编号为0的候选位置、以及编号为0的候选位置向后连续的3个候选位置(编号为5的候选位置、编号为6的候选位置以及编号为7的候选位置)确定为所述至少一个目标SSB的资源位置。
当然,所述终端设备也可以所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值包括但不限于2、4和8。
换句话说,当终端设备检测到一个COT后,所述终端设备确定所述至少一个目标SSB的资源位置时,以该COT内的第一个SSB候选位置编号满足index=2k或者4k或者8k(k为正整数)的SSB候选位置、及其后每间隔Z个SSB的候选位置确定一个SSB的候选位置,并作为所述至少一个目标SSB的资源位置。
本申请实施例中,所述指示信息可通过X2bit指示。
例如,所述指示信息可以指示所述至少一个目标SSB的数量为1/2/4/8个SSB。具体来说,例如,00表示所述至少一个目标SSB的数量为1个,01表示所述至少一个目标SSB的数量为2个,10表示所述至少一个目标SSB的数量为4个,11表示所述至少一个目标SSB的数量为8个。
又例如,所述指示信息可以指示所述至少一个目标SSB的数量为2/4/6/8个SSB。具体来说,例如,即00表示所述至少一个目标SSB的数量为2个,01表示所述至少一个目标SSB的数量为4个,10表示所述至少一个目标SSB的数量为6个,11表示所述至少一个目标SSB的数量为8个。
又例如,用3bit通过000至111表示所述至少一个目标SSB的数量为1个至8个。
实施例三:
所述指示信息仅用于指示至少一个目标SSB中第一个目标SSB的资源位置。
网络设备传输所述指示信息给终端设备,所述终端设备可以通过所述指示信息确定第一个传输的目标SSB的传输位置。
例如,所述指示信息指示第一个传输的SSB的传输位置是预定义的Y个SSB传输候选位置中的第K个,K小于等于Y。其中,K的取值可以为2k+1或者2(k+1),其中k非负整数。K的取值可以为4k+1或者4(k+1),其中k非负整数。K的取值可以为8k+1或者8(k+1),其中k非负整数。更一般性的,K可以取小于Y的正整数,Y是预定义的SSB传输的候选位置。
由此,终端设备获得所述指示信息后,可确定在预定义的Y个SSB候选位置信息中,从第K个SSB 候选传输位置开始,每间隔Z个SSB的候选位置确定一个SSB的候选位置,并将确定出的这些SSB的候选位置的资源作为所述至少一个目标SSB的资源位置。
在一些可能的实现方式中,所述至少一个目标SSB为多个目标SSB时,所述多个目标SSB中的相邻的两个目标SSB之间间隔的候选SSB的数量Z可以是网络预配置的数值或协议规定的数值。例如,所述至少一个目标SSB在候选SSB的资源位置上可以是连续的。即所述终端设备获得所述指示信息后,在预定义的Y个SSB候选位置信息中,可以确定连续的N个SSB的候选位置,并将确定出的这些SSB的候选位置的资源作为所述至少一个目标SSB的资源位置。
此外,所述至少一个目标SSB的数量可以是网络设备预配置的数值或协议规定的数值。换句话说,可以规定所述至少一个目标SSB的资源位置总数最多为X个。或者说,所述至少一个目标SSB小于等于预设阈值X。例如,所述X包括但不限于4和8。
进而,所述终端设备可以根据所述指示信息、所述至少一个目标SSB的数量以及相邻两个目标SSB之间间隔的候选SSB的数量,确定所述至少一个目标SSB的资源位置。
本实施例中,所述指示信息可通过X3bit指示。
例如,000表示所述第1个目标SSB的资源位置为第1个候选SSB的资源位置,001表示所述第1个目标SSB的资源位置为第5个候选SSB的资源位置,010表示所述第1个目标SSB的资源位置为第9个候选SSB的资源位置,011表示所述第1个目标SSB的资源位置为第13个候选SSB的资源位置,100表示所述第1个目标SSB的资源位置为第17个候选SSB的资源位置。
又例如,00表示所述第1个目标SSB的资源位置为第1个候选SSB的资源位置,01表示所述第1个目标SSB的资源位置为第5个候选SSB的资源位置,10表示所述第1个目标SSB的资源位置为第9个候选SSB的资源位置,11表示所述第1个目标SSB的资源位置为第13个候选SSB的资源位置。
又例如,可以通过3bit信息指示所述第1个目标SSB的资源位置为第1/3/5/7/9/11/13/15个候选SSB的资源位置。
又例如,可以通过4bit信息指示所述第1个目标SSB的资源位置为第1/3/5/7/9/11/13/15/17/19个候选SSB的资源位置。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
下面对上述3个实施例的组合方式进行说明。
实施例四:
所述指示信息用于指示至少一个目标SSB的传输间隔和所述至少一个目标SSB的数量。
此时,所述终端设备可以将第一次检测到的SSB确定为所述至少一个目标SSB中的第一个目标SSB。或者,所述终端设备可以将检测到的信道占用时间COT内的第一个候选SSB确定为所述至少一个目标SSB中的第一个目标SSB。或者,所述终端设备可以将所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:
候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值为2、4或8。
进而,所述终端设备可以根据所述指示信息和所述第一个目标SSB的资源位置,确定所述至少一个SSB的资源位置。
表1
Figure PCTCN2019081605-appb-000001
如表1所示,可以同时考虑所述至少一个目标SSB的数量和传输间隔。例如,所述指示信息的编号U等于1表示所述至少一个目标SSB的数量为2且相邻两个目标SSB之间间隔的候选SSB的数量为1。即所述指示信息可以指示的所述至少一个目标SSB的数量为1/2/4,可以指示的相邻两个目标SSB之间间隔的候选SSB的数量可以为-/0/1/3。其中,“-”可以用于表示不存在相邻两个目标SSB之间间隔的候选SSB的数量。
表2
Figure PCTCN2019081605-appb-000002
如表2所示,可以同时考虑所述至少一个目标SSB的数量和传输间隔。例如,联合指示编号U等于1表示所述至少一个目标SSB的数量为2且相邻两个目标SSB之间间隔的候选SSB的数量为0。即所述指示信息可以指示的所述至少一个目标SSB的数量为1/2/4/8,可以指示的相邻两个目标SSB之间间隔的候选SSB的数量可以为-/0/1。其中,“-”可以用于表示不存在相邻两个目标SSB之间间隔的候选SSB的数量。
实施例五:
所述指示信息用于指示至少一个目标SSB的传输间隔和所述至少一个目标SSB中的第一个目标SSB的资源位置。
此时,可以规定所述至少一个目标SSB的数量小于或等于预设阈值。例如,所述预设阈值为4或8。
进而,所述终端设备可以根据所述指示信息以及所述至少一个目标SSB的数量,确定所述至少一个目标SSB的资源位置。
实施例六:
所述指示信息用于指示至少一个目标SSB的数量和所述至少一个目标SSB中的第一个目标SSB的资源位置。
此时,可以规定相邻的两个目标SSB之间间隔的候选SSB。例如,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
进而,所述终端设备可以根据所述指示信息以及规定的相邻的两个目标SSB之间间隔的候选SSB,确定所述至少一个目标SSB的资源位置。
实施例七:
所述指示信息用于指示至少一个SSB的以下信息:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
此时,所述终端设备直接根据所述指示信息,即可确定所述至少一个目标SSB的资源位置。
应理解,本申请对所述指示信息的具体用途不做额外限定。
在本申请的一些实施例中,所述终端设备根据所述指示信息接收所述至少一个目标SSB。此时,所述终端设备可以根据所述指示信息,检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)和/或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。例如,所述终端设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,确定不会有PDSCH的传输;和/或所述终端设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不检测PDCCH;和/或所述终端设备根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不检测所述PDCCH。相应的,所述网络设备根据所述指示信息在与所述至少一个目标SSB的资源位置重叠的资源位置上,不发送PDSCH的传输;和/或所述网络设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不发送PDCCH;和/或所述网络设备根据所述指示信息,在检测PDCCH时,如果所述 PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不发送所述PDCCH。
或者说,当终端设备确定上述所述至少一个目标SSB的资源位置后,当终端设备检测PDCCH时,如果PDCCH,或者PDCCH的candidate与所述至少一个目标SSB的资源位置有重叠,终端设备不在该PDCCH或者PDCCH的candidate上检测PDCCH。当终端设备检测PDSCH时,如果PDSCH的资源与所述至少一个目标SSB的资源位置有重叠,终端设备认为这些资源上不会有PDSCH的传输。
在本申请的另一些实施例中,所述终端设备根据所述指示信息,测量所述至少一个目标SSB。
即除了可利用所述指示信息检测以及接收PDCCH以及PDSCH之外,还可以应用到测量配置中指示SSB的实际发送情况,所述指示信息可部分或全部在广播或者RRC重配置消息中指示(例如通过测量对象配置消息中指示)。UE基于上述SSB的传输信息,可减少不必要的SSB检测与测量,也就是,只针对所指示的SSB候选发送位置对SSB做测量,从而降低UE的测量复杂度以及能耗开销。
在本申请的一些实施例中,所述终端设备分别接收用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
或者说,如果终端设备既需要利用所述指示信息检测以及接收PDCCH以及PDSCH,由需要利用所述指示信息测量SSB,则所述网络设备分别向所述终端设备发送用于检测以及接收PDCCH以及PDSCH的所述指示信息,和用于测量SSB的所述指示信息。
在本申请的一些实施例中,所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中的至少部分目标SSB是QCL的。也就是说,与所述至少部分目标SSB相关联的其他信道或信号需要基于所述至少部分目标SSB的资源进行速率匹配。
图11是本申请实施例的多个目标SSB中的至少部分目标SSB是QCL的示意框图。
如图11所示,所述至少一个目标SSB的资源位置包括:编号为4/5/6/7的资源位置。其中,编号为4和编号为5的资源位置上的目标SSB是QCL的,编号为6和编号为7的资源位置上的目标SSB是QCL的。
上文结合图1至图11,详细描述了本申请的方法实施例,下文结合图12至图13,详细描述本申请的装置实施例。
图12是本申请实施例的终端设备300的示意性框图。
具体地,如图12所示,终端设备300可以包括:
接收单元310,用于接收指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述第一周期内所述至少一个目标SSB的数量;
所述第一周期内所述第一个目标SSB的资源位置;
其中,所述第一周期内的候选SSB的数量为预设值。
在本申请的一些实施例中,所述第一周期为SSB周期或DRS周期。
在本申请的一些实施例中,所述第一周期内的候选SSB的数量为16、20、24或32。
在本申请的一些实施例中,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
在本申请的一些实施例中,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
在本申请的一些实施例中,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB的传输间隔;
所述至少一个目标SSB的数量。
在本申请的一些实施例中,所述终端设备还包括:
确定单元,用于将第一次检测到的SSB确定为所述至少一个目标SSB中的第一个目标SSB。
在本申请的一些实施例中,所述终端设备还包括:
确定单元,用于将检测到的信道占用时间COT内的第一个候选SSB确定为所述至少一个目标SSB中的第一个目标SSB。
在本申请的一些实施例中,所述终端设备还包括:
确定单元,用于将所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:
候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值为2、4或8。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
至少一个目标同步信号块SSB的传输间隔;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述至少一个目标SSB的数量小于或等于预设阈值。
在本申请的一些实施例中,所述预设阈值为4或8。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
在本申请的一些实施例中,所述接收单元310还用于:
根据所述指示信息接收所述至少一个目标SSB。
在本申请的一些实施例中,所述接收单元310还用于:
根据所述指示信息,检测物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
在本申请的一些实施例中,所述接收单元310具体用于:
根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,确定不会有PDSCH的传输;和/或
根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不检测PDCCH;和/或
根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不检测所述PDCCH。
在本申请的一些实施例中,所述接收单元310还用于:
根据所述指示信息,测量所述至少一个目标SSB。
在本申请的一些实施例中,所述接收单元310具体用于:
分别接收用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
在本申请的一些实施例中,所述接收单元310具体用于:
接收所述物理广播信道PBCH,所述PBCH包括所述指示信息;或
接收所述主信息块MIB,所述MIB包括所述指示信息;或
接收所述无线资源控制RRC信令,所述RRC信令包括所述指示信息。
在本申请的一些实施例中,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图12所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图4中的各个方法中的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的网络设备400的示意性框图。
具体地,如图13所示,网络设备400可以包括:
发送单元410,用于发送指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述第一周期内所述至少一个目标SSB的数量;
所述第一周期内所述第一个目标SSB的资源位置;
其中,所述第一周期内的候选SSB的数量为预设值。
在本申请的一些实施例中,所述第一周期为SSB周期或发现参考信号DRS周期。
在本申请的一些实施例中,所述第一周期内的候选SSB的数量为16或20或24或32。
在本申请的一些实施例中,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
在本申请的一些实施例中,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
在本申请的一些实施例中,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB的传输间隔;
所述至少一个目标SSB的数量。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
至少一个目标同步信号块SSB的传输间隔;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述至少一个目标SSB的数量小于或等于预设阈值。
在本申请的一些实施例中,所述预设阈值为4或8。
在本申请的一些实施例中,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
在本申请的一些实施例中,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
在本申请的一些实施例中,所述发送单元410还用于:
根据所述指示信息发送所述至少一个目标SSB。
在本申请的一些实施例中,所述发送单元410还用于:
根据所述指示信息发送物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
在本申请的一些实施例中,所述发送单元410具体用于:
根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,不发送PDSCH;和/或
根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不发送PDCCH;和/或
根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不发送所述PDCCH。
在本申请的一些实施例中,所述发送单元410具体用于:
分别发送用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
在本申请的一些实施例中,所述发送单元410具体用于:
向所述终端设备发送物理广播信道PBCH,所述PBCH包括所述指示信息;或
向所述终端设备发送主信息块MIB,所述MIB包括所述指示信息;或
向所述终端设备发送无线资源控制RRC信令,所述RRC信令包括所述指示信息。
在本申请的一些实施例中,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
所述至少一个目标SSB的数量;
所述至少一个目标SSB中的第一个目标SSB的资源位置。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图13所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现图4中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合图12和图13从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本申请实施例中确定单元可以由处理器实现,发送单元和/或接收单元可由收发器实现。
图14是本申请实施例的通信设备500示意性结构图。图14所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备500还可以包括存储器520。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图14所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
可选地,该通信设备500可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本申请实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图15是根据本申请实施例的芯片的示意性结构图。
图15所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中 调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
所述处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
所述存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200所示实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法300至方法500所示实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括如图12所示的终端设备300和和如图13所示的网络设备400。其中,所述终端设备300可以用于实现上述方法200中由终端设备实现的相应的功能,所述网络设备400可以用于实现上述方法200中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (94)

  1. 一种接收信息的方法,其特征在于,包括:
    终端设备接收指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述第一周期内所述至少一个目标SSB的数量;
    所述第一周期内所述第一个目标SSB的资源位置;
    其中,所述第一周期内的候选SSB的数量为预设值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一周期为SSB周期或发现参考信号DRS周期。
  4. 根据权利要求2所述的方法,其特征在于,所述第一周期内的候选SSB的数量为16、20、24或32。
  5. 根据权利要求2所述的方法,其特征在于,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的传输间隔;
    所述至少一个目标SSB的数量。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备将第一次检测到的SSB确定为所述至少一个目标SSB中的第一个目标SSB。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备将检测到的信道占用时间COT内的第一个候选SSB确定为所述至少一个目标SSB中的第一个目标SSB。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:
    候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值为2、4或8。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    至少一个目标同步信号块SSB的传输间隔;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  13. 根据权利要求12所述的方法,其特征在于,所述至少一个目标SSB的数量小于或等于预设阈值。
  14. 根据权利要求13所述的方法,其特征在于,所述预设阈值为4或8。
  15. 根据权利要求1至11中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述指示信息接收所述至少一个目标SSB。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述指示信息,检测物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备根据所述指示信息,检测物理下行控制信道PDCCH和/或物理下行共享信道PDSCH,包括:
    所述终端设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,确定不会有PDSCH的传输;和/或
    所述终端设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不检测PDCCH;和/或
    所述终端设备根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不检测所述PDCCH。
  20. 根据权利要求1至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述指示信息,测量所述至少一个目标SSB。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述终端设备接收指示信息,包括:
    所述终端设备分别接收用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述终端设备接收指示信息,包括:
    所述终端设备接收所述物理广播信道PBCH,所述PBCH包括所述指示信息;或
    所述终端设备接收所述主信息块MIB,所述MIB包括所述指示信息;或
    所述终端设备接收所述无线资源控制RRC信令,所述RRC信令包括所述指示信息。
  23. 根据权利要求1至21中任一项所述的方法,其特征在于,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  24. 一种发送信息的方法,其特征在于,包括:
    网络设备发送指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  25. 根据权利要求24所述的方法,其特征在于,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述第一周期内所述至少一个目标SSB的数量;
    所述第一周期内所述第一个目标SSB的资源位置;
    其中,所述第一周期内的候选SSB的数量为预设值。
  26. 根据权利要求25所述的方法,其特征在于,所述第一周期为SSB周期或发现参考信号DRS周期。
  27. 根据权利要求25所述的方法,其特征在于,所述第一周期内的候选SSB的数量为16或20或24或32。
  28. 根据权利要求25所述的方法,其特征在于,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
  29. 根据权利要求24至28中任一项所述的方法,其特征在于,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的 数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
  30. 根据权利要求24至29中任一项所述的方法,其特征在于,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
  31. 根据权利要求24至30中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的传输间隔;
    所述至少一个目标SSB的数量。
  32. 根据权利要求24至31中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    至少一个目标同步信号块SSB的传输间隔;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  33. 根据权利要求32所述的方法,其特征在于,所述至少一个目标SSB的数量小于或等于预设阈值。
  34. 根据权利要求33所述的方法,其特征在于,所述预设阈值为4或8。
  35. 根据权利要求24至31中任一项所述的方法,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  36. 根据权利要求35所述的方法,其特征在于,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
  37. 根据权利要求24至36中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述指示信息发送所述至少一个目标SSB。
  38. 根据权利要求24至36中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述指示信息发送物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
  39. 根据权利要求38所述的方法,其特征在于,所述网络设备根据所述指示信息发送物理下行控制信道PDCCH和/或物理下行共享信道PDSCH,包括:
    所述网络设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,不发送PDSCH;和/或
    所述网络设备根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不发送PDCCH;和/或
    所述网络设备根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不发送所述PDCCH。
  40. 根据权利要求24至39中任一项所述的方法,其特征在于,所述网络设备发送指示信息,包括:
    所述网络设备分别发送用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
  41. 根据权利要求24至40中任一项所述的方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备向所述终端设备发送物理广播信道PBCH,所述PBCH包括所述指示信息;或
    所述网络设备向所述终端设备发送主信息块MIB,所述MIB包括所述指示信息;或
    所述网络设备向所述终端设备发送无线资源控制RRC信令,所述RRC信令包括所述指示信息。
  42. 根据权利要求24至40中任一项所述的方法,其特征在于,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  43. 一种终端设备,其特征在于,包括:
    接收单元,用于接收指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候 选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  44. 根据权利要求43所述的终端设备,其特征在于,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述第一周期内所述至少一个目标SSB的数量;
    所述第一周期内所述第一个目标SSB的资源位置;
    其中,所述第一周期内的候选SSB的数量为预设值。
  45. 根据权利要求44所述的终端设备,其特征在于,所述第一周期为SSB周期或发现参考信号DRS周期。
  46. 根据权利要求44所述的终端设备,其特征在于,所述第一周期内的候选SSB的数量为16、20、24或32。
  47. 根据权利要求44所述的终端设备,其特征在于,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
  48. 根据权利要求43至47中任一项所述的终端设备,其特征在于,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
  49. 根据权利要求43至48中任一项所述的终端设备,其特征在于,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
  50. 根据权利要求43至49中任一项所述的终端设备,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的传输间隔;
    所述至少一个目标SSB的数量。
  51. 根据权利要求50所述的终端设备,其特征在于,所述终端设备还包括:
    确定单元,用于将第一次检测到的SSB确定为所述至少一个目标SSB中的第一个目标SSB。
  52. 根据权利要求50所述的终端设备,其特征在于,所述终端设备还包括:
    确定单元,用于将检测到的信道占用时间COT内的第一个候选SSB确定为所述至少一个目标SSB中的第一个目标SSB。
  53. 根据权利要求50所述的终端设备,其特征在于,所述终端设备还包括:
    确定单元,用于将所述COT内第一个满足以下条件的候选SSB,确定为所述至少一个目标SSB中的第一个目标SSB:
    候选SSB的资源位置的编号和D的商为k,其中k为正整数,其中D的取值为2、4或8。
  54. 根据权利要求43至53中任一项所述的终端设备,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    至少一个目标同步信号块SSB的传输间隔;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  55. 根据权利要求54所述的终端设备,其特征在于,所述至少一个目标SSB的数量小于或等于预设阈值。
  56. 根据权利要求54所述的终端设备,其特征在于,所述预设阈值为4或8。
  57. 根据权利要求43至53中任一项所述的终端设备,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  58. 根据权利要求57所述的终端设备,其特征在于,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
  59. 根据权利要求43至58中任一项所述的终端设备,其特征在于,所述接收单元还用于:
    根据所述指示信息接收所述至少一个目标SSB。
  60. 根据权利要求59所述的终端设备,其特征在于,所述接收单元还用于:
    根据所述指示信息,检测物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
  61. 根据权利要求60所述的终端设备,其特征在于,所述接收单元具体用于:
    根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,确定不会有PDSCH的传输;和/或
    所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不检测PDCCH;和/或
    根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不检测所述PDCCH。
  62. 根据权利要求43至58中任一项所述的终端设备,其特征在于,所述接收单元还用于:
    根据所述指示信息,测量所述至少一个目标SSB。
  63. 根据权利要求59至62中任一项所述的终端设备,其特征在于,所述接收单元具体用于:
    分别接收用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
  64. 根据权利要求43至63中任一项所述的终端设备,其特征在于,所述接收单元具体用于:
    接收所述物理广播信道PBCH,所述PBCH包括所述指示信息;或
    接收所述主信息块MIB,所述MIB包括所述指示信息;或
    接收所述无线资源控制RRC信令,所述RRC信令包括所述指示信息。
  65. 根据权利要求43至63中任一项所述的终端设备,其特征在于,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  66. 一种网络设备,其特征在于,包括:
    发送单元,用于发送指示信息,所述指示信息用于指示至少一个目标同步信号块SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  67. 根据权利要求66所述的网络设备,其特征在于,所述指示信息具体用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,在第一周期内,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述第一周期内所述至少一个目标SSB的数量;
    所述第一周期内所述第一个目标SSB的资源位置;
    其中,所述第一周期内的候选SSB的数量为预设值。
  68. 根据权利要求67所述的网络设备,其特征在于,所述第一周期为SSB周期或发现参考信号DRS周期。
  69. 根据权利要求67所述的网络设备,其特征在于,所述第一周期内的候选SSB的数量为16或20或24或32。
  70. 根据权利要求67所述的网络设备,其特征在于,所述第一个目标SSB的资源位置为所述第一周期内第K个候选SSB的资源位置,其中,K为非负整数,且K小于或等于所述第一周期内候选SSB的总数。
  71. 根据权利要求66至70中任一项所述的网络设备,其特征在于,所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、3和7中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0、1、2和3中的任一项,或者所述相邻的两个目标SSB之间间隔的候选SSB的数量为0和1中的任一项。
  72. 根据权利要求66至71中任一项所述的网络设备,其特征在于,所述至少一个目标SSB的数量为1、2和4中的任一项,或所述至少一个目标SSB的数量为1、2、4和8中的任一项,或所述至少一个目标SSB的数量为2、4、6和8中的任一项。
  73. 根据权利要求66至72中任一项所述的网络设备,其特征在于,所述指示信息仅用于指示所述 至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的传输间隔;
    所述至少一个目标SSB的数量。
  74. 根据权利要求66至73中任一项所述的网络设备,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    至少一个目标同步信号块SSB的传输间隔;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  75. 根据权利要求74所述的网络设备,其特征在于,所述至少一个目标SSB的数量小于或等于预设阈值。
  76. 根据权利要求75所述的网络设备,其特征在于,所述预设阈值为4或8。
  77. 根据权利要求66至73中任一项所述的网络设备,其特征在于,所述指示信息仅用于指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  78. 根据权利要求77所述的网络设备,其特征在于,所述至少一个目标SSB在候选SSB的资源位置上是连续的。
  79. 根据权利要求66至78中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    根据所述指示信息发送所述至少一个目标SSB。
  80. 根据权利要求66至78中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    根据所述指示信息发送物理下行控制信道PDCCH和/或物理下行共享信道PDSCH。
  81. 根据权利要求80所述的网络设备,其特征在于,所述发送单元具体用于:
    根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠的资源位置上,不发送PDSCH;和/或
    根据所述指示信息,在与所述至少一个目标SSB的资源位置重叠或部分重叠的资源位置上,不发送PDCCH;和/或
    根据所述指示信息,在检测PDCCH时,如果所述PDCCH与至少一个目标SSB的资源位置重叠或部分重叠,不发送所述PDCCH。
  82. 根据权利要求66至81中任一项所述的网络设备,其特征在于,所述发送单元具体用于:
    分别发送用于检测PDCCH和/或PDSCH的所述指示信息和用于测量SSB的所述指示信息。
  83. 根据权利要求66至82中任一项所述的网络设备,其特征在于,所述发送单元具体用于:
    向所述终端设备发送物理广播信道PBCH,所述PBCH包括所述指示信息;或
    向所述终端设备发送主信息块MIB,所述MIB包括所述指示信息;或
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令包括所述指示信息。
  84. 根据权利要求66至82中任一项所述的网络设备,其特征在于,所述指示信息通过不同的物理广播信道PBCH的解调参考信号DMRS指示所述至少一个目标SSB的以下信息中的至少一项:
    所述至少一个目标SSB为多个目标SSB,所述多个目标SSB中相邻的两个目标SSB之间间隔的候选SSB的数量;
    所述至少一个目标SSB的数量;
    所述至少一个目标SSB中的第一个目标SSB的资源位置。
  85. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述收发器执行权利要求1至23中任一项所述的方法。
  86. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述收发器执行权利要求24至42中任一项所述的方法。
  87. 一种芯片,其特征在于,包括:
    输入接口;
    处理器,用于从存储器中调用并运行计算机程序,使得所述输入接口执行如权利要求1至23中任一项所述的方法。
  88. 一种芯片,其特征在于,包括:
    输出接口;
    处理器,用于从存储器中调用并运行计算机程序,使得所述输出接口执行如权利要求24至42中任 一项所述的方法。
  89. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  90. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求24至42中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  92. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求24至42中任一项所述的方法。
  93. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  94. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求24至42中任一项所述的方法。
PCT/CN2019/081605 2019-04-04 2019-04-04 接收信息、发送信息的方法和设备 WO2020199220A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/081605 WO2020199220A1 (zh) 2019-04-04 2019-04-04 接收信息、发送信息的方法和设备
CN201980094813.2A CN113647136A (zh) 2019-04-04 2019-04-04 接收信息、发送信息的方法和设备
US17/481,704 US20220007316A1 (en) 2019-04-04 2021-09-22 Method and device for receiving information and transmitting information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081605 WO2020199220A1 (zh) 2019-04-04 2019-04-04 接收信息、发送信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,704 Continuation US20220007316A1 (en) 2019-04-04 2021-09-22 Method and device for receiving information and transmitting information

Publications (1)

Publication Number Publication Date
WO2020199220A1 true WO2020199220A1 (zh) 2020-10-08

Family

ID=72664772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081605 WO2020199220A1 (zh) 2019-04-04 2019-04-04 接收信息、发送信息的方法和设备

Country Status (3)

Country Link
US (1) US20220007316A1 (zh)
CN (1) CN113647136A (zh)
WO (1) WO2020199220A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024021945A1 (zh) * 2022-07-27 2024-02-01 华为技术有限公司 传输同步信号块的方法及通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220232493A1 (en) * 2019-05-17 2022-07-21 Ntt Docomo, Inc. User terminal and radio communication method
US10966170B1 (en) * 2020-09-02 2021-03-30 The Trade Desk, Inc. Systems and methods for generating and querying an index associated with targeted communications
US20230232354A1 (en) * 2021-03-31 2023-07-20 Apple Inc. Reference cell timing determination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230879A1 (ko) * 2017-06-15 2018-12-20 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
CN109309955A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3692744B1 (en) * 2017-10-06 2022-08-31 Fg Innovation Company Limited Random access channel resource selection in multi-beam environment
US11553529B2 (en) * 2018-01-11 2023-01-10 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process
CN110099459B (zh) * 2018-01-31 2021-07-20 华为技术有限公司 一种随机接入方法及装置
US20220124646A1 (en) * 2018-11-02 2022-04-21 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for sending synchronization signal
CN113508626A (zh) * 2018-12-14 2021-10-15 日本电气株式会社 用于ssb传输和接收的方法、设备和计算机可读介质
US20200221405A1 (en) * 2019-01-04 2020-07-09 Huawei Technologies Co., Ltd. Sounding reference signal for uplink-based multi-cell measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230879A1 (ko) * 2017-06-15 2018-12-20 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
CN109309955A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHARTER COMMUNICATIONS: "Feature Lead Summary #1 of Initial Access and Mobility", 3GPP DRAFT; R1-1811885, 12 October 2018 (2018-10-12), Chengdu, P. R. China, pages 1 - 10, XP051519208 *
HUAWEI; HISILICON: "Initial Access in NR Unlicensed", 3GPP DRAFT; R1-1903929, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 14, XP051691171 *
SPREADTRUM COMMUNICATIONS: "Discussion on Initial Access in NR-U", 3GPP DRAFT; R1-1813078, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 7, XP051479346 *
XIAOMI: "On SSB transmission in NR unlicensed", 3GPP DRAFT; R1-1811416 , 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 3, XP051518820 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024021945A1 (zh) * 2022-07-27 2024-02-01 华为技术有限公司 传输同步信号块的方法及通信装置

Also Published As

Publication number Publication date
CN113647136A (zh) 2021-11-12
US20220007316A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US11129191B2 (en) Signal transmission method and device
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
EP3908035B1 (en) Wireless communication method, terminal device, and network device
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2020061958A1 (zh) 接收信息、发送信息的方法和设备
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020164077A1 (zh) 一种资源配置方法、终端设备及网络设备
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
US20210112506A1 (en) Wireless communication method, network device and terminal device
WO2018201936A1 (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2020061954A1 (zh) 区分寻呼消息的方法、网络设备和终端设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
EP4280516A1 (en) Signal transmission method, apparatus, terminal device, network device, and storage medium
US11856539B2 (en) Method and device for transmitting downlink control information
JP2022508844A (ja) サイドリンクにおける伝送モードの決定方法、端末装置及びネットワーク装置
WO2021168814A1 (zh) 控制信道的确定方法、装置、存储介质和处理器
WO2021142700A1 (zh) 一种测量方法及装置、终端设备
WO2021120131A1 (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2019237310A1 (zh) 一种信息传输方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923142

Country of ref document: EP

Kind code of ref document: A1