WO2019237241A1 - 一种下行信号的传输方法及终端设备 - Google Patents

一种下行信号的传输方法及终端设备 Download PDF

Info

Publication number
WO2019237241A1
WO2019237241A1 PCT/CN2018/090762 CN2018090762W WO2019237241A1 WO 2019237241 A1 WO2019237241 A1 WO 2019237241A1 CN 2018090762 W CN2018090762 W CN 2018090762W WO 2019237241 A1 WO2019237241 A1 WO 2019237241A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink signals
terminal device
downlink
receiving
signals
Prior art date
Application number
PCT/CN2018/090762
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21196858.1A priority Critical patent/EP3944697A1/en
Priority to EP18922760.6A priority patent/EP3771272B1/en
Priority to ES18922760T priority patent/ES2900358T3/es
Priority to JP2020567195A priority patent/JP7178428B2/ja
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202011191341.3A priority patent/CN112291855B/zh
Priority to SG11202011646QA priority patent/SG11202011646QA/en
Priority to KR1020207034002A priority patent/KR102484536B1/ko
Priority to RU2020142083A priority patent/RU2768851C1/ru
Priority to CN201880091727.1A priority patent/CN111955038A/zh
Priority to AU2018427383A priority patent/AU2018427383A1/en
Priority to DK18922760.6T priority patent/DK3771272T3/da
Priority to PCT/CN2018/090762 priority patent/WO2019237241A1/zh
Priority to TW108119749A priority patent/TW202002553A/zh
Publication of WO2019237241A1 publication Critical patent/WO2019237241A1/zh
Priority to US17/086,173 priority patent/US11800517B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a method for transmitting a downlink signal and a terminal device.
  • TRP Transmission / Reception Point
  • the terminal device needs to detect multiple downlink control information (DCI) simultaneously in one time unit, such as one time slot, one symbol, or multiple symbols.
  • DCI downlink control information
  • Each DCI corresponds to an independent physical downlink shared channel.
  • Channel, PDSCH to detect the corresponding PDSCH.
  • PDSCHs scheduled by different DCIs can be transmitted in the same detection window, such as a time slot or an Orthogonal Frequency Division Multiplexing (OFDM) symbol. Since each PDSCH corresponds to its own receiving beam, If the receiving beams of these PDSCHs are different, the terminal device needs to receive these PDSCHs with different receiving beams.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device has only one antenna array, etc., the terminal device may only use one receive beam to receive the PDSCH within the same detection window. Therefore, how a terminal device receives multiple PDSCHs is an issue that needs to be solved urgently.
  • other downlink signals such as Physical Downlink Shared Channel (PDSCH) and Channel State Information Reference Signal (CSI-RS), have similar problems.
  • PDSCH Physical Downlink Shared Channel
  • CSI-RS Channel State Information Reference Signal
  • the embodiments of the present application provide a method for transmitting a downlink signal and a terminal device, which can implement receiving multiple downlink signals of the terminal device.
  • a method for transmitting a downlink signal including:
  • the terminal device determines that it needs to receive at least two downlink signals within the first detection window
  • the terminal device Determining, by the terminal device, the receiving manner of the at least two downlink signals according to the transmission information of the at least two downlink signals, wherein the transmission information includes scheduling information, transmission configuration, or all At least one of the information carried;
  • the terminal device receives at least one downlink signal among the at least two downlink signals within the first detection window according to a receiving manner of the at least two downlink signals.
  • a terminal device for executing the method in the above-mentioned first aspect or its implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a chip is provided for implementing the above-mentioned first aspect or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method as in the above-mentioned first aspect or its implementations.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in the above-mentioned first aspect or its implementations.
  • a computer program which, when run on a computer, causes the computer to execute the method in the first aspect or its implementations.
  • the terminal device determines that it needs to receive at least two downlink signals within the first detection window, and then determines the receiving manner of the at least two downlink signals according to the transmission information of the at least two downlink signals, so that The terminal device can receive at least one downlink signal of the at least two downlink signals within the first detection window according to a receiving manner of the at least two downlink signals, thereby implementing multiple downlink signals of the terminal device. receive.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a downlink signal transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a chip according to an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal device or a terminal device).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal device”, a “wireless terminal device”, or a “mobile terminal device”.
  • mobile terminal equipment include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminal equipment that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; can include radiotelephones, pagers, the Internet / Intranet access, Web browser, notepad, calendar, and / or PDA with Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or including radiotelephone transceivers Other electronic devices.
  • PCS personal communications systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal equipment, user equipment (User Equipment), user units, user stations, mobile stations, mobile stations, remote stations, remote terminal devices, mobile devices, user terminal devices, terminal devices, wireless communication devices , User agent, or user device.
  • the access terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (Personal Digital Assistant, PDA), Communication-enabled handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or terminal devices in future evolved PLMNs.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • terminal device 120 may perform terminal device direct device (D2D) communication.
  • D2D terminal device direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (New Radio) system or an NR network.
  • New Radio New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • FIG. 2 is a schematic diagram of a downlink signal transmission method 200 according to an embodiment of the present application.
  • the terminal device determines that it needs to receive at least two downlink signals within the first detection window.
  • the terminal device determines a receiving manner of the at least two downlink signals according to the transmission information of the at least two downlink signals, where the transmission information includes scheduling information and a transmission configuration of the at least two downlink signals. Or at least one of the information carried.
  • the terminal device receives at least one downlink signal of the at least two downlink signals in the first detection window according to a receiving manner of the at least two downlink signals.
  • the downlink signal involved in the present invention may include, but is not limited to, a physical downlink shared channel (PDSCH), a physical downlink control channel (Physical Downlink Control Channel, PDCCH), or a channel state information reference signal. (Channel State Information Reference Signal, CSI-RS), this embodiment does not specifically limit this.
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • CSI-RS Channel State Information Reference Signal
  • the transmission configuration may include, but is not limited to:
  • a receive beam used to receive the corresponding downlink signal and / or
  • TCI Transmission Configuration Indication
  • the time window used to receive the corresponding downlink signal is the time window used to receive the corresponding downlink signal.
  • each of the at least two downlink signals may be scheduled by independent downlink control information (DCI).
  • DCI downlink control information
  • aperiodic CSI-RS it can be triggered by independent DCI.
  • the independent DCI may be DCI received at different times, or may also be DCI using a different DCI format, which is not particularly limited in this embodiment.
  • different downlink signals in the at least two downlink signals have different transmission configurations, so the terminal device can only adopt one transmission configuration in the first detection window. For receiving, it is not possible to use each transmission configuration of each PDSCH to receive each PDSCH.
  • the transmission configuration indication (Transmission Configuration Indicator) (TCI) status of different downlink signals among the at least two downlink signals includes different reference signals.
  • TCI Transmission Configuration Indicator
  • the reference signals of the Quasi-Co-Located (QCL) type D (type D) included in the TCI states of different downlink signals of the at least two downlink signals are different.
  • the reference signals of the QCL type D included in the TCI states of different downlink signals in the at least two downlink signals are not QCL.
  • the first detection window may include, but is not limited to, the following time units:
  • At least two time slots At least two time slots.
  • OFDM Orthogonal Frequency Division Multiplexing
  • At least two OFDM symbols At least two OFDM symbols.
  • the first detection window may be a time slot. If a terminal device is scheduled with multiple PDSCHs in a time slot, and the physical resources occupied by the multiple PDSCHs overlap, the terminal device may not be able to demodulate multiple PDSCHs at the same time, and the priority of reception needs to be clear. If a terminal device is scheduled with multiple PDSCHs in one slot, and the reference signals of the QCL and type D of the multiple PDSCHs are different (that is, different receiving beams need to be used for reception), the terminal device may not be able to adopt multiple The receiving beams receive these PDSCHs, and only a single receiving beam can be used for receiving. At this time, the priority of receiving needs to be clear.
  • the first detection window may be a time window between the detection of a DCI by the terminal device and the completion of PDSCH transmission scheduled by the DCI. If the terminal device receives within this time window, Another DCI needs to transmit another PDSCH within this time window, then the terminal device needs to receive two PDSCHs simultaneously within this time window, and the transmission configuration of the two PDSCHs may be different, and the terminal device may not have time to be able to When the transmission configuration is switched within this time window, the priority of reception needs to be clear.
  • the first detection window may be a time window with a length of time T, where T is the time required for the terminal device to switch the received beam. If the terminal device needs to receive two PDSCHs simultaneously in one time window, and the reference signals of the QCL and type D of the two PDSCHs are different (that is, different receiving beams need to be used for reception), the terminal device may not be able to simultaneously To receive these two PDSCHs with different receiving beams, the priority of reception needs to be clear.
  • the terminal device may specifically determine whether to receive at least two of the at least two downlink signals according to transmission information of the at least two downlink signals.
  • One downlink signal, or the transmission configuration used to receive at least one of the at least two downlink signals according to the transmission information of the at least two downlink signals, is not specifically limited in this embodiment.
  • the transmission configuration here may be a receiving beam that receives the PDSCH, or may also be a reference signal included in the TCI state of the PDSCH, or may also be a reference signal of the QCL type D used as a reference. This embodiment This is not particularly limited.
  • the reference signals involved in the present invention may include but are not limited to CSI-RS, SSB, or Tracking Reference Signal (Tracking RS, TRS), which is not particularly limited in this embodiment.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the transmission information includes scheduling information of the at least two downlink signals
  • the terminal device may use the following method to determine the at least The receiving mode of each of the two downlink signals.
  • the terminal device may determine a receiving manner of the at least two downlink signals according to a receiving sequence of the DCI scheduling the at least two downlink signals.
  • the terminal device receives the PDSCH scheduled by the DCI received first, but does not receive the PDSCH scheduled by the DCI received after.
  • the terminal device receives the at least two PDSCHs by using the transmission configuration of the PDSCH scheduled by the DCI received first (for example, a reference signal of a QCL type D or a reception beam).
  • the terminal device determines a receiving manner of the at least two downlink signals according to a DCI format (DCI format) of the DCI scheduling the at least two downlink signals.
  • DCI format DCI format
  • the terminal device preferentially receives the PDSCH scheduled by the DCI format 1_0 among the at least two PDSCHs, and does not receive the PDSCH scheduled by the DCI format 1_1.
  • the terminal device receives the at least two PDSCH transmission configurations (for example, QCL reference signals or receive beams) of the PDSCH scheduled by the DCI format 1_0 in the at least two PDSCHs.
  • Two PDSCHs (including the PDSCH scheduled by the DCI format 1_1).
  • the terminal device determines a receiving mode of the at least two downlink signals according to a cyclic scrambling mode of a cyclic redundancy check code CRC that schedules the at least two downlink signals. .
  • the terminal device preferentially receives the PDSCH scheduled by the DCI scrambled using Cell Radio Network Temporary Identifier (C-RNTI) among the at least two PDSCHs, and the circuit is not received by using Switched PDSCH scrambled DCI scheduled by Circulation Switched Radio Network Temporary Identifier (CS-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Circulation Switched Radio Network Temporary Identifier
  • the terminal device adopts a PDSCH transmission configuration (for example, a reference signal or a receiving beam of QCL type D) scheduled by using DCI scrambled DCI among the at least two PDSCHs.
  • a PDSCH transmission configuration for example, a reference signal or a receiving beam of QCL type D
  • DCI scrambled DCI among the at least two PDSCHs.
  • the terminal device determines a receiving manner of the at least two downlink signals according to a search space or a control resource set (CORESET) in which the DCI scheduling the at least two downlink signals is located.
  • CORESET control resource set
  • a terminal device preferentially receives a PDSCH scheduled by a DCI detected in a common search space, and does not receive a PDSCH scheduled by a DCI detected in a user equipment (User Equipment) dedicated search space.
  • User Equipment User Equipment
  • the terminal device receives the at least two by using a transmission configuration of PDSCH scheduled by DCI detected in a common search space (for example, a reference signal of a QCL type D or a receiving beam).
  • PDSCH including the PDSCH scheduled by the UE in the UE-specific search space).
  • the terminal device determines, among the at least two downlink signals, a time interval between the DCI scheduling each downlink signal of the at least two downlink signals and the scheduled downlink signal. How each downlink signal is received.
  • a terminal device preferentially receives a PDSCH with a short time interval between the DCI scheduling the PDSCH and the scheduled PDSCH, and a time interval between the DCI not receiving the scheduled PDSCH and the scheduled PDSCH Long PDSCH.
  • the terminal device uses a PDSCH transmission configuration (for example, QCL type D) with a short time interval between the DCI scheduling the PDSCH and the scheduled PDSCH among the at least two PDSCHs.
  • a PDSCH transmission configuration for example, QCL type D
  • a reference signal or a receiving beam to receive the at least two PDSCHs (including a PDSCH with a longer time interval between the DCI scheduling the PDSCH and the scheduled PDSCH).
  • the terminal device may specifically determine whether the time interval between the DCI of each of the at least two downlink signals and the scheduled downlink signal is greater than a preset first time threshold. A receiving manner of each of the at least two downlink signals.
  • the first time threshold may be a time length reported by the terminal device, or may be a time length configured by the network device, which is not particularly limited in this embodiment.
  • the terminal device preferentially receives PDSCHs with a time interval between the scheduled DCI and the PDSCH exceeding a preset first time threshold, and does not receive PDSCHs with a time interval between the DCI and the PDSCH scheduling PDSCH less than the preset first time threshold; If there are multiple PDSCHs that exceed or are smaller than a preset first time threshold, it may be determined according to other conditions.
  • the terminal device uses a PDSCH transmission configuration (for example, a reference signal of QCL type D or a reception of a QCL type D) in which the time interval between the DCI scheduling the PDSCH and the PDSCH in the at least two PDSCHs exceeds a preset first time threshold.
  • Beams to receive the at least two PDSCHs (including a PDSCH whose time interval between the DCI scheduling the PDSCH and the PDSCH is less than a preset first time threshold), if multiple PDSCHs exceed or are less than the preset first time threshold , You can judge based on other conditions.
  • the transmission information includes transmission configurations of the at least two downlink signals
  • the terminal device may use the following method to determine the at least The receiving mode of each of the two downlink signals.
  • the terminal device determines a receiving manner of the at least two downlink signals according to whether the TCI state of the at least two downlink signals includes a reference signal of QCL type.
  • the terminal device preferentially receives the PDSCH that includes the reference signal of QCL type D in the corresponding TCI state in the at least two PDSCHs, and does not receive the reference signal that does not include the QCL type D in the corresponding TCI state.
  • PDSCH PDSCH.
  • the terminal device adopts a PDSCH transmission configuration (for example, a reference signal of QCL type D or a reception of QCL type D) corresponding to a reference signal in the TCI state of the at least two PDSCHs. Beams) to receive the at least two PDSCHs (including PDSCHs that do not include a reference signal of QCL type D in the corresponding TCI state).
  • a PDSCH transmission configuration for example, a reference signal of QCL type D or a reception of QCL type D
  • Beams to receive the at least two PDSCHs (including PDSCHs that do not include a reference signal of QCL type D in the corresponding TCI state).
  • the terminal device determines a receiving manner of the at least two downlink signals according to a type of a reference signal included in a TCI state of the at least two downlink signals.
  • the terminal device preferentially receives the PDSCH whose reference signal included in the corresponding TCI state in the at least two PDSCHs is CSI-RS, and does not receive the reference signal included in the corresponding TCI state as a synchronization signal block (Synchronization Signal Block (SSB).
  • SSB Synchronization Signal Block
  • the terminal device adopts a PDSCH transmission configuration (for example, a reference signal of QCL type D or reception of a PD signal of CSI-RS in a reference signal included in corresponding TCI states in the at least two PDSCHs). Beam) to receive the at least two PDSCHs (including the PDSCH whose reference signal contained in the corresponding TCI state is SSB).
  • a PDSCH transmission configuration for example, a reference signal of QCL type D or reception of a PD signal of CSI-RS in a reference signal included in corresponding TCI states in the at least two PDSCHs.
  • Beam to receive the at least two PDSCHs (including the PDSCH whose reference signal contained in the corresponding TCI state is SSB).
  • the terminal device determines a receiving manner of the at least two downlink signals according to a type of a reference signal of a QCL type and D included in a TCI state of the at least two downlink signals.
  • the terminal device preferentially receives the reference signal of the QCL type D included in the corresponding TCI status in the at least two PDSCHs as a CSI-RS PDSCH, and does not receive the QCL type D included in the corresponding TCI status.
  • the reference signal is the PDSCH of the SSB.
  • the terminal device uses the PDSCH transmission configuration (for example, QCL type D A reference signal or a receiving beam) to receive the at least two PDSCHs (including a PDSCH whose reference signal of the QCL type D included in the corresponding TCI state is SSB).
  • the PDSCH transmission configuration for example, QCL type D A reference signal or a receiving beam
  • the terminal device determines a receiving manner of the at least two downlink signals according to a mapping type of the at least two downlink signals.
  • the mapping type is mainly for the PDSCH mapping type, and different mapping types may correspond to different PDSCH start symbols and PDSCH durations (number of symbols).
  • the terminal device preferentially receives a PDSCH with a mapping type of type B in the at least two PDSCHs, and does not receive a PDSCH with a mapping type of type A.
  • the terminal device receives the PDSCH transmission configuration (for example, a reference signal of QCl type D or a receiving beam) of the mapping type type B in the at least two PDSCHs to receive the PDSCH.
  • the PDSCH transmission configuration for example, a reference signal of QCl type D or a receiving beam
  • the mapping type type B for example, a reference signal of QCl type D or a receiving beam
  • the terminal device determines a receiving manner of the at least two downlink signals according to a duration of the at least two downlink signals.
  • the terminal device preferentially receives a PDSCH with a short duration among the at least two PDSCHs, and does not receive a PDSCH with a long duration.
  • the terminal device may preferentially receive a PDSCH with a longer duration among the at least two PDSCHs, and may not receive a PDSCH with a shorter duration.
  • the terminal device uses the PDSCH transmission configuration with a shorter duration among the at least two PDSCHs (for example, a reference signal of a QCL type D or a receiving beam) to receive the at least Two PDSCHs (including longer-lasting PDSCHs).
  • the terminal device may receive the at least two PDSCHs (including the short-duration PDSCH) by using a transmission configuration of the PDSCH with a longer duration among the at least two PDSCHs (for example, a reference signal of a QCL type or a receiving beam).
  • PDSCH a transmission configuration of the PDSCH with a longer duration among the at least two PDSCHs
  • the transmission information includes information carried by the at least two downlink signals
  • the terminal device may use the following method to determine the transmission information: A receiving manner of each of the at least two downlink signals.
  • the terminal device determines a receiving manner of the at least two downlink signals according to whether the at least two downlink signals carry system information.
  • the terminal device preferentially receives the PDSCH carrying system information in the at least two PDSCHs, and does not receive the PDSCH carrying only ordinary data.
  • the terminal device uses the PDSCH transmission configuration (for example, a reference signal or a receiving beam of QCL type D) of the at least two PDSCHs to carry system information to receive the at least two PDSCH (including PDSCH without carrying system information).
  • PDSCH transmission configuration for example, a reference signal or a receiving beam of QCL type D
  • the terminal device determines a receiving manner of the at least two downlink signals according to whether the at least two downlink signals carry high-level signaling.
  • the terminal device preferentially receives a PDSCH carrying high-level signaling among the at least two PDSCHs, and does not receive a PDSCH carrying only ordinary data.
  • the terminal device uses the PDSCH transmission configuration (for example, a reference signal or a receiving beam of a QCL type D) of the at least two PDSCHs to carry high-level signaling to receive the at least Two PDSCHs (including PDSCHs that do not carry higher layer signaling).
  • the PDSCH transmission configuration for example, a reference signal or a receiving beam of a QCL type D
  • the terminal device uses the PDSCH transmission configuration (for example, a reference signal or a receiving beam of a QCL type D) of the at least two PDSCHs to carry high-level signaling to receive the at least Two PDSCHs (including PDSCHs that do not carry higher layer signaling).
  • the terminal device may determine the receiving manner of each downlink signal among the at least two downlink signals by integrating the foregoing multiple implementation manners and technical solutions in the implementation process, which is not particularly limited in this embodiment.
  • the terminal device may specifically determine each of the at least two downlink signals according to transmission information of the at least two downlink signals.
  • the priority of the signals, and further, the receiving manner of the at least two downlink signals may be determined according to the priority of each downlink signal.
  • the terminal device may specifically schedule a DCI receiving sequence of the at least two downlink signals, or schedule a DCI format of the DCI of the at least two downlink signals, or schedule the at least two CRC scrambling method of DCI of three downlink signals, or scheduling a search space or a control resource set where the DCIs of the at least two downlink signals are located, or scheduling the DCI of each downlink signal of the at least two downlink signals and the scheduling
  • the terminal device may determine the priority of each downlink signal among the at least two downlink signals by combining the multiple conditions above. For example, first determine the priority order based on condition A. When condition A is the same, then The priority order is further determined based on the condition B.
  • the PDSCH scheduled by DCI format 1_0 has a higher priority than the PDSCH scheduled by DCI format 1_1.
  • the PDSCH scheduled by the DCI detected in the common search space has a higher priority than the PDSCH scheduled by the DCI detected in the UE-specific search space.
  • the PDSCH scheduled using DCI scrambled by RNTI other than C-RNTI and CS-RNTI has the highest priority, and the PDSCH scheduled by DCI scrambled using C-RNTI is next to use.
  • the CS-RNTI scrambled DCI schedule has the lowest PDSCH priority.
  • the PDSCH priority of the reference signal corresponding to the QCI type D in the TCI state is higher than the PDSCH of the reference signal not including the QCL type D in the corresponding TCI state.
  • the PDSCH priority of the time interval between the DCI of the scheduled PDSCH and the scheduled PDSCH is greater than a preset second time threshold, and the PDSCH priority is higher than the PDSCH that is less than the preset second time threshold.
  • the priority order of the types of reference signals included in the TCI state of the PDSCH is: TRS> CSI-RS> SSB, the higher the priority of the corresponding reference signal, The PDSCH has a higher priority.
  • the PDSCH is used as an example of a downlink signal
  • the priority order of the reference signal types of the QCL type D included in the TCI state of the PDSCH is: TRS> CSI-RS> SSB, and the corresponding QCL type D
  • TRS> CSI-RS> SSB the priority order of the reference signal types of the QCL type D included in the TCI state of the PDSCH.
  • a PDSCH with a mapping type of type B has a higher priority than a PDSCH with a mapping type of type A.
  • a PDSCH carrying system information has a higher priority than a PDSCH not carrying system information.
  • a PDSCH carrying higher-layer signaling has a higher priority than a PDSCH not carrying higher-layer signaling.
  • the terminal device may use the following method to determine the receiving manner of the at least two downlink signals according to the priority of each downlink signal.
  • the terminal device determines to receive a downlink signal with a higher priority and does not receive a downlink signal with a lower priority.
  • the terminal device determines to adopt a transmission configuration of a downlink signal with a higher priority to receive the at least two downlink signals (including a downlink signal with a lower priority).
  • the terminal device can determine that multiple downlink signals in a detection window conflict or when the receiving beams of the downlink signals are different, determine the priority to receive multiple downlink signals, thereby ensuring that Demodulation performance of high priority downlink signals.
  • the terminal device may specifically determine the terminal device according to the number of antenna arrays of the terminal device and transmission information of the at least two downlink signals.
  • the receiving modes of at least two downlink signals are described.
  • the terminal device uses the transmission information of the N downlink signals from the N downlink signals.
  • the K downlink signals with the highest priority are selected, and it is determined that the K downlink signals are transmitted by using the transmission configuration of the K downlink signals, respectively.
  • the terminal device may use the technical solution provided in the foregoing possible implementation manners according to the transmission information of the N PDSCH , Select the K PDSCHs with the highest priority from the N PDSCHs; and use the K PDSCH transmission configuration to receive the K PDSCHs respectively.
  • the K PDSCHs can be received by using K antenna arrays, respectively.
  • the terminal device may not receive or use the K PDSCH transmission configuration to receive.
  • the terminal device determines to use the transmission configuration of the N downlink signals Receiving the N downlink signals respectively.
  • the terminal device may receive the N PDSCHs by using the respective transmission configurations of the N PDSCHs.
  • the N PDSCHs can be received by using N antenna arrays, respectively.
  • the terminal device determines that it needs to receive at least two downlink signals within the first detection window, and then determines the receiving manner of the at least two downlink signals according to the transmission information of the at least two downlink signals, so that The terminal device can receive at least one downlink signal of the at least two downlink signals within the first detection window according to a receiving manner of the at least two downlink signals, thereby implementing multiple downlink signals of the terminal device. receive.
  • FIG. 3 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device provided in this embodiment may include a receiving scheduling determining unit 310, a receiving mode determining unit 320, and a downlink signal receiving unit 330.
  • the receiving scheduling determining unit 310 is configured to determine that at least two downlink signals need to be received within the first detection window; the receiving mode determining unit 320 is configured to determine the at least two based on transmission information of the at least two downlink signals.
  • the transmission information includes at least one of scheduling information, transmission configuration, or information carried by the at least two downlink signals; and a downlink signal receiving unit 330 is configured to In a receiving manner of two downlink signals, at least one of the at least two downlink signals is received in the first detection window.
  • the downlink signal involved in the present invention may include, but is not limited to, a physical downlink shared channel (PDSCH), a physical downlink control channel (Physical Downlink Control Channel, PDCCH), or a channel state information reference signal. (Channel State Information Reference Signal, CSI-RS), this embodiment does not specifically limit this.
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • CSI-RS Channel State Information Reference Signal
  • the transmission configuration may include, but is not limited to:
  • the receiving beam used to receive the corresponding downlink signal or
  • each of the at least two downlink signals may be scheduled by independent downlink control information (DCI).
  • DCI downlink control information
  • different downlink signals in the at least two downlink signals have different transmission configurations. Therefore, the terminal device cannot use the respective PDSCH in the first detection window.
  • the transmission is configured to receive each PDSCH.
  • the transmission configuration indication (Transmission Configuration Indicator) (TCI) status of different downlink signals among the at least two downlink signals includes different reference signals.
  • TCI Transmission Configuration Indicator
  • the reference signals of the Quasi-Co-Located (QCL) type D (type D) included in the TCI states of different downlink signals of the at least two downlink signals are different.
  • the reference signals of the QCL type D included in the TCI states of different downlink signals in the at least two downlink signals are not QCL.
  • the first detection window may include, but is not limited to, the following time units:
  • At least two time slots At least two time slots.
  • OFDM Orthogonal Frequency Division Multiplexing
  • At least two OFDM symbols At least two OFDM symbols.
  • the receiving mode determining unit 320 may be specifically used for
  • a transmission configuration used for receiving at least one of the at least two downlink signals is determined.
  • the transmission information includes scheduling information of the at least two downlink signals
  • the receiving mode determination unit 320 may be specifically configured to
  • a receiving manner of each of the at least two downlink signals is determined.
  • the receiving mode determining unit 320 may be specifically configured to determine whether the time interval between the DCI and the scheduled downlink signal of each of the at least two downlink signals is greater than a preset first The time threshold determines a receiving manner of each of the at least two downlink signals.
  • the transmission information includes a transmission configuration of the at least two downlink signals; the receiving mode determining unit 320 may be specifically configured to
  • the transmission information includes information carried by the at least two downlink signals; the receiving mode determination unit 320 may be specifically configured to be used for:
  • a receiving mode of the at least two downlink signals is determined according to whether the at least two downlink signals carry high-level signaling.
  • the receiving mode determining unit 320 may be specifically used for the terminal device to determine the at least two based on the transmission information of the at least two downlink signals Priority of each downlink signal in the downlink signal; and determining a receiving manner of the at least two downlink signals according to the priority of each downlink signal.
  • the receiving mode determining unit 320 may be specifically configured to:
  • the receiving manner determining unit 320 may be specifically configured to be based on the number of antenna arrays of the terminal device and transmission information of the at least two downlink signals, Determining a receiving manner of the at least two downlink signals.
  • the receiving mode determining unit 320 may be specifically configured to, if the number K of the antenna array is less than the number N of the at least two downlink signals, the terminal device may For the transmission information of the signals, the K downlink signals with the highest priority are selected from the N downlink signals, and the transmission configuration of the K downlink signals is determined to receive the K downlink signals respectively.
  • the receiving mode determining unit 320 may be specifically configured to: if the number K of the antenna array is greater than or equal to the number N of the at least two downlink signals, the terminal device determines to use the The N downlink signal transmission configurations receive the N downlink signals, respectively.
  • the method executed by the terminal device in the embodiment corresponding to FIG. 2 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method.
  • the method executed by the terminal device in the embodiment corresponding to FIG. 2 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method.
  • the terminal device determines that at least two downlink signals need to be received in the first detection window through the receiving scheduling determination unit, and then the receiving mode determination unit determines the at least two based on the transmission information of the at least two downlink signals.
  • Receiving modes of the downlink signals so that the downlink signal receiving unit can receive at least one of the at least two downlink signals within the first detection window according to the receiving modes of the at least two downlink signals, thereby realizing Receiving multiple downlink signals from terminal equipment.
  • FIG. 4 is a schematic structural diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 shown in FIG. 4 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate Synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 410 may control the transceiver 430 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of antennas may be one or more.
  • the communication device 400 may specifically be a network device according to the embodiment of the present application, and the communication device 400 may implement a corresponding process implemented by the network device in each method in the embodiment of the present application. .
  • the communication device 400 may specifically be a mobile terminal device / terminal device in the embodiment of the present application, and the communication device 400 may implement a corresponding process implemented by the mobile terminal device / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • FIG. 5 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 500 shown in FIG. 5 includes a processor 510, and the processor 510 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate Synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • the chip 500 may further include an input interface 530.
  • the processor 510 may control the input interface 530 to communicate with other devices or chips. Specifically, the processor 510 may obtain information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540.
  • the processor 510 may control the output interface 540 to communicate with other devices or chips. Specifically, the processor 510 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the mobile terminal device / terminal device in the embodiments of the present application, and the chip may implement the corresponding process implemented by the mobile terminal device / terminal device in each method of the embodiments of the present application. I will not repeat them here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method in the embodiments of the present application. For simplicity, here No longer.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product may be applied to a terminal device in the embodiment of the present application, and the computer program instruction causes a computer to execute a corresponding process implemented by the terminal device in each method in the embodiment of the present application. More details.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute the corresponding method implemented by the mobile terminal device / terminal device in each method of the embodiment of the application. The process is not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行信号的传输方法及终端设备,可以实现终端设备的多个下行信号的接收。该方法包括:终端设备确定需要在第一检测窗口内接收至少两个下行信号;所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项;所述终端设备根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。

Description

一种下行信号的传输方法及终端设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种下行信号的传输方法及终端设备。
背景技术
在新无线(New Radio,NR)系统中,为了增加下行传输的吞吐量,可以部署多个传输点(Transmission/Reception Point,TRP)独立给终端设备调度和传输下行数据。终端设备需要在一个时间单元例如,一个时隙、一个符号或多个符号等内同时检测多个下行控制信息(Downlink Control Information,DCI),每个DCI对应独立的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),从而分别检测对应的PDSCH。
不同DCI所调度的PDSCH可以在同一个检测窗口例如,一个时隙或一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号等内传输,由于每个PDSCH都对应有自己的接收波束,如果这些PDSCH的接收波束不同,终端设备需要采用不同的接收波束接收这些PDSCH。
然而,在某些情况下,例如,终端设备只具有一个天线阵列等,终端设备在同一个检测窗口内可能只能采用一个接收波束接收PDSCH。因此,终端设备如何进行多个PDSCH的接收是亟需解决的一个问题。类似地,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等其他下行信号也存在类似的问题。
发明内容
本申请实施例提供一种下行信号的传输方法及终端设备,可以实现终端设备的多个下行信号的接收。
第一方面,提供了一种下行信号的传输方法,包括:
终端设备确定需要在第一检测窗口内接收至少两个下行信号;
所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项;
所述终端设备根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过上述技术方案,终端设备通过确定需要在第一检测窗口内接收至少两个下行信号,进而根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,使得所述终端设备能够根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号,从而实现了终端设备的多个下行信号的接收。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种下行信号的传输方法的示意性图。
图3是本申请实施例提供的一种终端设备的示意性框图。
图4是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成 接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。移动终端设备的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端设备;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端设备、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端设备直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是本申请实施例提供的一种下行信号的传输方法200的示意性图。
210、终端设备确定需要在第一检测窗口内接收至少两个下行信号。
220、所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项。
230、所述终端设备根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。
需要说明的是,本发明所涉及的所述下行信号可以包括但不限于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述传输配置可以包括但不限于:
接收对应下行信号所采用的接收波束;和/或
接收对应下行信号所采用的准同址(Quasi-Co-Located,QCL)类型D(type D)的参考信号;和/或
接收对应下行信号所采用的传输配置指示(Transmission Configuration Indicator,TCI)状态;和/或
接收对应下行信号所假设的映射类型;和/或
接收对应下行信号所用的时间窗口。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中每个下行信号可以由独立的下行控制信息(Downlink Control Information,DCI)调度。对于非周期的CSI-RS,可以由独立的DCI触发。
具体地,所述独立的DCI可以是在不同时间接收到的DCI,或者还可以是采用不同的DCI格式的DCI,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中不同下行信号所占用的物理资源存在重叠(overlapping),因此,终端设备则不能在第一检测窗口中同时接收所述这些PDSCH。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中不同下行信号具有不同的传输配置,因此,终端设备在第一检测窗口中只能采用一种传输配置进行接收,不能采用各个PDSCH各自的传输配置来接收各个PDSCH。
例如,所述至少两个下行信号中不同下行信号的传输配置指示(Transmission Configuration Indicator,TCI)状态包含的参考信号不同。
或者,再例如,所述至少两个下行信号中不同下行信号的TCI状态中包含的准同址(Quasi-Co-Located,QCL)类型D(type D)的参考信号不同。
或者,再例如,所述至少两个下行信号中不同下行信号的TCI状态中包含的QCL type D的参考信号之间不是QCL的。
可选地,在本实施例的一个可能的实现方式中,所述第一检测窗口可以包括但不限于如下时间单元:
一个时隙;或者
至少两个时隙;或者
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号;或者
至少两个OFDM符号。
例如,以PDSCH作为下行信号的举例,第一检测窗口可以是一个时隙。如果终端设备在一个时隙被调度了多个PDSCH,且多个PDSCH所占用的物理资源存在重叠,则终端设备可能无法同时解调出多个PDSCH,需要明确接收的优先级。如果终端设备在一个时隙被调度了多个PDSCH,且多个PDSCH的QCL type D的参考信号不同(即需要采用不同的接收波束接收),则终端设备可能无法在该时间窗口内同时采用多个接收波束接收这些PDSCH,而只能采用单个接收波束来接收,此时需要明确接收的优先级。
或者,再例如,以PDSCH作为下行信号的举例,第一检测窗口可以是终端设备检测到一个DCI到该DCI调度的PDSCH传输完成之间的一个时间窗口,如果终端设备在该时间窗口内接收到另一个DCI需要在该时间窗口内传输另一个PDSCH,则终端设备就需要在该时间窗口内同时接收两个PDSCH,且这两个PDSCH的传输配置可能是不同的,终端设备不一定有时间能够在该时间窗口内进行传输配置的切换,需要明确接收的优先级。
或者,再例如,以PDSCH作为下行信号的举例,第一检测窗口可以是时间长度为T的一个时间窗口,其中T为终端设备切换接收波束所需要的时间。如果终端设备需要在一个时间窗口内同时接收两个PDSCH,且这两个PDSCH的QCL type D的参考信 号不同(即需要采用不同的接收波束接收),则终端设备可能无法在该时间窗口内同时采用不同接收波束接收这两个PDSCH,需要明确接收的优先级。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端设备具体可以根据所述至少两个下行信号的传输信息,确定是否接收所述至少两个下行信号中至少一个下行信号,或者还可以根据所述至少两个下行信号的传输信息,确定接收所述至少两个下行信号中至少一个下行信号所采用的传输配置,本实施例对此不进行特别限定。
需要说明的是,此处的传输配置,可以是接收PDSCH的接收波束,或者还可以是PDSCH的TCI状态中包含的参考信号,或者还可以是作为参考的QCL type D的参考信号,本实施例对此不进行特别限定。
本发明涉及的参考信号可以包括但不限于CSI-RS、SSB或者跟踪参考信号(Tracking RS,TRS),本实施例对此不进行特别限定。
其中,主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast Channel,PBCH)共同构成一个同步信号块(Synchronization Signal Block,SSB)即SS/PBCH block。
可选地,在本实施例的一个可能的实现方式中,在220中,所述传输信息包括所述至少两个下行信号的调度信息,所述终端设备则可以采用如下方法,确定所述至少两个下行信号中每个下行信号的接收方式。
在一个具体的实现过程中,所述终端设备可以根据调度所述至少两个下行信号的DCI的接收顺序,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备接收先接收到的DCI调度的PDSCH,不接收后接收到的DCI调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用先接收到的DCI调度的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH。
在另一个具体的实现过程中,所述终端设备根据调度所述至少两个下行信号的DCI的DCI格式(DCI format),确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中DCI format 1_0调度的PDSCH,不接收DCI format 1_1调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中DCI format 1_0调度的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括DCI format 1_1调度的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据调度所述至少两个下行信号的DCI的循环冗余校验码CRC加扰(scrambling)方式,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中采用小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰的DCI调度的PDSCH,不接收采用电路交换RNTI(Circuit Switched Radio Network Temporary Identifier,CS-RNTI)加扰的DCI调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中采用C-RNTI加扰的DCI调度的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括采用CS-RNTI加扰的DCI调度的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据调度所述至少两个下行信号的DCI所在的搜索空间或者控制资源集(CORESET),确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收公共搜索空间中检测到 的DCI调度的PDSCH,不接收用户设备(User Equipment,UE)专属搜索空间中检测到的DCI调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用公共搜索空间中检测到的DCI调度的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括UE专属搜索空间中检测到的DCI调度的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,确定所述至少两个下行信号中每个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收调度PDSCH的DCI与所调度的PDSCH之间的时间间隔较短的PDSCH,不接收调度PDSCH的DCI与所调度的PDSCH之间的时间间隔较长的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中调度PDSCH的DCI与所调度的PDSCH之间的时间间隔较短的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括调度PDSCH的DCI与所调度的PDSCH之间的时间间隔较长的PDSCH)。
具体来说,所述终端设备具体可以根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔是否大于预先设置的第一时间阈值,确定所述至少两个下行信号中每个下行信号的接收方式。
其中,所述第一时间阈值可以是终端设备上报的一个时间长度,或者还可以是网络设备配置的一个时间长度,本实施例对此不进行特别限定。
例如,终端设备优先接收调度DCI与PDSCH之间的时间间隔超过预先设置的第一时间阈值的PDSCH,不接收调度PDSCH的DCI与PDSCH之间的时间间隔小于预先设置的第一时间阈值的PDSCH;如果有多个PDSCH超过或者小于预先设置的第一时间阈值,则可以根据其他条件判断。
或者,再例如,终端设备采用所述至少两个PDSCH中调度PDSCH的DCI与PDSCH之间的时间间隔超过预先设置的第一时间阈值的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括调度PDSCH的DCI与PDSCH之间的时间间隔小于预先设置的第一时间阈值的PDSCH),如果有多个PDSCH超过或者小于预先设置的第一时间阈值,则可以根据其他条件判断。
可选地,在本实施例的一个可能的实现方式中,在220中,所述传输信息包括所述至少两个下行信号的传输配置,所述终端设备则可以采用如下方法,确定所述至少两个下行信号中每个下行信号的接收方式。
在一个具体的实现过程中,所述终端设备根据所述至少两个下行信号的TCI状态中是否包含QCL type D的参考信号,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中对应TCI状态中包含QCL type D的参考信号的PDSCH,不接收对应TCI状态中不包含QCL type D的参考信号的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中对应TCI状态中包含QCL type D的参考信号的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括对应TCI状态中不包含QCL type D的参考信号的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据所述至少两个下行信号的TCI状态中包含的参考信号的类型,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中对应TCI状态包含的参考信号为CSI-RS的PDSCH,不接收对应TCI状态包含的参考信号为同步信号块(Synchronization Signal Block,SSB)的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中对应TCI状态包含的参考信号为CSI-RS的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括对应TCI状态包含的参考信号为SSB的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据所述至少两个下行信号的TCI状态中包含的QCL type D的参考信号的类型,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中对应TCI状态包含的QCL type D的参考信号为CSI-RS的PDSCH,不接收对应TCI状态包含的QCL type D的参考信号为SSB的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中对应TCI状态包含的QCL type D的参考信号为CSI-RS的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括对应TCI状态包含的QCL type D的参考信号为SSB的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据所述至少两个下行信号的映射类型(mapping type),确定所述至少两个下行信号的接收方式。这里,映射类型主要针对PDSCH的映射类型,不同的映射类型可以对应不同的PDSCH起始符号和PDSCH持续时间(符号数)。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中映射类型为type B的PDSCH,不接收映射类型为type A的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中映射类型为type B的PDSCH的传输配置(例如,QCl type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括映射类型为type A的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据所述至少两个下行信号的持续时间长度(duration),确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中持续时间较短的PDSCH,不接收持续时间较长的PDSCH。反之也可以,终端设备优先接收所述至少两个PDSCH中持续时间较长的PDSCH,不接收持续时间较短的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中持续时间较短的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括持续时间较长的PDSCH)。反之也可以,终端设备采用所述至少两个PDSCH中持续时间较长的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括持续时间较短的PDSCH)。
可选地,在本实施例的一个可能的实现方式中,在220中,所述传输信息包括所述至少两个下行信号所携带的信息,所述终端设备则可以采用如下方法,确定所述至少两个下行信号中每个下行信号的接收方式。
在一个具体的实现过程中,所述终端设备根据所述至少两个下行信号是否携带系统信息,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中携带系统信息的PDSCH,不接收只携带普通数据的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中携带系统信息的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括不携带系统信息的PDSCH)。
在另一个具体的实现过程中,所述终端设备根据所述至少两个下行信号是否携带高层信令,确定所述至少两个下行信号的接收方式。
例如,以PDSCH作为下行信号的举例,终端设备优先接收所述至少两个PDSCH中携带高层信令的PDSCH,不接收只携带普通数据的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,终端设备采用所述至少两个PDSCH中携带高层信令的PDSCH的传输配置(例如,QCL type D的参考信号或者接收波束)来接收所述至少两个PDSCH(包括不携带高层信令的PDSCH)。
可以理解的是,终端设备可以综合以上多个实现方式以及实现过程中的技术方案来确定所述至少两个下行信号中每个下行信号的接收方式,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端设备具体可以根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号中每个下行信号的优先级,进而,则可以根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式。
在一个具体的实现过程中,所述终端设备具体可以根据调度所述至少两个下行信号的DCI的接收顺序,或者调度所述至少两个下行信号的DCI的DCI格式,或者调度所述至少两个下行信号的DCI的CRC加扰方式,或者调度所述至少两个下行信号的DCI所在的搜索空间或者控制资源集,或者调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,或者所述至少两个下行信号的TCI状态中是否包含QCL type D的参考信号,或者所述至少两个下行信号的TCI状态中包含的参考信号的类型,或者所述至少两个下行信号的TCI状态中包含的QCL type D的参考信号的类型,或者所述至少两个下行信号的映射类型,或者所述至少两个下行信号的持续时间长度,或者所述至少两个下行信号是否携带系统信息,或者所述至少两个下行信号是否携带高层信令,确定所述至少两个下行信号中每个下行信号的优先级。
可以理解的是,终端设备可以综合以上多个条件来判断所述至少两个下行信号中每个下行信号的优先级,例如,先基于条件A来判断优先级顺序,在条件A相同时,再进一步基于条件B来判断优先级顺序。
例如,以PDSCH作为下行信号的举例,越早接收到的DCI调度的PDSCH优先级越高。
或者,再例如,以PDSCH作为下行信号的举例,DCI format 1_0调度的PDSCH优先级高于DCI format 1_1调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,公共搜索空间中检测到的DCI调度的PDSCH优先级高于UE专属搜索空间中检测到的DCI调度的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,采用C-RNTI和CS-RNTI以外的RNTI加扰的DCI调度的PDSCH优先级最高,采用C-RNTI加扰的DCI调度的PDSCH次之,采用CS-RNTI加扰的DCI调度的PDSCH优先级最低。
或者,再例如,以PDSCH作为下行信号的举例,对应TCI状态中包含QCL type D的参考信号的PDSCH优先级高于对应TCI状态中不包含QCL type D的参考信号的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,调度PDSCH的DCI与所调度的PDSCH之间的时间间隔越短,相应PDSCH的优先级越高。
或者,再例如,以PDSCH作为下行信号的举例,调度PDSCH的DCI与所调度的PDSCH之间的时间间隔大于预先设置的第二时间阈值的PDSCH优先级高于小于预先设置的第二时间阈值的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,所述PDSCH的TCI状态中包含的参考信号的类型的优先级顺序为:TRS>CSI-RS>SSB,对应的参考信号的优先级越高,PDSCH的优先级越高。
或者,再例如,以PDSCH作为下行信号的举例,所述PDSCH的TCI状态中包含的QCL type D的参考信号的类型的优先级顺序为:TRS>CSI-RS>SSB,对应的QCL  type D的参考信号的优先级越高,PDSCH的优先级越高。
或者,再例如,以PDSCH作为下行信号的举例,映射类型为type B的PDSCH优先级高于映射类型为type A的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,PDSCH的持续时间越短,优先级越高;反之也可以,PDSCH的持续时间越长,优先级越高。
或者,再例如,以PDSCH作为下行信号的举例,携带系统信息的PDSCH优先级高于不携带系统信息的PDSCH。
或者,再例如,以PDSCH作为下行信号的举例,携带高层信令的PDSCH优先级高于不携带高层信令的PDSCH。
在另一个具体的实现过程中,所述终端设备则可以采用如下方法,根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式。
例如,所述终端设备确定接收优先级较高的下行信号,不接收优先级较低的下行信号。
或者,再例如,所述终端设备确定采用优先级较高的下行信号的传输配置,接收所述至少两个下行信号(包括优先级较低的下行信号)。
基于本发明所提供的技术方案,终端设备可以确定在一个检测窗口内的多个下行信号发生冲突,或者下行信号的接收波束不同时,通过确定优先级以进行多个下行信号的接收,从而保证高优先级的下行信号的解调性能。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端设备具体可以根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式。
在一个具体的实现过程中,若所述天线阵列的数量K小于所述至少两个下行信号的数量N,所述终端设备根据所述N个下行信号的传输信息,从所述N个下行信号中选择优先级最高的K个下行信号,并确定采用所述K个下行信号的传输配置分别接收所述K个下行信号。
例如,以PDSCH作为下行信号的举例,如果终端设备有K个天线阵列且K<N,则终端设备则可以根据所述N个PDSCH的传输信息,采用前述可能的实现方式中所提供的技术方案,从所述N个PDSCH中选择优先级最高的K个PDSCH;并采用该K个PDSCH的传输配置分别接收所述K个PDSCH。同时,所述K个PDSCH可以分别采用K个天线阵列进行接收。
对于所述K个PDSCH以外的其他PDSCH,终端设备可以不进行接收,或者采用该K个PDSCH的传输配置进行接收。
典型的,K=1,N=2或3,则从2或3个信号中选择出优先级最高的1个信号;和/或K=2,N=3,则需要从3个信号中选择出优先级最高的2个信号。
在另一个具体的实现过程中,若所述天线阵列(Antenna Panel)的数量K大于或等于所述至少两个下行信号的数量N,所述终端设备确定采用所述N个下行信号的传输配置分别接收所述N个下行信号。
例如,以PDSCH作为下行信号的举例,如果终端设备有K个天线阵列且K≥N,则终端设备则可以采用所述N个PDSCH各自的传输配置分别接收所述N个PDSCH。同时,所述N个PDSCH可以分别采用N个天线阵列进行接收。
本实施例中,终端设备通过确定需要在第一检测窗口内接收至少两个下行信号,进而根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,使得所述终端设备能够根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号,从而实现了终端设备的多个下行信号的接收。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列 的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
图3是本申请实施例提供的一种终端设备300的示意性框图。本实施例所提供的终端设备可以包括接收调度确定单元310、接收方式确定单元320和下行信号接收单元330。其中,接收调度确定单元310,用于确定需要在第一检测窗口内接收至少两个下行信号;接收方式确定单元320,用于根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项;下行信号接收单元330,用于根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。
需要说明的是,本发明所涉及的所述下行信号可以包括但不限于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述传输配置可以包括但不限于:
接收对应下行信号所采用的接收波束;或者
接收对应下行信号所采用的准同址(Quasi-Co-Located,QCL)类型D(type D)的参考信号。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中每个下行信号可以由独立的下行控制信息(Downlink Control Information,DCI)调度。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中不同下行信号所占用的物理资源存在重叠(overlapping),因此,终端设备则不能在第一检测窗口中同时接收所述这些PDSCH。
可选地,在本实施例的一个可能的实现方式中,所述至少两个下行信号中不同下行信号具有不同的传输配置,因此,终端设备则不能在第一检测窗口中采用各个PDSCH各自的传输配置来接收各个PDSCH。
例如,所述至少两个下行信号中不同下行信号的传输配置指示(Transmission Configuration Indicator,TCI)状态包含的参考信号不同。
或者,再例如,所述至少两个下行信号中不同下行信号的TCI状态中包含的准同址(Quasi-Co-Located,QCL)类型D(type D)的参考信号不同。
或者,再例如,所述至少两个下行信号中不同下行信号的TCI状态中包含的QCL type D的参考信号之间不是QCL的。
可选地,在本实施例的一个可能的实现方式中,所述第一检测窗口可以包括但不限于如下时间单元:
一个时隙;或者
至少两个时隙;或者
一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号;或者
至少两个OFDM符号。
可选地,在本实施例的一个可能的实现方式中,所述接收方式确定单元320,具体可以用于
根据所述至少两个下行信号的传输信息,确定是否接收所述至少两个下行信号中至 少一个下行信号;和/或
根据所述至少两个下行信号的传输信息,确定接收所述至少两个下行信号中至少一个下行信号所采用的传输配置。
可选地,在本实施例的一个可能的实现方式中,所述传输信息包括所述至少两个下行信号的调度信息;所述接收方式确定单元320,具体可以用于
根据调度所述至少两个下行信号的DCI的接收顺序,确定所述至少两个下行信号的接收方式;和/或
根据调度所述至少两个下行信号的DCI的DCI格式,确定所述至少两个下行信号的接收方式;和/或
根据调度所述至少两个下行信号的DCI的循环冗余校验码CRC加扰方式,确定所述至少两个下行信号的接收方式;和/或
根据调度所述至少两个下行信号的DCI所在的搜索空间或者控制资源集,确定所述至少两个下行信号的接收方式;和/或
根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,确定所述至少两个下行信号中每个下行信号的接收方式。
具体来说,所述接收方式确定单元320,具体可以用于根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔是否大于预先设置的第一时间阈值,确定所述至少两个下行信号中每个下行信号的接收方式。
可选地,在本实施例的一个可能的实现方式中,所述传输信息包括所述至少两个下行信号的传输配置;所述接收方式确定单元320,具体可以用于
根据所述至少两个下行信号的TCI状态中是否包含QCL type D的参考信号,确定所述至少两个下行信号的接收方式;和/或
根据所述至少两个下行信号的TCI状态中包含的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
根据所述至少两个下行信号的TCI状态中包含的QCL type D的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
根据所述至少两个下行信号的映射类型,确定所述至少两个下行信号的接收方式;和/或
根据所述至少两个下行信号的持续时间长度,确定所述至少两个下行信号的接收方式。
可选地,在本实施例的一个可能的实现方式中,所述传输信息包括所述至少两个下行信号所携带的信息;所述接收方式确定单元320,具体可以用于
根据所述至少两个下行信号是否携带系统信息,确定所述至少两个下行信号的接收方式;和/或
根据所述至少两个下行信号是否携带高层信令,确定所述至少两个下行信号的接收方式。
可选地,在本实施例的一个可能的实现方式中,所述接收方式确定单元320,具体可以用于所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号中每个下行信号的优先级;以及根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式。
具体来说,所述接收方式确定单元320,具体可以用于
确定接收优先级较高的下行信号,不接收优先级较低的下行信号;和/或
确定采用优先级较高的下行信号的传输配置,接收所述至少两个下行信号。
可选地,在本实施例的一个可能的实现方式中,所述接收方式确定单元320,具体可以用于根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式。
在一个具体的实现过程中,所述接收方式确定单元320,具体可以用于若所述天线阵列的数量K小于所述至少两个下行信号的数量N,所述终端设备根据所述N个下行信号的传输信息,从所述N个下行信号中选择优先级最高的K个下行信号,并确定采用所述K个下行信号的传输配置分别接收所述K个下行信号。
在另一个具体的实现过程中,所述接收方式确定单元320,具体可以用于若所述天线阵列的数量K大于或等于所述至少两个下行信号的数量N,所述终端设备确定采用所述N个下行信号的传输配置分别接收所述N个下行信号。
需要说明的是,图2对应的实施例中终端设备所执行的方法,可以用于实现上述方法中由终端设备实现的相应的功能。详细描述可以参见图2对应的实施例中的相关内容,此处不再赘述。
本实施例中,终端设备通过接收调度确定单元确定需要在第一检测窗口内接收至少两个下行信号,进而由接收方式确定单元根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,使得下行信号接收单元能够根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号,从而实现了终端设备的多个下行信号的接收。
图4是本申请实施例提供的一种通信设备400示意性结构图。图4所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图4所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储 器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可选地,如图4所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备400具体可为本申请实施例的网络设备,并且该通信设备400可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备400具体可为本申请实施例的移动终端设备/终端设备,并且该通信设备400可以实现本申请实施例的各个方法中由移动终端设备/终端设备实现的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例的芯片的示意性结构图。图5所示的芯片500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,芯片500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous  DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可选地,该芯片500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端设备/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端设备/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端设备/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单 元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种下行信号的传输方法,其特征在于,包括:
    终端设备确定需要在第一检测窗口内接收至少两个下行信号;
    所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项;
    所述终端设备根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述至少两个下行信号中不同下行信号所占用的物理资源存在重叠;和/或
    所述至少两个下行信号中不同下行信号的传输配置指示TCI状态包含的参考信号不同;和/或
    所述至少两个下行信号中不同下行信号的TCI状态中包含的准同址QCL类型D type D的参考信号不同;和/或
    所述至少两个下行信号中不同下行信号的TCI状态中包含的QCL type D的参考信号之间不是QCL的。
  3. 根据权利要求1所述的方法,其特征在于,所述传输信息包括所述至少两个下行信号的调度信息;所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据调度所述至少两个下行信号的DCI的接收顺序,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据调度所述至少两个下行信号的DCI的DCI格式,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据调度所述至少两个下行信号的DCI的循环冗余校验码CRC加扰方式,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据调度所述至少两个下行信号的DCI所在的搜索空间或者控制资源集,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,确定所述至少两个下行信号中每个下行信号的接收方式。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔是否大于预先设置的第一时间阈值,确定所述至少两个下行信号中每个下行信号的接收方式。
  5. 根据权利要求1所述的方法,其特征在于,所述传输信息包括所述至少两个下行信号的传输配置;所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据所述至少两个下行信号的TCI状态中是否包含QCL type D的参考信号,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据所述至少两个下行信号的TCI状态中包含的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据所述至少两个下行信号的TCI状态中包含的QCL type D的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据所述至少两个下行信号的映射类型,确定所述至少两个下行信号 的接收方式;和/或
    所述终端设备根据所述至少两个下行信号的持续时间长度,确定所述至少两个下行信号的接收方式。
  6. 根据权利要求1所述的方法,其特征在于,所述传输信息包括所述至少两个下行信号所携带的信息;所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据所述至少两个下行信号是否携带系统信息,确定所述至少两个下行信号的接收方式;和/或
    所述终端设备根据所述至少两个下行信号是否携带高层信令,确定所述至少两个下行信号的接收方式。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据所述至少两个下行信号的传输信息,确定是否接收所述至少两个下行信号中至少一个下行信号;和/或
    所述终端设备根据所述至少两个下行信号的传输信息,确定接收所述至少两个下行信号中至少一个下行信号所采用的传输配置。
  8. 根据权利要求1~7任一权利要求所述的方法,其特征在于,所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号中每个下行信号的优先级;
    所述终端设备根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备确定接收优先级较高的下行信号,不接收优先级较低的下行信号;和/或
    所述终端设备确定采用优先级较高的下行信号的传输配置,接收所述至少两个下行信号。
  10. 根据权利要求1~7任一权利要求所述的方法,其特征在于,所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    所述终端设备根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    若所述天线阵列的数量K小于所述至少两个下行信号的数量N,所述终端设备根据所述N个下行信号的传输信息,从所述N个下行信号中选择优先级最高的K个下行信号,并确定采用所述K个下行信号的传输配置分别接收所述K个下行信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述终端设备根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式,包括:
    若所述天线阵列的数量K大于或等于所述至少两个下行信号的数量N,所述终端设备确定采用所述N个下行信号的传输配置分别接收所述N个下行信号。
  13. 根据权利要求1~12任一权利要求所述的方法,其特征在于,所述传输配置包括:
    接收对应下行信号所采用的接收波束;和/或
    接收对应下行信号所采用的QCL type D的参考信号;和/或
    接收对应下行信号所采用的TCI状态;和/或
    接收对应下行信号所假设的映射类型;和/或
    接收对应下行信号所用的时间窗口。
  14. 根据权利要求1~12任一权利要求所述的方法,其特征在于,所述下行信号包括物理下行共享信道PDSCH、物理下行控制信道PDCCH或者信道状态信息参考信号CSI-RS。
  15. 根据权利要求1~12任一权利要求所述的方法,其特征在于,所述至少两个下行信号中每个下行信号由独立的下行控制信息DCI调度。
  16. 根据权利要求1~12任一权利要求所述的方法,其特征在于,所述第一检测窗口包括:
    一个时隙;或者
    至少两个时隙;或者
    一个正交频分复用OFDM符号;或者
    至少两个OFDM符号。
  17. 一种终端设备,其特征在于,包括:
    接收调度确定单元,用于确定需要在第一检测窗口内接收至少两个下行信号;
    接收方式确定单元,用于根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式;其中,所述传输信息包括所述至少两个下行信号的调度信息、传输配置或者所携带的信息中的至少一项;
    下行信号接收单元,用于根据所述至少两个下行信号的接收方式,在所述第一检测窗口内,接收所述至少两个下行信号中至少一个下行信号。
  18. 根据权利要求17所述的终端设备,其特征在于,
    所述至少两个下行信号中不同下行信号所占用的物理资源存在重叠;和/或
    所述至少两个下行信号中不同下行信号的传输配置指示TCI状态包含的参考信号不同;和/或
    所述至少两个下行信号中不同下行信号的TCI状态中包含的准同址QCL类型Dtype D的参考信号不同;和/或
    所述至少两个下行信号中不同下行信号的TCI状态中包含的QCL type D的参考信号之间不是QCL的。
  19. 根据权利要求17所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    根据所述至少两个下行信号的传输信息,确定是否接收所述至少两个下行信号中至少一个下行信号;和/或
    根据所述至少两个下行信号的传输信息,确定接收所述至少两个下行信号中至少一个下行信号所采用的传输配置。
  20. 根据权利要求17所述的终端设备,其特征在于,所述传输信息包括所述至少两个下行信号的调度信息;所述接收方式确定单元,具体用于
    根据调度所述至少两个下行信号的DCI的接收顺序,确定所述至少两个下行信号的接收方式;和/或
    根据调度所述至少两个下行信号的DCI的DCI格式,确定所述至少两个下行信号的接收方式;和/或
    根据调度所述至少两个下行信号的DCI的循环冗余校验码CRC加扰方式,确定所述至少两个下行信号的接收方式;和/或
    根据调度所述至少两个下行信号的DCI所在的搜索空间或者控制资源集,确定所述至少两个下行信号的接收方式;和/或
    根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔,确定所述至少两个下行信号中每个下行信号的接收方式。
  21. 根据权利要求20所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    根据调度所述至少两个下行信号中每个下行信号的DCI与所调度的下行信号之间的时间间隔是否大于预先设置的第一时间阈值,确定所述至少两个下行信号中每个下行信号的接收方式。
  22. 根据权利要求17所述的终端设备,其特征在于,所述传输信息包括所述至少两个下行信号的传输配置;所述接收方式确定单元,具体用于
    根据所述至少两个下行信号的TCI状态中是否包含QCL type D的参考信号,确定所述至少两个下行信号的接收方式;和/或
    根据所述至少两个下行信号的TCI状态中包含的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
    根据所述至少两个下行信号的TCI状态中包含的QCL type D的参考信号的类型,确定所述至少两个下行信号的接收方式;和/或
    根据所述至少两个下行信号的映射类型,确定所述至少两个下行信号的接收方式;和/或
    根据所述至少两个下行信号的持续时间长度,确定所述至少两个下行信号的接收方式。
  23. 根据权利要求17所述的终端设备,其特征在于,所述传输信息包括所述至少两个下行信号所携带的信息;所述接收方式确定单元,具体用于
    根据所述至少两个下行信号是否携带系统信息,确定所述至少两个下行信号的接收方式;和/或
    根据所述至少两个下行信号是否携带高层信令,确定所述至少两个下行信号的接收方式。
  24. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    所述终端设备根据所述至少两个下行信号的传输信息,确定所述至少两个下行信号中每个下行信号的优先级;以及
    根据所述每个下行信号的优先级,确定所述至少两个下行信号的接收方式。
  25. 根据权利要求24所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    确定接收优先级较高的下行信号,不接收优先级较低的下行信号;和/或
    确定采用优先级较高的下行信号的传输配置,接收所述至少两个下行信号。
  26. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    根据所述终端设备的天线阵列的数量和所述至少两个下行信号的传输信息,确定所述至少两个下行信号的接收方式。
  27. 根据权利要求26所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    若所述天线阵列的数量K小于所述至少两个下行信号的数量N,所述终端设备根据所述N个下行信号的传输信息,从所述N个下行信号中选择优先级最高的K个下行信号,并确定采用所述K个下行信号的传输配置分别接收所述K个下行信号。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述接收方式确定单元,具体用于
    若所述天线阵列的数量K大于或等于所述至少两个下行信号的数量N,所述终端设 备确定采用所述N个下行信号的传输配置分别接收所述N个下行信号。
  29. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述传输配置包括:
    接收对应下行信号所采用的接收波束;和/或
    接收对应下行信号所采用的QCL type D的参考信号;和/或
    接收对应下行信号所采用的TCI状态;和/或
    接收对应下行信号所假设的映射类型;和/或
    接收对应下行信号所用的时间窗口。
  30. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述下行信号包括物理下行共享信道PDSCH、物理下行控制信道PDCCH或者信道状态信息参考信号CSI-RS。
  31. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述至少两个下行信号中每个下行信号由独立的下行控制信息DCI调度。
  32. 根据权利要求17~23任一权利要求所述的终端设备,其特征在于,所述第一检测窗口包括:
    一个时隙;或者
    至少两个时隙;或者
    一个正交频分复用OFDM符号;或者
    至少两个OFDM符号。
  33. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1~16中任一项所述的方法。
  34. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1~16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1~16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1~16中任一项所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1~16中任一项所述的方法。
PCT/CN2018/090762 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备 WO2019237241A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
SG11202011646QA SG11202011646QA (en) 2018-06-12 2018-06-12 Method for transmitting downlink signal and terminal device
ES18922760T ES2900358T3 (es) 2018-06-12 2018-06-12 Método para transmitir una señal de enlace descendente y un dispositivo terminal
JP2020567195A JP7178428B2 (ja) 2018-06-12 2018-06-12 下り信号の伝送方法及び端末デバイス
RU2020142083A RU2768851C1 (ru) 2018-06-12 2018-06-12 Способ передачи сигнала нисходящей линии связи и терминальное устройство
CN202011191341.3A CN112291855B (zh) 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备
EP18922760.6A EP3771272B1 (en) 2018-06-12 2018-06-12 Method for transmitting downlink signal and terminal device
KR1020207034002A KR102484536B1 (ko) 2018-06-12 2018-06-12 하향 신호의 전송 방법, 단말기 디바이스 및 컴퓨터 판독 가능한 저장 매체
EP21196858.1A EP3944697A1 (en) 2018-06-12 2018-06-12 Methods for transmitting downlink signal, network device and terminal device
CN201880091727.1A CN111955038A (zh) 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备
AU2018427383A AU2018427383A1 (en) 2018-06-12 2018-06-12 Method for transmitting downlink signal and terminal device
DK18922760.6T DK3771272T3 (da) 2018-06-12 2018-06-12 Fremgangsmåde til overførsel af et downlink-signal og terminalanordning
PCT/CN2018/090762 WO2019237241A1 (zh) 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备
TW108119749A TW202002553A (zh) 2018-06-12 2019-06-06 一種下行信號的傳輸方法及終端設備
US17/086,173 US11800517B2 (en) 2018-06-12 2020-10-30 Method for transmitting downlink signal and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090762 WO2019237241A1 (zh) 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/086,173 Continuation US11800517B2 (en) 2018-06-12 2020-10-30 Method for transmitting downlink signal and terminal device

Publications (1)

Publication Number Publication Date
WO2019237241A1 true WO2019237241A1 (zh) 2019-12-19

Family

ID=68841801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090762 WO2019237241A1 (zh) 2018-06-12 2018-06-12 一种下行信号的传输方法及终端设备

Country Status (12)

Country Link
US (1) US11800517B2 (zh)
EP (2) EP3771272B1 (zh)
JP (1) JP7178428B2 (zh)
KR (1) KR102484536B1 (zh)
CN (2) CN111955038A (zh)
AU (1) AU2018427383A1 (zh)
DK (1) DK3771272T3 (zh)
ES (1) ES2900358T3 (zh)
RU (1) RU2768851C1 (zh)
SG (1) SG11202011646QA (zh)
TW (1) TW202002553A (zh)
WO (1) WO2019237241A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831140A4 (en) * 2018-08-02 2022-03-23 ZTE Corporation SYSTEMS AND METHODS FOR DETERMINING CHANNEL OWNERSHIP ASSUMPTION
US11197294B2 (en) * 2018-08-17 2021-12-07 Qualcomm Incorporated Synchronization signal block and remaining minimum system information integration in unlicensed systems
KR102586001B1 (ko) * 2018-09-21 2023-10-10 삼성전자주식회사 무선 통신 시스템에서 우선 순위를 고려한 물리계층 채널 송수신 방법 및 장치
CN110535596B (zh) * 2018-11-02 2022-07-12 中兴通讯股份有限公司 控制信道检测、信息元素传输方法、装置、设备及介质
US11251931B2 (en) * 2018-11-07 2022-02-15 Qualcomm Incorporated Active transmission configuration indication states
EP3949626A1 (en) * 2019-04-01 2022-02-09 Lenovo (Singapore) Pte. Ltd. Multiple radio access technology communications
WO2022061118A2 (en) * 2020-09-20 2022-03-24 Cirik Ali Cagatay Downlink signal reception in control channel repetition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743626A (zh) * 2014-12-30 2016-07-06 北京三星通信技术研究有限公司 一种下行信道和/或下行参考信号的接收方法和设备
WO2018083244A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of control information using more than one beam pair link

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139018A (ko) * 2014-03-28 2016-12-06 인터디지탈 패튼 홀딩스, 인크 단일 발진기를 갖는 반이중 fdd wtru
BR112018073215A2 (pt) 2016-05-13 2019-02-19 Huawei Technologies Co., Ltd. método de envio de informações de controle de enlace descendente, método de detecção de informações de controle de enlace descendente, e dispositivo
US10771138B2 (en) * 2016-07-22 2020-09-08 Lg Electronics Inc. Uplink multi-antenna transmission method in wireless communication system and apparatus therefor
US10506587B2 (en) * 2017-05-26 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in next generation wireless systems
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
US10849152B2 (en) * 2018-01-09 2020-11-24 Apple Inc. Beam management for carrier aggregation (CA)
US10742303B1 (en) * 2018-02-13 2020-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of spatially QCL reference signal resources for transmissions in communication equipment having multiple antenna panels
US11018742B2 (en) * 2018-02-16 2021-05-25 Qualcomm Incorporated Downlink transmission beam configuration techniques for wireless communications
CN110351052B (zh) * 2018-04-04 2020-08-28 维沃移动通信有限公司 信道和信号的传输方法及通信设备
CN112204899B (zh) * 2018-06-08 2024-01-19 汉尼拔Ip有限责任公司 用于多trp传输的方法和ue
US11445537B2 (en) * 2019-07-08 2022-09-13 Qualcomm Incorporated Data transmission reliability with multiple downlink control information signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743626A (zh) * 2014-12-30 2016-07-06 北京三星通信技术研究有限公司 一种下行信道和/或下行参考信号的接收方法和设备
WO2018083244A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of control information using more than one beam pair link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Remaining issues on simultaneous reception of DL/UL physical channels and reference signals", 3GPP TSG RAN WG1 MEETING #93 R1-1806047, 2018, vol. RAN WG1 2, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 7, XP051462312 *

Also Published As

Publication number Publication date
US20210051692A1 (en) 2021-02-18
RU2768851C1 (ru) 2022-03-25
CN111955038A (zh) 2020-11-17
EP3771272B1 (en) 2021-10-06
JP2021531672A (ja) 2021-11-18
KR20210020881A (ko) 2021-02-24
KR102484536B1 (ko) 2023-01-04
AU2018427383A1 (en) 2021-01-07
JP7178428B2 (ja) 2022-11-25
CN112291855B (zh) 2022-01-25
US11800517B2 (en) 2023-10-24
EP3771272A1 (en) 2021-01-27
TW202002553A (zh) 2020-01-01
SG11202011646QA (en) 2020-12-30
EP3944697A1 (en) 2022-01-26
EP3771272A4 (en) 2021-02-17
DK3771272T3 (da) 2021-12-06
CN112291855A (zh) 2021-01-29
ES2900358T3 (es) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
US11246120B2 (en) Data transmission method and terminal device
KR102602446B1 (ko) 사이드링크 카테고리를 결정하는 방법, 단말 장치와 네트워크 장치
US12058707B2 (en) Communication method in D2D system, terminal device, and network device
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2019242419A1 (zh) 一种bwp切换方法及装置、终端设备
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
CN112703699A (zh) 传输数据信道的方法和终端设备
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
CN112119595B (zh) 一种信号加扰方法及装置、通信设备
EP3879894B1 (en) Wireless communication method, network device, and terminal device
WO2019047188A1 (zh) 无线通信方法、网络设备和终端设备
EP3820064B1 (en) Information transmission method, terminal device and network device
WO2019242383A1 (zh) 一种带宽部分的激活与配置方法及终端设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
US11985672B2 (en) Data transmission method and apparatus, network device and terminal
EP4156813A1 (en) Bwp configuration method and apparatus, terminal device, and network device
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备
WO2020087313A1 (zh) 一种窗口配置方法及装置、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018922760

Country of ref document: EP

Effective date: 20201020

ENP Entry into the national phase

Ref document number: 2020567195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018427383

Country of ref document: AU

Date of ref document: 20180612

Kind code of ref document: A