WO2021017702A1 - 一种信号传输方法及装置 - Google Patents

一种信号传输方法及装置 Download PDF

Info

Publication number
WO2021017702A1
WO2021017702A1 PCT/CN2020/098187 CN2020098187W WO2021017702A1 WO 2021017702 A1 WO2021017702 A1 WO 2021017702A1 CN 2020098187 W CN2020098187 W CN 2020098187W WO 2021017702 A1 WO2021017702 A1 WO 2021017702A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processor
tag
signals
sending
Prior art date
Application number
PCT/CN2020/098187
Other languages
English (en)
French (fr)
Inventor
邵华
黄煌
颜矛
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017702A1 publication Critical patent/WO2021017702A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a signal transmission method and device.
  • Backscatter communication is a very low-power, low-cost passive radio frequency identification (RFID) communication technology, suitable for the Internet of things (IoT) that is more sensitive to power consumption, etc. Scene.
  • RFID radio frequency identification
  • three nodes can be included: a sending device, a tag device, and a receiving device.
  • the sending device can send an excitation signal.
  • the tag device After the tag device receives the excitation signal, it modulates the data to be sent on the excitation signal to obtain the reflected signal, and sends the reflected signal to the receiving device.
  • the embodiments of the present application provide a signal transmission method and device to determine the charging time required by the tag device.
  • a signal transmission method including: sending N first signals to a tag device; where N is a positive integer; and receiving an indication of a second signal from a receiving device, and the second signal corresponds to a first signal.
  • the N first signals include the one first signal corresponding to the second signal.
  • the second signal is a signal sent by the tag device to the receiving device.
  • the tag device will send the second signal corresponding to the first signal among the received N first signals to the sending device through the receiving device when the charging is completed.
  • the sending device can determine the charging time required by the tag device according to the instructions of the second signal, so that it can seamlessly connect with the tag device in the subsequent communication with the tag device, and send the tag device to the tag device when the tag device is fully charged. Transmit data, improve system resource utilization, and ensure communication reliability.
  • the method further includes: sending configuration information to the tag device, where the configuration information is used to indicate the correspondence between the N first signals and the M second signals, where M Is a positive integer.
  • the corresponding relationship between the N first signals and the M second signals is indicated through the configuration information, so that the receiving device and the tag device use the above-mentioned corresponding relationship to indicate the relationship with the first signal.
  • the first signal received when the tag device is fully charged can be determined, so that the charging time required by the tag device can be determined.
  • the configuration information is used to indicate the correspondence between the N first signals and the M second signals, including: for one first signal among the N first signals,
  • the configuration information is used to indicate at least one of the following:
  • the signal identifier of the second signal corresponding to the one first signal The time domain resource used to transmit the second signal corresponding to the one first signal; the frequency used to transmit the second signal corresponding to the one first signal Domain resource; and, the sequence parameter of the second signal corresponding to the one first signal.
  • the second signal corresponds to a first signal, including: the first signal is a signal transmitted on time unit n, and the second signal is a signal transmitted on time unit n+k.
  • the value of k is a pre-configured value, or a value indicated to the tag device through signaling.
  • the first signal is a reference signal or a synchronization signal.
  • the second signal is a random access preamble.
  • the transmission of the random access preamble is multiplexed to realize the determination of the charging time required by the tag device and avoid excessive modification of the protocol.
  • the method further includes: determining the charging time of the tag device according to the second signal and the corresponding relationship between the second signal and the one first signal.
  • the charging time of the tag device is determined according to the first signal corresponding to the second signal, which is simple to implement.
  • the charging time can be determined according to the granularity of each tag device, which overcomes the problems in the prior art. Only a unified charging time can be used, which results in some tag devices that cannot be charged within the unified charging time, or the charging is completed in advance within the unified charging time, which is a waste of resources.
  • a device in a second aspect, may be a sending device, or a device in the sending device, or a device that can be matched and used with the sending device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is configured to send N first signals to the tag device; where N is a positive integer; and receive an indication of the second signal from the receiving device, the second signal corresponds to a first signal,
  • the N first signals include the one first signal corresponding to the second signal.
  • the processing module is configured to determine the charging time of the tag device according to the instruction of the second signal.
  • the second signal is a signal sent by the tag device to the receiving device.
  • an embodiment of the present application provides a device, the device includes a processor, and is configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to send N first signals to the tag device; where N is a positive integer; receive an indication of the second signal from the receiving device, the second signal corresponds to a first signal,
  • the N first signals include the one first signal corresponding to the second signal.
  • the second signal is a signal sent by the tag device to the receiving device.
  • a signal transmission method including: receiving a first signal from a sending device; determining a second signal based on the first signal, the second signal corresponding to the first signal; sending all the signals to the receiving device Mentioned second signal.
  • the method further includes:
  • the configuration information is used to indicate the correspondence between N first signals and M second signals, including:
  • the configuration information is used to indicate at least one of the following:
  • the signal identifier of the second signal corresponding to the one first signal the time domain resource used to transmit the second signal corresponding to the one first signal; the frequency used to transmit the second signal corresponding to the one first signal Domain resource; and, the sequence parameter of the second signal corresponding to any one of the first signals.
  • the second signal corresponds to the first signal, including: the first signal is a signal transmitted in time unit n, and the second signal is in time unit n+k The signal transmitted on the above, where n is an integer, and k is an integer greater than or equal to 0.
  • the value of k is a pre-configured value, or a value indicated to the tag device through signaling.
  • the first signal is a reference signal or a synchronization signal.
  • the second signal is a random access preamble.
  • a device in a fifth aspect, may be a label device, a device in a label device, or a device that can be matched and used with the label device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the fourth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplarily, the communication module is configured to receive the first signal from the sending device.
  • the processing module is configured to determine a second signal according to the first signal, and the second signal corresponds to the first signal.
  • the communication module is used to send the second signal to the receiving device.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the fourth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the fourth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to receive a first signal from a sending device by using a communication interface; determine a second signal according to the first signal, the second signal corresponding to the first signal; send the second signal to a receiving device .
  • an embodiment of the present application provides a signal transmission method, including: receiving a second signal from a tag device; and sending an indication of the second signal to a sending device, where the second signal corresponds to a first signal.
  • the one first signal is the first signal sent by the sending device to the tag device.
  • the receiving device determines a first signal corresponding to the second signal according to the second signal, so as to determine that the label device is fully charged according to the one first signal.
  • the receiving device sends the instruction of the second signal to the sending device, so that the sending device can determine that the tag device has received a first signal corresponding to the second signal according to the instruction of the second signal, so that the sending device can determine the charging required by the tag device time.
  • the first signal is a reference signal or a synchronization signal.
  • the second signal is a random access preamble.
  • a device in an eighth aspect, may be a receiving device, or a device in the receiving device, or a device that can be matched and used with the receiving device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the seventh aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplarily, the communication module is configured to receive the second signal from the tag device;
  • the processing module is configured to determine an indication of a second signal, the second signal corresponds to a first signal, and the first signal is a first signal sent by the sending device to the tag device.
  • the communication module is used to send the instruction of the second signal to the sending device.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the seventh aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the seventh aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to receive a second signal from the tag device using a communication interface; send an indication of the second signal to the sending device, the second signal corresponds to a first signal, and the first signal is the Among the N first signals sent by the sending device to the tag device, N is a positive integer.
  • an embodiment of the present application provides a signal transmission method, including: sending N first signals to a tag device; N is a positive integer; receiving a charging time indication from a receiving device; the charging time indication is used to indicate the tag device Required charging time; Determine the required charging time of the tag device according to the charging time indication.
  • the charging time indication can be obtained from the receiving device when the tag device is finished charging, and the sending device can determine the charging time required by the tag device according to the charging time indication
  • seamless docking can be realized with the tag device, and data can be transmitted to the tag device when the tag device is fully charged, thereby improving the resource utilization rate of the system and ensuring the reliability of communication.
  • the method before the receiving the indication of the first signal from the receiving device, the method further includes:
  • the first signal is a reference signal or a synchronization signal.
  • a device in an eleventh aspect, may be a sending device, a device in the sending device, or a device that can be matched and used with the sending device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the tenth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is configured to send N first signals to the tag device; N is a positive integer; receive a charging time indication from the receiving device; the charging time indication is used to indicate the charging time required by the tag device.
  • the processing module is used to determine the charging time required by the tag device according to the charging time indication.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the tenth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the tenth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to send N first signals to the tag device; N is a positive integer; receive a charging time indication from the receiving device; the charging time indication is used to indicate the charging time required by the tag device; The time indicates the charging time required to determine the tag device.
  • an embodiment of the present application provides a signal transmission method, including: receiving a first signal from a sending device; determining an indication of the first signal according to the first signal, and the indication of the first signal is used for Indicate the first signal received by the tag device among the N first signals, where N is a positive integer; and send an indication of the first signal to the receiving device.
  • the first signal is a reference signal or a synchronization signal.
  • a device which may be a label device.
  • the device may include a module corresponding to the method/operation/step/action described in the thirteenth aspect.
  • the module may be a hardware circuit, software, or a combination of hardware circuit and software.
  • the device may include a processing module and a communication module.
  • the communication module is configured to receive the first signal from the sending device
  • the processing module is configured to determine an indication of the first signal according to the first signal, and the indication of the first signal is used to indicate the first signal received by the tag device among the N first signals, and N is a positive integer .
  • the communication module is used to send the instruction of the first signal to the receiving device.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the thirteenth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the thirteenth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to receive a first signal from a sending device by using a communication interface; determine an indication of the first signal according to the first signal, and the indication of the first signal is used to instruct the tag device to perform N first signals In the first signal received in, N is a positive integer; an indication of the first signal is sent to the receiving device.
  • an embodiment of the present application provides a signal transmission method, including: receiving an indication of a first signal from a tag device; determining the charging time required by the tag device according to the indication of the first signal; sending a charging time indication to a sending device ; The charging time indication is used to indicate the charging time required by the tag device.
  • the receiving device determines the charging time required by the tag device according to the indication of the first signal
  • the receiving device sends the charging time indication to the sending device, so that the sending device can accurately determine what the tag device needs according to the charging time indication. Charging time.
  • the first signal is a reference signal or a synchronization signal.
  • a device which may be a receiving device, or a device in the receiving device, or a device that can be matched and used with the receiving device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the sixteenth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is configured to receive an indication of the first signal from the tag device; send a charging time indication to the sending device; the charging time indication is used to indicate the charging time required by the tag device.
  • the processing module is used to determine the charging time required by the tag device according to the indication of the first signal.
  • an embodiment of the present application provides a device that includes a processor, configured to implement the method described in the sixteenth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the seventh aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to receive an indication of the first signal from the tag device; determine the charging time required by the tag device according to the indication of the first signal; send a charging time indication to the sending device; the charging time indication is used to indicate The charging time required for the tag device.
  • an embodiment of the present application provides a signal transmission method, including: sending N first signals to a tag device; sending end indication information to the tag device, where the end indication information is used to indicate that all the N first signals are sent Complete; receive the timing duration from the receiving device, and determine the charging time required by the tag device according to the timing duration; or, receive the charging time required by the tag device from the receiving device.
  • N first signals and end indication information to the tag device, when the tag device is finished charging, it can receive the timing time from the receiving device or the charging time required by the tag device, so that In the subsequent communication process with the tag device, accurately determine the time when the tag device is fully charged, realize seamless docking with the tag device, and transmit data to the tag device when the tag device is fully charged, so as to improve the resource utilization of the system and ensure the reliability of communication Sex.
  • the first signal is a reference signal or a synchronization signal.
  • This application also provides a communication device, which has the function of implementing the sending device in the method provided in the nineteenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes: a processor configured to support the communication device to perform corresponding functions of the sending device in the communication method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, which is used to support communication between the communication device and the tag device, the receiving device, and the like.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a transceiving unit, and these units can perform corresponding functions in the foregoing method examples.
  • a processing unit and a transceiving unit can perform corresponding functions in the foregoing method examples.
  • an embodiment of the present application provides a signal transmission method, including: after receiving the first signal, starting a timer; receiving end indication information, turning off the timer, and determining the timing recorded by the timer Duration, the end indication information is used to indicate that all the N first signals have been sent; send the timing duration to the receiving device, or determine the charging time required by the tag device according to the timing duration; send the timing duration to the receiving device, or The charging time required for the tag device.
  • the first signal is a reference signal or a synchronization signal.
  • the present application also provides a communication device, which has the function of implementing the tag device in the method provided in the above-mentioned twentieth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes: a processor configured to support the communication device to perform corresponding functions of the tag device in the communication method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface for supporting communication between the communication device and the sending device, the receiving device, and the like.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the method of the above twentieth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a transceiving unit. These units can perform the corresponding functions in the method example of the twentieth aspect. For details, please refer to the detailed description in the method example. Repeat.
  • an embodiment of the present application provides a signal transmission method, including: receiving a timing duration from a tag device or a charging time required by the tag device; sending the timing duration to a sending device, or according to the timing The duration determines the charging time required by the tag device, and sends the charging time required by the tag device to the sending device.
  • the first signal is a reference signal or a synchronization signal.
  • the present application also provides a communication device, which has the function of implementing the receiving device in the method provided in the above twenty-first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes: a processor configured to support the communication device to perform the corresponding function of the receiving device in the communication method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, which is used to support communication between the communication device and the tag device, the sending device, and the like.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a transceiving unit, and these units can perform corresponding functions in the foregoing method examples.
  • a processing unit and a transceiving unit can perform corresponding functions in the foregoing method examples.
  • an embodiment of the present application provides a computer-readable storage medium, which stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer executes the foregoing Any possible design method.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes any of the above-mentioned possible design methods.
  • an embodiment of the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory to implement any of the above-mentioned possible design methods.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing any of the above-mentioned possible design methods.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • an embodiment of the present application provides a system that includes the device provided in the second aspect, the device provided in the fifth aspect, and the device provided in the eighth aspect, or the system includes the device provided in the third aspect.
  • the device, the device provided by the sixth aspect, and the device provided by the ninth aspect, or the system includes the device provided by the eleventh aspect, the device provided by the fourteenth aspect, and the device provided by the seventeenth aspect, or
  • the system includes the device provided by the twelfth aspect, the device provided by the fifteenth aspect, and the device provided by the eighteenth aspect, or the system includes the device provided by the nineteenth aspect, the device provided by the twentieth aspect, and the device provided by the eighteenth aspect.
  • the device provided by Twentyone is the device provided in the second aspect, the device provided in the fifth aspect, and the device provided in the eighth aspect, or the system includes the device provided in the third aspect.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the method provided in the embodiment of the present application
  • FIG. 2 is a schematic flowchart of a signal transmission method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of signal transmission according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a time-frequency resource provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of signal transmission according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of signal transmission according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of signal transmission according to an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • At least part can be all or part, for example, “at least part B in A” can mean all B in A, or part B in A.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c It can be single or multiple.
  • a belongs to B can mean that A is a subset of B, or that the content of A is the same as the content of B.
  • a includes B can mean that B is a subset of A, or that the content of A is the same as that of B, or "A includes B” can mean that A includes B and other content, or that A includes only B.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C”, and “D”.
  • the technical features in the “first”, “second”, “third”, “A”, “B”, “C” and “D” describe the technical features in no order or size order.
  • communication equipment may include network equipment, terminal equipment and tag equipment.
  • Wireless communication between communication devices may include, but is not limited to: wireless communication between network equipment and terminal equipment, wireless communication between network equipment and network equipment, wireless communication between terminal equipment and terminal equipment, wireless communication between terminal equipment and tag equipment Communication, and wireless communication between tag equipment and network equipment.
  • wireless communication can also be simply referred to as "communication”
  • communication can also be described as "data transmission”, “signal transmission”, “information transmission” or “transmission”.
  • transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send a signal to the network device; the transmission may also be downlink transmission, for example, the network device may send a signal to the terminal device.
  • wireless communication between communication devices can be described as: the sending end sends a signal to the receiving end, and the receiving end receives the signal from the sending end.
  • the embodiments of this application can be applied to various mobile communication systems, such as: new radio (NR) system, long term evolution (LTE) system, advanced long term evolution (LTE-A) System, Universal Mobile Telecommunication System (UMTS), Evolved Long Term Evolution (eLTE) System, Future Communication System and other communication systems.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE Evolved Long Term Evolution
  • Future Communication System and other communication systems.
  • the NR system can also be called the fifth generation (5G) mobile communication system.
  • the sending device can be a terminal device, and the tag device can be a radio frequency identification module in the terminal device, or an independent radio frequency identification chip, and the receiving device can For network equipment.
  • the tag device is a passive device and needs to convert the received signal into electrical energy in order to perform data modulation and signal transmission through the obtained electrical energy.
  • the backscatter communication technology is applied to the mobile communication system, how to charge the tag device by the sending device is an urgent problem to be solved.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the method provided in the embodiment of the present application.
  • the communication system includes a sending device 101, a tag device 102, and a receiving device 103.
  • the sending device and the tag device can also be integrated into the same physical entity, which will not be repeated here.
  • the sending device 101 can directly send signals to the tag device 102, but in the backscatter communication technology, the tag device 102 cannot directly send signals to the sending device 101. If the label device 102 needs to send a signal to the sending device 101, it can send the signal to the receiving device 103 first, and then the receiving device 103 forwards the signal to the sending device 101. The sending device 101 and the receiving device 103 can send signals to each other.
  • the tag device 102 is a passive device or a semi-active device (for example, a baseband source but a passive radio frequency). For this reason, the tag device 102 needs to perform a charging process before sending a signal. Specifically, the tag device 102 needs to convert part or all of the received signal into electric energy, so as to realize charging. After the tag device 102 obtains power through the received signal, it can drive its own circuit for communication. In a possible implementation, the charging time of the tag device is a fixed duration. When the backscatter communication technology is applied to the mobile communication system, the backscatter communication technology combined with the mobile communication system will have a wider network coverage.
  • a semi-active device for example, a baseband source but a passive radio frequency
  • a sending device may correspond to multiple tag devices, and each tag device is connected to The distance of the sending device is also different. The greater the distance between the tag device and the sending device, the weaker the energy of the signal received by the tag device, and therefore the lower the charging efficiency of the tag device.
  • the fixed charging time when the distance between the label device and the sending device is too large, the label device may not be able to charge effectively; when the distance between the label device and the sending device is too small, the label device will have excessive charging time. That is, a fixed charging time cannot be effectively used for backscatter communication in a mobile communication system. For this reason, when the backscatter communication technology is applied to a mobile communication system, how to determine the charging time required by the tag device to effectively charge the tag device is an urgent problem to be solved.
  • the sending device 101 may also have other names, such as exciter, helper, interrogator, reader, user equipment (UE), etc.
  • the embodiments of the present application are collectively referred to as sending devices.
  • the tag device 102 may also have other names, such as reflector, tag, backscatter device, passive device, semi-passive device,
  • ambient signal devices ambient signal devices
  • RFID radio frequency identification
  • the receiving device 103 may also have other names, for example, it may be called a receiver, an access point, a base station, etc.
  • the receiving device is collectively referred to as a receiving device in the embodiments of this application.
  • the sending device 101 can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, Augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical, and smart grid (smart grid)
  • the receiving device 103 may be a wireless access device or a base station, such as an evolved Node B (eNB), a gNB in 5G, a radio network controller (RNC), or a Node B (Node B, NB) , Base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless The access point (AP), wireless relay node, wireless backhaul node, etc. in a fidelity (wireless fidelity, WiFi) system.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit
  • AP wireless The access point
  • wireless relay node wireless backha
  • FIG. 2 it is a schematic flowchart of a signal transmission method provided by an embodiment of this application.
  • the execution subject of sending the first signal is the sending device
  • the execution subject of sending the second signal is the tag device
  • the execution subject of receiving the second signal is the receiving device as an example. The description here will not be repeated here.
  • the method includes:
  • Step 201 The sending device sends N first signals to the tag device.
  • the first signal may be a reference signal, a synchronization signal, or another signal sent by a sending device, such as a broadcast signal, which is not limited in the embodiment of the present application.
  • the positive integer may be an integer of 1, 2, 3 or greater, and the embodiment of the present application does not limit it.
  • Step 202 The tag device receives the first signal from the sending device.
  • the tag device may receive N1 first signals among the N first signals sent by the tag device from the sending device, where N1 is a positive integer less than or equal to N, for example, N1 is 1, 2 or other positive integers.
  • the first signal received in step 202 may be one of the N1 first signals.
  • Step 203 The tag device determines a second signal according to the received first signal, and sends the second signal to the receiving device.
  • the second signal corresponds to the first signal.
  • the second signal may be a random access preamble, a reference signal, a control channel, or other signals, which is not limited in this embodiment of the application.
  • Step 204 The receiving device receives the second signal from the tag device.
  • Step 205 The receiving device sends an instruction of the second signal to the sending device.
  • the indication of the second signal is used to indicate the second signal sent by the tag device to the receiving device.
  • the second signal corresponds to a first signal
  • the one first signal is the first signal among the N first signals sent by the sending device to the tag device.
  • the indication of the second signal may also directly or indirectly indicate the charging time required by the tag device, which will be described in detail later.
  • Step 206 The sending device receives an indication of the second signal from the receiving device.
  • the tag device when it receives the first signal, it can send a second signal corresponding to the first signal to the receiving device, and the receiving device can determine a first signal corresponding to the second signal according to the second signal, Therefore, it is determined that the charging of the tag device is completed according to the one first signal.
  • the receiving device sends the instruction of the second signal to the sending device, so that the sending device can determine a first signal corresponding to the second signal received by the tag device according to the instruction of the second signal, thereby determining the charging time required by the tag device.
  • the above steps 205 and 206 can be replaced with: the receiving device indicates the charging time required by the tag device to the sending device (step 205'), and the sending device receives the instruction from the receiving device to The charging time required for the tag device is determined (step 206').
  • the charging time required by the tag device can also be described as: the charging time required by the tag device, the charging time of the tag device, or the charging time of the tag device, etc., which are not limited in the embodiment of the present application.
  • the sending device may send N first signals within the first time period.
  • the first duration may be determined by the sending device, or configured by the receiving device for the sending device through signaling, or pre-defined (that is, known to the sending device, tag device, and receiving device).
  • Each of the N first signals may correspond to a signal index value, and each first signal may include its corresponding signal index value. If the length of the first duration is determined by the sending device or configured by the receiving device for the sending device through signaling, the sending device can indicate the length of the first duration to the label device through signaling, or the receiving device can signal The method indicates the length of the first duration to the label device.
  • the value of N may be determined by the sending device, or configured by the receiving device for the sending device through signaling, or it may be predefined. If the value of N is determined by the sending device or the receiving device is configured for the sending device through signaling, the sending device can indicate the value of N to the label device through signaling, or the receiving device can signal to the label device through the sending device. Indicates the value of N.
  • the signaling may be system messages, broadcast messages, radio resource control (radio resource control, RRC) signaling, media access control (MAC) control element (CE), Or one or a combination of physical layer control signaling, which is not limited in the embodiment of the present application.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • the sending device may send the first signal according to the first cycle. Or, within the first time period, the sending device may also send the first signal in an aperiodic manner.
  • the length of the first cycle may be determined by the sending device, or configured by the receiving device through signaling for the sending device, or it may be predefined. This is not limited. Each cycle includes at least one time unit. If the length of the first cycle is determined by the sending device or the receiving device configures the sending device through signaling, the sending device can indicate the length of the first cycle to the label device through signaling, or the receiving device can signal The method indicates the length of the first cycle to the label device.
  • the unit of a time unit can be seconds, milliseconds, microseconds, etc., and can also be common time units such as symbols, subframes, time slots, mini-slots, half frames, and radio frames.
  • the embodiment does not limit this.
  • one time unit may be 10 milliseconds, 5 milliseconds, 1 millisecond, 0.5 milliseconds, one subframe, 2 subframes, one time slot, and so on.
  • the offset value of the time unit in which the first signal is located in a cycle may be determined by the sending device, or configured by the receiving device through signaling, or It may be predefined, which is not limited in the embodiment of the present application.
  • the sending device may indicate the offset value to the label device through signaling, or the receiving device may indicate the offset value to the label device through signaling.
  • the offset value is determined by the sending device or the receiving device is configured for the sending device through signaling
  • the sending device may indicate the offset value to the label device through signaling, or the receiving device may send the label to the label through signaling.
  • the device indicates the offset value.
  • the offset value may be at least one time unit.
  • the unit of the time unit corresponding to the offset value and the unit of the time unit corresponding to the first period may be the same or different, which is not limited in the embodiment of the present application.
  • a first cycle includes M1 time slots, the size of the offset value is M2 time slots, M1 is a positive integer, and M2 is an integer ranging from 0 to M1-1;
  • a first cycle Includes a time slot, the size of the offset value is M3 symbols, M3 is an integer ranging from 0 to M4-1, and M4 represents the number of symbols (such as 7 or 14) included in a time slot.
  • the offset value can be 0.
  • the tag device before the sending device sends the first signal, the tag device is in a dormant state or a low power consumption state. At this time, the tag device can only receive signals, cannot send signals, or can only send a small amount of necessary signals. When the sending device sends the first signal, the tag device can use the received first signal for charging.
  • the sending device when the sending device sends the N first signals, the sending device may also send at least one third signal to the tag device, and the third signal is dedicated to charging the tag device.
  • the tag device receives the third signal, it converts the electromagnetic wave of the third signal into electric energy for charging.
  • the third signal can be a single-tone signal, that is, a continuous sine wave signal, or a multi-tone signal, that is, a signal with a specified bandwidth, and the third signal can also be other types of signals, which are not limited in the embodiments of this application. .
  • the tag device uses electromagnetic wave energy to convert electromagnetic waves into electrical energy for charging.
  • the tag device can record the signal index value or signal identifier of the first first signal received when the charging is completed, and the first received signal. Information such as the reception time of the first signal.
  • the first first signal in the method can also be replaced with the second first signal, the first signal whose received energy exceeds the threshold, etc.
  • the embodiment of this application does not limit it.
  • when the tag device is fully charged it can be in an active state, and it can either receive signals or send signals.
  • the sending device may or may not send the third signal, which is not limited in the embodiment of the present application.
  • the sending device may send the third signal according to the second cycle.
  • the sending device may also send the third signal in an aperiodic manner.
  • the length of the second period may be determined by the sending device, or configured by the receiving device for the sending device through signaling, or it may be predefined. This is not limited.
  • the sending device can indicate the length of the second cycle to the label device through signaling, or the receiving device can signal The method indicates the length of the second period to the tag device.
  • the offset value of the time unit in which the first signal is located in a second cycle can be determined by the sending device or configured by the receiving device through signaling , It may also be predefined, which is not limited in the embodiment of the present application.
  • the sending device may indicate the offset value to the label device through signaling, or the receiving device may indicate the offset value to the label device through signaling.
  • the sending device may indicate the offset value to the label device through signaling, or the receiving device may send the label to the label through signaling.
  • the device indicates the offset value.
  • the offset value may be at least one time unit.
  • the unit of the time unit corresponding to the offset value and the unit of the time unit corresponding to the second period may be the same or different, which is not limited in the embodiment of the present application.
  • a second cycle includes M5 time slots, the size of the offset value is M6 time slots, M5 is a positive integer, and M6 is an integer ranging from 0 to M5-1;
  • a second cycle Includes a time slot, the size of the offset value is M7 symbols, M7 is an integer ranging from 0 to M4-1, and M4 represents the number of symbols (such as 7 or 14) included in a time slot.
  • the offset value can be 0.
  • the tag device can record the first third signal received and the first first signal received when the charging is completed. Information such as the transmission time of the previous third signal.
  • the first first signal in the method can also be replaced with the second first signal, the first signal whose received energy exceeds the threshold, etc. ;
  • the previous third signal in the method can also be replaced with the next third signal or other third signals, which is not limited in the embodiment of the present application.
  • when the tag device is fully charged it can be in an active state, and it can either receive signals or send signals. This replacement method can be applied to the corresponding method in each embodiment of the present application.
  • the sending device sends the first signal and the third signal respectively.
  • there may be an association relationship between the third signal and the first signal for example, there may be an association relationship between the transmission time of the third signal and the first signal.
  • there is a fixed time offset between the first signal and the third signal and the fixed time offset is a preset value. At this time, after the sending time of the first signal is determined, the sending time of the third signal associated with the first signal can also be determined.
  • a positive integer number for example, 2, 3, or more third signals are evenly distributed between the sending times of every two first signals.
  • the second signal when the tag device is fully charged, after receiving the first first signal, the second signal can be determined in various ways, which are described in detail below.
  • the first first signal in this method can also be replaced with a second first signal, the first signal whose received energy exceeds the threshold.
  • the sending device may send configuration information to the tag device, where the configuration information is used to indicate the correspondence between the N first signals and the M second signals; or , Before the sending device sends the N first signals, in the previous communication process with the tag device, it sends configuration information to the tag device, where the configuration information is used to indicate the N first signals and M second signals. Correspondence of signals.
  • the corresponding relationship may be determined by the sending device and indicated to the label device; or determined by the receiving device and indicated to the label device through the sending device, which is not limited in the embodiment of the present application.
  • M is a positive integer.
  • the sending device may not send configuration information. At this time, the correspondence between the N first signals and the M second signals is pre-configured.
  • one first signal may only correspond to one second signal, one first signal may also correspond to multiple second signals, and of course, multiple first signals may correspond to one second signal.
  • the correspondence between the N first signals and the M second signals includes a signal identifier of the second signal corresponding to any one of the N first signals.
  • the correspondence between the N first signals and M second signals may be as shown in Table 1-1.
  • the identifier of the second signal may specifically be an index value of the second signal.
  • one first signal can correspond to one second signal, or can correspond to multiple second signals.
  • the first first signal corresponds to one second signal; the second first signal corresponds to two second signals, and other situations will not be repeated.
  • multiple first signals may correspond to one second signal.
  • Table 1-2 two first signals correspond to one second signal.
  • Table 1-2 is just an example, and there are other situations, so I won't repeat them here.
  • the index value of the first signal in the correspondence between the first signal and the second signal can also be described as the identifier of the first signal, which can also be replaced by the following other parameters of the first signal One or more combinations of: time domain resource information of the first signal, frequency domain resource information of the first signal, and signal generation parameters of the first signal, etc.
  • the tag device can determine the identity of the corresponding second signal according to the received first signal, so as to send the second signal corresponding to the identity. For example, when the second signal is a random access preamble, the tag device may determine the random access preamble identifier corresponding to the first signal according to the first signal, and send the random access preamble identifier corresponding to the random access preamble identifier to the receiving device. Enter the preamble.
  • the receiving device receives the second signal, and can determine the first signal received by the tag device according to the correspondence between the first signal and the second signal.
  • the correspondence between the N first signals and the M second signals includes the time domain resource or time domain of the second signal corresponding to any one of the N first signals Resource ID.
  • the first signal does not directly correspond to the second signal, but has a corresponding relationship with the time domain resource for sending the second signal.
  • the specific content of the second signal sent in the time domain resource can be combined. Not limited.
  • the time-frequency resource includes P time units in the time domain and Q frequency domain units in the frequency domain, and both P and Q are integers greater than zero.
  • the tag device can send the second signal in a time-frequency unit, and a time-frequency unit includes 1 time unit and 1 frequency domain unit.
  • the time unit may refer to symbols (such as orthogonal frequency division multiplexing (OFDM) symbols), subframes, time slots, and so on.
  • the frequency domain unit may refer to a subcarrier, a resource block (resource block, RB), a resource block group (resource block group, RBG), and so on.
  • the correspondence between the N first signals and M second signals may be as shown in Table 2-1.
  • one first signal may correspond to one time domain resource, or may correspond to multiple time domain resources.
  • the first first signal corresponds to one time domain resource, that is, time unit 1;
  • the Nth first signal corresponds to two time domain resources, namely, time unit P-1 and time unit P, and other situations will not be repeated.
  • multiple first signals may correspond to one time domain resource.
  • Table 2-2 two first signals correspond to the time domain resources of one second signal.
  • Table 2-2 is only an example, there are other situations, so I won't repeat them here.
  • the tag device can determine the time domain resource for transmitting the second signal according to the received first signal.
  • the tag device can send the second signal through the time domain resource.
  • the receiving device may determine the first signal received by the tag device according to the correspondence between the time domain resources of the first signal and the second signal.
  • the correspondence between the N first signals and the M second signals includes the frequency domain resource or frequency domain of the second signal corresponding to any one of the N first signals Resource ID.
  • the first signal does not directly have a corresponding relationship with the second signal, but has a corresponding relationship with the frequency domain resource for transmitting the second signal.
  • the correspondence between the N first signals and the M second signals may be as shown in Table 3-1.
  • one first signal may correspond to one frequency domain resource, or may correspond to multiple frequency domain resources.
  • the first first signal corresponds to two frequency domain resources, namely, frequency domain unit and frequency domain unit 2; the Nth first signal corresponds to one frequency domain resource, namely frequency domain resource Q, and other situations will not be repeated.
  • multiple first signals may correspond to one frequency domain resource.
  • Table 3-2 two first signals correspond to frequency domain resources of one second signal.
  • Table 3-2 is just an example, and there are other situations, so I won't repeat them here.
  • the tag device can determine the frequency domain resource for transmitting the second signal according to the received first signal.
  • the tag device can send the second signal through the frequency domain resource.
  • the receiving device may determine the first signal received by the tag device according to the correspondence between the frequency domain resources of the first signal and the second signal.
  • the correspondence between the N first signals and the M second signals includes time-frequency resources or time-frequency resources of the second signal corresponding to any one of the N first signals. Resource ID.
  • the corresponding relationship indicated by the configuration information may be as shown in Table 4-1.
  • multiple first signals may correspond to one time-frequency resource.
  • the tag device can determine the time-frequency resource for transmitting the second signal according to the received first signal, and send the second signal through the time-frequency source.
  • the receiving device may determine the first signal received by the tag device according to the correspondence between the time-frequency resources of the first signal and the second signal.
  • the correspondence between the N first signals and the M second signals includes sequence parameters or sequence parameters of the second signal corresponding to any one of the N first signals.
  • the sequence parameters of the second signal can be used to generate the second signal.
  • the sequence of the second signal may be generated by cyclic shifting using a reference ZC (Zadoff-Chu) root sequence, and the sequence parameter of the second signal may be the root and/or cyclic shift value corresponding to the second signal.
  • the sequence of the second signal may be a pseudo-random sequence, and the sequence parameter of the second signal may be the initial value of the pseudo-random sequence, and other cases will not be illustrated one by one.
  • the correspondence between the N first signals and M second signals may be as shown in Table 5-1.
  • multiple first signals may correspond to one time-frequency resource.
  • Table 5-2 two first signals correspond to the sequence parameters of one second signal.
  • Table 5-2 is just an example, there are other situations, so I won’t repeat them here.
  • the tag device can determine the sequence parameter of the corresponding second signal according to the received first signal, and send the second signal generated by the sequence parameter.
  • the receiving device receives the second signal, and can determine the first signal received by the tag device according to the correspondence between the sequence parameters of the first signal and the second signal.
  • N first signals and M second signals may include other content, for example, it may indicate a combination of at least two of the following items:
  • the signal identifier of the second signal corresponding to any one of the first signals
  • the sequence parameter of the second signal corresponding to any one of the first signals.
  • step 205 after receiving the second signal, the receiving device can send an indication of the second signal to the sending device; or, as in step 205', after receiving the second signal, the receiving device can send to the sending device Indicates the charging time required for the tag device.
  • the charging time required by the tag device can be directly or indirectly indicated.
  • the indication of the second signal may indirectly indicate the charging time required by the tag device.
  • the indication of the second signal may be the signal index value of the first signal received by the tag device, or the receiving time of the first signal, or the first signal.
  • the receiving device can determine the first signal received by the tag device or the third signal received by the tag device to complete the charging according to the second signal, so that the first signal or The third signal determines the charging time of the tag device.
  • the time granularity of the indicated charging time may be: milliseconds, microseconds, symbols (such as OFDM symbols), time slots, etc., which are not limited in the embodiment of the present application.
  • the receiving device may use the sending time of the first signal sent by the sending device first among the N first signals as the starting time of charging the tag device.
  • the sending time of the first signal corresponding to the second signal is taken as the end time when the tag device completes charging.
  • the length of time between the start time when the receiving device charges the tag device and the end time when the tag device completes charging determines the charging time required by the tag device.
  • the sending device sends the first signal of the N first signals from the first moment, and the sending moment of the first signal corresponding to the second signal received by the receiving device is the second moment, then the tag
  • the charging time required by the device is the length of time between the first moment and the second moment.
  • the receiving device may use the sending moment of the first third signal sent by the sending device as the starting moment of charging the tag device.
  • the sending time of the first signal corresponding to the second signal is taken as the end time when the tag device completes charging.
  • the receiving device can determine the length of time between the start time of charging the tag device and the end time when the tag device is charged to determine the charging time required by the tag device.
  • the receiving device may use the sending moment of the first third signal sent by the sending device as the starting moment of charging the tag device.
  • the sending moment of the last third signal before the first signal corresponding to the second signal is taken as the end moment when the tag device completes charging.
  • the receiving device determines the first signal corresponding to the second signal, it can determine the sending time of the first signal.
  • the receiving device can thus determine the last third signal sent by the sending device before the sending moment of the first signal.
  • the receiving device may determine the length of time between the start time of charging the tag device and the end time when the tag device completes charging as the required charging time of the tag device.
  • the starting time of charging the tag device may also be a predefined time, or the time when the receiving device or the sending device is configured, which is not limited in the embodiment of the present application, and will not be repeated here.
  • the receiving device can configure the moment for the sending device through signaling, or configure the moment for the label device through the sending device.
  • the sending device may indicate the moment for the receiving device through signaling, and indicate the moment for the tag device through signaling.
  • the sending device can determine the charging time required by the tag device according to the instruction of the second signal.
  • the sending device may receive the charging time required by the tag device.
  • the sending device can directly determine the charging time required by the tag device.
  • the sending device may according to the signal index value of the first signal indicated by the indication of the second signal, or the receiving time of the first signal , Or the signal index value of the last third signal before the first signal, and other information to determine the charging time required by the tag device.
  • the method for the sending device to determine the charging time required by the tag device may be the same as the method for the receiving device to determine the charging time required by the tag device, which will not be repeated here.
  • the tag device After the sending device determines the charging time required by the tag device, before the next communication with the tag device, the tag device can be charged according to the charging time, thereby improving the communication efficiency between the sending device and the tag device and avoiding uncertain tags
  • the sending device and/or the receiving device can communicate with the tag device without waiting for a long time for the tag device to complete charging.
  • the sending device may not send configuration information to indicate the correspondence between the first signal and the second signal, but configure the timing between the transmission of the first signal and the transmission of the second signal. relationship.
  • the timing relationship can be predefined, or it can be instructed by the sending device for the tag device and the receiving device through signaling (for example, the sending device is instructed by the tag device in the previous data transmission process), or the receiving device can be The device is indicated by the tag device (for example, the receiving device is indicated by the tag device in the previous data transmission process).
  • the time domain resource for sending the one first signal corresponds to the time unit n
  • the tag device receives the one at the time unit n.
  • the tag device may send the second signal in the time unit n+k
  • the receiving device may receive the second signal in the time unit n+k.
  • n is an integer
  • k is an integer greater than or equal to 0
  • the value of k can be a pre-configured value
  • the value of k can also be a value configured by the sending device for the label device through signaling (the sending device also The value can be indicated to the receiving device through signaling, or the value configured by the receiving device for the label device through the sending device.
  • one time unit can correspond to at least one time-frequency resource, and each time-frequency resource occupies the same or different subcarriers or bandwidth parts in the frequency domain in the same time unit, and can occupy the same time-frequency resource in the time domain. Or different sub-time units, where the same time unit includes one or more of the sub-time units, for example, a time slot includes multiple symbols.
  • one time unit corresponds to four time-frequency resources as an example for description, and other situations will not be repeated.
  • the tag device sends the second signal.
  • the embodiment of the present application does not limit this.
  • the tag device can be included in the time unit n+k.
  • One of the time-frequency resources is arbitrarily selected to send the second signal, and the time-frequency resource for sending the second signal may also be determined in other ways, which will not be repeated here.
  • the sending device configures the value of k to the label device, it may be sent through the corresponding first signal, or through a separate message, which is not limited in the embodiment of the present application.
  • the receiving device may send an indication of the second signal to the sending device or the charging time required by the tag device.
  • the receiving device can use the start time of the time unit occupied by the first signal sent by the sending device among the N first signals as the tag device The start time of charging.
  • the receiving device receives the second signal, it can determine the first first signal received by the tag device to complete charging according to the time unit of receiving the second signal, so that the end time or start of the time unit occupied by the first signal can be determined
  • the time is the end time when the tag device completes charging, which can be determined as the charging time required by the tag device.
  • the receiving device can determine that a first signal corresponding to the second signal is sent by the sending device in the time unit mk. If the sending device sends N The start time unit of the first signal is the time unit h, and the receiving device can thus determine the length of time between the start time of the time unit h and the end time of the time unit mk as the charging time required by the tag device.
  • the start time of charging the tag device may also have other implementations.
  • the sending time of the first third signal sent by the sending device can also be used as the tag device The starting time of charging; or, the starting time of charging the tag device, which may also be a predefined time, or the time configured by the sending device or the receiving device.
  • the sending device sends a third signal
  • the sending time of the last third signal before the first signal corresponding to the second signal can also be used as the tag device
  • the indication of the second signal may be the signal index value of the first signal, or the receiving time of the first signal, Or the signal index value of the last third signal before the first signal, etc.
  • the indication of the second signal indirectly indicates the charging time of the tag device
  • the receiving device may not need to determine the charging time of the tag device.
  • the sending device needs to determine the charging time required by the tag device according to the indication of the second signal. For how the sending device specifically determines the charging time, please refer to the description in the method for the receiving device to determine the charging time, which will not be repeated here.
  • the sending device determines the charging time of the tag device according to the instruction of the second signal, before communicating with the tag device next time, it can send the first signal or the third signal of corresponding duration according to the charging time to charge the tag device, whereby, the communication efficiency between the sending device and the tag device can be improved, and the situation of waiting for the tag device to complete charging for a long time due to the uncertain charging time of the tag device can be avoided.
  • the sending device informs the sending device whether the charging is completed through the instruction of the second signal or by indicating the charging time required by the tag device.
  • the tag device after the tag device has completed charging, it can also directly indicate to the receiving device which first signal is received, which will be described in detail below.
  • FIG. 6 it is a schematic flowchart of a signal transmission method provided by an embodiment of this application.
  • the execution subject of sending the first signal is the sending device
  • the execution subject of sending the second signal is the tag device
  • the execution subject of the instruction for sending the second signal is the receiving device as an example. You can refer to the description here, which will not be repeated here.
  • the method includes:
  • Step 601 The sending device sends N first signals to the tag device.
  • the first signal may be a reference signal, a synchronization signal, or another signal sent by a sending device, such as a broadcast signal, which is not limited in the embodiment of the present application.
  • the sending device may also send at least one third signal to the tag device, and the third signal is dedicated to charging the tag device.
  • the specific content of the first signal and the third signal, and the relationship between the third signal and the first signal, etc. reference may be made to the corresponding description in the flow shown in FIG. 2, which will not be repeated here.
  • Step 602 The tag device receives the first signal from the sending device.
  • Step 603 The tag device sends an indication of the first signal to the receiving device.
  • the indication of the first signal is used to indicate the first signal received by the tag device among the N first signals. It should be noted that the first signal is the first first signal received from the N first signals after the tag device is fully charged. In practical applications, according to the requirements for charging accuracy or other requirements, the first first signal in this method can also be replaced with the second first signal, the first signal whose received energy exceeds the threshold, etc. The application examples are not limited.
  • the indication of the first signal may be a signal index value of the first signal, or may be time information when the first signal is received, etc., which is not limited in the embodiment of the present application.
  • the signal index value of the first signal may be carried by the first signal itself.
  • the tag device may also receive capability query information sent by the sending device, where the capability query information is used to request the instruction of the first signal.
  • the tag device receives the capability query information, it sends an indication of the first signal to the receiving device.
  • Step 604 The receiving device receives an indication of the first signal from the tag device, and sends a charging time indication to the sending device.
  • the charging time indicator is used to indicate the charging time required by the tag device.
  • the charging time indication may directly indicate the charging time required by the tag device.
  • the charging time indication may be a specific value of the charging time, etc., and its unit may be seconds, milliseconds, time slots, sub Frames, frames, etc., are not limited in the embodiment of this application.
  • the receiving device can determine the charging time through various methods.
  • the receiving device may use the sending time of the first signal sent by the sending device first among the N first signals as the starting time of charging the tag device.
  • the receiving device uses the instructed sending time of the first signal as the end time when the tag device completes charging.
  • the length of time between the start time when the receiving device charges the tag device and the end time when the tag device completes charging is determined as the charging time required by the tag device.
  • the receiving device may use the sending moment of the first third signal sent by the sending device as the starting moment of charging the tag device.
  • the receiving device uses the instructed sending time of the first signal as the end time when the tag device completes charging.
  • the receiving device can determine the length of time between the start time of charging the tag device and the end time when the tag device completes charging as the charging time required by the tag device.
  • the receiving device may use the sending moment of the first third signal sent by the sending device as the starting moment of charging the tag device.
  • the sending time of the last third signal before the instructed first signal is taken as the end time when the tag device completes charging.
  • the receiving device can determine the length of time between the start time of charging the tag device and the end time when the tag device completes charging as the charging time required by the tag device.
  • the starting time of charging the tag device can also be a predefined time, or the time when the receiving device is configured as a sending device, or the sending device is the time indicated by the label device and the receiving device. This example is not limited, so I won't repeat it here.
  • the starting moment is the moment when the receiving device is configured as a sending device, the receiving device can also configure the starting moment to the label device through the sending device.
  • the charging time indication may also indirectly indicate the charging time of the tag device.
  • the charging time indication may be the signal index value of the first signal, or the receiving time of the first signal, or before the first signal The signal index value of the last third signal, etc.
  • the receiving device may not need to determine the charging time of the tag device.
  • the sending device needs to determine the charging time required by the tag device according to the charging time indication.
  • the method used by the sending device to determine the charging time of the tag device may be the same as that of the receiving device, which will not be repeated here.
  • the sending device can determine the charging time of the tag device according to the charging time indication. After the sending device determines the charging time of the tag device, before the next communication with the tag device, it can send the first signal or the third signal of corresponding duration according to the charging time to charge the tag device, thereby improving the communication between the sending device and the tag device. Communication efficiency.
  • the sending device may also determine the charging time of the tag device in the following manner.
  • Step 701 The sending device sends N first signals to the label device.
  • the sending device may also send at least one third signal to the tag device, and the third signal is dedicated to charging the tag device.
  • the specific content of the first signal and the third signal, and the relationship between the third signal and the first signal reference may be made to the corresponding description in the flow shown in FIG. 2, which will not be repeated here.
  • Step 702 The sending device sends end instruction information to the tag device, where the end instruction information is used to indicate that all the N first signals have been sent.
  • Step 703 After receiving the first signal, the tag device starts a timer.
  • the initial value of the timer is 0.
  • the first signal is the first first signal received from the N first signals after the tag device is fully charged.
  • Step 704 After receiving the end instruction information, the tag device turns off the timer, and determines the timing duration recorded by the timer.
  • the timing duration is the duration between receiving the first first signal when the tag device is fully charged and receiving the end indication information.
  • step 705 the sending device sends charging time query information to the tag device, where the charging time query information is used to request the charging time required by the tag device.
  • the tag device determines the charging time required by the tag device according to the timing duration.
  • Step 706 The tag device sends the timing duration or the charging time required by the tag device to the receiving device.
  • the sending in this step can also be replaced with instructions.
  • the tag device may send the timing duration or the charging time required by the tag device after receiving the charging time query information.
  • Step 707 The receiving device sends the timing duration or the charging time required by the tag device to the sending device.
  • the sending in this step can also be replaced with instructions.
  • the receiving device sends the timing duration or the charging time required by the tag device to the sending device. At this time, the charging time required by the tag device is determined by the receiving device according to the timing duration.
  • the receiving device sends the charging time required by the tag device to the sending device.
  • the receiving device may determine the charging time according to the timing duration. For example, the receiving device may determine the total time length from the start time of charging the tag device to the sending time of the end indication information, and determine the charging time as the difference value obtained by subtracting the timing time from the total time length. The determination method can also be applied to the tag device to determine the required charging time.
  • the starting time of charging the tag device can be the sending time of the first signal sent first among the N first signals, or the sending time of the third signal sent first, or a predefined time. , Or the time when the device is configured to be received, which is not limited in this embodiment of the present application.
  • Step 708 The sending device receives the timing duration, and determines the charging time required by the tag device according to the timing duration.
  • the charging time required by the sending device to receive the tag device is the charging time required by the sending device to receive the tag device.
  • the method for the sending device to determine the charging time required by the tag device according to the timing duration may be the same as the method for the receiving device to determine the charging time based on the timing duration, which will not be repeated here.
  • the tag device may also send the signal index value of the first signal first received by the tag device after the charging is completed, or the receiving time of the first signal.
  • the first first signal in this method can also be replaced with the second first signal, the first signal whose received energy exceeds the threshold, etc. The application examples are not limited.
  • the receiving device may also determine the charging time of the tag device according to the signal index value of the first signal or the receiving time of the first signal. For the specific determination, refer to the method shown in FIG. 2 for the receiving device to determine the charging time of the tag device, which will not be repeated here.
  • the sending device may also determine the charging time of the tag device according to the signal index value of the first signal or the receiving time of the first signal. For the specific determination, refer to the method shown in FIG. 2 for the receiving device to determine the charging time of the tag device, which will not be repeated here.
  • the tag device may also send the signal index value of the last third signal before the first signal first received by the tag device after the charging is completed, or the receiving time of the third signal .
  • the first first signal in this method can also be replaced with the second first signal, the first signal whose received energy exceeds the threshold, etc. The application examples are not limited.
  • the receiving device may also determine the charging time of the tag device according to the signal index value of the third signal or the receiving time of the third signal. For the specific determination, refer to the method shown in FIG. 2 for the receiving device to determine the charging time of the tag device, which will not be repeated here.
  • the sending device may also determine the charging time of the tag device according to the signal index value of the third signal or the receiving time of the third signal. For the specific determination, refer to the method shown in FIG. 2 for the receiving device to determine the charging time of the tag device, which will not be repeated here.
  • the methods provided by the embodiments of the present application are introduced from the perspective of interaction between the sending device, the tag device, and the receiving device.
  • the sending device, the tag device, and the receiving device may include a hardware structure and/or software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module To achieve the above functions. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 800 for implementing the functions of the sending device, the tag device or the receiving device in the above method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 800 may include: a processing module 801 and a communication module 802.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in one processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the communication module 802 is used to send N first signals to the tag device; where N is a positive integer; and the first signal is received from the receiving device Indication of the second signal, the second signal is a signal sent by the tag device to the receiving device, the second signal corresponds to a first signal, and the N first signals include the second signal corresponding to The one first signal.
  • the processing module 801 is configured to determine the charging time of the tag device according to the instruction of the second signal.
  • the communication module 802 is configured to receive the first signal from the sending device.
  • the processing module 801 is configured to determine a second signal according to the first signal, and the second signal corresponds to the first signal.
  • the communication module 802 is configured to send the second signal to the receiving device.
  • the communication module 802 is used to receive the second signal from the tag device.
  • the processing module 801 is configured to determine an indication of a second signal, the second signal corresponds to a first signal, and the first signal is a first signal sent by the sending device to the tag device.
  • the communication module 802 is configured to send an instruction of the second signal to a sending device.
  • the apparatus 800 can also implement the functions of the sending device, the tag device, and the receiving device in the process shown in FIG. 6 or FIG. 7. For details, reference may be made to the description in the method process shown in FIG. 6 or 7, which will not be repeated here.
  • FIG. 9 shows a device 900 provided by an embodiment of the application, and the device shown in FIG. 9 may be a hardware circuit implementation of the device shown in FIG. 8.
  • the communication device can be applied to the flowcharts shown in FIGS. 2 to 7 to perform the functions of the sending device or the tag device or the receiving device in the foregoing method embodiment.
  • FIG. 9 only shows the main components of the communication device.
  • the apparatus 900 shown in FIG. 9 includes at least one processor 920, configured to implement the functions of the sending device, the tag device, or the receiving device in the method provided in the embodiment of the present application.
  • the device 900 may also include at least one memory 930 for storing program instructions and/or data.
  • the memory 930 and the processor 920 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 920 may cooperate with the memory 930 to operate.
  • the processor 920 may execute program instructions stored in the memory 930. At least one of the at least one memory may be included in the processor.
  • the apparatus 900 may further include a communication interface 910 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 900 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the processor 920 uses the communication interface 910 to send and receive data, and is used to implement the method executed by the sending device or the tag device or the receiving device in the embodiments corresponding to FIGS. 2 to 7.
  • the communication interface 910 is used to send N first signals to the tag device; where N is a positive integer; the first signal is received from the receiving device Indication of the second signal, the second signal is a signal sent by the tag device to the receiving device, the second signal corresponds to a first signal, and the N first signals include the second signal corresponding to The one first signal.
  • the processor 920 is configured to determine the charging time of the tag device according to the instruction of the second signal.
  • the communication interface 910 is used to receive the first signal from the sending device.
  • the processor 920 is configured to determine a second signal according to the first signal, where the second signal corresponds to the first signal.
  • the communication interface 910 is configured to send the second signal to the receiving device.
  • the communication interface 910 is used to receive the second signal from the tag device.
  • the processor 920 is configured to determine an indication of a second signal, where the second signal corresponds to a first signal, and the first signal is a first signal sent by the sending device to the tag device.
  • the communication interface 910 is configured to send an instruction of the second signal to a sending device.
  • the apparatus 900 can also implement the functions of the sending device, the tag device, and the receiving device in the flow shown in FIG. 6 or FIG. 7.
  • the apparatus 900 can also implement the functions of the sending device, the tag device, and the receiving device in the flow shown in FIG. 6 or FIG. 7.
  • connection medium between the above-mentioned communication interface 910, the processor 920, and the memory 930 is not limited in the embodiment of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected by a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9, and the connection modes between other components are merely illustrative. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware
  • the components can implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as executed and completed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信号传输方法及装置,其中方法包括:向标签设备发送N个第一信号;从接收设备接收第二信号的指示,第二信号是标签设备向接收设备发送的信号,N个第一信号包括第二信号对应的所述一个第一信号。示例性地,所述第一信号是参考信号或同步信号,所述第二信号是随机接入前导。采用本申请提供的方法及装置,通过向标签设备发送N个第一信号,使得标签设备在完成充电时,将接收到的N个第一信号中的第一信号对应的第二信号通过接收设备发送至发送设备,发送设备从而可以根据第二信号的指示确定标签设备的充电时间,可以在后续与标签设备的通信过程中,与标签设备实现无缝对接,及时向标签设备传输数据,提高系统的资源利用率。

Description

一种信号传输方法及装置
相关申请的交叉引用
本申请要求在2019年07月29日提交国家知识产权局、申请号为201910690757.0、申请名称为“一种信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法及装置。
背景技术
反向散射通信(backscatter communication)是一种极低功耗、低成本的被动式射频识别(radio frequency identification,RFID)通信技术,适用于对功耗较敏感的物联网(internet of things,IoT)等场景中。反向散射通信技术中,可以包括三个节点:发送设备、标签设备以及接收设备。发送设备可以发送激励信号。标签设备接收到激励信号之后,将需要发送的数据调制到激励信号上,获得反射信号,并向接收设备发送反射信号。
发明内容
本申请实施例提供一种信号传输方法及装置,用以确定标签设备所需的充电时间。
第一方面,提供一种信号传输方法,包括:向标签设备发送N个第一信号;其中,N为正整数;从接收设备接收第二信号的指示,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。所述第二信号是所述标签设备向所述接收设备发送的信号。
通过上面的方法,通过向标签设备发送N个第一信号,使得标签设备在完成充电时,将接收到的N个第一信号中的第一信号对应的第二信号通过接收设备发送至发送设备,发送设备从而可以根据第二信号的指示可以确定标签设备所需的充电时间,从而可以在后续与标签设备的通信过程中,与标签设备实现无缝对接,在标签设备完成充电时向标签设备传输数据,提高系统的资源利用率,保障通信的可靠性。
在一种可能的设计中,所述方法还包括:向所述标签设备发送配置信息,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系,其中,M为正整数。
由上可见,在本申请实施例中,通过配置信息,指示出N个第一信号和M个第二信号的对应关系,使得接收设备、标签设备之间,采用上述对应关系指示与第一信号对应的第二信号,从而可以确定标签设备完成充电时接收到的第一信号,从而可以确定标签设备所需的充电时间。
在一种可能的设计中,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系,包括:对于所述N个第一信号中的一个第一信号,所述配置信息用于指示以下至少一项:
所述一个第一信号对应的第二信号的信号标识;用于传输所述一个第一信号对应的第 二信号的时域资源;用于传输所述一个第一信号对应的第二信号的频域资源;和,所述一个第一信号对应的第二信号的序列参数。
由上可见,在本申请实施例中,N个第一信号和M个第二信号的对应关系存在多种实现方式,可以根据实际情况选择其中一种或多种实现方式,提高系统的鲁棒性和实现灵活性。
在一种可能的设计中,所述第二信号对应于一个第一信号,包括:所述一个第一信号是在时间单元n上传输的信号,所述第二信号是在时间单元n+k上传输的信号,其中,n是整数,k是大于或等于0的整数。通过该方法,从发送时序上建立第一信号和第二信号之间的关联关系,可以降低信令开销。
在一种可能的设计中,k的取值为预配置的值,或者通过信令向所述标签设备指示的值。
在一种可能的设计中,所述第一信号是参考信号或者同步信号。
在一种可能的设计中,所述第二信号是随机接入前导码。
由上可见,在本申请实施例中,通过复用随机接入前导码的传输来实现确定标签设备所需的充电时间,避免对协议的过多修改。
在一种可能的设计中,所述方法还包括:根据所述第二信号,以及所述第二信号和所述一个第一信号的对应关系,确定所述标签设备的充电时间。
由上可见,在本申请实施例中,标签设备的充电时间是根据第二信号对应的第一信号确定的,实现起来简单,能够按照每个标签设备的粒度确定充电时间,克服现有技术中只能采用统一的充电时长的方法,导致部分标签设备不能在统一的充电时长内完成充电,或者在统一的充电时长内提前完成充电,在此资源浪费的问题。
第二方面,提供一种装置,该装置可以是发送设备,也可以是发送设备中的装置,或者是能够和发送设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,通信模块,用于向标签设备发送N个第一信号;其中,N为正整数;从接收设备接收第二信号的指示,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。
处理模块,用于根据第二信号的指示确定所述标签设备的充电时间。所述第二信号是所述标签设备向所述接收设备发送的信号。
所述处理模块以及所述通信模块执行的其它方法可以参考第一方面中的描述,这里不再赘述。
第三方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,向标签设备发送N个第一信号;其中,N为正整数;从 接收设备接收第二信号的指示,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。所述第二信号是所述标签设备向所述接收设备发送的信号。
所述处理器执行的其它方法可以参考第一方面中的描述,这里不再赘述。
第四方面,提供一种信号传输方法,包括:从发送设备接收第一信号;根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号;向接收设备发送所述第二信号。
在一种可能的设计中,所述方法还包括:
从所述发送设备接收配置信息,所述配置信息用于指示N个第一信号和M个第二信号的对应关系,其中,N、M为正整数,所述N个第一信号包括所述第一信号,所述M个第二信号包括所述第二信号。
在一种可能的设计中,所述配置信息用于指示N个第一信号和M个第二信号的对应关系,包括:
对于所述N个第一信号中的一个第一信号,所述配置信息用于指示以下至少一项:
所述一个第一信号对应的第二信号的信号标识;用于传输所述一个第一信号对应的第二信号的时域资源;用于传输所述一个第一信号对应的第二信号的频域资源;和,所述任一第一信号对应的第二信号的序列参数。
在一种可能的设计中,所述第二信号对应于所述第一信号,包括:所述第一信号是在时间单元n上传输的信号,所述第二信号是在时间单元n+k上传输的信号,其中,n是整数,k是大于或等于0的整数。
在一种可能的设计中,k的取值为预配置的值,或者通过信令向所述标签设备指示的值。
在一种可能的设计中,所述第一信号是参考信号或者同步信号。
在一种可能的设计中,所述第二信号是随机接入前导码。
第五方面,提供一种装置,该装置可以是标签设备,也可以是标签设备中的装置,或者是能够和标签设备匹配使用的装置。一种设计中,该装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,通信模块,用于从发送设备接收第一信号。
处理模块,用于根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号。
通信模块,用于向接收设备发送所述第二信号。
所述处理模块以及所述通信模块执行的其它方法可以参考第四方面中的描述,这里不再赘述。
第六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第四方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从发送设备接收第一信号;根据所述第一信号确定第二 信号,所述第二信号对应于所述第一信号;向接收设备发送所述第二信号。
所述处理器执行的其它方法可以参考第四方面中的描述,这里不再赘述。
第七方面,本申请实施例提供一种信号传输方法,包括:从标签设备接收第二信号;向发送设备发送所述第二信号的指示,所述第二信号对应于一个第一信号。所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
通过上面的方法,接收设备根据第二信号确定所述第二信号对应的一个第一信号,从而根据所述一个第一信号确定标签设备充电完成。接收设备通过向发送设备发送第二信号的指示,可以使得发送设备根据第二信号的指示,确定标签设备接收到第二信号对应的一个第一信号,从而使得发送设备确定标签设备所需的充电时间。
在一种可能的设计中,所述第一信号是参考信号或者同步信号。
在一种可能的设计中,所述第二信号是随机接入前导码。
第八方面,提供一种装置,该装置可以是接收设备,也可以是接收设备中的装置,或者是能够和接收设备匹配使用的装置。一种设计中,该装置可以包括执行第七方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,通信模块,用于从标签设备接收第二信号;
处理模块,用于确定第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
通信模块,用于向发送设备发送所述第二信号的指示。
所述处理模块以及所述通信模块执行的其它方法可以参考第七方面中的描述,这里不再赘述。
第九方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第七方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第七方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从标签设备接收第二信号;向发送设备发送所述第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的N个第一信号中的第一信号,N为正整数。
所述处理器执行的其它方法可以参考第七方面中的描述,这里不再赘述。
第十方面,本申请实施例提供一种信号传输方法,包括:向标签设备发送N个第一信号;N为正整数;从接收设备接收充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间;根据充电时间指示确定标签设备所需的充电时间。
通过上面的方法,通过向标签设备发送N个第一信号,从而能够在标签设备在完成充电时,从接收设备获取充电时间指示,发送设备从而可以根据充电时间指示确定标签设备所需的充电时间,从而可以在后续与标签设备的通信过程中,与标签设备实现无缝对接,在标签设备完成充电时向标签设备传输数据,提高系统的资源利用率,保障通信的可靠性。
在一个可能的设计中,所述从接收设备接收第一信号的指示之前,还包括:
向标签设备发送能力查询信息,所述能力查询信息用于请求所述第一信号的指示。
在一个可能的设计中,所述第一信号是参考信号或者同步信号。
第十一方面,提供一种装置,该装置可以是发送设备,也可以是发送设备中的装置,或者是能够和发送设备匹配使用的装置。一种设计中,该装置可以包括执行第十方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,通信模块,用于向标签设备发送N个第一信号;N为正整数;从接收设备接收充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
处理模块,用于根据充电时间指示确定标签设备所需的充电时间。
所述处理模块以及所述通信模块执行的其它方法可以参考第十方面中的描述,这里不再赘述。
第十二方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,向标签设备发送N个第一信号;N为正整数;从接收设备接收充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间;根据充电时间指示确定标签设备所需的充电时间。
所述处理器执行的其它方法可以参考第十方面中的描述,这里不再赘述。
第十三方面,本申请实施例提供一种信号传输方法,包括:从发送设备接收第一信号;根据所述第一信号确定所述第一信号的指示,所述第一信号的指示用于指示标签设备在N个第一信号中接收到的第一信号,N为正整数;向接收设备发送所述第一信号的指示。
在一个可能的设计中,所述第一信号是参考信号或者同步信号。
第十四方面,提供一种装置,该装置可以是标签设备。一种设计中,该装置可以包括执行第十三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
示例性地,通信模块,用于从发送设备接收第一信号;
处理模块,用于根据所述第一信号确定所述第一信号的指示,所述第一信号的指示用于指示标签设备在N个第一信号中接收到的第一信号,N为正整数。
通信模块,用于向接收设备发送所述第一信号的指示。
所述处理模块以及所述通信模块执行的其它方法可以参考第十三方面中的描述,这里不再赘述。
第十五方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十三方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十三方面描 述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从发送设备接收第一信号;根据所述第一信号确定所述第一信号的指示,所述第一信号的指示用于指示标签设备在N个第一信号中接收到的第一信号,N为正整数;向接收设备发送所述第一信号的指示。
所述处理器执行的其它方法可以参考第十三方面中的描述,这里不再赘述。
第十六方面,本申请实施例提供一种信号传输方法,包括:从标签设备接收第一信号的指示;根据第一信号的指示确定标签设备所需的充电时间;向发送设备发送充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
通过上面的方法,接收设备根据第一信号的指示确定标签设备所需的充电时间之后,接收设备通过向发送设备发送充电时间指示,可以使得发送设备根据充电时间指示,准确的确定标签设备所需的充电时间。
在一种可能的设计中,所述第一信号是参考信号或者同步信号。
第十七方面,提供一种装置,该装置可以是接收设备,也可以是接收设备中的装置,或者是能够和接收设备匹配使用的装置。一种设计中,该装置可以包括执行第十六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,通信模块,用于从标签设备接收第一信号的指示;向发送设备发送充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
处理模块,用于根据第一信号的指示确定标签设备所需的充电时间。
所述处理模块以及所述通信模块执行的其它方法可以参考第十六方面中的描述,这里不再赘述。
第十八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十六方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第七方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从标签设备接收第一信号的指示;根据第一信号的指示确定标签设备所需的充电时间;向发送设备发送充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
所述处理器执行的其它方法可以参考第十六方面中的描述,这里不再赘述。
第十九方面,本申请实施例提供了一种信号传输方法,包括:向标签设备发送N个第一信号;向标签设备发送结束指示信息,结束指示信息用于指示N个第一信号全部发送完成;接收来自接收设备的计时时长,根据所述计时时长确定标签设备所需的充电时间;或者,接收来自接收设备的标签设备所需的充电时间。
通过上面的方法,通过向标签设备发送N个第一信号以及结束指示信息,从而可以在 标签设备在完成充电时,接收到来自接收设备的计时时长或者签设备所需的充电时间,从而可以在后续与标签设备的通信过程中,准确的确定标签设备完成充电的时间,与标签设备实现无缝对接,在标签设备完成充电时向标签设备传输数据,提高系统的资源利用率,保障通信的可靠性。
在一个可能的设计中,所述第一信号是参考信号或者同步信号。
本申请还提供一种通信装置,该通信装置具有实现上述第十九方面提供的方法中的发送设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示通信方法中发送设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与标签设备、接收设备等之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第二十方面,本申请实施例提供了一种信号传输方法,包括:接收到第一信号之后,开启计时器;接收到结束指示信息,则关闭计时器,并确定所述计时器记录的计时时长,结束指示信息用于指示N个第一信号全部发送完成;向接收设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间;向接收设备发送所述计时时长或者标签设备所需的充电时间。
在一个可能的设计中,所述第一信号是参考信号或者同步信号。
本申请还提供一种通信装置,该通信装置具有实现上述第二十方面提供的方法中的标签设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示通信方法中标签设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与发送设备、接收设备等之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上第二十方面的方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和收发单元,这些单元可以执行上述第二十方面的方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第二十一方面,本申请实施例提供了一种信号传输方法,包括:接收来自标签设备的计时时长或者标签设备所需的充电时间;向发送设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间,并向发送设备发送标签设备所需的充电时间。
在一个可能的设计中,所述第一信号是参考信号或者同步信号。
本申请还提供一种通信装置,该通信装置具有实现上述第二十一方面提供的方法中的接收设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示通信方法中接收设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与标签设备、发送设备等之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第二十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的方法。
第二十三方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的方法。
第二十四方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
第二十五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述任一种可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十六面,本申请实施例提供一种系统,所述系统包括第二方面提供的装置、第五方面提供的装置和第八方面提供的装置,或者,所述系统包括第三方面提供的装置、第六方面提供的装置和第九方面提供的装置,或者,所述系统包括第十一方面提供的装置、第十四方面提供的装置和第十七方面提供的装置,或者,所述系统包括第十二方面提供的装置、第十五方面提供的装置和第十八方面提供的装置,或者,所述系统包括第十九方面提供的装置、第二十方面提供的装置和第二十一方面提供的装置。
附图说明
图1示出了适用于本申请实施例提供的方法的通信系统的示意图;
图2为本申请实施例提供的一种信号传输方法流程示意图;
图3为本申请实施例提供的一种信号传输示意图;
图4为本申请实施例提供的一种时频资源示意图;
图5为本申请实施例提供的一种信号传输示意图;
图6为本申请实施例提供的一种信号传输示意图;
图7为本申请实施例提供的一种信号传输示意图;
图8为本申请实施例提供的一种通信装置结构示意图;
图9为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“至少部分”可以全部或部分,例如,“A中的至少部分B”可以表示A中的全部B,也可以表示A中的部分B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。“A属于B”可以表示A是B的子集,也可以表示A的内容与B的内容相同。“A包括B”可以表示B是A的子集,也可以表示A的内容与B的内容相同,或者说,“A包括B”可以表示A包括B和其他内容,也可以表示A中仅包括B。
在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。其中,通信设备可以包括网络设备、终端设备和标签设备。通信设备间的无线通信可以包括但不限于:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信、终端设备和终端设备间的无线通信、终端设备和标签设备间的无线通信、以及标签设备和网络设备间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送信号;传输也可以是下行传输,例如可以是网络设备向终端设备发送信号。在本申请实施例中,通信设备间的无线通信可以被描述为:发送端向接收端发送信号,接收端从发送端接收信号。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。其中,NR系统还可以称为第五代(the fifth generation,5G)移动通信系统。
当反向散射通信技术应用于移动通信系统时,例如5G系统,发送设备可以为终端设备,标签设备可以为终端设备中的一个射频识别模块,也可以为一个独立的射频识别芯片,接收设备可以为网络设备。
标签设备是无源设备,需要将接收到的信号转换为电能,才能通过获取到的电能进行数据调制以及信号发送。当反向散射通信技术应用于移动通信系统时,发送设备如何为标签设备充电,是一个亟待解决的问题。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统的示意图。如 图1所示,该通信系统包括发送设备101、标签设备102和接收设备103。需要说明的是,图1只是示例,在另一种可能的实现方式中,发送设备和标签设备也可以集成到同一个物理实体中,在此不再赘述。
需要说明的是,图1所示的通信系统中,发送设备101可以直接向标签设备102发送信号,但是在反向散射通信技术中,标签设备102不可以直接向发送设备101发送信号。标签设备102如果需要向发送设备101发送信号,则可以先向接收设备103发送信号,再由接收设备103转发至发送设备101。发送设备101与接收设备103之间可以互相发送信号。
图1中,标签设备102是一个无源设备,或者半有源设备(例如基带有源但射频无源),为此,标签设备102在发送信号之前,需要进行充电过程。具体的,标签设备102需要将接收到的信号的一部分或全部转换为电能,从而实现充电。标签设备102通过接收到的信号获得电能之后,可以驱动自身电路进行通信。在一种可能的实现中,标签设备充电时间为一个固定的时长。当反向散射通信技术应用于移动通信系统时,与移动通信系统结合的反向散射通信技术,其网络覆盖范围会更广,因此一个发送设备可能对应多个标签设备,且每个标签设备与发送设备的距离也不同。标签设备与发送设备的距离越大,标签设备接收到的信号的能量越弱,因此标签设备的充电效率越低。如果按照固定的充电时间,当标签设备与发送设备的距离过大时,标签设备可能无法有效充电;当标签设备与发送设备的距离过小时,标签设备充电时间过剩。即,固定的充电时间无法有效地用于移动通信系统中的反向散射通信。为此,当反向散射通信技术应用于移动通信系统时,如何确定标签设备所需的充电时间用于有效地为标签设备充电,是一个亟待解决的问题。
需要说明的是,发送设备101也可能存在其他名称,例如可以称为激励器、协助器(helper)、询问器(interrogator)、读写器(reader)、用户设备(user equipment,UE)等,为了描述方便,本申请实施例中统称为发送设备。相应的,标签设备102也可能存在其他名称,例如可以称为反射器、标签(tag)、反射设备(backscatter device)、无源设备(passive device)、半有源设备(semi-passive device)、散射信号设备(ambient signal device)、射频识别(radio frequency identification,RFID)标签(tag)等,为了描述方便,本申请实施例中统称为标签设备。接收设备103也可能存在其他名称,例如可以称为接收器、接入点、基站等,为了描述方便,本申请实施例中统称为接收设备。
当反向散射通信应用于移动通信系统,例如5G中时,发送设备101可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。接收设备103可以为无线接入设备或基站,例如演进型节点B(evolved Node B,eNB)、5G中的gNB、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,为本申请实施例提供的一种信号传输方法流程示意图。图2所示的流程中,以发送第一信号的执行主体为发送设备,发送第二信号的执行主体为标签设备,接收第二信号的执行主体为接收设备为例进行描述,其它情况可以参考此处的描述,在此不再赘述。参见图2,该方法包括:
步骤201:发送设备向标签设备发送N个第一信号。
其中,N为正整数。第一信号可以是参考信号,也可以是同步信号,还可以是发送设备发送的其它信号,例如广播信号等,本申请实施例对此并不限定。
在本申请实施例中,正整数可以是1、2、3或者更大的整数,本申请实施例不做限制。
步骤202:标签设备从发送设备接收第一信号。
标签设备可以从发送设备接收其发送的N个第一信号中的N1个第一信号,其中,N1为小于等于N的正整数,例如N1为1、2或其他正整数。步骤202中的接收到的第一信号可以为该N1个第一信号中的一个第一信号。
步骤203:标签设备根据所述接收到的第一信号确定第二信号,向接收设备发送所述第二信号。
所述第二信号对应于所述第一信号。所述第二信号可以是随机接入前导码、参考信号、控制信道,也可以是其它信号,本申请实施例对此并不限定。
步骤204:接收设备从标签设备接收第二信号。
步骤205:接收设备向发送设备发送所述第二信号的指示。
可选地,所述第二信号的指示用于指示所述标签设备向接收设备发送的所述第二信号。所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的N个第一信号中的第一信号。
所述第二信号的指示也可以直接或者间接指示标签设备所需的充电时间,后面将详细描述。
步骤206:发送设备从接收设备接收第二信号的指示。
通过上面的方法,标签设备在接收到第一信号时,可以向接收设备发送与第一信号对应的第二信号,接收设备可以根据第二信号确定所述第二信号对应的一个第一信号,从而根据所述一个第一信号确定标签设备充电完成。接收设备通过向发送设备发送第二信号的指示,可以使得发送设备根据第二信号的指示,确定标签设备接收到的第二信号对应的一个第一信号,从而确定标签设备所需的充电时间。
可选的,另一种可能的实现方式中,上述步骤205和206可以被替换为:接收设备向发送设备指示标签设备所需的充电时间(步骤205’),发送设备从接收设备接收指示以确定标签设备所需的充电时间(步骤206’)。其中,标签设备所需的充电时间还可以被描述为:标签设备所需的充电时长、标签设备的充电时间、或标签设备的充电时长等,本申请实施例不做限制。
如图3所示,发送设备可以在第一时长内发送N个第一信号。第一时长可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义(即发送设备、 标签设备和接收设备已知的)的。N个第一信号中的每个第一信号可以对应一个信号索引值,每个第一信号中可以包括其对应的信号索引值。如果第一时长的长度是发送设备确定的或者是接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示第一时长的长度,或者接收设备可以通过发送设备以信令方式向标签设备指示第一时长的长度。
N的值可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义的。如果N的值是发送设备确定的或者是接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示N的值,或者接收设备可以通过发送设备以信令方式向标签设备指示N的值。
在本申请实施例中,信令可以是系统消息、广播消息、无线资源控制(radio resource control,RRC)信令、媒体接入控制(media access control,MAC)控制元素(control element,CE)、或者物理层控制信令中的一种或者多种的组合,本申请实施例不做限制。
在第一时长内,发送设备可以按照第一周期发送第一信号。或者,在第一时长内,发送设备还可以按照非周期方式发送第一信号。
发送设备按照第一周期发送第一信号时,第一周期的长度可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义的,本申请实施例对此并不限定。每个周期包括至少一个时间单元。如果第一周期的长度是发送设备确定的或者是接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示第一周期的长度,或者接收设备可以通过发送设备以信令方式向标签设备指示第一周期的长度。
在本申请实施例中,一个时间单元的单位可以是秒、毫秒、微秒等,也可以是符号、子帧、时隙、微时隙、半帧、无线帧等常用的时间单位,本申请实施例对此并不限定。例如,一个时间单元可以是10毫秒、5毫秒、1毫秒、0.5毫秒、一个子帧、2个子帧、一个时隙等。
发送设备按照第一周期发送第一信号时,第一信号所在的时间单元在一个周期中的偏移值,可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义的,本申请实施例对此并不限定。发送设备可以通过信令向标签设备指示该偏移值,或者接收设备可以通过发送设备以信令方式向标签设备指示该偏移值。当该偏移值是发送设备确定的或接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示该偏移值,或者接收设备可以通过发送设备以信令方式向标签设备指示该偏移值。该偏移值可以是至少一个时间单元。偏移值对应的时间单元的单位和第一周期对应的时间单元的单位可以相同也可以不同,本申请实施例不做限制。例如,一个第一周期中包括M1个时隙,偏移值的大小是M2个时隙,M1为正整数,M2是取值范围为0至M1-1的整数;再例如,一个第一周期中包括一个时隙,偏移值的大小是M3个符号,M3是取值范围为0至M4-1的整数,M4表示一个时隙中包括的符号数(如7个或14个)。这些举例并不构成对本申请实施例范围的限制。可选地,该偏移值的取值可以为0。
在本申请实施例中,发送设备在发送第一信号之前,标签设备处于休眠状态或者低功耗状态,此时标签设备只能接收信号,不能发送信号或仅能发送很少量的必要信号。发送设备在发送第一信号时,标签设备可以采用接收到的第一信号进行充电。
另一种可能的实现方式中,发送设备在发送设备发送N个第一信号的过程中,发送设备还可以向标签设备发送至少一个第三信号,第三信号专用于为标签设备充电。标签设备 接收到第三信号时,将第三信号的电磁波转换为电能进行充电。
第三信号可以为单音信号,即连续的正弦波信号,还可以为多音信号,即具有指定带宽的信号,第三信号还可以为其它类型的信号,本申请实施例对此并不限定。
需要说明的是,标签设备是利用电磁波能量,将电磁波转换为电能进行充电的,具体充电过程,可以参考现有技术中的描述,本申请实施例不再赘述。在发送设备发送N个第一信号的过程中,标签设备如果完成充电,则标签设备可以记录完成充电时,接收到的第一个第一信号的信号索引值或信号标识、接收到的第一个第一信号的接收时间等信息。其中,实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等,本申请实施例不做限制。其中,标签设备完成充电时,可以处于激活态,既可以接收信号,也可以发送信号。
需要说明的是,发送设备可以发送第三信号,也可以不发送第三信号,本申请实施例对此并不限定。在发送设备发送第三信号的情况下,发送设备可以按照第二周期发送第三信号。或者,发送设备还可以按照非周期方式发送第三信号。
发送设备按照第二周期发送第三信号时,第二周期的长度可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义的,本申请实施例对此并不限定。当第二周期的长度是发送设备确定的或接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示该第二周期的长度,或者接收设备可以通过发送设备以信令方式向标签设备指示该第二周期的长度。
发送设备按照第二周期发送第三信号时,第一信号所在的时间单元在一个第二周期中的偏移值,可以是发送设备确定的,也可以是接收设备通过信令为发送设备配置的,也可以是预定义的,本申请实施例对此并不限定。发送设备可以通过信令向标签设备指示该偏移值,或者接收设备可以通过发送设备以信令方式向标签设备指示该偏移值。当该偏移值是发送设备确定的或接收设备通过信令为发送设备配置的,发送设备可以通过信令向标签设备指示该偏移值,或者接收设备可以通过发送设备以信令方式向标签设备指示该偏移值。该偏移值可以是至少一个时间单元。偏移值对应的时间单元的单位和第二周期对应的时间单元的单位可以相同也可以不同,本申请实施例不做限制。例如,一个第二周期中包括M5个时隙,偏移值的大小是M6个时隙,M5为正整数,M6是取值范围为0至M5-1的整数;再例如,一个第二周期中包括一个时隙,偏移值的大小是M7个符号,M7是取值范围为0至M4-1的整数,M4表示一个时隙中包括的符号数(如7个或14个)。这些举例并不构成对本申请实施例范围的限制。可选地,该偏移值的取值可以为0。
在发送设备发送第三信号的过程中,标签设备如果完成充电,则标签设备可以记录完成充电时,接收到的第一个第一信号的前一个第三信号、接收到的第一个第一信号的前一个第三信号的传输时间等信息。其中,实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等;和/或该方法中的前一个第三信号还可以被替换为后一个第三信号或者其它第三信号,本申请实施例不做限制。其中,标签设备完成充电时,可以处于激活态,既可以接收信号,也可以发送信号。该替换方法可以应用于本申请各实施例中相应的方法处。
可选地,本申请实施例中,第三信号和第一信号之间可以不存在关联关系,此时,发 送设备分别发送第一信号和第三信号。
可选地,第三信号和第一信号之间可以存在关联关系,例如,第三信号和第一信号的发送时间存在关联关系。一种可能的实现方式中,第一信号与第三信号之间具有固定的时间偏移,固定的时间偏移为预设的值。此时,第一信号的发送时间确定之后,与该第一信号关联的第三信号的发送时间也可以确定。在另一种可能的实现方式中,每两个第一信号的发送时间之间均匀地分布正整数个(例如2个、3个或更多个)第三信号。
本申请实施例中,标签设备完成充电时,接收到第一个第一信号后,可以通过多种方式确定第二信号,下面详细描述。可选地,在实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等,本申请实施例不做限制。
实施例一,当发送设备发送N个第一信号之后,可以向所述标签设备发送配置信息,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系;或者,当发送设备发送N个第一信号之前,在之前和标签设备的通信过程中,向所述标签设备发送配置信息,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系。可选地,该对应关系可以是发送设备确定的从而指示给标签设备的;也可以是接收设备确定的,并通过发送设备指示给标签设备的,本申请实施例不做限制。其中,M为正整数。或者,发送设备也可以不发送配置信息,此时所述N个第一信号和M个第二信号的对应关系是预配置的。
需要说明的是,本申请实施例中,一个第一信号可以只对应一个第二信号,一个第一信号也可以对应多个第二信号,当然也可以多个第一信号对应一个第二信号。
一种实现方式中,所述N个第一信号和M个第二信号的对应关系包括所述N个第一信号中任一第一信号对应的第二信号的信号标识。举例来说,所述N个第一信号和M个第二信号的对应关系可以如表1-1所示。
需要说明的是,所述第二信号的标识具体可以是第二信号的索引值。
表1-1
Figure PCTCN2020098187-appb-000001
需要说明的是,表1-1中,一个第一信号可以对应一个第二信号,也可以对应多个第二信号。例如,第1个第一信号对应一个第二信号;第2个第一信号对应两个第二信号,其它情况不再赘述。
再举例来说,多个第一信号可以对应一个第二信号,以N=4,M=2,为例,此时所述N 个第一信号和M个第二信号的对应关系可以如表1-2所示。
表1-2
Figure PCTCN2020098187-appb-000002
表1-2中,两个第一信号对应一个第二信号。当然,表1-2只是示例,还存在其他情况,在此不再赘述。
在本申请各实施例中,第一信号和第二信号的对应关系中的第一信号的索引值还可以描述为第一信号的标识,其还可以被替换为第一信号的以下其它参数中的一项或多项的组合:第一信号的时域资源信息、第一信号的频域资源信息、和第一信号的信号生成参数等。
在该实现方式下,标签设备根据接收到的第一信号,可以确定对应的第二信号的标识,从而发送该标识对应的第二信号。例如,第二信号为随机接入前导码时,标签设备可以根据第一信号确定该第一信号对应的随机接入前导码标识,并向接收设备发送该随机接入前导码标识对应的随机接入前导码。接收设备接收到该第二信号,可以根据第一信号和第二信号之间的对应关系,确定标签设备所接收到的第一信号。
一种可能的实现方式中,所述N个第一信号和M个第二信号的对应关系包括所述N个第一信号中任一第一信号对应的第二信号的时域资源或者时域资源标识。在该实现方式下,第一信号不是直接与第二信号存在对应关系,而是与发送第二信号的时域资源存在对应关系,在该时域资源中发送的第二信号的具体内容可以并不限定。
举例来说,如图4所示,时频资源在时域上包括P个时间单元,在频域上包括Q个频域单元,P以及Q均为大于0的整数。标签设备可以在一个时频单元中发送第二信号,一个时频单元包括1个时间单元和1个频域单元。
其中,时间单元可以是指符号(如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)、子帧、时隙等。频域单元可以是指子载波、资源块(resource block,RB)、资源块组(resource block group,RBG)等。
示例性地,所述N个第一信号和M个第二信号的对应关系可以如表2-1所示。
表2-1
Figure PCTCN2020098187-appb-000003
Figure PCTCN2020098187-appb-000004
需要说明的是,表2-1中,一个第一信号可以对应一个时域资源,也可以对应多个时域资源。例如,第1个第一信号对应一个时域资源,即时间单元1;第N个第一信号对应两个时域资源,即时间单元P-1和时间单元P,其它情况不再赘述。
再举例来说,多个第一信号可以对应一个时域资源,以N=4,M=2,为例,此时所述N个第一信号和M个第二信号的时域资源对应关系可以如表2-2所示。
表2-2
Figure PCTCN2020098187-appb-000005
表2-2中,两个第一信号对应一个第二信号的时域资源。当然,表2-2只是示例,还存在其他情况,在此不再赘述。
在该实现方式下,标签设备根据接收到的第一信号,可以确定传输第二信号的时域资源。标签设备可以通过该时域资源发送第二信号。接收设备接收到该第二信号,可以根据第一信号和第二信号的时域资源之间的对应关系,确定标签设备所接收到的第一信号。
一种可能的实现方式中,所述N个第一信号和M个第二信号的对应关系包括所述N个第一信号中任一第一信号对应的第二信号的频域资源或者频域资源标识。在该实现方式下,第一信号不是直接与第二信号存在对应关系,而是与发送第二信号的频域资源存在对应关系。
示例性地,所述N个第一信号和M个第二信号的对应关系可以如表3-1所示。
表3-1
Figure PCTCN2020098187-appb-000006
需要说明的是,表3-1中,一个第一信号可以对应一个频域资源,也可以对应多个频域资源。例如,第1个第一信号对应两个频域资源,即频域单元和频域单元2;第N个第一信号对应一个频域资源,即频域资源Q,其它情况不再赘述。
再举例来说,多个第一信号可以对应一个频域资源,以N=4,M=2,为例,此时所述N个第一信号和M个第二信号的频域资源对应关系可以如表3-2所示。
表3-2
Figure PCTCN2020098187-appb-000007
表3-2中,两个第一信号对应一个第二信号的频域资源。当然,表3-2只是示例,还存在其他情况,在此不再赘述。
在该实现方式下,标签设备根据接收到的第一信号,可以确定传输第二信号的频域资源。标签设备可以通过该频域资源发送第二信号。接收设备接收到该第二信号,可以根据第一信号和第二信号的频域资源之间的对应关系,确定标签设备所接收到的第一信号。
一种可能的实现方式中,所述N个第一信号和M个第二信号的对应关系包括所述N个第一信号中任一第一信号对应的第二信号的时频资源或时频资源标识。在该实现方式下,第一信号与发送第二信号的时频资源存在对应关系。
示例性地,配置信息所指示的对应关系可以如表4-1所示。
表4-1
Figure PCTCN2020098187-appb-000008
再举例来说,多个第一信号可以对应一个时频资源,以N=4,M=2,为例,此时所述N个第一信号和M个第二信号的时频资源对应关系可以如表4-2所示。
表4-2
Figure PCTCN2020098187-appb-000009
表4-2中,两个第一信号对应一个第二信号的时频资源。当然,表4-2只是示例,还存在其他情况,在此不再赘述。
在该实现方式下,标签设备根据接收到的第一信号,可以确定传输第二信号的时频资源,并通过该时频源发送第二信号。接收设备接收到该第二信号,可以根据第一信号和第二信号的时频资源之间的对应关系,确定标签设备所接收到的第一信号。
一种可能的实现方式中,所述N个第一信号和M个第二信号的对应关系包括所述N个第一信号中任一第一信号对应的第二信号的序列参数或者序列参数的标识。其中,第二信号的序列参数可以用于生成第二信号。例如,第二信号的序列可以是采用基准ZC(Zadoff-Chu)根序列进行循环移位生成的,第二信号的序列参数可以是该第二信号对应的根和/或循环移位值。再例如,第二信号的序列可以是伪随机序列,第二信号的序列参数可以是该伪随机序列的初始值,其它情况不再逐一举例说明。
举例来说,所述N个第一信号和M个第二信号的对应关系可以如表5-1所示。
表5-1
Figure PCTCN2020098187-appb-000010
再举例来说,多个第一信号可以对应一个时频资源,以N=4,M=2,为例,此时所述N个第一信号和M个第二信号的时频资源对应关系可以如表5-2所示。
表5-2
Figure PCTCN2020098187-appb-000011
表5-2中,两个第一信号对应一个第二信号的序列参数。当然,表5-2只是示例,还存在其他情况,在此不再赘述。
在该实现方式下,标签设备根据接收到的第一信号,可以确定对应的第二信号的序列参数,并发送通过该序列参数生成的第二信号。接收设备接收到该第二信号,可以根据第一信号和第二信号的序列参数之间的对应关系,确定标签设备所接收到的第一信号。
当然以上只是示例,所述N个第一信号和M个第二信号的对应关系包括还可以是其它内容,例如可以指示以下多项中的至少两项的组合:
所述任一第一信号对应的第二信号的信号标识;
传输所述任一第一信号对应的第二信号的时域资源;
传输所述任一第一信号对应的第二信号的频域资源;
传输所述任一第一信号对应的第二信号的时频资源;
所述任一第一信号对应的第二信号的序列参数。
上述对应关系包括多项时,可以参考前面的描述,在此不再赘述。
结合前面的描述,步骤205中,接收设备接收到第二信号之后,可以向发送设备发送的第二信号的指示;或者如步骤205’中,接收设备接收到第二信号之后,可以向发送设备指示标签设备所需的充电时间。通过该方法,可以直接或者间接指示标签设备所需的充电时间。
第二信号的指示可以间接指示标签设备所需的充电时间,例如第二信号的指示可以为上述标签设备接收到的第一信号的信号索引值,或者该第一信号的接收时间,或者该第一信号之前最后一个第三信号的信号索引值、标签设备向接收设备发送的第二信号标识、该第二信号的时域资源标识、该第二信号的频域资源标识、该第二信号的时频资源标识、该第二信号的序列参数标识等。第二信号的指示间接指示标签设备的充电时间时,接收设备可以确定标签设备所需的充电时间,也可以不需要确定标签设备所需的充电时间,此时需要发送设备根据第二信号的指示确定标签设备的充电时间。
直接指示标签设备所需的充电时间时,接收设备可以根据第二信号确定标签设备接收到的第一信号或标签设备用于完成充电而接收到的第三信号,从而可以根据该第一信号或该第三信号确定标签设备的充电时间。其中,指示的充电时间的时间粒度可以为:毫秒,微秒、符号(如OFDM符号)、时隙等,本申请实施例对此并不限定。
第一种可能的实现方式中,接收设备可以将N个第一信号中,发送设备第一个发送的第一信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第二信号时,将第二信号对应的第一信号的发送时刻作为标签设备完成充电的结束时刻。接收设备将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定标签设备所需的充电时间。
举例来说,发送设备是从第一时刻开始发送N个第一信号中的第一个第一信号,接收设备接收到的第二信号对应的第一信号的发送时刻为第二时刻,则标签设备所需的充电时间为第一时刻至第二时刻之间的时长。
第二种可能的实现方式中,当发送设备发送第三信号时,接收设备可以将发送设备发送的第一个第三信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第二信号时,将第二信号对应的第一信号的发送时刻作为标签设备完成充电的结束时刻。接收设备可以将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定标签设备所需的充电时间。
第三种可能的实现方式中,接收设备可以将发送设备发送的第一个第三信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第二信号时,将第二信号对应的第一信号之前最后一个第三信号的发送时刻作为标签设备完成充电的结束时刻。在该实现方式下,接收设备确定第二信号对应的第一信号时,可以确定该第一信号的发送时刻。接收设备从而可以确定在该第一信号的发送时刻之前,发送设备发送的最后一个第三信号。接收设备可以将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定为标签设备的所需的充电时间。
需要说明的是,标签设备充电的起始时刻,还可以是预定义的时刻,或者是接收设备或发送设备配置的时刻,本申请实施例对此并不限定,在此不再赘述。当该时刻是接收设 备配置的时刻时,接收设备可以通过信令为发送设备配置该时刻,或者通过发送设备为标签设备配置该时刻。当该时刻是发送设备配置的时刻时,发送设备可以通过信令为接收设备指示该时刻,并通过信令为标签设备指示该时刻。
相应的,步骤206中,发送设备根据第二信号的指示,可以确定标签设备所需的充电时间。或者,步骤206’中,发送设备可以接收标签设备所需的充电时间。
当接收设备向发送设备直接指示标签设备所需的充电时间时,发送设备可以直接确定该标签设备所需的充电时间。
当接收设备通过第二信号的指示向发送设备间接指示标签设备所需的充电时间时,发送设备可以根据第二信号的指示所指示的第一信号的信号索引值,或者第一信号的接收时间,或者第一信号之前最后一个第三信号的信号索引值等信息,确定标签设备所需的充电时间。发送设备确定标签设备所需的充电时间的方法,可以和接收设备确定标签设备所需的充电时间的方法相同,在此不再赘述。
发送设备确定标签设备所需的充电时间之后,在下一次与标签设备通信之前,可以根据所述充电时间为标签设备充电,从而可以提高发送设备与标签设备之间的通信效率,避免由于不确定标签设备所需的充电时间,而固定地以较长时间为标签设备进行充电的情况发生。当充电完成后,发送设备和/或接收设备便可以和标签设备进行通信,而无需长时间等待标签设备完成充电。
实施例二,本申请实施例中,发送设备也可以不发送配置信息指示第一信号和第二信号之间的对应关系,而是配置第一信号的传输和第二信号的传输之间的时序关系。该时序关系可以是预定义的,也可以是发送设备通过信令为标签设备和接收设备指示的(例如发送设备在之前的数据传输过程中为标签设备指示的),还可以是接收设备通过发送设备为标签设备指示的(例如接收设备在之前的数据传输过程中为标签设备指示的)。
举例来说,如图5所示,对于N个第一信号中的一个第一信号,发送设备发送该一个第一信号的时域资源对应时间单元n,标签设备在该时间单元n接收该一个第一信号,标签设备可以在时间单元n+k中发送第二信号,接收设备在时间单元n+k中接收第二信号。其中,n是整数,k是大于或等于0的整数,k的取值可以为预配置的值,k的取值也可以为发送设备通过信令为所述标签设备配置的值(发送设备也可以通过信令将该值指示给接收设备),或者是接收设备通过发送设备为所述标签设备配置的值。
需要说明的是,一个时间单元可以对应至少一个时频资源,每个时频资源在同一时间单元中,在频域上占用相同或不同的子载波或带宽部分,在时域上可以占用相同的或不同的子时间单元,其中,该同一个时间单元中包括一个或多个该子时间单元,例如一个时隙中包括多个符号。图5中以一个时间单元对应至4个时频资源为例进行说明,其它情况不再赘述。结合图5所示,标签设备具体在时间单元n+k中的哪个时频资源中发送第二信号,本申请实施例对此并不限定,标签设备可以在时间单元n+k所包括的4个时频资源中任意选择一个时频资源发送第二信号,也可以通过其他方式确定发送第二信号的时频资源,在此不再赘述。
发送设备向所述标签设备配置k的取值时,可以通过相应的第一信号发送,也可以通过一个独立的消息发送,本申请实施例对此并不限定。
在该实施例中,接收设备接收到第二信号之后,可以向发送设备发送的第二信号的指示或者标签设备所需的充电时间。
当接收设备向发送设备直接指示标签设备所需的充电时间时,接收设备可以将N个第一信号中,发送设备第一个发送的第一信号占用的时间单元的起始时刻,作为标签设备充电的起始时刻。接收设备接收到第二信号时,可以根据接收第二信号的时间单元确定标签设备完成充电接收到的第一个第一信号,从而可以将该第一信号占用的时间单元的结束时刻或起始时刻作为标签设备完成充电的结束时刻,从而可以确定为标签设备所需的充电时间。
举例来说,接收设备是从时间单元m中接收到第二信号,接收设备从而可以确定该第二信号对应的一个第一信号是发送设备在时间单元m-k中发送的,若发送设备发送N个第一信号的起始时间单元为时间单元h,接收设备从而可以将时间单元h的起始时刻至时间单元m-k的结束时刻之间的时长,确定为标签设备所需的充电时间。
当然以上只是示例,标签设备充电的起始时刻,也可能存在其他实现方式,例如当发送设备发送第三信号时,还可以将发送设备发送的第一个第三信号的发送时刻,作为标签设备充电的起始时刻;或者,标签设备充电的起始时刻,还可以是预定义的时刻,或者是发送设备或接收设备配置的时刻等。
相应的,标签设备充电的结束时刻,也可能存在其他实现方式,例如当发送设备发送第三信号时,还可以将第二信号对应的第一信号之前最后一个第三信号的发送时刻作为标签设备完成充电的结束时刻,其他情况不再赘述。
另一种可能的实现方式中,当通过第二信号的指示间接指示标签设备所需的充电时间时,第二信号的指示可以为第一信号的信号索引值,或者第一信号的接收时间,或者第一信号之前最后一个第三信号的信号索引值等。第二信号的指示间接指示标签设备的充电时间时,接收设备可以不需要确定标签设备的充电时间,此时需要发送设备根据第二信号的指示确定标签设备所需的充电时间。发送设备具体如何确定充电时间,可以参考接收设备确定充电时间的方法中的描述,在此不再赘述。
相应的,发送设备根据第二信号的指示,确定标签设备的充电时间之后,在下一次与标签设备通信之前,可以根据所述充电时间发送相应时长的第一信号或第三信号为标签设备充电,从而可以提高发送设备与标签设备之间的通信效率,避免由于不确定标签设备的充电时间,而长时间等待标签设备完成充电的情况发生。
前面的实施例中,标签设备完成充电之后,发送设备通过第二信号的指示或者通过指示标签设备所需的充电时间,通知发送设备是否完成充电。在另一种可能的实现方式中,标签设备完成充电之后,也可以直接向接收设备指示接收到哪一个第一信号,下面将详细描述。
如图6所示,为本申请实施例提供的一种信号传输方法流程示意图。图6所示的流程中,以发送第一信号的执行主体为发送设备,发送第二信号的执行主体为标签设备,发送第二信号的指示的执行主体为接收设备为例进行描述,其它情况可以参考此处的描述,在此不再赘述。
参见图6,该方法包括:
步骤601:发送设备向标签设备发送N个第一信号。
其中,N为正整数。第一信号可以是参考信号,也可以是同步信号,还可以是发送设备发送的其它信号,例如广播信号等,本申请实施例对此并不限定。
可选的,本申请实施例中,在发送设备发送N个第一信号的过程中,发送设备还可以 向标签设备发送至少一个第三信号,第三信号专用于为标签设备充电。关于第一信号、第三信号的具体内容,以及第三信号与第一信号之间的关系等,可以参考图2所示的流程中相应的描述,在此不再赘述。
步骤602:标签设备从发送设备接收第一信号。
步骤603:标签设备向接收设备发送所述第一信号的指示。
所述第一信号的指示用于指示所述标签设备在N个第一信号中接收到的第一信号。需要说明的是,该第一信号为标签设备完成充电后,从N个第一信号中接收到的第一个第一信号。实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等,本申请实施例不做限制。
所述第一信号的指示可以为第一信号的信号索引值,也可以为接收到第一信号的时间信息等,本申请实施例并不限定。其中,第一信号的信号索引值可以是通过第一信号本身携带的。
可选的,标签设备向接收设备发送所述第一信号的指示之前,还可以接收到发送设备发送的能力查询信息,所述能力查询信息用于请求所述第一信号的指示。标签设备接收到能力查询信息时,向接收设备发送所述第一信号的指示。
步骤604:接收设备从标签设备接收第一信号的指示,并向发送设备发送充电时间指示。
所述充电时间指示用于指示标签设备所需的充电时间。
可选地,本申请实施例中,充电时间指示可以直接指示标签设备所需的充电时间,例如充电时间指示可以为充电时间的具体取值等,其单位可以是秒、毫秒、时隙、子帧、帧等,本申请实施例不做限制。在该情况下,接收设备可以通过多种方法确定充电时间。
第一种可能的实现方式中,接收设备可以将N个第一信号中,发送设备第一个发送的第一信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第一信号的指示时,将所指示的第一信号的发送时刻作为标签设备完成充电的结束时刻。接收设备将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定为标签设备所需的充电时间。
第二种可能的实现方式中,当发送设备发送第三信号时,接收设备可以将发送设备发送的第一个第三信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第一信号的指示时,将所指示的第一信号的发送时刻作为标签设备完成充电的结束时刻。最终,接收设备可以将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定为标签设备所需的充电时间。
第三种可能的实现方式中,接收设备可以将发送设备发送的第一个第三信号的发送时刻,作为标签设备充电的起始时刻。接收设备接收到第一信号的指示时,将所指示的第一信号之前最后一个第三信号的发送时刻作为标签设备完成充电的结束时刻。接收设备可以将标签设备充电的起始时刻,至标签设备完成充电的结束时刻之间的时长,确定为标签设备所需的充电时间。
需要说明的是,标签设备充电的起始时刻,还可以是预定义的时刻,或者是接收设备配置为发送设备的时刻,或者是发送设备为标签设备和接收设备所指示的时刻,本申请实施例对此并不限定,在此不再赘述。其中,该起始时刻是接收设备配置为发送设备的时刻 时,接收设备还可以通过发送设备将该起始时刻配置给标签设备。
可选地,本申请实施例中,充电时间指示也可以间接指示标签设备的充电时间,例如充电时间指示可以为第一信号的信号索引值,或者第一信号的接收时间,或者第一信号之前最后一个第三信号的信号索引值等。充电时间指示间接指示标签设备的充电时间时,接收设备可以不需要确定标签设备的充电时间,此时需要发送设备根据充电时间指示确定标签设备所需的充电时间。发送设备确定标签设备的充电时间的方法,可以和接收设备相同,在此不再赘述。
相应的,发送设备根据充电时间指示,可以确定所述标签设备的充电时间。发送设备确定标签设备的充电时间之后,在下一次与标签设备通信之前,可以根据所述充电时间发送相应时长的第一信号或第三信号为标签设备充电,从而可以提高发送设备与标签设备之间的通信效率。
在另一种可能的实现方式中,发送设备还可以通过以下方式确定标签设备的充电时间。
步骤701:发送设备向标签设备发送N个第一信号。
可选的,本申请实施例中,在发送设备发送N个第一信号的过程中,发送设备还可以向标签设备发送至少一个第三信号,第三信号专用于为标签设备充电。关于第一信号、第三信号的具体内容,以及第三信号与第一信号之间的关系,可以参考图2所示的流程中相应的描述,在此不再赘述。
步骤702:发送设备向标签设备发送结束指示信息,结束指示信息用于指示N个第一信号全部发送完成。
步骤703:标签设备接收到第一信号之后,开启计时器。
定时器的初始值为0。所述第一信号,为标签设备充电完成后从N个第一信号中接收到的第一个第一信号。
步骤704:标签设备接收到结束指示信息,则关闭计时器,并确定所述计时器记录的计时时长。
所述计时时长为从所述标签设备充电完成时接收到第一个第一信号至接收到结束指示信息之间的时长。
可选的,步骤705:发送设备向标签设备发送充电时间查询信息,所述充电时间查询信息用于请求标签设备所需的充电时间。
可选的,标签设备根据所述计时时长确定标签设备所需的充电时间。
步骤706:标签设备向接收设备发送所述计时时长或者标签设备所需的充电时间。
该步骤中的发送还可以被替换为指示。
可选的,当发送设备发送充电时间查询信息时,标签设备可以在接收到充电时间查询信息后,发送所述计时时长或者标签设备所需的充电时间。
步骤707:接收设备向发送设备发送所述计时时长或者标签设备所需的充电时间。
该步骤中的发送还可以被替换为指示。
当标签设备向接收设备发送所述计时时长时,接收设备向发送设备发送所述计时时长或标签设备所需的充电时间。此时,标签设备所需的充电时间,是接收设备根据所述计时时长确定的。
当标签设备向接收设备发送标签设备所需的充电时间时,接收设备向发送设备发送标签设备所需的充电时间。
当标签设备向接收设备发送所述计时时长,接收设备向发送设备发送标签设备所需的充电时间时,接收设备可以根据所述计时时长确定所述充电时间。例如,接收设备可以确定标签设备充电的起始时刻至结束指示信息的发送时刻之间的总时长,并将所述总时长减去所述计时时长得到的差值确定为所述充电时间。该确定方法还可以应用于标签设备确定其所需的充电时间。
其中,标签设备充电的起始时刻,可以为N个第一信号中第一个发送的第一信号的发送时刻,或者第一个发送的第三信号的发送时刻,还可以为预定义的时刻,或者接收设备配置的时刻,本申请实施例对此并不限定。
步骤708:发送设备接收所述计时时长,根据所述计时时长确定标签设备所需的充电时间。
或者,发送设备接收标签设备所需的充电时间。
发送设备根据所述计时时长确定标签设备所需的充电时间的方法,可以与接收设备根据所述计时时长确定所述充电时间的方法相同,在此不再赘述。
进一步,可选的,步骤706中,标签设备也可以发送标签设备在完成充电后第一个接收到的第一信号的信号索引值,或者第一信号的接收时间。实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等,本申请实施例不做限制。
此时,在步骤707中,接收设备也可以根据第一信号的信号索引值,或者第一信号的接收时间确定标签设备的充电时间。具体如何确定,可以参考图2所示的流程中,接收设备确定标签设备的充电时间的方法,在此不再赘述。
相应的,在步骤708中,发送设备也可以根据第一信号的信号索引值,或者第一信号的接收时间确定标签设备的充电时间。具体如何确定,可以参考图2所示的流程中,接收设备确定标签设备的充电时间的方法,在此不再赘述。
进一步,可选的,步骤706中,标签设备也可以发送标签设备在完成充电后第一个接收到的第一信号之前的最后一个第三信号的信号索引值,或者该第三信号的接收时间。实际应用中,根据对于充电精度的需求或者其它方面的需求,该方法中的第一个第一信号还可以被替换为第二个第一信号、接收能量超过阈值的第一个信号等,本申请实施例不做限制。
此时,在步骤707中,接收设备也可以根据第三信号的信号索引值,或者第三信号的接收时间确定标签设备的充电时间。具体如何确定,可以参考图2所示的流程中,接收设备确定标签设备的充电时间的方法,在此不再赘述。
相应的,在步骤708中,发送设备也可以根据第三信号的信号索引值,或者第三信号的接收时间确定标签设备的充电时间。具体如何确定,可以参考图2所示的流程中,接收设备确定标签设备的充电时间的方法,在此不再赘述。
上述本申请提供的实施例中,分别从发送设备、标签设备以及接收设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,发送设备、标签设备、以及接收设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图8所示,本申请实施例还提供一种装置800用于实现上述方法中发送设备或者标签设备或者接收设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置800可以包括:处理模块801和通信模块802。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
示例性地,当该装置800实现图2所示的流程中发送设备的功能时,通信模块802,用于向标签设备发送N个第一信号;其中,N为正整数;从接收设备接收第二信号的指示,所述第二信号是所述标签设备向所述接收设备发送的信号,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。
处理模块801,用于根据第二信号的指示确定所述标签设备的充电时间。
处理模块801和通信模块802执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置800实现图2所示的流程中标签设备的功能时,通信模块802,用于从发送设备接收第一信号。
处理模块801,用于根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号。
通信模块802,用于向接收设备发送所述第二信号。
处理模块801和通信模块802执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置800实现图2所示的流程中接收设备的功能时,通信模块802,用于从标签设备接收第二信号。
处理模块801,用于确定第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
通信模块802,用于向发送设备发送所述第二信号的指示。
处理模块801和通信模块802执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
该装置800还可以实现图6或图7所示的流程中发送设备、标签设备以及接收设备的功能,具体可以参考图6或7所示的方法流程中的描述,这里不再赘述。
如图9所示为本申请实施例提供的装置900,图9所示的装置可以为图8所示的装置的一种硬件电路的实现方式。该通信装置可适用于图2~图7所示出的流程图中,执行上述方法实施例中发送设备或者标签设备或者接收设备的功能。为了便于说明,图9仅示出了该通信装置的主要部件。
图9所示的装置900包括至少一个处理器920,用于实现本申请实施例提供的方法中发送设备或者标签设备或者接收设备的功能。
装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920 可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置900还可以包括通信接口910,用于通过传输介质和其它设备进行通信,从而用于装置900中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。处理器920利用通信接口910收发数据,并用于实现图2~图7对应的实施例中发送设备或者标签设备或者接收设备所执行的方法。
示例性地,当该装置900实现图2所示的流程中发送设备的功能时,通信接口910,用于向标签设备发送N个第一信号;其中,N为正整数;从接收设备接收第二信号的指示,所述第二信号是所述标签设备向所述接收设备发送的信号,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。
处理器920,用于根据第二信号的指示确定所述标签设备的充电时间。
处理器920和通信接口910执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置900实现图2所示的流程中标签设备的功能时,通信接口910,用于从发送设备接收第一信号。
处理器920,用于根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号。
通信接口910,用于向接收设备发送所述第二信号。
处理器920和通信接口910执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置900实现图2所示的流程中接收设备的功能时,通信接口910,用于从标签设备接收第二信号。
处理器920,用于确定第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
通信接口910,用于向发送设备发送所述第二信号的指示。
处理器920和通信接口910执行的其它方法可以参考图2所示的方法流程中的描述,这里不再赘述。
示例性地,该装置900还可以实现图6或图7所示的流程中发送设备、标签设备以及接收设备的功能,具体可以参考图6或7所示的方法流程中的描述,这里不再赘述。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
需要说明的是,在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步 骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (60)

  1. 一种信号传输方法,其特征在于,包括:
    向标签设备发送N个第一信号,其中,N为正整数;
    从接收设备接收第二信号的指示,所述第二信号是所述标签设备向所述接收设备发送的信号,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述标签设备发送配置信息,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系,其中,M为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述配置信息用于指示所述N个第一信号和M个第二信号的对应关系,包括:
    对于所述N个第一信号中的一个第一信号,所述配置信息用于指示以下至少一项:
    所述一个第一信号对应的第二信号的信号标识;用于传输所述一个第一信号对应的第二信号的时域资源;用于传输所述一个第一信号对应的第二信号的频域资源;和,所述一个第一信号对应的第二信号的序列参数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第二信号对应于一个第一信号,包括:
    所述一个第一信号是在时间单元n上传输的信号,所述第二信号是在时间单元n+k上传输的信号,其中,n是整数,k是大于或等于0的整数。
  5. 根据权利要求4所述的方法,其特征在于,k的取值为预配置的值,或者通过信令向所述标签设备指示的值。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述第二信号是随机接入前导码。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    根据所述第二信号,以及所述第二信号和所述一个第一信号的对应关系,确定所述标签设备的充电时间。
  9. 一种信号传输方法,其特征在于,包括:
    从发送设备接收第一信号;
    根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号;
    向接收设备发送所述第二信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    从所述发送设备接收配置信息,所述配置信息用于指示N个第一信号和M个第二信号的对应关系,其中,N、M为正整数,所述N个第一信号包括所述第一信号,所述M个第二信号包括所述第二信号。
  11. 根据权利要求10所述的方法,其特征在于,所述配置信息用于指示N个第一信号和M个第二信号的对应关系,包括:
    对于所述N个第一信号中的一个第一信号,所述配置信息用于指示以下至少一项:
    所述一个第一信号对应的第二信号的信号标识;用于传输所述一个第一信号对应的第二信号的时域资源;用于传输所述一个第一信号对应的第二信号的频域资源;和,所述任一第一信号对应的第二信号的序列参数。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第二信号对应于所述第一信号,包括:
    所述第一信号是在时间单元n上传输的信号,所述第二信号是在时间单元n+k上传输的信号,其中,n是整数,k是大于或等于0的整数。
  13. 根据权利要求12所述的方法,其特征在于,k的取值为预配置的值,或者通过信令向所述标签设备指示的值。
  14. 根据权利要求9至13任一所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  15. 根据权利要求9至14任一所述的方法,其特征在于,所述第二信号是随机接入前导码。
  16. 一种信号传输方法,其特征在于,包括:
    从标签设备接收第二信号;
    向发送设备发送所述第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第二信号是随机接入前导码。
  19. 一种通信装置,其特征在于,用于实现如权利要求1至8中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至8任一项所述的方法。
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    向标签设备发送N个第一信号,其中,N为正整数;
    从接收设备接收第二信号的指示,所述第二信号是所述标签设备向所述接收设备发送的信号,所述第二信号对应于一个第一信号,所述N个第一信号包括所述第二信号对应的所述一个第一信号。
  22. 一种通信装置,其特征在于,用于实现如权利要求9至15中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求9至15任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口从发送设备接收第一信号;
    所述处理器用于根据所述第一信号确定第二信号,所述第二信号对应于所述第一信号;
    所述处理器利用所述通信接口向接收设备发送所述第二信号。
  25. 一种信号传输装置,其特征在于,用于实现如权利要求16至18中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦 合,所述处理器用于执行权利要求16至18任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    从标签设备接收第二信号;
    向发送设备发送所述第二信号的指示,所述第二信号对应于一个第一信号,所述一个第一信号是所述发送设备向所述标签设备发送的第一信号。
  28. 一种通信系统,其特征在于,包括权利要求19-21任一项所述的通信装置,权利要求22-24任一项所述的通信装置,和权利要求25-27任一项所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被计算机执行时,如权利要求1至18中任意一项所述的方法被执行。
  30. 一种信号传输方法,其特征在于,包括:
    向标签设备发送N个第一信号;N为正整数;
    从接收设备接收充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间;根据充电时间指示确定标签设备所需的充电时间。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    向标签设备发送能力查询信息,所述能力查询信息用于请求所述第一信号的指示。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  33. 一种信号传输方法,其特征在于,包括:
    从发送设备接收第一信号;
    根据所述第一信号确定所述第一信号的指示,所述第一信号的指示用于指示标签设备在N个第一信号中接收到的第一信号,N为正整数;
    向接收设备发送所述第一信号的指示。
  34. 根据权利要求33所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  35. 一种信号传输方法,其特征在于,包括:
    从标签设备接收第一信号的指示;
    根据第一信号的指示确定标签设备所需的充电时间;
    向发送设备发送充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
  36. 根据权利要求35所述的方法,其特征在于,所述第一信号是参考信号或者同步信号。
  37. 一种通信装置,其特征在于,用于实现如权利要求30至32中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求30至32任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    向标签设备发送N个第一信号;N为正整数;
    从接收设备接收充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间;根据充电时间指示确定标签设备所需的充电时间。
  40. 一种通信装置,其特征在于,用于实现如权利要求33至34中任一项所述的方法。
  41. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求33至34任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    从发送设备接收第一信号;
    根据所述第一信号确定所述第一信号的指示,所述第一信号的指示用于指示标签设备在N个第一信号中接收到的第一信号,N为正整数;
    向接收设备发送所述第一信号的指示。
  43. 一种通信装置,其特征在于,用于实现如权利要求35至36中任一项所述的方法。
  44. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求35至36任一项所述的方法。
  45. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    从标签设备接收第一信号的指示;
    根据第一信号的指示确定标签设备所需的充电时间;
    向发送设备发送充电时间指示;所述充电时间指示用于指示标签设备所需的充电时间。
  46. 一种信号传输方法,其特征在于,包括:
    向标签设备发送N个第一信号;
    向标签设备发送结束指示信息,结束指示信息用于指示N个第一信号全部发送完成;
    接收来自接收设备的计时时长,根据所述计时时长确定标签设备所需的充电时间;或者,接收来自接收设备的标签设备所需的充电时间。
  47. 一种通信装置,其特征在于,用于实现如权利要求46所述的方法。
  48. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求46所述的方法。
  49. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    向标签设备发送N个第一信号;
    向标签设备发送结束指示信息,结束指示信息用于指示N个第一信号全部发送完成;
    接收来自接收设备的计时时长,根据所述计时时长确定标签设备所需的充电时间;或者,接收来自接收设备的标签设备所需的充电时间。
  50. 一种信号传输方法,其特征在于,包括:
    接收到第一信号之后,开启计时器;
    接收到结束指示信息,则关闭计时器,并确定所述计时器记录的计时时长,结束指示信息用于指示N个第一信号全部发送完成;
    向接收设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间;
    向接收设备发送所述计时时长或者标签设备所需的充电时间。
  51. 一种通信装置,其特征在于,用于实现如权利要求50所述的方法。
  52. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求50所述的方法。
  53. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    接收到第一信号之后,开启计时器;
    接收到结束指示信息,则关闭计时器,并确定所述计时器记录的计时时长,结束指示信息用于指示N个第一信号全部发送完成;
    向接收设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间;
    向接收设备发送所述计时时长或者标签设备所需的充电时间。
  54. 一种信号传输方法,其特征在于,包括:
    接收来自标签设备的计时时长或者标签设备所需的充电时间;
    向发送设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间,并向发送设备发送标签设备所需的充电时间。
  55. 一种通信装置,其特征在于,用于实现如权利要求54所述的方法。
  56. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求54所述的方法。
  57. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    接收来自标签设备的计时时长或者标签设备所需的充电时间;
    向发送设备发送所述计时时长,或者根据所述计时时长确定标签设备所需的充电时间,并向发送设备发送标签设备所需的充电时间。
  58. 一种通信系统,其特征在于,包括权利要求37-39任一项所述的通信装置,权利要求40-42任一项所述的通信装置,和权利要求43-45任一项所述的通信装置。
  59. 一种通信系统,其特征在于,包括权利要求47-49所述的通信装置,权利要求51-53所述的通信装置,和权利要求55-57所述的通信装置。
  60. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被计算机执行时,使得计算机执行权利要求30至36中任一项所述的方法,或者使得计算机执行权利要求46、50和54中任一项所述的方法。
PCT/CN2020/098187 2019-07-29 2020-06-24 一种信号传输方法及装置 WO2021017702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910690757.0 2019-07-29
CN201910690757.0A CN112311422B (zh) 2019-07-29 2019-07-29 一种信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021017702A1 true WO2021017702A1 (zh) 2021-02-04

Family

ID=74230107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098187 WO2021017702A1 (zh) 2019-07-29 2020-06-24 一种信号传输方法及装置

Country Status (2)

Country Link
CN (1) CN112311422B (zh)
WO (1) WO2021017702A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112907121B (zh) * 2021-03-22 2023-02-03 拉扎斯网络科技(上海)有限公司 充电调度方法、装置、计算机设备及计算机可读存储介质
EP4325730A1 (en) * 2021-04-20 2024-02-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Zero-power-consumption communication methods and apparatuses for cellular communication and sidelink communication
WO2023279236A1 (zh) * 2021-07-05 2023-01-12 Oppo广东移动通信有限公司 无线通信的方法和设备
WO2023283820A1 (zh) * 2021-07-14 2023-01-19 Oppo广东移动通信有限公司 无线通信方法及设备
CN116865844A (zh) * 2022-03-25 2023-10-10 维沃软件技术有限公司 反向散射通信的方法、装置及设备
WO2023245598A1 (en) * 2022-06-24 2023-12-28 Qualcomm Incorporated Transmitting reflected signals that indicate data multiplexed with reference signals
CN117354099A (zh) * 2022-06-24 2024-01-05 维沃移动通信有限公司 信息发送方法、接收方法、装置、设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414363A (zh) * 2007-10-17 2009-04-22 阿鲁策株式会社 无线通信标签以及无线通信系统
CN101833634A (zh) * 2009-03-10 2010-09-15 Ls产电株式会社 Rfid天线系统及rfid天线系统的控制方法
US9367718B2 (en) * 2012-10-22 2016-06-14 Iotera, Inc. Methods for enabling low-power RFID communication
CN108608889A (zh) * 2018-05-11 2018-10-02 杭州快电新能源科技有限公司 基于4g通信技术的无线安全通信分析系统
CN108695921A (zh) * 2017-04-07 2018-10-23 Oppo广东移动通信有限公司 数据备份方法、无线充电装置、移动终端及存储介质
CN108702035A (zh) * 2016-01-08 2018-10-23 泰斯尼克斯公司 对远程射频识别标签进行充电

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227130B2 (en) * 2015-09-04 2022-01-18 Sony Corporation Information processing device, information processing method, and program
KR101781732B1 (ko) * 2016-03-02 2017-09-26 세종대학교산학협력단 Wi-Fi 백스캐터 시스템 및 그것을 이용한 전송 거리 향상 방법
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
CN108631906A (zh) * 2017-03-15 2018-10-09 中兴通讯股份有限公司 一种信息传输方法、发送端、接收端及环境反向散射系统
CN108809559B (zh) * 2017-04-28 2020-11-17 华为技术有限公司 一种通信方法及装置
CN108809564B (zh) * 2017-05-04 2020-11-17 华为技术有限公司 用于通信的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414363A (zh) * 2007-10-17 2009-04-22 阿鲁策株式会社 无线通信标签以及无线通信系统
CN101833634A (zh) * 2009-03-10 2010-09-15 Ls产电株式会社 Rfid天线系统及rfid天线系统的控制方法
US9367718B2 (en) * 2012-10-22 2016-06-14 Iotera, Inc. Methods for enabling low-power RFID communication
CN108702035A (zh) * 2016-01-08 2018-10-23 泰斯尼克斯公司 对远程射频识别标签进行充电
CN108695921A (zh) * 2017-04-07 2018-10-23 Oppo广东移动通信有限公司 数据备份方法、无线充电装置、移动终端及存储介质
CN108608889A (zh) * 2018-05-11 2018-10-02 杭州快电新能源科技有限公司 基于4g通信技术的无线安全通信分析系统

Also Published As

Publication number Publication date
CN112311422A (zh) 2021-02-02
CN112311422B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2021017702A1 (zh) 一种信号传输方法及装置
JP6527965B2 (ja) チャネル効率の高い分散方式のピアステーション間のデータ伝送の方法及びシステム
US11109392B2 (en) Communication method, network device, and relay device
JP6856300B2 (ja) ランダムアクセス方法、ネットワークデバイス、及びユーザ機器
WO2020030051A1 (zh) 一种资源配置方法及装置
US11601248B2 (en) Communication method and communications apparatus
WO2019214699A1 (zh) 一种控制信息的接收方法及通信装置
US11778619B2 (en) Communication method and apparatus, and computer storage medium
WO2022028295A1 (zh) 一种通信方法及装置
EP3986055A1 (en) Communication method and apparatus
EP4167647A1 (en) Method and apparatus for accessing cell
US20210235506A1 (en) Information processing method and apparatus
WO2018171377A1 (zh) 随机接入方法、用户设备、基站以及随机接入系统
JP2019533371A (ja) ダウンリンク制御信号を伝送する方法及び装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2019047936A1 (zh) 一种无线通信方法及装置
WO2021027864A1 (zh) 用于小区测量的方法和装置
US20200367295A1 (en) Data transmission method and communications device
WO2019136729A1 (zh) 参数配置方法及相关产品
WO2022077351A1 (zh) 通信方法和通信装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2021087886A1 (zh) 定时器设置方法及相关设备
WO2019192408A1 (zh) 通信方法及装置
WO2020063922A1 (zh) 一种检测控制信道的方法及装置
WO2020062105A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847812

Country of ref document: EP

Kind code of ref document: A1