WO2020063922A1 - 一种检测控制信道的方法及装置 - Google Patents

一种检测控制信道的方法及装置 Download PDF

Info

Publication number
WO2020063922A1
WO2020063922A1 PCT/CN2019/108755 CN2019108755W WO2020063922A1 WO 2020063922 A1 WO2020063922 A1 WO 2020063922A1 CN 2019108755 W CN2019108755 W CN 2019108755W WO 2020063922 A1 WO2020063922 A1 WO 2020063922A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
resource set
channel resource
terminal device
detection
Prior art date
Application number
PCT/CN2019/108755
Other languages
English (en)
French (fr)
Inventor
王俊伟
张兴炜
黎超
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063922A1 publication Critical patent/WO2020063922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present application relate to the field of communication technologies, and in particular, to a method and an apparatus for detecting a control channel.
  • a process in which a network device transmits data to a terminal device may include: the network device first sends a physical downlink control channel (physical downlink control channel (PDCCH) including downlink control information (DCI)) to the terminal device, and then Send data to the terminal device.
  • the terminal device will blindly detect the PDCCH issued by the network device in the search space configured by the network device, demodulate the DCI in the PDCCH, and then receive it at the corresponding resource location according to the demodulated DCI.
  • Data belonging to the terminal device itself including broadcast messages, paging, data of the terminal device, etc.).
  • the time interval (or frequency) at which a network device sends a PDCCH affects the time interval at which data arrives at the terminal device.
  • high-reliability and low-latency communication (URLLC) data requires low-latency, high-reliability, etc. (such as latency requirements of 1ms or 0,5ms or less, and reliability requires the accuracy of the data packet 99.999%)
  • enhanced mobile bandwidth (eMBB) data has a relatively low latency to the data (for example, the latency requirement is 4ms or higher, and the reliability requires the data packet accuracy rate to be 90%). Therefore, in order to meet the transmission delay of different data, the frequency of blindly detecting the PDCCH for scheduling URLLC data by the terminal device is fast, and the frequency of blindly detecting the PDCCH for scheduling eMBB data may be relatively slow.
  • the existing search space configured by the network device for the terminal device is the same for different data, that is, the frequency of the terminal device blindly detecting the PDCCH for scheduling URLLC data and the frequency of the blind detection of the PDCCH for scheduling eMBB are the same.
  • the frequency of the blind detection of the PDCCH by the terminal device is set according to the requirement of the high delay of the eMBB data, but it does not meet the low delay requirement of the URLLC data; If set, the detection resources of eMBB are wasted.
  • the embodiments of the present application provide a method and a device for detecting a control channel to meet transmission requirements of different types of data.
  • a method for detecting a control channel includes: an access network device configuring a terminal device with at least one control channel resource set and at least two detection opportunities, and passing each control channel in the at least one control channel resource set One or more control channels corresponding to the resource set send scheduling information to the terminal device; wherein each control channel resource set in the at least one control channel resource set corresponds to one or more control channels; each of at least two detection opportunities Each detection timing is different, and each detection timing is used by the terminal device to detect one or more control channels corresponding to each control channel resource set in the at least one control channel resource set.
  • the scheduling information described in the embodiments of the present application may be used for scheduling service data.
  • the scheduling information may be DCI.
  • the control channel refers to a control channel carrying scheduling information. These control channels are based on a specific terminal device (user equipment, UE). )Configuration.
  • the names of control channels carrying different service scheduling information may be the same, for example, they may all be named PDCCH, or the names of control channels carrying different service scheduling information may be different, such as: control for scheduling eMBB services
  • the channel is named PDCCH, and the control channel for scheduling URLLC services is named newPDCCH.
  • the configuration information of the control channel resource set and the detection timing configuration information described in the embodiments of the present application may be carried in the same configuration message and configured for the terminal, or the control channel resource set may be configured first, and then the detection timing is configured, or The control channel resource set is configured after the timing is detected without limitation.
  • the terminal device can be configured with different detection timings so that the terminal device can detect one or more control channels according to different detection timings, such as the detection frequency of the control channel corresponding to data with low delay requirements It can be set a little higher, and the detection frequency of the control channel corresponding to data with relatively low latency requirements can be set a little lower to meet the transmission requirements of different types of data.
  • a specific RNTI or / and demodulation format can be used to detect the control channel, thereby saving the receiving power consumption of the terminal device.
  • the method includes: the access network device configures the first parameter information for the terminal device; wherein the first parameter information is used to indicate at least one of the one or more control channels; A processing format.
  • the processing format includes an encoding format and / or a modulation format.
  • a processing format of one or more control channels corresponding to each control channel resource set in at least one control channel resource set is different.
  • the terminal device can indicate the coding format / modulation format of different control channels, so that the terminal device can detect the control channel according to the indicated coding format and / or modulation format.
  • different coding formats and / or modulation formats of different control channels can ensure the accuracy of scheduling data.
  • the method further includes: the access network device sends instruction information to the terminal device; wherein the instruction information is used to indicate a maximum bandwidth occupied by data scheduled by the scheduling information.
  • the terminal device can be instructed to indicate the bandwidth of the data to be transmitted, so that the terminal device can adjust its receiving bandwidth according to the instruction, which will not cause the receiving device's receiving bandwidth to be too large and reduce the receiving power consumption of the terminal device.
  • At least two detection occasions correspond to a high-reliability and low-latency communication (URLLC) service and an enhanced mobile bandwidth (eMBB) service, respectively.
  • URLLC high-reliability and low-latency communication
  • eMBB enhanced mobile bandwidth
  • the scheduling information for scheduling the eMBB service is scrambled using a cell wireless network temporary identifier (C_RNTI), and the scheduling information for scheduling the URLLC service is scrambled using MCS-C-RNTI.
  • C_RNTI cell wireless network temporary identifier
  • MCS-C-RNTI MCS-C-RNTI
  • the detection period of the URLLC service is shorter than the detection period of the eMBB service. Based on the above method, the detection frequency of the control channel corresponding to the URLLC service can be set higher to meet the low latency requirements of the URLLC service. For the eMBB service, the detection frequency of the control channel corresponding to the eMBB service is set lower. Waste of detection resources.
  • the multiplexing relationship between the retransmission resource and the initial transmission resource uses a carrier Inter-frequency division multiplexing relationship or intra-carrier frequency division multiplexing relationship. Based on the above method, certain control channels can be retransmitted to ensure the reliability of the data scheduled by the control channel.
  • the multiplexing relationship between retransmission resources and initial transmission resources adopts the inter-carrier frequency division multiplexing relationship or the carrier internal frequency.
  • Dividing and multiplexing relationship when re-transmission resources and initial transmission resources adopt inter-carrier frequency division multiplexing, the frequency diversity diversity effect can be improved; when re-transmission resources and initial transmission resources adopt intra-carrier frequency division multiplexing, terminals can be reduced
  • the receiving bandwidth of the device reduces the receiving power of the terminal device.
  • a method for detecting a control channel includes: a terminal device receiving configuration information of at least one control channel resource set and configuration information of at least two detection occasions, and detecting each control according to at least two detection occasions One or more control channels corresponding to the channel resource set; wherein each control channel resource set in the at least one control channel resource set corresponds to one or more control channels; each of the at least two detection opportunities is Different, each detection timing is used by the terminal device to detect one or more control channels corresponding to each control channel resource set in the at least one control channel resource set.
  • the terminal device can detect one or more control channels according to different detection timings, for example, the control channel corresponding to data with low delay requirements can be detected quickly, and the delay requirements are relatively low.
  • the detection frequency of the control channel corresponding to the data can be detected slowly, which meets the transmission requirements of different service data.
  • the method further includes: obtaining, by the terminal device, first parameter information, where the first parameter information is used to indicate a processing format of at least one control channel of the one or more control channels, and processing The format includes a coding format and / or a modulation format.
  • the processing format of one or more control channels corresponding to each control channel resource set in at least one control channel resource set is different; the terminal device detects each control according to at least two detection opportunities.
  • the one or more control channels corresponding to the channel resource set include: the terminal device detects one or more control channels according to the processing format indicated by the first parameter information at at least two detection occasions.
  • the terminal device can indicate the coding format / modulation format of different control channels, so that the terminal device can detect the control channel according to the indicated coding format and / or modulation format.
  • different coding formats and / or modulation formats of different control channels can ensure the accuracy of scheduling data.
  • the method further includes: receiving, by the terminal device, indication information, where the indication information is used to indicate a maximum bandwidth occupied by data scheduled by the access network device to the terminal device. Based on the above method, the terminal device can be adjusted its receiving bandwidth according to the instructions, which will not cause the receiving device's receiving bandwidth to be too large and reduce the receiving power consumption of the terminal device.
  • At least two detection opportunities correspond to the URLLC service and the eMBB service, respectively.
  • different detection timings can be configured for the URLLC service and the eMBB service, so that the terminal device can detect the control channel for scheduling the URLLC service and the control channel for the eMBB service at different detection timings, and ensure that the detection meets the data transmission quality requirements.
  • the control channel corresponding to the eMBB service is detected using a cell radio network temporary identity C_RNTI; the control channel corresponding to the URLLC service is detected using a modulation and coding strategy cell wireless network temporary identity MCS-C-RNTI.
  • C_RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding strategy cell wireless network temporary identity
  • the detection period of the URLLC service is shorter than the detection period of the eMBB service. Based on the above method, the detection frequency of the control channel corresponding to the URLLC service can be set higher to meet the low latency requirements of the URLLC service. For the eMBB service, the detection frequency of the control channel corresponding to the eMBB service is set lower. Will waste testing resources.
  • the multiplexing relationship between the retransmission resource and the initial transmission resource uses a carrier Inter-frequency division multiplexing relationship or intra-carrier frequency division multiplexing relationship. Based on the above method, certain control channels can be retransmitted to ensure the reliability of the data scheduled by the control channel.
  • the multiplexing relationship between retransmission resources and initial transmission resources adopts the inter-carrier frequency division multiplexing relationship or the carrier internal frequency.
  • Dividing and multiplexing relationship when re-transmission resources and initial transmission resources adopt inter-carrier frequency division multiplexing, the frequency diversity diversity effect can be improved; when re-transmission resources and initial transmission resources adopt intra-carrier frequency division multiplexing, terminals can be reduced
  • the receiving bandwidth of the device reduces the receiving power of the terminal device.
  • an embodiment of the present invention provides a device for detecting a control channel, and the device has a function of realizing the behavior of an access network device in the foregoing method.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the access network device includes a processor and a transceiver, and the processor is configured to support the access network device to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the access network device and the terminal device, and sends the information or instructions involved in the above method to the terminal device.
  • the access network device may further include a memory, which is used for coupling with the processor, and stores program instructions and data necessary for the access network device.
  • an embodiment of the present invention provides a device for detecting a control channel, and the device has a function of implementing the behavior of a terminal device in the foregoing method design.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules may be software and / or hardware.
  • the structure of the terminal device includes a transceiver and a processor, and the transceiver is configured to support the terminal device to receive configuration information of at least one control channel resource set and configuration information of at least two detection occasions.
  • the processor controls the terminal device to detect one or more control channels corresponding to each control channel resource set according to at least two detection occasions.
  • an embodiment of the present application provides a communication device including a unit, a module, or a circuit for performing the method provided in the first aspect or each possible implementation manner of the first aspect.
  • the communication device may be an access network device or a module applied to the access network device, for example, it may be a chip applied to the access network device.
  • an embodiment of the present application provides a communication device including a unit, a module, or a circuit for performing the method provided in the second aspect or each possible implementation manner of the second aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, it may be a chip applied to the terminal device.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program or instruction, and when the computer program or instruction is run on a computer, the computer is caused to execute any one of the foregoing first aspects.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program or instruction, and when the computer program or instruction is run on a computer, the computer is caused to execute any one of the foregoing second aspects Methods.
  • an embodiment of the present application provides a computer program product, and when the computer program product is run on a computer, the computer is caused to execute the method according to any one of the foregoing first aspects.
  • an embodiment of the present application provides a computer program product, and when the computer program product runs on a computer, the computer is caused to execute the method according to any one of the foregoing second aspects.
  • a method for detecting a control channel includes: an access network device configuring at least one control channel resource set for a terminal device; wherein each control channel resource set in the at least one control channel resource set corresponds to One or more control channels; the access network device configures at least two search spaces for the terminal device; wherein each search space includes at least one control channel resource set; the access network device controls the channel resource set through at least two search spaces The corresponding control channel sends scheduling information to the terminal device.
  • different search spaces can be configured for the terminal device, so that the terminal device can detect one or more control channels according to the different search spaces, such as detection of control channels corresponding to data with low delay requirements.
  • the frequency can be set a little higher, and the detection frequency of the control channel corresponding to data with relatively low delay requirements can be set a little lower to meet the transmission requirements of different types of data.
  • a specific RNTI or / and demodulation format can be used to detect the control channel, thereby saving the receiving power consumption of the terminal device.
  • control channels corresponding to control channel resource sets in different search spaces schedule services of different service types.
  • the QoS requirements of services of different service types are different.
  • the QoS requirements include at least: transmission delay And / or bit error rate.
  • different search spaces include different sets of control channel resources.
  • different control channel resource sets in at least two search spaces correspond to transmission of control channels and transmissions of URLLC services with high reliability and low latency.
  • Control channel for enhanced mobile broadband eMBB services corresponds to transmission of control channels and transmissions of URLLC services with high reliability and low latency.
  • different search spaces can be configured for the URLLC service and the eMBB service, so that the terminal device can detect the control channel that schedules the URLLC service and the control channel that schedules the eMBB service in different search spaces to ensure that the detection meets the data transmission quality requirements.
  • the present application provides a device for detecting a control channel.
  • the access network device may be an access network device or a chip or a system on a chip in the access network device, and may also be used to implement the eleventh aspect or The functional module of the method according to any possible design of the eleventh aspect.
  • the device for detecting a control channel may implement the functions performed by the access network device in the above aspects or possible designs, and the functions may be implemented by executing corresponding software in hardware.
  • the hardware or software includes one or more modules corresponding to the foregoing functions.
  • the device for detecting a control channel includes:
  • control channels corresponding to the control channel resource set in different search spaces schedule services of different service types; QoS of services of different service types Different requirements, QoS requirements include at least: transmission delay and / or bit error rate.
  • different search spaces include different sets of control channel resources.
  • different control channel resource sets in at least two search spaces correspond to transmission of control channels and transmissions of URLLC services with high reliability and low latency.
  • Control channel for enhanced mobile broadband eMBB services corresponds to transmission of control channels and transmissions of URLLC services with high reliability and low latency.
  • the present application provides a device for detecting a control channel.
  • the device for detecting a control channel may be an access network device or a chip or a system-on-chip in an access network device.
  • the device for detecting a control channel may implement the functions performed by the access network device in the above aspects or possible designs, and the function may be implemented by hardware.
  • the device for detecting a control channel may Including: processor and communication interface.
  • the communication interface is configured to receive a signal from a communication device other than the communication device and transmit the signal to the processor or send a signal from the processor to a communication device other than the communication device.
  • the processor uses logic circuits or executes code instructions to implement the method according to the eleventh aspect or any possible design of the eleventh aspect.
  • the processor is configured to configure at least one control channel resource set for the terminal device and at least two search spaces for the terminal device, and send scheduling information to the terminal device through the control channels corresponding to the control channel resource set in the at least two search spaces;
  • Each control channel resource set in the at least one control channel resource set corresponds to one or more control channels, and each search space includes at least one control channel resource set.
  • the apparatus for detecting a control channel may further include a memory, where the memory is configured to store computer execution instructions and data necessary for the apparatus for detecting a control channel.
  • the processor executes the computer execution instructions stored in the memory, so that the device for detecting the control channel executes any one of the eleventh aspect or the eleventh possible design. The method for detecting a control channel.
  • a computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer-readable storage medium stores computer instructions or programs. When running on the computer, the computer can execute the eleventh aspect or any one of the possible designs of the method for detecting a control channel.
  • a computer program product containing instructions which, when run on a computer, enables the computer to execute the eleventh aspect or any one of the possible designs of the above aspect of the detection control channel. method.
  • a device for detecting a control channel may be an access network device or a chip or a system on a chip in the access network device.
  • the device for detecting a control channel includes one or more devices.
  • the one or more memories are coupled to the one or more processors, and the one or more memories are configured to store computer program code, where the computer program code includes computer instructions, and when the one or more processors When the computer instruction is executed, the apparatus for detecting a control channel is caused to execute the method for detecting a control channel according to the eleventh aspect or any possible design of the eleventh aspect.
  • FIG. 1 is a schematic configuration diagram of a control channel resource set according to an embodiment of the present application
  • FIG. 2 is a schematic configuration diagram of a detection timing according to an embodiment of the present application.
  • FIG. 3 is a simplified schematic diagram of a system architecture according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for detecting a control channel according to an embodiment of the present application
  • FIG. 5 is a flowchart of a method for detecting a control channel according to an embodiment of the present application
  • FIG. 6a is a schematic diagram of a search space for URLLC data and eMBB data according to an embodiment of the present application
  • 6b is another schematic diagram of a search space for URLLC data and eMBB data according to an embodiment of the present application
  • 7a is a schematic diagram of inter-carrier frequency division multiplexing according to an embodiment of the present application.
  • 7b is a schematic diagram of intra-carrier frequency division multiplexing provided by an embodiment of the present application.
  • FIG. 7c is a schematic diagram showing that the retransmission resources and the initial transmission resources are the same when time division multiplexing is provided according to an embodiment of the present application;
  • 7d is a schematic diagram of different retransmission resources and initial transmission resources during time division multiplexing according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another communication device according to an embodiment of the present application.
  • Control channel resource set it can be called a control resource set (control resource set, CORESET), and the control channel resource set corresponds to one or more control channels (eg, PDCCH).
  • control channel resource set corresponding to one or more control channels may refer to that the control channel resource set may be occupied (or used) by one or more control channels.
  • the control channel resource set may include any one or more of the following configuration information: frequency domain resources (frequency domain resources) that the control channel may occupy, time domain durations that the control channel may occupy, and the like.
  • the time domain duration may be referred to as a time domain resource, and the time domain resource is continuous.
  • the time domain resource may be based on orthogonal frequency division multiplexing (OFDM) symbols (symbols for short).
  • OFDM orthogonal frequency division multiplexing
  • control channel resource set may include one symbol, two symbols, or three symbols as shown in FIG. 1.
  • the control channel resource set may be identified by a control channel resource set identifier (ID).
  • ID control channel resource set identifier
  • the control channel resource set IDs corresponding to different control channel resource sets may be different. For example, a control channel resource set including one symbol can be identified by a control channel resource set 1 and a control channel resource set including two symbols can be identified by a control channel resource set 2.
  • Detection timing It can be called search space or time opportunity of sending / receiving control channel. It defines the scope and opportunity of the control device to detect the control channel (such as PDCCH).
  • the detection timing can include any of the following: One or more types of configuration information: control channel resource set identification, detection period and offset, monitoring number, and number of slots for continuous monitoring, and symbol positions monitored in one slot. It should be noted that the detection timing described in the embodiments of the present application refers not only to a detection opportunity, but also to a detection opportunity pattern including a plurality of detection opportunity points, and the detection opportunity point may refer to an opportunity point for detecting a control channel.
  • the control channel resource set identifier is as described above.
  • the detection period can be used to specify how often (or how many consecutive slots) the terminal device listens to the control channel.
  • the offset can refer to the start time slot and the 0th slot (that is, slot 0) of the terminal device's first monitoring of the control channel. ).
  • the number of time slots (slots) to be continuously monitored can be called a monitoring length (duration), which can mean that the terminal device needs to monitor the control channel in several consecutive slots at a time.
  • the position of the symbols monitored in a slot can be referred to as the detection position in the slot, and can be used to instruct the terminal device from which symbols in a slot to start monitoring the control channel.
  • the configuration information of the detection timing is: the control channel resource set indicated by the control channel resource set identifier includes 2 symbols (that is, the PDCCH may occupy 2 symbols),
  • the detection period is 5 slots, the offset is 0 slot, and the number of consecutively monitored slots is 2 times.
  • the symbol position for monitoring the PDCCH in each slot is the first symbol (that is, symbol 0) and the eighth symbol ( That is, symbol 7), among the nine slots from slot0 to slot9 shown in FIG. 2, five slots are used as a detection period, and there are two detection periods: the first detection period from slot0 to slot4, from Slots 5 to 9 are the second detection period.
  • the terminal device can monitor the PDCCH on slot0 and slot1.
  • the terminal device can monitor the PDCCH on slot5 and slot6. Because the detection position of starting to detect the PDCCH in each monitored slot is symbol 0 and symbol 7, and the PDCCH may occupy 2 symbols in a row. Taking the terminal device can monitor the PDCCH on slot 5 as an example, as shown in FIG. 2, the terminal device can monitor the PDCCH on slot 0, symbol 1, symbol 7, and symbol 8.
  • the method for detecting a control channel may be applied to the communication system shown in FIG. 3, and the communication system may be a long term evolution (LTE) system or a fifth generation (5th generation, 5G).
  • the mobile communication system or the new air interface (NG) system can also be other mobile communication systems, and is not limited.
  • the communication system may include an access network device and a terminal device, and the terminal device may transmit different types of data (such as URLLC data or eMBB data) to and from the access network device by wireless means.
  • an access network device may send a control channel (such as a PDCCH) to a terminal device.
  • the control channel may include downlink control information (DCI), and the terminal device may detect the information sent by the access network device according to the provisions of the search space.
  • the control channel receives data sent by the access network device to the terminal device on the scheduling resource indicated by the DCI included in the control channel.
  • DCI downlink control information
  • FIG. 3 is only an exemplary frame diagram, and the number of devices included in FIG. 3 is not limited.
  • the system described in FIG. 3 may further include other nodes, such as a core network. Devices, gateway devices, application servers, etc. are not restricted.
  • the terminal device in FIG. 3 may be called a terminal (terminal) or user equipment (UE), a mobile station (MS), or a mobile terminal device (mobile terminal, MT), etc., and may be deployed.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal device
  • On the water can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • it may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal device in industrial control, a wireless terminal device in unmanned driving, a wireless terminal device in telemedicine, Wireless terminal devices in smart grids, wireless terminal devices in smart cities, wireless terminal devices in smart homes, and so on.
  • the device for implementing the function of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the technical solution provided in the embodiments of the present application is described by taking the device for realizing the functions of the terminal device as a terminal device as an example.
  • the access network device in FIG. 3 may be called a network device, and is mainly used to implement functions such as wireless physical control functions, resource scheduling and wireless resource management, wireless access control, and mobility management.
  • the access network device may be an access network (AN) / radio access network (RAN) device, or may be a device composed of multiple 5G-AN / 5G-RAN nodes.
  • the device for implementing the function of the access network device may be an access network device or a device capable of supporting the access network device to implement the function, such as a chip system.
  • the technical solution provided in the embodiment of the present application will be described by taking the device for implementing the function of the access network device as an access network device as an example.
  • the access network device may configure a control channel resource set and detection timing for the terminal device in advance, so that the terminal device detects different control channels according to different detection timings.
  • the method may include S401 to S404:
  • the access network device configures at least one control channel resource set for the terminal device.
  • the terminal device may be any terminal device in the system shown in FIG. 3.
  • the related description and configuration information of the control channel resource set are as described above.
  • Each control channel resource set in the at least one control channel resource set corresponds to one or more control channels.
  • QoS requirements of data scheduled by control channels corresponding to different control channel resource sets may be different.
  • QoS requirements may be referred to as transmission quality requirements, and may include any one or more of the following requirements: transmission delay, transmission reliability, transmission rate, transmission error rate, and demodulation / modulation. Modulation and coding strategy (MCS) index table and so on. .
  • MCS Modulation and coding strategy
  • the configuration of the access network device for the terminal device with at least one control channel resource set may refer to: the access network device configures one control channel resource set for the terminal device, or configures two control channel resource sets, or three control channel resources Sets, etc.
  • the embodiments of the present application do not limit the number of control resource control sets.
  • the access network device may configure at least one control channel resource set for the terminal device through high-level signaling.
  • the high-level signaling may be radio resource control (radio resource control, RRC) signaling, and the access network device may carry the configuration information of at least one control channel resource set in the RRC signaling and send it to the terminal device.
  • RRC radio resource control
  • the access network device configures at least two detection timings for the terminal device.
  • configuring the access network device to configure at least two detection timings for the terminal device may refer to: configuring the access network device to configure two detection timings, or three detection timings, or four detection timings for the terminal device, etc.
  • the number of detection timings is not limited in the embodiments of the present application.
  • At least two detection timings may correspond to the URLLC service and the eMBB service, respectively. Each of the at least two detection timings may be different. Each detection timing may be used for a terminal device to detect at least one control channel resource set. One or more control channels corresponding to each control channel resource set. For example, it is assumed that the access network device configures two control channel resource sets for the terminal device: CORESET1, CORESET2, and three detection timings: detection timing 1 to detection timing 3. The terminal device can detect the control channel in CORESET1 according to detection timing 1. Detection timing 2 detects the control channel in CORESET1, and according to detection timing 3, the control channel in CORESET2 is detected.
  • the access network device may also configure at least two detection timings for the terminal device through high-level signaling.
  • the access network device may carry the configuration information of at least two detection timings to the terminal device in RRC signaling, or may notify the terminal device of the configuration information of at least two detection timings by other methods. No restrictions.
  • S401 and S402 can be executed sequentially as shown in FIG. 4; S402 and S401 can also be executed first;
  • the network access device may carry the configuration information of the at least one control channel resource set and the configuration information of at least two detection occasions in the RRC signaling and send them to the terminal device together.
  • the access network device sends scheduling information to the terminal device through one or more control channels corresponding to each control channel resource set in at least one control channel resource set.
  • the access network device sends scheduling information to a terminal device through a control channel corresponding to the control channel resource set. It may include: the access network device generates scheduling information (such as DCI) for scheduling data, performs cyclic redundancy check (CRC) check on DCI, RNTI scrambling, channel coding, modulation
  • the control channel is obtained by processing such as resource mapping, and the control channel is included in the control channel resource set and sent to the terminal device, and data is sent to the terminal device at the time-frequency resource location indicated by the DCI.
  • the processes such as CRC check, RNTI scrambling, channel coding, modulation, and resource mapping can be referred to the prior art, and will not be described in detail.
  • the scheduling information corresponding to the data required for different QoS may be different or the same when the RNTI is used for RNTI scrambling.
  • the scheduling information for scheduling eMBB services is scrambled using C_RNTI when performing RNTI scrambling
  • the scheduling information for scheduling URLLC services is scrambled using MCS-C-RNTI when performing RNTI scrambling.
  • the terminal device detects one or more control channels corresponding to each control channel resource set according to the at least two detection occasions.
  • the terminal device may perform demodulation control on the resources corresponding to the control channel resource set through resource demapping, demodulation, channel decoding, RNTI descrambling, and CRC check within the detection period configured by the detection timing.
  • the DCI included in the channel Exemplarily, the terminal device uses C_RNTI to descramble the control channel corresponding to the eMBB service, and uses MCS-C-RNTI to descramble the control channel corresponding to the URLLC service.
  • different detection timings can be configured for the terminal device, so that the terminal device can detect one or more control channels according to different detection timings, such as the detection frequency of the control channel corresponding to data with low delay requirements It can be set a little higher, and the detection frequency of the control channel corresponding to data with relatively low delay requirements can be set a little lower to meet the transmission requirements of different service data.
  • the method may further include:
  • the access network device configures the first parameter information for the terminal device, and the terminal device obtains the first parameter information.
  • the access network device may configure the first parameter information for the terminal through RRC signaling, and the first parameter information may be configured to the terminal device together with the configuration information in S401 and / or S402.
  • the first parameter information may be used to indicate a processing format of at least one control channel among the one or more control channels, for example, a processing format that may be used for one control channel among one or more control channels, or two control channels. Processing format, or three, four, etc.
  • the processing format may include a coding format and / or a modulation format, and the processing format of the one or more control channels may be different or the same. Exemplarily, the processing formats of the control channels for scheduling data with different QoS requirements are different.
  • the scheduling information for scheduling eMBB services uses quadrature phase shift keying (QPSK) modulation
  • the scheduling information for scheduling URLLC services can use a modulation method with better performance than QPSK demodulation, such as: two-phase phase shift Keying signal (binary phase shift keying, BPSK) modulation.
  • the scheduling information for scheduling the URLLC service may be modulated using the BPSK modulation method, and the scheduling information for scheduling the eMBB service uses the default modulation method.
  • the terminal device can detect the control channel according to the processing format indicated by the first parameter information when the detection timings specified by the at least two detection timings arrive, thereby improving the accuracy and efficiency of control channel detection.
  • the method may further include:
  • the access network device sends instruction information to the terminal device, and the terminal device receives the instruction information sent by the access network device.
  • the indication information may be used to indicate a maximum bandwidth occupied by data invoked by the control channel, and the bandwidth may not be greater than a bandwidth of a control channel resource set including the control channel.
  • the terminal device can adjust the receiving power of the receiver according to the bandwidth indicated by the access network device, receive data sent by the access network device, and reduce the receiving power consumption of the terminal device.
  • the method may further include:
  • the multiplexing relationship between the retransmission resource and the initial transmission resource adopts an inter-carrier frequency division multiplexing relationship or a carrier Internal frequency division multiplexing relationship.
  • control channel needs to be retransmitted.
  • inter-carrier frequency division for retransmission resources and initial transmission resources can refer to: retransmission resources and initial transmission resources can be different carriers, or bandwidth parts (BWP) on different carriers; thus, initial transmission and retransmission
  • BWP bandwidth parts
  • the use of intra-carrier frequency division multiplexing for retransmission resources and initial transmission resources can mean that the retransmission resources and initial transmission resources can be different frequency bands within the same carrier, or different BWPs on the same carrier. In this way, when the initial transmission and retransmission control channels are configured on the same carrier, the frequency domain interval between the initial transmission resources and the retransmission resources is small, which reduces the reception bandwidth of the terminal device, thereby reducing the reception power consumption of the terminal device.
  • the control channel resource set is CORESET
  • the detection timing is the search space
  • the access network device configures two CORESETs for the terminal device: the first CORESET and the second CORESET, and configures two search spaces for the terminal device: the first search space and the first Two search spaces
  • the first CORESET corresponds to the first control channel
  • the second CORESET corresponds to the second control channel
  • the first control channel is used to schedule URLLC service data (URLLC data for short)
  • the second control channel is used to schedule eMBB service data (Referred to as eMBB data) as an example, the method shown in FIG. 4 is described.
  • URLLC data transmission delay, transmission reliability, transmission rate, transmission error rate and eMBB data transmission delay, transmission reliability, transmission rate, transmission error rate are different.
  • the transmission delay of URLLC data is less than or equal to 1 ms, and the transmission block error rate is 0.00001.
  • the transmission delay of eMBB data is less than or equal to 4ms, and the transmission block error rate is 0.1. It should be noted that the embodiment of the present application only uses eMBB data and URLLC data as examples for the description.
  • MTC Machine-type communication
  • eMBB voice data and data data
  • Configure the CORESET and search space of the control channel corresponding to these data The method can also be configured according to the QoS requirements of the data.
  • control channel resource set takes the first CORESET and the second CORESET as examples, and the detection timing is described using the first search space and the second search space as examples.
  • FIG. 5 A flowchart of a method for detecting a control channel according to an embodiment of the present application.
  • the method may include S501 to S504.
  • the access network device configures a first CORESET and a second CORESET for the terminal device.
  • the first CORESET and the second CORESET may be the same or different.
  • the time domain length of the first CORESET may be 2 symbols
  • the time domain length of the second CORESET may be 3 symbols.
  • the access network device configures a first search space and a second search space for the terminal device.
  • the first search space may be used for the terminal device to detect the first control channel.
  • the second search space can be used by the terminal device to detect the second control channel.
  • the first search space is different from the second search space.
  • the detection period in the first search space configured for URLLC data is relatively short.
  • the eMBB data does not require high latency, and the second search is configured for eMBB data.
  • the detection period in space can be slightly longer, that is, the detection period of URLLC data is less than the detection period of eMBB data.
  • S501 and S502 may be executed sequentially as shown in FIG. 5; S502 and S501 may be executed first; S501 and S502 may also be executed simultaneously.
  • the access network device sends scheduling information to the terminal device through a first control channel corresponding to the first CORESET or a second control channel corresponding to the second CORESET.
  • control channel and type of data the access network device sends to the terminal device is determined by the access network device. For the terminal device, this information is unknown and needs to be controlled by detection. Channel learned.
  • the access network device may generate DCI for scheduling URLLC data, and The DCI obtains a first control channel through processing such as CRC check, RNTI scrambling, channel coding, modulation, resource mapping, and the first control channel is included in a first CORESET and sent to the terminal device, and Sending URLLC data to the terminal device at the time-frequency resource location indicated by the DCI.
  • the accessed network device may send the first control channel to the terminal device first, and then send the URLLC data to the terminal device.
  • the time interval between the access network device sending the first control channel and the URLLC data may be greater than the time duration for the terminal device to successfully demodulate the first control channel.
  • the terminal device detects the first control channel corresponding to the first CORESET or the second control channel corresponding to the second CORESET in the first search space or the second search space.
  • the terminal device detects the first control channel according to the configuration of the first search space, such as: performing resource demapping, demodulation, and channel translation on the resources configured by the first CORESET. Code, RNTI descrambling, CRC check and other processes demodulate the DCI included in the first control channel.
  • the terminal device detects the second control channel according to the configuration of the second search space, such as: performing resource demapping, demodulation, channel decoding, and RNTI solution on the resources configured by the second CORESET. Processing such as scrambling, CRC check, etc. demodulates the DCI included in the second control channel.
  • the terminal device detects the first control channel according to the configuration of the first search space.
  • you can start more computing resources to detect the first control channel such as: 1) enable more computing units, such as: additionally start digital signal processing (DSP) cores for data processing; 2) use the Frequency technology will increase the operating frequency.
  • the operating frequency is 800MHz.
  • the first control channel is detected, the frequency is increased to 1.5GHz; 3) Borrowing of computing resources: Borrowing computing resources of other carriers or systems.
  • the terminal device detects the second control channel according to the configuration of the second search space, it can start fewer computing resources to detect the second control channel, such as: putting the DSP core into a sleep state or not powered on.
  • the terminal device preferentially detects the scheduling transmission quality requirements.
  • the control channel of the data such as: the first control channel with a high service priority will be detected first to take into account the low latency requirements of URLLC data.
  • the terminal device when the terminal device successfully demodulates the first control channel according to the first search space, the terminal device receives URLLC data sent by the access network device according to the DCI included in the first control channel.
  • the terminal device when the terminal device successfully demodulates the second control channel according to the second search space, the terminal device receives the eMBB data sent by the access network device according to the DCI included in the second control channel.
  • a slot includes 14 symbols, a PDCCH scheduling URLLC data is PDCCH1, and a PDCCH scheduling eMBB data is PDCCH2.
  • the CORESET configured by the access network device to the terminal device is: during the CORESET of eMBB data
  • the domain length is 3 symbols
  • the time domain length in the CORESET corresponding to URLLC data is 2 symbols
  • the configuration of the search space corresponding to eMBB data is: the detection period is 5 slots, the offset is 0, and the number of slots that are continuously monitored Is 1, 1 slot has a built-in detection start bit (the start symbol is 0 sign);
  • the configuration of the search space corresponding to URLLC data is: the detection period of URLLC is 5 slots, the offset is 0, and the duration
  • the number of monitored slots is two, and one slot has two built-in detection start sign bits (starting signs are 0 and 7 signs).
  • the terminal device can monitor PDCCH1 on slot0 and slot1, and can monitor PDCCH2 on slot0.
  • the terminal device can monitor PDCCH1 on slot5 and slot6, and can monitor PDCCH2 on slot5.
  • the terminal device can monitor PDCCH1 on slot10 and slot11, and can monitor PDCCH2 on slot10.
  • the detection positions of PDCCH1 in the slot are symbols 0 and 7, and PDCCH1 may occupy two symbols in succession, as shown in Figure 6a, when the terminal device monitors PDCCH1 on slot5, it can use symbol 0 and symbol in slot5. 1.
  • the terminal device monitors PDCCH1 on slot11 it can monitor PDCCH1 on symbols 0, 1, 7, and 8 in slot11.
  • the detection position of PDCCH2 in the slot is symbol 0, and PDCCH2 may occupy 3 symbols in succession, as shown in Figure 6a, when the terminal device monitors PDCCH2 on slot5, it can use symbol 0, symbol 1, and symbol in slot5. Listen on PDCCH2.
  • a slot includes 14 symbols, a PDCCH that schedules URLLC data is PDCCH1, and a PDCCH that schedules eMBB data is PDCCH2.
  • PDCCH1 a PDCCH that schedules URLLC data
  • PDCCH2 a PDCCH that schedules eMBB data
  • the eMBB data and URLLC data corresponding to the access network device are configured with two CORESETs.
  • the configuration of the search space corresponding to the eMBB data is: the detection period is 5 slots, the offset is 0, the number of slots for continuous monitoring is 1, and 1 slot has a built-in detection start sign bit (starting symbol (0 symbol);
  • the configuration of the search space corresponding to URLLC data is: the detection period of URLLC is 5 slots, the offset is 0, the number of continuously monitored slots is 2, and 1 detection symbol is built in 1 slot Bits (starting symbols are 0 and 7 symbols), among the fifteen slots from slot0 to slot14 shown in Figure 6b, five slots are used as a detection period, and there are three detection periods: from slot0 to The first detection cycle of slot 4 is from the second detection cycle of slots 5 to 9 and the third detection cycle of slots 10 to slot 14.
  • the terminal device can monitor PDCCH1 on slot0 and slot1, and can monitor PDCCH2 on slot0.
  • the terminal device can monitor PDCCH1 on slot5 and slot6, and can monitor PDCCH2 on slot5.
  • the terminal device can monitor PDCCH1 on slot10 and slot11, and can monitor PDCCH2 on slot10. Because the detection positions of PDCCH1 in the slot are symbols 0 and 7, and PDCCH1 may occupy two symbols in succession, as shown in Figure 6b, when the terminal device monitors PDCCH1 on slot5, it can use symbols 0 and symbols in slot5. 1. Monitor PDCCH1 on symbols 7 and 8.
  • the terminal device When the terminal device monitors PDCCH1 on slot11, it can monitor PDCCH1 on symbols 0, 1, 7, and 8 in slot11. Because the detection position of PDCCH2 in slot is 0, and PDCCH2 may occupy 2 symbols in succession, as shown in Figure 6b, when the terminal device monitors PDCCH2 on slot5, it can monitor on symbol 0 and 1 in slot5. PDCCH2. At this time, the detection timings of PDCCH1 and PDCCH2 overlap.
  • the search space corresponding to different service types is configured separately.
  • the detection cycle of the search space configuration corresponding to data with low delay requirements and low priority will be long, which can effectively reduce the number of detection control channels.
  • the terminal can identify the type of the control channel corresponding to the search space according to the configuration information of the search space, which is convenient for the terminal to centrally schedule the computing resources of the control channel or release some computing resources of the control channel.
  • the method shown in FIG. 5 may further include:
  • the access network device retransmits the first control channel to the terminal device.
  • the multiplexing relationship between the retransmission resources and the initial transmission resources of the first control channel may be as described above, using an inter-carrier frequency division multiplexing relationship or an intra-carrier frequency division multiplexing relationship, or a time division multiplexing relationship.
  • the relationship between time division multiplexing and frequency division multiplexing can be used.
  • the retransmission resources and the initial transmission resources adopt a time division multiplexing relationship, and the symbol lengths occupied by the retransmission resources and the initial transmission resources may be different.
  • intra-carrier frequency division multiplexing is used between retransmission resources and initial transmission resources, such as: retransmission resources and initial transmission resources are in different frequency bands in the same BWP bandwidth, or retransmission resources and initial transmission The resources are different frequency bands in the same carrier bandwidth.
  • the retransmission resources and the initial transmission resources are inter-carrier frequency division multiplexed.
  • the retransmission resources are located on the bandwidth of carrier 2 and the initial transmission resources are located on the bandwidth of carrier 1;
  • the first transmission resource is located on the BWP1 bandwidth.
  • both retransmission resources and initial transmission resources occupy 2 symbols.
  • the initial transmission resources occupy 2 symbols and the retransmission resources occupy 1 symbol.
  • the multiplexing relationship may be an inter-carrier frequency division multiplexing relationship or an intra-carrier frequency division multiplexing relationship or a time division multiplexing relationship or a time division multiplexing and frequency division multiplexing relationship, and is not limited.
  • the access network device before the access network device retransmits the first control channel to the terminal device, the access network device also needs to reconfigure the search space for the terminal device to detect the first control channel for retransmission, such as a third search space.
  • the configuration information of the third search space may be sent to the terminal device independently, or one of the configuration information of the first search space may be sent to the terminal device, that is, the first search space may include a method for detecting retransmission of the access network device. Configuration information of the search space of the first control channel.
  • the configuration information included in the first search space may include one or more of the following; an initial transmission CORESET flag, a retransmission COESET flag, a detection period of the first transmission of the first control channel, a detection period of the retransmission of the first control channel, The time offset between the first transmission of the first control channel and the retransmission of the first channel, the position to be detected in the time slot when the first control channel is first transmitted, or the position to be detected in the time slot when the first control channel is retransmitted.
  • the detection period of the first transmission channel and the detection period of the retransmission first control channel may be the same.
  • the position to be detected in the time slot when the first control channel is first transmitted and the position to be detected in the time slot when the first control channel is retransmitted may be the same.
  • the time offset between the first transmission first control channel and the retransmission first control channel may be: detecting the deviation of the start symbol of the first control channel for retransmission from the start symbol of the first control channel for the first transmission. Shift amount.
  • each node such as an access network device and a terminal device, includes a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the functional modules of the access network device and the terminal device may be divided according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus involved in this embodiment may be an access network device or a chip or a system on a chip in the access network device.
  • the communication apparatus may be configured to perform a function of an access network device in the foregoing method embodiment.
  • the communication device may include: a processing module 81 and a sending module 82;
  • a processing module 81 is configured to configure at least one control channel resource set for the terminal device; wherein each control channel resource set in the at least one control channel resource set corresponds to one or more control channels, and is configured to configure at least two control channels for the terminal device. Detection timings; each of the at least two detection timings is different, and each detection timing is used by a terminal device to detect one or more of each control channel resource set in at least one control channel resource set Control channels.
  • the sending module 82 is configured to send scheduling information to the terminal device through one or more control channels corresponding to each control channel resource set in the at least one control channel resource set.
  • the processing module 81 is further configured to configure first parameter information for the terminal device; wherein the first parameter information is used to indicate a processing format of at least one control channel among the one or more control channels.
  • the processing format includes an encoding format and / or a modulation format.
  • the processing format of one or more control channels corresponding to each control channel resource set in at least one control channel resource set is different.
  • the sending module 82 is further configured to send instruction information to the terminal device, where the instruction information is used to indicate a maximum bandwidth occupied by data scheduled by the scheduling information.
  • At least two detection opportunities correspond to the URLLC service and the eMBB service, respectively.
  • the scheduling information for scheduling eMBB services is scrambled using C_RNTI, and the scheduling information for scheduling URLLC services is scrambled using MCS-C-RNTI.
  • the detection period of the URLLC service is shorter than the detection period of the eMBB service.
  • the multiplexing relationship between the retransmission resource and the initial transmission resource uses a carrier Inter-frequency division multiplexing relationship or intra-carrier frequency division multiplexing relationship.
  • the communication device provided in the embodiment of the present application can perform the actions of the access network device in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device involved in this embodiment is a terminal device in the foregoing method embodiment or a chip or a system on a chip in the terminal device.
  • the communication apparatus may be configured to perform a function of a terminal device in the foregoing method embodiment.
  • the communication device may include: a receiving module 91 and a processing module 92;
  • the receiving module 91 is configured to receive configuration information of at least one control channel resource set; wherein each control channel resource set in the at least one control channel resource set corresponds to one or more control channels, and is configured to receive at least two detections Configuration information of timings; wherein each of the at least two detection timings is different, and each detection timing is used by the terminal device to detect one or each of the control channel resource sets in the at least one control channel resource set.
  • the processing module 92 is configured to detect one or more control channels corresponding to each control channel resource set according to at least two detection occasions.
  • the receiving module 91 is further configured to obtain first parameter information, where the first parameter information is used to indicate a processing format and processing format of at least one of the one or more control channels. Including a coding format and / or a modulation format, the processing format of one or more control channels corresponding to each control channel resource set in the at least one control channel resource set is different;
  • the processing module 92 is specifically configured to detect one or more control channels according to a processing format indicated by the first parameter information at at least two detection occasions.
  • the receiving module 91 is further configured to receive instruction information, where the instruction information is used to indicate a maximum bandwidth occupied by data scheduled by the access network device to the terminal device.
  • At least two detection opportunities correspond to the URLLC service and the eMBB service, respectively.
  • control channel for scheduling the eMBB service is scrambled using C_RNTI
  • control channel for scheduling the URLLC service is scrambled using MCS-C-RNTI
  • the detection period of the URLLC service is shorter than the detection period of the eMBB service.
  • the multiplexing relationship between the retransmission resource and the initial transmission resource uses a carrier Inter-frequency division multiplexing relationship or intra-carrier frequency division multiplexing relationship.
  • the communication device provided in the embodiment of the present application can perform the actions of the terminal device in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • the processing module can be implemented in the form of software calling through processing elements; it can also be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or it may be integrated and implemented in a certain chip of the above-mentioned device.
  • it may also be stored in the memory of the above-mentioned device in the form of a program code. Invoke and execute the functions of the above processing modules.
  • all or part of these modules can be integrated together, or they can be implemented independently.
  • the processing element described herein may be an integrated circuit with signal processing capabilities.
  • each S or the above modules of the above method may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example, one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital signal processor (DSP), or one or more field programmable gate array (FPGA).
  • ASICs application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program code.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may include: a processor 101 (such as a CPU), a memory 102, and a transceiver 103; the transceiver 103 is coupled to the processor 101, and the processor 101 controls a receiving action of the transceiver 103; the memory 102 may Contains high-speed random access memory (random-access memory, RAM), and may also include non-volatile memory (non-volatile memory (NVM)), such as at least one disk memory.
  • the memory 102 can store various instructions for use with It is used to complete various processing functions and implement method S in the embodiment of the present application.
  • the communication device involved in this application may further include a power source 104 and a communication bus 105.
  • the transceiver 103 may be integrated in the transceiver of the communication device, or may be an independent transceiver antenna on the communication device.
  • the communication bus 105 is used to implement a communication connection between the components.
  • the communication port 106 is used to implement connection and communication between the communication device and other peripheral devices.
  • the foregoing memory 102 is configured to store computer-executable program code, and the program code includes instructions.
  • the instructions When the processor 101 executes the instructions, the instructions cause the processor 101 of the communication device to execute the access network device in the foregoing method embodiment.
  • the processing action of the transceiver 103 causes the transceiver 103 to perform the sending and receiving actions of the access network device in the method embodiment or the optional embodiment shown in the figure above. The implementation principles and technical effects are similar, and are not repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may include: a processor 111 (such as a CPU), a memory 112, and a transceiver 113; the transceiver 113 is coupled to the processor 111, and the processor 111 controls the transmission and reception actions of the transceiver 113; the memory 112 may Contains high-speed random access memory (random-access memory, RAM), and may also include non-volatile memory (non-volatile memory (NVM)), such as at least one disk memory, memory 112 can store various instructions for use It is used for completing various processing functions and implementing the method of the present application.
  • a processor 111 such as a CPU
  • RAM random-access memory
  • NVM non-volatile memory
  • the communication device involved in this application may further include a communication bus 114.
  • the transceiver 113 may be integrated in the transceiver of the communication device, or may be an independent transceiver antenna on the communication device.
  • the communication bus 114 is used to implement a communication connection between the components.
  • the communication port 116 is used to implement connection and communication between the communication device and other peripheral devices.
  • the memory 112 is used to store computer-executable program code, and the program code includes an instruction.
  • the instruction causes the processor 111 of the communication device to execute the above-mentioned embodiment or the optional embodiment.
  • the processing action of the terminal device causes the transceiver 113 to perform the sending and receiving actions of the terminal device in the foregoing method embodiment.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • Usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., DVDs), or semiconductor media (e.g., Solid State Disk (SSD)) and the like.
  • the term "plurality” herein refers to two or more.
  • the term “and / or” in this document is only a kind of association relationship describing related objects, which means that there can be three kinds of relationships, for example, A and / or B can mean: A exists alone, A and B exist simultaneously, and exists alone B these three cases.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship; in the formula, the character "/" indicates that the related objects are a "divide” relationship.

Abstract

本申请实施例公开了一种检测控制信道的方法及装置,以满足不同类型数据的传输要求。所述方法包括:接入网设备为终端设备配置至少一个控制信道资源集合以及至少两个检测时机;其中,至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道,至少两个检测时机中的每个检测时机都不相同;接入网设备通过至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向终端设备发送调度信息。终端设备接收至少一个控制信道资源集合的配置信息以及至少两个检测时机的配置信息,根据至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道。

Description

一种检测控制信道的方法及装置
本申请要求于2018年09月28日提交国家知识产权局、申请号为201811142573.2、申请名称为“一种检测控制信道的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种检测控制信道的方法及装置。
背景技术
在通信系统中,网络设备向终端设备传输数据的过程可以包括:网络设备先向终端设备发送包括下行控制信息(downlink control information,DCI)的物理下行控制信道(physical downlink control channel,PDCCH),再向终端设备发送数据。在终端设备侧,终端设备会先在网络设备配置的搜索空间(search space)盲检网络设备下发的PDCCH,解调PDCCH中的DCI,再根据解调出的DCI在相应的资源位置上接收属于终端设备自己的数据(包括广播消息、寻呼、终端设备的数据等等)。由该过程可知,网络设备发送PDCCH的时间间隔(或频度)影响数据到达终端设备的时间间隔,网络设备发送PDCCH间隔越短,数据到达终端设备的时间间隔越短;反之,则数据到达终端设备的时间间隔越长,同时网络设备发送PDCCH的时间间隔影响终端设备的接收功率消耗,网络设备发送的PDCCH的时间间隔越小,终端设备在单位时间内需要检测PDCCH的次数越多,从而耗费的接收功率越大,反之亦然。
目前,不同数据的传输质量要求是不同的。例如,高可靠低时延通信(ultra reliable and low latency communication,URLLC)数据要求低时延、高可靠等(如时延要求在1ms或者0,5ms或者更低,可靠性要求数据包正确率为99.999%),增强型移动带宽(enhanced mobile broadband,eMBB)数据对时延要相对较低(如:时延要求在4ms或者更高,可靠性要求数据包正确率为90%)。因此,为了满足不同数据的传输时延,终端设备盲检用于调度URLLC数据的PDCCH的频度要快,而盲检用于调度eMBB数据的PDCCH的频度可以相对慢些。
但是,现有针对不同的数据,网络设备为终端设备配置的搜索空间是相同,即终端设备盲检用于调度URLLC数据的PDCCH的频度和盲检用于调度eMBB的PDCCH的频度是相同。此时,终端设备盲检PDCCH的频度以eMBB数据高时延的要求进行设置,则不满足URLLC数据的低时延要求;或者终端设备盲检PDCCH的频度以URLLC数据低时延的要求进行设置,则浪费eMBB的检测资源。
发明内容
本申请实施例提供一种检测控制信道的方法及装置,以满足不同类型数据的传输要求。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种检测控制信道的方法,该方法包括:接入网设备为终端设备配置至少一个控制信道资源集合以及至少两个检测时机,通过至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向终端设备发送调度信息;其中,至少 一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;至少两个检测时机中的每个检测时机都不相同,每个检测时机用于终端设备检测至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道。
需要说明是,本申请实施例所述的调度信息可以用于调度业务数据,如:可以为DCI,控制信道是指承载调度信息的控制信道,这些控制信道是基于特定终端设备(user equipment,UE)的配置。示例性的,承载不同业务调度信息的控制信道的名称可以是相同的,比如:均可以命名为PDCCH,或者,承载不同业务调度信息的控制信道的名称也可以不同,比如:调度eMBB业务的控制信道命名为PDCCH,调度URLLC业务的控制信道命名为newPDCCH。本申请实施例所述的控制信道资源集合的配置信息和检测时机的配置信息可以携带在同一配置消息中配置给终端,也可以先配置控制信道资源集合,然后再配置检测时机,或者,先配置检测时机后配置控制信道资源集合,不做限制。
基于第一方面提供的方法,可以为终端设备配置不同的检测时机,使终端设备根据不同的检测时机检测一个或多个控制信道,如:对于时延要求低的数据对应的控制信道的检测频率可以设置的高一点,对于时延相对要求不高的数据对应的控制信道的检测频率可以设置的相对低一点,满足不同类型数据的传输要求。同时,针对不同检测时机,可以用特定的RNTI或/和解调格式检测控制信道,从而节省终端设备的接收功耗。
在一种可能的设计中,所述方法包括:接入网设备为终端设备配置第一参数信息;其中,第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,处理格式包括编码格式和/或调制格式,至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同。基于上述方法,可以为终端设备指示不同控制信道的编码格式/调制格式,使终端设备按照指示的编码格式和/或调制格式检测控制信道。同时,不同控制信道的编码格式和/或调制格式不同可以保证调度数据的准确性。
在一种可能的设计中,所述方法还包括:接入网设备向终端设备发送指示信息;其中,指示信息用于指示调度信息调度的数据占用的最大带宽。基于上述方法,可以通过向终端设备指示发送的数据的带宽,使终端设备根据该指示调整其接收带宽,不会导致终端设备的接收带宽过大,降低终端设备的接收功耗。
在一种可能的设计中,至少两个检测时机分别对应高可靠低时延通信(ultra reliable and low latency communication,URLLC)业务和增强型移动带宽(enhanced mobile broadband,eMBB)业务。基于上述方法,可以针对URLLC业务和eMBB业务配置不同的检测时机,使终端设备在不同检测时机检测调度URLLC业务的控制信道和调度eMBB业务的控制信道,保证检测满足数据的传输质量要求。
在一种可能的设计中,调度eMBB业务的调度信息采用小区无线网络临时标识(cell radio network temporary identifier,C_RNTI)加扰,调度URLLC业务的调度信息采用MCS-C-RNTI加扰。基于上述方法,可以针对调度URLLC业务或eMBB业务的调度信息采用不同的RNTI进行加扰。
在一种可能的设计中,URLLC业务的检测周期小于eMBB业务的检测周期。基于上述方法,可以将URLLC业务对应的控制信道的检测频率设置的高一点,满足URLLC业务的低时延要求,而对于eMBB业务,将eMBB业务对应的控制信道的检测频率设置的低一点,不浪费检测资源。
在一种可能的设计中,当至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。基于上述方法,可以对某些控制信道进行重传,保证了控制信道调度的数据的可靠性;同时,重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系,当重传资源与初传资源采用载波间频分复用时,可以提高了频分分集效果;当重传资源与初传资源采用载波内频分复用时,可以减少终端设备的接收带宽,进而减少终端设备的接收功率。
第二方面,提供一种检测控制信道的方法,所述方法包括:终端设备接收至少一个控制信道资源集合的配置信息以及至少两个检测时机的配置信息,根据至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道;其中,至少一个控制信道资源集合中的每个控制信道资源集合与一个或多个控制信道对应;至少两个检测时机中的每个检测时机都不相同,每个检测时机用于终端设备检测至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道。
基于第二方面提供的方法,终端设备可以根据不同的检测时机检测一个或多个控制信道,如:对于时延要求低的数据对应的控制信道可以检测的快点,对于时延相对要求不高的数据对应的控制信道的检测频率可以检测的慢点,满足不同业务数据的传输要求。
在一种可能的设计中,所述方法还包括:终端设备获取第一参数信息;其中,第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,处理格式包括编码格式和/或调制格式,至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同;终端设备根据至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道,包括:终端设备在至少两个检测时机,根据第一参数信息所指示的处理格式检测一个或多个控制信道。基于上述方法,可以为终端设备指示不同控制信道的编码格式/调制格式,使终端设备按照指示的编码格式和/或调制格式检测控制信道。同时,不同控制信道的编码格式和/或调制格式不同可以保证调度数据的准确性。
在一种可能的设计中,所述方法还包括:终端设备接收指示信息;其中,指示信息用于指示接入网设备向终端设备调度的数据占用的最大带宽。基于上述方法,可以使终端设备根据指示调整其接收带宽,不会导致终端设备的接收带宽过大,降低终端设备的接收功耗。
在一种可能的设计中,至少两个检测时机分别对应URLLC业务和eMBB业务。基于上述方法,可以针对URLLC业务和eMBB业务配置不同的检测时机,使终端设备在不同检测时机检测调度URLLC业务的控制信道和调度eMBB业务的控制信道,保证检测满足数据的传输质量要求。
在一种可能的设计中,所述eMBB业务对应的控制信道采用小区无线网络临时标识C_RNTI检测;所述URLLC业务对应的控制信道采用调制与编码策略小区无线网络临时标识MCS-C-RNTI检测。基于上述方法,可以针对URLLC业务和eMBB业务采用不同的RNTI进行解扰,
在一种可能的设计中,URLLC业务的检测周期小于eMBB业务的检测周期。基于上述方法,可以将URLLC业务对应的控制信道的检测频率设置的高一点,满足URLLC业 务的低时延要求,而对于eMBB业务,将eMBB业务对应的控制信道的检测频率设置的低一点,不会浪费检测资源。
在一种可能的设计中,当至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。基于上述方法,可以对某些控制信道进行重传,保证了控制信道调度的数据的可靠性;同时,重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系,当重传资源与初传资源采用载波间频分复用时,可以提高了频分分集效果;当重传资源与初传资源采用载波内频分复用时,可以减少终端设备的接收带宽,进而减少终端设备的接收功率。
第三方面,本发明实施例提供了一种检测控制信道的装置,该装置具有实现上述方法实际中接入网设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,接入网设备的结构中包括处理器和收发器,所述处理器被配置为支持接入网设备执行上述方法中相应的功能。所述收发器用于支持接入网设备与终端设备之间的通信,向终端设备发送上述方法中所涉及的信息或者指令。所述接入网设备还可以包括存储器,所述存储器用于与处理器耦合,其保存接入网设备必要的程序指令和数据。
第四方面,本发明实施例提供了一种检测控制信道的装置,该装置具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,终端设备的结构中包括收发器和处理器,所述收发器被配置为支持终端设备接收至少一个控制信道资源集合的配置信息以及至少两个检测时机的配置信息。所述处理器控制终端设备根据至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道。
第五方面,本申请实施例提供一种通信装置,包括用于执行以上第一方面或第一方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为接入网设备,也可以为应用于接入网设备的一个模块,例如,可以为应用于接入网设备的芯片。
第六方面,本申请实施例提供一种通信装置,包括用于执行以上第二方面或第二方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行上述第一方面任一项所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行上述第二方面任一项所述的方法。
第九方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如上述第一方面任一项所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在计算机上 运行时,使得该计算机执行如上述第二方面任一项所述的方法。
第十一方面,提供一种检测控制信道的方法,该方法包括:接入网设备为终端设备配置至少一个控制信道资源集合;其中,至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;接入网设备为终端设备配置至少两个搜索空间;其中,每个搜索空间至少包括一个控制信道资源集合;接入网设备通过至少两个搜索空间中控制信道资源集合对应的控制信道,向终端设备发送调度信息。
基于第十一方面提供的方法,可以为终端设备配置不同的搜索空间,使终端设备根据不同的搜索空间检测一个或多个控制信道,如:对于时延要求低的数据对应的控制信道的检测频率可以设置的高一点,对于时延相对要求不高的数据对应的控制信道的检测频率可以设置的相对低一点,满足不同类型数据的传输要求。同时,针对不同搜索空间,可以用特定的RNTI或/和解调格式检测控制信道,从而节省终端设备的接收功耗。
一种可能的设计中,结合第十一方面,不同搜索空间中控制信道资源集合对应的控制信道调度不同业务类型的业务;不同业务类型的业务的QoS要求不同,QoS要求至少包括:传输时延和/或误码率。
一种可能的设计中,结合第十一方面或者第十一方面的任一可能的设计,不同搜索空间包括不同控制信道资源集合。
一种可能的设计中,结合第十一方面或者第十一方面的任一可能的设计,至少两个搜索空间中不同控制信道资源集合对应传输高可靠低时延通信URLLC业务的控制信道和传输增强型移动宽带eMBB业务的控制信道。
基于该可能的设计,可以针对URLLC业务和eMBB业务配置不同的搜索空间,使终端设备在不同搜索空间检测调度URLLC业务的控制信道和调度eMBB业务的控制信道,保证检测满足数据的传输质量要求。
第十二方面,本申请提供一种检测控制信道的装置,该接入网设备可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为用于实现第十一方面或第十一方面的任一可能的设计所述的方法的功能模块。该检测控制信道的装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该检测控制信道的装置包括:
用于为终端设备配置至少一个控制信道资源集合的单元;其中,至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;
用于为终端设备配置至少两个搜索空间的单元;其中,每个搜索空间至少包括一个控制信道资源集合;
用于通过至少两个搜索空间中控制信道资源集合对应的控制信道,向终端设备发送调度信息的单元。
一种可能的设计中,结合第十一方面或者第十一方面的任一可能的设计,不同搜索空间中控制信道资源集合对应的控制信道调度不同业务类型的业务;不同业务类型的业务的QoS要求不同,QoS要求至少包括:传输时延和/或误码率。
一种可能的设计中,结合第十一方面或者第十一方面的任一可能的设计,不同搜索空间包括不同控制信道资源集合。
一种可能的设计中,结合第十一方面或者第十一方面的任一可能的设计,至少两个搜 索空间中不同控制信道资源集合对应传输高可靠低时延通信URLLC业务的控制信道和传输增强型移动宽带eMBB业务的控制信道。
第十三方面,本申请提供一种检测控制信道的装置,该检测控制信道的装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该检测控制信道的装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该检测控制信道的装置可以包括:处理器和通信接口。所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第十一方面或者第十一方面的任一可能的设计所述的方法。例如,处理器用于为终端设备配置至少一个控制信道资源集合以及为终端设备配置至少两个搜索空间,通过至少两个搜索空间中控制信道资源集合对应的控制信道,向终端设备发送调度信息;其中,至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道,每个搜索空间至少包括一个控制信道资源集合。
在又一种可能的设计中,所述检测控制信道的装置还可以包括存储器,所述存储器,用于保存检测控制信道的装置必要的计算机执行指令和数据。当该检测控制信道的装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该检测控制信道的装置执行如上述第十一方面或者第十一方面的任一种可能的设计所述的检测控制信道的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质存储有计算机指令或者程序,当其在计算机上运行时,使得计算机可以执行上述第十一方面或者上述方面的任一种可能的设计所述的检测控制信道的方法。
第十五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第十一方面或者上述方面的任一种可能的设计所述的检测控制信道的方法。
第十六方面,提供了一种检测控制信道的装置,该检测控制信道的装置可以为接入网设备或者接入网设备中的芯片或者片上系统,该检测控制信道的装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述检测控制信道的装置执行如上述第十一方面或者第十一方面的任一可能的设计所述的检测控制信道的方法。
其中,第十三方面至第十六方面中任一种设计方式所带来的技术效果可参见上述第十一方面或者第十一方面的任一种可能的设计所带来的技术效果,不再赘述。
附图说明
图1为本申请实施例提供的控制信道资源集合的配置示意图;
图2为本申请实施例提供的检测时机的配置示意图;
图3为本申请实施例提供的一种系统架构的简化示意图;
图4为本申请实施例提供的一种检测控制信道的方法流程图;
图5为本申请实施例提供的一种检测控制信道的方法流程图;
图6a为本申请实施例提供的一种针对URLLC数据和eMBB数据的搜索空间示意图;
图6b为本申请实施例提供的又一种针对URLLC数据和eMBB数据的搜索空间示意图;
图7a为本申请实施例提供的载波间频分复用示意图;
图7b为本申请实施例提供的载波内频分复用示意图;
图7c为本申请实施例提供的时分复用时重传资源和初传资源相同的示意图;
图7d为本申请实施例提供的时分复用时重传资源和初传资源不同的示意图;
图8为本申请实施例提供的一种通信装置示意图;
图9为本申请实施例提供的一种通信装置示意图;
图10为本申请实施例提供的又一种通信装置示意图;
图11为本申请实施例提供的又一种通信装置示意图。
具体实施方式
首先,为了便于理解本申请实施例,对本申请实施例涉及的一些名词进行描述:
控制信道资源集合:可以称为控制资源集(control resource set,CORESET),控制信道资源集合对应一个或多个控制信道(如:PDCCH)。本申请实施例中,控制信道资源集合对应一个或多个控制信道可以指:控制信道资源集合可以被一个或多个控制信道占用(或使用)。
控制信道资源集合可以包括以下任一种或多种配置信息:控制信道可能占用的频域资源(frequency domain resources)、控制信道可能占用的时间域时长(duration)等。其中,时间域时长可以称为时域资源,该时域资源是连续的,该时域资源可以以正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(简称symbols)为单位。
示例性的,控制信道资源集合可以包括如图1所示的1个symbol或2个symbols或3个symbols等。其中,控制信道资源集合可以用控制信道资源集合标识(indentity,ID)所标识,不同控制信道资源集合对应的控制信道资源集合ID可能是不同的。如:包括1个symbol的控制信道资源集合可以用控制信道资源集合1标识,包括2个symbols的控制信道资源集合可以用控制信道资源集合2标识。
检测时机:可以称为搜索空间(search space)或者发送/接收控制信道的时间机会,其定义了终端设备检测控制信道(如:PDCCH)的范围和机会(occasion),检测时机可以包括以下任一种或者多种配置信息:控制信道资源集合标识、检测周期和偏移量(monitoring slot periodicity and offset)、连续监听的时隙(slot)个数、一个slot内监听的符号位置。需要说明的是,本申请实施例所述的检测时机,不仅是指一个检测机会,还可以是一个包括多个检测机会点的检测机会图案,检测机会点可以指检测控制信道的机会点。
其中,控制信道资源集合标识如前所述。检测周期可以用于规定终端设备每隔多长时间(或多少个连续的slot)监听一次控制信道,偏移量可以指终端设备首次监听控制信道的起始时隙与第0个slot(即slot0)间的偏移量。连续监听的时隙(slot)个数可称为监听长度(duration),可以指终端设备每次需要在连续的几个slot内监听控制信道。一个slot内监听的符号位置可以称为slot内的检测位置,可以用于指示终端设备从一个slot内的哪些符号开始监听控制信道。
例如,以控制信道为PDCCH、slot包括14个symbols为例,假设检测时机的配置信息为:控制信道资源集合标识所指示的控制信道资源集合包括2个symbols(即PDCCH可能占用2个symbols),检测周期为5个slot,偏移量为0slot,连续监听的slot的个数为2 次,每个slot内开始监听PDCCH的符号位置为第1个symbols(即符号0)、第8个symbols(即符号7),则在图2所示的从slot0到slot9的九个slots中,以5个slots为一个检测周期,共存在两个检测周期:从slot0到slot4的第一个检测周期,从slot5到slot9为第二个检测周期,第一个检测周期内,终端设备可以在slot0、slot1上监听PDCCH,在第二个检测周期内,终端设备可以在slot5、slot6上监听PDCCH。因每个监听的slot内开始检测PDCCH的检测位置为符号0、符号7,且PDCCH连续可能占用2个symbols。以终端设备可以在slot5上监听PDCCH为例,如图2所示,终端设备可以在slot5的符号0、符号1、符号7、符号8上监听PDCCH。
下面结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的检测控制信道的方法可以应用于图3所示的通信系统中,该通信系统可以为长期演进(long term evolution,LTE)系统,还可以为第五代(5th generation,5G)移动通信系统或者新空口(new radio,NG)系统,也可以为其他移动通信系统,不予限制。如图3所示,该通信系统可以包括接入网设备以及终端设备,终端设备可以通过无线方式与接入网设备间相互传输不同类型的数据(如:URLLC数据或者eMBB数据等)。例如,接入网设备可以向终端设备发送控制信道(如:PDCCH),该控制信道可以包括下行控制信息(downlink control information,DCI),终端设备可以按照搜索空间的规定检测接入网设备发送的控制信道,在该控制信道包括的DCI所指示的调度资源上接收接入网设备发送给终端设备的数据。需要说明的是,图3仅为示例性框架图,图3包括的设备的数量不受限制,且除图3所示功能节点外,图3所述系统还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
示例性的,图3中的终端设备可以称为终端(terminal)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端设备(mobile terminal,MT)等,可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。具体的,可以为可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
图3中的接入网设备可以称为网络设备,主要用于实现无线物理控制功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能。具体的,该接入网设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN)设备,还可以为由多个5G-AN/5G-RAN节点组成的设备,又可以为者基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、下一代基站(generation nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网 设备实现该功能的装置,例如芯片系统。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
在图3所示系统中,接入网设备可以预先为终端设备配置控制信道资源集合和检测时机,以便终端设备根据不同的检测时机检测不同的控制信道。具体的,该方法如图4所示,可以包括S401~S404:
S401:接入网设备为终端设备配置至少一个控制信道资源集合。
其中,终端设备可以为图3所示系统中的任一终端设备。控制信道资源集合的相关描述以及配置信息如前所述。至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道。
示例性的,不同控制信道资源集合对应的控制信道所调度的数据的QoS要求可以是不同的。本申请各实施例中,QoS要求可以称为传输质量要求,可以包括以下任一种或多种要求:传输时延、传输可靠度、传输速率、传输误码率、解调/调制时使用的调制与编码策略(modulation and coding scheme,MCS)索引表等。.
示例性的,接入网设备为终端设备配置至少一个控制信道资源集合可以指:接入网设备为终端设备配置一个控制信道资源集合,或者配置两个控制信道资源集合,或者三个控制信道资源集合等等,本申请实施例不限定控制资源控制集合的个数。
在本申请实施例中,接入网设备可以通过高层信令为终端设备配置至少一个控制信道资源集合。其中,高层信令可以为无线资源控制(radio resource control,RRC)信令,接入网设备可以将至少一个控制信道资源集合的配置信息携带在RRC信令中发送给终端设备。
S402:所述接入网设备为所述终端设备配置至少两个检测时机。
示例性的,接入网设备为终端设备配置至少两个检测时机可以指:所述接入网设备为所述终端设备配置两个检测时机,或者三个检测时机,或者配置四个检测时机等等,本申请实施例不限定检测时机的个数。
其中,至少两个检测时机可以分别对应URLLC业务和eMBB业务,至少两个检测时机中的每个检测时机可以都不相同,每个检测时机可以用于终端设备检测至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道。如:假设接入网设备为终端设备配置两个控制信道资源集合:CORESET1、CORESET2,三个检测时机:检测时机1~检测时机3,终端设备可以根据检测时机1检测CORESET1中的控制信道,根据检测时机2检测CORESET1中的控制信道,根据检测时机3上检测CORESET2中的控制信道。
在本申请实施例中,接入网设备也可以通过高层信令为终端设备配置至少两个检测时机。如:接入网设备可以将至少两个检测时机的配置信息携带在RRC信令中发送给终端设备,也可以采用其它的方式向终端设备通知至少两个检测时机的配置信息,对此本申请不做限制。
需要说明的,本申请实施例不限定S401和S402的执行顺序,S401和S402可以如图4所示先后执行;也可以先执行S402,再执行S401;还可以同时执行S401以及S402,如:接入网设备可以将至少一个控制信道资源集合的配置信息以及至少两个检测时机的配置信息携带在RRC信令中一起发送给终端设备。
S403:所述接入网设备通过至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向所述终端设备发送调度信息。
以接入网设备通过一个控制信道资源集合所对应的一个控制信道向终端设备发送调度信息为例,所述接入网设备通过该控制信道资源集合所对应的一个控制信道向终端设备发送调度信息可以包括:所述接入网设备生成用于调度数据的调度信息(如:DCI),将DCI进行循环冗余码校验(cyclic redundancy check,CRC)校验、RNTI加扰、信道编码、调制、资源映射等处理得到控制信道,将所述控制信道包括在控制信道资源集合中向终端设备发送,以及在DCI所指示的时频资源位置上向终端设备发送数据。具体的,CRC校验、RNTI加扰、信道编码、调制、资源映射等处理过程可参照现有技术,不再详述。
本申请实施例中,不同QoS要求的数据对应的调度信息在进行RNTI加扰时所使用的RNTI可以是不同的或者相同的。示例性的,调度eMBB业务的调度信息在进行RNTI加扰时采用C_RNTI加扰,调度URLLC业务的调度信息在进行RNTI加扰时采用MCS-C-RNTI加扰。
S404:所述终端设备根据所述至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道。
示例性的,终端设备可以在检测时机所配置的检测周期内,在控制信道资源集合对应的资源上通过资源解映射、解调、信道译码、RNTI解扰、CRC校验等处理解调控制信道包括的DCI。示例性的,终端设备采用C_RNTI对eMBB业务对应的控制信道进行RNTI解扰,采用MCS-C-RNTI对URLLC业务对应的控制信道进行RNTI解扰。
基于图4所示方法,可以为终端设备配置不同的检测时机,使终端设备可以根据不同的检测时机检测一个或多个控制信道,如:对于时延要求低的数据对应的控制信道的检测频率可以设置的高一点,对于时延相对要求不高的数据对应的控制信道的检测频率可以设置的相对低一点,满足不同业务数据的传输要求。
进一步的,在图4所示方法中,所述方法还可以包括:
接入网设备为终端设备配置第一参数信息,终端设备获取第一参数信息。
其中,接入网设备可以通过RRC信令为终端配置第一参数信息,第一参数信息可以与S401和/或S402中的配置信息一起配置给终端设备。
第一参数信息可以用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,如:可以用于一个或多个控制信道中一个控制信道的处理格式,或者两个控制信道的处理格式,或者三个、四个等。处理格式可以包括编码格式和/或调制格式,所述一个或多个控制信道的处理格式可以不同或相同。示例性的,调度不同QoS要求的数据的控制信道的处理格式是不同的。如:调度eMBB业务的调度信息采用四相相移键控(quadrature phase shift keying,QPSK)调制,调度URLLC业务的调度信息可以采用比QPSK解调性能更好的调制方式,如:二相相移键控信号(binary phase shift keying,BPSK)调制。或者,调度URLLC业务的调度信息可以采用BPSK调制方式进行调制,而调度eMBB业务的调度信息采用默认调制方式。
如此,终端设备可以在至少两个检测时机所规定的检测时机到达时,根据第一参数信息所指示的处理格式检测控制信道,提高控制信道检测的准确性和效率。
进一步的,在图4所示方法中,所述方法还可以包括:
接入网设备向终端设备发送指示信息,终端设备接收接入网设备发送的指示信息。
其中,指示信息可以用于指示控制信道调用的数据占用的最大带宽,该带宽可以不大于包括控制信道的控制信道资源集合的带宽。
如此,终端设备可以按照接入网设备指示的带宽调整接收机的接收功率,接收接入网设备发送的数据,降低终端设备的接收功耗。
进一步的,在图4所示方法中,所述方法还可以包括:
当至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
示例性的,若控制信道调度的数据的可靠性要求较高,则该控制信道需要重传。
其中,重传资源与初传资源采用载波间频分可以指:重传资源和初传资源可以为不同载波,或者不同载波上的带宽部分(bandwidth part,BWP);如此,初传和重传控制信道时配置在不同载波上,初传资源和重传资源频域间隔较大,提高了频分分集效果。
重传资源与初传资源采用载波内频分复用可以指:重传资源和初传资源可以为同一载波内的不同频段,或者同一载波上的不同BWP。如此,初传和重传控制信道时配置在同一载波上,初传资源和重传资源频域间隔较小,减少终端设备的接收带宽,从而减少终端设备的接收功耗。
下面以控制信道资源集合为CORESET,检测时机为搜索空间,接入网设备为终端设备配置两个CORESET:第一CORESET和第二CORESET,为终端设备配置两个搜索空间:第一搜索空间和第二搜索空间,第一CORESET对应第一控制信道,第二CORESET对应第二控制信道,第一控制信道用于调度URLLC业务的数据(简称URLLC数据),第二控制信道用于调度eMBB业务的数据(简称eMBB数据)为例,对图4所示方法进行描述。
其中,URLLC数据的传输时延、传输可靠度、传输速率、传输误码率与eMBB数据的传输时延、传输可靠度、传输速率、传输误码率是不同的。示例性的,URLLC数据的传输时延小于或等于1ms,传输误块率为0.00001等。eMBB数据的传输时延小于或等于4ms,传输误块率为0.1。需要说明的是,本申请实施例仅以eMBB数据和URLLC数据为例进行说明,配置其他不同其他类型数据对应的CORESET和搜索空间的方法的配置也可参照本申请实施例提供的方法,比如:机器类型通信(machine-type communication,MTC)数据相比eMBB数据有不同的QoS要求,语音类数据和数据类数据相比,也有不同的QoS要求,配置这些数据对应的控制信道的CORESET和搜索空间的方法时,也可以根据数据的QoS要求进行配置。
为了更好的理解本申请的技术方案,控制信道资源集合以第一CORESET和第二CORESET为例,检测时机以第一搜索空间与第二搜索空间为例进行说明,如图5所示,为本申请实施例提供的一种检测控制信道的方法流程图,该方法可以包括S501~S504。
S501:所述接入网设备为所述终端设备配置第一CORESET和第二CORESET。
其中,第一CORESET和第二CORESET可以相同或不同。示例性的,第一CORESET的时域长度可以为2个符号,第二CORESET的时域长度可以为3个符号。
S502:所述接入网设备为所述终端设备配置第一搜索空间以及第二搜索空间。
其中,第一搜索空间可以用于终端设备检测第一控制信道,。第二搜索空间可以用于终 端设备检测第二控制信道。
为了满足URLLC数据和eMBB数据的传输质量要求,第一搜索空间与第二搜索空间是不同的。示例性的,因URLLC数据要求低时延,所以,为URLLC数据配置的第一搜索空间中检测周期比较短,相对的,eMBB数据对时延要求不高,则为eMBB数据配置的第二搜索空间中检测周期可以稍微长些等,即URLLC数据的检测周期小于eMBB数据的检测周期。
需要说明的,本申请实施例不限定S501和S502的执行顺序,S501和S502可以如图5所示先后执行;也可以先执行S502,再执行S501;还可以同时执行S501以及S502。
S503:所述接入网设备通过第一CORESET对应的第一控制信道或者第二CORESET中对应的第二控制信道向所述终端设备发送调度信息。
其中,所述接入网设备向所述终端设备发送什么样的控制信道以及调度什么类型的数据由接入网设备决定,对于所述终端设备而言,这些信息是未知的,需要通过检测控制信道获知。
如前所述,以接入网设备通过第一CORESET对应的第一控制信道向终端设备发送调度URLLC数据的调度信息为例,所述接入网设备可以生成用于调度URLLC数据的DCI,将所述DCI经过CRC校验、RNTI加扰、信道编码、调制、资源映射等处理得到第一控制信道,将所述第一控制信道包括在第一CORESET中向所述终端设备发送,以及在该DCI所指示的时频资源位置上向所述终端设备发送URLLC数据。其中,所接入网设备可以先向终端设备发送第一控制信道,再向终端设备发送URLLC数据。示例性的,所述接入网设备发送第一控制信道与URLLC数据的时间间隔可以大于所述终端设备成功解调出第一控制信道的时长。
S504:所述终端设备在第一搜索空间或第二搜索空间检测第一CORESET对应的第一控制信道或者第二CORESET对应的第二控制信道。
示例性的,当第一控制信道的检测机会到达时,终端设备根据第一搜索空间的配置检测第一控制信道,如:在第一CORESET配置的资源上通过资源解映射、解调、信道译码、RNTI解扰、CRC校验等处理解调第一控制信道包括的DCI。当第二控制信道的检测机会到达时,终端设备根据第二搜索空间的配置检测第二控制信道,如:在第二CORESET配置的资源上通过资源解映射、解调、信道译码、RNTI解扰、CRC校验等处理解调第二控制信道包括的DCI。
其中,因URLLC数据的传输质量要求相对于eMBB数据的传输质量要求高,URLLC数据的业务优先级相对于eMBB数据的业务优先级高,所以终端设备根据第一搜索空间的配置检测第一控制信道时,可以启动较多的计算资源去检测第一控制信道,如:1)启用较多计算单元数,比如:额外启动数字信号处理(digital signal processing,DSP)核进行数据处理;2)利用提频技术将运算频率提高。比如:通常情况下运行频率是800MHz,当对第一控制信道进行检测时,频率提高到1.5GHz;3)运算资源借用:借用其他载波或者系统的运算资源等。而终端设备根据第二搜索空间的配置检测第二控制信道时,可以启动较少的计算资源去检测第二控制信道,如:将DSP核处于休眠或者未上电状态等。
需要说明的是,若第一检测机会与第二检测机会重叠时,即有第一控制信道的检测时机到来,也有第二控制信道的检测时机到来时,终端设备优先检测调度传输质量要求较高 的数据的控制信道,如:会优先检测业务优先级高的第一控制信道,以兼顾URLLC数据的低时延要求。
后续,当终端设备根据第一搜索空间成功解调出第一控制信道时,终端设备根据第一控制信道包括的DCI接收接入网设备发送的URLLC数据。或者,当终端设备根据第二搜索空间成功解调出第二控制信道时,终端设备根据第二控制信道包括的DCI接收接入网设备发送的eMBB数据。
如图6a所示,以slot包括14个symbols,调度URLLC数据的PDCCH为PDCCH1,调度eMBB数据的PDCCH为PDCCH2为例,假设接入网设备配置给终端设备的CORESET为:eMBB数据的CORESET中时域长度为3个符号,URLLC数据对应的CORESET中时域长度为2个符号,eMBB数据对应的搜索空间的配置为:检测周期为5个slot,偏移量为0,持续监听的slot个数为1,1个slot内置有1个检测起始符号位(起始符号为0符号);URLLC数据对应的搜索空间的配置为:URLLC的检测周期为5个slot,偏移量为0,持续监听的slot个数为2,1个slot内置有2个检测起始符号位(起始符号为0和7符号),则在如图6a所示的从slot0到slot14的十五个slots中,以5个slots为一个检测周期,共存在三个检测周期:从slot0到slot4的第一个检测周期,从slot5~slot9的第二个检测周期,从slots10~slot14的第三个检测周期。在第一个检测周期内,终端设备可以在slot0、slot1上监听PDCCH1,可以在slot0上监听PDCCH2。在第二个检测周期内,终端设备可以在slot5、slot6上监听PDCCH1,可以在slot5上监听PDCCH2。在第二个检测周期内,终端设备可以在slot10、slot11上监听PDCCH1,可以在slot10上监听PDCCH2。因slot内开始检测PDCCH1的检测位置为符号0、符号7,且PDCCH1连续可能占用2个symbols,则如图6a所示,终端设备在slot5上监听PDCCH1时,可以在slot5内的符号0和符号1、符号7和符号8上监听PDCCH1。终端设备在slot11上监听PDCCH1时,可以在slot11内的符号0和符号1、符号7和符号8上监听PDCCH1。因slot内开始检测PDCCH2的检测位置为符号0,且PDCCH2连续可能占用3个symbols,则如图6a所示,终端设备在slot5上监听PDCCH2时,可以在slot5内的符号0、符号1、符号2上监听PDCCH2。
如图6b所示,以slot包括14个symbols,调度URLLC数据的PDCCH为PDCCH1,调度eMBB数据的PDCCH为PDCCH2为例,假设接入网设备配置的eMBB数据、URLLC数据对应的CORESET均为2个符号,eMBB数据对应的搜索空间的配置为:检测周期为5个slot,偏移量为0,持续监听的slot个数为1,1个slot内置有1个检测起始符号位(起始符号为0符号);URLLC数据对应的搜索空间的配置为:URLLC的检测周期为5个slot,偏移量为0,持续监听的slot个数为2,1个slot内置有2个检测起始符号位(起始符号为0和7符号),则在如图6b所示的从slot0到slot14的十五个slots中,以5个slots为一个检测周期,共存在三个检测周期:从slot0到slot4的第一个检测周期,从slot5~slot9的第二个检测周期,从slots10~slot14的第三个检测周期。在第一个检测周期内,终端设备可以在slot0、slot1上监听PDCCH1,可以在slot0上监听PDCCH2。在第二个检测周期内,终端设备可以在slot5、slot6上监听PDCCH1,可以在slot5上监听PDCCH2。在第二个检测周期内,终端设备可以在slot10、slot11上监听PDCCH1,可以在slot10上监听PDCCH2。因slot内开始检测PDCCH1的检测位置为符号0、符号7,且PDCCH1连续可能占用2个symbols,则如图6b所示,终端设备在slot5上监听PDCCH1时,可以在slot5内的符号0 和符号1、符号7和符号8上监听PDCCH1。终端设备在slot11上监听PDCCH1时,可以在slot11内的符号0和符号1、符号7和符号8上监听PDCCH1。因slot内开始检测PDCCH2的检测位置为符号0,且PDCCH2连续可能占用2个symbols,则如图6b所示,终端设备在slot5上监听PDCCH2时,可以在slot5内的符号0、符号1上监听PDCCH2,此时,PDCCH1和PDCCH2的检测时机是重叠的。
基于图5所示方法,将不同业务类型对应的搜索空间分开配置,对时延要求不高、优先级较低的数据对应的搜索空间配置的检测周期将长,可以有效的减少检测控制信道的次数,同时,终端能够根据搜索空间的配置信息可以识别搜索空间对应的控制信道的类型,便于终端集中调度控制信道的计算资源或者释放控制信道的一些计算资源等。
进一步的,因URLLC业务的数据的可靠性要求相对于eMBB数据的可靠性传输较高,则图5所示方法还可以包括:
接入网设备向终端设备重传第一控制信道。
其中,第一控制信道的重传资源与初传资源的复用关系可以如前所述,采用载波间频分复用关系或载波内频分复用关系,还可以采用时分复用关系,也可以采用时分复用和频分复用关系等。可选的,重传资源与初传资源采用时分复用关系,重传资源与初传资源占用的符号长度可能是不同的。
例如,如图7a所示,重传资源和初传资源间采用载波内频分复用,如:重传资源和初传资源为同一BWP带宽中的不同频段,或者,重传资源和初传资源为同一载波带宽中的不同频段。如图7b所示,重传资源和初传资源间采用载波间频分复用,如:重传资源位于载波2带宽上,初传资源位于载波1带宽上;或者,重传资源位于BWP2带宽上,初传资源位于BWP1带宽上。如图7c所示,重传资源和初传资源间采用时分复用时,此时,重传资源和初传资源均占用2个symbols。如图7d所示,重传资源和初传资源间采用时分复用时,此时,初传资源占用2个symbols、重传资源占用1个symbols。
需要说明的是,上述仅给出了控制信道一次重传的例子,在实际应用中,可能会多次重传控制信道,当多次重传控制信道时,重传资源与之前传输时的资源的复用关系可以为载波间频分复用关系或载波内频分复用关系或时分复用关系或时分复用和频分复用关系等,不予限制。
示例性的,在接入网设备向终端设备重传第一控制信道之前,接入网设备还需要为终端设备重新配置用于检测重传的第一控制信道的搜索空间,如:第三搜索空间。其中,第三搜索空间的配置信息可以独立发送给终端设备,也可以携带在第一搜索空间的配置信息中一个发送给终端设备,即第一搜索空间可以包括用于检测接入网设备重传的第一控制信道的搜索空间的配置信息。如:第一搜索空间包括的配置信息可以包括下述一种或多种;初传CORESET标识、重传COESET标识、初传第一控制信道的检测周期、重传第一控制信道的检测周期、初传第一控制信道与重传第一信道的时间偏移量、初传第一控制信道时时隙内需要检测的位置或重传第一控制信道时时隙内需要检测的位置等。
其中,初传第一控制信道的检测周期和重传第一控制信道的检测周期可以相同。初传第一控制信道时时隙内需要检测的位置和重传第一控制信道时时隙内需要检测的位置可以相同。初传第一控制信道与重传第一控制信道的时间偏移量可以为:检测重传的第一控制信道的起始符号相对于检测初传的的第一控制信道的起始符号的偏移量。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如接入网设备、终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法S,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8为本申请实施例提供的一种通信装置的结构示意图。本实施例所涉及的通信装置可以为接入网设备或者接入网设备中的芯片或片上系统。该通信装置可以用于执行上述方法实施例中接入网设备的功能。如图8所示,该通信装置可以包括:处理模块81、发送模块82;
处理模块81,用于为终端设备配置至少一个控制信道资源集合;其中,至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道,以及用于为终端设备配置至少两个检测时机;其中,至少两个检测时机中的每个检测时机都不相同,每个检测时机用于终端设备检测至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道。
发送模块82,用于通过至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向终端设备发送调度信息。
在一种可能的设计中,处理模块81,还用于为终端设备配置第一参数信息;其中,第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,处理格式包括编码格式和/或调制格式,至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同。
在一种可能的设计中,发送模块82,还用于向终端设备发送指示信息;其中,指示信息用于指示调度信息调度的数据占用的最大带宽。
在一种可能的设计中,至少两个检测时机分别对应URLLC业务和eMBB业务。
在一种可能的设计中,调度eMBB业务的调度信息采用C_RNTI加扰,调度URLLC业务的调度信息采用MCS-C-RNTI加扰。
在一种可能的设计中,URLLC业务的检测周期小于eMBB业务的检测周期。
在一种可能的设计中,当至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
本申请实施例提供的通信装置,可以执行上述方法实施例中接入网设备的动作,其实现原理和技术效果类似,在此不再赘述。
图9为本申请实施例提供的一种通信装置的结构示意图。本实施例所涉及的通信装置 位上述方法实施例中的终端设备或终端设备中的芯片或片上系统。该通信装置可以用于执行上述方法实施例中终端设备的功能。如图9所示,该通信装置可以包括:接收模块91,处理模块92;
接收模块91,用于接收至少一个控制信道资源集合的配置信息;其中,至少一个控制信道资源集合中的每个控制信道资源集合与一个或多个控制信道对应,以及用于接收至少两个检测时机的配置信息;其中,至少两个检测时机中的每个检测时机都不相同,每个检测时机用于终端设备检测至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道;
处理模块92,用于根据至少两个检测时机检测每个控制信道资源集合所对应的一个或多个控制信道。
在一种可能的设计中,接收模块91,还用于获取第一参数信息;其中,第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,处理格式包括编码格式和/或调制格式,至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同;
处理模块92,具体用于在至少两个检测时机,根据第一参数信息所指示的处理格式检测一个或多个控制信道。
在一种可能的设计中,接收模块91,还用于接收指示信息;其中,指示信息用于指示接入网设备向终端设备调度的数据占用的最大带宽。
在一种可能的设计中,至少两个检测时机分别对应URLLC业务和eMBB业务。
在一种可能的设计中,调度eMBB业务的控制信道采用C_RNTI加扰,调度URLLC业务的控制信道采用MCS-C-RNTI加扰。
在一种可能的设计中,URLLC业务的检测周期小于eMBB业务的检测周期。
在一种可能的设计中,当至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
本申请实施例提供的通信装置,可以执行上述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上接收模块、发送模块可以实际实现时可以集成在收发器中。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各S或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码 的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图10为本申请实施例提供的一种通信装置的结构示意图。如图10所示,该通信装置可以包括:处理器101(例如CPU)、存储器102、收发器103;收发器103耦合至处理器101,处理器101控制收发器103的接收动作;存储器102可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器102中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法S。示例性的,本申请涉及的通信装置还可以包括:电源104、通信总线105。收发器103可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线105用于实现元件之间的通信连接。上述通信端口106用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器102用于存储计算机可执行程序代码,程序代码包括指令;当处理器101执行指令时,指令使通信装置的处理器101执行上述方法实施例中接入网设备的处理动作,使收发器103执行上述图方法实施例或可选实施例中接入网设备的收发动作,其实现原理和技术效果类似,在此不再赘述。
图11为本申请实施例提供的一种通信装置的结构示意图。如图11所示,该通信装置可以包括:处理器111(例如CPU)、存储器112、收发器113;收发器113耦合至处理器111,处理器111控制收发器113的收发动作;存储器112可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器112中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法。示例性的,本申请涉及的通信装置还可以包括通信总线114。收发器113可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线114用于实现元件之间的通信连接。上述通信端口116用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器112用于存储计算机可执行程序代码,程序代码包括指令;当处理器111执行指令时,指令使通信装置的处理器111执行上述实施例或可选实施例中终端设备的处理动作,使收发器113执行上述方法实施例中终端设备的收发动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软 盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。

Claims (40)

  1. 一种检测控制信道的方法,其特征在于,所述方法包括:
    接入网设备为终端设备配置至少一个控制信道资源集合;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;
    所述接入网设备为所述终端设备配置至少两个检测时机;其中,所述至少两个检测时机中的每个检测时机都不相同,所述每个检测时机用于所述终端设备检测所述至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道;
    所述接入网设备通过所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向所述终端设备发送调度信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述接入网设备为所述终端设备配置第一参数信息;
    其中,所述第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,所述处理格式包括编码格式和/或调制格式,所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送指示信息;其中,所述指示信息用于指示所述调度信息调度的数据占用的最大带宽。
  4. 根据权利要求1至3任一项权利要求所述的方法,其特征在于,
    所述至少两个检测时机分别对应高可靠低时延通信URLLC业务和增强型移动宽带eMBB业务。
  5. 根据权利要求4所述的方法,其特征在于,
    调度所述eMBB业务的调度信息采用小区无线网络临时标识C_RNTI加扰;
    调度所述URLLC业务的调度信息采用调制与编码策略小区无线网络临时标识MCS-C-RNTI加扰。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述URLLC业务的检测周期小于所述eMBB业务的检测周期。
  7. 根据权利要求1至6任一项权利要求所述的方法,其特征在于,当所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
  8. 一种检测控制信道的方法,其特征在于,所述方法包括:
    终端设备接收至少一个控制信道资源集合的配置信息;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合与一个或多个控制信道对应;
    所述终端设备接收至少两个检测时机的配置信息;其中,所述至少两个检测时机中的每个检测时机都不相同,所述每个检测时机用于所述终端设备检测所述至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道;
    所述终端设备根据所述至少两个检测时机检测所述每个控制信道资源集合所对应的一个或多个控制信道。
  9. 根据权利要求8所述的方法,其特征在于,所述方法包括:
    所述终端设备获取第一参数信息;其中,所述第一参数信息用于指示所述一个或多个 控制信道中的至少一个控制信道的处理格式,所述处理格式包括编码格式和/或调制格式,所述至少一个控制信道资源集合中的所述每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同;
    所述终端设备根据所述至少两个检测时机检测所述每个控制信道资源集合所对应的一个或多个控制信道,包括:所述终端设备在所述至少两个检测时机,根据所述第一参数信息所指示的处理格式检测所述一个或多个控制信道。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收指示信息;其中,所述指示信息用于指示所述接入网设备向所述终端设备调度的数据占用的最大带宽。
  11. 根据权利要求8至10任一项权利要求所述的方法,其特征在于,
    所述至少两个检测时机分别对应高可靠低时延通信URLLC业务和增强型移动宽带eMBB业务。
  12. 根据权利要求11所述的方法,其特征在于,
    所述eMBB业务对应的控制信道采用小区无线网络临时标识C_RNTI检测;
    所述URLLC业务对应的控制信道采用调制与编码策略小区无线网络临时标识MCS-C-RNTI检测。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述URLLC业务的检测周期小于所述eMBB业务的检测周期。
  14. 根据权利要求8至13任一项权利要求所述的方法,其特征在于,当所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
  15. 一种检测控制信道的装置,其特征在于,所述通信装置包括:
    处理模块,用于为终端设备配置至少一个控制信道资源集合;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;
    所述处理模块,用于为所述终端设备配置至少两个检测时机;其中,所述至少两个检测时机中的每个检测时机都不相同,所述每个检测时机用于所述终端设备检测所述至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道;
    发送模块,用于通过所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道向所述终端设备发送调度信息。
  16. 根据权利要求15所述的装置,其特征在于,
    所述处理模块,还用于为所述终端设备配置第一参数信息;
    其中,所述第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,所述处理格式包括编码格式和/或调制格式,所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同。
  17. 根据权利要求15或16所述的装置,其特征在于,
    所述发送模块,还用于向所述终端设备发送指示信息;其中,所述指示信息用于指示所述调度信息调度的数据占用的最大带宽。
  18. 根据权利要求15至17任一项权利要求所述的装置,其特征在于,所述至少两个检测时机分别对应高可靠低时延URLLC业务和增强型移动宽带eMBB业务。
  19. 根据权利要求18所述的装置,其特征在于,
    调度所述eMBB业务的调度信息采用小区无线网络临时标识C_RNTI加扰;
    调度所述URLLC业务的调度信息采用调制与编码策略小区无线网络临时标识MCS-C-RNTI加扰。
  20. 根据权利要求18或19所述的装置,其特征在于,所述URLLC业务的检测周期小于所述eMBB业务的检测周期。
  21. 根据权利要求15至20任一项权利要求所述的装置,其特征在于,当所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
  22. 一种检测控制信道的装置,其特征在于,所述装置包括:
    接收模块,用于接收至少一个控制信道资源集合的配置信息;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合与一个或多个控制信道对应;
    所述接收模块,用于接收至少两个检测时机的配置信息;其中,所述至少两个检测时机中的每个检测时机都不相同,所述每个检测时机用于所述终端设备检测所述至少一个控制信道资源集合中的每个控制信道资源集合所对应的一个或多个控制信道;
    处理模块,用于根据所述至少两个检测时机检测所述每个控制信道资源集合所对应的一个或多个控制信道。
  23. 根据权利要求22所述的装置,其特征在于,
    所述接收模块,还用于获取第一参数信息;其中,所述第一参数信息用于指示所述一个或多个控制信道中的至少一个控制信道的处理格式,所述处理格式包括编码格式和/或调制格式,所述至少一个控制信道资源集合中的所述每个控制信道资源集合所对应的一个或多个控制信道的处理格式不同;
    所述处理模块,具体用于在所述至少两个检测时机,根据所述第一参数信息所指示的处理格式检测所述一个或多个控制信道。
  24. 根据权利要求22或23所述的装置,其特征在于,
    所述接收模块,还用于接收指示信息;其中,所述指示信息用于指示所述接入网设备向所述终端设备调度的数据占用的最大带宽。
  25. 根据权利要求22至24任一项权利要求所述的装置,其特征在于,所述至少两个检测时机分别对应高可靠低时延URLLC业务和增强型移动宽带eMBB业务。
  26. 根据权利要求25所述的装置,其特征在于,
    所述eMBB业务对应的控制信道采用小区无线网络临时标识C_RNTI检测;
    所述URLLC业务对应的控制信道采用调制与编码策略小区无线网络临时标识MCS-C-RNTI检测。
  27. 根据权利要求25或26所述的装置,其特征在于,所述URLLC业务的检测周期小于所述eMBB业务的检测周期。
  28. 根据权利要求22至27任一项权利要求所述的装置,其特征在于,当所述至少一个控制信道资源集合中每个控制信道资源集合所对应的一个或多个控制信道需要重传时,其重传资源与初传资源的复用关系采用载波间频分复用关系或载波内频分复用关系。
  29. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在检测控制信道的装置或内置在检测控制信道的装置的芯片中运行时,使得所述装置执行如权利要求1-7中任一项所述的检测控制信道的方法。
  30. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在检测控制信道的装置或内置在检测控制信道的装置的芯片中运行时,使得所述装置执行如权利要求8-14中任一项所述的检测控制信道的方法。
  31. 一种检测控制信道的方法,其特征在于,所述方法包括:
    接入网设备为终端设备配置至少一个控制信道资源集合;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;
    所述接入网设备为所述终端设备配置至少两个搜索空间;其中,每个搜索空间至少包括一个控制信道资源集合;
    所述接入网设备通过所述至少两个搜索空间中控制信道资源集合对应的控制信道,向终端设备发送调度信息。
  32. 根据权利要求31所述的方法,其特征在于,
    不同搜索空间中控制信道资源集合对应的控制信道调度不同业务类型的业务;
    不同业务类型的业务的服务质量QOS要求不同,所述QOS要求至少包括:传输时延和/或误码率。
  33. 根据权利要求32所述的方法,其特征在于,不同搜索空间包括不同控制信道资源集合。
  34. 根据权利要求31-33任一项所述的方法,其特征在于,
    所述至少两个搜索空间中不同控制信道资源集合对应传输高可靠低时延通信URLLC业务的控制信道和传输增强型移动宽带eMBB业务的控制信道。
  35. 一种检测控制信道的装置,其特征在于,所述装置包括:
    用于为终端设备配置至少一个控制信道资源集合的单元;其中,所述至少一个控制信道资源集合中的每个控制信道资源集合对应一个或多个控制信道;
    用于为所述终端设备配置至少两个搜索空间的单元;其中,每个搜索空间至少包括一个控制信道资源集合;
    用于通过所述至少两个搜索空间中控制信道资源集合对应的控制信道,向终端设备发送调度信息的单元。
  36. 根据权利要求35所述的装置,其特征在于,
    不同搜索空间中控制信道资源集合对应的控制信道调度不同业务类型的业务;
    不同业务类型的业务的服务质量QOS要求不同,所述QOS要求至少包括:传输时延和/或误码率。
  37. 根据权利要求36所述的装置,其特征在于,不同搜索空间包括不同控制信道资源集合。
  38. 根据权利要求35-37任一项所述的装置,其特征在于,
    所述至少两个搜索空间中不同控制信道资源集合对应传输高可靠低时延通信URLLC业务的控制信道和传输增强型移动宽带eMBB业务的控制信道。
  39. 一种检测控制信道的装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来 自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至14或31至34中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求31至34中任一项所述的方法。
PCT/CN2019/108755 2018-09-28 2019-09-27 一种检测控制信道的方法及装置 WO2020063922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811142573.2A CN110972281A (zh) 2018-09-28 2018-09-28 一种检测控制信道的方法及装置
CN201811142573.2 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063922A1 true WO2020063922A1 (zh) 2020-04-02

Family

ID=69952429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108755 WO2020063922A1 (zh) 2018-09-28 2019-09-27 一种检测控制信道的方法及装置

Country Status (2)

Country Link
CN (1) CN110972281A (zh)
WO (1) WO2020063922A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315918A (zh) * 2022-06-13 2022-11-08 北京小米移动软件有限公司 一种多小区调度的调度信息的检测方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063865A1 (en) * 2016-08-25 2018-03-01 Huawei Technologies Co., Ltd. System and Method for Multiplexing Traffic
US20180070341A1 (en) * 2016-09-02 2018-03-08 Huawei Technologies Co., Ltd. Co-existence of latency tolerant and low latency communications
WO2018085485A1 (en) * 2016-11-02 2018-05-11 Idac Holdings, Inc. Shared data channel design

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063865A1 (en) * 2016-08-25 2018-03-01 Huawei Technologies Co., Ltd. System and Method for Multiplexing Traffic
US20180070341A1 (en) * 2016-09-02 2018-03-08 Huawei Technologies Co., Ltd. Co-existence of latency tolerant and low latency communications
WO2018085485A1 (en) * 2016-11-02 2018-05-11 Idac Holdings, Inc. Shared data channel design

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on differentiation of eMBB and URLLC services", 3GPP TSG RAN WG1 MEETING #94, R1-1808534, 24 August 2018 (2018-08-24), XP051515912 *

Also Published As

Publication number Publication date
CN110972281A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
US20210344470A1 (en) Method and apparatus for ss/pbch block frequency location indication
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
WO2020020180A1 (zh) 一种资源配置方法及装置
WO2020143482A1 (zh) 一种通信方法及装置
US11601885B2 (en) Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2020094110A1 (zh) 接收信号的方法、发送信号的方法及其装置
CN111699722B (zh) 在空闲模式下操作的方法和使用该方法的设备
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
US20210337409A1 (en) Channel monitoring method and device
WO2021204300A1 (zh) 控制信息传输方法
WO2020186946A1 (zh) 一种通信方法及设备
WO2021114060A1 (zh) 通信方法及相关装置、设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN113708899A (zh) 多载波调度方法、装置及设备
WO2018036182A1 (zh) 一种数据通信的方法、装置及系统
US11297635B2 (en) Slot bundling
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
CN114451044A (zh) 一种通信方法及装置
WO2020063922A1 (zh) 一种检测控制信道的方法及装置
WO2023124411A1 (zh) 数据传输方法以及通信装置
WO2014008814A1 (zh) 上行授权信息发送方法、授权信息指示方法及基站
CN113473641A (zh) 一种通信方法和通信装置
WO2023279865A1 (zh) 一种通信方法及装置
WO2021204196A1 (zh) 控制信息传输方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866097

Country of ref document: EP

Kind code of ref document: A1