WO2019061115A1 - 一种非授权频谱上的载波切换方法、基站及终端设备 - Google Patents

一种非授权频谱上的载波切换方法、基站及终端设备 Download PDF

Info

Publication number
WO2019061115A1
WO2019061115A1 PCT/CN2017/103829 CN2017103829W WO2019061115A1 WO 2019061115 A1 WO2019061115 A1 WO 2019061115A1 CN 2017103829 W CN2017103829 W CN 2017103829W WO 2019061115 A1 WO2019061115 A1 WO 2019061115A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
time scheduling
scheduling units
anchor
base station
Prior art date
Application number
PCT/CN2017/103829
Other languages
English (en)
French (fr)
Inventor
韩金侠
李振宇
张武荣
南杨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780094323.3A priority Critical patent/CN111052802B/zh
Priority to PCT/CN2017/103829 priority patent/WO2019061115A1/zh
Priority to EP17927472.5A priority patent/EP3678416A4/en
Publication of WO2019061115A1 publication Critical patent/WO2019061115A1/zh
Priority to US16/828,935 priority patent/US20200229213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a carrier switching method, a base station, and a terminal device on an unlicensed spectrum.
  • the Unlicensed frequency band is 2.4 GHz and Sub1 GHz (less than 1 GHz), according to the Federal Communications Commission (FCC) or the European Telecommunications Standards Institute (ETSI) spectrum regulations, base stations and The terminal device can communicate using Frequency Hopping Spread Spectrum (FHSS) technology.
  • FCC Federal Communications Commission
  • ETSI European Telecommunications Standards Institute
  • base stations and The terminal device are between multiple carriers during communication. Perform multiple carrier switching.
  • the prior art carrier switching mode it is required to determine the length and location of the time domain occupied by the source carrier and the target carrier when the carrier switching is performed according to the type of the physical channel of the carrier corresponding to the carrier before and after the carrier switching.
  • the switching method is complicated.
  • the embodiment of the present application provides a carrier switching method, a base station, and a terminal device on an unlicensed spectrum, to reduce the complexity of the carrier switching method.
  • a first aspect provides a carrier switching method on an unlicensed spectrum, the method comprising: a base station communicating with a terminal device by using a first carrier in an unlicensed spectrum; wherein the base station occupies an unlicensed spectrum in a scheduling period
  • the anchor carrier and any one of the plurality of data carriers communicate with the terminal device, the scheduling period includes N time scheduling units, and the anchor carrier occupies the a time scheduling unit of the M time scheduling units, the any one of the N time scheduling units occupying the time scheduling unit except the M time scheduling units before or after the One carrier is the anchor carrier or any one of the data carriers, and the base station and the terminal device are in the S time scheduling units reserved in the first carrier and/or the second carrier, by the first Transmitting to the second carrier, and continuing to communicate with the terminal device by using the second carrier, where the S time scheduling units are pre-configured by the base station, the time Unit of slot or subframe or OFDM symbol or SC-FDMA symbols, N, M is a positive integer, S is an integer greater than 0
  • the base station and/or the UE reserve a position for carrier switching in the carrier in the frequency hopping communication system in advance.
  • the carrier is switched on the reserved location, so that no distinction is needed.
  • the source carrier and the target carrier class can reduce the complexity of carrier switching.
  • the S time scheduling units are multiple times occupied by the first carrier S time scheduling units in the scheduling unit, or the S time scheduling units are S time scheduling units of the plurality of time scheduling units occupied by the second carrier, or the S time scheduling units are S1 time scheduling units of the plurality of time scheduling units occupied by the first carrier and S2 time scheduling units of the plurality of time scheduling units occupied by the second carrier, where S is the sum of S1 and S2, and S1 and S2 are A positive integer.
  • the S time scheduling units are the last S time scheduling units of the multiple time scheduling units occupied by the first carrier, or the S time scheduling units are the second carrier.
  • S time scheduling units from the first time scheduling unit of the plurality of time scheduling units, or the S time scheduling units being the last S1 time of the plurality of time scheduling units occupied by the first carrier The scheduling unit and the S2 time scheduling units from the first time scheduling unit among the plurality of time scheduling units occupied by the second carrier, S is a sum of S1 and S2, and S1 and S2 are positive integers.
  • the base station can flexibly select the location of the S time scheduling units for carrier switching, which can increase the flexibility of the communication system.
  • the location of the S time scheduling units may be any one of the following five locations.
  • the first type when the first carrier is a data carrier, and the second carrier is an anchor carrier, the S time scheduling units are last S times of multiple time scheduling units occupied by the data carrier. Dispatch unit.
  • the second time when the first carrier is an anchor carrier, and the second carrier is a data carrier, the S time scheduling units are the last S of the multiple time scheduling units occupied by the anchor carrier.
  • a time scheduling unit wherein the last S time scheduling units of the anchor carrier do not perform signal transmission, and the length of time that the signal is actually occupied in the anchor carrier is the window length of the anchor carrier and the S The difference of the duration of the time scheduling unit, where the window length is the duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period.
  • the S time scheduling units are the first time of the multiple time scheduling units occupied by the anchor carrier.
  • the first S time scheduling units from the time scheduling unit; wherein the first S time scheduling units of the anchor carrier do not perform signal transmission, and the actual occupied time of the signal transmitted in the anchor carrier is the anchor point a difference between a window length of the carrier and a duration corresponding to the S time scheduling units, where the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period.
  • the S time scheduling units are the first one of the multiple time scheduling units occupied by the data carrier The first S time scheduling units from the time scheduling unit.
  • the S time scheduling units may adopt any one of the following three specific values.
  • the first type, the first carrier and the second carrier are both used for uplink transmission, or the first carrier and the The second carrier is used for downlink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the first threshold; wherein the first threshold is required for the base station to switch the frequency domain location
  • the first preset duration is a larger value of the second preset duration required for the terminal device to switch the frequency domain location.
  • the S time scheduling units are at least one consecutive time that the total duration is greater than or equal to a sum of the first threshold and the second threshold.
  • a time scheduling unit wherein the first threshold is a first time duration required for the base station to switch the frequency domain location and a larger value of the second preset duration required by the terminal device to switch the frequency domain location
  • the second threshold is a third preset duration required for the base station to switch from the uplink transmission to the downlink transmission, and a larger value of the fourth preset duration required by the terminal equipment to switch from the uplink transmission to the downlink transmission.
  • the first carrier is used for downlink transmission
  • the second carrier is used for uplink transmission
  • the S time scheduling units are at least one consecutive time that the total duration is greater than or equal to a sum of the first threshold and the third threshold.
  • a time scheduling unit wherein the first threshold is a larger value of a first preset duration required by the base station to switch a frequency domain location and a second preset duration required by the terminal device to switch a frequency domain location
  • the third threshold is a larger value of a fifth preset duration required for the base station to switch from downlink transmission to uplink transmission and a sixth preset duration required for the terminal equipment to switch from downlink transmission to uplink transmission.
  • the base station and the terminal device may perform a first listening and then detecting on the second carrier, and determine whether a frequency domain resource corresponding to the second carrier is occupied, in the second When the frequency domain resource corresponding to the carrier is not occupied, the base station and the terminal device communicate through the second carrier, so that the reliability of the communication can be ensured.
  • the duration corresponding to the S time scheduling units further includes a duration of performing the listening and speaking detection.
  • the duration of the detection is a fourth threshold
  • the S time scheduling units may also adopt any one of the following three specific values.
  • the first time, the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the fourth threshold.
  • the second time, the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the sum of the first threshold, the second threshold, and the fourth threshold.
  • the third time, the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the sum of the first threshold, the third threshold, and the fourth threshold.
  • the fourth threshold is related according to a data type carried by the second carrier, the second carrier is a data carrier, and the fourth threshold is performed by the base station on any one of the data carriers. Listening to the duration of the detection; the second carrier is an anchor carrier, and the fourth threshold is a duration that the base station performs the detection after the anchoring of the anchor carrier, thereby ensuring reserved The accuracy of S time scheduling units.
  • the embodiment of the present application further provides a base station, where the base station has a function of implementing a base station in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processing unit and a transmission unit, and the units may perform the corresponding functions in the foregoing method examples.
  • the units may perform the corresponding functions in the foregoing method examples.
  • the structure of the base station includes a processing unit and a transmission unit, and the units may perform the corresponding functions in the foregoing method examples.
  • the structure of the base station includes a processor and a transceiver, where the processor It is configured to support the base station to perform the corresponding function in the above method.
  • the processor is coupled to a memory that stores program instructions and data necessary for the base station.
  • the embodiment of the present application further provides a terminal device, where the terminal device has the function of implementing the terminal device in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal device includes a processing unit and a transmission unit, and the units may perform corresponding functions in the foregoing method examples.
  • the units may perform corresponding functions in the foregoing method examples.
  • the structure of the terminal device includes a processor and a transceiver, and the processor is configured to support the terminal device to perform a corresponding function in the foregoing method.
  • the processor is coupled to a memory that stores program instructions and data necessary for the terminal device.
  • the embodiment of the present application further provides a wireless communication system, where the communication system includes: the base station according to the second aspect and the terminal device in the third aspect.
  • the embodiment of the present application further provides a computer storage medium, where the software medium stores a software program, and the software program can implement any one of any aspect when being read and executed by one or more processors.
  • the method provided by the design is not limited to:
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods of the first aspect above.
  • FIG. 1 is a schematic structural diagram of a frame of a possible frequency hopping communication system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a frame of another possible frequency hopping communication system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for carrier switching according to an embodiment of the present disclosure
  • 4A-4C are schematic diagrams showing positions where S time scheduling units are located when an anchor carrier is switched to a data carrier according to an embodiment of the present application;
  • 5A-5C are schematic diagrams showing positions where S time scheduling units are located when a data carrier is switched to an anchor carrier according to an embodiment of the present application;
  • 6A-6C are schematic diagrams showing the DRS window length P and the duration D of the DRS transmission once in one cycle when the S time scheduling units are set on the anchor carrier in the embodiment of the present application;
  • FIGS. 7A-7B are schematic diagrams of positions reserved for LBT detection in a carrier in an embodiment of the present application.
  • 8A-8F are schematic diagrams showing frequency domain locations where carrier switching and LBT detection are performed in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of reserving S OFDM symbols in an anchor carrier according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the embodiment of the present application provides a method for carrier switching, which is applied to a frequency hopping communication system.
  • FIG. 1 is a schematic diagram of a frame structure of a possible frequency hopping communication system according to an embodiment of the present application.
  • the frame structure includes M frames of anchor channels and frames of N data channels, wherein the frequency hopping period of the anchor channel is T, and within the period T, the M anchor channels are included.
  • the transmission duration and the transmission duration of one data channel, M anchor channels are frequency division multiplexed, that is, the transmission durations of the M anchor channels occupy the same time domain resources but different frequency domain resources in one hop period.
  • the frequency hopping period can also be understood as an anchor channel occupation period or a DRS signal transmission period.
  • the base station includes an anchor channel transmission duration and a data channel transmission duration in each frequency hopping period.
  • the frequency hopping communication system includes M anchor channels and N data channels.
  • the data channel is used to carry uplink and downlink information, for example, downlink control information, downlink data information, uplink data information, etc.
  • the anchor channel is used by the base station to send a discovery reference signal (DRS).
  • DRS discovery reference signal
  • the discovery signal includes but is not limited to Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), Master Information Block (MIB), System Information Block (SIB), etc.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • MIB Master Information Block
  • SIB System Information Block
  • the UE is passing the Before the hopping communication system communicates with the base station, the initial synchronization is completed by acquiring the PSS signal and/or the SSS signal sent by the base station on the anchor channel, and then acquiring the base station cell identifier and the base station hopping format by receiving the MIB and/or the SIB on the anchor channel. Then, the UE switches to the corresponding data channel to receive and/or transmit data according to the frequency hopping format.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • MIB Master Information Block
  • SIB System Information Block
  • the base station after the base station sends configuration information to the UE on the anchor channel, it also needs to jump to the corresponding data channel according to the hopping format to send data to the UE or receive data sent by the UE.
  • the anchor channel transmission period T in FIG. 1 is denoted as T0, T1, T2, etc., respectively, in a period of time, and the time lengths corresponding to T0, T1 and T2 are the same.
  • the base station In the period T0, the base station first transmits a DRS signal on the anchor channel, and then switches to transmit/receive data information on any one of the data channels according to the frequency hopping format.
  • the base station In the period T1, the base station first switches from the corresponding data channel in the T0 to the anchor channel.
  • the UE when the UE performs initial synchronization and receives MIB and/or SIB information on the anchor channel, it switches to the data channel to transmit/receive data information according to the frequency hopping format, and assumes that a certain UE switches from the anchor channel to the data channel at T0.
  • the UE may switch from the data channel corresponding to the T0 period to the anchor channel of the T1 period, or may switch from the data channel corresponding to the T0 period to the data channel of the T1 period, if the UE switches from the data channel corresponding to the T0 period to For the data channel of the T1 period, the UE does not perform data reception and transmission within the duration occupied by the anchor channel in the T1 period.
  • the channel/carrier switching method described below is applicable to the UE switching from the anchor channel corresponding to the T0 period to the data channel corresponding to the T0 period, and then switching from the data channel corresponding to the T0 period to the anchor channel of the T1 period, and then switching to the T1 period.
  • the data channel, the process of repeating is also applicable to the UE switching from the anchor channel corresponding to the T0 period to the data channel corresponding to the T0 period, and then switching from the data channel corresponding to the T0 period to the data channel of the T1 period, and then corresponding to the T1 period.
  • the data channel is switched to the data channel of the T2 cycle, and the process is repeated.
  • T0, T1, T2 are only examples. In the actual scheme, different periods are a time-continuous process, namely T0, T1, T2, T3, ...
  • the available spectrum bandwidth is Y
  • the bandwidth of each anchor channel and each data channel is x
  • the entire spectrum bandwidth can be divided into L channels, of which It should be noted that the number Q of channels actually used may be less than L.
  • the anchor channel is M
  • M is a positive integer, that is, if the working bandwidth of the base station is greater than or equal to the bandwidth corresponding to the M anchor channels.
  • the base station can process M anchor channels at the same time, and the UE can process only one anchor channel at the same time, and process another anchor channel in the next anchor period until the M anchor channels are processed in the M anchor channel transmission period, or
  • the UE processes the M anchor channels in an anchor channel transmission period, and is not limited herein.
  • the base station and the UE can also process only one anchor channel at the same time.
  • the system bandwidth supported by the base station and the UE is set to the bandwidth corresponding to each channel in the frequency hopping communication system, and the base station and the UE are at the same time. Only one anchor channel can be processed, and the corresponding frame structure is shown in Figure 2.
  • the embodiment of the present application provides a method for carrier switching, which is independent of the number of anchor channels. Therefore, for convenience of description, the embodiment of the present application applies the method to the hop corresponding to the frame structure shown in FIG. 2 .
  • the frequency communication system is described as an example.
  • a base station which may also be referred to as a network device, may refer to a device in an access network that communicates with a wireless terminal device over one or more cells over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the terminal device and the rest of the access network, wherein the rest of the access network can include an IP network.
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • the next generation node B (gNB) in the 5G system may be included in the embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device having a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (User Equipment, UE), a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a mobile station, a mobile station, and a remote station.
  • Station Remote Station
  • AP Access Point
  • Remote Terminal Access Terminal
  • User Terminal User Agent
  • User Equipment User Equipment
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Smart Watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar codes, radio frequency identification (RFID), sensors, global positioning systems (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning systems
  • the channel refers to a carrier used to carry control information or data information in a preset frequency band. Therefore, in the embodiment of the present application, “carrier” and “channel” can be used interchangeably.
  • Time domain scheduling unit refers to a unit consisting of one slot or one subframe or OFDM symbol or SC-FDMA symbol, or multiple slots or multiple subframes or multiple OFDM symbols or multiple A unit composed of SC-FDMA symbol aggregation.
  • Downlink transmission means that the base station transmits information on the carrier and/or the terminal device receives the information on the carrier.
  • Uplink transmission means that the terminal equipment transmits information on the carrier and/or the base station receives information on the carrier.
  • Multiple means two or more.
  • a plurality may also be understood as “at least two” in the embodiment of the present application.
  • the character "/”, unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the carrier switching method in the frequency hopping communication system in the prior art is not applicable to the frequency hopping communication system in which the base station and the terminal device need to perform the carrier switching.
  • the embodiment of the present application provides a frequency hopping communication system suitable for the foregoing frequency hopping communication system.
  • Carrier switching method In the method, a plurality of time scheduling units for carrier switching are reserved in advance in an anchor channel and a data channel in a frequency hopping communication system, and the reserved time scheduling units are not used for data transmission, thereby performing frequency hopping
  • the carrier switching is performed directly on the plurality of time scheduling units, and the carrier switching process of the base station or the terminal device is implemented.
  • FIG. 3 is a method for carrier switching according to an embodiment of the present application. The process of the method is described as follows.
  • Step 301 The base station sends a DRS signal by using an anchor carrier, including but not limited to a synchronization signal and broadcast information, and the broadcast information on the anchor channel includes an MIB and/or an SIB.
  • an anchor carrier including but not limited to a synchronization signal and broadcast information
  • the broadcast information on the anchor channel includes an MIB and/or an SIB.
  • Step 302 The UE receives the DRS signal, determines a frequency hopping format according to the broadcast information, and determines a data carrier that needs to be hopped in each hopping period according to the hopping format.
  • the hopping format information may include information about a data carrier that the base station performs data transmission with the UE, for example, a carrier number of a data carrier corresponding to the data channel in any frequency hopping period (or referred to as a period) or The carrier frequency of the data carrier, and the like.
  • the configuration information may also contain other content, which is not limited herein.
  • Step 303 The base station performs carrier switching at a position reserved in the anchor carrier and/or the data carrier to which the jump needs to be made.
  • the base station After the base station transmits the DRS signal in the anchor carrier, it jumps to the corresponding data carrier to communicate with the UE.
  • the base station reserves the location for carrier switching on the corresponding carrier, and the location reserved for the carrier switching reserved by the base station is described below.
  • the reserved location may be described by a time scheduling unit occupied by each carrier in each frequency hopping period T.
  • the carrier where the current time of the base station is located is referred to as a source carrier, and the carrier to which the base station is to be handed over is referred to as a target carrier, and the reserved position for carrier switching may be the last S of multiple time scheduling units occupied by the source carrier.
  • the time scheduling unit, or the reserved location for carrier switching may be S time scheduling units from the first time scheduling unit of the plurality of time scheduling units occupied by the target carrier, or the pre- The reserved location for carrier switching may be the last S1 time scheduling unit among the multiple time scheduling units occupied by the source carrier and the S2 time from the first time scheduling unit among the multiple time scheduling units occupied by the target carrier.
  • the scheduling unit, the sum of S1 and S2 is greater than or equal to S, and S is a positive integer.
  • the source carrier is an anchor carrier
  • the target carrier is a data carrier
  • the reserved S time scheduling units are S OFDM symbols as an example for description.
  • the anchor carrier occupies a total of M subframes, and the data carrier occupies a total of N subframes, and assuming that one subframe contains 14 OFDM symbols,
  • the anchor carrier includes a total of 14*M OFDM symbols, and the data carrier includes a total of 14*N OFDM symbols, and the base station can set the last S OFDM symbols of the 14*M OFDM symbols included in the anchor carrier to be used for the carrier.
  • the position of the switch as shown in Figure 4A.
  • the base station may also set the first S OFDM symbols among the 14*N OFDM symbols included in the data carrier to be used for carrier switching, as shown in FIG.
  • the base station may also set the last S1 OFDM symbols in the 14*M OFDM symbols included in the anchor carrier and the first S2 OFDM symbols in the 14*N OFDM symbols included in the data carrier as the location for carrier switching. As shown in Figure 4C.
  • the base station may use the last S OFDM symbols among the 14*N OFDM symbols included in the data carrier. Set to the position for carrier switching, as shown in Figure 5A.
  • the base station may also set the first S OFDM symbols among the 14*M OFDM symbols included in the anchor carrier as the position for carrier switching, as shown in FIG. 5B.
  • the base station may also set the last S1 OFDM symbols of the 14*N OFDM symbols included in the data carrier and the first S2 OFDM symbols of the 14*M OFDM symbols included in the anchor carrier to be used for carrier switching, as shown in FIG. 5C is shown.
  • the base station may select a location for carrier switching in any of the foregoing manners in FIG. 4A to FIG. 5C, which is not limited herein.
  • the S OFDM symbols reserved for carrier switching on the anchor carrier may be as shown in FIG. 6A, and the possible end time of the DRS signal is aligned with the end boundary of the DRS window length.
  • the difference between the window length P and the duration D of the DRS signal is greater than or equal to the duration of the S OFDM symbols, so that carrier switching is performed in the duration corresponding to the S OFDM symbols.
  • the S OFDM symbols reserved for carrier switching on the anchor carrier may be as shown in FIG. 6B, and the possible transmission timing of the DRS signal is aligned with the start boundary of the DRS window length, and the window The difference between the length P and the duration D of the DRS signal is greater than or equal to the duration of the S OFDM symbols.
  • the S types of OFDM symbols may be reserved before and after the DRS window length P, as shown in FIG. 6C.
  • the possible transmission time of the DRS signal is a starting boundary from the DRS window length.
  • the time at which the S OFDM symbols are offset, the possible end time of the DRS signal is the difference between the window length P and the duration D of the DRS signal at the time when the S OFDM symbols are advanced from the end boundary of the DRS window length.
  • the value is greater than or equal to the duration of the 2*S OFDM symbols.
  • the base station or the UE is switched from the data carrier to the duration corresponding to the difference between the window length P and the duration D of the DRS signal.
  • the anchor carrier is switched to the data carrier by the anchor carrier, or from the data carrier to the anchor carrier and the anchor carrier to the data carrier in the duration, so that the DRS signal transmitted by the anchor carrier can be not affected, and the frequency hopping communication system can guarantee the anchor carrier Performance requirements.
  • the S OFDM symbols may have the following three values, and the base station and the UE may determine the value of the required maximum S OFDM symbols according to the actual handover situation.
  • the time required for the base station to perform the carrier handover is t1
  • the length of time required for the base station to switch from the uplink reception to the downlink transmission is t2
  • the length of time required for the base station to switch from the downlink transmission to the uplink reception is t3.
  • the duration required for the UE to perform the carrier handover is t4
  • the duration required for the UE to switch from the uplink transmission to the downlink reception is t5
  • the duration required for the UE to switch from the downlink reception to the uplink transmission is t6.
  • t1 to t6 in the embodiment of the present application may be converted into the number of corresponding OFDM symbols. Assuming that the duration of one OFDM symbol is t0, then t1 to t6 are equivalent to the number of OFDM symbols m1 to m6, and the calculation formulas are respectively Here one OFDM symbol duration contains the time of the cyclic prefix.
  • t_UtoD max(t2, t5)
  • the first value of the S OFDM symbols is greater than or equal to the number of OFDM symbols required for the base station or the UE to perform carrier switching, that is, S is greater than or equal to
  • the base station switches from transmitting downlink control/data information in the anchor carrier to transmitting downlink control/data information in the data carrier, or the UE switches from receiving the downlink control/data information in the anchor carrier to receiving the downlink control in the data carrier/ Data information.
  • the second value of the S OFDM symbols is greater than or equal to the number of OFDM symbols required for the base station or the UE to perform carrier switching, and the sum of the number of OFDM symbols required for the base station or the UE to perform uplink to downlink switching, that is, S greater or equal to
  • the base station switches from receiving the uplink data information in the data carrier to transmitting the downlink control information in the anchor carrier, or the UE switches from transmitting the uplink data information in the data carrier to receiving the downlink control information in the anchor carrier.
  • the third value of the S OFDM symbols is greater than or equal to the number of OFDM symbols required for the base station or the UE to perform carrier switching, and the number of OFDM symbols required for the base station or the UE to perform downlink to uplink switching, that is, S is greater than or equal to
  • the base station switches from transmitting downlink control information in the anchor carrier to receiving uplink data information in the data carrier, or the UE switches from receiving the downlink control information in the anchor carrier to transmitting the uplink data information in the data carrier.
  • t_UtoD can take a value of 0, that is, the time is not reserved in the actual system. Then m_freqswitch_UtoD can be equal to m_freqswitch.
  • the frequency domain location corresponding to the target carrier may be detected to be idle before the sending.
  • the Listen Before Talk (LBT) detection may be performed, and after the LBT detection is performed for a period of time before each carrier, the carrier is used for data transmission, and the length of time used for the LBT detection may be Reserved on the data carrier, as shown in FIG. 7A, may also be reserved on the anchor carrier, as shown in FIG. 7B, but the LBT detection needs to be performed after the carrier switching, or the LBT detects the channel condition of the target carrier. Therefore, the value of the S OFDM symbols can also take into account the duration of the LBT performed by the base station.
  • LBT Listen Before Talk
  • the FBT-based LBT method is to set a frame period, and a Clear Channel Assessment (CCA) detection can be performed at a fixed position before each frame period. Therefore, the detection time of the FBE-based LBT method can be It is set to a fixed duration. For example, the fixed duration when FBE is performed on the frequency domain corresponding to the data carrier is td, and the fixed duration when FBE is performed on the frequency domain corresponding to the anchor carrier is denoted by ta.
  • the LBE-based LBT method is used for CCA detection, the detection duration is not fixed, but the maximum detection duration can be limited.
  • the duration of CCA detection for the frequency domain corresponding to each carrier by the LBE method can also be set to A fixed value, for example, a fixed duration when LBE is performed on a frequency domain corresponding to a data carrier is td1, and a fixed duration when LBE is performed on a frequency domain corresponding to an anchor carrier is ta1, the fixed duration td1 and the fixed duration
  • the ta1 may be obtained after a plurality of actual measurements, and is not limited in the embodiment of the present application.
  • only the LBT is an FBE-based LBT as an example.
  • the duration of the reserved S OFDM symbols may be greater than or equal to t_freqswitch+ta, and the fourth value of the S OFDM symbols is greater than or equal to
  • the base station switches to transmit downlink control information in the anchor carrier by transmitting downlink data information in the data carrier, or the UE switches to receive downlink control information in the anchor carrier by receiving downlink data information in the data carrier.
  • the duration of the reserved S OFDM symbols may be greater than or equal to t_freqswitch+t_UtoD+ta, and the fifth value of the S OFDM symbols is: For example, the base station switches from receiving the uplink data information in the data carrier to transmitting the downlink control information in the anchor carrier, or the UE switches from transmitting the downlink data information in the data carrier to receiving the downlink control information in the anchor carrier.
  • the duration of the reserved S OFDM symbols may be greater than or equal to t_freqswitch+t_DtoU+ta, and the sixth value of the S OFDM symbols is: For example, the base station switches from transmitting downlink data information in the data carrier to receiving uplink control information in the anchor carrier, or the UE switches from receiving the downlink data information in the data carrier to transmitting the uplink control information in the anchor carrier.
  • the duration of the reserved S OFDM symbols may be greater than or equal to t_freqswitch+td, and the seventh value of the S OFDM symbols is greater than or equal to The duration of the reserved S OFDM symbols may also be greater than or equal to t_freqswitch+t_UtoD+td, and the eighth value of the S OFDM symbols is: The duration of the reserved S OFDM symbols may be greater than or equal to t_freqswitch+t_DtoU+td, and the ninth value of the S OFDM symbols is: For the case of the carrier switching of the seventh value to the ninth value, reference may be made to the description of the fourth value to the sixth value, and details are not described herein again.
  • the FBT-based LBT detection is performed on the frequency domain location corresponding to the target carrier, but the duration required for the LBT detection may be set on the source carrier. It can also be set on the target carrier, which is not limited in the embodiment of the present application.
  • the source carrier and the target carrier are defined according to the actual carrier switching performed by the base station. For example, when the base station is switched from the anchor carrier to the data carrier, the source carrier is an anchor carrier, the target carrier is a data carrier, and the base station is a data carrier. When switching to an anchor carrier, the source carrier is a data carrier, and the target carrier is an anchor carrier.
  • the length of time required for LBT detection is set on the source carrier or is set on the target carrier. It only refers to the time unit in which the LBT duration can occupy the source carrier or the target carrier. , regardless of the carrier position/channel position detected by the LBT.
  • the carrier switching and the carrier position where the LBT is located are further explained below.
  • the location of the frequency domain in which the base station or the UE performs carrier switching and LBT detection differs according to the location of the S OFDM symbols reserved by the base station. Specifically, there are several cases as follows.
  • the base station is switched from the data carrier to the anchor carrier, and the base station reserves the time domain location for carrier switching and LBT detection on the data carrier, although the LBT detection occupies the time domain location of the data carrier, but the base station In the time domain corresponding to the ta duration, the frequency domain position corresponding to the anchor carrier has been switched.
  • fd represents the frequency domain position corresponding to the data carrier
  • fa represents the frequency domain position corresponding to the anchor carrier
  • fd ⁇ fa indicates The base station completes the handover of fd to fa in the corresponding time.
  • the base station is switched from the data carrier to the anchor carrier, and the base station reserves the time domain location for the carrier handover in the data carrier, and the number of OFDM symbols corresponding to the ta duration needs to be reserved in front of the anchor carrier.
  • the corresponding frequency domain position of the base station in the carrier switching has no effect on the scheme.
  • the frequency domain location is the frequency domain location corresponding to the anchor carrier, as shown in FIG. 8B, where fd represents the frequency domain corresponding to the data carrier.
  • Position, fa represents the frequency domain position corresponding to the anchor carrier.
  • the base station is switched from the data carrier to the anchor carrier, and the base station reserves the time domain location for carrier switching and LBT detection on the anchor carrier.
  • the corresponding frequency domain location of the base station when performing carrier switching has no effect on the scheme, LBT
  • the corresponding frequency domain location is the frequency domain location of the anchor carrier, as shown in FIG. 8C, where fd represents the frequency domain location corresponding to the data carrier, and fa represents the frequency domain location corresponding to the anchor carrier.
  • the base station is switched from the data carrier to the anchor carrier, and the base station reserves a partial time domain position for carrier switching in the data carrier and the anchor carrier, respectively, and the length of the two-part time domain position is equal to the time domain position required for carrier switching.
  • the base station is switched from the anchor carrier to the data carrier, and the base station reserves the time domain location for carrier switching and LBT detection on the anchor carrier.
  • the LBT detection occupies the time domain location of the anchor carrier
  • the base station is The time domain position corresponding to the td duration has been switched to the frequency domain location corresponding to the data carrier, as shown in FIG. 8D, where fd represents the frequency domain location corresponding to the data carrier, and fa represents the frequency domain location corresponding to the anchor carrier.
  • the base station is switched from the anchor carrier to the data carrier, and the base station only reserves the time domain position for the carrier switching in the anchor carrier, and the OFDM symbol corresponding to the td duration needs to be reserved in front of the data carrier. If the base station performs carrier switching, the corresponding frequency domain location is not specified. After the carrier switching is completed, the frequency domain location is the frequency domain location corresponding to the data carrier, as shown in FIG. 8E, where fd represents the frequency domain location corresponding to the data carrier. ,fa Represents the frequency domain location corresponding to the anchor carrier.
  • the base station is switched to the data carrier by the anchor carrier, and the base station reserves the time domain location for the carrier switching and the LBT detection on the data carrier, and the corresponding frequency domain position of the base station in the LBT is already the frequency domain of the data carrier.
  • Position as shown in FIG. 8F, where fd represents the frequency domain position corresponding to the data carrier, and fa represents the frequency domain position corresponding to the anchor carrier.
  • the eighth case the base station is switched from the anchor carrier to the data carrier, and the base station reserves a partial time domain position for the carrier switching in the data carrier and the anchor carrier, respectively, and the two-part time domain position length is equal to the time domain position required for the carrier switching.
  • the time for the base station or the UE to switch from the uplink to the downlink or the downlink to the uplink is not specifically described, because the uplink is switched from the uplink to the downlink, or the downlink is switched to the uplink.
  • the time may occupy the time of the source carrier, and may also occupy the time of the target carrier.
  • the processing manner is the same as that of the base station for carrier switching, and no special description is made here.
  • the base station may be configured according to the system in advance, for example, whether LBT needs to be performed before data transmission, and when carrier switching between the anchor channel and the data channel is performed, whether there is mutual switching between uplink and downlink, uplink and downlink Whether the duration of the mutual handover and the duration required for the carrier handover can be overlapped/multiplexed to determine the position of the symbol reserved for S OFDM and the value of S.
  • carrier switching is performed in S OFDM symbols of the corresponding carrier according to the positions of the S OFDM symbols and the value of S, or carrier switching and LBT are performed in S OFDM symbols of the corresponding carrier. Detection.
  • the base station may also randomly select any one of the foregoing multiple reserved positions for carrier switching or LBT detection.
  • the location of the reserved base is not limited.
  • the duration of the switching between the uplink and the downlink and the duration of the carrier switching can be overlapped/multiplexed. In actual applications, if the length of time required for carrier switching is greater than or equal to the duration of switching between uplink and downlink, Moreover, the switching between the uplink and the downlink and the carrier switching can be performed in parallel, and only the carrier switching duration needs to be considered. Correspondingly, in the possible values of the foregoing S OFDM symbols, it is no longer necessary to consider the length of time required for the uplink and downlink to switch between each other.
  • the location for carrier switching is reserved in the carrier, when data transmission is performed, the data in the carrier needs to be processed accordingly.
  • the last 2 OFDM symbols of the last subframe of the reserved data carrier are used for carrier switching, or the first 2 OFDM symbols of the first subframe of the reserved data carrier are used for carrier switching, then, in the data carrier
  • the number of OFDM symbols of other subframes is L
  • the number of OFDM symbols of the last subframe and/or the first subframe is L-2, at this time, for the last subframe and / Or the first sub-frame, you can use either of the following two processing methods:
  • the general flow of data transmission is as shown in FIG. 9: the data block to be transmitted is first subjected to encoding, rate matching, etc. to obtain an initial bit sequence, and then the initial bit sequence is mapped to a modulation symbol to generate a complex value modulation.
  • the symbol is mapped to the resource unit by layer mapping, precoding processing, or the like, and an OFDM signal is generated and transmitted through the physical antenna. Therefore, for the last subframe and/or the first subframe, when the actual matching physical resources are calculated by the rate matching, only the time-frequency resources corresponding to the L-2 OFDM symbols are calculated, and correspondingly, when the resource mapping is performed.
  • the data is only mapped to the time-frequency resources corresponding to the preceding and/or following L-2 OFDM symbols, so that the OFDM signal generating module calculates only the preceding and/or following L-2 OFDM symbols.
  • the OFDM signal generating module does not process the last and/or the first two symbols. And do not send the last and / or the first 2 symbols.
  • the scheduling unit is a time slot, an SC-FDMA symbol, etc.
  • the processing method of the data corresponding to the reserved location is the same as the processing method of the scheduling unit being the OFDM symbol, and is not Let me repeat.
  • the data in the anchor carrier needs to be processed accordingly.
  • the base station and the UE agree that the previous S OFDM symbols and/or the following S OFDM symbols are not used to transmit the DRS signal, as shown in FIG.
  • the DRS signal transmission order is PSS signal + SSS signal + MIB and/or SIB
  • the previous S OFDM symbols are not used to transmit the DRS signal, but since the latter S OFDM symbols correspond to MIB and/or SIB, for the latter
  • the processing mode of the sub-frames in which the S symbols are located is corresponding to the following two types. The first one is to calculate the time-frequency resources corresponding to the LS OFDM symbols when performing the rate matching to calculate the actual available physical resources.
  • the OFDM signal generating module calculates only the first LS OFDM symbols.
  • S symbols being used as carrier switching, when performing rate matching and resource mapping, processing is still performed according to L OFDM symbols, but the OFDM signal generating module does not process the last S symbols, and does not transmit the last. S symbols.
  • the carrier switching procedure is completed in the corresponding time position. For example, the base station is switched by the anchor carrier into the data carrier.
  • the base station may not perform carrier switching during communication with the UE.
  • the supported system bandwidth of the base station is set to the bandwidth of the entire frequency hopping communication system.
  • the base station does not need to perform carrier switching. That is, step 303 is not necessarily performed.
  • the system bandwidth supported by most UEs is different from the bandwidth of the entire frequency hopping communication system. Therefore, when the UE communicates with the base station in the frequency hopping communication system, carrier switching is required. In this case, The base station does not need to perform carrier switching. However, when the base station performs data transmission with the UE, it needs to reserve a position for carrier switching on the default carrier, and no valid data transmission is performed at the corresponding location.
  • Step 304 The UE performs carrier switching at a time position reserved in the carrier.
  • the UE may perform carrier switching at the reserved location agreed with the base station or perform carrier switching at the reserved location indicated by the base station, where the reserved position is in step 303.
  • step 304 may be performed after step 303, or may be performed before step 303. Of course, it may be performed simultaneously with step 303. In the embodiment of the present application, the order of execution of step 304 and step 303 is not limited. .
  • Step 305 The base station sends downlink data or receives uplink data on the data carrier.
  • the base station When the base station switches from the anchor carrier to the data carrier at the reserved location, data transmission is performed with the UE on the data carrier. It should be noted that, if the reserved duration corresponding to the location reserved by the base station in the carrier includes the detection duration of the LBT, the base station needs to first forward the data after switching to the data carrier and before transmitting the data information on the data carrier.
  • the LBT detection is performed on the frequency domain location corresponding to the carrier, and when it is determined that the frequency domain location corresponding to the data carrier is idle, data transmission on the data carrier is started.
  • the base station does not have to perform LBT detection. For example, if the base station only performs data reception on the data carrier, the base station may not perform LBT detection after switching to the data carrier. In a specific implementation, the base station may determine whether LBT detection is required according to actual conditions.
  • Step 306 The UE receives downlink data or sends uplink data on the data carrier.
  • the UE When the UE is switched from the anchor carrier to the data carrier at the reserved location, data transmission is performed with the base station on the data carrier. It should be noted that, if the reserved location of the UE for carrier switching includes the detection duration of the LBT, the UE needs to first respond to the frequency domain of the data carrier after switching to the data carrier and before transmitting data on the data carrier. The location performs LBT detection, and when it is determined that the frequency domain location corresponding to the data carrier is idle, data transmission is started on the data carrier. Of course, the UE does not have to perform LBT detection.
  • Step 307 The base station completes the data transmission on the data carrier, performs carrier switching on the reserved position in the data carrier and/or the anchor carrier, and jumps to the anchor carrier.
  • the base station may not perform carrier switching.
  • the bandwidth supported by the base station is the bandwidth of the frequency hopping system. Therefore, step 307 is not necessarily performed.
  • Step 308 The UE performs data transmission on the data data carrier, performs carrier switching on the reserved position in the data carrier and/or the anchor carrier, and jumps to the anchor carrier, or the UE completes data transmission on the data data carrier.
  • Carrier switching is performed at a location reserved in the data carrier and/or the anchor carrier, and directly jumps to the data carrier in the next period T indicated in the frequency hopping format. It should be noted that, if the UE directly jumps from the current data carrier to the data carrier in the next period T, the UE does not transmit data within the duration corresponding to the anchor carrier in the next period T.
  • step 307-step 308 The location for the carrier switching in the step 307-step 308 is the same as that in the step 303, and details are not described herein again.
  • the base station and the UE perform carrier switching between each period T and the adjacent period T by repeatedly performing the method shown in FIG. 3, and perform data transmission on the corresponding carrier.
  • the base station and/or the UE reserve a location for carrier switching in the carrier in the frequency hopping communication system in advance, and when any one of the base station and the UE needs to perform carrier switching, regardless of the source carrier and the target
  • the carrier is the carrier of the data type, and the carrier switching is performed on the reserved location, so that it is not necessary to distinguish the type of the physical channel carried by the source carrier and the target carrier, which can reduce the complexity of the carrier switching. degree.
  • the embodiment of the present application further provides a base station, where the base station is used to implement a carrier switching method on an unlicensed frequency band as shown in FIG. 3, and as shown in FIG. 11, the base station 1100 includes: a transceiver. 1101 and processor 1102.
  • the transceiver 1101 is configured to communicate with a terminal device by using a first carrier in an unlicensed spectrum according to the indication of the processor 1102, where the base station occupies an anchor carrier in an unlicensed spectrum in one scheduling period. And communicating, by using any one of the plurality of data carriers, the terminal device, where the scheduling period includes N time scheduling units, where the anchor carrier occupies the N time scheduling units.
  • the processor 1102 is within S time scheduling units reserved in the first carrier and/or the second carrier, Switching from the first carrier to the second carrier, and continuing to communicate with the terminal device by using the second carrier, where the S time scheduling units are pre-configured by the base station, and S is greater than 0. An integer less than N.
  • the network side device 1100 may further include a memory 1103.
  • the memory 1103 can be used to store a software program that can be executed by the processor 1102 to implement a data transfer method on the unlicensed frequency band described above.
  • various types of service data or user data may also be stored in the memory 1103.
  • the memory 1103 may include a volatile memory, such as a random-access memory (RAM); the memory 1103 may also include a non-volatile memory.
  • a volatile memory such as a random-access memory (RAM); the memory 1103 may also include a non-volatile memory.
  • a flash memory also called a flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 1103 may also include a combination of the above types of memories.
  • the processor 1102 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 1102 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the processor 1102 and the transceiver 1101 and the memory 1103 may be connected to each other through a bus 1104.
  • the bus 1104 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the S time scheduling units are S time scheduling units of the multiple time scheduling units occupied by the first carrier, or the S time scheduling units are the second carrier.
  • S times time scheduling units of the plurality of time scheduling units, or the S time scheduling units are S1 time scheduling units and the second carrier occupied by the plurality of time scheduling units occupied by the first carrier S2 time scheduling units in multiple time scheduling units, S is the sum of S1 and S2, and S1 and S2 are positive integers.
  • the S time scheduling units are the last S time scheduling units of the multiple time scheduling units occupied by the first carrier, or the S time scheduling units are the second S time scheduling units from the first time scheduling unit of the plurality of time scheduling units occupied by the carrier, or the S time scheduling units being the last S1 of the plurality of time scheduling units occupied by the first carrier
  • the time scheduling unit and the S2 time scheduling units from the first time scheduling unit among the plurality of time scheduling units occupied by the second carrier, S is a sum of S1 and S2, and S1 and S2 are positive integers.
  • the S time scheduling units are multiple time scheduling units occupied by the data carrier.
  • the last S time scheduling units are multiple time scheduling units occupied by the data carrier.
  • the S time scheduling units are multiple time scheduling units occupied by the anchor carrier.
  • the last S time scheduling units; wherein the last S time scheduling units of the anchor carrier do not perform signal transmission, and the actual occupied time of the signal transmitted in the anchor carrier is the window length of the anchor carrier The S time schedules a difference between the durations of the bits, where the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period.
  • the S time scheduling units are multiple time scheduling units occupied by the anchor carrier.
  • the first S time scheduling units from the first time scheduling unit; wherein the first S time scheduling units of the anchor carrier do not perform signal transmission, and the actual time occupied by the signal transmitted in the anchor carrier is a difference between a window length of the anchor carrier and a duration corresponding to the S time scheduling units, where the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period .
  • the S time scheduling units are in a plurality of time scheduling units occupied by the data carrier.
  • the first S time scheduling units from the first time dispatch unit.
  • the S time scheduling units are occupied by the anchor carrier.
  • the first S time scheduling units from the first time scheduling unit and the last S time scheduling units of the plurality of time scheduling units occupied by the anchor carrier in the plurality of time scheduling units; wherein the first S time scheduling units
  • the time scheduling unit and the last S time scheduling units do not perform signal transmission, and the actual length of time that the signal is actually transmitted in the anchor carrier is the window length of the anchor carrier, the first S time scheduling units, and the The difference between the last S time scheduling units, and the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period.
  • the first carrier and the second carrier are both used for uplink transmission, or the first carrier and the second carrier are both used for downlink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the first threshold; wherein the first threshold is a first preset duration required by the base station to switch the frequency domain location, and the The larger of the second preset duration required by the terminal device to switch the frequency domain location.
  • the first carrier is used for uplink transmission and the second carrier is used for downlink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the second threshold; wherein the first threshold is a first required by the base station to switch the frequency domain location
  • the preset duration is a larger value of a second preset duration required for the terminal device to switch the frequency domain location
  • the second threshold is a third preset duration required for the base station to switch from the uplink transmission to the downlink transmission.
  • the first carrier is used for downlink transmission and the second carrier is used for uplink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the third threshold; wherein the first threshold is a first required by the base station to switch the frequency domain location
  • the preset duration is a larger value of a second preset duration required for the terminal device to switch the frequency domain location
  • the third threshold is a fifth preset duration required for the base station to switch from downlink transmission to uplink transmission.
  • the processor 1102 is further configured to:
  • the duration corresponding to the S time scheduling units further includes a duration of performing the listening and speaking detection.
  • the duration of the detection is said to be a fourth threshold
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the fourth threshold; or
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the first threshold, the second threshold, and the fourth threshold; or
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the sum of the first threshold, the third threshold, and the fourth threshold.
  • the second carrier is a data carrier
  • the fourth threshold is a duration that the base station performs the detection after the first listening on any one of the data carriers
  • the second carrier is an anchor carrier
  • the fourth threshold is a duration that the base station performs detection after the anchor carrier performs the listening.
  • the embodiment of the present application further provides a terminal device, where the terminal device is used to implement a carrier switching method on an unlicensed frequency band as shown in FIG. 3, and the terminal device 1200 is shown in FIG.
  • the transceiver includes a transceiver 1201 and a processor 1202.
  • the transceiver 1201 uses a first carrier in the unlicensed spectrum according to the indication of the processor 1202 to communicate with the base station through the transceiver; wherein the base station occupies an anchor in the unlicensed spectrum in one scheduling period
  • the point carrier and any one of the plurality of data carriers are in communication with the terminal device, where the scheduling period includes N time scheduling units, and in the scheduling period, the anchor carrier occupies the N times a pre- or post-M time scheduling unit of the scheduling unit, where the any one data carrier occupies a time scheduling unit of the N time scheduling units except the M time scheduling units before or after, the first carrier is
  • the carrier indicated by the base station, the anchor carrier and the plurality of data carriers include the first carrier, and the time scheduling unit is a subframe or a time slot or an OFDM symbol or an SC-FDMA symbol, N, M Is a positive integer;
  • the processor 1202 switches from the first carrier to the second carrier in the S time scheduling units reserved in the first carrier and/or the second carrier, and passes the second carrier and The base station continues to communicate, where the S time scheduling units are pre-configured by the base station, and S is an integer greater than 0 and less than N.
  • the terminal device 1200 may further include a memory 1203.
  • the memory 1203 can be used to store a software program that can be executed by the processor 1202 to implement a data transmission method on the unlicensed frequency band described above.
  • various types of service data or user data may also be stored in the memory 1203.
  • the memory 1203 may include volatile memory such as RAM; the memory 1203 may also include non-volatile memory such as flash memory, HDD or SSD).
  • the memory 1103 may also include a combination of the above types of memories.
  • the processor 1202 may be a CPU, an NP or a combination of a CPU and an NP.
  • the processor 1202 may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD can be CPLD, FPGA, GAL or any combination thereof.
  • the processor 1202 and the transceiver 1201 and the memory 1203 may be connected to each other through a bus 1204.
  • the bus 1204 may be a PCI bus or EIS) bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean only There is a bus or a type of bus.
  • the S time scheduling units are S time scheduling units of the multiple time scheduling units occupied by the first carrier, or the S time scheduling units are the second carrier.
  • S times time scheduling units of the plurality of time scheduling units, or the S time scheduling units are S1 time scheduling units and the second carrier occupied by the plurality of time scheduling units occupied by the first carrier S2 time scheduling units in multiple time scheduling units, S is the sum of S1 and S2, and S1 and S2 are positive integers.
  • the S time scheduling units are the last S time scheduling units of the multiple time scheduling units occupied by the first carrier, or the S time scheduling units are the second S time scheduling units from the first time scheduling unit of the plurality of time scheduling units occupied by the carrier, or the S time scheduling units being the last S1 of the plurality of time scheduling units occupied by the first carrier
  • the time scheduling unit and the S2 time scheduling units from the first time scheduling unit among the plurality of time scheduling units occupied by the second carrier, S is a sum of S1 and S2, and S1 and S2 are positive integers.
  • the S time scheduling units are multiple time scheduling units occupied by the data carrier.
  • the last S time scheduling units are multiple time scheduling units occupied by the data carrier.
  • the S time scheduling units are multiple time scheduling units occupied by the anchor carrier.
  • the S time scheduling units are multiple time scheduling units occupied by the anchor carrier.
  • the first S time scheduling units from the first time scheduling unit; wherein the first S time scheduling units of the anchor carrier do not perform signal transmission, and the actual time occupied by the signal transmitted in the anchor carrier is a difference between a window length of the anchor carrier and a duration corresponding to the S time scheduling units, where the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period .
  • the S time scheduling units are in a plurality of time scheduling units occupied by the data carrier.
  • the first S time scheduling units from the first time dispatch unit.
  • the S time scheduling units are occupied by the anchor carrier.
  • the first S time scheduling units from the first time scheduling unit and the last S time scheduling units of the plurality of time scheduling units occupied by the anchor carrier in the plurality of time scheduling units; wherein the first S time scheduling units
  • the time scheduling unit and the last S time scheduling units do not perform signal transmission, and the actual length of time that the signal is actually transmitted in the anchor carrier is the window length of the anchor carrier, the first S time scheduling units, and the The difference between the last S time scheduling units, and the window length is a duration corresponding to the M time scheduling units occupied by the anchor point in the scheduling period.
  • the first carrier and the second carrier are both used for uplink transmission, or the first carrier and the second carrier are both used for downlink transmission;
  • the S time scheduling units are at least one consecutive time schedule with a total duration greater than or equal to the first threshold.
  • the first threshold is a larger value of a first preset duration required by the base station to switch the frequency domain location and a second preset duration required by the terminal device to switch the frequency domain location.
  • the first carrier is used for uplink transmission and the second carrier is used for downlink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the second threshold; wherein the first threshold is a first required by the base station to switch the frequency domain location
  • the preset duration is a larger value of a second preset duration required for the terminal device to switch the frequency domain location
  • the second threshold is a third preset duration required for the base station to switch from the uplink transmission to the downlink transmission.
  • the first carrier is used for downlink transmission and the second carrier is used for uplink transmission;
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the third threshold; wherein the first threshold is a first required by the base station to switch the frequency domain location
  • the preset duration is a larger value of a second preset duration required for the terminal device to switch the frequency domain location
  • the third threshold is a fifth preset duration required for the base station to switch from downlink transmission to uplink transmission.
  • the processor 1202 is further configured to:
  • the terminal device performs the first listening and then detecting the second carrier, and determines whether the frequency domain resource corresponding to the second carrier is occupied; wherein, when the frequency domain resource corresponding to the second carrier is not occupied, The terminal device communicates with the base station by using the second carrier.
  • the duration corresponding to the S time scheduling units further includes a duration of performing the listening and speaking detection.
  • the duration of the detection is said to be a fourth threshold
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to a sum of the first threshold and the fourth threshold; or
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the first threshold, the second threshold, and the fourth threshold; or
  • the S time scheduling units are at least one consecutive time scheduling unit whose total duration is greater than or equal to the sum of the first threshold, the third threshold, and the fourth threshold.
  • the second carrier is a data carrier
  • the fourth threshold is a duration that the terminal device performs the detection after the first listening on any one of the data carriers
  • the second carrier is an anchor carrier
  • the fourth threshold is a duration that the terminal device performs detection after the anchor carrier performs the listening.
  • FIG. 13 shows a schematic structural diagram of a base station 1300.
  • the base station 1300 can implement the functions of the base stations involved above.
  • the base station 1300 can include a processing unit 1301 and a transceiver unit 1302.
  • the processing unit 1301 may be used to perform step 303 and step 307 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver unit 1302 can be used to perform steps 301, 305, and 306 in the embodiment illustrated in FIG. 3, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 14 shows a schematic structural diagram of a terminal device 1400.
  • the terminal device 1400 can implement the functions of the terminal device referred to above.
  • the terminal device 1400 can include a processing unit 1401 and a transceiving unit 1402. Wherein, the processing unit 1401 can be used to perform step 304 and step 308 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • Transceiver unit 1402 can be used to perform steps 302, 305, and 306 in the embodiment illustrated in FIG. 3, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the terminal device and the base station provided by the present application may be a chip system, and the chip system may include at least one chip, and may also include other discrete devices.
  • the chip system may be placed in a terminal device or a base station, and the terminal device or the base station is configured to complete the carrier switching method on the unlicensed spectrum provided in the embodiment of the present application.
  • the embodiment of the present application provides a computer storage medium, where the computer storage medium stores instructions for causing the computer to perform a carrier switching method on the unlicensed spectrum when the instruction is run on a computer.
  • An embodiment of the present application provides a computer program product, the computer program product comprising instructions, when the instruction is run on a computer, causing the computer to perform a carrier switching method on the unlicensed spectrum.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a solid state disk (SSD)

Abstract

一种非授权频谱上的载波切换方法、基站及终端设备,在该方法中:基站使用非授权频谱中的第一载波与终端设备进行通信;所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述锚点载波或任意一个数据载波;所述基站在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波。

Description

一种非授权频谱上的载波切换方法、基站及终端设备 技术领域
本申请涉及无线通信技术领域,尤其涉及一种非授权频谱上的载波切换方法、基站及终端设备。
背景技术
随着无线技术的不断发展,无线通信系统的频谱资源日益稀缺,授权(Licensed)频段已经不能满足日益增长的业务需求,已有越来越多的系统工作在非授权(Unlicensed)频段,比如WiFi,Bluetooth,Zigbee,LoRa等。
当采用的Unlicensed频段为2.4GHz和Sub1GHz(低于1GHz的频段)时,根据美国联邦通信委员会(Federal Communications Commission,FCC)或欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)的频谱法规,基站和终端设备可以使用跳频扩频(Frequency Hopping Spread Spectrum,FHSS)技术进行通信,对于窄带系统,比如工作带宽等于一个跳频间隔的系统,在通信过程中,基站和终端设备会在多个载波间进行多次载波切换。
现有技术中的载波切换方式,需要根据载波切换前后对应的载波的物理信道的类型,来确定载波切换时,载波切换所占据的时长分别在源载波和目标载波所占据的时域长度及位置,切换方法复杂。
发明内容
本申请实施例提供一种非授权频谱上的载波切换方法、基站及终端设备,用以降低载波切换方法的复杂度。
第一方面,提供一种非授权频谱上的载波切换方法,该方法包括:基站使用非授权频谱中的第一载波与终端设备进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述锚点载波或任意一个数据载波,所述基站及所述终端设备在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述终端设备继续通信,所述S个时间调度单位为所述基站预配置的,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数,S为大于0小于N的整数。
通过上述方法,当基站和UE非授权频谱中的锚点载波及多个数据载波进行通信时,基站和/或UE预先在跳频通信系统中的载波中预留出用于载波切换的位置,当基站和UE中的任意一方需要进行载波切换时,无论源载波和目标载波是承载何种数据类型的载波,只要是需要进行载波切换,则都是在该预留位置上进行,从而无需区分源载波与目标载波的类别,可以降低载波切换的复杂度。
一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间 调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的S1个时间调度单位以及所述第二载波占用的多个时间调度单位中的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S1个时间调度单位以及所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
通过上述方法,基站可以灵活选择用于载波切换的S个时间调度单位的位置,可以增加通信系统的灵活性。
一个可能的实施方式中,所述S个时间调度单位的位置可以为如下五种位置中的任意一种。
第一种、当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
第二种、当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
第三种、当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
第四种、当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位。
第五种、当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
一个可能的实施方式中,所述S个时间调度单位可以采用如下三种具体取值中的任意一种。
第一种、所述第一载波和所述第二载波均用于上行传输,或所述第一载波和所述 第二载波均用于下行传输;所述S个时间调度单位为总时长大于等于第一阈值的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值。
第二种、所述第一载波用于上行传输和所述第二载波为用于下行传输;所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
第三种、所述第一载波用于下行传输和所述第二载波用于上行传输;所述S个时间调度单位为总时长大于等于第一阈值与第三阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第三阈值为所述基站由下行传输切换到上行传输所需的第五预设时长与所述终端设备由下行传输切换到上行传输所需的第六预设时长中的较大值。
一个可能的实施方式中,所述基站及所述终端设备还可以对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用,在所述第二载波对应的频域资源未被占用时,所述基站及所述终端设备通过所述第二载波进行通信,从而可以保证通信的可靠性。
一个可能的实施方式中,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
一个可能的实施方式中,所述先听后说检测的时长为第四阈值,所述S个时间调度单位还可以采用如下三种具体取值中的任意一种。
第一种、所述S个时间调度单位为总时长大于等于所述第一阈值与所述第四阈值的和的至少一个连续的时间调度单位。
第二种、所述S个时间调度单位为总时长大于等于所述第一阈值、所述第二阈值与所述第四阈值的和的至少一个连续的时间调度单位。
第三种、所述S个时间调度单位为总时长大于等于所述第一阈值、所述第三阈值与所述第四阈值的和的至少一个连续的时间调度单位。
一个可能的实施方式中,所述第四阈值根据所述第二载波承载的数据类型相关,所述第二载波为数据载波,所述第四阈值为所述基站在任意一个数据载波进行所述先听后说检测的时长;所述第二载波为锚点载波,所述第四阈值为所述基站在所述锚点载波进行所述先听后说检测的时长,从而可以保证预留的S个时间调度单位的准确性。
第二方面,本申请实施例还提供了一种基站,所述基站具有实现上述方法实施例中基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实施方式中,所述基站的结构中包括处理单元和传输单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
一种可能的实施方式中,所述基站的结构中包括处理器以及收发器,所述处理器 被配置为支持所述基站执行上述方法中相应的功能。所述处理器与存储器耦合,其保存所述基站必要的程序指令和数据。
第三方面,本申请实施例还提供了一种终端设备,所述终端设备具有实现上述方法实施例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实施方式中,所述终端设备的结构中包括处理单元和传输单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
一种可能的实施方式中,所述终端设备的结构中包括处理器以及收发器,所述处理器被配置为支持所述终端设备执行上述方法中相应的功能。所述处理器与存储器耦合,其保存所述终端设备必要的程序指令和数据。
第四方面,本申请实施例还提供了一种无线通信系统,所述通信系统中包括:第二方面所述的基站和第三方面所述的终端设备。
第五方面,本申请实施例中还提供一种计算机存储介质,该存储介质中存储有软件程序,该软件程序在被一个或多个处理器读取并执行时可实现任一方面的任意一种设计提供的方法。
第六方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面中的任一种方法。
附图说明
图1为本申请实施例提供的一种可能的跳频通信系统的帧结构示意图;
图2为本申请实施例提供的另一种可能的跳频通信系统的帧结构示意图;
图3为本申请实施例提供的一种载波切换的方法的流程图;
图4A-图4C为本申请实施例中由anchor载波切换到数据载波时S个时间调度单位所在的位置的示意图;
图5A-图5C为本申请实施例中由数据载波切换到anchor载波时S个时间调度单位所在的位置的示意图;
图6A-图6C为本申请实施例中将S个时间调度单位设置在anchor载波时DRS窗长P以及DRS发送一次持续的时长D在一个周期内的示意图;
图7A-图7B为本申请实施例中在载波中预留用于LBT检测的位置的示意图;
图8A-图8F为本申请实施例中进行载波切换以及LBT检测时所在的频域位置的示意图;
图9为现有技术中无线通信系统中数据发送的流程图;
图10为本申请实施例中在anchor载波预留S个OFDM符号的示意图;
图11为本申请实施例提供的基站的一种结构示意图;
图12为本申请实施例提供的终端设备的一种结构示意图;
图13为本申请实施例提供的基站的另一种结构示意图;
图14为本申请实施例提供的终端设备的另一种结构示意图。
具体实施方式
本申请实施例提供一种载波切换的方法,该方法应用于跳频通信系统中。请参考图1,为本申请实施例提供的一种可能的跳频通信系统的帧结构示意图。在该帧结构中包含M个锚点(anchor)信道的帧以及N个数据信道的帧,其中,anchor信道的跳频周期为T,在周期T内,包含M个锚点(anchor)信道的发送时长以及一个数据信道的发送时长,M个anchor信道频分复用,即M个anchor信道的发送时长在一个跳频周期内所占用的时域资源相同但频域资源不同。其中,跳频周期也可以理解为anchor信道占用周期,或DRS信号发送周期。基站在每个跳频周期内,包含anchor信道发送时长和1个数据信道发送时长。
如图1中所示的帧结构可知,该跳频通信系统包含M个anchor信道和N个数据信道。其中,数据信道用于承载上下行信息,例如,下行控制信息、下行数据信息、上行数据信息等,anchor信道用于基站发送发现信号(discovery reference signal,DRS),例如,发现信号包括但不限于主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、主信息块(Master Information Block,MIB)、系统信息块(System Information Block,SIB)等,且UE在通过该跳频通信系统与基站通信之前,通过获取基站在anchor信道发送的PSS信号和/或SSS信号,完成初始同步,然后通过在anchor信道接收MIB和/或SIB,获取基站小区标识以及基站跳频格式,之后UE根据跳频格式切换到相应的数据信道上接收和/或发送数据。相应地,当基站在该anchor信道上向UE发送配置信息后,也需要根据跳频格式跳转到相应的数据信道上向UE发送数据或接收UE发送的数据。假设在一段时间间隔内,将图示1中anchor信道发送周期T分别标注为T0,T1,T2等,且T0、T1和T2对应的时间长度相同。在周期T0内,基站首先在anchor信道发送DRS信号,之后根据跳频格式切换到任一个数据信道上发送/接收数据信息,在周期T1内,基站首先从T0内对应的数据信道切换到anchor信道,再从anchor信道根据跳频格式切换到任一个数据信道,如此反复。对于UE侧,当UE在anchor信道进行初始同步和接收MIB和/或SIB信息后,根据跳频格式切换到数据信道发送/接收数据信息,假设某一个UE在T0从anchor信道切换到数据信道,在T1周期内,UE可以从T0周期对应的数据信道切换到T1周期的anchor信道,也可以从T0周期对应的数据信道切换到T1周期的数据信道,如果UE从T0周期对应的数据信道切换到T1周期的数据信道,则T1周期内anchor信道占据的时长内,UE不进行数据接收和发送。下文所述的信道/载波切换方法,适用于UE从T0周期对应的anchor信道切换到T0周期对应的数据信道,再从T0周期对应的数据信道切换到T1周期的anchor信道,再切换到T1周期的数据信道,如此反复的过程,也适用于UE从T0周期对应的anchor信道切换到T0周期对应的数据信道,再从T0周期对应的数据信道切换到T1周期的数据信道,再从T1周期对应的数据信道切换到T2周期的数据信道,如此反复的过程。此处T0,T1,T2只是举例说明,实际方案中,不同的周期是一个时间连续的过程,即T0,T1,T2,T3,……
在本申请实施例中,假定如图1所示的帧结构对应的跳频通信系统中,可用的频谱带宽为Y,每个anchor信道和每个数据信道的带宽均为x,则整个频谱带宽可以划分为L个信道,其中
Figure PCTCN2017103829-appb-000001
需要说明的是,实际使用的信道数Q可以小于L,例如,当该跳频通信系统应用于2.4GHz或sub1GHz的Unlicensed频段时,假设anchor信道 数M等于1,则Q只需大于等于16即可,例如,一种可能的配置为:Y=83.5MHz,x=1.4MHz,L=59,M=1,Q=16,则该跳频通信系统中的可用的anchor信道和数据信道一共为16个,在本申请实施例中,不对该跳频通信系统中的配置参数进行限制。
需要说明的是,在如图1所示的帧结构对应的跳频通信系统中,anchor信道为M个,M为正整数,即,如果基站工作带宽大于等于M个anchor信道对应的带宽,则基站在同一时刻可以处理M个anchor信道,UE在同一时刻可以只处理1个anchor信道,在下一个anchor周期处理另外一个anchor信道,直至在M个anchor信道发送周期内处理完M个anchor信道,或者,UE在一个anchor信道发送周期内处理M个anchor信道,此处不做限制。但基站和UE也可以在同一时刻只处理一个anchor信道,例如,将基站和UE支持的系统带宽设定为该跳频通信系统中的每个信道对应的带宽,则基站和UE在同一时刻便只能处理一个anchor信道,对应的帧结构如图2所示。由于本申请实施例提供的是载波切换的方法,该方法与anchor信道的个数无关,因此,为方便描述,本申请实施例将以该方法应用到如图2所示的帧结构对应的跳频通信系统中为例进行说明。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)基站,也可以称为网络设备,可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(Long Term Evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
(2)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(User Equipment,UE)、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(RFID)、传感器、全球定位系统(GPS)、激光扫描器等信息传感设备。
(3)信道,指的是在预设频段内用于承载控制信息或数据信息的载波,因此,在本申请实施例中,“载波”与“信道”可被互换使用。
(4)时域调度单位:是指由一个时隙(slot)或者一个子帧或者OFDM符号或SC-FDMA符号组成的单元,或多个时隙或者多个子帧或者多个OFDM符号或者多个SC-FDMA符号聚合组成的单元。
(5)下行传输:是指基站在载波上发送信息和/或终端设备在载波上接收信息。
(6)上行传输:是指终端设备在载波上发送信息和/或基站在载波上接收信息。
(7)“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
由于现有技术中的跳频通信系统中的载波切换方法不适用于基站和终端设备均需要进行载波切换的跳频通信系统,鉴于此,本申请实施例提供一种适用于前述跳频通信系统的载波切换方法。在该方法中,预先在跳频通信系统中的anchor信道和数据信道中预留用于载波切换的若干个时间调度单位,该预留的若干个时间调度单位不用于数据传输,从而当跳频通信系统中的基站或者终端设备确定需要切换到下一个载波进行通信时,则直接在该若干个时间调度单位上进行载波切换,实现了基站或终端设备的载波切换过程。
下面将结合说明书附图以及具体的实施方式对本申请实施例中的技术方案进行详细的说明。在下面的介绍过程中,以本申请实施例提供的技术方案应用于图2所示的帧结构对应的跳频通信系统中,以终端设备为UE为例。
请参考图3,为本申请实施例提供的一种载波切换的方法,该方法的流程描述如下。
步骤301:基站通过anchor载波发送DRS信号,包括但不限于同步信号和广播信息,anchor信道上的广播信息包括MIB和/或SIB。
步骤302:UE接收DRS信号,根据广播信息确定跳频格式,并根据跳频格式确定每个跳频周期内需要跳转到的数据载波。
在本申请实施例中,跳频格式信息可以包含基站与该UE进行数据传输的数据载波的信息,例如,任一跳频周期(或简称周期)内,数据信道对应的数据载波的载波编号或者该数据载波的载波频率等。当然,该配置信息还可以包含其他内容,在此不作限制。
步骤303:基站在anchor载波和/或需要跳转到的数据载波中预留的位置进行载波切换。
当基站在anchor载波中发送DRS信号后,则跳转到对应的数据载波上与UE进行通信。
在本申请实施例中,基站在执行步骤303之前,会在相应载波上预留用于载波切换的位置,下面对基站预留的用于载波切换的位置进行说明。
在本申请实施例中,该预留的位置可以用各个载波在每个跳频周期T内占用的时间调度单位来进行描述。将基站当前时刻所在的载波称为源载波,将基站将要切换到的载波称为目标载波,则该预留的用于载波切换的位置可以是源载波占用的多个时间调度单位中的最后S个时间调度单位,或该预留的用于载波切换的位置可以是目标载波占用的多个时间调度单位中从第一个时间调度单位起的S个时间调度单位,或该预 留的用于载波切换的位置可以是源载波占用的多个时间调度单位中的最后S1个时间调度单位以及目标载波占用的多个时间调度单位中从第一个时间调度单位起的S2个时间调度单位,S1与S2的和大于等于S,S为正整数。
具体到本申请实施例中的跳频通信系统,以源载波为anchor载波,目标载波为数据载波,该预留的S个时间调度单位为S个OFDM符号为例进行说明。
请参考图4A、图4B以及图4C,如图4A、图4B以及图4C所示,anchor载波一共占用M个子帧,数据载波一共占用N个子帧,假定一个子帧包含14个OFDM符号,则anchor载波中一共包含14*M个OFDM符号,数据载波中一共包含14*N个OFDM符号,则基站可以将anchor载波包含的14*M个OFDM符号中的最后S个OFDM符号设置为用于载波切换的位置,如图4A所示。基站也可以将数据载波包含的14*N个OFDM符号中的前S个OFDM符号设置为用于载波切换的位置,如图4B所示。当然,基站也可以将anchor载波包含的14*M个OFDM符号中的最后S1个OFDM符号以及数据载波包含的14*N个OFDM符号中的前S2个OFDM符号设置为用于载波切换的位置,如图4C所示。
若以图4A-图4C中的数据载波为源载波,以图4A-图4C中的anchor载波为目标载波,则基站可以将数据载波包含的14*N个OFDM符号中的最后S个OFDM符号设置为用于载波切换的位置,如图5A所示。基站也可以将anchor载波包含的14*M个OFDM符号中的前S个OFDM符号设置为用于载波切换的位置,如图5B所示。基站也可以将数据载波包含的14*N个OFDM符号中的最后S1个OFDM符号以及anchor载波包含的14*M个OFDM符号中的前S2个OFDM符号设置为用于载波切换的位置,如图5C所示。在实际使用中,基站可以选择上述图4A-图5C中的任意一种方式预留用于载波切换的位置,在此不作限制。
需要说明的是,基站在anchor载波发送的DRS信号涉及如下两个参数:DRS窗长P以及DRS发送一次持续的时长D,其中,D<=P,如图6A-图6C所示。其中,当由数据载波切换到anchor载波时,预留在anchor载波上的用于载波切换的S个OFDM符号可以如图6A所示,DRS信号的可能的结束时刻对齐DRS窗长的结束边界,窗长P与DRS信号的持续时长D之间的差值大于等于S个OFDM符号对应的时长,从而在S个OFDM符号对应的时长中进行载波切换。当由anchor载波切换到数据载波时,预留在anchor载波上的用于载波切换的S个OFDM符号可以如图6B所示,DRS信号的可能的发送时刻对齐DRS窗长的起始边界,窗长P与DRS信号的持续时长D之间的差值大于等于S个OFDM符号对应的时长。当然,也可以不考虑载波切换前后的载波类型,在DRS窗长P的前后均预留S个OFDM符号,如图6C所示,DRS信号的可能的发送时刻为从DRS窗长的起始边界起偏移S个OFDM符号对应的时刻,DRS信号的可能的结束时刻为在DRS窗长的结束边界起提前S个OFDM符号对应的时刻,窗长P与DRS信号的持续时长D之间的差值大于等于2*S个OFDM符号对应的时长。
这样,通过控制窗长P与DRS信号的持续时长D之间的差值,使基站或UE在该窗长P与DRS信号的持续时长D之间的差值对应的时长中由数据载波切换到anchor载波或者由anchor载波切换到数据载波,或者在该时长中由数据载波到anchor载波以及由anchor载波到数据载波,这样可以不影响anchor载波发送的DRS信号,可以保证跳频通信系统对anchor载波的性能要求。
下面,将对该S个OFDM符号的具体取值进行说明。在本申请实施例中,该S个OFDM符号可以有如下三种取值,基站和UE可以根据实际切换情况确定所需的最大S个OFDM符号的取值。
在本申请实施例中,考虑射频前端处理的时间,假定基站进行载波切换需要的时长为t1,基站由上行接收切换到下行发送需要的时长为t2,基站由下行发送切换到上行接收需要的时长为t3。且假定UE进行载波切换需要的时长为t4,UE由上行发送切换到下行接收需要的时长为t5,UE由下行接收切换到上行发送需要的时长为t6。
需要说明的是,本申请实施例中的t1~t6可以转换成对应的OFDM符号的个数。假定一个OFDM符号持续时间为t0,则t1~t6等效为OFDM符号个数m1~m6时,计算公式分别为
Figure PCTCN2017103829-appb-000002
此处一个OFDM符号持续时间包含循环前缀的时间。
下面将结合上述t1~t6来对S个OFDM符号的取值进行说明。
在本申请实施例中,由于基站和UE在不同的载波发送信息时需要同步,即:数据发送/接收过程中(不包括载波切换时间),UE和eNB在任意时刻,需要工作在同一个载波。因此,在本申请实施例中,对基站和UE各自的切换时间进行统一。即,将基站或UE进行载波切换的时间统一为t_freqswitch=max(t1,t4),将基站由上行接收切换到下行发送或UE由上行发送切换到下行接收的时间统一为上行到下行的切换时间t_UtoD=max(t2,t5),将基站由下行发送切换到上行接收或UE由下行接收切换到上行发送的时间统一为下行到上行的切换时间t_DtoU=max(t3,t6)。
则S个OFDM符号的第一种取值为:大于等于基站或UE进行载波切换所需的OFDM符号的个数,即S大于等于
Figure PCTCN2017103829-appb-000003
例如,基站由在anchor载波中发送下行控制/数据信息切换到在数据载波中发送下行控制/数据信息,或者UE由在anchor载波中接收下行控制/数据信息切换到在数据载波中接收下行控制/数据信息。
S个OFDM符号的第二种取值为:大于等于基站或UE进行载波切换所需的OFDM符号的个数以及基站或UE进行上行到下行的切换所需OFDM符号的个数的和,即S大于等于
Figure PCTCN2017103829-appb-000004
例如,基站由在数据载波中接收上行数据信息切换到在anchor载波中发送下行控制信息,或者UE由在数据载波中发送上行数据信息切换到在anchor载波中接收下行控制信息。
S个OFDM符号的第三种取值:大于等于基站或UE进行载波切换所需的OFDM符号的个数以及基站或UE进行下行到上行的切换所需的OFDM符号的个数,即S大于等于
Figure PCTCN2017103829-appb-000005
例如,基站由在anchor载波中发送下行控制信息切换到在数据载波中接收上行数据信息,或者UE由在anchor载波中接收下行控制信息切换到在数据载波中发送上行数据信息。
需要说明的是,在基站和UE之间进行双向传输时,上行信息需要提前发送,因此,在实际的跳频通信系统中,t_UtoD可以取值为0,即实际系统中不预留该时间,则m_freqswitch_UtoD可以等于m_freqswitch。
在本申请实施例中,由于基站载波切换后,若需要在目标载波中发送数据,为了保证其发送的数据能够被UE接收,则可以在发送之前检测该目标载波对应的频域位置是否空闲,例如可以采用先听后说(Listen Before Talk,LBT)检测,在每个载波之前的一段时长内进行LBT检测后,再使用该载波进行数据传输,该用于LBT检测的所占用的时间长度可以预留在数据载波上,如图7A所示,也可以预留在anchor载波上,如图7B所示,但LBT检测需要在载波切换之后进行,或者说LBT检测的是目标载波的信道状况。因此,S个OFDM符号的取值还可以考虑基站进行LBT的时长。
LBT机制分为两种,一种是基于帧结构的信道检测(Frame based Equipment,FBE)的LBT,一种是基于负载的信道检测(Load based Equipment,LBE)的LBT。其中,基于FBE的LBT方式是设定一个帧周期,在每个帧周期之前的固定位置进行一次空闲信道评估(Clear Channel Assessment,CCA)检测即可,因此,基于FBE的LBT方式的检测时长可以设置为一个固定时长,例如,对数据载波对应的频域位置进行FBE时的固定时长记为td,对anchor载波对应的频域位置进行FBE时的固定时长记为ta。而采用基于LBE的LBT方式进行CCA检测时,其检测时长不固定,但可以限制检测时长的最大值,因此,也可以将采用LBE方式对各个载波对应的频域位置进行CCA检测的时长设置为一个固定值,例如,对数据载波对应的频域位置进行LBE时的固定时长记为td1,对anchor载波对应的频域位置进行LBE时的固定时长记为ta1,该固定时长td1以及该固定时长ta1可以是经过多次实际测量得到的,在本申请实施例中不作限制。为简化说明书,在本申请实施例中仅以LBT为基于FBE的LBT为例进行说明。
相应地,预留的S个OFDM符号对应的时长可以大于等于t_freqswitch+ta,则S个OFDM符号的第四种取值为:大于等于
Figure PCTCN2017103829-appb-000006
例如,基站由在数据载波中发送下行数据信息切换到在anchor载波中发送下行控制信息,或者UE由在数据载波中接收下行数据信息切换到在anchor载波中接收下行控制信息。
预留的S个OFDM符号对应的时长可以大于等于t_freqswitch+t_UtoD+ta,则S个OFDM符号的第五种取值为:
Figure PCTCN2017103829-appb-000007
例如,基站由在数据载波中接收上行数据信息切换到在anchor载波中发送下行控制信息,或者UE由在数据载波中发送下行数据信息切换到在anchor载波中接收下行控制信息。
预留的S个OFDM符号对应的时长可以大于等于t_freqswitch+t_DtoU+ta,则S个OFDM符号的第六种取值为:
Figure PCTCN2017103829-appb-000008
例如,基站由在数据载波中发送下行数据信息切换到在anchor载波中接收上行控制信息,或者UE由在数据载波中接收下行数据信息切换到在anchor载波中发送上行控制信息。
相应地,预留的S个OFDM符号对应的时长可以大于等于t_freqswitch+td,则S个OFDM符号的第七种取值为:大于等于
Figure PCTCN2017103829-appb-000009
预留的S个OFDM符号对应的时长也可以大于等于t_freqswitch+t_UtoD+td,则S个OFDM符号的第八种取值为:
Figure PCTCN2017103829-appb-000010
预留的S个OFDM符号对应 的时长还可以大于等于t_freqswitch+t_DtoU+td,则S个OFDM符号的第九种取值为:
Figure PCTCN2017103829-appb-000011
其中,第七种取值到第九种取值对应的载波切换的情况可以参考前述第四种取值到第六种取值中的说明,在此不再赘述。
需要说明的是,当基站由源载波切换到目标载波时,基于FBE的LBT检测虽然是对目标载波对应的频域位置进行的检测,但是该LBT检测所需的时长可以设置在源载波上,也可以设置在目标载波上,在本申请实施例中不作限制。需要说明的是,源载波和目标载波根据基站实际进行的载波切换进行定义,例如,当基站由anchor载波切换到数据载波,则源载波为anchor载波,目标载波为数据载波;当基站由数据载波切换到anchor载波,则源载波为数据载波,目标载波为anchor载波,LBT检测所需的时长设置在源载波上或者设置在目标载波上仅仅是指LBT时长可以占据源载波或目标载波的时间单位,与LBT检测的载波位置/信道位置无关。下面对载波切换和LBT所在的载波位置进一步说明。
根据基站预留的S个OFDM符号的位置不同,基站或UE在进行载波切换以及LBT检测时所在的频域位置有所不同。具体有如下几种情况。
第一种情况:基站由数据载波切换到anchor载波,且基站在数据载波上预留了用于载波切换以及LBT检测的时域位置,虽然该LBT检测占用了数据载波的时域位置,但基站在ta时长对应的时域位置上已经切换到了anchor载波对应的频域位置,如图8A所示,fd代表数据载波对应的频域位置,fa代表anchor载波对应的频域位置,fd→fa表示基站在相应时间内完成fd到fa的切换。
第二种情况:基站由数据载波切换到anchor载波,且基站在数据载波中预留用于载波切换的时域位置,则在anchor载波前面需要预留与ta时长对应的OFDM符号的个数,基站在进行载波切换时对应的频域位置对方案没有影响,基站完成载波切换后其频域位置为anchor载波对应的频域位置,如图8B所示,其中,fd代表数据载波对应的频域位置,fa代表anchor载波对应的频域位置。
第三种情况:基站由数据载波切换到anchor载波,基站在anchor载波上预留用于载波切换以及LBT检测的时域位置,基站在进行载波切换时对应的频域位置对方案没有影响,LBT对应的频域位置为anchor载波的频域位置,如图8C所示,其中,fd代表数据载波对应的频域位置,fa代表anchor载波对应的频域位置。
第四种情况:基站由数据载波切换到anchor载波,基站在数据载波和anchor载波分别预留用于载波切换的部分时域位置,且两部分时域位置长度等于载波切换所需的时域位置长度,且在anchor载波预留LBT检测的时域位置,基站在进行载波切换时对应的频域位置对方案没有影响,LBT对应的频域位置为anchor载波的频域位置。
第五种情况:基站由anchor载波切换到数据载波,且基站在anchor载波上预留用于载波切换以及LBT检测的时域位置,虽然该LBT检测占用了anchor载波的时域位置,但基站在与该td时长对应的时域位置时,已经切换到了数据载波对应的频域位置,如图8D所示,其中,fd代表数据载波对应的频域位置,fa代表anchor载波对应的频域位置。
第六种情况:基站由anchor载波切换到数据载波,且基站在anchor载波中只预留用于载波切换的时域位置,则在数据载波前面需要预留了与td时长对应的OFDM符号的个数,基站在进行载波切换时对应的频域位置不指定,完成载波切换后其频域位置为数据载波对应的频域位置,如图8E所示,其中,fd代表数据载波对应的频域位置,fa 代表anchor载波对应的频域位置。
第七种情况:基站由anchor载波切换到数据载波,基站在数据载波上预留用于载波切换以及LBT检测的时域位置,则基站在LBT时对应的频域位置已经为数据载波的频域位置了,如图8F所示,其中,fd代表数据载波对应的频域位置,fa代表anchor载波对应的频域位置。
第八种情况:基站由anchor载波切换到数据载波,基站在数据载波和anchor载波分别预留用于载波切换的部分时域位置,且两部分时域位置长度等于载波切换所需的时域位置长度,且在数据载波预留LBT检测的时域位置,基站在进行载波切换时对应的频域位置对方案没有影响,LBT对应的频域位置为数据载波的频域位置。
需要说明的是,图8A到图8F中,并没有对基站或UE从上行切换到下行,或者从下行切换到上行的时间做特殊说明,是因为从上行切换到下行,或者下行切换到上行的时间可以占用源载波的时间,也可以占用目标载波的时间,其处理方式与基站进行载波切换的方式相同,此处不做特殊说明。
需要说明的是,基站可以预先根据系统配置,比如数据传输之前是否需要进行LBT,anchor信道和数据信道之间互相进行载波切换时,是否同时存在上行和下行之间的互相切换,上行和下行之间互相切换的时长与载波切换所需的时长是否可以重合/复用,来决定预留S个OFDM的符号的位置及其S的取值。在具体实施时,则根据S个OFDM符号的位置及其S的取值,在对应的载波的S个OFDM符号内进行载波切换,或者在对应的载波的S个OFDM符号内进行载波切换及LBT检测。当然,基站也可以随机选择前述多种预留位置的任意一个位置进行载波切换或LBT检测,在本申请实施例中不对基站如何选择该预留的位置进行限制。此处上行和下行之间互相切换的时长与载波切换所需的时长是否可以重合/复用,是指实际应用中,如果载波切换所需的时长大于等于上行和下行之间互相切换的时长,并且上行和下行之间互相切换与载波切换可以并行执行,则只需要考虑载波切换时长即可。相应的,上述各种S个OFDM符号的可能取值中,也可以不再需要考虑上行和下行之间互相切换所需的时长。
需要说明的是,由于载波中会预留出用于载波切换的位置,则在进行数据传输时,需要对该载波中的数据进行相应的处理。例如,预留数据载波的最后一个子帧的最后2个OFDM符号用于载波切换,或者预留数据载波的第一个子帧的前面2个OFDM符号用于载波切换,则,在该数据载波中进行数据传输时,其它子帧的OFDM符号个数为L,而最后一个子帧和/或第一个子帧的OFDM符号个数为L-2,此时,对于最后一个子帧和/或第一个子帧,可以采用如下两种处理方式中的任意一种:
第一种处理方式:
在无线通信系统中,数据发送的一般流程如图9所示:待发送的数据块首先经过编码、速率匹配等处理,得到初始比特序列,然后将初始比特序列映射到调制符号,产生复值调制符号,并通过层映射、预编码处理等,将复值调制符号映射到资源单元,生成OFDM信号,经由物理天线发送出去。因此,对于最后一个子帧和/或第一个子帧,在进行速率匹配计算实际可用的物理资源时,只计算L-2个OFDM符号对应的时频资源,相应地,在进行资源映射时,数据只映射到前面和/或后面的L-2个OFDM符号对应的时频资源,从而,OFDM信号生成模块只计算前面和/或后面L-2个OFDM符号。
第二种处理方式:
不考虑后面和/或前面2个符号被用作载波切换,在进行速率匹配和资源映射时,仍然按照L个OFDM符号进行处理,但OFDM信号生成模块不处理最后和/或前面2个符号,并且不发送最后和/或前面2个符号。
当然,若跳频通信系统采用其它调度单位,例如调度单位为时隙、SC-FDMA符号等,对该预留位置对应的数据的处理方式与调度单位为OFDM符号的处理方式相同,在此不再赘述。
同样,当S个OFDM符号在anchor载波预留时,也需要对该anchor载波中的数据进行相应的处理。
例如,如果anchor信道总时长为Ta,则基站和UE约定Ta时间内,前面S个OFDM符号和/或后面S个OFDM符号不用来发送DRS信号,如图10所示。或者,当DRS信号发送顺序为PSS信号+SSS信号+MIB和/或SIB时,前面S个OFDM符号不用来发送DRS信号,但由于后面S个OFDM符号对应于MIB和/或SIB时,对于后面S个符号所在的子帧的处理方式,对应的有两种:第一种,在进行速率匹配计算实际可用的物理资源时,只计算L-S个OFDM符号对应的时频资源,相应地,在进行资源映射时,数据只映射到该子帧的前面L-S个OFDM符号对应的时频资源,从而,OFDM信号生成模块只计算前面L-S个OFDM符号。第二种,不考虑后面S个符号被用作载波切换,在进行速率匹配和资源映射时,仍然按照L个OFDM符号进行处理,但OFDM信号生成模块不处理最后S个符号,并且不发送最后S个符号。
当基站确定预留的用于载波切换的时间位置后,则在相应的时间位置中完成载波切换过程。例如,基站由anchor载波切换到数据载波中。
需要说明的是,基站在与UE通信过程中,基站也可以不进行载波切换。例如,将基站的支持的系统带宽设置为整个跳频通信系统的带宽。在这种配置下,基站不需要进行载波切换。即,步骤303不是必须执行的。
但是在实际系统中,大部分UE支持的系统带宽与整个跳频通信系统的带宽不同,因此,UE在该跳频通信系统中与基站进行通信时,需要进行载波切换,在这种情况下,基站虽然不需要进行载波切换,但是,基站在与UE进行数据传输时,需要默认载波上预留了用于载波切换的位置,则在对应的位置上不进行有效数据传输。
步骤304:UE在载波中预留的时间位置进行载波切换。
当UE根据跳频格式确定需要跳转到的数据载波后,则可以在与基站约定好的预留位置进行载波切换或者在基站指示的预留位置进行载波切换,该预留位置即步骤303中由基站预留的用于载波切换的位置。
需要说明的是,步骤304可以在步骤303之后执行,也可以在步骤303之前执行,当然,也可以与步骤303同时执行,在本申请实施例中,对步骤304与步骤303的执行顺序不作限制。
步骤305:基站在该数据载波上发送下行数据或接收上行数据。
当基站在预留的位置由anchor载波切换到数据载波后,便在该数据载波上与UE进行数据传输。需要说明的是,若基站在载波中预留的位置对应的预留时长包含LBT的检测时长,则基站在切换到该数据载波后且在该数据载波上发送数据信息之前,需要先对该数据载波对应的频域位置进行LBT检测,当确定该数据载波对应的频域位置为空闲时,开始在该数据载波上进行数据传输。当然,基站进行LBT检测不是必须执 行的,例如,基站在该数据载波上只进行数据接收,则基站切换到该数据载波后可以不进行LBT检测。在具体实施中,基站可以根据实际情况确定是否需要进行LBT检测。
步骤306:UE在该数据载波上接收下行数据或发送上行数据。
当UE在预留的位置由anchor载波切换到数据载波后,便在该数据载波上与基站进行数据传输。需要说明的是,若UE用于载波切换的预留位置包含LBT的检测时长,则UE在切换到该数据载波后且在该数据载波上发送数据之前,需要先对该数据载波对应的频域位置进行LBT检测,当确定该数据载波对应的频域位置为空闲时,开始在该数据载波上进行数据传输。当然,UE进行LBT检测不是必须执行的。
步骤307:基站在该数据载波完成数据传输,则在该数据载波和/或anchor载波中预留的位置进行载波切换,跳转到anchor载波。
需要说明的是,基站也可以不用进行载波切换,例如,基站支持的带宽为跳频系统的带宽。因此,步骤307不是必须执行的。
步骤308:UE在该数据数据载波完成数据传输,则在数据载波和/或anchor载波中预留的位置进行载波切换,跳转到anchor载波,或者,UE在该数据数据载波完成数据传输,则在数据载波和/或anchor载波中预留的位置进行载波切换,直接跳转到跳频格式中指示的下一个周期T中的数据载波。需要说明的是,若UE直接从当前的数据载波跳转到下一个周期T中的数据载波时,UE在下一周期T内与anchor载波对应的时长内不发送数据。
步骤307-步骤308中预留的用于载波切换的位置与步骤303中相同,在此不再赘述。
基站和UE通过重复执行图3所示的方法,完成在各个周期T内以及相邻周期T之间的载波切换,并在对应的载波上进行数据传输。
在上述技术方案中,基站和/或UE预先在跳频通信系统中的载波中预留出用于载波切换的位置,当基站和UE中的任意一方需要进行载波切换时,无论源载波和目标载波是承载何种数据类型的载波,只要是需要进行载波切换,则都是在该预留位置上进行,从而无需区分源载波与目标载波所承载的物理信道的类别,可以降低载波切换的复杂度。
基于以上实施例,本申请实施例还提供了一种基站,所述基站用于实现如图3所示的未授权频段上的载波切换方法,参阅图11所示,基站1100中包括:收发器1101和处理器1102。
所述收发器1101,用于根据所述处理器1102的指示使用非授权频谱中的第一载波与终端设备进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述锚点载波或任意一个数据载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
所述处理器1102在所述第一载波和/或第二载波中预留的S个时间调度单位内, 由所述第一载波切换到所述第二载波,并通过所述第二载波与所述终端设备继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
可选的,所述网络侧设备1100还可以包括存储器1103。存储器1103可用于存储软件程序,所述软件程序可以由所述处理器1102执行,实现上述未授权频段上的数据传输方法。此外,所述存储器1103中还可以存储各类业务数据或者用户数据。
可选地,所述存储器1103可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);所述存储器1103也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory,也称闪存),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);所述存储器1103还可以包括上述种类的存储器的组合。
可选地,处理器1102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合
可选地,处理器1102与收发器1101、存储器1103可以通过总线1104相互连接。总线1104可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的S1个时间调度单位以及所述第二载波占用的多个时间调度单位中的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
在一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S1个时间调度单位以及所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
在一个可能的实施方式中,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
在一个可能的实施方式中,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单 位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位。
在一个可能的实施方式中,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,所述第一载波和所述第二载波均用于上行传输,或所述第一载波和所述第二载波均用于下行传输;
所述S个时间调度单位为总时长大于等于第一阈值的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值。
在一个可能的实施方式中,所述第一载波用于上行传输和所述第二载波为用于下行传输;
所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
在一个可能的实施方式中,所述第一载波用于下行传输和所述第二载波用于上行传输;
所述S个时间调度单位为总时长大于等于第一阈值与第三阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第三阈值为所述基站由下行传输切换到上行传输所需的第五预设时长与所述终端设备由下行传输切换到上行传输所需的第六预设时长中的较大值。
在一个可能的实施方式中,所述处理器1102还用于:
对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,通过所述第二载波与所述终 端设备进行通信。
在一个可能的实施方式中,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
在一个可能的实施方式中,所述先听后说检测的时长为第四阈值;
所述S个时间调度单位为总时长大于等于所述第一阈值与所述第四阈值的和的至少一个连续的时间调度单位;或
所述S个时间调度单位为总时长大于等于所述第一阈值、所述第二阈值与所述第四阈值的和的至少一个连续的时间调度单位;或
所述S个时间调度单位为总时长大于等于所述第一阈值、所述第三阈值与所述第四阈值的和的至少一个连续的时间调度单位。
在一个可能的实施方式中,所述第二载波为数据载波,所述第四阈值为所述基站在任意一个数据载波进行所述先听后说检测的时长;或
所述第二载波为锚点载波,所述第四阈值为所述基站在所述锚点载波进行所述先听后说检测的时长。
基于以上实施例,本申请实施例还提供了一种终端设备,所述终端设备用于实现如图3所示的未授权频段上的载波切换方法,参阅图12所示,所述终端设备1200中包括:收发器1201和处理器1202。
所述收发器1201根据所述处理器1202的指示使用非授权频谱中的第一载波,通过所述收发器与基站进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述基站指示的载波,所述锚点载波及所述多个数据载波中包含所述第一载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
所述处理器1202在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述基站继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
可选的,所述终端设备1200还可以包括存储器1203。存储器1203可用于存储软件程序,所述软件程序可以由所述处理器1202执行,实现上述未授权频段上的数据传输方法。此外,所述存储器1203中还可以存储各类业务数据或者用户数据。
可选地,所述存储器1203可以包括易失性存储器,例如RAM;存储器1203也可以包括非易失性存储器,例如快闪存储器,HDD或SSD)。存储器1103还可以包括上述种类的存储器的组合。
可选地,所述处理器1202可以是CPU,NP或者CPU和NP的组合。处理器1202还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合
可选地,所述处理器1202与所述收发器1201、所述存储器1203可以通过总线1204相互连接。所述总线1204可以是PCI总线或EIS)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅 有一根总线或一种类型的总线。
在一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的S1个时间调度单位以及所述第二载波占用的多个时间调度单位中的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
在一个可能的实施方式中,所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S个时间调度单位,或所述S个时间调度单位为所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S个时间调度单位,或所述S个时间调度单位为所述第一载波占用的多个时间调度单位中的最后S1个时间调度单位以及所述第二载波占用的多个时间调度单位中从第一个时间调度单位起的S2个时间调度单位,S为S1与S2的和,S1、S2为正整数。
在一个可能的实施方式中,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
在一个可能的实施方式中,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位。
在一个可能的实施方式中,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
在一个可能的实施方式中,所述第一载波和所述第二载波均用于上行传输,或所述第一载波和所述第二载波均用于下行传输;
所述S个时间调度单位为总时长大于等于第一阈值的至少一个连续的时间调度单 位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值。
在一个可能的实施方式中,所述第一载波用于上行传输和所述第二载波为用于下行传输;
所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
在一个可能的实施方式中,所述第一载波用于下行传输和所述第二载波用于上行传输;
所述S个时间调度单位为总时长大于等于第一阈值与第三阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第三阈值为所述基站由下行传输切换到上行传输所需的第五预设时长与所述终端设备由下行传输切换到上行传输所需的第六预设时长中的较大值。
在一个可能的实施方式中,所述处理器1202还用于:
所述终端设备对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,所述终端设备通过所述第二载波与所述基站进行通信。
在一个可能的实施方式中,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
在一个可能的实施方式中,所述先听后说检测的时长为第四阈值;
所述S个时间调度单位为总时长大于等于所述第一阈值与所述第四阈值的和的至少一个连续的时间调度单位;或
所述S个时间调度单位为总时长大于等于所述第一阈值、所述第二阈值与所述第四阈值的和的至少一个连续的时间调度单位;或
所述S个时间调度单位为总时长大于等于所述第一阈值、所述第三阈值与所述第四阈值的和的至少一个连续的时间调度单位。
在一个可能的实施方式中,所述第二载波为数据载波,所述第四阈值为所述终端设备在任意一个数据载波进行所述先听后说检测的时长;或
所述第二载波为锚点载波,所述第四阈值为所述终端设备在所述锚点载波进行所述先听后说检测的时长。
图13示出了一种基站1300的结构示意图。该基站1300可以实现上文中涉及的基站的功能。该基站1300可以包括处理单元1301和收发单元1302。其中,处理单元1301可以用于执行图3所示的实施例中的步骤303以及步骤307,和/或用于支持本文所描述的技术的其它过程。收发单元1302可以用于执行图3所示的实施例中的步骤301、步骤305以及步骤306,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图14示出了一种终端设备1400的结构示意图。该终端设备1400可以实现上文中涉及的终端设备的功能。该终端设备1400可以包括处理单元1401和收发单元1402。其中,处理单元1401可以用于执行图3所示的实施例中的步骤304以及步骤308,和/或用于支持本文所描述的技术的其它过程。收发单元1402可以用于执行图3所示的实施例中的步骤302、步骤305以及步骤306,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请所提供的终端设备以及基站可以是一种芯片系统,所述芯片系统中可以包含至少一个芯片,也可以包含其他分立器件。所述芯片系统可以置于终端设备或者基站中,支持所述终端设备或所述基站完成本申请实施例中所提供的非授权频谱上的载波切换方法。
本申请实施例提供一种计算机存储介质,所述计算机存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行前述非授权频谱上的载波切换方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包含有指令,当所述指令在计算机上运行时,使得所述计算机执行前述非授权频谱上的载波切换方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种非授权频谱上的载波切换方法,其特征在于,包括:
    基站使用非授权频谱中的第一载波与终端设备进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述锚点载波或任意一个数据载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
    所述基站在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述终端设备继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
  3. 根据权利要求1所述的方法,其特征在于,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  4. 根据权利要求1所述的方法,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  5. 根据权利要求1所述的方法,其特征在于,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一载波用于上行传输和所述第二载波为用于下行传输;
    所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时 长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
  7. 根据权利要求1-6中的任一项所述的方法,其特征在于,所述基站由所述第一载波切换到所述第二载波之后,所述方法还包括:
    所述基站对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,所述基站通过所述第二载波与所述终端设备进行通信。
  8. 根据权利要求7所述的方法,其特征在于,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
  9. 一种非授权频谱上的载波切换方法,其特征在于,包括:
    终端设备使用非授权频谱中的第一载波与基站进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述基站指示的载波,所述锚点载波及所述多个数据载波中包含所述第一载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
    所述终端设备在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述基站继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
  10. 根据权利要求9所述的方法,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
  11. 根据权利要求9所述的方法,其特征在于,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  12. 根据权利要求9所述的方法,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  13. 根据权利要求9所述的方法,其特征在于,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波 所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,所述第一载波用于上行传输和所述第二载波为用于下行传输;
    所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,所述基站由所述第一载波切换到所述第二载波之后,所述方法还包括:
    所述终端设备对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,所述终端设备通过所述第二载波与所述基站进行通信。
  16. 根据权利要求15所述的方法,其特征在于,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
  17. 一种基站,其特征在于,包括处理器和收发器,其中:
    所述收发器根据所述处理器的控制使用非授权频谱中的第一载波与终端设备进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述锚点载波或任意一个数据载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
    所述处理器在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述终端设备继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
  18. 根据权利要求17所述的基站,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时间调度单位的最后S个时间调度单位。
  19. 根据权利要求17所述的基站,其特征在于,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  20. 根据权利要求17所述的基站,其特征在于,当所述第一载波为数据载波,所 述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  21. 根据权利要求17所述的基站,其特征在于,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  22. 根据权利要求17-21中任一项所述的基站,其特征在于,所述第一载波用于上行传输和所述第二载波为用于下行传输;
    所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
  23. 根据权利要求17-22中的任一项所述的基站,其特征在于,所述基站由所述第一载波切换到所述第二载波之后,所述方法还包括:
    所述基站对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,所述基站通过所述第二载波与所述终端设备进行通信;
    相应地,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
  24. 一种终端设备,其特征在于,包括处理器和收发器,其中:
    所述收发器根据所述处理器的控制使用非授权频谱中的第一载波与基站进行通信;其中,所述基站在一个调度周期内占用非授权频谱中的锚点载波及多个数据载波中的任意一个数据载波与所述终端设备进行通信,所述调度周期包含N个时间调度单位,在所述调度周期内,所述锚点载波占用所述N个时间调度单位的前或后M个时间调度单位,所述任意一个数据载波占用所述N个时间调度单位中除所述前或后M个时间调度单位外的时间调度单位,所述第一载波为所述基站指示的载波,所述锚点载波及所述多个数据载波中包含所述第一载波,所述时间调度单位为子帧或时隙或OFDM符号或SC-FDMA符号,N、M为正整数;
    所述处理器在所述第一载波和/或第二载波中预留的S个时间调度单位内,由所述第一载波切换到所述第二载波,并通过所述第二载波与所述基站继续通信,其中,所述S个时间调度单位为所述基站预配置的,S为大于0小于N的整数。
  25. 根据权利要求24所述的终端设备,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述数据载波所占用的多个时 间调度单位的最后S个时间调度单位。
  26. 根据权利要求24所述的终端设备,其特征在于,当所述第一载波为锚点载波,所述第二载波为数据载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述锚点载波的最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  27. 根据权利要求24所述的终端设备,其特征在于,当所述第一载波为数据载波,所述第二载波为锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位;其中,所述锚点载波的前S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长与所述S个时间调度单位对应的时长的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  28. 根据权利要求24所述的终端设备,其特征在于,当所述第一载波为所述锚点载波或所述第二载波为所述锚点载波时,所述S个时间调度单位为所述锚点载波所占用的多个时间调度单位中从第一个时间调度单位起的前S个时间调度单位和所述锚点载波所占用的多个时间调度单位的最后S个时间调度单位;其中,所述前S个时间调度单位和所述最后S个时间调度单位不进行信号发射,在所述锚点载波中发送信号实际占用的时长为所述锚点载波的窗长、所述前S个时间调度单位以及所述最后S个时间调度单位的差值,所述窗长为所述锚点在所述调度周期内占用的所述M个时间调度单位对应的时长。
  29. 根据权利要求24-28中任一项所述的终端设备,其特征在于,所述第一载波用于上行传输和所述第二载波为用于下行传输;
    所述S个时间调度单位为总时长大于等于第一阈值与第二阈值的和的至少一个连续的时间调度单位;其中,所述第一阈值为所述基站切换频域位置所需的第一预设时长与所述终端设备切换频域位置所需的第二预设时长中的较大值,所述第二阈值为所述基站由上行传输切换到下行传输所需的第三预设时长与所述终端设备由上行传输切换到下行传输所需的第四预设时长中的较大值。
  30. 根据权利要求24-29中任一项所述的终端设备,其特征在于,所述基站由所述第一载波切换到所述第二载波之后,所述方法还包括:
    所述终端设备对所述第二载波进行先听后说检测,确定所述第二载波对应的频域资源是否被占用;其中,在所述第二载波对应的频域资源未被占用时,所述终端设备通过所述第二载波与所述基站进行通信;
    相应地,所述S个时间调度单位对应的时长还包括进行所述先听后说检测的时长。
PCT/CN2017/103829 2017-09-27 2017-09-27 一种非授权频谱上的载波切换方法、基站及终端设备 WO2019061115A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780094323.3A CN111052802B (zh) 2017-09-27 2017-09-27 一种非授权频谱上的载波切换方法、基站及终端设备
PCT/CN2017/103829 WO2019061115A1 (zh) 2017-09-27 2017-09-27 一种非授权频谱上的载波切换方法、基站及终端设备
EP17927472.5A EP3678416A4 (en) 2017-09-27 2017-09-27 PROCESS FOR SWITCHING A CARRIER ON A LICENSE SPECTRUM, BASE STATION AND TERMINAL DEVICE
US16/828,935 US20200229213A1 (en) 2017-09-27 2020-03-24 Carrier switching method on unlicensed spectrum, base station, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103829 WO2019061115A1 (zh) 2017-09-27 2017-09-27 一种非授权频谱上的载波切换方法、基站及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/828,935 Continuation US20200229213A1 (en) 2017-09-27 2020-03-24 Carrier switching method on unlicensed spectrum, base station, and terminal device

Publications (1)

Publication Number Publication Date
WO2019061115A1 true WO2019061115A1 (zh) 2019-04-04

Family

ID=65900194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103829 WO2019061115A1 (zh) 2017-09-27 2017-09-27 一种非授权频谱上的载波切换方法、基站及终端设备

Country Status (4)

Country Link
US (1) US20200229213A1 (zh)
EP (1) EP3678416A4 (zh)
CN (1) CN111052802B (zh)
WO (1) WO2019061115A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343824B2 (en) * 2018-08-01 2022-05-24 Qualcomm Incorporated Carrier switching and antenna switching for a target carrier combination
US11563533B2 (en) * 2019-11-25 2023-01-24 Qualcomm Incorporated Uplink frequency hopping in unlicensed frequency band
CN114006687A (zh) * 2021-01-05 2022-02-01 中国移动通信有限公司研究院 一种发送方法、上行控制方法、终端及网络侧设备
WO2023206329A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Reduced complexity capability for uplink transmit switching
CN117812720A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457924A (zh) * 2010-10-21 2012-05-16 华为技术有限公司 一种多载波的切换方法和装置
CN104620649A (zh) * 2013-08-14 2015-05-13 华为技术有限公司 一种多载波的选择方法和设备
CN105592478A (zh) * 2014-11-07 2016-05-18 中兴通讯股份有限公司 信号的检测处理方法及装置
US20160183131A1 (en) * 2014-12-19 2016-06-23 Alcatel-Lucent Usa Inc. LTE Small Cell Handover To Carrier-Grade Wifi

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998556B (zh) * 2009-08-11 2016-02-10 中兴通讯股份有限公司 一种用户设备向载波聚合小区切换的方法及系统
JP5731714B2 (ja) * 2011-09-26 2015-06-10 インターデイジタル パテント ホールディングス インコーポレイテッド 帯域間キャリアアグリゲーション
CN105850170B (zh) * 2013-12-23 2019-06-11 华为技术有限公司 多载波聚合的方法、装置、用户设备及网络侧设备
CN105024790B (zh) * 2014-04-28 2019-04-26 上海朗帛通信技术有限公司 一种非授权频带上的通信方法和装置
CN105357162B (zh) * 2014-08-22 2020-12-11 中兴通讯股份有限公司 一种信号处理方法、基站和终端
WO2016048081A1 (ko) * 2014-09-26 2016-03-31 한국전자통신연구원 무선 채널 액세스 방법 및 장치
JP6298904B2 (ja) * 2015-01-30 2018-03-20 京セラ株式会社 ユーザ端末、方法、及び移動通信システム
WO2017030481A1 (en) * 2015-08-17 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods therein, for adapting a radio procedure
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置
DE112018001997T5 (de) * 2017-04-12 2019-12-24 Intel IP Corporation Ankerkanaldesign für unlizenziertes Internet of Things (IoT)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457924A (zh) * 2010-10-21 2012-05-16 华为技术有限公司 一种多载波的切换方法和装置
CN104620649A (zh) * 2013-08-14 2015-05-13 华为技术有限公司 一种多载波的选择方法和设备
CN105592478A (zh) * 2014-11-07 2016-05-18 中兴通讯股份有限公司 信号的检测处理方法及装置
US20160183131A1 (en) * 2014-12-19 2016-06-23 Alcatel-Lucent Usa Inc. LTE Small Cell Handover To Carrier-Grade Wifi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678416A4 *

Also Published As

Publication number Publication date
EP3678416A4 (en) 2020-08-26
US20200229213A1 (en) 2020-07-16
EP3678416A1 (en) 2020-07-08
CN111052802B (zh) 2021-02-12
CN111052802A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US11297618B2 (en) Method for device to device communication, and terminal device
EP3965338B1 (en) Information transmission method and apparatus, and computer readable storage medium
US11589384B2 (en) Data transmission method, terminal device, and network device
WO2018188561A1 (zh) 上行信息发送方法、接收方法和装置
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2019063020A1 (zh) 通信的方法和通信设备
EP3565326B1 (en) Communication method, and network device
JP2017522837A (ja) 伝送方法及び通信機器
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2016119687A1 (zh) 一种信号发送方法、接收方法及装置
WO2018228417A1 (zh) 用于确定传输方向的方法和设备
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
CN109600852B (zh) 一种资源指示方法、通信装置及网络设备
WO2018201584A1 (zh) 基于竞争的传输方法和设备
CN111684750A (zh) 一种harq信息的传输方法及装置、计算机存储介质
CN112399469B (zh) 信息传输的方法和装置
WO2019028903A1 (zh) 一种上行信号的传输方法及设备
CN114402657A (zh) 通信方法、设备及系统
WO2019153358A1 (zh) 一种信道传输方法及装置、计算机存储介质
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2018059349A1 (zh) 设置符号的方法和装置
US20200374885A1 (en) Data Transmission Method and Device
US20150071262A1 (en) Method and Apparatus for Signaling That Stations are Awake and Ready to Receive Data
CN114902592A (zh) 传输初始接入配置信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927472

Country of ref document: EP

Effective date: 20200330