WO2023283820A1 - 无线通信方法及设备 - Google Patents

无线通信方法及设备 Download PDF

Info

Publication number
WO2023283820A1
WO2023283820A1 PCT/CN2021/106205 CN2021106205W WO2023283820A1 WO 2023283820 A1 WO2023283820 A1 WO 2023283820A1 CN 2021106205 W CN2021106205 W CN 2021106205W WO 2023283820 A1 WO2023283820 A1 WO 2023283820A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
indication information
communication device
signal
slot format
Prior art date
Application number
PCT/CN2021/106205
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/106205 priority Critical patent/WO2023283820A1/zh
Priority to CN202180097510.3A priority patent/CN117203899A/zh
Publication of WO2023283820A1 publication Critical patent/WO2023283820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • Time Division Duplex Time Division Duplex
  • communication equipment cannot receive and transmit at the same time, therefore, terminal equipment needs to obtain the time slot format to determine the uplink symbols, downlink symbols, flexible symbols, etc. in the time slot, and for
  • Embodiments of the present application provide a wireless communication method and device, so that such terminal devices can obtain the time slot format for the above-mentioned passive terminals, and even some semi-passive terminals or active terminals.
  • a wireless communication method including: a terminal device receives a first signal, and the first signal includes indication information for indicating a time slot format; wherein, the terminal device is powered by a communication device.
  • a wireless communication method including: a first communication device generates a first signal; the first communication device sends the first signal to a terminal device; wherein, the first signal includes indication information for indicating a time slot format; The terminal device is powered by the first communication device.
  • a wireless communication method including: a second communication device generates a first signal; the second communication device sends the first signal to a terminal device; wherein, the first signal includes indication information for indicating a time slot format; The terminal device is powered by the second communication device.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its implementable manner.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect, the third aspect or its implementable manner.
  • an apparatus for implementing the method in the above first aspect to the third aspect or each implementation manner thereof.
  • the device includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the device executes the methods in the first aspect to the third aspect or implementations thereof.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the methods in the first to third aspects or implementations thereof.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the methods in the above first to third aspects or implementations thereof.
  • a ninth aspect provides a computer program, which, when running on a computer, causes the computer to execute the methods in the first to third aspects or implementations thereof.
  • the communication device can send a first signal to this type of terminal device, the signal includes : Indication information used to indicate the time slot format, so that this type of terminal equipment can obtain the time slot format.
  • FIG. 1A is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a communication system 200 provided by an embodiment of the present application.
  • Fig. 2 is the schematic diagram of the RFID system provided by the present application.
  • FIG. 3 is a schematic diagram of the backscatter communication provided by the present application.
  • FIG. 4 is a schematic diagram of the energy harvesting provided by the embodiment of the present application.
  • FIG. 5 is a circuit schematic diagram of resistive load modulation provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a TDD uplink and downlink configuration pattern
  • FIG. 7 is a schematic diagram of another TDD uplink and downlink configuration pattern
  • FIG. 8 is a flowchart of a wireless communication method provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of Manchester encoding of indication information provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a time slot format indicated by indication information provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a time slot format indicated by indication information provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal device 1200 provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a communication device 1300 provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a communication device 1400 provided in an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided in an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), Next Generation Communication System, Cellular Internet of Things, Cellular Passive Internet of Things or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long
  • the cellular Internet of Things is the development product of the combination of the cellular mobile communication network and the Internet of Things.
  • the cellular passive Internet of Things is also called the passive cellular Internet of Things, which is composed of network devices and passive terminals.
  • passive terminals can communicate with other passive terminals through network devices.
  • the passive terminal can communicate in a device-to-device (D2D) communication manner, and the network device only needs to send a carrier signal, that is, an energy supply signal, to supply energy to the passive terminal.
  • D2D device-to-device
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA) Network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent Network deployment scene
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • the communication system 100 may include a first communication device 110, and the first communication device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal, terminal). And the first communication device 110 can supply power to the terminal device 120, optionally, the first communication device 110 can be a network device, which can provide communication coverage for a specific geographical area, and can communicate with terminals located in the coverage area devices to communicate. Alternatively, the first communication device 110 may be another terminal device different from the terminal device 120, which is not limited in this application.
  • FIG. 1A exemplarily shows a first communication device and a terminal device.
  • the communication system 100 may include multiple communication devices. These communication devices may be network devices, and each network device's Other numbers of terminal devices may be included in the coverage area, which is not limited in this embodiment of the present application.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the communication system 200 may include a first communication device 210, a second communication device 220, and a terminal device 230, wherein both the first communication device 210 and the second communication device 220 can communicate with the terminal device 230, and the second communication device 220 can Power is supplied to the terminal device 230, or the second communication device 220 may supply power to the terminal device 230 in an uplink time slot, and the first communication device 210 may supply power to the terminal device 230 in a downlink time slot.
  • the uplink time slot and downlink time slot may be the uplink time slot and downlink time slot configured for the terminal device 230 by the first communication device 210 .
  • the first communication device 210 may be a network device, which can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • the first communication device 210 may be another terminal device different from the terminal device 230, which is not limited in this application.
  • the second communication device 220 can also be a network device, which can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • the second communication device 220 may be another terminal device different from the terminal device 230, which is not limited in this application.
  • FIG. 1B exemplarily shows two communication devices and one terminal device.
  • the communication system 200 may include multiple communication devices. These communication devices may be network devices, and the coverage of each network device Other numbers of terminal devices may be included in the scope, which is not limited in this embodiment of the present application.
  • the communication system 200 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the communication device may be a network device, wherein: the network device may be a device for communicating with a mobile device, and the network device may be a WLAN An access point (Access Point, AP), a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B) in LTE , eNB or eNodeB), or a relay station or an access point, or a vehicle device, a wearable device, and a network device (gNB) in an NR network or a network device in a future evolved PLMN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B evolved base station
  • LTE Long Term Evolution
  • eNB evolved Node B
  • gNB network device
  • gNB network device
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example, The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be referred to as a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network, or zero-power devices.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • a zero-power device may be understood as a device whose power consumption is lower than a preset power consumption, including, for example, a passive terminal, or even a semi-passive terminal.
  • RFID Radio Frequency Identification
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags. Active electronic tags, also known as active electronic tags, means that the energy of the electronic tags is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag, which is different from the passive radio frequency activation method. Set the frequency band to send information.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries. When passive electronic tags are close to the reader, the tags are in the near-field range formed by the radiation of the reader antenna. The electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the chip circuit of the electronic label. The chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price, and long service life.
  • the built-in battery When the built-in battery is not accessed by a reader, It only provides power for a few circuits in the chip, and the built-in battery supplies power to the RFID chip only when the reader is accessing, so as to increase the reading and writing distance of the tag and improve the reliability of communication.
  • RFID is a wireless communication technology.
  • Fig. 2 is a schematic diagram of the RFID system provided by the present application. As shown in Fig. 2, the most basic RFID system is composed of two parts: an electronic tag (TAG) and a reader/writer (Reader/Writer).
  • Electronic tag It is composed of coupling components and chips. Each electronic tag has a unique electronic code, which is placed on the measured target to achieve the purpose of marking the target object.
  • Reader It can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication. as shown in picture 2. After the electronic tag enters the electromagnetic field, it receives the radio frequency signal sent by the reader. The passive electronic tag or passive electronic tag uses the energy obtained by the electromagnetic field generated in the space to transmit the information stored in the electronic tag. The reader reads the information and performs Decode to identify electronic tags.
  • Zero-power communication Communication based on zero-power devices, referred to as zero-power communication, includes the following key technologies:
  • FIG. 3 is a schematic diagram of the backscatter communication provided by this application.
  • the zero-power consumption device that is, the backscatter tag receives the carrier signal sent by the backscatter reader, and passes the radio frequency (Radio Frequency, RF)
  • the energy harvesting module that is, the energy harvesting module collects energy, and then supplies energy to the low-power processing module, that is, the logic processing module in FIG. 3 , modulates the carrier signal, and performs backscattering.
  • the carrier signal sent by the above-mentioned backscatter reader is used to provide energy to the backscatter tag
  • the carrier signal is also called an energy supply signal.
  • the energy supply signal involved in this application Also referred to in some cases as a carrier signal
  • the carrier signal is also referred to as an energizing signal in some cases.
  • backscatter communication shown in Figure 3 is illustrated by backscatter tags and backscatter readers. All devices providing energy can implement backscatter communication.
  • the terminal device does not actively transmit signals, and realizes backscatter communication by modulating the incoming wave signal
  • Terminal equipment does not rely on traditional active power amplifier transmitters, and uses low-power computing units at the same time, which greatly reduces hardware complexity;
  • the terminal device here can be a zero-power consumption device (such as a passive terminal, or even a semi-passive terminal), and even the terminal device can be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal can be in some cases Perform backscatter communication.
  • a zero-power consumption device such as a passive terminal, or even a semi-passive terminal
  • the terminal device can be a non-zero power consumption device, such as an ordinary terminal, but the ordinary terminal can be in some cases Perform backscatter communication.
  • Fig. 4 is the principle diagram of energy collection provided by the embodiment of the present application.
  • the terminal device can use the RF energy collection module to realize the collection of space electromagnetic wave energy through electromagnetic induction, and then realize the drive of the load circuit (low power consumption Computing, sensors, etc.), can achieve battery-free.
  • Load modulation is a method often used by electronic tags to transmit data to readers. Load modulation adjusts the electrical parameters of the electronic tag oscillation circuit according to the beat of the data flow, so that the size and phase of the electronic tag impedance change accordingly, thus completing the modulation process.
  • load modulation techniques resistive load modulation and capacitive load modulation.
  • resistive load modulation a resistor is connected in parallel with the load, which is called a load modulation resistor.
  • the resistor is turned on and off according to the clock of the data flow, and the on-off of the switch S is controlled by binary data code.
  • the circuit schematic diagram of resistive load modulation is shown in Figure 5 below.
  • capacitive load modulation a capacitor is connected in parallel to the load, replacing the load modulating resistor in Figure 5 controlled by a binary data code.
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return zero (NRZ) encoding, Manchester encoding, unipolar RZ encoding, differential biphase ( DBP) encoding, Miller (Miller) encoding and differential encoding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
  • NRZ reverse non-return zero
  • DBP differential biphase
  • Miller Miller
  • a flexible time slot format is introduced into the NR system, that is, a time slot includes a downlink (Downlink, DL) symbol, a flexible (Flexible) symbol and an uplink (Uplink) symbol.
  • a time slot includes a downlink (Downlink, DL) symbol, a flexible (Flexible) symbol and an uplink (Uplink) symbol.
  • flexible symbols have the following characteristics:
  • the flexible symbol indicates that the direction of the symbol is undecided, it can be changed to a downlink symbol or an uplink symbol through other signaling;
  • the flexible symbol is used for the transceiving conversion of the terminal, which is similar to the guard interval (Guard Period, GP) symbol in the LTE TDD system, and the terminal completes the transceiving conversion within this symbol;
  • a variety of flexible time slot formats are defined, including all downlink time slots, all uplink time slots, all flexible time slots, and time slot formats with different numbers of downlink symbols, uplink symbols, and flexible symbols.
  • the slot formats correspond to a slot format index respectively.
  • the NR system supports multiple ways to configure the time slot format, including: configuring the time slot format through semi-static uplink and downlink configuration signaling and configuring the time slot format through dynamic uplink and downlink indication signaling.
  • the semi-static uplink and downlink configuration signaling includes tdd- UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated
  • the dynamic uplink and downlink indication signaling is the downlink control signaling (Downlink control information, DCI) of format 2-0.
  • the network device configures a common time slot format by sending tdd-UL-DL-ConfigurationCommon signaling, that is, a time slot format applicable to all terminals in the cell.
  • This signaling can be configured with one or two patterns, each A pattern corresponds to a cycle.
  • the network device can configure the time slot format in the pattern, which mainly includes the following parameters: reference subcarrier spacing ( ⁇ ref ), period P, which is the period parameter of the pattern, and its unit is ms, downlink time slot number (d slots ), number of downlink symbols (d sym ), number of uplink time slots (u slots ), and number of uplink symbols (u sym ).
  • the total number of time slots S included in the period can be determined.
  • the first d slots of the S time slots represent full downlink time slots, and the next time slot of the last full downlink time slot
  • the first d sym symbols in the slot represent downlink symbols;
  • the last u slots of the S slots represent full uplink time slots, and the last u sym symbols in the previous slot of the first full uplink time slot represents an uplink symbol;
  • the remaining symbols in the cycle represent flexible symbols. Therefore, in a pattern period, the configured frame structure as a whole is also that the downlink time slot or symbol is in the front, the uplink time slot or symbol is in the back, and the middle is the flexible time slot or symbol.
  • the terminal can determine the time slot format within one period, and repeat in the time domain with the period P to determine the time slot format of all time slots.
  • Fig. 6 is a schematic diagram of a TDD uplink and downlink configuration pattern.
  • the first 2 symbols in the last slot are downlink symbols
  • the last slot is a full uplink slot
  • the last 6 symbols in the penultimate slot are uplink symbols
  • the remaining symbols are flexible symbols. Repeat periodically.
  • the tdd-UL-DL-ConfigurationDedicated signaling can only change the direction in which the tdd-UL-DL-ConfigurationCommon is configured as a flexible symbol. If the tdd-UL-DL-ConfigurationCommon configuration signaling has been configured as a downlink symbol, it cannot be modified to an uplink symbol through the tdd-UL-DL-ConfigurationDedicated signaling. If the tdd-UL-DL-ConfigurationCommon configuration signaling has been configured as an uplink symbol, it cannot be modified to a downlink symbol through the tdd-UL-DL-ConfigurationDedicated signaling.
  • Figure 7 is a schematic diagram of another TDD uplink and downlink configuration pattern.
  • the time slot format of a pattern configured by the network device through the tdd-UL-DL-ConfigurationCommon configuration signaling is shown in Figure 7.
  • the network device passes The tdd-UL-DL-ConfigurationDedicated signaling configures the slot format of two slots, as shown in Figure 7, the two slots are slot 1 and slot 2 within a 5ms period:
  • Time slot 1 tdd-UL-DL-ConfigurationDedicated signaling configures the number of downlink symbols in time slot 1 to be 2, and the number of uplink symbols is 4;
  • Time slot 2 tdd-UL-DL-ConfigurationDedicated signaling configures the number of downlink symbols in time slot 2 to be 3, and the number of uplink symbols to be 2.
  • the network device can also dynamically configure the slot format of each slot through the slot format indication information (Slot Format Indicator, SFI), the SFI is format 2 -0 DCI, scrambled with SFI-Radio Network Tempory Identity (RNTI Radio Network Tempory Identity, RNTI).
  • SFI Slot Format Indicator
  • the SFI can only configure the semi-static uplink and downlink configuration information to configure the direction of flexible symbols, and cannot change the semi-static configuration information to configure the direction of uplink symbols or downlink symbols.
  • SFI indicates that the slot format of multiple serving cells can be configured at the same time
  • the network device configures the cell index through Radio Resource Control (RRC) signaling, and the start of the slot format combination identifier (slotFormatCombinationId) corresponding to the cell index The position of the bit in the DCI of format 2-0.
  • the network device is configured with multiple slotFormatCombinations.
  • Each slot format combination corresponds to an identification information (slotFormatCombinationId) and a slot format configuration for a group of slots.
  • Each slot format configuration is used to configure a slot format slot format.
  • the SFI includes an SFI index (SFI-index), which corresponds to the slotFormatCombinationId, and a set of slot formats can be determined according to the index.
  • SFI-index SFI index
  • the time slot format indicated by the SFI is applicable to consecutive multiple time slots starting from the time slot carrying the SFI signaling, and the number of time slots indicated by the SFI is greater than or equal to the physical downlink control channel (Physical Downlink) that carries the SFI Control Channel, PDCCH) monitoring cycle. If a slot format is indicated by two SFI signalings, the slot formats indicated by the two SFI signalings for this slot should be the same.
  • the network device When the network device configures the time slot format of a serving cell, it will configure a subcarrier spacing at the same time, that is, the SFI reference subcarrier spacing ⁇ SFI , the subcarrier spacing is less than or equal to the subcarrier spacing ⁇ of the serving cell monitoring the SFI signaling, That is, ⁇ SFI , at this time the slot format of one slot indicated by SFI is suitable for consecutive time slots, and each downlink symbol or uplink symbol or flexible symbol indicated by SFI signaling corresponds to consecutive downlink symbols or uplink symbols or flexible symbols.
  • NR introduces the above flexible time slot format.
  • passive terminals even some semi-passive terminals or active terminals, it may not be possible to use batteries for power supply in some cases, but need to be powered by other communication devices. In this case, how does the terminal device Obtaining the time slot format is a technical problem to be solved urgently in this application.
  • FIG. 8 is a flow chart of a wireless communication method provided by an embodiment of the present application.
  • the method can be executed by a terminal device, and the terminal device has a backscatter communication function.
  • the terminal device can be a zero-power device, such as a passive terminal, or even a semi-passive terminal, or it can be executed by a non-zero power device, that is, an ordinary device, but the ordinary terminal can perform backscatter communication in some cases .
  • the method includes the following steps:
  • the terminal device receives a first signal, where the first signal includes indication information for indicating a time slot format. Wherein, the terminal equipment is powered by the communication equipment.
  • the communication device that supplies power to the terminal device may be the following first communication device, where the first communication device is a communication device for the terminal device to perform data transmission according to the time slot format.
  • the first communication device may be a network device or a terminal device, but is not limited thereto.
  • the communication device that supplies power to the terminal device may be a second communication device that is different from the first communication device.
  • the second communication device may be a network device or a terminal device, but is not limited thereto.
  • the communication device that supplies energy to the terminal device may be other communication devices except the first communication device and the second communication device, which is not limited in this application.
  • the communication device used to generate the first signal and the communication device used to supply power to the terminal device may be the same communication device or different communication devices, which is not limited in the present application.
  • the communication device used to generate the above-mentioned first signal may adopt the following encoding method for the above-mentioned indication information, but is not limited thereto: pulse-interval encoding (pulse-interval encoding, PIE), reverse non-return-to-zero encoding , Manchester (Manchester) encoding, unipolar RZ (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller (Miller) encoding and differential encoding.
  • the communication device may use Manchester (Manchester) encoding for the indication information, as shown in FIG. 9 .
  • the communication device used to generate the above-mentioned first signal encodes the indication information to form a code sequence corresponding to the indication information, where different code sequences correspond to different indication information, that is, the difference between the code sequence and the indication information There is a mapping relationship between them.
  • the first signal is a wireless radio frequency carrier signal
  • the communication device used to generate the first signal may modulate the carrier signal to carry the coded indication information.
  • Commonly used modulation methods include the following, but are not limited to: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK).
  • ASK such as Double-Sideband Amplitude Shift Keying (Double-Sideband Amplitude Shift Keying, DSB-ASK), Single-Sideband Amplitude Shift Keying (Single-Sideband Amplitude Shift Keying, SSB-ASK), or inverse amplitude shift keying (Phase -Reversal Amplitude Shift Keying, PR-ASK).
  • the first signal may be an energy supply signal or not, which is not limited in the present application.
  • the first communication device 110 may generate an enabling signal, where the enabling signal includes: indication information for indicating a time slot format. It should be understood that for the TDD system, the communication device cannot receive and transmit at the same time, therefore, the first communication device 110 can only receive the data sent by the terminal device in the uplink time slot, but cannot send any information, data or signals to the terminal device Wait. That is, the first communication device 110 can only send the powering signal in the downlink time slot. Based on this, the above indication information for indicating the format of the time slot can only be sent in the downlink time slot.
  • the communication device cannot receive and transmit at the same time, therefore, the first communication device can only receive the data sent by the terminal device in the uplink time slot, but cannot send any information or data to the terminal device Or signal etc.
  • the first communication device needs to send the above indication information to the terminal device, it can only wait until the downlink time slot, which will cause a long delay in the transmission of indication information The problem. Therefore, the present application can introduce a second communication device, which can supply power to the terminal device.
  • the second communication device 220 may generate an enabling signal, where the enabling signal includes: indication information for indicating a time slot format.
  • the communication device cannot receive and transmit at the same time, therefore, the first communication device can only receive the data sent by the terminal device in the uplink time slot, but cannot send any information or data to the terminal device Or signal etc.
  • the first communication device needs to send the above indication information to the terminal device, it can only wait until the downlink time slot, which will cause a long delay in the transmission of indication information The problem. Therefore, the present application can introduce a second communication device, which can supply energy to the terminal device in the uplink time slot.
  • the first communication device may supply energy to the terminal device in the downlink time slot.
  • the second communication device 220 may generate an energy supply signal in an uplink time slot to supply energy to the terminal device 230 , and the energy supply signal includes: indication information for indicating a time slot format.
  • the first communication device 210 may generate an energy supply signal in a downlink time slot to supply energy to the terminal device 230, where the energy supply signal includes: indication information for indicating a time slot format.
  • the second communication device when the second communication device supplies power to the first communication device, the second communication device may generate a power supply signal under the control of the first communication device, for example: the first communication device may control the second
  • the time, frequency band, etc. of the energy supply signal generated by the communication equipment are not limited in this application.
  • the second communication device when the second communication device supplies power to the first communication device, the second communication device sends indication information under the control of the first communication device, for example: the first communication device can control the second communication device
  • the time, frequency band, etc. for the device to send the indication information are not limited by this application.
  • the communication device for powering the terminal device may continuously send the power supply signal, or may send the power supply signal intermittently, which is not limited in the present application.
  • the time interval between the energy supply signals may be predefined or configured, which is not limited in the present application.
  • the energy supply signal and the signal used for information transmission may be one signal or two independent signals, which is not limited in this application.
  • these two signals are two independent signals.
  • RFID technology these two signals are one signal.
  • the two signals may or may not be sent on one frequency band.
  • the communication device may send a first signal to such terminal devices, the signal includes : Indication information used to indicate the time slot format, so that this type of terminal equipment can obtain the time slot format.
  • the time slot format indicated by the above indication information is a periodic time slot format. That is, the indication information is used to indicate the time slot format of the multiple time slot sets, that is, the multiple time slot sets are multiple continuous time slot sets, and the time slot formats of the multiple time slot sets are the same.
  • the multiple time slot sets include multiple consecutive time slot sets, each time slot set includes: 4 time slots, the first time slot is all downlink time slots, and the first 2 time slots in the second time slot The first symbol is a downlink symbol, the last slot is a full uplink slot, the last 6 symbols in the penultimate slot are uplink symbols, and the remaining symbols are flexible symbols.
  • the indication information carried by the first signal is semi-static indication information and/or dynamic indication information.
  • the network device needs to provide common configuration information for indicating the time slot format of the cell, such as the common configuration information is tdd-UL-DL-ConfigurationCommon, and the tdd configured by the network -
  • the UL-DL-ConfigurationDedicated signaling can change the direction in which tdd-UL-DL-ConfigurationCommon is configured as a flexible symbol, so as to further configure the slot format for a certain terminal device.
  • Both configuration information are semi-static configuration information.
  • the indication information carried by the first signal may be similar to the semi-static configuration information in this NR system.
  • the indication information includes at least one of the following, but is not limited thereto: period P, which is the period parameter of the pattern, and its unit is ms, the number of downlink time slots (d slots ), the number of downlink symbols (d sym ), the uplink time Number of slots (u slots ), number of uplink symbols (u sym ), symbol length, symbol length, and for terminal equipment, the direction of at least one flexible symbol.
  • period P which is the period parameter of the pattern, and its unit is ms
  • the number of downlink time slots (d slots ), the number of downlink symbols (d sym ), the uplink time Number of slots (u slots ), number of uplink symbols (u sym ), symbol length, symbol length, and for terminal equipment, the direction of at least one flexible symbol.
  • one time slot may have several symbols
  • the period P may include several time slots.
  • the network device can also dynamically configure the time slot format of each time slot through SFI. Therefore, the indication information provided by this application is also The slot format of each slot may be further indicated. That is to say, the indication information carried by the first signal includes: semi-static indication information and dynamic indication information. Exemplarily, reference may be made to the dynamic indication information shown in Table 1, and each dynamic indication information may be used to indicate a corresponding time slot format.
  • U represents an uplink symbol
  • D represents a downlink symbol
  • F represents a flexible symbol
  • the above-mentioned first signal may only carry the above-mentioned semi-static indication information.
  • the terminal device may only determine the time slot format according to the semi-static indication information, or the above-mentioned first signal may only carry the above-mentioned semi-static indication information.
  • information, and the dynamic indication information may be carried in other signals, and the other signal may be the communication device that generates the first signal, or it may not be the communication device that generates the first signal.
  • the terminal device can use the semi-static indication information and dynamic The indication information determines the slot format.
  • the above-mentioned first signal may only carry the above-mentioned dynamic indication information, and the above-mentioned semi-static indication information may be carried in another signal, and the other signal may be the communication device that generates the first signal, or may not be the communication device that generates the first signal.
  • the communication device at this time, the terminal device can determine the time slot format according to the semi-static indication information and the dynamic indication information.
  • the above-mentioned first signal carries semi-static indication information and dynamic indication information, and at this time, the terminal device may determine the time slot format according to the semi-static indication information and dynamic indication information.
  • the semi-static indication information and dynamic indication information may be a whole, or two independent indication information. No restrictions.
  • the communication device may send a first signal to such terminal devices, the signal includes : indication information used to indicate the periodic time slot format, so that this type of terminal equipment can obtain the periodic time slot format.
  • the slot format is a periodic slot format. After obtaining the periodic time slot format, the terminal device can determine the format of subsequent time slots according to the period.
  • the premise of this approach is that the terminal equipment can obtain synchronization and determine the corresponding frame, time slot, symbol timing, and so on.
  • the maintenance of its synchronization state depends on the energy provided by the energy supply signal. When the power supply signal is interrupted, when this type of terminal equipment enters a powerless state, the previously obtained synchronization state will be lost.
  • the indication information carried in the first signal may be used to indicate the slot format of a set of slots. Within the range of the time slot set, the terminal device can maintain accurate timing, so that the time slot format in the time slot set can be determined according to the time slot format.
  • FIG. 10 is a schematic diagram of the indication information indicating the time slot format provided by an embodiment of the present application. As shown in FIG. 10 , the time slot format of two consecutive time slots is carried by the time slot before the two time slots. instruction information for instructions. Wherein, for example, the indication information 10110010 and 01100101 respectively indicate different time slot format combinations.
  • the communication device may send a first signal to such terminal devices, the signal includes : indication information used to indicate the aperiodic time slot format, so that this type of terminal equipment can obtain the aperiodic time slot format.
  • the indication information can also be used by the terminal device to adjust the timing, so as to obtain an accurate time slot boundary. That is to say, the terminal device does not need to rely on timing information, but uses A slot format for a set of slots can be obtained, and accurate slot timing can be obtained at the same time.
  • the above indication information is periodic indication information.
  • FIG. 11 is a schematic diagram of the time slot format indicated by the indication information provided by another embodiment of the present application.
  • the indication information is 10110010, which is sent periodically, and each indication information may indicate the corresponding
  • the time slot structure is a time slot format in which the indication information can indicate a time slot set composed of time slot 0 to time slot 4 .
  • the above indication information is aperiodic indication information.
  • aperiodic indication information is generally indication information sent when triggered by certain events, therefore, this indication information is also called triggering indication information or event-triggering indication information, which is not limited in this application .
  • the aperiodic indication information is associated with any of the following: uplink transmission, downlink transmission, and conversion between uplink time slots and downlink time slots. That is to say, at least one of uplink transmission, downlink transmission, and conversion between uplink time slots and downlink time slots may trigger aperiodic indication information.
  • the indication information can be sent periodically or aperiodically, so that the flexibility of sending the indication information can be improved.
  • FIG. 12 is a schematic diagram of a terminal device 1200 provided in an embodiment of the present application. As shown in FIG. 12 , the terminal device 1200 includes:
  • the communication unit 1210 is configured to receive a first signal, where the first signal includes indication information for indicating a time slot format. Wherein, the terminal equipment is powered by the communication equipment.
  • the slot format is a periodic slot format.
  • the indication information is used to indicate the slot formats of the multiple slot sets.
  • the multiple time slot sets are consecutive multiple time slot sets, and the time slot formats of the multiple time slot sets are the same.
  • the indication information is semi-static indication information and/or dynamic indication information.
  • the slot format is an aperiodic slot format.
  • the indication information is used to indicate a slot format of a slot set.
  • the indication information is periodic indication information.
  • the indication information is aperiodic indication information.
  • the indication information is associated with any of the following: uplink transmission, downlink transmission, and conversion between uplink time slots and downlink time slots.
  • the communication unit 1210 is further configured to: send data to the first communication device according to the time slot format.
  • the first signal is an enable signal generated by the first communication device.
  • the first signal is an enable signal generated by the second communication device.
  • the first signal in the current time slot is an energy supply signal generated by the second communication device
  • the first communication device when the current time slot with the terminal device is a downlink time slot, the first signal in the current time slot is an energy supply signal generated by the first communication device.
  • the second communication device is the powering signal generated under the control of the first communication device.
  • the indication information sent by the second communication device is controlled by the first communication device.
  • the modulated first signal carries indication information.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the terminal device 1200 may correspond to the terminal device in the above-mentioned method embodiment, and the above-mentioned and other operations and/or functions of each unit in the terminal device 1200 are respectively in order to realize the terminal device in the above-mentioned method embodiment
  • the corresponding flow of the equipment is not repeated here.
  • FIG. 13 is a schematic diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be the above-mentioned first communication device.
  • the communication device 1300 includes: a processing unit 1310 and a communication unit 1320, wherein, The processing unit 1310 is used for generating the first signal.
  • the communication unit 1320 is configured to send the first signal to the terminal device.
  • the first signal includes indication information for indicating the slot format.
  • the terminal device is powered by the first communication device.
  • the slot format is a periodic slot format.
  • the indication information is used to indicate the slot formats of the multiple slot sets.
  • the multiple time slot sets are consecutive multiple time slot sets, and the time slot formats of the multiple time slot sets are the same.
  • the indication information is semi-static indication information and/or dynamic indication information.
  • the slot format is an aperiodic slot format.
  • the indication information is used to indicate a slot format of a slot set.
  • the indication information is periodic indication information.
  • the indication information is aperiodic indication information.
  • the indication information is associated with any of the following: uplink transmission, downlink transmission, and conversion between uplink time slots and downlink time slots.
  • the communication unit 1320 is further configured to: receive data sent by the terminal device according to the time slot format.
  • the first signal is an enable signal generated by the first communication device.
  • the first signal in the current time slot is an energy supply signal generated by the first communication device.
  • the modulated first signal carries indication information.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the communication device 1300 may correspond to the first communication device in the above method embodiment, and the above and other operations and/or functions of each unit in the communication device 1300 are for realizing the above method embodiment For the sake of brevity, the corresponding process of the first communication device will not be repeated here.
  • FIG. 14 is a schematic diagram of a communication device 1400 provided in an embodiment of the present application.
  • the communication device 1400 may be the above-mentioned second communication device.
  • the communication device 1400 includes: a processing unit 1410 and a communication unit 1420, wherein, The processing unit 1410 is used for generating the first signal.
  • the communication unit 1420 is configured to send the first signal to the terminal device.
  • the first signal includes indication information for indicating the time slot format.
  • the terminal device is powered by the second communication device.
  • the slot format is a periodic slot format.
  • the indication information is used to indicate the slot formats of the multiple slot sets.
  • the multiple time slot sets are consecutive multiple time slot sets, and the time slot formats of the multiple time slot sets are the same.
  • the indication information is semi-static indication information and/or dynamic indication information.
  • the slot format is an aperiodic slot format.
  • the indication information is used to indicate a slot format of a slot set.
  • the indication information is periodic indication information.
  • the indication information is aperiodic indication information.
  • the indication information is associated with any of the following: uplink transmission, downlink transmission, and conversion between uplink time slots and downlink time slots.
  • the first signal is an enable signal generated by the second communication device.
  • the first signal in the current time slot is an energy supply signal generated by the second communication device.
  • the second communication device is the powering signal generated under the control of the first communication device.
  • the indication information sent by the second communication device is controlled by the first communication device.
  • the first communication device is a communication device for the terminal device to perform data transmission according to the time slot format.
  • the modulated first signal carries indication information.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the communication device 1400 may correspond to the second communication device in the above method embodiment, and the above and other operations and/or functions of each unit in the communication device 1400 are for realizing the above method embodiment For the sake of brevity, the corresponding process of the second communication device will not be repeated here.
  • Fig. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 shown in FIG. 15 includes a processor 1510, and the processor 1510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1500 may further include a memory 1520 .
  • the processor 1510 can invoke and run a computer program from the memory 1520, so as to implement the method in the embodiment of the present application.
  • the memory 1520 may be an independent device independent of the processor 1510 , or may be integrated in the processor 1510 .
  • the communication device 1500 may further include a transceiver 1530, and the processor 1510 may control the transceiver 1530 to communicate with other devices, specifically, to send information or data to other devices, or receive information or data from other devices.
  • the transceiver 1530 may include a transmitter and a receiver.
  • the transceiver 1530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1500 may specifically be the first communication device in the embodiment of the present application, and the communication device 1500 may implement the corresponding procedures implemented by the first communication device in each method of the embodiment of the application, in order It is concise and will not be repeated here.
  • the communication device 1500 may specifically be the second communication device in the embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the second communication device in each method of the embodiment of the present application, in order It is concise and will not be repeated here.
  • the communication device 1500 may specifically be the terminal device of the embodiment of the present application, and the communication device 1500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, here No longer.
  • Fig. 16 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 1600 shown in FIG. 16 includes a processor 1610, and the processor 1610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 1600 may further include a memory 1620 .
  • the processor 1610 can invoke and run a computer program from the memory 1620, so as to implement the method in the embodiment of the present application.
  • the memory 1620 may be an independent device independent of the processor 1610 , or may be integrated in the processor 1610 .
  • the apparatus 1600 may further include an input interface 1630 .
  • the processor 1610 can control the input interface 1630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1600 may further include an output interface 1640 .
  • the processor 1610 can control the output interface 1640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the apparatus can be applied to the first communication device in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the first communication device in the methods of the embodiments of the present application. For the sake of brevity, the This will not be repeated here.
  • the apparatus can be applied to the second communication device in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the second communication device in the methods of the embodiments of the present application. For the sake of brevity, the This will not be repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the various methods in the embodiments of the present application to be implemented by the mobile terminal/terminal device For the sake of brevity, the corresponding process will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the functions implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the corresponding process is not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application.
  • the computer program executes the corresponding functions implemented by the network device or the base station in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the various methods in the embodiment of the present application by the mobile terminal/terminal device. For the sake of brevity, the corresponding process implemented by the terminal device will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法及设备,该方法包括: 终端设备接收第一信号,第一信号包括用于指示时隙格式的指示信息; 其中,终端设备通过通信设备供能。从而针对上述无源终端,甚至一些半无源终端或者有源终端,使得这类终端设备可以获取到时隙格式。

Description

无线通信方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法及设备。
背景技术
随着通信领域应用增加,通信领域中的终端类型也越来越多,例如:目前许多通信行业对终端设备的功耗有着较高要求,如免电池的无源终端、或者半无源终端的应用成为许多通信行业的关键技术。
对于时分双工(Time Division Duplex,TDD)系统,通信设备不能同时进行接收和发送,因此,终端设备需要获取时隙格式,以确定时隙中的上行符号、下行符号、灵活符号等,而对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,而是需要通过其他通信设备对其进行供能,那么在这种情况下,终端设备如何获取时隙格式是本申请亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法及设备,从而针对上述无源终端,甚至一些半无源终端或者有源终端,使得这类终端设备可以获取到时隙格式。
第一方面,提供一种无线通信方法,包括:终端设备接收第一信号,第一信号包括用于指示时隙格式的指示信息;其中,终端设备通过通信设备供能。
第二方面,提供一种无线通信方法,包括:第一通信设备产生第一信号;第一通信设备向终端设备发送第一信号;其中,第一信号包括用于指示时隙格式的指示信息;终端设备通过第一通信设备供能。
第三方面,提供一种无线通信方法,包括:第二通信设备产生第一信号;第二通信设备向终端设备发送第一信号;其中,第一信号包括用于指示时隙格式的指示信息;终端设备通过第二通信设备供能。
第四方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其可实现方式中的方法。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面、第三方面或其可实现方式中的方法。
第六方面,提供了一种装置,用于实现上述第一方面至第三方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第三方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面或其各实现方式中的方法。
通过本申请提供的技术方案,对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,通信设备可以向这类终端设备发送第一信号,该信号包括:用于指示时隙格式的指示信息,以使这类终端设备获取到时隙格式。
附图说明
图1A为本申请实施例提供的通信系统100示意图;
图1B为本申请实施例提供的通信系统200示意图;
图2为本申请提供的RFID系统的示意图;
图3为本申请提供的反向散射通信原理图;
图4为本申请实施例提供的能量采集原理图;
图5为本申请实施例提供的电阻负载调制的电路原理图;
图6为一种TDD上下行配置图案示意图;
图7为另一种TDD上下行配置图案示意图;
图8为本申请实施例提供的一种无线通信方法的流程图;
图9为本申请实施例提供的指示信息的曼彻斯特编码示意图;
图10为本申请一实施例提供的指示信息指示时隙格式的示意图;
图11为本申请另一实施例提供的指示信息指示时隙格式的示意图;
图12为本申请实施例提供的一种终端设备1200的示意图;
图13为本申请实施例提供的一种通信设备1300的示意图;
图14为本申请实施例提供的一种通信设备1400的示意图;
图15是本申请实施例提供的一种通信设备1500示意性结构图;
图16是本申请实施例的装置的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、蜂窝物联网、蜂窝无源物联网或其他通信系统等。
其中,蜂窝物联网是蜂窝移动通信网与物联网结合的发展产物。蜂窝无源物联网也被称为无源蜂窝物联网,其是由网络设备和无源终端组合,其中,在蜂窝无源物联网中无源终端可以通过网络设备与其他无源终端进行通信,或者,无源终端可以采用设备到设备(Device to Device,D2D)通信方式进行通信,而网络设备只需要发送载波信号,即供能信号,以向无源终端供能。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
在一些可实现方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1A所示。该通信系统100可以包括第一通信设备110,第一通信设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。并且该第一通信设备110可以向终端设备120供能,可选的,第一通信设备110可以是网络设备,其可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。或者,该第一通信设备110可以是不同于终端设备120的其他终端设备,本申请对此不做限制。
图1A示例性地示出了一个第一通信设备和一个终端设备,在一些可实现方式中,该通信系统100可以包括多个通信设备,这些通信设备可以是网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些可实现方式中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体, 本申请实施例对此不作限定。
示例性的,本申请实施例应用的通信系统200如图1B所示。该通信系统200可以包括第一通信设备210、第二通信设备220和终端设备230,其中,第一通信设备210、第二通信设备220均可以与终端设备230通信,并且第二通信设备220可以向终端设备230供能,或者,第二通信设备220可以在上行时隙向终端设备230供能,第一通信设备210可以在下行时隙向终端设备230供能。该上行时隙和下行时隙可以是第一通信设备210为终端设备230配置的上行时隙和下行时隙。可选的,第一通信设备210可以是网络设备,其可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。或者,该第一通信设备210可以是不同于终端设备230的其他终端设备,本申请对此不做限制。第二通信设备220也可以是网络设备,其可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。或者,该第二通信设备220可以是不同于终端设备230的其他终端设备,本申请对此不做限制。
图1B示例性地示出了两个通信设备和一个终端设备,在一些可实现方式中,该通信系统200可以包括多个通信设备,这些通信设备可以是网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些可实现方式中,该通信系统200还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
本申请实施例结合终端设备和通信设备描述了各个实施例,如上所述,该通信设备可以是网络设备,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备,例如包括:无源终端,甚至还包括半无源终端等。近年来,零功耗设备的应用越来越广泛。一种典型的零功耗设备是RFID(Radio Frequency Identification),它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承 了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
应理解的是,通常无源电子标签被理解为零功耗设备,有些情况下半无源电子标签也被理解为零功耗设备。
RFID是一种无线通信技术。图2为本申请提供的RFID系统的示意图,如图2所示,最基本的RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签:它由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器:不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。如图2所示。电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
基于零功耗设备的通信,简称零功耗通信,包括以下关键技术:
1、反向散射通信(Back Scattering)
图3为本申请提供的反向散射通信原理图,如图3所示,零功耗设备,即反向散射标签接收反向散射读写器发送的载波信号,通过射频(Radio Frequency,RF)能量采集模块,即能量采集模块采集能量,进而对低功耗处理模块,即图3中的逻辑处理模块进行供能,对载波信号进行调制,并进行反向散射。
应理解的是,由于上述反向散射读写器发送的载波信号用于向反向散射标签提供能量,因此该载波信号也被称为供能信号,基于此,本申请所涉及的供能信号在一些情况下也被称为载波信号,载波信号在一些情况下也被称为供能信号。
应理解的是,图3所示的反向散射通信原理是通过反向散射标签和反向散射读写器说明的,实际上,任何具有反向散射通信功能的设备以及发射载波信号,用于提供能量的设备都可以实现反向散射通信。
反向散射通信原理主要特征如下:
(1)终端设备不主动发射信号,通过调制来波信号实现反向散射通信;
(2)终端设备不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
因此,这里的终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
2、能量采集(RF Power Harvesting)
图4为本申请实施例提供的能量采集原理图,如图4所示,终端设备可以利用RF能量采集模块通过电磁感应实现对空间电磁波能量的采集,进而实现对负载电路的驱动(低功耗运算、传感器等),可以实现免电池。
3、负载调制
负载调制是电子标签经常使用的向读写器传输数据的方法。负载调制通过对电子标签振荡回路的电参数按照数据流的节拍进行调节,使电子标签阻抗的大小和相位随之改变,从而完成调制的过程。负载调制技术主要有电阻负载调制和电容负载调制两种方式。
在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电阻负载调制的电路原理图如下图5所示。在电容负载调制中,负载并联一个电容,取代了图5中由二进制数据编码控制的负载调制电阻。
4、编码
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Non Return Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
NR系统中的灵活时隙
NR系统中引入了灵活的时隙格式,即在一个时隙中包括下行(Downlink,DL)符号、灵活(Flexible)符号和上行(Uplink)符号。其中,灵活符号具有下面的特征:
(1)灵活符号表示该符号的方向的未定的,可以通过其他信令将其改变为下行符号或者上行符号;
(2)灵活符号也可以表示为了前向兼容性,预留给将来用的符号;
(3)灵活符号用于终端的收发转换,类似于LTE TDD系统中的保护间隔保护间隔(Guard Period,GP)符号,终端在该符号内完成收发转换;
在NR系统中,定义了多种灵活时隙格式,包括全下行时隙、全上行时隙、全灵活时隙,以及不同下行符号、上行符号、灵活符号个数的时隙格式,不同的时隙格式分别对应一个时隙格式索引。
NR系统支持多种方式配置时隙格式,包括:通过半静态上下行配置信令配置时隙格式和通过动态上下行指示信令配置时隙格式,其中,半静态上下行配置信令包括tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated,动态上下行指示信令即格式2-0的下行控制信令(Downlink control information,DCI)。
网络设备通过发送tdd-UL-DL-ConfigurationCommon信令配置公共的时隙格式,即对于小区内的所有的终端都适用的时隙格式,该信令可以配置一个或两个图案(pattern),每个图案对应一个周期。在每个图案中,网络设备可以配置该图案中的时隙格式,主要包括如下参数:参考子载波间隔(μ ref)、周期P,即该图案的周期参数,其单位为ms、下行时隙数(d slots)、下行符号数(d sym)、上行时隙数(u slots)、上行符号数(u sym)。
根据参考子载波间隔和周期可以确定该周期内包括的时隙个数总数S,该S个时隙中的前d slots个时隙表示全下行时隙,最后一个全下行时隙的下一个时隙中的前d sym个符号表示下行符号;该S个时隙中的最后u slots个时隙表示全上行时隙,第一个全上行时隙的前一个时隙中的最后u sym个符号表示上行符号;该周期中的其余的符号表示灵活符号。因此,在一个图案周期内,整体看来配置的帧结构形式也是下行时隙或符号在前,上行时隙或符号在后,中间是灵活时隙或符号。终端根据tdd-UL-DL-ConfigurationCommon可以确定一个周期内的时隙格式,以周期P在时域上重复即可确定所有时隙的时隙格式。
图6为一种TDD上下行配置图案示意图,如图6所示,图中示出了一个图案的时隙配置,该图案的周期P=5ms,对于15kHz子载波间隔,该图案周期内包括5个时隙,其中d slots=1,d sym=2,u slots=1,u sym=6,即表示在5ms的周期内,第1个时隙为全下行时隙,第2个时隙中的前2个符号是下行符号,最后一个时隙是全上行时隙,倒数第二个时隙中的最后6个符号是上行符号,其余的符号是灵活符号,该图案在时域上以5ms周期性重复。
tdd-UL-DL-ConfigurationDedicated信令只能改变tdd-UL-DL-ConfigurationCommon配置为灵活符号的方向。如果tdd-UL-DL-ConfigurationCommon配置信令已经配置为下行符号,则不能通过tdd-UL-DL-ConfigurationDedicated信令将其修改为上行符号。如果tdd-UL-DL-ConfigurationCommon配置信令已经配置为上行符号,则不能通过tdd-UL-DL-ConfigurationDedicated信令将其修改为下行符号。
例如,图7为另一种TDD上下行配置图案示意图,网络设备通过tdd-UL-DL-ConfigurationCommon配置信令配置的一个图案的时隙格式如图7所示,在此基础上,网络设备通过tdd-UL-DL-ConfigurationDedicated信令配置两个时隙的时隙格式,如图7所示,这两个时隙分别是5ms周期内的时隙1和时隙2:
时隙1:tdd-UL-DL-ConfigurationDedicated信令配置时隙1的下行符号个数是2个,上行符号个数是4个;
时隙2:tdd-UL-DL-ConfigurationDedicated信令配置时隙2的下行符号个数是3个,上行符号个数是2个。
在通过半静态上下行配置信息配置时隙格式的基础上,网络设备还可以通过时隙格式指示信息(Slot Format Indicator,SFI)动态配置每个时隙的时隙格式,该SFI即是格式2-0的DCI,用SFI-无线网络临时标识(RNTI Radio Network Tempory Identity,RNTI)加扰。SFI只能配置半静态上下行配置信息配置为灵活符号的方向,不能改变半静态配置信息配置为上行符号或下行符号的方向。
SFI指示可以同时配置多个服务小区的时隙格式,网络设备通过无线资源控制(Radio Resource Control,RRC)信令配置小区索引,以及该小区索引对应的时隙格式组合标识(slotFormatCombinationId)的起始比特在格式2-0的DCI中的位置。网络设备配置多个时隙格式组合(slotFormatCombination),每个时隙格式组合对应一个标识信息(slotFormatCombinationId)以及一组时隙的时隙格式配置,每个时隙格式配置用于配置一个时隙的时隙格式。
SFI包括SFI索引(SFI-index),该SFI-index即对应于slotFormatCombinationId,根据该索引即可确定一组时隙格式。该SFI指示的时隙格式适用于从承载该SFI信令的时隙开始的连续的多个时隙中,并且SFI指示的时隙个数大于或等于承载该SFI的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的监测周期。如果一个时隙被两个SFI信令指示时隙格式,这个时隙被两个SFI信令指示的时隙格式应该是相同的。
网络设备在配置一个服务小区的时隙格式时,会同时配置一个子载波间隔,即SFI参考子载波间隔μ SFI,该子载波间隔小于或等于监测SFI信令的服务小区的子载波间隔μ,即μ≥μ SFI,此时SFI指示的一个时隙的时隙格式适用于
Figure PCTCN2021106205-appb-000001
个连续的时隙,并且SFI信令指示的每个下行符号或上行符号或灵活符号对应于
Figure PCTCN2021106205-appb-000002
个连续的下行符号或上行符号或灵活符号。
对TDD系统,通信设备不能同时进行接收和发送,因此,NR引入了如上灵活的时隙格式。而对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,而是需要通过其他通信设备对其进行供能,那么在这种情况下,终端设备如何获取时隙格式是本申请亟待解决的技术问题。
下面将对本申请技术方案进行详细阐述:
图8为本申请实施例提供的一种无线通信方法的流程图,该方法可以由终端设备执行,该终端设备具有反向散射通信功能。该终端设备可以是零功耗设备,如无源终端,甚至是半无源终端,也可以由非零功耗设备,即普通设备执行,但是该普通终端可以在有些情况下进行反向散射通信。如图8所示,该方法包括如下步骤:
S810:终端设备接收第一信号,该第一信号包括用于指示时隙格式的指示信息。其中,终端设备通过通信设备供能。
应理解的是,向终端设备供能的通信设备可以是如下的第一通信设备,该第一通信设备是终端设备根据时隙格式进行数据传输的通信设备。该第一通信设备可以是网络设备或者终端设备,但不限于此。或者,向终端设备供能的通信设备可以是如下的第二通信设备,该第二通信设备是不同于第一通信设备的通信设备。该第二通信设备可以是网络设备或者终端设备,但不限于此。又或者,向终端设备供能的通信设备可以是除第一通信设备、第二通信设备的其他通信设备,本申请对此不做限制。
应理解的是,用于产生上述第一信号的通信设备与用于向终端设备供能的通信设备可以是同一通信设备,也可以是不同的通信设备,本申请对此不做限制。
在一些可实现方式中,用于产生上述第一信号的通信设备可以对上述指示信息采用如下编码方式,但不限于此:脉冲间隙编码(pulse-interval encoding,PIE)、反向不归零编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。示例性的,通信设备可以对指示信息采用曼彻斯特(Manchester)编码,如图9所示。
应理解的是,用于产生上述第一信号的通信设备对指示信息进行编码,以形成该指示信息对应的编码序列,其中,不同的编码序列对应不同的指示信息,即编码序列与指示信息之间存在映射关系。
应理解的是,第一信号是一种无线射频载波信号,用于产生上述第一信号的通信设备可以通过对该载波信号进行调制,以承载编码后的指示信息。常用的调制方式包括如下几项,但不限于此:振幅键控(Amplitude Shift Keying,ASK)、频移键控(Frequency Shift Keying,FSK)和相移键控(Phase Shift Keying,PSK)等。ASK如双边带振幅移动键控(Double-Sideband Amplitude Shift Keying,DSB-ASK),单边带振幅移动键控(Single-Sideband Amplitude Shift Keying,SSB-ASK),或者反相振幅移动键控(Phase-Reversal Amplitude Shift Keying,PR-ASK)。
在一些可实现方式中,该第一信号可以是供能信号或者不是供能信号,本申请对此不做限制。
示例性的,如图1A所示的通信系统100,第一通信设备110可以产生供能信号,该供能信号包括:用于指示时隙格式的指示信息。应理解的是,对于TDD系统,通信设备不能同时进行接收和发送,因此,第一通信设备110在上行时隙只能接收终端设备发送的数据,但是不能向终端设备发送任何信息、数据或者信号等。即第一通信设备110只能在下行时隙发送供能信号,基于此,上述用于指示时隙格式的指示信息只能在下行时隙上发送。
示例性的,如上所述,对于TDD系统,通信设备不能同时进行接收和发送,因此,第一通信设备在上行时隙只能接收终端设备发送的数据,但是不能向终端设备发送任何信息、数据或者信号等。但是在一些特殊情况下,如当前存在连续的多个时隙,如果第一通信设备需要向终端设备发送上述指示信息,只能等到下行时隙才可以,这样将导致指示信息传输时延较大的问题。因此,本申请可以引入第二通信设备,该第二通信设备可以向终端设备供能。如图1B所示的通信系统200,第二通信设备220可以产生供能信号,该供能信号包括:用于指示时隙格式的指示信息。
示例性的,如上所述,对于TDD系统,通信设备不能同时进行接收和发送,因此,第一通信设备在上行时隙只能接收终端设备发送的数据,但是不能向终端设备发送任何信息、数据或者信号等。但是在一些特殊情况下,如当前存在连续的多个时隙,如果第一通信设备需要向终端设备发送上述指示信息,只能等到下行时隙才可以,这样将导致指示信息传输时延较大的问题。因此,本申请可以引入第二通信设备,该第二通信设备可以在上行时隙向终端设备供能。而第一通信设备可以在下行时隙向终端设备供能。如图1B所示的通信系统200,第二通信设备220可以在上行时隙产生供能信号, 以向终端设备230供能,该供能信号包括:用于指示时隙格式的指示信息。第一通信设备210可以在下行时隙产生供能信号,以向终端设备230供能,该供能信号包括:用于指示时隙格式的指示信息。
在一些可实现方式中,当第二通信设备向第一通信设备供能时,第二通信设备可以在第一通信设备的控制下产生的供能信号,例如:第一通信设备可以控制第二通信设备产生供能信号的时间,频段等,本申请对此不做限制。
在一些可实现方式中,当第二通信设备向第一通信设备供能时,第二通信设备是在第一通信设备的控制下发送的指示信息,例如:第一通信设备可以控制第二通信设备发送该指示信息的时间,频段等,本申请对此不做限制。
在一些可实现方式中,上述为终端设备供能的通信设备可以持续发送该供能信号,也可以间歇性的发送该供能信号,本申请对此不做限制。
在一些可实现方式中,当通信设备间歇性的发送该供能信号时,供能信号之间的时间间隔可以是预定义的或者配置的,本申请对此不做限制。
应理解的是,由于通信设备可以与终端设备进行通信,因此,还会存在用于数据或者信息传输的信号。而上述供能信号和用于信息传输的信号可以是一个信号或者是两个独立的信号,本申请对此不做限制。例如:在蜂窝无源物联网中,这两个信号是两个独立的信号。在RFID技术中,这两个信号是一个信号。
在一些可实现方式中,当上述供能信号和用于信息传输的信号是两个独立的信号时,这两个信号可以在一个频段上发送,也可以不在一个频段上发送。
综上,在本申请中,对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,通信设备可以向这类终端设备发送第一信号,该信号包括:用于指示时隙格式的指示信息,以使这类终端设备获取到时隙格式。
在一些可实现方式中,上述指示信息指示的时隙格式是周期性时隙格式。即指示信息用于指示多个时隙集合的时隙格式,也就是说,多个时隙集合为连续的多个时隙集合,且多个时隙集合的时隙格式相同。例如:这多个时隙集合中包括多个连续的时隙集合,每个时隙集合包括:4个时隙,第1个时隙为全下行时隙,第2个时隙中的前2个符号是下行符号,最后一个时隙是全上行时隙,倒数第二个时隙中的最后6个符号是上行符号,其余的符号是灵活符号。
在一些可实现方式中,第一信号携带的指示信息是半静态指示信息和/或动态指示信息。
应理解的是,与现有NR系统类似,网络设备需要提供公共的配置信息用于指示小区的时隙格式,如该公共的配置信息是tdd-UL-DL-ConfigurationCommon,而通过网络配置的tdd-UL-DL-ConfigurationDedicated信令可以改变tdd-UL-DL-ConfigurationCommon配置为灵活符号的方向,以针对某终端设备进一步的配置时隙格式。这两个配置信息都是半静态配置信息。而在本申请中,第一信号携带的指示信息可以类似于这种NR系统中的半静态配置信息。例如,该指示信息包括以下至少一项,但不限于此:周期P,即该图案的周期参数,其单位为ms、下行时隙数(d slots)、下行符号数(d sym)、上行时隙数(u slots)、上行符号数(u sym)、符号长度、码元长度、针对终端设备,至少一个灵活符号的方向。其中,与NR系统内类似,一个时隙可以若干个符号,周期P可以包含若干个时隙。
进一步地,在NR系统中,在通过半静态上下行配置信息配置时隙格式的基础上,网络设备还可以通过SFI动态配置每个时隙的时隙格式,因此,本申请提供的指示信息还可以进一步地指示每个时隙的时隙格式。也就是说,第一信号携带的指示信息包括:半静态指示信息和动态指示信息。示例性的,可以参考表1所示的动态指示信息,每个动态指示信息可以用于指示对应的时隙格式。
表1
Figure PCTCN2021106205-appb-000003
Figure PCTCN2021106205-appb-000004
应理解的是,上述U表示上行符号,D表示下行符号,F表示灵活符号。
应理解的是,上述第一信号可以只携带上述的半静态指示信息,这时终端设备可以只根据该半静态指示信息确定时隙格式,或者,上述第一信号可以只携带上述的半静态指示信息,并且动态指示信息可以携带在其他信号中,该其他信号可以是产生第一信号的通信设备,也可以不是产生第一信号的通信设备,这时终端设备可以根据该半静态指示信息和动态指示信息确定时隙格式。又或者,上述第一信号可以只携带上述的动态指示信息,而上述半静态指示信息可以携带在其他信号中,该其他信号可以是产生第一信号的通信设备,也可以不是产生第一信号的通信设备,这时终端设备可以根据该半静态指示信息和动态指示信息确定时隙格式。再或者,上述第一信号携带半静态指示信息和动态指示信息,这时终端设备可以根据该半静态指示信息和动态指示信息确定时隙格式。
在一些可实现方式中,如果第一信号同时携带半静态指示信息和动态指示信息,该半静态指示信息和动态指示信息可以是一个整体,也可以是两个独立的指示信息,本申请对此不做限制。
综上,在本申请中,对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,通信设备可以向这类终端设备发送第一信号,该信号包括:用于指示周期性时隙格式的指示信息,以使这类终端设备获取到周期性时隙格式。
应理解的是,在上一实施例中,时隙格式是周期性时隙格式。终端设备得到该周期性时隙格式后,可以根据周期确定后续时隙的格式。这种方式的前提是终端设备能够获得同步,确定相应的帧、时隙、符号定时等。而对于本申请涉及的终端设备来说,其同步状态的维持依赖于供能信号提供的能量。当供能信号中断时,这类终端设备进入无电状态时,之前获得的同步状态将会丢失。即使这类终端设备一直有供能信号提供能量,由于这类终端设备本地时钟的定时精度较差,例如不具备精度高的晶振器件,不能确定准确的上下行定时,因此即使得到了时隙格式,由于无法维持准确的定时,这类终端设备无法确定上下行时隙的边界。因此,在本实施例中,第一信号携带的指示信息可以用于指示一个时隙集合的时隙格式。在该时隙集合的范围内,终端设备可以维持准确的定时,从而根据该时隙格式可以确定该时隙集合中的时隙格式。
示例性的,图10为本申请一实施例提供的指示信息指示时隙格式的示意图,如图10所示,连续两个时隙的时隙格式通过该两个时隙之前的时隙上承载的指示信息进行指示。其中,例如,指示信息10110010和01100101分别指示不同的时隙格式组合。
综上,在本申请中,对于上述无源终端,甚至一些半无源终端或者有源终端,可能在有些情况无法使用电池供电,通信设备可以向这类终端设备发送第一信号,该信号包括:用于指示非周期性时隙格式的指示信息,以使这类终端设备获取到非周期性时隙格式。此外,该指示信息除了指示时隙格式之外,还可以用于终端设备进行定时调整,从而获得准确的时隙边界,也就是说,终端设备不需要依赖于定时信息,而是通过时隙格式可以获得一个时隙集合的时隙格式,同时可以获得准确的时隙定时。
在一些可实现方式中,上述指示信息是周期性指示信息。示例性的,图11为本申请另一实施例提供的指示信息指示时隙格式的示意图,如图11所示,该指示信息是10110010,其周期性发送,并且每个指示信息可以指示对应的时隙结构,如图11所示的是一个指示信息可以指示时隙0至时隙4构成的时隙集合的时隙格式。
在一些可实现方式中,上述指示信息是非周期性指示信息。
应理解的是,非周期性指示信息一般是在某种事件触发下发送的指示信息,因此,该指示信息也被称为触发性指示信息或者事件触发性指示信息,本申请对此不做限制。
在一些可实现方式中,该非周期性指示信息与以下任一项具有关联关系:上行传输、下行传输、上行时隙与下行时隙之间的转换。也就是说,上行传输、下行传输、上行时隙与下行时隙之间的转换中的至少一项可以触发非周期性指示信息。
综上,在本申请中,指示信息可以周期性发送或者非周期性发送,从而可以提高指示信息发送的灵活性。
图12为本申请实施例提供的一种终端设备1200的示意图,如图12所示,该终端设备1200包括:
通信单元1210,用于接收第一信号,第一信号包括用于指示时隙格式的指示信息。其中,终端设备通过通信设备供能。
在一些可实现方式中,时隙格式是周期性时隙格式。
在一些可实现方式中,指示信息用于指示多个时隙集合的时隙格式。
在一些可实现方式中,多个时隙集合为连续的多个时隙集合,且多个时隙集合的时隙格式相同。
在一些可实现方式中,指示信息是半静态指示信息和/或动态指示信息。
在一些可实现方式中,时隙格式是非周期性时隙格式。
在一些可实现方式中,指示信息用于指示一个时隙集合的时隙格式。
在一些可实现方式中,指示信息是周期性指示信息。
在一些可实现方式中,指示信息是非周期性指示信息。
在一些可实现方式中,指示信息与以下任一项具有关联关系:上行传输、下行传输、上行时隙与下行时隙之间的转换。
在一些可实现方式中,通信单元1210还用于:根据时隙格式向第一通信设备发送数据。
在一些可实现方式中,第一信号是第一通信设备产生的供能信号。
在一些可实现方式中,第一信号是第二通信设备产生的供能信号。
在一些可实现方式中,在第一通信设备与终端设备之间的当前时隙为上行时隙时,在当前时隙第一信号是第二通信设备产生的供能信号,在第一通信设备与终端设备之间的当前时隙为下行时隙时,在当前时隙第一信号是第一通信设备产生的供能信号。
在一些可实现方式中,第二通信设备是在第一通信设备的控制下产生的供能信号。
在一些可实现方式中,第二通信设备是在第一通信设备的控制下发送的指示信息。
在一些可实现方式中,第一信号经过调制后承载指示信息。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备1200可对应于上述方法实施例中的终端设备,并且终端设备1200中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图13为本申请实施例提供的一种通信设备1300的示意图,通信设备1300可以是上述第一通信设备,如图13所示,该通信设备1300包括:处理单元1310和通信单元1320,其中,处理单元1310用于产生第一信号。通信单元1320用于向终端设备发送第一信号。第一信号包括用于指示时隙格式的指示信息。终端设备通过第一通信设备供能。
在一些可实现方式中,时隙格式是周期性时隙格式。
在一些可实现方式中,指示信息用于指示多个时隙集合的时隙格式。
在一些可实现方式中,多个时隙集合为连续的多个时隙集合,且多个时隙集合的时隙格式相同。
在一些可实现方式中,指示信息是半静态指示信息和/或动态指示信息。
在一些可实现方式中,时隙格式是非周期性时隙格式。
在一些可实现方式中,指示信息用于指示一个时隙集合的时隙格式。
在一些可实现方式中,指示信息是周期性指示信息。
在一些可实现方式中,指示信息是非周期性指示信息。
在一些可实现方式中,指示信息与以下任一项具有关联关系:上行传输、下行传输、上行时隙与下行时隙之间的转换。
在一些可实现方式中,通信单元1320还用于:接收终端设备根据时隙格式发送的数据。
在一些可实现方式中,第一信号是第一通信设备产生的供能信号。
在一些可实现方式中,在第一通信设备与终端设备之间的当前时隙为下行时隙时,在当前时隙第一信号是第一通信设备产生的供能信号。
在一些可实现方式中,第一信号经过调制后承载指示信息。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备1300可对应于上述方法实施例中的第一通信设备,并且通信设备1300中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中第一通信设备的相应流程,为了简洁,在此不再赘述。
图14为本申请实施例提供的一种通信设备1400的示意图,通信设备1400可以是上述第二通信设备,如图14所示,该通信设备1400包括:处理单元1410和通信单元1420,其中,处理单元1410用于产生第一信号。通信单元1420用于向终端设备发送第一信号。其中,第一信号包括用于指示时隙格式的指示信息。终端设备通过第二通信设备供能。
在一些可实现方式中,时隙格式是周期性时隙格式。
在一些可实现方式中,指示信息用于指示多个时隙集合的时隙格式。
在一些可实现方式中,多个时隙集合为连续的多个时隙集合,且多个时隙集合的时隙格式相同。
在一些可实现方式中,指示信息是半静态指示信息和/或动态指示信息。
在一些可实现方式中,时隙格式是非周期性时隙格式。
在一些可实现方式中,指示信息用于指示一个时隙集合的时隙格式。
在一些可实现方式中,指示信息是周期性指示信息。
在一些可实现方式中,指示信息是非周期性指示信息。
在一些可实现方式中,指示信息与以下任一项具有关联关系:上行传输、下行传输、上行时隙与下行时隙之间的转换。
在一些可实现方式中,第一信号是第二通信设备产生的供能信号。
在一些可实现方式中,在第一通信设备与终端设备之间的当前时隙为上行时隙时,在当前时隙第一信号是第二通信设备产生的供能信号。
在一些可实现方式中,第二通信设备是在第一通信设备的控制下产生的供能信号。
在一些可实现方式中,第二通信设备是在第一通信设备的控制下发送的指示信息。
在一些可实现方式中,第一通信设备是终端设备根据时隙格式进行数据传输的通信设备。
在一些可实现方式中,第一信号经过调制后承载指示信息。
在一些可实现方式中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备1400可对应于上述方法实施例中的第二通信设备,并且通信设备1400中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中第二通信设备的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例提供的一种通信设备1500示意性结构图。图15所示的通信设备1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些可实现方式中,如图15所示,通信设备1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
在一些可实现方式中,如图15所示,通信设备1500还可以包括收发器1530,处理器1510可以控制该收发器1530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1530可以包括发射机和接收机。收发器1530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些可实现方式中,该通信设备1500具体可为本申请实施例的第一通信设备,并且该通信设备1500可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该通信设备1500具体可为本申请实施例的第二通信设备,并且该通信设备1500可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该通信设备1500具体可为本申请实施例的终端设备,并且该通信设备1500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的装置的示意性结构图。图16所示的装置1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些可实现方式中,如图16所示,装置1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
在一些可实现方式中,该装置1600还可以包括输入接口1630。其中,处理器1610可以控制该输入接口1630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些可实现方式中,该装置1600还可以包括输出接口1640。其中,处理器1610可以控制该输出接口1640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些可实现方式中,该装置可应用于本申请实施例中的第一通信设备,并且该装置可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该装置可应用于本申请实施例中的第二通信设备,并且该装置可以实现本申请实施例的各个方法中由第二通信设备实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的 处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
在一些可实现方式中,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的 具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (60)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备接收第一信号,所述第一信号包括用于指示时隙格式的指示信息;
    其中,所述终端设备通过通信设备供能。
  2. 根据权利要求1所述的方法,其特征在于,所述时隙格式是周期性时隙格式。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息用于指示多个时隙集合的时隙格式。
  4. 根据权利要求3所述的方法,其特征在于,所述多个时隙集合为连续的多个时隙集合,且所述多个时隙集合的时隙格式相同。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述指示信息是半静态指示信息和/或动态指示信息。
  6. 根据权利要求1所述的方法,其特征在于,所述时隙格式是非周期性时隙格式。
  7. 根据权利要求6所述的方法,其特征在于,所述指示信息用于指示一个时隙集合的时隙格式。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述指示信息是周期性指示信息。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述指示信息是非周期性指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息与以下任一项具有关联关系:
    上行传输;
    下行传输;
    上行时隙与下行时隙之间的转换。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,还包括:
    所述终端设备根据所述时隙格式向第一通信设备发送数据。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信号是所述第一通信设备产生的供能信号。
  13. 根据权利要求11所述的方法,其特征在于,所述第一信号是第二通信设备产生的供能信号。
  14. 根据权利要求11所述的方法,其特征在于,在所述第一通信设备与所述终端设备之间的当前时隙为上行时隙时,在所述当前时隙所述第一信号是第二通信设备产生的供能信号,在所述第一通信设备与所述终端设备之间的当前时隙为下行时隙时,在所述当前时隙所述第一信号是所述第一通信设备产生的供能信号。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二通信设备是在所述第一通信设备的控制下产生的所述供能信号。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第二通信设备是在所述第一通信设备的控制下发送的所述指示信息。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述第一信号经过调制后承载所述指示信息。
  18. 一种无线通信方法,其特征在于,包括:
    第一通信设备产生第一信号;
    所述第一通信设备向终端设备发送所述第一信号;
    其中,所述第一信号包括用于指示时隙格式的指示信息;所述终端设备通过所述第一通信设备供能。
  19. 根据权利要求18所述的方法,其特征在于,所述时隙格式是周期性时隙格式。
  20. 根据权利要求19所述的方法,其特征在于,所述指示信息用于指示多个时隙集合的时隙格式。
  21. 根据权利要求20所述的方法,其特征在于,所述多个时隙集合为连续的多个时隙集合,且所述多个时隙集合的时隙格式相同。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,所述指示信息是半静态指示信息和/或动态指示信息。
  23. 根据权利要求18所述的方法,其特征在于,所述时隙格式是非周期性时隙格式。
  24. 根据权利要求23所述的方法,其特征在于,所述指示信息用于指示一个时隙集合的时隙格式。
  25. 根据权利要求18-24任一项所述的方法,其特征在于,所述指示信息是周期性指示信息。
  26. 根据权利要求18-24任一项所述的方法,其特征在于,所述指示信息是非周期性指示信息。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信息与以下任一项具有关联关系:
    上行传输;
    下行传输;
    上行时隙与下行时隙之间的转换。
  28. 根据权利要求18-27任一项所述的方法,其特征在于,还包括:
    所述第一通信设备接收所述终端设备根据所述时隙格式发送的数据。
  29. 根据权利要求18-27任一项所述的方法,其特征在于,所述第一信号是所述第一通信设备产生的供能信号。
  30. 根据权利要求18-27任一项所述的方法,其特征在于,在所述第一通信设备与所述终端设备之间的当前时隙为下行时隙时,在所述当前时隙所述第一信号是所述第一通信设备产生的供能信号。
  31. 根据权利要求18-30任一项所述的方法,其特征在于,所述第一信号经过调制后承载所述指示信息。
  32. 一种无线通信方法,其特征在于,包括:
    第二通信设备产生第一信号;
    所述第二通信设备向终端设备发送所述第一信号;
    其中,所述第一信号包括用于指示时隙格式的指示信息;所述终端设备通过所述第二通信设备供能。
  33. 根据权利要求32所述的方法,其特征在于,所述时隙格式是周期性时隙格式。
  34. 根据权利要求33所述的方法,其特征在于,所述指示信息用于指示多个时隙集合的时隙格式。
  35. 根据权利要求34所述的方法,其特征在于,所述多个时隙集合为连续的多个时隙集合,且所述多个时隙集合的时隙格式相同。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,所述指示信息是半静态指示信息和/或动态指示信息。
  37. 根据权利要求32所述的方法,其特征在于,所述时隙格式是非周期性时隙格式。
  38. 根据权利要求37所述的方法,其特征在于,所述指示信息用于指示一个时隙集合的时隙格式。
  39. 根据权利要求32-38任一项所述的方法,其特征在于,所述指示信息是周期性指示信息。
  40. 根据权利要求32-38任一项所述的方法,其特征在于,所述指示信息是非周期性指示信息。
  41. 根据权利要求40所述的方法,其特征在于,所述指示信息与以下任一项具有关联关系:
    上行传输;
    下行传输;
    上行时隙与下行时隙之间的转换。
  42. 根据权利要求32-41任一项所述的方法,其特征在于,所述第一信号是第二通信设备产生的供能信号。
  43. 根据权利要求32-41任一项所述的方法,其特征在于,在第一通信设备与所述终端设备之间的当前时隙为上行时隙时,在所述当前时隙所述第一信号是第二通信设备产生的供能信号。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第二通信设备是在第一通信设备的控制下产生的所述供能信号。
  45. 根据权利要求42或43所述的方法,其特征在于,所述第二通信设备是在第一通信设备的控制下发送的所述指示信息。
  46. 根据权利要求43-45任一项所述的方法,其特征在于,所述第一通信设备是所述终端设备根据所述时隙格式进行数据传输的通信设备。
  47. 根据权利要求32-46任一项所述的方法,其特征在于,所述第一信号经过调制后承载所述指示信息。
  48. 一种终端设备,其特征在于,包括:
    通信单元,用于接收第一信号,所述第一信号包括用于指示时隙格式的指示信息;
    其中,所述终端设备通过通信设备供能。
  49. 一种通信设备,其特征在于,所述通信设备为第一通信设备,包括:
    处理单元,用于产生第一信号;
    通信单元,用于向终端设备发送所述第一信号;
    其中,所述第一信号包括用于指示时隙格式的指示信息;所述终端设备通过所述第一通信设备供能。
  50. 一种通信设备,其特征在于,所述通信设备为第二通信设备,包括:
    处理单元,用于产生第一信号;
    通信单元,用于向终端设备发送所述第一信号;
    其中,所述第一信号包括用于指示时隙格式的指示信息;所述终端设备通过所述第二通信设备供能。
  51. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
  52. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18至47中任一项所述的方法。
  53. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至47中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  56. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求18至47中任一项所述的方法。
  57. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法。
  58. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18至47中任一项所述的方法。
  59. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  60. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求18至47中任一项所述的方法。
PCT/CN2021/106205 2021-07-14 2021-07-14 无线通信方法及设备 WO2023283820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/106205 WO2023283820A1 (zh) 2021-07-14 2021-07-14 无线通信方法及设备
CN202180097510.3A CN117203899A (zh) 2021-07-14 2021-07-14 无线通信方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106205 WO2023283820A1 (zh) 2021-07-14 2021-07-14 无线通信方法及设备

Publications (1)

Publication Number Publication Date
WO2023283820A1 true WO2023283820A1 (zh) 2023-01-19

Family

ID=84918888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106205 WO2023283820A1 (zh) 2021-07-14 2021-07-14 无线通信方法及设备

Country Status (2)

Country Link
CN (1) CN117203899A (zh)
WO (1) WO2023283820A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253520A1 (en) * 2007-12-04 2010-10-07 Controlmatic Oy Ltd. Device, method and system for forwarding data from rfid devices
CN108809564A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 用于通信的方法和装置
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质
CN112311422A (zh) * 2019-07-29 2021-02-02 华为技术有限公司 一种信号传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253520A1 (en) * 2007-12-04 2010-10-07 Controlmatic Oy Ltd. Device, method and system for forwarding data from rfid devices
CN108809564A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 用于通信的方法和装置
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质
CN112368970A (zh) * 2018-08-24 2021-02-12 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质
CN112311422A (zh) * 2019-07-29 2021-02-02 华为技术有限公司 一种信号传输方法及装置

Also Published As

Publication number Publication date
CN117203899A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023283820A1 (zh) 无线通信方法及设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023272443A1 (zh) 无线通信方法及设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
EP4383598A1 (en) Wireless communication method, terminal device and network device
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
US20240137194A1 (en) Method and device for wireless communication
WO2023279335A1 (zh) 无线通信方法、终端设备和网络设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2023173379A1 (zh) 数据传输方法、第一设备和第二设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
US20240128794A1 (en) Wireless communication method and terminal device
WO2023137718A1 (zh) 同步控制方法、终端设备、网络设备、芯片和存储介质
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质
EP4380241A1 (en) Wireless communication method, terminal device and network device
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097510.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE