WO2023060596A1 - 信息指示方法、网络设备、终端、芯片和存储介质 - Google Patents

信息指示方法、网络设备、终端、芯片和存储介质 Download PDF

Info

Publication number
WO2023060596A1
WO2023060596A1 PCT/CN2021/124216 CN2021124216W WO2023060596A1 WO 2023060596 A1 WO2023060596 A1 WO 2023060596A1 CN 2021124216 W CN2021124216 W CN 2021124216W WO 2023060596 A1 WO2023060596 A1 WO 2023060596A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
order
terminal
feedback information
signaling
Prior art date
Application number
PCT/CN2021/124216
Other languages
English (en)
French (fr)
Inventor
徐伟杰
左志松
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/124216 priority Critical patent/WO2023060596A1/zh
Publication of WO2023060596A1 publication Critical patent/WO2023060596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present application relates to the communication field, and more specifically, relates to an information indication method, a network device, a terminal, a chip, a computer-readable storage medium, a computer program product, a computer program and a communication system.
  • Zero-power communication based on energy harvesting and backscatter communication technology can be widely used in various industries, such as logistics and intelligent warehousing for vertical industries, due to its significant advantages such as extremely low cost, zero power consumption, and small size. , smart agriculture, energy power, industrial Internet, etc.; it can also be applied to personal applications such as smart wearable devices and smart homes.
  • zero-power terminals In many zero-power communication scenarios, there are a large number of zero-power terminals communicating with network devices. For example, in a logistics scenario, network devices need to read information from hundreds or thousands of zero-power terminals in a short period of time (such as within a few seconds). How to accurately complete communication with a large number of zero-power terminals is a problem that needs to be solved.
  • the embodiments of the present application provide an information indication method, network device, terminal, chip, computer-readable storage medium, computer program product, computer program, and communication system, which can be used for data reception and feedback from the network device to the terminal.
  • An embodiment of the present application provides an information indication method, including:
  • the network device sends first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • An embodiment of the present application provides an information indication method, including:
  • the terminal receives first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • the embodiment of the present application also provides a network device, including:
  • a first communication module configured to send first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • the embodiment of the present application also provides a terminal, including:
  • the second communication module is configured to receive first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • the embodiment of the present application also provides a network device, including: a processor and a memory, the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the method provided in any embodiment of the present application.
  • An embodiment of the present application also provides a terminal, including: a processor and a memory, the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the method provided in any embodiment of the present application.
  • An embodiment of the present application also provides a chip, including: a processor, configured to invoke and run a computer program from a memory, so that a device equipped with the chip executes the method provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the method provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the method provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer program, which enables a computer to execute the method provided in any embodiment of the present application.
  • An embodiment of the present application further provides a communication system, including a terminal and a network device for performing the method provided in any embodiment of the present application.
  • the network device feeds back to the terminal whether the data transmitted on the resource unit is correctly received by carrying the feedback information corresponding to the resource unit in the first signaling, so the terminal can confirm the data according to the feedback information Whether the transfer is complete so that the communication is done exactly. And the overhead of feedback is effectively controlled, so that the zero-power communication scenarios with many terminals can also communicate effectively.
  • FIG. 1 is a schematic diagram of an exemplary communication system architecture.
  • Fig. 2 is a schematic diagram of a zero-power communication system according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of radio frequency energy collection according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of resistive load modulation according to an embodiment of the present application.
  • FIG. 6A is a schematic diagram of reverse non-return-to-zero encoding according to an embodiment of the present application.
  • Fig. 6B is a schematic diagram of Manchester encoding according to an embodiment of the present application.
  • FIG. 6C is a schematic diagram of unipolar return-to-zero encoding according to an embodiment of the present application.
  • FIG. 6D is a schematic diagram of differential bi-phase encoding according to an embodiment of the present application.
  • FIG. 6E is a schematic diagram of Miller encoding according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of resource configuration according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a resource unit according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of configuration signaling according to an embodiment of the present application.
  • FIG. 10 is a first schematic diagram of configuration signaling and scheduling signaling according to another embodiment of the present application.
  • FIG. 11 is a second schematic diagram of configuration signaling and scheduling signaling according to another embodiment of the present application.
  • FIG. 12 is a third schematic diagram of configuration signaling and scheduling signaling according to another embodiment of the present application.
  • Fig. 13 is a schematic flowchart of an information indicating method according to an embodiment of the present application.
  • Fig. 14 is a schematic flowchart of an information indicating method according to another embodiment of the present application.
  • FIG. 15 is a first schematic diagram of the first mapping sequence in the embodiment of the present application.
  • FIG. 16 is a second schematic diagram of the first mapping sequence in the embodiment of the present application.
  • FIG. 17 is a third schematic diagram of the first mapping sequence in the embodiment of the present application.
  • FIG. 18 is a fourth schematic diagram of the first mapping sequence in the embodiment of the present application.
  • FIG. 19 is a fifth schematic diagram of the first mapping sequence in the embodiment of the present application.
  • FIG. 20 is a sixth schematic diagram of the first mapping sequence in the embodiment of the present application.
  • Fig. 21 is a schematic structural block diagram of a network device according to an embodiment of the present application.
  • Fig. 22 is a schematic structural block diagram of a network device according to another embodiment of the present application.
  • Fig. 23 is a schematic structural block diagram of a terminal according to an embodiment of the present application.
  • Fig. 24 is a schematic structural block diagram of a terminal according to another embodiment of the present application.
  • Fig. 25 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 26 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 27 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the communication system may include: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system , General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Radio (NR) system , the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, NR-U) system on the unlicensed spectrum, the non- Ground communication network (Non-Terrestrial Networks, NTN) system, universal mobile communication system (Universal Mobile Telecommunication System, UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth generation Communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the mobile communication system will not only support traditional communication, but also support, for example, Device to Device (D2D) communication, Machine to Machine (M2M) communication, Machine Type Communication (MTC), Vehicle to Vehicle (V2V) communication, or Vehicle to everything (V2X) communication, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or an independent (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA independent network deployment scenario.
  • a communication system generally includes network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , user agent or user device, etc.
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons and satellites, etc.).
  • the terminal device can be a mobile phone (Mobile Phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (Virtual Reality, VR) terminal device, augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) ), wireless terminal devices in self driving, wireless terminal devices in remote medical, wireless terminal devices in smart grid, transportation safety Wireless terminal devices in smart cities, wireless terminal devices in smart cities, or wireless terminal devices in smart homes.
  • virtual reality Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device can be a device used to communicate with mobile devices, and the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (BTS) in WCDMA.
  • a base station (NodeB, NB) can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle device, a wearable device, and a network device (gNB) in an NR network Or a network device in a future evolved PLMN network, etc.
  • a network device may have a mobile feature, for example, a network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a cell corresponding to the network device (for example, a base station),
  • a cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico cell, Femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 schematically shows a wireless communication system 1000 including a network device 1100 and two terminal devices 1200 .
  • the wireless communication system 1000 may include multiple network devices 1100, and the coverage of each network device 1100 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions. It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the zero-power communication network uses energy harvesting and backscatter communication technologies.
  • the zero-power communication network includes network devices and zero-power terminals.
  • the network device is used to send wireless energy supply signals and downlink communication signals to the zero-power terminal and receive backscattered signals from the zero-power terminal.
  • a basic zero-power terminal includes energy harvesting modules such as radio frequency (Radio Frequency, RF) energy harvesting modules, backscatter communication modules, and low-power computing modules.
  • the zero-power consumption terminal may also be equipped with a memory or a sensor for storing some basic information (such as item identification, etc.) or acquiring sensing data such as ambient temperature and ambient humidity.
  • the key technologies of zero-power communication mainly include radio frequency energy harvesting and backscatter communication.
  • the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive the zero-power terminal to work. For example, these energy can be used to drive low-power demodulation And modulating modules, sensors, and memory reading, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the zero-power terminal receives the wireless signal (carrier) sent by the network device, and modulates the wireless signal to load the information to be sent on the wireless signal, and then transmits the modulated signal (reverse Scattered signal) radiates from the antenna, and this information transmission process is called backscatter communication.
  • Backscatter and load modulation functions are inseparable. Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the parameters such as the impedance of the zero-power terminal (such as an electronic tag) change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • resistive load modulation as shown in Figure 5, a resistor is connected in parallel with the load.
  • the switch S is turned on or off based on the control of the binary data stream, thereby turning on or off the resistance.
  • the on-off of the resistance will lead to the change of the circuit voltage, so Amplitude Shift Keying (ASK) is realized, that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • ASK Amplitude Shift Keying
  • the circuit resonant frequency can be changed by switching on and off the capacitor to realize frequency keying modulation (Frequency Keying, FSK), that is, by adjusting the working frequency of the backscatter signal of the zero-power terminal Signal modulation and transmission.
  • FSK Frequency Keying
  • zero-power terminal performs information modulation on the incoming signal by means of load modulation, thereby realizing the backscatter communication process. Therefore, zero-power terminals have significant advantages:
  • the terminal does not actively transmit signals, so there is no need for complex radio frequency links, such as power amplifiers (Power Amplifier, PA), radio frequency filters, etc.;
  • complex radio frequency links such as power amplifiers (Power Amplifier, PA), radio frequency filters, etc.;
  • the terminal does not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required;
  • zero-power communication can be widely used in various industries, such as logistics for vertical industries, smart warehousing, smart agriculture, energy power, industrial Internet, etc. ; It can also be applied to personal applications such as smart wearable devices and smart homes.
  • the data transmitted by zero-power terminals can use different forms of codes to represent binary "1" and "0".
  • RFID Radio Frequency Identification Devices
  • one of the following encoding methods can usually be used: reverse non-return zero (Non Return Zero, NRZ) encoding, Manchester (Manchester) encoding, unipolar Return to zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Miller (Miller) encoding, differential encoding. In layman's terms, it is to use different pulse signals to represent 0 and 1.
  • the reverse non-return-to-zero encoding uses a high level to represent a binary "1”, and a low level to represent a binary "0", as shown in FIG. 6A.
  • Manchester encoding is also known as Split-Phase Coding.
  • the value of a bit is represented by a level change (rising/falling) within half a bit period of the bit length.
  • a negative transition (falling) at half a bit period represents a binary "1”
  • a positive transition (rising) at half a bit period represents a binary "0”, as shown in FIG. 6B.
  • Manchester coding is applied to the load modulation or backscatter modulation of the carrier, it is usually used in the data transmission scenario from the electronic tag to the reader, because it is beneficial to find errors in data transmission. This is because the "no change" state is not allowed within the bit length.
  • a high level signal in the first half bit period represents a binary "1”
  • a low level signal that lasts for the entire bit period represents a binary "0”
  • Unipolar return-to-zero coding can be used to extract bit synchronization signals.
  • Any edge of the differential biphase encoding in half a bit period represents a binary "0", and no edge is a binary "1", as shown in FIG. 6D.
  • the levels are inverted at the beginning of each bit period. Thus, bit beats are easier for the receiver to reconstruct.
  • a Miller code represents a binary "1" at any edge within half a bit period, while a constant level through the next bit period represents a binary "0".
  • a level transition occurs at the beginning of the bit period, as shown in Figure 6E.
  • bit beats are easier for the receiver to reconstruct.
  • each binary "1" to be transmitted causes a change in signal level, whereas for a binary "0", the signal level remains unchanged.
  • zero-power terminals can be divided into the following types:
  • Passive zero-power terminals do not require built-in batteries.
  • the zero-power consumption terminal When the zero-power consumption terminal is close to a network device (for example, a reader of an RFID system), the zero-power consumption terminal is within a near-field range formed by antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • radio frequency circuit and baseband circuit are very simple, for example, no low-noise amplifier (Low-Noise Amplifier, LNA), PA, crystal oscillator, analog to digital converter (Analog to Digital Converter, ADC) and other devices, so it has many advantages such as small size, light weight, cheap price, and long service life.
  • LNA Low-Noise Amplifier
  • PA Low-Noise Amplifier
  • ADC Analog to Digital Converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use a radio frequency energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio collected by the energy harvesting module. Energy, so it is also a true zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, cheap price, and long service life.
  • the zero-power consumption terminal used in some scenarios can also be an active zero-power consumption terminal, and this type of terminal can have a built-in battery.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal to realize the demodulation of the forward link signal and the signal modulation of the backward link.
  • the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • the built-in battery of the active zero-power terminal supplies power to the RFID chip, which can increase the reading and writing distance of the tag and improve the reliability of communication. Therefore, it can be applied in some scenarios that have relatively high requirements on communication distance and reading delay.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and extended on this basis to apply to cellular IoT.
  • Some application scenarios of zero-power communication require many terminals to communicate with the network in a short period of time. If resources are not well controlled and coordinated for zero-power terminals, when many terminals send information to the network at the same time, serious terminal conflicts and signal interference may occur, causing the network to fail to correctly demodulate the information sent by the terminals. Even in some solutions, resource coordination is performed by means of terminal random backoff, but many terminals may still choose the same time-frequency resource for backoff, thus causing serious conflict and mutual interference problems.
  • the embodiment of the present application provides a resource configuration method, which is used to configure the resources of the reverse link (UL link) in zero-power communication, that is, the resources are used for backscatter communication of zero-power terminals, It aims to solve the interference and conflict problems in the zero-power communication process.
  • the network node sends signaling to the zero-power terminal, where the signaling is used to send resource configuration information to the zero-power terminal, that is, to indicate resource configuration.
  • the signaling includes configuration information of at least one (ie, one or more) resources.
  • the network sends four kinds of resource configuration information to the terminal, indicating resource configuration 1, resource configuration 2, resource configuration 3 and resource configuration 4 respectively.
  • Each resource configuration information is used to configure resources for zero power consumption communication.
  • the resource to be configured takes a resource unit as a unit, and each configuration information can configure a resource set composed of multiple resource units.
  • Each resource unit is the minimum time-frequency resource when a zero-power terminal communicates.
  • the resource configuration information indicates at least one of the following information:
  • a resource set configured by resource configuration information may include resource unit 1 to resource unit 24 .
  • the resource configuration information may indicate the time domain length of each resource unit, such as T unit in FIG. 8 .
  • the unit of time domain length is microsecond (us), millisecond (ms), symbol or time slot.
  • the time domain length can be expressed in microseconds, milliseconds, occupied symbols, or occupied slots.
  • This information is used to describe the frequency domain width of the resource unit, that is, the bandwidth, such as F unit shown in FIG. 8 .
  • the bandwidth information may include the number of occupied PRBs and/or bandwidth size.
  • the information refers to the number of resource units configured in the time domain in each resource configuration, such as the resource quantity M in the time domain as shown in FIG. 8 .
  • multiple resource units can be continuously distributed in the time domain, and the continuous distribution is beneficial to improve resource utilization.
  • multiple resource units may also be discontinuously distributed in the time domain. If the multiple resource units are discontinuous in the time domain, the network may further configure the distribution characteristics of the multiple resource units in the time domain, such as a distribution pattern.
  • the information refers to the number of resource units configured in the frequency domain, for example, the number N of resources in the frequency domain as shown in FIG. 8 .
  • multiple resource units can be continuously distributed in the frequency domain, and the continuous distribution is beneficial to improve resource utilization efficiency.
  • multiple resource units may also be discontinuously distributed in the frequency domain. If the multiple resource units are discontinuous in the frequency domain, the network may further configure the distribution characteristics of the multiple resource units in the frequency domain, such as a distribution pattern.
  • This information refers to the position information of the resource unit in the time domain. It may be the relative position of the resource unit relative to the signaling (configuration information or scheduling signaling) (T offset shown in FIG. 8 ), or it may be the absolute position information of the resource unit in the time domain.
  • positions of all resource units in the time domain may be determined based on one of the multiple resource units. For example, first determine the position of the earliest resource unit among the multiple resource units included in the resource set, based on this, further (for example, based on the number of resource units or their distribution characteristics in the time domain) determine the positions of other resource units . Therefore, the position information of the resource unit in the time domain contained in the signaling may be the absolute time position information of the earliest resource unit in time among the configured resource units, or the time interval relative to the signaling.
  • This information refers to location information of resource units in the frequency domain. It may be the frequency position offset of the resource unit relative to the signaling (configuration information or scheduling signaling), or it may be the number of the PRB occupied by the resource unit in the frequency domain, or the channel index occupied by the resource unit.
  • the positions of all the resource units in the frequency domain may be determined based on one of the multiple resource units. For example, first determine the position of the resource unit occupying the lowest frequency position in the frequency domain among the multiple resource units included in the resource set, and then further (for example, based on the number of resource units or their distribution characteristics in the frequency domain) determine other resources The location of the unit. Therefore, the position information of the resource unit contained in the signaling in the frequency domain may be the frequency position occupied by the resource unit occupying the lowest frequency position in the frequency domain among the multiple resource units, such as the occupied PRB number, or the occupied channel index, Or relative to the frequency position offset relationship of the channel where the configuration signaling is located.
  • the available resource set can be expanded, thereby potentially reducing conflicts among users and improving the correct probability of transmission. For example, even if two users select resource units that completely overlap in the time domain and frequency domain, if the two users select different codewords, the network device can still correctly receive the information of the two users at the same time.
  • Orthogonal code or non-orthogonal code information included in the resource configuration information may include at least one of the following:
  • the resource configuration information can include the transmission rate corresponding to the resource unit, or the corresponding data block size (Transport Block Size, TBS), or the corresponding modulation and coding level (Modulation and Coding Scheme, MCS), etc.
  • TBS Transport Block Size
  • MCS Modulation and Coding Scheme
  • the terminal can select corresponding resource units according to its own channel conditions. For example, a terminal with better channel conditions, such as a terminal with a higher Signal to Noise Ratio (SNR) or a higher Reference Signal Receiving Power (RSRP), can choose to correspond to a higher transmission rate (or to a higher resource unit of TBS).
  • SNR Signal to Noise Ratio
  • RSRP Reference Signal Receiving Power
  • Different resource units may correspond to different types of terminals.
  • terminals with different priorities may correspond to different resource units, so the resource configuration information may include priority information of corresponding terminals.
  • the terminal can select the corresponding resource unit according to its own priority.
  • some or all parameters of the resource units corresponding to different resource configurations are different, such as the time domain length of the resource unit, or the frequency domain configuration of the resource unit, or the transmission rate corresponding to the resource unit.
  • the above configuration information can be transmitted through system messages.
  • the advantage is that the system message can carry a relatively large amount of configuration information, and can be broadcasted to all users in the cell.
  • the terminal itself since the terminal itself does not use a battery, even if it receives the configuration information sent in the system information, it cannot save the system information for a long time. Therefore, using the traditional periodic system message as the above signaling may cause the zero-power terminal to lose the configuration information in the system message at the moment when the wireless power supply is lost.
  • Method 1 The resource configuration information is sent when the zero-power consumption terminal is triggered to perform data transmission, that is, the configuration signaling carrying the resource configuration information is the signaling that triggers the terminal to perform data transmission, as shown in FIG. 9 .
  • the terminal receives the resource configuration information, and obtains one or more resource configurations indicated therein, and each resource configuration is further configured with resource unit information as described above.
  • the terminal selects the corresponding resource configuration based on its own conditions, such as channel conditions, service priority and other information, and further selects resource units in the resource set corresponding to the selected resource configuration for data transmission. Wherein, if the resource set includes multiple resource units, the terminal may randomly select a resource unit. If each resource unit further includes multiple available codewords, the terminal randomly selects a codeword for data transmission.
  • Mode 2 The resource configuration information is sent in the configuration signaling and the scheduling signaling used to trigger the zero-power terminal to perform data transmission. That is, the terminal first receives the configuration signaling, and then receives the scheduling signaling.
  • the terminal first receives the configuration signaling, and then the terminal receives the scheduling signaling.
  • the configuration signaling may include the time domain length of resource units, frequency resource configuration, etc.
  • the scheduling signaling may include, for example, the T offset information in Figure 10, or TBS block information (if the resource configuration information does not include these information), etc. .
  • the configuration signaling can be used to carry more configuration information, and the flexible and variable characteristics of the scheduling signaling can be utilized to improve the flexibility of scheduling.
  • each scheduling signaling may indicate one or more resource configurations in combination with configuration signaling, as shown in FIG. 12 .
  • access control means can be used to control the access of terminals, so that different terminals can be sent sequentially in time order, thereby alleviating or solving the conflict problem and improving system transmission performance.
  • access control information may be indicated in the aforementioned resource configuration information or scheduling signaling, and the access control information may include one of the following:
  • the access level of the terminal Only terminals that meet the level requirements can send data.
  • the terminal access level is divided into five levels, which are 1, 2, 3, 4, and 5 respectively. If it is indicated that terminals with access level 1 can access, only terminals with access level 1 can send data, and other terminals cannot send data.
  • the access probability is the probability that the control terminal can send data. For example, if the access probability is 20%, it means that only 20% of the terminals can send data after receiving the aforementioned resource configuration information or scheduling signaling.
  • the terminal randomly generates a data in the interval [0,1]. If it is greater than 0.2, the terminal cannot send data; otherwise, it can send data.
  • Terminal type Divide all terminals into different types. Such as monitoring class, control class, label class and so on. The data can be sent only when it is indicated that the terminal of the corresponding category can send the data.
  • the above method solves the resource allocation problem in the case of a large number of zero-power terminals, but on the other hand, the zero-power terminal only determines that the data transmission is completed when the network correctly receives the data of the terminal, otherwise, the terminal needs to resend data. Therefore, how the network device performs data reception feedback to the zero-power terminal is a problem that needs to be solved.
  • an embodiment of the present application provides an information indication method, which is used for a network device to perform data reception feedback to a terminal.
  • the method can be applied to a zero-power communication system. The method includes:
  • the network device sends feedback information, where the feedback information includes the UE identifier corresponding to the data correctly received by the network device.
  • the feedback information may carry the ID of the correctly received UE.
  • the ID of the UE may be carried in the feedback information.
  • the IDs of the 20 UEs may be carried in the feedback information.
  • the terminal receives the feedback information, and determines whether the network device correctly receives the data sent by the zero-power consumption terminal according to the UE identifier in the feedback information. Specifically, in the case that the feedback information includes the UE identifier of the terminal, the terminal determines that the network device correctly receives the data sent by the terminal. If there is no UE identifier of the terminal in the feedback information, the terminal determines that the network device has not received the data sent by the terminal correctly, and the terminal needs to retransmit the data.
  • the foregoing method is a highly feasible feedback method when the number of terminals is small. However, in the case of a large number of terminals. If the ID of each UE needs to be carried in the feedback information, it is obvious that the feedback overhead will be relatively large, or even unacceptable. For example, if there are 1000 UEs, and assuming that the ID of each UE is 40 bits, the feedback overhead is 40,000 bits. Such a large feedback overhead is unacceptable for low data rate zero-power communication.
  • the network device sends feedback information, where the feedback information includes the compressed information of the UE identity corresponding to the data correctly received by the network device.
  • the compressed information may be part of the information in the UE ID, or may be information obtained by compressing the UE ID based on a preset compression rule.
  • the feedback information only includes some bits of all bits of the UE ID, such as the first M bits and/or the last N bits, etc., and M and N are integers greater than or equal to.
  • This method can alleviate the problem of high feedback overhead when there are a large number of users to a certain extent, but it may also cause two or more UEs that are originally different UEs to have the same compressed UE ID, resulting in false feedback. This is also a problem that needs to be considered in the method of compressing the UE ID.
  • Fig. 13 is a schematic flowchart of an information indicating method according to an embodiment of the present application. The method includes:
  • the network device sends a first signaling, and the first signaling includes feedback information corresponding to each resource unit in the first resource set; wherein, the feedback information is used to indicate whether the network device correctly receives the resource unit based on the feedback information The data sent by the terminal.
  • the terminal may be a zero-power consumption terminal. That is, the method can be applied to a zero-power communication system, but it is not limited thereto. Other terminals or communication systems can also use this method to perform data reception feedback to achieve correct feedback and reduce overhead.
  • the first resource set includes multiple resource units.
  • the first signaling may include multiple pieces of feedback information.
  • the plurality of resource units and the plurality of feedback information may be in a one-to-one correspondence, or may be in a one-to-many correspondence.
  • each resource unit may correspond to one piece of feedback information, or correspond to multiple pieces of feedback information.
  • the fact that the network device correctly receives the data sent by the terminal means that the network device receives the data sent by the terminal and can interpret it correctly.
  • the network device feeds back to the terminal whether the data transmitted on the resource unit is correctly received by carrying the feedback information corresponding to the resource unit in the first signaling.
  • the terminal may receive the first signaling.
  • FIG. 14 is a schematic flowchart of an information indication method according to another embodiment of the present application. The method includes:
  • the terminal receives first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set; where the feedback information is used to indicate whether the network device correctly receives the terminal based on the resource unit corresponding to the feedback information sent data.
  • the first resource set may be a set of resources configured by the network device or pre-configured for the terminal to send data.
  • each terminal selects a resource unit from the first resource set, and sends data based on the selected resource unit.
  • the terminal may determine whether the data is successfully received based on the first signaling by receiving the first signaling.
  • the above method also includes:
  • the terminal When the terminal sends data based on the first resource unit in the first resource set, the terminal determines whether the network device receives the data correctly according to the feedback information corresponding to the first resource unit in the first signaling.
  • the terminal may determine the feedback information corresponding to the first resource unit in the first signaling according to the correspondence between each resource unit in the first resource set and each feedback information in the first signaling.
  • the corresponding relationship may be pre-configured or configured by the network device or determined by the terminal device based on a predefined rule or mapping sequence.
  • the feedback information may be acknowledgment information (ACK) or non-acknowledgement information (NACK).
  • ACK acknowledgment information
  • NACK non-acknowledgement information
  • the acknowledgment information is used to indicate that the network device correctly receives the data sent by the terminal based on the corresponding resource unit.
  • the non-confirmation information is used to indicate that the network device has not correctly received the data sent by the terminal based on the corresponding resource unit, for example, it has not received it or has received it but has not interpreted it correctly.
  • bit values may be used to represent confirmation information or non-confirmation information.
  • the feedback information when the feedback information includes the first bit value, the feedback information is confirmation information.
  • the feedback information includes the second bit value, the feedback information is non-confirmation information.
  • the value of the first bit is 1, and the value of the second bit is 0.
  • the first bit has a value of 0 and the second bit has a value of 1.
  • the feedback information is a single bit, that is, the feedback information is 1-bit information, which may be called a feedback bit.
  • the feedback bit is confirmation information, indicating that the network device correctly receives data on the corresponding resource unit.
  • the feedback bit is non-confirmation information, indicating that the network device has not correctly received data on the corresponding resource unit.
  • the first signaling may include a bit stream.
  • the resource configuration information sent by the network device to the terminal schedules a resource set as shown in FIG. 8 , which is recorded as the first resource set.
  • the first resource set includes 24 resource units.
  • each resource unit corresponds to one feedback bit, and for 24 resource units, 24 feedback bits are required.
  • the first signaling includes a 24-bit bit stream, and each bit in the bit stream corresponds to each resource unit in FIG. 8 one by one.
  • the network device when the network device correctly receives the data sent by the terminal on any one of the 24 resource units, it can set the feedback bit corresponding to the resource unit as ACK (the feedback bit value "1" can be used to indicate ACK and Use the feedback bit value "0" to indicate NACK).
  • the embodiment of the present application can effectively control the overhead of feedback, so as to enable effective communication in a zero-power consumption scenario with many terminals.
  • each resource unit may correspond to multiple pieces of feedback information.
  • the feedback information corresponding to each resource unit includes a plurality of feedback information corresponding to a plurality of codewords supported by each resource unit.
  • each resource unit can support the transmission of up to 4 codewords (indices of the corresponding codewords are 0, 1, 2, 3 respectively), then each resource unit corresponds to 4 pieces of feedback information.
  • Each piece of feedback information in the plurality of feedback information is used to indicate whether the network device correctly receives the data using the codeword corresponding to the feedback information sent by the terminal based on the resource unit corresponding to the feedback information.
  • each resource unit supports two codewords for data transmission, the codeword indexes are 0 and 1 respectively. Then there are 2 pieces of feedback information corresponding to each resource unit, and the 2 pieces of feedback information correspond to 2 codewords respectively.
  • resource unit 1 in FIG. 8 corresponds to two pieces of feedback information, one of which is used to indicate whether the network device has correctly received the data using codeword 0 sent by the terminal based on resource unit 1, and the other feedback information is used to indicate to the network device Whether or not the data using codeword 1 sent by the terminal is correctly received based on resource unit 1.
  • each resource unit supports multiple codewords
  • the terminal determines whether the network device receives the data correctly based on the resource unit, codeword and first signaling used to send the data. Specifically, when the terminal sends data based on the first resource unit in the first resource set, the terminal determines whether the network device receives the data correctly according to the feedback information corresponding to the first resource unit in the first signaling, specifically including:
  • the terminal When the terminal sends data using the first codeword based on the first resource unit in the first resource set, the terminal determines the network device according to the feedback information corresponding to the first resource unit and the first codeword in the first signaling Whether the data is received correctly.
  • the terminal may determine, in the first signaling, the feedback corresponding to the first resource unit and the first codeword in the first signaling according to the correspondence between the resource units in the first resource set and the feedback information in the first signaling information, wherein the correspondence may be pre-configured or configured by the network device or determined by the terminal device based on a predefined rule or mapping sequence.
  • the first resource set may be one of multiple resource sets configured or pre-configured by the network device for the terminal to send data.
  • the network device may send multiple resource configurations, and each resource configuration corresponds to a resource set.
  • the multiple resource sets corresponding to the multiple resource configurations include a first resource set, a second resource set, etc., and the first signaling includes feedback information corresponding to each resource unit in the first resource set.
  • a processing manner is to use different signaling to correspond to the multiple resource sets respectively.
  • the network device sends multiple signalings, and the multiple signalings are in one-to-one correspondence with multiple resource sets.
  • the first signaling is signaling corresponding to the first resource set among multiple signalings sent by the network device.
  • the terminal when the terminal selects the resource unit in the first resource set to send data, it needs to determine the first signaling corresponding to the first resource set among multiple signalings. Therefore, it is necessary to consider how to configure the multiple signaling The corresponding relationship between commands and multiple resource collections.
  • the corresponding relationship between each signaling and each resource set may be determined according to the sequence of sending time of the signaling and the sequence of the set indexes of the resource set. For example, according to the order of signaling from front to back and the order of set indexes from small to large, the corresponding relationship between each signaling and each set is sequentially established.
  • the sending time sequence of the multiple signalings is related to the numbering sequence of the multiple resource sets.
  • the above method further includes: the terminal determines the first signaling corresponding to the first resource set among the multiple signalings according to the sending time sequence of the multiple signalings and the numbering sequence of the multiple resource sets.
  • a correspondence between a signaling scrambling code or a radio network temporary identity (Radio Network Tempory Identity, RNTI) and a resource configuration may be established, that is, multiple signaling scrambling codes correspond to multiple resource sets one-to-one, Or multiple signaling RNTIs are in one-to-one correspondence with multiple resource sets.
  • the above method further includes: the terminal determines, among multiple signalings, the first signaling corresponding to the first resource set according to the scrambling code or RNTI corresponding to the first resource set.
  • each signaling may also indicate the index or number of its corresponding resource set while carrying feedback information.
  • the first signaling simultaneously carries feedback information corresponding to multiple resource sets. That is, the first signaling may include feedback information corresponding to each resource unit in each of the multiple resource sets.
  • the terminal when the terminal sends data, the terminal needs to determine the position of the feedback information corresponding to the terminal in the first signaling based on information of one or more dimensions.
  • the network device receives the data correctly, the network device also needs to determine the position of the feedback information corresponding to the data in the first signaling based on information of one or more dimensions.
  • each resource unit corresponds to one piece of feedback information
  • the terminal needs to determine the corresponding feedback information according to the index of the resource unit used to send the data in the first signaling position in .
  • the terminal when considering code division multiplexing and each resource unit supports multiple codewords, if the terminal sends data, the terminal needs to determine the corresponding feedback according to the index of the resource unit used to send the data and the index of the codeword The location of the information in the first signaling.
  • the terminal needs to select the index of the resource set and the resource unit used in the resource set The index in determines the position of the corresponding feedback information in the first signaling.
  • each resource unit in the first resource set and each piece of feedback information in the first signaling also needs to be determined based on information in one or more dimensions.
  • the above method may include:
  • the network device determines the correspondence between each resource unit in the first resource set and each feedback information in the first signaling based on the first mapping order;
  • the terminal determines the correspondence between each resource unit in the first resource set and each piece of feedback information in the first signaling based on the first mapping order.
  • the first mapping order may include the order of information in multiple dimensions.
  • the first mapping order includes a resource order
  • the resource order includes an order of resource indexes of resource units in the first resource set.
  • the first mapping order is a resource order.
  • the resource order may include an ascending order or a descending order of resource indexes of resource units.
  • the resource index includes a time domain index and/or a frequency domain index.
  • the resource order is determined based on the order of the time domain indexes of the resource units and/or the order of the frequency domain indexes of the resource units.
  • the order of the time-domain indexes may be from small to large, or from large to small.
  • the order of the frequency domain indexes (which may be referred to as the frequency domain order for short) may be from small to large or from large to small, which is not limited in this application.
  • the time domain index of the resource unit may be determined based on the time of the resource unit, and the time domain index is from small to large, that is, from front to back.
  • the frequency domain index of the resource unit may be determined based on the high or low frequency of the resource unit, and the frequency domain index is in ascending order, that is, the order of frequency is from low to high.
  • the resource index may include a time-domain index
  • the order of resources is the order of the time-domain index.
  • the resource index may include a frequency domain index
  • the order of the resources is the order of the frequency domain index.
  • the order of the resources is also determined based on the order of the time-domain indexes of the resource units and the order of the frequency-domain indexes of the resource units. That is, the order of the resources may be the order of the time domain index first and then the order of the frequency domain index, or the order of the frequency domain index first and then the order of the time domain index.
  • the sequence of resources is: first, the time domain index is from small to large, and then the frequency domain index is from small to large.
  • the order of the resources is: firstly, the frequency domain index is from large to small, and then the time domain index is from large to small.
  • the resource index can be determined based on the sequence in the frequency domain, the sequence in the time domain, and the sequence between the sequence in the time domain and the sequence in the frequency domain.
  • the order of resources may be: firstly, the frequency domain index is small to large (ie, frequency is from low to high), and then the time domain index is small to large (ie, time is from front to back). Then, when determining the above corresponding relationship, each resource unit in the first resource set is in one-to-one correspondence with each feedback bit in the first signaling in the order of frequency from low to high and time from front to back.
  • the first signaling includes 24 feedback bits (values of the feedback bits in the figure are only examples).
  • resource unit 1 which is the first in the time domain and the lowest in the frequency domain
  • the first 6 bits are in one-to-one correspondence with the 6 resource units at the position of the first time unit according to the frequency domain from low to high.
  • 6 bits From front to back respectively correspond to resource unit 1 , resource unit 2 , resource unit 3 . . . resource unit 6 arranged from low to high in the frequency domain.
  • the second 6 bits correspond to the 6 resource units at the second time unit position, and the 6 bits correspond to the 6 resource units at the second time unit position in the same way Unit-to-unit mapping. And so on, until the correspondence between 24 bits and 24 resource units is determined.
  • the order of the resources may also be: firstly, the index in the time domain is from small to large (that is, from the front to the back in the domain), and then the index in the frequency domain is from small to large (that is, from low to high in the frequency domain). Then, when determining the above corresponding relationship, each resource unit in the first resource set is in one-to-one correspondence with each feedback bit in the first signaling in the order of time from front to frequency and frequency from low to high.
  • the first signaling includes 24 feedback bits (values of the feedback bits in the figure are only examples).
  • resource unit 1 which is the first in the time domain and the lowest in the frequency domain
  • the first 4 bits correspond to the 4 resource units with the lowest frequency from front to back in the time domain.
  • the 4 bits correspond to the time Resource unit 1
  • resource unit 2, resource unit 3, and resource unit 4 are arranged from front to back on the domain.
  • the second 4 bits correspond to the 4 resource units at the second lowest frequency domain position
  • the 4 bits correspond to the resource units at the second lowest frequency domain position in the same way.
  • the 4 resource units are mapped one by one. And so on, until the correspondence between 24 bits and 24 resource units is determined.
  • the order of resources can also be any of the following orders:
  • the frequency domain index is from large to small, and then the time domain index is from small to large;
  • the frequency domain index is from large to small, and then the time domain index is from large to small;
  • the time domain index is from large to small, and then the frequency domain index is from large to small.
  • the first mapping order may also include:
  • a codeword sequence where the codeword sequence includes the sequence of codeword indices of multiple codewords supported by each resource unit;
  • Collection order includes the order of the collection indexes of multiple resource collections.
  • the first mapping order further includes a sequence between resource order and/or code word order and/or set order.
  • Case 1 The number of resource units in the frequency domain of the first resource set is 1, and the number of resource units in the time domain is multiple, such as the situation shown in FIG. 15 .
  • the first mapping order includes the time-domain order of each resource unit and the aforementioned codeword order, and also includes the sequence between the time-domain order and the codeword order.
  • the first mapping order may be the codeword order first and then the time domain order, or the time domain order first and then the codeword order.
  • both the codeword order and the time domain order may be from large to small or from small to large.
  • the first mapping order may be any of the following orders:
  • the codeword index increases from small to large, and then the time domain index increases from small to large;
  • the codeword index is from large to small, and then the time domain index is from small to large;
  • the codeword index is from large to small, and then the time domain index is from large to small;
  • the time domain index increases from small to large, and then the code word index increases from small to large;
  • the time domain index is from large to small, and then the codeword index is from small to large;
  • the time domain index is from large to small, and then the codeword index is from large to small.
  • the first signaling includes 16 feedback bits (values of the feedback bits in the figure are only examples).
  • the first 4 bits are in one-to-one correspondence with the 4 codewords of the resource unit 1 according to the codeword index from small to large.
  • the second 4 bits correspond to the 4 codewords of resource unit 2
  • the 4 bits correspond to the 4 codewords of resource unit 2 in the same way (codeword index from small to large) Codeword one-to-one mapping. And so on, until the correspondence between 16 bits and 4 resource units is determined.
  • the first mapping order is other orders, it can be implemented similarly, and the specific details will not be repeated here.
  • Case 2 The number of resource units in the time domain of the first resource set is 1, and the number of resource units in the frequency domain is multiple, such as the situation shown in FIG. 16 .
  • the first mapping order includes the frequency domain order of each resource unit and the aforementioned codeword order, and also includes the sequence between the frequency domain order and the codeword order.
  • the first mapping order may be a codeword order first and then a frequency domain order, or a frequency domain order first and then a codeword order.
  • both the code word order and the frequency domain order may be from large to small or from small to large.
  • the first mapping order may be any of the following orders:
  • the codeword index increases from small to large, and then the frequency domain index increases from small to large;
  • the codeword index is from small to large, and then the frequency domain index is from large to small;
  • the codeword index is from large to small, and then the frequency domain index is from large to small;
  • the frequency domain index increases from small to large, and then the codeword index increases from small to large;
  • the frequency domain index is from large to small, and then the codeword index is from small to large;
  • the frequency domain index is from small to large, and then the codeword index is from large to small;
  • the frequency domain index is from large to small, and then the codeword index is from large to small.
  • Case 3 The first resource set has multiple resource units in the time domain and multiple resource units in the frequency domain, such as the cases shown in FIG. 17 and FIG. 18 .
  • the first mapping sequence includes a time-domain sequence, a frequency-domain sequence, and a codeword sequence, and further includes a sequence among the time-domain sequence, the frequency-domain sequence, and the codeword sequence.
  • the sequence can be any of the following sequences:
  • Time domain order first, followed by code word order, and then frequency domain order
  • Time domain order first, followed by frequency domain order, and then code word order.
  • the code word order, the frequency domain order, and the time domain order may all be from small to large or from large to small, or one or more of them may be from small to large, and other orders may be from large to small.
  • each resource unit supports 4 codewords.
  • 96 feedback bits are required in the first signaling. Referring to the resource set shown in Figure 8, starting from the first codeword on resource unit 1 with the smallest time-domain index and the smallest frequency-domain index, the first 4 bits are combined with the resource unit according to the codeword index from small to large. The above 4 codewords correspond one to one.
  • the second 4 bits correspond to the 4 codewords of resource unit 2
  • the 4 bits correspond to the 4 codewords of resource unit 2 in the same way (codeword index from small to large) Codeword one-to-one mapping.
  • the correspondence between the first 24 bits and resource units 1-6 is determined.
  • the corresponding relationship between the second 24 bits and resource units 7-12 is determined according to the time domain index from small to large. And so on, until the correspondence between 96 bits and 24 resource units is determined.
  • each time domain unit position corresponding to 6 resource units with frequency domain index from small to large, wherein each 4 bits corresponds to 4 codewords on a resource unit, and 4 bits correspond to the codeword
  • the four codewords with the index from small to large correspond one-to-one.
  • the first mapping order is other orders, it can be implemented similarly, and the specific details will not be repeated here.
  • the first signaling includes feedback information corresponding to each resource unit in each resource set in multiple resource sets
  • the corresponding relationship between feedback information needs to take the collection order into consideration.
  • the first mapping order includes a collection order, and also includes a time domain order and/or a frequency domain order.
  • Each resource set in multiple resource sets has one resource unit in the frequency domain and multiple resource units in the time domain.
  • the first mapping order includes the time-domain order of each resource unit and the aforementioned collection order, and also includes the sequence between the time-domain order and the collection order.
  • the first mapping order may be the aggregation order first and then the time domain order, or the time domain order first and then the aggregation order.
  • both the collection order and the time domain order may be from large to small or from small to large.
  • the first mapping order may be any of the following orders:
  • the collection index is small to large, and then the time domain index is small to large;
  • the time domain index increases from small to large, and then the set index increases from small to large;
  • the time domain index is from small to large, and then the set index is from large to small;
  • the time domain index is from large to small, and then the set index is from large to small.
  • each resource set includes 4 resource units in the time domain.
  • the first 4 bits are in one-to-one correspondence with the first resource unit in the 4 resource sets according to the set index from small to large.
  • the second 4 bits correspond to the second resource unit in the 4 resource sets, and the 4 bits correspond to the 4 resource sets in the same way (set index from small to large)
  • the second resource unit in is mapped one-to-one. And so on, until the corresponding relationship between 16 bits and 16 resource units in total in 4 resource sets is determined.
  • the first mapping order is other orders, it can be implemented similarly, and the specific details will not be repeated here.
  • Case 2 the number of resource units in each resource set in the time domain is 1 in multiple resource sets, and the number of resource units in the frequency domain is multiple.
  • the first mapping order includes the frequency domain order of each resource unit and the aforementioned aggregation order, and also includes the sequence between the frequency domain order and the aggregation order.
  • the first mapping order may be the aggregation order first and then the frequency domain order, or the frequency domain order first and then the aggregation order.
  • both the collection order and the frequency domain order may be from large to small or from small to large.
  • the first mapping order may be any of the following orders:
  • the frequency domain index increases from small to large, and then the set index increases from small to large;
  • the frequency domain index is from large to small, and then the set index is from large to small.
  • Each resource set in multiple resource sets has multiple resource units in the time domain and multiple resource units in the frequency domain.
  • the first mapping order includes a time-domain order, a frequency-domain order, and an aggregation order, and further includes a sequence among the time-domain order, the frequency-domain order, and the aggregation order.
  • the sequence can be any of the following sequences:
  • Time-domain order first, followed by collection order, and then frequency-domain order
  • Time-domain order first, followed by frequency-domain order, and then aggregate order.
  • the collection order, the frequency domain order, and the time domain order may all be from small to large or from large to small, or one or more of them may be from small to large, and other orders may be from large to small.
  • each resource set includes 24 resource units (4 in the time domain multiplied by up to 6).
  • 96 feedback bits corresponding to a total of 96 resource units in the 4 resource sets are required. Referring to Fig. 20, starting from resource unit 1 in resource set 1, the first 6 bits are combined with the 6 resource units (resource units 1-6) at the first time unit position according to the frequency domain from low to high. One to one correspondence.
  • the second 6 bits correspond to the 6 resource units (resource units 7-12) at the second time unit position, and the 6 bits follow the same method (frequency domain from low to to high) are mapped one-to-one with the 6 resource units.
  • the corresponding relationship between the first 24 bits and the 24 resource units in the resource set 1 is determined.
  • the corresponding relationship between the second 24 bits and the 24 resource units in the resource set 2 is determined according to the set index in ascending order.
  • the first mapping order is other orders, it can be implemented similarly, and the specific details will not be repeated here.
  • the first mapping order includes a set order and a code word order, and also includes a time domain order and/or a frequency domain order. Further, the first mapping order also includes a sequence among the set order, the code word order, the time domain order, and the frequency domain order.
  • the set order, code word order, time domain order, and frequency domain order may all be from small to large or from large to small, or one or more of them may be from small to large, and other orders may be from large to small. Not listed here.
  • each resource set is the resource set in Figure 20, including 24 resource units (4 in the time domain multiplied by 6 in the frequency domain), where each resource unit supports 4 codewords.
  • 384 feedback bits corresponding to a total of 96 resource units in the 4 resource sets are required. Starting from resource unit 1 in resource set 1, the first 4 bits are in one-to-one correspondence with the 4 codewords on resource unit 1 according to the codeword index from small to large. Then, from low to high in the frequency domain, the second 4 bits correspond to the 4 codewords on the resource unit 2 one by one.
  • the corresponding relationship between the first 96 bits and the 24 resource units in the resource set 1 is determined.
  • the corresponding relationship between the second 96 bits and the 24 resource units in the resource set 2 is determined according to the set index from small to large.
  • the corresponding relationship between 384 bits and a total of 96 resource units in 4 resource sets is determined. For the case that the first mapping order is other orders, it can be implemented similarly, and the specific details will not be repeated here.
  • the above first mapping order for determining the correspondence between each resource unit in the first resource set and each piece of feedback information in the first signaling is preset.
  • the first mapping order is determined by the network device, that is, the above method further includes: the network device sending a second signaling, where the second signaling is used to indicate the first mapping order.
  • the terminal receives the second signaling.
  • the network device feeds back to the terminal whether the data transmitted on the resource unit is correctly received by carrying the feedback information corresponding to the resource unit in the first signaling, so the terminal can confirm whether the data is completed according to the feedback information transmission so that the communication is done accurately. And the overhead of feedback is effectively controlled, so that the zero-power communication scenarios with many terminals can also communicate effectively.
  • Fig. 21 is a schematic block diagram of a network device 100 according to an embodiment of the present application.
  • the network device 100 may include:
  • the first communication module 110 is configured to send a first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device 100 correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • the first resource set is a set of resources configured or pre-configured by the network device 100 for the terminal to send data.
  • the feedback information is confirmation information or non-confirmation information.
  • the feedback information when the feedback information includes the first bit value, the feedback information is confirmation information.
  • the feedback information when the feedback information includes the second bit value, the feedback information is non-confirmation information.
  • the feedback information is a single bit.
  • the feedback information corresponding to each resource unit includes a plurality of feedback information corresponding to a plurality of codewords supported by each resource unit;
  • Each piece of feedback information in the plurality of feedback information is used to indicate whether the network device 100 correctly receives the data using the codeword corresponding to the feedback information sent by the terminal based on the resource unit corresponding to the feedback information.
  • the first resource set is one of multiple resource sets configured or pre-configured by the network device 100 for the terminal to send data.
  • the first signaling includes feedback information corresponding to each resource unit in each of the multiple resource sets.
  • the network device 100 further includes:
  • the first processing module 120 is configured to determine a correspondence between each resource unit in the first resource set and each piece of feedback information in the first signaling based on the first mapping order.
  • the first mapping order includes a resource order
  • the resource order includes an order of resource indexes of resource units in the first resource set.
  • the resource index includes a time domain index and/or a frequency domain index.
  • the resource order is determined based on the order of the time domain indexes of the resource units and/or the order of the frequency domain indexes of the resource units.
  • the order of resources is also determined based on the order of the time-domain indexes of each resource unit and the order of the frequency-domain indexes of each resource unit.
  • the first mapping order further includes:
  • a codeword sequence where the codeword sequence includes the sequence of codeword indices of multiple codewords supported by each resource unit;
  • Collection order includes the order of the collection indexes of multiple resource collections.
  • the first mapping order further includes a sequence between resource order and/or codeword order and/or set order.
  • the first mapping order is preset.
  • the first mapping order is determined by the network device 100, and the first communication module 110 is also used to:
  • the first signaling is the signaling corresponding to the first resource set among the multiple signalings sent by the network device 100, where the multiple signalings correspond to the multiple resource sets one-to-one .
  • the sending time sequence of the multiple signalings is related to the numbering sequence of the multiple resource sets.
  • multiple signaling scrambling codes or radio network temporary identifiers RNTI correspond one-to-one to multiple resource sets.
  • the terminal is a zero-power consumption terminal.
  • the network device 100 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • the functions described by the various modules (submodules, units or components, etc.) in the network device 100 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same module (submodule, unit or component, etc.), for example, the first sending module and the second sending module can be different modules, or the same module, all of which can realize their corresponding functions in the embodiments of the present application.
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and part or all of the other modules may be implemented by a processor of the device.
  • this embodiment of the present application further provides a terminal 200, referring to FIG. 23 , which includes:
  • the second communication module 210 is configured to receive first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device correctly receives the data sent by the terminal 200 based on the resource unit corresponding to the feedback information.
  • the terminal 200 further includes:
  • the second processing module 220 is configured to determine whether the network device correctly receives the data according to the feedback information corresponding to the first resource unit in the first signaling when the terminal 200 sends data based on the first resource unit in the first resource set data.
  • the second processing module 220 is also used to:
  • the feedback information corresponding to the first resource unit is determined in the first signaling.
  • the feedback information corresponding to each resource unit includes multiple feedback information corresponding to multiple codewords supported by each resource unit;
  • Each piece of feedback information in the plurality of feedback information is used to indicate whether the network device correctly receives the data using the codeword corresponding to the feedback information sent by the terminal 200 based on the resource unit corresponding to the feedback information.
  • the terminal 200 further includes:
  • the second processing module 220 is configured to, in the case that the terminal 200 sends data using the first codeword based on the first resource unit in the first resource set, according to the first signaling and the first resource unit and the first codeword The corresponding feedback information determines whether the network device receives the data correctly.
  • the second processing module 220 is also used to:
  • each resource unit in the first resource set determines the feedback information corresponding to the first resource unit and the first codeword in the first signaling.
  • the first resource set is one of multiple resource sets configured by the network device or pre-configured for the terminal 200 to send data.
  • the first signaling includes feedback information corresponding to each resource unit in each of the multiple resource sets.
  • the second processing module 220 in the terminal 200 is used to:
  • the first mapping order includes a resource order
  • the resource order includes an order of resource indexes of resource units in the first resource set.
  • the resource index includes a time domain index and/or a frequency domain index.
  • the resource order is determined based on the order of the time domain indexes of the resource units and/or the order of the frequency domain indexes of the resource units.
  • the order of the resources is also determined based on the order of the time-domain indexes of the resource units and the order of the frequency-domain indexes of the resource units.
  • the first mapping order further includes:
  • a codeword sequence where the codeword sequence includes the sequence of codeword indices of multiple codewords supported by each resource unit;
  • Collection order includes the order of the collection indexes of multiple resource collections.
  • the first mapping order further includes a sequence between resource order and/or codeword order and/or set order.
  • the first mapping order is preset.
  • the second communication module 210 is also used to:
  • Receive second signaling where the second signaling is used to indicate the first mapping order.
  • the first signaling is signaling corresponding to the first resource set among the multiple signalings sent by the network device, where the multiple signalings correspond to the multiple resource sets one-to-one.
  • the sending time sequence of multiple signalings is related to the numbering sequence of multiple resource sets
  • the second processing module 220 in the terminal 200 is used for:
  • the first signaling corresponding to the first resource set is determined among the multiple signalings.
  • multiple signaling scrambling codes or RNTIs are in one-to-one correspondence with multiple resource sets;
  • the second processing module 220 in the terminal 200 is used for:
  • the terminal 200 determines, among multiple signalings, the first signaling corresponding to the first resource set according to the scrambling code or the RNTI corresponding to the first resource set.
  • the terminal 200 includes a zero-power consumption terminal 200 .
  • the terminal 200 in the embodiment of the present application can realize the corresponding functions of the terminal in the aforementioned method embodiments, and the procedures, functions, implementation methods and beneficial effects corresponding to each module (submodule, unit or component, etc.) in the terminal 200 can be Refer to the corresponding descriptions in the foregoing method embodiments, and details are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the terminal 200 in the embodiment of the present application may be realized by different modules (submodules, units or components, etc.), or by the same module (submodule, unit or component, etc.), for example, the first sending module and the second sending module can be different modules, or the same module, all of which can realize their corresponding functions in the embodiments of the present application.
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and part or all of the other modules may be implemented by a processor of the device.
  • Fig. 25 is a schematic structural diagram of a communication device 600 according to an embodiment of the application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or to receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the communication device 600 may implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the communication device 600 may be a terminal in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal in each method of the embodiment of the application. For the sake of brevity, details are not repeated here.
  • Fig. 26 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the terminal in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the terminal in the methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • FIG. 27 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal 810 and a network device 820 .
  • the network device 820 sends first signaling, where the first signaling includes feedback information corresponding to each resource unit in the first resource set;
  • the feedback information is used to indicate whether the network device 820 correctly receives the data sent by the terminal based on the resource unit corresponding to the feedback information.
  • the terminal 810 receives the first signaling.
  • the terminal 810 can be used to realize the corresponding functions realized by the terminal in the methods of various embodiments of the present application
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the methods of the various embodiments of the present application .
  • details are not repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center by wire (such as coaxial cable, optical fiber, digital subscriber line (Digital Subscriber Line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息指示方法、网络设备、终湍、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统,该方法包括:网络设备发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息(S110);其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。利用本方法能够准确进行数据接收反馈,并且有效控制了反馈的开销。

Description

信息指示方法、网络设备、终端、芯片和存储介质 技术领域
本申请涉及通信领域,并且更具体地,涉及一种信息指示方法、网络设备、终端、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统。
背景技术
基于能量采集和反向散射通信技术实现的零功耗通信,由于具备极低成本、零功耗、小尺寸等显著的优点,可以广泛应用于各行各业,例如面向垂直行业的物流、智能仓储、智慧农业、能源电力、工业互联网等;也可以应用于智能可穿戴设备、智能家居等个人应用。
在很多零功耗通信的场景中,与网络设备通信的零功耗终端的数量较多。例如,在物流场景中,网络设备需要在短时间内(如几秒内)读取数百上千个零功耗终端的信息。如何准确完成与大量的零功耗终端的通信是一个需要解决的问题。
发明内容
有鉴于此,本申请实施例提供一种信息指示方法、网络设备、终端、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统,可用于网络设备向终端进行数据接收反馈。
本申请实施例提供一种信息指示方法,包括:
网络设备发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
本申请实施例提供一种信息指示方法,包括:
终端接收第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
本申请实施例还提供一种网络设备,包括:
第一通信模块,用于发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
本申请实施例还提供一种终端,包括:
第二通信模块,用于接收第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
本申请实施例还提供一种网络设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行本申请任意实施例提供的方法。
本申请实施例还提供一种终端,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行本申请任意实施例提供的方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行本申请任意实施例提供的方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,计算机程序使得计算机执行本申请任意实施例提供的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,计算机程序指令使得计算机执行本申请任意实施例提供的方法。
本申请实施例还提供一种计算机程序,计算机程序使得计算机执行本申请任意实施例提供的方法。
本申请实施例还提供一种通信系统,包括用于执行本申请任意实施例提供的方法的终端和网络设备。
根据本申请实施例的技术方案,网络设备通过在第一信令中携带与资源单元对应的反馈信息,向终端反馈是否正确接收该资源单元上传输的数据,因此,终端能够根据反馈信息确认数据是否完成传输,从而准确完成通信。并且有效控制了反馈的开销,从而使得在终端较多的零功耗通信场景也可以有效通信。
附图说明
图1是一种示例性的通信系统架构的示意图。
图2是本申请一个实施例的零功耗通信系统的示意图。
图3是本申请一个实施例的射频能量采集的示意图。
图4是本申请一个实施例的反向散射通信的示意图。
图5是本申请一个实施例的电阻负载调制的示意图。
图6A是本申请一个实施例的反向不归零编码的示意图。
图6B是本申请一个实施例的曼彻斯特编码的示意图。
图6C是本申请一个实施例的单极性归零编码的示意图。
图6D是本申请一个实施例的差动双相编码的示意图。
图6E是本申请一个实施例的米勒编码的示意图。
图7是本申请一个实施例的资源配置的示意图。
图8是本申请一个实施例的资源单元的示意图。
图9是本申请一个实施例的配置信令的示意图。
图10是本申请另一实施例的配置信令和调度信令的示意图一。
图11是本申请另一实施例的配置信令和调度信令的示意图二。
图12是本申请另一实施例的配置信令和调度信令的示意图三。
图13是本申请一个实施例的信息指示方法的示意性流程图。
图14是本申请另一实施例的信息指示方法的示意性流程图。
图15是本申请实施例中的第一映射顺序的示意图一。
图16是本申请实施例中的第一映射顺序的示意图二。
图17是本申请实施例中的第一映射顺序的示意图三。
图18是本申请实施例中的第一映射顺序的示意图四。
图19是本申请实施例中的第一映射顺序的示意图五。
图20是本申请实施例中的第一映射顺序的示意图六。
图21是本申请一个实施例的网络设备的示意性结构框图。
图22是本申请另一实施例的网络设备的示意性结构框图。
图23是本申请一个实施例的终端的示意性结构框图。
图24是本申请另一实施例的终端的示意性结构框图。
图25是本申请实施例的通信设备示意性框图。
图26是本申请实施例的芯片的示意性框图。
图27是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
通常,通信系统可以包括:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等。
通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual  Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
通信系统一般包括网络设备和终端设备。其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示意性地示出了一个包括网络设备1100和两个终端设备1200的无线通信系统1000。可选地,该无线通信系统1000可以包括多个网络设备1100,并且每个网络设备1100的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
(一)零功耗通信技术原理
零功耗通信采用能量采集和反向散射通信技术。如图2所示,零功耗通信网络包括网络设备和零功耗终端。其中,网络设备用于向零功耗终端发送无线供能信号、下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块例如射频(Radio Frequency,RF)能量采集模块、反向散射通信模块以及低功耗计算模块。可选地,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗通信的关键技术主要包括射频能量采集和反向散射通信。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,示例性地,这些能量可以用于驱动低功耗解调与调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的无线信号(载波),并对该无线信号进行调制,以在该无线信号上加载需要发送的信息,再将调制后的信号(反向散射信号)从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗终端(例如电子标签)的阻抗大小等参数随之改变,从而完成调制的过程。
负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,如图5所示,负载并联一个电阻。开关S基于二进制数据流的控制接通或断开,从而接通或断开电阻。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(Amplitude Shift Keying,ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(Frequency Keying,FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)终端不主动发射信号,因此不需要复杂的射频链路,例如功率放大器(Power Amplifier,PA)、射频滤波器等;
(2)终端不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
(二)零功耗通信的应用场景
由于具备极低成本、零功耗、小尺寸等显著的优点,因此,零功耗通信可以广泛应用于各行各业,例如面向垂直行业的物流、智能仓储、智慧农业、能源电力、工业互联网等;也可以应用于智能可穿戴设备、智能家居等个人应用。
(三)零功耗通信的编码方式
零功耗终端(例如电子标签)传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。以无线射频识别系统(Radio Frequency Identification Devices,RFID)为例,通常可使用下列编码方法中的一种:反向不归零(Non Return Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码、差动编码。通俗的说,就是用不同的脉冲信号表示0和1。
1、反向不归零(NRZ)编码
反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,如图6A所示。
2、曼彻斯特(Manchester)编码
曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,位的值是由该位长度内半个位周期时电平的变化(上升/下降)来表示的。在半个位周期时的负跳变(下降)表示二进制“1”,半个位周期时的正跳变(上升)表示二进制“0”,如图6B所示。曼彻斯特编码在应用于载波的负载调制或者反向散射调制时,通常是在从电子标签到读写器的数据传输场景中,因为这有利于发现数据传输的错误。这是因为在位长度内,“没有变化”的状态是不允许的。当多个电子标签同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的载波信号,由于该状态不允许,所以读写器利用该错误就可以判定碰撞发生的具体位置。
3、单极性归零(UnipolarRZ)编码
单极性归零编码在第一个半个位周期中的高电平表示二进制“1”,而持续整个位周期内的低电平信号表示二进制“0”,如图6C所示。单极性归零编码可用于提取位同步信号。
4、差动双相(DBP)编码
差动双相编码在半个位周期中的任意的边沿表示二进制“0”,而没有边沿就是二进制“1”,如图6D所示。此外,在每个位周期开始时,电平都要反相。因此,对接收器来说,位节拍比较容易重建。
5、米勒(Miller)编码
米勒编码在半个位周期内的任意边沿表示二进制“1”,而经过下一个位周期中不变的电平表示二进制“0”。位周期开始时产生电平交变,如图6E所示。因此,对接收器来说,位节拍比较容易重建。
6、差动编码
差动编码中,每个要传输的二进制“1”都会引起信号电平的变化,而对于二进制“0”,信号电平保持不变。
(四)零功耗终端的分类
基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
1、无源零功耗终端
无源零功耗终端不需要内装电池。当该零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备的天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
由于无源零功耗终端不需要电池,且射频电路以及基带电路都非常简单,例如不需要低噪音放大器(Low-Noise Amplifier,LNA)、PA、晶振、模拟数字转换器(Analog to Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格便宜、使用寿命长等诸多优点。
2、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用射频能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格便宜、使用寿命长等诸多优点。
3、有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路,以实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端内置电池向RFID芯片供电,可以增加标签的读写距离,提高通信的可靠性。因此在一些对通信距离、读取时延等方面要求相对较高的场景中得以应用。
(五)蜂窝无源物联网
随着5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
(六)零功耗通信的资源配置方法
零功耗通信的一些应用场景,如物流场景等,存在短时间内众多终端与网络通信的需求。如果对于零功耗终端不做好资源的控制与协调,则在众多终端同时向网络发送信息的情况下,可能导致严重的终端冲突和信号干扰,导致网络不能正确解调终端发送的信息。即使在一些解决方案中,通过终端随机回退的方式进行资源的协调,但依然可能导致很多终端选择了相同的时频资源进行回退,因此导致严重的冲突问题和相互干扰问题。基于此,本申请实施例提供一种资源配置方法,用于配置零功耗通信中的反向链路(UL链路)的资源,即该资源用于零功耗终端进行反向散射通信,旨在解决零功耗通信过程的干扰和冲突问题。
1、资源配置
网络节点向零功耗终端发送信令,该信令用于向零功耗终端发送资源配置信息,即指示资源配置。其中该信令中包括至少一种(即一种或多种)资源的配置信息。如图7所示,网络向终端发送了4种资源配置信息,分别指示资源配置1、资源配置2、资源配置3和资源配置4。
每一种资源配置信息用于配置用于零功耗通信的资源。配置的资源以资源单元为单位,每配置信息可以配置由多个资源单元构成的资源集合。其中每一个资源单元作为一个零功耗终端进行通信时的最小时频资源。
其中,资源配置信息指示下列信息中的至少之一:
A.资源单元的时域长度
参考图8,一个资源配置信息配置的资源集合中,可包括资源单元1至资源单元24。资源配置信息可指示每个资源单元的时域长度,例如图8中的T unit。时域长度的单位为微秒(us)、毫秒(ms)、符号或时隙。即时域长度可以用微妙数、毫秒数、占用的符号数量或占用的时隙数量表示。
B.资源单元的频率资源配置
该信息用于描述资源单元的频域宽度即带宽,如图8所示的F unit。例如,带宽信息可以包括占用的PRB的数量和/或带宽大小。
C.资源单元的时域数量配置
该信息指每一种资源配置中,在时域上配置的资源单元的数量,如图8中所示的时域上的资源数量M。
一般而言,多个资源单元可以在时域上连续分布,连续分布有利于提升资源利用率。实际应用中,多个资源单元也可以在时域上不连续分布。若多个资源单元在时域上不连续,则网络可进一步配置多个资源单元在时域上的分布特征,如分布的图样。
D.资源单元的频域数量配置
该信息指在频域上配置的资源单元的数量,如图8中所示的频域上的资源数量N。
一般而言,多个资源单元可以在频域上连续分布,连续分布有利于提升资源利用效率。实际应用中,多个资源单元也可以在频域上不连续分布。若多个资源单元在频域上不连续,则网络可进一步配置多个资源单元在频域上的分布特征,如分布的图样。
E.资源单元的时域位置配置
该信息指资源单元在时域上的位置信息。可以是资源单元相对于信令(配置信息或调度信令)的相对位置(如图8所示的T offset),也可以是资源单元在时域上的绝对位置信息。
若配置的资源集合在时域上包含多个资源单元,则可以基于多个资源单元的一个来确定所有资源单元在时域的位置。例如,首先确定资源集合中所包含的多个资源单元中时间上最早的资源单元的位置,基于此,进一步(如,基于时域上资源单元的数量或其分布特征)确定其他资源单元的位置。因此信令中所包含的资源单元在时域上的位置信息可以为所配置的资源单元中时间上最早的资源单元的绝对时间位置信息,或,相对于该信令的时间间隔。
F.资源单元的频域位置配置
该信息指资源单元在频域上的位置信息。可以是资源单元相对于信令(配置信息或调度信令)的频率位置偏移量,也可以是资源单元在频域上占用的PRB编号,或占用的信道索引等。
若配置的资源集合在频域上包含多个资源单元,则可以基于多个资源单元的一个来确定所有资源单元在频域上的位置。例如,首先确定资源集合中所包含的多个资源单元中频域上占用最低频率位置的资源单元的位置,基于此,进一步(如,基于频域上资源单元的数量或其分布特征)确定其他资源单元的位置。因此信令中所包含的资源单元在频域上的位置信息可以为多个资源单元中频域上占用最低频率位置的资源单元所占用的频率位置,如占用的PRB编号,或占用的信道索引,或相对配置信令所在的信道的频率位置偏移关系。
G.资源单元上使用的正交码或非正交码信息
在相同的资源单元上,如进一步使用正交码或非正交码,则可以扩展可使用的资源集合,从而潜在地降低用户中之间的冲突,提升传输的正确概率。例如即使两个用户选择了时域频域完全重叠的资源单元,但若两个用户选择了不同的码字,网络设备依然可以同时正确接收两个用户的信息。
资源配置信息中所包含的正交码或非正交码的信息,可能包括以下至少之一:
码长;
可用的码字的数量;
可用的码字的索引。
H.资源单元所对应的传输速率,或对应的数据块大小等传输属性
针对具有不同信道条件的终端,可以配置不同的资源,因此资源配置信息中可包含资源单元所对应的传输速率,或对应的数据块大小(Transport Block Size,TBS),或所对应的调制编码等级(Modulation and Coding Scheme,MCS)等。
终端可以根据自身信道条件,选择对应的资源单元。例如,信道条件较好的终端如信噪比(Signal to Noise Ratio,SNR)或参考信号接收功率(Reference Signal Receiving Power,RSRP)较高的终端,可以选择对应较高传输速率(或对应较大的TBS)的资源单元。
I.资源单元所对应的终端分类信息
不同的资源单元可以对应不同类别的终端。例如具有不同优先级的终端可以对应不同的资源单元,因此资源配置信息中可以包含对应的终端的优先级信息。终端可以根据自身的优先级选择对应的资源单元。
需要指出的是,不同的资源配置所对应的资源单元的部分或全部参数不同,例如资源单元的时域长度,或资源单元的频域配置,或资源单元所对应的传输速率等参数不同。
2、资源配置信令
对于资源配置的信令,一种方式是上述配置信息可以通过系统消息传输。好处是系统消息可以承载相对较多的配置信息,且可以针对小区中所有的用户进行广播发送。但针对零功耗通信终端,由于终端自身不使用电池,因此即使接收到系统信息中发送的配置信息,也无法长时间保存系统信息。因此使用传统周期性发送的系统消息作为上述信令可能会导致零功耗终端在失去无线供能的瞬间失去系统消息中的配置信息。
因此,一种较优的方式是在于零功耗终端通信之前向终端发送资源配置信息。
具体的可以考虑如下2种方式:
方式1:资源配置信息在触发零功耗终端进行数据传输时发送,即承载资源配置信息的配置信令为触发终端进行数据发送的信令,如图9所示。
终端接收到资源配置信息,获得其中指示的一个或多个资源配置,每一个资源配置中进一步如前述说明配置了资源单元的信息。终端基于自身情况,如信道情况、业务优先级等信息,选择对应的资源配置,进一步在选定的资源配置对应的资源集合中选择资源单元进行数据发送。其中若资源集合中包含多个资源单元时,终端可以随机选择一个资源单元。若每一个资源单元进一步包含了多个可用码字,则终端随机选择一个码字数据发送。
方式2:资源配置信息在配置信令和用于触发零功耗终端进行数据传输的调度信令中发送。即终端先接收配置信令,再接收调度信令。
终端先接收配置信令,紧接着,终端再接收调度信令。其中,配置信令可包含资源单元的时域长度、频率资源配置等;调度信令可包含例如图10中的T offset信息,或者TBS块信息(如果资源配置信息中没有包含这些信息的话)等。通过两种信令结合,既可以使用配置信令携带较多的配置信息,又可发挥调度信令灵活可变的特点,提高调度的灵活性。
还需要指出的是,一个配置信令,后续可跟随多个时间位置上的调度信令,用于执行多次调度。如图11所示。其中,每个调度信令可以结合配置信令指示一个或多个资源配置,如图12所示。
3、接入控制信令
当零功耗终端数量较多时,所有终端一起发送数据会导致严重的用户冲突问题。为解决这个问题,可以使用接入控制手段控制终端的接入,使得不同的终端按照时间顺序有序发送,从而缓解或解决冲突问题,提升系统传输性能。
例如前述资源配置信息中或调度信令中可以指示接入控制信息,接入控制信息可能包括如下其中之一:
(1)终端的接入等级。只有满足等级要求的终端才可以发送数据,比如终端接入等级划分为5个等级,分别为1,2,3,4,5。若指示接入等级1的终端可以接入,则只有接入等级为1的终端可以发送数据,其他终端不能发送数据。
(2)接入概率。接入概率为控制终端可以发送数据的概率。例如若接入概率为20%,则意味着再收到前述资源配置信息或调度信令后,只有20%的终端可以发送数据。终端随机产生一个在区间[0,1]之间的数据,若大于0.2,则终端不能发送数据;否则可以发送数据。
(3)终端类型。将所有终端划分为不同类型。例如监测类,控制类,标签类等等。只有指示对应类别的终端可发送数据时,方可发送数据。
上述方法解决了零功耗终端数量众多情况下的资源分配问题,但另一方面,零功耗终端只有在确定网络正确接收终端的数据情况下,才确定数据传输完成,否则,终端需要重发数据。因此,网络设备如何向零功耗终端进行数据接收反馈是一个需要解决的问题。
本申请实施例提供的方案,主要用于解决上述问题中的至少一个。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
经本申请发明人深入研究发现,在零功耗通信的应用中,终端向网络发送的信息中,会包含终端的UE标识。因此,本申请实施例提供一种信息指示方法,用于网络设备向终端进行数据接收反馈。可选地,该方法可以应用于零功耗通信系统。该方法包括:
网络设备发送反馈信息,其中,反馈信息包括网络设备正确接收到的数据所对应的UE标识。
也就是说,网络设备在正确接收到终端发送的信息后,为了告知终端的信息是否被正确接收,可以在反馈信息中携带正确接收的UE的ID。例如,如果网络设备正确接收了某个UE的数据,可以将此UE的ID携带于反馈信息中。再例如,如果网络设备正确接收了20个UE的数据,可以将此20个UE的ID均携带于反馈信息中。
相应地,终端接收反馈信息,根据反馈信息中的UE标识确定网络设备是否正确接收零功耗终端发送的数据。具体地,在反馈信息包含终端的UE标识的情况下,终端确定网络设备正确接收终端发送的数据。在反馈信息中没有终端的UE标识的情况下,终端确定网络设备未正确接收终端发送的数据,终端需要对数据进行重传。
上述方式在终端数量较少时,是一种可行性较高的反馈方法。然而,在终端数量较多的情况下。如果反馈信息中需要携带每一个UE的ID,显然反馈的开销会比较大,甚至无法接受。例如若有1000个UE,而假设每一个UE的ID为40比特,则反馈的开销为40000比特,如此大的反馈开销对于低数据率的零功耗通信是不能接受的。
本申请实施例提供的另一种网络设备向终端进行数据接收反馈的方法中,包括:
网络设备发送反馈信息,其中,反馈信息包括网络设备正确接收到的数据所对应的UE标识的压缩信息。
其中,压缩信息可以是UE标识中的部分信息,也可以是基于预设压缩规则对UE标识进行压缩得到的信息。
例如,反馈信息仅包含UE ID的所有比特中的部分比特,如前M个比特和/或后N个比特等,M和N为大于等于的整数。这种方法一定程度上可以缓解在用户量大时反馈开销大的问题,但也可能导致本是不同UE的两个或多个UE,压缩后的UE ID是相同的,从而导致误反馈。这也是压缩UE ID的方法中需要考虑的问题。
针对上述问题,本申请实施例还提供另一种信息指示方法。图13是根据本申请一实施例的信息指示方法的示意性流程图。该方法包括:
S110,网络设备发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
可选地,该终端可以是零功耗终端。即该方法可以应用于零功耗通信系统,但并不仅限于此,其他终端或通信系统也可以采用该方法进行数据接收反馈以实现正确反馈以及降低开销。
示例性地,第一资源集合中包括多个资源单元。相应地,第一信令可以包括多个反馈信息。其中,多个资源单元与多个反馈信息可以是一对一的对应关系,也可以是一对多的对应关系。换句话说,每个资源单元可以对应于一个反馈信息,或者对应于多个反馈信息。
需要说明的是,网络设备正确接收到终端发送的数据是指网络设备接收到终端发送的数据并且能够正确解读。
根据上述方法,网络设备通过在第一信令中携带与资源单元对应的反馈信息,向终端反馈是否正确接收该资源单元上传输的数据。相应地,终端可以接收该第一信令。具体地,参考图14,是根据本申请另一实施例的信息指示方法的示意性流程图。该方法包括:
S210,终端接收第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
可选地,第一资源集合可以为网络设备配置的或预先配置的用于终端发送数据的资源集合。如此,各终端在第一资源集合中选择资源单元,基于选择的资源单元发送数据。之后,终端可以通过接收第一信令,基于第一信令确定该数据是否被成功接收。具体地,上述方法还包括:
在终端基于第一资源集合中的第一资源单元发送数据的情况下,终端根据第一信令中与第一资源单元对应反馈信息,确定网络设备是否正确接收到数据。
可选地,终端可以根据第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,在第一信令中确定第一资源单元对应的反馈信息。其中,该对应关系可以是预配置的或网络设备配置的或终端设备基于预定义的规则或映射顺序确定的。
可选地,反馈信息可以为确认信息(ACK)或非确认信息(NACK)。其中,确认信息用于指示网络设备基于对应的资源单元正确接收到终端发送的数据。非确认信息用于指示网络设备没有基于对应的资源单元正确接收到终端发送的数据,例如没有接收到或者接收到了但没有正确解读。
可选地,可以用比特值表示确认信息或非确认信息。示例性地,在反馈信息包括第一比特值的情况下,反馈信息为确认信息。在反馈信息包括第二比特值的情况下,反馈信息为非确认信息。其中,第一比特值为1,第二比特值为0。或者,第一比特值为0,第二比特值为1。
可选地,反馈信息为单个比特,即反馈信息为1比特信息,可以称为反馈比特。以第一比特值为1 且第二比特值为0为例,当反馈比特取值为1时,反馈比特为确认信息,表示网络设备在对应的资源单元上正确接收数据。当反馈比特取值为0时,反馈比特为非确认信息,表示网络设备没有在对应的资源单元上正确接收数据。
示例性地,在反馈信息为单个比特的情况下,第一信令可以包括一个比特流。例如,在一次数据调度过程中,网络设备向终端发送的资源配置信息中调度了如图8所示的资源集合,记为第一资源集合。第一资源集合包括24个资源单元。在不考虑码分复用的情况下,每个资源单元对应于一个反馈比特即可,则针对24个资源单元,需要24个反馈比特。第一信令包括24位的比特流,该比特流中的各比特与图8中的各资源单元一一对应。其中,网络设备在24个资源单元中的任意一个资源单元上正确接收到终端发送的数据,即可将该资源单元对应的反馈比特设置为ACK(可使用反馈比特取值“1”表示ACK而使用反馈比特取值为“0”表示NACK)。
可以看到,采用本申请实施例的方案,对于每个终端,仅需利用第一信令中的一个反馈信息例如1个比特即可对该终端发送的数据进行接收反馈。因此,即使资源配置中配置了大量的资源,例如1000个资源单元,所需要的总比特开销也仅为1000比特。因此,本申请实施例可以有效控制反馈的开销,从而使得在终端较多的零功耗场景可以有效通信。
可选地,如前述说明,每个资源单元可以对应于多个反馈信息。示例性地,每个资源单元对应的反馈信息包括与每个资源单元所支持的多个码字一一对应的多个反馈信息。
例如,若每个资源单元中可以支持多个正交或非正交的码字,则同一个资源单元上的多个码字可以支持多个终端的数据传输,因此,对应每一个码字,在第一信令中也需要对应的反馈信息。例如,假设每个资源单元上可最多支持4个码字(对应的码字的索引分别为0,1,2,3)的传输,则每一个资源单元对应4个反馈信息。
其中,多个反馈信息中的每个反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端发送的采用反馈信息对应的码字的数据。
例如,若每个资源单元上支持采用2个码字进行数据传输,码字索引分别为0和1。则每个资源单元对应的反馈信息有2个,2个反馈信息与2个码字分别对应。例如,图8中资源单元1对应2个反馈信息,其中一个反馈信息用于指示网络设备是否基于资源单元1正确接收到终端发送的采用码字0的数据,另一个反馈信息用于指示网络设备是否基于资源单元1正确接收到终端发送的采用码字1的数据。
在每个资源单元支持多个码字的情况下,终端发送数据后,基于发送数据所采用的资源单元、码字以及第一信令,确定网络设备是否正确接收该数据。具体地,在终端基于第一资源集合中的第一资源单元发送数据的情况下,终端根据第一信令中与第一资源单元对应反馈信息,确定网络设备是否正确接收到数据,具体包括:
在终端基于第一资源集合中的第一资源单元发送采用第一码字的数据的情况下,终端根据第一信令中与第一资源单元以及第一码字对应的反馈信息,确定网络设备是否正确接收到数据。
可选地,终端可以根据第一资源集合中的资源单元与第一信令中的反馈信息之间的对应关系,在第一信令中确定与第一资源单元以及第一码字对应的反馈信息,其中,该对应关系可以是预配置的或网络设备配置的或终端设备基于预定义的规则或映射顺序确定的。
示例性地,第一资源集合可以为网络设备配置的或预先配置的用于终端发送数据的多个资源集合中的一个。例如,为了匹配不同的终端的信道情况、不同的终端等级等情况,网络设备可以发送多个资源配置,每个资源配置对应一个资源集合。多个资源配置对应的多个资源集合包括第一资源集合、第二资源集合等,第一信令包括其中的第一资源集合中各资源单元对应的反馈信息。
可选地,针对网络设备向终端发送多个资源配置,指示多个资源集合的情况,一种处理方式是使用不同的信令分别对应多个资源集合。例如,网络设备发送多个信令,多个信令与多个资源集合一一对应。其中,第一信令为网络设备发送的多个信令中与第一资源集合对应的信令。
可以理解,终端在选用第一资源集合中的资源单元发送数据的情况下,需在多个信令中确定出与第一资源集合对应的第一信令,因此,需要考虑如何配置多个信令与多个资源集合的对应关系。
示例性地,可以根据信令的发送时间顺序与资源集合的集合索引的顺序,确定每个信令与每个资源集合之间的对应关系。例如按照信令从前往后的顺序以及集合索引从小到大的顺序,依次建立每个信令与每个集合之间的对应关系。
也就是说,多个信令的发送时间顺序与多个资源集合的编号顺序相关。相应地,上述方法还包括:终端根据多个信令的发送时间顺序以及多个资源集合的编号顺序,在多个信令中确定与第一资源集合对应的第一信令。
示例性地,可以建立信令的扰码或无线网络临时标识(Radio Network Tempory Identity,RNTI)与资源配置之间的对应关系,即多个信令的扰码与多个资源集合一一对应,或多个信令的RNTI与多个资 源集合一一对应。相应地,上述方法还包括:终端根据第一资源集合对应的扰码或RNTI,在多个信令中确定与第一资源集合对应的第一信令。
示例性地,每个信令在携带反馈信息的同时,也可以指示其对应的资源集合的索引或者编号。
可选地,针对网络设备向终端发送多个资源配置,指示多个资源集合的情况,另一种处理方式是第一信令同时携带多个资源集合所对应的反馈信息。即第一信令可以包括多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
通过上述各示例性的实现方式,可以看到,在终端发送数据的情况下,终端需要基于一个或多个维度的信息确定与本终端对应的反馈信息在第一信令中的位置。在网络设备正确接收数据的情况下,网络设备也需要基于一个或多个维度的信息确定该数据对应的反馈信息在第一信令中的位置。
例如,在不考虑码分复用,每个资源单元对应一个反馈信息的情况下,若终端发送数据,则终端需要根据发送数据所采用的资源单元的索引确定对应的反馈信息在第一信令中的位置。
又如,在考虑码分复用,每个资源单元支持多个码字的情况下,若终端发送数据,则终端需要根据发送数据所采用的资源单元的索引以及码字的索引确定对应的反馈信息在第一信令中的位置。
又如,在第一信令同时承载多个资源集合对应的反馈信息的情况下,若终端发送数据,则终端需要根据发送数据时所选择的资源集合的索引以及所采用的资源单元在资源集合中的索引确定对应的反馈信息在第一信令中的位置。
相应地,第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,也需要基于一个或多个维度的信息确定。
示例性地,上述方法可以包括:
网络设备基于第一映射顺序确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系;
和/或,
终端基于第一映射顺序确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系。
实际应用中,针对不同的情况,第一映射顺序可以包括多个维度上的信息的顺序。
可选地,第一映射顺序包括资源顺序,资源顺序包括第一资源集合中各资源单元的资源索引的顺序。
例如,在不考虑码分复用且第一信令仅包括第一资源集合对应的反馈信息不包括其他资源集合对应的反馈信息的情况下,第一映射顺序为资源顺序。
示例性地,资源顺序可以包括各资源单元的资源索引从小到大的顺序或从大到小的顺序。
可选地,资源索引包括时域索引和/或频域索引。
可选地,资源顺序是基于各资源单元的时域索引的顺序和/或各资源单元的频域索引的顺序确定的。这里,时域索引的顺序(可以简称为时域顺序)可以是从小到大,也可以是从大到小。类似地,频域索引的顺序(可以简称为频域顺序)可以是从小到大,也可以是从大到小,本申请不对此进行限制。示例性地,资源单元的时域索引可以基于资源单元的时间前后确定,时域索引从小到大即时间从前到后的顺序。资源单元的频域索引可以基于资源单元的频率高低确定,频域索引从小到大即频率从低到高的顺序。
例如,如图15所示,第一资源集合在频域上的资源单元数量为1,在时域上的资源单元数量为4。因此,资源索引可以包括时域索引,资源顺序即时域索引的顺序。基于各资源单元的时域索引从小到大的顺序,与第一信令中的反馈比特逐个进行映射,可以得到资源单元1-4与第一信令中四个反馈比特(附图中反馈比特的取值仅为示例)的一一对应关系。
又例如,如图16所示,第一资源集合在频域上的资源单元数量为6,在时域上的资源单元数量为1。因此,资源索引可以包括频域索引,资源顺序即频域索引的顺序。基于各资源单元的频域索引从小到大的顺序,与第一信令中的反馈比特逐个进行映射,可以得到资源单元1-6与第一信令中六个反馈比特(附图中反馈比特的取值仅为示例)的一一对应关系。
可选地,资源顺序还基于各资源单元的时域索引的顺序与各资源单元的频域索引的顺序之间的先后顺序确定。即资源顺序可以是先时域索引的顺序再频域索引的顺序,也可以是先频域索引的顺序再时域索引的顺序。例如资源顺序为:先时域索引从小到大,再频域索引从小到大。或者,资源顺序为:先频域索引从大到小,再时域索引从大到小。
例如,如图17所示,第一资源集合在频域上的资源资源单元数量为6,在时域上的资源单元数量为4。因此,资源索引可以基于频域顺序、时域顺序以及时域顺序与频域顺序之间的先后顺序确定。
示例性地,资源顺序可以为:先频域索引从小到大(即频率从低到高),再时域索引从小到大(即时间从前到后)。则在确定上述对应关系时,按照先频率从低到高再时间从前到后的顺序,将第一资源集合中的每个资源单元与第一信令中的每个反馈比特一一对应。
如图17所示,第一信令包括24个反馈比特(附图中反馈比特的取值仅为示例)。从时域最前、频域最低的资源单元1开始,先按照频域从低到高,将最前6个比特与第一个时间单元位置上的6个资源单元一一对应,其中,6个比特从前到后分别对应频域上从低到高排列的资源单元1、资源单元2、资源单元3……资源单元6。然后,按照时域从前到后,第二个6比特与第二个时间单元位置上的6个资源单元对应,且其中6个比特依据相同的方式与第二个时间单元位置上的6个资源单元一一映射。依次类推,直至确定24个比特与24个资源单元之间的对应关系。
示例性地,资源顺序也可以为:先时域索引从小到大(即时域从前到后),再频域索引从小到大(即频域从低到高)。则在确定上述对应关系时,按照先时间从前到后再频率从低到高的顺序,将第一资源集合中的每个资源单元与第一信令中的每个反馈比特一一对应。
如图18所示,第一信令包括24个反馈比特(附图中反馈比特的取值仅为示例)。从时域最前、频域最低的资源单元1开始,先按照时域从前到后,将最前4个比特与频率最低的4个资源单元一一对应,其中,4个比特从前到后分别对应时域上从前到后排列的资源单元1、资源单元2、资源单元3、资源单元4。然后,按照频域从低到高,第二个4比特与第二低的频域位置上的4个资源单元对应,且其中4个比特依据相同的方式与第二低的频域位置上的4个资源单元一一映射。依次类推,直至确定24个比特与24个资源单元之间的对应关系。
示例性地,资源顺序也可以为以下顺序中的任意一种:
先频域索引从大到小,再时域索引从小到大;
先频域索引从小到大,再时域索引从大到小;
先频域索引从大到小,再时域索引从大到小;
先时域索引从大到小,再频域索引从小到大;
先时域索引从小到大,再频域索引从大到小;
先时域索引从大到小,再频域索引从大到小。
基于上述资源顺序确定资源单元与反馈信息之间的对应关系的具体细节,可以参考图17和图18的示例实现,在此不再进行赘述。
可选地,第一映射顺序还可以包括:
码字顺序,码字顺序包括每个资源单元所支持的多个码字的码字索引的顺序;
和/或,
集合顺序,集合顺序包括多个资源集合的集合索引的顺序。
可选地,第一映射顺序还包括资源顺序和/或码字顺序和/或集合顺序之间的先后顺序。
下面提供几个具体的示例。
示例一
在使用码分复用的情况下,确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,需要将码字顺序考虑在内。针对第一资源集合中资源单元的不同情况,第一映射顺序的实现也有所不同。
情况1:第一资源集合在频域上的资源单元数量为1,在时域上的资源单元数量为多个,例如图15所示的情况。
该情况下,第一映射顺序包括各资源单元的时域顺序和上述码字顺序,还包括时域顺序和码字顺序之间的先后顺序。示例性地,第一映射顺序可以是先码字顺序再时域顺序,或者先时域顺序再码字顺序。其中,码字顺序和时域顺序均可以是从大到小或从小到大。具体地,第一映射顺序可以是以下任意一种顺序:
先码字索引从小到大,再时域索引从小到大;
先码字索引从大到小,再时域索引从小到大;
先码字索引从小到大,再时域索引从大到小;
先码字索引从大到小,再时域索引从大到小;
先时域索引从小到大,再码字索引从小到大;
先时域索引从大到小,再码字索引从小到大;
先时域索引从小到大,再码字索引从大到小;
先时域索引从大到小,再码字索引从大到小。
下面参考图19,说明如何基于先码字索引从小到大,再时域索引从小到大的第一映射顺序,确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系。如图19所示,第一信令包括16个反馈比特(附图中反馈比特的取值仅为示例)。从时域最前的资源单元1上的第一个码字开始,先按照码字索引从小到大,将最前4个比特与资源单元1的4个码字一一对应。然后,按照时域索 引从小到大,第二个4比特与资源单元2的4个码字对应,且其中4个比特依据相同的方式(码字索引从小到大)与资源单元2的4个码字一一映射。依次类推,直至确定16个比特与4个资源单元之间的对应关系。对于第一映射顺序为其他顺序的情况,可以类似地实现,具体细节不再赘述。
情况2:第一资源集合在时域上的资源单元数量为1,在频域上的资源单元数量为多个,例如图16所示的情况。
该情况下,第一映射顺序包括各资源单元的频域顺序和上述码字顺序,还包括频域顺序和码字顺序之间的先后顺序。示例性地,第一映射顺序可以是先码字顺序再频域顺序,或者先频域顺序再码字顺序。其中,码字顺序和频域顺序均可以是从大到小或从小到大。具体地,第一映射顺序可以是以下任意一种顺序:
先码字索引从小到大,再频域索引从小到大;
先码字索引从大到小,再频域索引从小到大;
先码字索引从小到大,再频域索引从大到小;
先码字索引从大到小,再频域索引从大到小;
先频域索引从小到大,再码字索引从小到大;
先频域索引从大到小,再码字索引从小到大;
先频域索引从小到大,再码字索引从大到小;
先频域索引从大到小,再码字索引从大到小。
基于上述任意一种顺序确定资源单元和反馈信息之间的对应关系的过程,可以参考图19的处理类似地实现,具体细节不再赘述。
情况3:第一资源集合在时域上的资源单元数量为多个,在频域上的资源单元数量为多个,例如图17和图18所示的情况。
该情况下,第一映射顺序包括时域顺序、频域顺序和码字顺序,还包括时域顺序、频域顺序、码字顺序之间的先后顺序。其中,该先后顺序可以是以下任意一种顺序:
先码字顺序,其次频域顺序,再时域顺序;
先码字顺序,其次时域顺序,再频域顺序;
先频域顺序,其次码字顺序,再时域顺序;
先频域顺序,其次时域顺序,再码字顺序;
先时域顺序,其次码字顺序,再频域顺序;
先时域顺序,其次频域顺序,再码字顺序。
其中,码字顺序、频域顺序、时域顺序可以均是从小到大或从大到小,也可以其中一种或多种顺序为从小到大,其他顺序为从大到小。
以先码字顺序,其次频域顺序,再时域顺序为例,假设第一资源集合中包括24个资源单元(时域上4个乘以频域上6个),每个资源单元上支持4个码字。根据前述说明可知,第一信令中需要96个反馈比特。参考图8所示的资源集合,从时域索引最小、频域索引最小的资源单元1上的第一个码字开始,先按照码字索引从小到大,将最前4个比特与该资源单元上的4个码字一一对应。然后,按照频域索引从小到大,第二个4比特与资源单元2的4个码字对应,且其中4个比特依据相同的方式(码字索引从小到大)与资源单元2的4个码字一一映射。依此类推,确定前24个比特与资源单元1-6之间的对应关系。然后,按照时域索引从小到大,确定第二个24比特与资源单元7-12之间的对应关系。依此类推,直至确定完96个比特与24个资源单元之间的对应关系。其中,每个时域单元位置上需要24个比特,对应频域索引从小到大的6个资源单元,其中每4个比特对应一个资源单元上的4个码字,且4个比特与码字索引从小到大的4个码字一一对应。对于第一映射顺序为其他顺序的情况,可以类似地实现,具体细节不再赘述。
示例二
在第一信令包括多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息的情况下,确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,需要将集合顺序考虑在内。
在不考虑码分复用的情况下,第一映射顺序包括集合顺序,还包括时域顺序和/或频域顺序。具体针对前述资源集合中资源单元的情况1-3的处理,可参考以下内容。
情况1:多个资源集合中每个资源集合在频域上的资源单元数量为1,在时域上的资源单元数量为多个。
该情况下,第一映射顺序包括各资源单元的时域顺序和上述集合顺序,还包括时域顺序和集合顺序之间的先后顺序。示例性地,第一映射顺序可以是先集合顺序再时域顺序,或者先时域顺序再集合顺序。 其中,集合顺序和时域顺序均可以是从大到小或从小到大。具体地,第一映射顺序可以是以下任意一种顺序:
先集合索引从小到大,再时域索引从小到大;
先集合索引从大到小,再时域索引从小到大;
先集合索引从小到大,再时域索引从大到小;
先集合索引从大到小,再时域索引从大到小;
先时域索引从小到大,再集合索引从小到大;
先时域索引从大到小,再集合索引从小到大;
先时域索引从小到大,再集合索引从大到小;
先时域索引从大到小,再集合索引从大到小。
以先集合索引从小到大,再时域索引从小到大为例,假设共有4个资源集合,每个资源集合包括时域上的4个资源单元。则从集合1中的第一个资源单元开始,先按照集合索引从小到大,将最前4个比特与4个资源集合中的第一个资源单元一一对应。然后,按照时域索引从小到大,第二个4比特与4个资源集合中的第二个资源单元对应,且其中4个比特依据相同的方式(集合索引从小到大)与4个资源集合中的第二个资源单元一一映射。依次类推,直至确定16个比特与4个资源集合中共计16个资源单元之间的对应关系。对于第一映射顺序为其他顺序的情况,可以类似地实现,具体细节不再赘述。
情况2:多个资源集合中每个资源集合在时域上的资源单元数量为1,在频域上的资源单元数量为多个。
该情况下,第一映射顺序包括各资源单元的频域顺序和上述集合顺序,还包括频域顺序和集合顺序之间的先后顺序。示例性地,第一映射顺序可以是先集合顺序再频域顺序,或者先频域顺序再集合顺序。其中,集合顺序和频域顺序均可以是从大到小或从小到大。具体地,第一映射顺序可以是以下任意一种顺序:
先集合索引从小到大,再频域索引从小到大;
先集合索引从大到小,再频域索引从小到大;
先集合索引从小到大,再频域索引从大到小;
先集合索引从大到小,再频域索引从大到小;
先频域索引从小到大,再集合索引从小到大;
先频域索引从大到小,再集合索引从小到大;
先频域索引从小到大,再集合索引从大到小;
先频域索引从大到小,再集合索引从大到小。
基于上述任意一种顺序确定资源单元和反馈信息之间的对应关系的过程,可以参考本示例中前述情况1类似地实现,具体细节不再赘述。
情况3:多个资源集合中每个资源集合在时域上的资源单元数量为多个,在频域上的资源单元数量为多个。
该情况下,第一映射顺序包括时域顺序、频域顺序和集合顺序,还包括时域顺序、频域顺序、集合顺序之间的先后顺序。其中,该先后顺序可以是以下任意一种顺序:
先集合顺序,其次频域顺序,再时域顺序;
先集合顺序,其次时域顺序,再频域顺序;
先频域顺序,其次集合顺序,再时域顺序;
先频域顺序,其次时域顺序,再集合顺序;
先时域顺序,其次集合顺序,再频域顺序;
先时域顺序,其次频域顺序,再集合顺序。
其中,集合顺序、频域顺序、时域顺序可以均是从小到大或从大到小,也可以其中一种或多种顺序为从小到大,其他顺序为从大到小。
以先频域从低到高,其次时域从前到后,再集合索引从小到大为例,如图20所示,每个资源集合包括24个资源单元(时域上4个乘以频域上6个)。第一信令中需要对应于4个资源集合中共计96个资源单元的96个反馈比特。参考图20,从资源集合1中的资源单元1开始,先按照频域从低到高,将最前6个比特与第一个时间单元位置上的6个资源单元(资源单元1-6)一一对应。然后,按照时域从前到后,第二个6比特与第二个时间单元位置上的6个资源单元(资源单元7-12)对应,且其中6个比特依据相同的方式(频域从低到高)与6个资源单元一一映射。依次类推,确定前24个比特与资源集合1中24个资源单元之间的对应关系。然后,按照集合索引从小到大,确定第二个24比特与资源集合2中24个资源单元之间的对应关系。以此类推,直至确定完96个比特与4个资源集合中共计96个 资源单元之间的对应关系。对于第一映射顺序为其他顺序的情况,可以类似地实现,具体细节不再赘述。
在考虑码分复用的情况下,第一映射顺序包括集合顺序和码字顺序,还包括时域顺序和/或频域顺序。进一步地,第一映射顺序还包括集合顺序、码字顺序、时域顺序、频域顺序之间的先后顺序。并且,集合顺序、码字顺序、时域顺序、频域顺序可以均是从小到大或从大到小,也可以其中一种或多种顺序为从小到大,其他顺序为从大到小。在此不进行罗列。
以先码字索引从小到大,频域从低到高,再时域从前到后,集合索引从小到大为例,假设每个资源集合均如图20中的资源集合,包括24个资源单元(时域上4个乘以频域上6个),其中每个资源单元支持4个码字。第一信令中需要对应于4个资源集合中共计96个资源单元的384个反馈比特。从资源集合1中的资源单元1开始,先按照码字索引从小到大,将最前4个比特与资源单元1上的4个码字一一对应。然后,按照频域从低到高,第二个4比特与资源单元2上的4个码字一一对应。依次类推,确定前24个比特与第一个时间单元位置上的6个资源单元(资源单元1-6)之间的对应关系。再按照时域从前到后,第二个24比特与第二个时间单元位置上的6个资源单元(资源单元7-12)对应。依次类推,确定前96个比特与资源集合1中24个资源单元之间的对应关系。然后,按照集合索引从小到大,确定第二个96比特与资源集合2中24个资源单元之间的对应关系。以此类推,直至确定完384个比特与4个资源集合中共计96个资源单元之间的对应关系。对于第一映射顺序为其他顺序的情况,可以类似地实现,具体细节不再赘述。
可选地,上述用于确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系的第一映射顺序是预设的。
可选地,第一映射顺序是网络设备确定的,即上述方法还包括:网络设备发送第二信令,第二信令用于指示第一映射顺序。相应地,终端接收第二信令。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。利用上述至少一个实施例,网络设备通过在第一信令中携带与资源单元对应的反馈信息,向终端反馈是否正确接收该资源单元上传输的数据,因此,终端能够根据反馈信息确认数据是否完成传输,从而准确完成通信。并且有效控制了反馈的开销,从而使得在终端较多的零功耗通信场景也可以有效通信。
图21是根据本申请一实施例的网络设备100的示意性框图。该网络设备100可以包括:
第一通信模块110,用于发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备100是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
可选地,在本申请实施例中,第一资源集合为网络设备100配置的或预先配置的用于终端发送数据的资源集合。
可选地,在本申请实施例中,反馈信息为确认信息或非确认信息。
可选地,在本申请实施例中,在反馈信息包括第一比特值的情况下,反馈信息为确认信息。
可选地,在本申请实施例中,在反馈信息包括第二比特值的情况下,反馈信息为非确认信息。
可选地,在本申请实施例中,反馈信息为单个比特。
可选地,在本申请实施例中,每个资源单元对应的反馈信息包括与每个资源单元所支持的多个码字一一对应的多个反馈信息;
多个反馈信息中的每个反馈信息用于指示网络设备100是否基于反馈信息对应的资源单元正确接收到终端发送的采用反馈信息对应的码字的数据。
可选地,在本申请实施例中,第一资源集合为网络设备100配置的或预先配置的用于终端发送数据的多个资源集合中的一个。
可选地,在本申请实施例中,第一信令包括多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
可选地,如图22所示,在本申请实施例中,网络设备100还包括:
第一处理模块120,用于基于第一映射顺序确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系。
可选地,在本申请实施例中,第一映射顺序包括资源顺序,资源顺序包括第一资源集合中各资源单元的资源索引的顺序。
可选地,在本申请实施例中,资源索引包括时域索引和/或频域索引。
可选地,在本申请实施例中,资源顺序是基于各资源单元的时域索引的顺序和/或各资源单元的频域索引的顺序确定的。
可选地,在本申请实施例中,资源顺序还基于各资源单元的时域索引的顺序与各资源单元的频域索 引的顺序之间的先后顺序确定。
可选地,在本申请实施例中,第一映射顺序还包括:
码字顺序,码字顺序包括每个资源单元所支持的多个码字的码字索引的顺序;
和/或
集合顺序,集合顺序包括多个资源集合的集合索引的顺序。
可选地,在本申请实施例中,第一映射顺序还包括资源顺序和/或码字顺序和/或集合顺序之间的先后顺序。
可选地,在本申请实施例中,第一映射顺序是预设的。
可选地,在本申请实施例中,第一映射顺序是网络设备100确定的,第一通信模块110还用于:
发送第二信令,第二信令用于指示第一映射顺序。
可选地,在本申请实施例中,第一信令为网络设备100发送的多个信令中与第一资源集合对应的信令,其中,多个信令与多个资源集合一一对应。
可选地,在本申请实施例中,多个信令的发送时间顺序与多个资源集合的编号顺序相关。
可选地,在本申请实施例中,多个信令的扰码或无线网络临时标识RNTI与多个资源集合一一对应。
可选地,在本申请实施例中,终端为零功耗终端。
本申请实施例的网络设备100能够实现前述的方法实施例中的网络设备的对应功能。该网络设备100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端200,参考图23,其包括:
第二通信模块210,用于接收第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端200发送的数据。
可选地,如图24所示,终端200还包括:
第二处理模块220,用于在终端200基于第一资源集合中的第一资源单元发送数据的情况下,根据第一信令中与第一资源单元对应反馈信息,确定网络设备是否正确接收到数据。
可选地,在本申请实施例中,第二处理模块220还用于:
根据第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,在第一信令中确定第一资源单元对应的反馈信息。
可选地,在本申请实施例中,每个资源单元对应的反馈信息包括每个资源单元所支持的多个码字一一对应的多个反馈信息;
多个反馈信息中的每个反馈信息用于指示网络设备是否基于反馈信息对应的资源单元正确接收到终端200发送的采用反馈信息对应的码字的数据。
可选地,在本申请实施例中,终端200还包括:
第二处理模块220,用于在终端200基于第一资源集合中的第一资源单元发送采用第一码字的数据的情况下,根据第一信令中与第一资源单元以及第一码字对应的反馈信息,确定网络设备是否正确接收到数据。
可选地,在本申请实施例中,第二处理模块220还用于:
根据第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系,在第一信令中确定与第一资源单元以及第一码字对应的反馈信息。
可选地,在本申请实施例中,第一资源集合为网络设备配置的或预先配置的用于终端200发送数据的多个资源集合中的一个。
可选地,在本申请实施例中,第一信令包括与多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
可选地,在本申请实施例中,终端200中的第二处理模块220用于:
基于第一映射顺序确定第一资源集合中的每个资源单元与第一信令中的每个反馈信息之间的对应关系。
可选地,在本申请实施例中,第一映射顺序包括资源顺序,资源顺序包括第一资源集合中各资源单元的资源索引的顺序。
可选地,在本申请实施例中,资源索引包括时域索引和/或频域索引。
可选地,在本申请实施例中,资源顺序是基于各资源单元的时域索引的顺序和/或各资源单元的频域索引的顺序确定的。
可选地,在本申请实施例中,资源顺序还基于各资源单元的时域索引的顺序与各资源单元的频域索引的顺序之间的先后顺序确定。
可选地,在本申请实施例中,第一映射顺序还包括:
码字顺序,码字顺序包括每个资源单元所支持的多个码字的码字索引的顺序;
和/或,
集合顺序,集合顺序包括多个资源集合的集合索引的顺序。
可选地,在本申请实施例中,第一映射顺序还包括资源顺序和/或码字顺序和/或集合顺序之间的先后顺序。
可选地,在本申请实施例中,第一映射顺序是预设的。
可选地,在本申请实施例中,第二通信模块210还用于:
接收第二信令,第二信令用于指示第一映射顺序。
可选地,在本申请实施例中,第一信令为网络设备发送的多个信令中与第一资源集合对应的信令,其中,多个信令与多个资源集合一一对应。
可选地,在本申请实施例中,多个信令的发送时间顺序与多个资源集合的编号顺序相关;
终端200中的第二处理模块220用于:
根据多个信令的发送时间顺序以及多个资源集合的编号顺序,在多个信令中确定与第一资源集合对应的第一信令。
可选地,在本申请实施例中,多个信令的扰码或RNTI与多个资源集合一一对应;
终端200中的第二处理模块220用于:
终端200根据第一资源集合对应的扰码或RNTI,在多个信令中确定与第一资源集合对应的第一信令。
可选地,终端200包括零功耗终端200。
本申请实施例的终端200能够实现前述的方法实施例中的终端的对应功能,该终端200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。需要说明,关于本申请实施例的终端200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图25是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端,并且该通信设备600可以实现本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
图26是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端,并且该芯片可以实现本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图27是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括终端810和网络设备820。
网络设备820发送第一信令,第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
其中,反馈信息用于指示网络设备820是否基于反馈信息对应的资源单元正确接收到终端发送的数据。
终端810接收第一信令。
其中,该终端810可以用于实现本申请各个实施例的方法中由终端实现的相应的功能,以及该网络设备820可以用于实现本申请各个实施例的方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (93)

  1. 一种信息指示方法,包括:
    网络设备发送第一信令,所述第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
    其中,所述反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的数据。
  2. 根据权利要求1所述的方法,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的资源集合。
  3. 根据权利要求1或2所述的方法,其中,所述反馈信息为确认信息或非确认信息。
  4. 根据权利要求3所述的方法,其中,在所述反馈信息包括第一比特值的情况下,所述反馈信息为确认信息。
  5. 根据权利要求3或4所述的方法,其中,在所述反馈信息包括第二比特值的情况下,所述反馈信息为非确认信息。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述反馈信息为单个比特。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述每个资源单元对应的反馈信息包括与所述每个资源单元所支持的多个码字一一对应的多个反馈信息;
    所述多个反馈信息中的每个反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的采用所述反馈信息对应的码字的数据。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的多个资源集合中的一个。
  9. 根据权利要求8所述的方法,其中,所述第一信令包括所述多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
  10. 根据权利要求1-9中任一项所述的方法,其中,所述方法还包括:
    所述网络设备基于第一映射顺序确定所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系。
  11. 根据权利要求10所述的方法,其中,所述第一映射顺序包括资源顺序,所述资源顺序包括所述第一资源集合中各资源单元的资源索引的顺序。
  12. 根据权利要求11所述的方法,其中,所述资源索引包括时域索引和/或频域索引。
  13. 根据权利要求11或12所述的方法,其中,所述资源顺序是基于所述各资源单元的时域索引的顺序和/或所述各资源单元的频域索引的顺序确定的。
  14. 根据权利要求13所述的方法,其中,所述资源顺序还基于所述各资源单元的时域索引的顺序与所述各资源单元的频域索引的顺序之间的先后顺序确定。
  15. 根据权利要求11-14中任一项所述的方法,其中,所述第一映射顺序还包括:
    码字顺序,所述码字顺序包括所述每个资源单元所支持的多个码字的码字索引的顺序;
    和/或
    集合顺序,所述集合顺序包括多个资源集合的集合索引的顺序。
  16. 根据权利要求15所述的方法,其中,所述第一映射顺序还包括所述所述资源顺序和/或所述码字顺序和/或所述集合顺序之间的先后顺序。
  17. 根据权利要求10-16中任一项所述的方法,其中,所述第一映射顺序是预设的。
  18. 根据权利要求10-16中任一项所述的方法,其中,所述第一映射顺序是所述网络设备确定的,所述方法还包括:
    所述网络设备发送第二信令,所述第二信令用于指示所述第一映射顺序。
  19. 根据权利要求8所述的方法,其中,所述第一信令为所述网络设备发送的多个信令中与所述第一资源集合对应的信令,其中,所述多个信令与所述多个资源集合一一对应。
  20. 根据权利要求19所述的方法,其中,所述多个信令的发送时间顺序与所述多个资源集合的编号顺序相关。
  21. 根据权利要求19所述的方法,其中,所述多个信令的扰码或无线网络临时标识RNTI与所述多个资源集合一一对应。
  22. 根据权利要求1-21中任一项所述的方法,其中,所述终端为零功耗终端。
  23. 一种信息指示方法,包括:
    终端接收第一信令,所述第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
    其中,所述反馈信息用于指示网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的数据。
  24. 根据权利要求23所述的方法,其中,所述方法还包括:
    在所述终端基于所述第一资源集合中的第一资源单元发送数据的情况下,所述终端根据所述第一信令中与所述第一资源单元对应反馈信息,确定所述网络设备是否正确接收到所述数据。
  25. 根据权利要求24所述的方法,其中,所述方法还包括:
    所述终端根据所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系,在所述第一信令中确定所述第一资源单元对应的反馈信息。
  26. 根据权利要求23所述的方法,其中,所述每个资源单元对应的反馈信息包括所述每个资源单元所支持的多个码字一一对应的多个反馈信息;
    所述多个反馈信息中的每个反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的采用所述反馈信息对应的码字的数据。
  27. 根据权利要求26所述的方法,其中,所述方法还包括:
    在所述终端基于所述第一资源集合中的第一资源单元发送采用第一码字的数据的情况下,所述终端根据所述第一信令中与所述第一资源单元以及所述第一码字对应的反馈信息,确定所述网络设备是否正确接收到所述数据。
  28. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述终端根据所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系,在所述第一信令中确定与所述第一资源单元以及所述第一码字对应的反馈信息。
  29. 根据权利要求23-28中任一项所述的方法,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的多个资源集合中的一个。
  30. 根据权利要求29所述的方法,其中,所述第一信令包括与所述多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
  31. 根据权利要求23-30中任一项所述的方法,其中,所述方法还包括:
    所述终端基于第一映射顺序确定所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系。
  32. 根据权利要求31所述的方法,其中,所述第一映射顺序包括资源顺序,所述资源顺序包括所述第一资源集合中各资源单元的资源索引的顺序。
  33. 根据权利要求32所述的方法,其中,所述资源索引包括时域索引和/或频域索引。
  34. 根据权利要求32或33所述的方法,其中,所述资源顺序是基于所述各资源单元的时域索引的顺序和/或所述各资源单元的频域索引的顺序确定的。
  35. 根据权利要求34所述的方法,其中,所述资源顺序还基于所述各资源单元的时域索引的顺序与所述各资源单元的频域索引的顺序之间的先后顺序确定。
  36. 根据权利要求32-35中任一项所述的方法,其中,所述第一映射顺序还包括:
    码字顺序,所述码字顺序包括所述每个资源单元所支持的多个码字的码字索引的顺序;
    和/或
    集合顺序,所述集合顺序包括多个资源集合的集合索引的顺序。
  37. 根据权利要求36所述的方法,其中,所述第一映射顺序还包括所述所述资源顺序和/或所述码字顺序和/或所述集合顺序之间的先后顺序。
  38. 根据权利要求31-37中任一项所述的方法,其中,所述第一映射顺序是预设的。
  39. 根据权利要求31-37中任一项所述的方法,其中,所述方法还包括:
    所述终端接收第二信令,所述第二信令用于指示所述第一映射顺序。
  40. 根据权利要求29所述的方法,其中,所述第一信令为所述网络设备发送的多个信令中与所述第一资源集合对应的信令,其中,所述多个信令与所述多个资源集合一一对应。
  41. 根据权利要求40所述的方法,其中,所述多个信令的发送时间顺序与所述多个资源集合的编号顺序相关;
    所述方法还包括:
    所述终端根据所述多个信令的发送时间顺序以及所述多个资源集合的编号顺序,在所述多个信令中确定与所述第一资源集合对应的第一信令。
  42. 根据权利要求40所述的方法,其中,所述多个信令的扰码或RNTI与所述多个资源集合一一对应;
    所述方法还包括:
    所述终端根据所述第一资源集合对应的扰码或RNTI,在所述多个信令中确定与所述第一资源集合对应的第一信令。
  43. 根据权利要求23-42中任一项所述的方法,其中,所述终端为零功耗终端。
  44. 一种网络设备,包括:
    第一通信模块,用于发送第一信令,所述第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
    其中,所述反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的数据。
  45. 根据权利要求44所述的网络设备,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的资源集合。
  46. 根据权利要求44或45所述的网络设备,其中,所述反馈信息为确认信息或非确认信息。
  47. 根据权利要求46所述的网络设备,其中,在所述反馈信息包括第一比特值的情况下,所述反馈信息为确认信息。
  48. 根据权利要求46或47所述的网络设备,其中,在所述反馈信息包括第二比特值的情况下,所述反馈信息为非确认信息。
  49. 根据权利要求44-48中任一项所述的网络设备,其中,所述反馈信息为单个比特。
  50. 根据权利要求44-49中任一项所述的网络设备,其中,所述每个资源单元对应的反馈信息包括与所述每个资源单元所支持的多个码字一一对应的多个反馈信息;
    所述多个反馈信息中的每个反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的采用所述反馈信息对应的码字的数据。
  51. 根据权利要求44-50中任一项所述的网络设备,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的多个资源集合中的一个。
  52. 根据权利要求51所述的网络设备,其中,所述第一信令包括所述多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
  53. 根据权利要求44-52中任一项所述的网络设备,其中,所述网络设备还包括:
    第一处理模块,用于基于第一映射顺序确定所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系。
  54. 根据权利要求53所述的网络设备,其中,所述第一映射顺序包括资源顺序,所述资源顺序包括所述第一资源集合中各资源单元的资源索引的顺序。
  55. 根据权利要求54所述的网络设备,其中,所述资源索引包括时域索引和/或频域索引。
  56. 根据权利要求54或55所述的网络设备,其中,所述资源顺序是基于所述各资源单元的时域索引的顺序和/或所述各资源单元的频域索引的顺序确定的。
  57. 根据权利要求56所述的网络设备,其中,所述资源顺序还基于所述各资源单元的时域索引的顺序与所述各资源单元的频域索引的顺序之间的先后顺序确定。
  58. 根据权利要求54-57中任一项所述的网络设备,其中,所述第一映射顺序还包括:
    码字顺序,所述码字顺序包括所述每个资源单元所支持的多个码字的码字索引的顺序;
    和/或
    集合顺序,所述集合顺序包括多个资源集合的集合索引的顺序。
  59. 根据权利要求58所述的网络设备,其中,所述第一映射顺序还包括所述所述资源顺序和/或所述码字顺序和/或所述集合顺序之间的先后顺序。
  60. 根据权利要求53-59中任一项所述的网络设备,其中,所述第一映射顺序是预设的。
  61. 根据权利要求53-59中任一项所述的网络设备,其中,所述第一映射顺序是所述网络设备确定的,所述第一通信模块还用于:
    发送第二信令,所述第二信令用于指示所述第一映射顺序。
  62. 根据权利要求61所述的网络设备,其中,所述第一信令为所述网络设备发送的多个信令中与所述第一资源集合对应的信令,其中,所述多个信令与所述多个资源集合一一对应。
  63. 根据权利要求62所述的网络设备,其中,所述多个信令的发送时间顺序与所述多个资源集合的编号顺序相关。
  64. 根据权利要求62所述的网络设备,其中,所述多个信令的扰码或无线网络临时标识RNTI与所述多个资源集合一一对应。
  65. 根据权利要求44-64中任一项所述的网络设备,其中,所述终端为零功耗终端。
  66. 一种终端,包括:
    第二通信模块,用于接收第一信令,所述第一信令包括第一资源集合中的每个资源单元对应的反馈信息;
    其中,所述反馈信息用于指示网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的数据。
  67. 根据权利要求66所述的终端,其中,所述终端还包括:
    第二处理模块,用于在所述终端基于所述第一资源集合中的第一资源单元发送数据的情况下,根据所述第一信令中与所述第一资源单元对应反馈信息,确定所述网络设备是否正确接收到所述数据。
  68. 根据权利要求67所述的终端,其中,所述第二处理模块还用于:
    根据所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系,在所述第一信令中确定所述第一资源单元对应的反馈信息。
  69. 根据权利要求66所述的终端,其中,所述每个资源单元对应的反馈信息包括所述每个资源单元所支持的多个码字一一对应的多个反馈信息;
    所述多个反馈信息中的每个反馈信息用于指示所述网络设备是否基于所述反馈信息对应的资源单元正确接收到终端发送的采用所述反馈信息对应的码字的数据。
  70. 根据权利要求69所述的终端,其中,所述终端还包括:
    第二处理模块,用于在所述终端基于所述第一资源集合中的第一资源单元发送采用第一码字的数据的情况下,根据所述第一信令中与所述第一资源单元以及所述第一码字对应的反馈信息,确定所述网络设备是否正确接收到所述数据。
  71. 根据权利要求70所述的终端,其中,所述第二处理模块还用于:
    根据所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系,在所述第一信令中确定与所述第一资源单元以及所述第一码字对应的反馈信息。
  72. 根据权利要求66-71中任一项所述的终端,其中,所述第一资源集合为所述网络设备配置的或预先配置的用于终端发送数据的多个资源集合中的一个。
  73. 根据权利要求72所述的终端,其中,所述第一信令包括与所述多个资源集合中的每个资源集合中的每个资源单元对应的反馈信息。
  74. 根据权利要求66-73中任一项所述的终端,其中,所述终端中的第二处理模块用于:
    基于第一映射顺序确定所述第一资源集合中的每个资源单元与所述第一信令中的每个反馈信息之间的对应关系。
  75. 根据权利要求74所述的终端,其中,所述第一映射顺序包括资源顺序,所述资源顺序包括所述第一资源集合中各资源单元的资源索引的顺序。
  76. 根据权利要求75所述的终端,其中,所述资源索引包括时域索引和/或频域索引。
  77. 根据权利要求75或76所述的终端,其中,所述资源顺序是基于所述各资源单元的时域索引的顺序和/或所述各资源单元的频域索引的顺序确定的。
  78. 根据权利要求77所述的终端,其中,所述资源顺序还基于所述各资源单元的时域索引的顺序与所述各资源单元的频域索引的顺序之间的先后顺序确定。
  79. 根据权利要求75-78中任一项所述的终端,其中,所述第一映射顺序还包括:
    码字顺序,所述码字顺序包括所述每个资源单元所支持的多个码字的码字索引的顺序;
    和/或,
    集合顺序,所述集合顺序包括多个资源集合的集合索引的顺序。
  80. 根据权利要求79所述的终端,其中,所述第一映射顺序还包括所述所述资源顺序和/或所述码字顺序和/或所述集合顺序之间的先后顺序。
  81. 根据权利要求74-80中任一项所述的终端,其中,所述第一映射顺序是预设的。
  82. 根据权利要求74-80中任一项所述的终端,其中,所述第二通信模块还用于:
    接收第二信令,所述第二信令用于指示所述第一映射顺序。
  83. 根据权利要求72所述的终端,其中,所述第一信令为所述网络设备发送的多个信令中与所述第一资源集合对应的信令,其中,所述多个信令与所述多个资源集合一一对应。
  84. 根据权利要求83所述的终端,其中,所述多个信令的发送时间顺序与所述多个资源集合的编号顺序相关;
    所述终端中的第二处理模块用于:
    根据所述多个信令的发送时间顺序以及所述多个资源集合的编号顺序,在所述多个信令中确定与所述第一资源集合对应的第一信令。
  85. 根据权利要求83所述的终端,其中,所述多个信令的扰码或RNTI与所述多个资源集合一一对 应;
    所述终端中的第二处理模块用于:
    所述终端根据所述第一资源集合对应的扰码或RNTI,在所述多个信令中确定与所述第一资源集合对应的第一信令。
  86. 根据权利要求66-85中任一项所述的终端,其中,所述终端包括零功耗终端。
  87. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法的步骤。
  88. 一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求23至43中任一项所述的方法的步骤。
  89. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至43中任一项所述的方法的步骤。
  90. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序使得计算机执行如权利要求1至43中任一项所述的方法的步骤。
  91. 一种计算机程序产品,包括计算机程序指令,其中,
    所述计算机程序指令使得计算机执行如权利要求1至43中任一项所述的方法的步骤。
  92. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至43中任一项所述的方法的步骤。
  93. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至22中任一项所述的方法;
    网络设备,用于执行如权利要求23至43中任一项所述的方法。
PCT/CN2021/124216 2021-10-15 2021-10-15 信息指示方法、网络设备、终端、芯片和存储介质 WO2023060596A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124216 WO2023060596A1 (zh) 2021-10-15 2021-10-15 信息指示方法、网络设备、终端、芯片和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124216 WO2023060596A1 (zh) 2021-10-15 2021-10-15 信息指示方法、网络设备、终端、芯片和存储介质

Publications (1)

Publication Number Publication Date
WO2023060596A1 true WO2023060596A1 (zh) 2023-04-20

Family

ID=85987250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124216 WO2023060596A1 (zh) 2021-10-15 2021-10-15 信息指示方法、网络设备、终端、芯片和存储介质

Country Status (1)

Country Link
WO (1) WO2023060596A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150207592A1 (en) * 2014-01-17 2015-07-23 Industrial Technology Research Institute Data transmission method, device and system
CN109314910A (zh) * 2016-04-01 2019-02-05 华为技术有限公司 用于免授权上行传输的harq系统和方法
CN110830151A (zh) * 2018-08-07 2020-02-21 华为技术有限公司 反馈信息的传输方法和装置
CN112544044A (zh) * 2018-08-10 2021-03-23 高通股份有限公司 无线系统中的组反馈技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150207592A1 (en) * 2014-01-17 2015-07-23 Industrial Technology Research Institute Data transmission method, device and system
CN109314910A (zh) * 2016-04-01 2019-02-05 华为技术有限公司 用于免授权上行传输的harq系统和方法
CN110830151A (zh) * 2018-08-07 2020-02-21 华为技术有限公司 反馈信息的传输方法和装置
CN112544044A (zh) * 2018-08-10 2021-03-23 高通股份有限公司 无线系统中的组反馈技术

Similar Documents

Publication Publication Date Title
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023010321A1 (zh) 一种无线通信方法及装置、通信设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023173379A1 (zh) 数据传输方法、第一设备和第二设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023201493A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023279236A1 (zh) 无线通信的方法和设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2023065336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141974A1 (zh) 通讯状态的指示方法、终端设备和网络设备
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960325

Country of ref document: EP

Kind code of ref document: A1