WO2021027864A1 - 用于小区测量的方法和装置 - Google Patents

用于小区测量的方法和装置 Download PDF

Info

Publication number
WO2021027864A1
WO2021027864A1 PCT/CN2020/108810 CN2020108810W WO2021027864A1 WO 2021027864 A1 WO2021027864 A1 WO 2021027864A1 CN 2020108810 W CN2020108810 W CN 2020108810W WO 2021027864 A1 WO2021027864 A1 WO 2021027864A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
paging parameter
paging
terminal device
cell
Prior art date
Application number
PCT/CN2020/108810
Other languages
English (en)
French (fr)
Inventor
郑黎丽
张宏平
曾清海
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20851911.6A priority Critical patent/EP4007365A4/en
Publication of WO2021027864A1 publication Critical patent/WO2021027864A1/zh
Priority to US17/670,566 priority patent/US20220167200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for cell measurement.
  • terminal equipment In a wireless communication system, terminal equipment usually has three states, namely, radio resource control (radio resource control, RRC) connected state (RRC_CONNECTED), RRC idle state (RRC_IDLE), and RRC deactivated state (RRC_INACTIVE).
  • RRC radio resource control
  • RRC_CONNECTED radio resource control
  • RRC_IDLE RRC idle state
  • RRC_INACTIVE RRC deactivated state
  • the terminal device When in an idle state or a deactivated state, the terminal device cannot directly communicate with the network device.
  • the network equipment will generally send paging scheduling information to the terminal equipment periodically to indicate whether the terminal equipment should go from the idle state/to The active state is switched to the connected state to communicate with the network device. After receiving the paging scheduling information, the terminal device can wake up and enter the connected state to send or receive service data.
  • the terminal device in the idle state/deactivated state will wake up in a certain paging cycle to monitor the paging message.
  • the time when the terminal device wakes up is called paging occasion (PO).
  • PO paging occasion
  • the network device will send a paging message from the air interface at this moment, so that the terminal device can receive the paging message at this moment.
  • the behavior of terminal equipment monitoring paging messages requires some power consumption.
  • the terminal device also needs to wake up at a certain moment to perform radio resource management (RRM) measurement, which also requires some power consumption. Therefore, it is urgent to propose a method to save the power consumption of the terminal device.
  • RRM radio resource management
  • the present application provides a method and device for cell measurement, which helps to save power consumption of terminal equipment.
  • a method for cell measurement including: a first network device obtains a first paging parameter of a cell under a second network device, where the first paging parameter is used to instruct the terminal device to monitor In the first time domain position of the paging message of the second network device; the first network device sends a reference signal according to the first paging parameter, wherein the time domain position of the reference signal is based on the first A time domain location is determined.
  • the time domain position of the reference signal needs to be as close as possible according to the first time domain position, so as to ensure that the terminal device can not only monitor the paging message, but also perform measurement, which helps to save the power consumption of the terminal device.
  • the embodiment of the present application can reduce the time difference between the paging position and the time domain position of the reference signal as much as possible, so that the terminal device can both monitor the paging message and perform measurement after waking up, thereby saving The power consumption of the terminal device.
  • the first network device acquiring the first paging parameter of the cell under the second network device includes: the first network device receives the first paging parameter from the second network device . Therefore, the first network device can directly receive the first paging parameter sent by the second network device.
  • that the first network device obtains the first paging parameter of the cell under the second network device includes: the first network device receives the first paging parameter from a terminal device. Therefore, the first network device can receive the first paging parameter reported by the terminal device.
  • the method further includes: the first network device sends configuration information to the terminal device, where the configuration information is used for Configure the terminal device to report the first paging parameter.
  • the first network device may pre-configure the terminal device to report the first paging parameter.
  • the configuration information includes the identity and/or frequency of the cell under the second network device.
  • the method further includes: the first network device sends a second paging parameter of the cell under the first network device to the second network device.
  • the first network device may also inform the second network device of its second paging parameter, so that the second network device can configure the measurement of the terminal device.
  • the method further includes: the distributed unit DU of the first network device sends the second paging parameter of the cell under the first network device to the centralized unit CU of the first network device.
  • the DU of the first network device may inform the CU of the first network device of its second paging parameter.
  • a method for cell measurement including: a second network device generates a first paging parameter of a cell under the second network device, and the first paging parameter is used to instruct the terminal device Monitor the first time domain location of the paging message from the second network device; the second network device sends the first paging parameter to the first network device, and the first paging parameter is used for the first
  • a network device sends a reference signal according to the first paging parameter, and the time domain position of the reference signal is determined according to the first time domain position.
  • the second network device sends the first paging parameter to the first network device, so that the first network device sends the reference signal according to the first paging parameter.
  • the time domain position of the reference signal needs to be as close as possible according to the first time domain position, so as to ensure that the terminal device can not only monitor the paging message, but also perform measurement, which helps to save the power consumption of the terminal device.
  • the method further includes: the distributed unit DU of the second network device sending the first paging parameter to the centralized unit CU of the second network device.
  • the method further includes: a second network device receiving a second paging parameter of a cell under the first network device from the first network device.
  • a method for cell measurement including: a terminal device obtains a first paging parameter of a cell under a second network device, where the first paging parameter is used to instruct the terminal device to monitor the The first time domain position of the paging message of the second network device; the terminal device sends the first paging parameter to the first network device. Therefore, the terminal device can receive the first paging parameter of the cell under the second network device, so as to send the first paging parameter to the first network device.
  • the method further includes: the terminal device receives configuration information from the first network device, and The configuration information is used to configure the terminal device to report the first paging parameter. Therefore, the terminal device may send the first paging parameter to the first network device based on the configuration of the first network device.
  • the configuration information includes the identity and/or frequency of the cell under the second network device.
  • a method for cell measurement including: a distributed unit DU of a first network device sends a first channel state information reference signal CSI-RS configuration to a centralized unit CU of the first network device ; The CU of the first network device sends the first CSI-RS configuration to the CU of the second network device. Therefore, the DU of the first network device can send its CSI-RS configuration to its CU.
  • the method further includes: the CU of the first network device receives a second CSI-RS configuration from the CU of the second network device; and the CU of the first network device receives the second CSI-RS configuration -RS configures the DU sent to the first network device. Therefore, the CU of the first network device can send the CSI-RS configuration of the cell under the second network device to its own DU.
  • a method for cell measurement including: a first network device determines a configuration of a first additional reference signal, where the configuration of the first additional reference signal includes time domain information and/or frequency domain information; The first network device sends the configuration of the first additional reference signal to the second network device. Therefore, the first network device may send its own configuration of the first additional reference signal to the second network device, so that the second network device can configure the terminal device for measurement.
  • the method further includes: the distributed unit DU of the first network device sends the configuration of the first additional reference signal to the centralized unit CU of the first network device.
  • the method further includes: the CU of the first network device receives the configuration of a second additional reference signal of the CU from the second network device; and the CU of the first network device configures the second additional reference signal
  • the configuration of the reference signal is sent to the DU of the first network device.
  • a method for cell measurement including: a second network device receives a configuration of a first additional reference signal from the first network device, and the configuration of the first additional reference signal includes a frequency domain Information and/or time domain information.
  • the second network device can refer to the first additional reference channel configuration and configure the terminal device to perform measurements on the neighboring cell.
  • the method further includes: the centralized unit CU of the second network device sends the configuration of the first additional reference signal to the distributed unit DU of the second network device.
  • the method further includes: a configuration in which the distributed unit DU of the second network device sends a second additional reference signal to the centralized unit CU of the second network device.
  • a communication device in a seventh aspect, includes a module for executing the method in the first aspect or any possible implementation of the first aspect; or, including a module for executing the fourth aspect or the first aspect.
  • the module of the method in any possible implementation manner of the four aspects; or, includes a module for executing the method in the foregoing fifth aspect or any possible implementation manner of the fifth aspect.
  • a communication device in an eighth aspect, includes a module for executing the method in the second aspect or any possible implementation of the second aspect; or, it includes a module for executing the sixth aspect or the first The module of the method in any possible implementation of the six aspects.
  • a communication device in a ninth aspect, includes a module for executing the foregoing third aspect or any possible implementation of the third aspect.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the foregoing first aspect or the method in any possible implementation manner of the first aspect through a logic circuit or an execution code instruction, or the processor uses a logic circuit
  • the execution code instructions are used to implement the foregoing fourth aspect or any possible implementation method of the fourth aspect, or the processor is used to implement any of the foregoing fifth aspect or the fifth aspect through logic circuits or execution code instructions.
  • a communication device including a processor and an interface circuit
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transfer signals from the processor
  • the signal is sent to other communication devices other than the communication device
  • the processor is used to implement the foregoing second aspect or the method in any possible implementation manner of the second aspect through a logic circuit or executing code instructions, or the processor may use
  • the logic circuit or the execution code instruction is used to implement the aforementioned sixth aspect or the method in any possible implementation manner of the sixth aspect.
  • a communication device including a processor and an interface circuit
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transfer signals from the processor It is sent to other communication devices other than the communication device
  • the processor is used to implement the foregoing first aspect or the method in any possible implementation manner of the first aspect through logic circuits or execution code instructions, or the processor uses logic
  • the circuit or the execution code instruction is used to implement the foregoing third aspect or any possible implementation of the third aspect.
  • a computer-readable storage medium stores a computer program or instruction.
  • the first aspect and its possible implementation manners are implemented.
  • the method in any possible implementation manner, or the method in any possible implementation manner in the foregoing second aspect and its possible implementation manners, or the implementation of any possible method in the foregoing third aspect and its possible implementation manners The method in the implementation manner, or the method in any possible implementation manner in the foregoing fourth aspect and its possible implementation manners, or the method in any possible implementation manner in the foregoing fifth aspect and its possible implementation manners
  • a computer program product containing instructions. When the instructions are executed, the method in any possible implementation manner of the first aspect and its possible implementation manners is implemented, or the second aspect is implemented.
  • the method in any possible implementation of the aspect and its possible implementations, or the method in any possible implementation of the above-mentioned third aspect and its possible implementations, or the implementation of the fourth aspect and its possible The method in any possible implementation manner in the implementation manner, or the method in any possible implementation manner in the foregoing fifth aspect and its possible implementation manners, or the implementation of the foregoing sixth aspect and its possible implementation manner Any possible implementation method.
  • a communication chip in which instructions are stored, which when run on a computer device, cause the communication chip to execute any possible implementation manner of any one of the first to sixth aspects above Method in.
  • a communication system which includes the communication device of the aforementioned seventh aspect, the communication device of the eighth aspect, and the communication device of the ninth aspect.
  • a communication system which includes the communication device of the aforementioned tenth aspect, the communication device of the eleventh aspect, and the communication device of the twelfth aspect.
  • Fig. 1 is a schematic diagram of a communication system to which an embodiment of the present application is applied;
  • Figure 2 is another schematic diagram of a communication system to which an embodiment of the present application is applied;
  • Fig. 3 is a schematic flowchart of a method for cell measurement according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a method for cell measurement according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for cell measurement according to another embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • multiple can be understood as “at least two” or “two or more”; “multiple” can be understood as “at least two” or “two or more” .
  • LTE long term evolution
  • NR new radio
  • Fig. 1 shows a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • FIG. 2 shows another schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least two network devices, such as the network devices 210 and 220 shown in FIG. 2; the communication system 200 may also include at least one terminal device, such as the terminal shown in FIG. Equipment 230.
  • the terminal device 230 may establish a wireless link with the network device 210 and the network device 220 through dual connectivity (DC) technology or multi-connection technology.
  • the network device 210 may be, for example, a primary base station
  • the network device 220 may be, for example, a secondary base station.
  • the network device 210 is the network device when the terminal device 230 is initially connected, and is responsible for radio resource control (RRC) communication with the terminal device 230.
  • RRC radio resource control
  • the network device 220 may be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • the network device 210 may be called a master node (master node, MN), for example, the master node may be an MeNB or MgNB, but is not limited thereto; then another network device, such as the network device 220, may be called a secondary node ( secondary node, SN), for example, the secondary node may be a secondary base station (secondary evloved NodeB, SeNB) or (secondary next generation NodeB, SgNB), which is not limited thereto.
  • MN master node
  • the master node may be an MeNB or MgNB, but is not limited thereto
  • another network device such as the network device 220
  • secondary node secondary node
  • the secondary node may be a secondary base station (secondary evloved NodeB, SeNB) or (secondary next generation NodeB, SgNB), which is not limited thereto.
  • multiple serving cells in the master node may form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more secondary cells (secondary cell, SCell).
  • MCG master cell group
  • SCell secondary cell group
  • Multiple serving cells in the secondary node may form a secondary cell group (secondary cell group, SCG), including one primary and secondary cell (PSCell) and optionally one or more SCells.
  • SCG secondary cell group
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • a terminal device can also have a communication connection with multiple network devices at the same time and can send and receive data.
  • one network device may be responsible for exchanging radio resource control messages with the terminal device and be responsible for communicating with the core network. Control plane entity interaction, then, the network device can be called MN, and the rest of the network devices can be called SN.
  • the network device 220 may also be a primary base station or a primary node, and the network device 210 may also be a secondary base station or a secondary node, which is not limited in this application.
  • the figure is only for ease of understanding, showing a wireless connection between two network devices and a terminal device, but this should not constitute any limitation to the scenarios applicable to this application.
  • the terminal device can also establish wireless links with more network devices.
  • Each communication device such as the network device 110 or the terminal device 120 in FIG. 1, or the network device 210, the network device 220, or the terminal device 230 in FIG. 2, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the network equipment terminal equipment in the embodiment of this application wirelessly accesses the access equipment in the mobile communication system, which can be a base station NodeB, an evolved base station (evolved NodeB, eNB), and a next-generation base station in a 5G mobile communication system (next generation NodeB, gNB), transmission point, base station in future mobile communication system or access node in wireless fidelity (Wi-Fi) system, one or a group (including multiple base stations) in 5G system (One antenna panel) antenna panel, or, it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), or a centralized unit (centralized unit).
  • BBU baseband unit
  • DU distributed unit
  • centralized unit centralized unit
  • gNB may include CU and DU.
  • CU and DU can be understood as the division of base stations from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together.
  • One CU can be connected to one DU, or multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • CU realizes part of the functions of gNB;
  • DU realizes part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services to realize the functions of the radio resource control (radio resource control, RRC) layer and the packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing the physical layer protocol and real-time services to realize the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • CU and DU can be segmented according to the above protocol stack.
  • the above protocol stack segmentation method is not completely limited in the embodiment of the application, and there may be other segmentation methods.
  • CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions with the protocol layer. In one design, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to business types or other system requirements. For example, according to the time delay division, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • CU and DU are connected through F1 interface.
  • CU stands for gNB connected to the core network through the Ng interface.
  • the centralized unit CU can also be divided into a control plane (CU-CP) and a user plane (CU-UP).
  • CU-CP is responsible for the control plane function, which mainly includes RRC and packet data convergence protocol control plane (packet data convergence protocol control, PDCP-C).
  • PDCP-C packet data convergence protocol control
  • the CU-UP is responsible for the user plane functions, and mainly includes the service data adaptation protocol (SDAP) and the packet data convergence protocol user plane (packet data convergence protocol user, PDCP-U).
  • SDAP service data adaptation protocol
  • PDCP-U packet data convergence protocol user
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for at least one function of data plane encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • CU-CP and CU-UP are connected through E1 interface.
  • CU-CP represents that gNB is connected to the core network through the Ng interface.
  • CU-UP is connected to DU through F1-U (user plane).
  • F1-C control plane
  • F1-U user plane
  • PDCP-C is also in CU-UP.
  • the gNB may also include an active antenna unit (AAU).
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU , Or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, a CU-CP node, a CU-UP node, and an AAU node.
  • the CU can be used as a network device in an access network, or as a network device in a core network (core network, CN), which is not limited in this application.
  • the terminal device may also be called a terminal (terminal), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • the terminal equipment can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of wireless access network equipment and terminal equipment.
  • Network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through both licensed and unlicensed spectrum. Communication.
  • Network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 6 gigahertz (gigahertz, GHz), or through the frequency spectrum above 6G, and can also use the frequency spectrum below 6G and The frequency spectrum above 6G communicates.
  • the embodiment of the present application does not limit the spectrum resource used between the radio access network device and the terminal device.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the present application, as long as the program that records the codes of the methods provided in the embodiments of the present application can be executed according to the embodiments of the present application.
  • the method only needs to communicate.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the content of the paging message is sent by the network device to the terminal device through the physical downlink shared channel (physical downlink shared channel, PDSCH) resource location.
  • the PDSCH resource is indicated by scrambling the physical downlink control channel (PDCCH) by paging radio network temporary identity (P-RNTI).
  • P-RNTI paging radio network temporary identity
  • a terminal device To obtain a paging message, a terminal device must first wake up periodically to monitor the PDCCH scrambled by the P-RNTI, and then parse the downlink control information (DCI) to further obtain the time-frequency position of the PDSCH channel, and finally The location of the PDSCH channel parses the content of the paging message.
  • DCI downlink control information
  • the frequency domain resources occupied by the paging message are specified by the PDCCH scrambled by the P-RNTI.
  • the terminal device will try to receive a paging message at a paging occasion (paging occasion, PO) of a specific frame (paging frame, PF) in a paging cycle.
  • PF is a radio frame that includes one or more POs.
  • Additional reference signal is different from the existing reference signal of Release-15 version, the reference signal provided by the base station is used to assist terminal equipment to perform one or more of the following actions: precise synchronization , Channel/beam tracking, CSI/RRM measurement, etc.
  • the additional reference signal can be used for discontinuous reception (DRX), bandwidth part (BWP) switching, fast SCell activation, reduced PDCCH detection, and/or RRM measurement, etc.
  • PO is a collection of PDCCH monitoring occasions, which may include multiple time slots (or subframes, or orthogonal frequency division multiplexing (OFDM) symbols), and P may be used on this PO.
  • -RNTI scrambles and indicates the PDCCH of the Paging message.
  • the terminal device When DRX is used, the terminal device only needs to detect 1 PO in each DRX cycle (cycle), that is, for each terminal device, only 1 PO can be used to send Paging in each Paging cycle.
  • the DRX cycle and the paging cycle are the same concept.
  • Paging parameters include paging frame number, paging cycle, paging density, the number of paging frames, the number of paging occasions in the paging frame, and other possible parameters.
  • the paging parameter may include one or more of the following: N, Ns, firstPDCCH-MonitoringOccasionOfPO, PF_offset, and the length of default DRX Cycle (the length of default DRX Cycle), etc.
  • N represents the number of PF in a period
  • Ns represents the number of PO in PF.
  • this information element is used to determine the starting position of the PO.
  • IE information element
  • defaultPagingCycle is the default Paging cycle, which can be expressed as "T”.
  • T represents the DRX cycle of the UE.
  • Additional resources refer to the introduction of additional reference signals for RRM in addition to the existing synchronization signal block (SSB) measurement and channel-state information reference signal (CSI-RS) measurement Measured resources.
  • the additional reference signal may be a CSI-RS, or a secondary synchronization signal (SSS), or an SSB, or a demodulation reference signal (DMRS), etc.
  • the additional resources can be applied to terminal devices in idle/inactive/connected states.
  • the network devices exchange paging parameters so that the paging parameters of the neighboring cells can be considered when configuring measurement resources, so as to minimize the time domain position corresponding to the reference signal and the time domain corresponding to the paging message.
  • the time difference between the locations enables the terminal device to monitor the paging message and measure the reference signal after waking up once, which helps to save the power consumption of the terminal device.
  • FIG. 3 shows a schematic flowchart of a method 300 for cell measurement according to an embodiment of the present application. As shown in FIG. 3, the method 300 includes:
  • the first network device acquires a first paging parameter of a cell under the second network device, where the first paging parameter is used to instruct the terminal device to monitor the first time domain location of the paging message from the second network device .
  • the cell under the first network device and the cell under the second network device are adjacent cells to each other.
  • the cell under the second network device is the neighboring cell of the cell under the first network device; for another example, for the second network device, the cell under the first network device It is the neighboring cell of the cell under the second network device.
  • the first network device and the second network device can obtain the paging parameters corresponding to each other.
  • the second network device can also obtain the second paging parameter of the cell under the first network device.
  • the device acquires the first paging parameter of the cell under the second network device as an example for description.
  • the first paging parameter may be used to directly or indirectly instruct the terminal device to monitor the first time domain location of the paging message from the second network device.
  • the first time domain location is the paging occasion PO of the terminal device. If the direct indication method is adopted, the first paging parameter may directly indicate the first time domain position; if the indirect indication method is adopted, the content included in the first paging parameter may be used to calculate the first time domain position.
  • the first paging parameter may include one or more of the following: N, Ns, firstPDCCH-MonitoringOccasionOfPO, PF_offset, and other information such as the length of default DRX cycle (the length of default DRX cycle).
  • N the number of default DRX cycle
  • PF_offset the length of default DRX cycle
  • first paging parameter is merely an exemplary description, and does not constitute a limitation to the embodiment of the present application.
  • first paging parameter may also include other paging-related parameters.
  • the first network device sends a reference signal according to the first paging parameter, where the time domain position of the reference signal is determined according to the first time domain position.
  • the first time domain position is relatively close to the time domain position of the reference signal.
  • the first network device can place the time domain position used to send the reference signal as close as possible to the first time domain position, so that the terminal device can both monitor the paging message and perform the reference signal when it wakes up. Measurement helps to save the power consumption of terminal equipment. It should be understood that the embodiment of this application does not specifically limit the sequence of "monitor paging message" and “measurement reference signal” after the terminal device wakes up once, and may be “monitor paging message” before “measurement reference signal”. Later, it can also be “measurement reference signal” before “monitor paging message” or at the same time.
  • the first network device may receive the first paging parameter from the second network device or terminal device. Each will be described below.
  • the first paging parameter may be sent by the second network device to the first network device.
  • the second network device sends the first paging parameter to the first network device.
  • S310 includes: S311, the first network device receives the first paging parameter from the second network device.
  • the first network device may directly receive the first paging parameter sent by the second network device through the X2 port or the Xn port.
  • the first paging parameter may be sent by the terminal device to the first network device.
  • the terminal device sends the first paging parameter to the first network device.
  • S310 includes: S312, the first network device receives the first paging parameter from the terminal device.
  • the first network device may pre-configure the terminal device to report paging parameters.
  • the first network device before the first network device receives the first paging parameter from the terminal device, the first network device sends configuration information to the terminal device, and the configuration information is used to configure the terminal device to report the first paging parameter.
  • the configuration information includes the identity and/or frequency of the cell under the second network device.
  • the first network device sends an RRC message to the terminal device to configure the terminal device to report the first paging parameter of the cell under the second network device.
  • the RRC message includes information such as the identifier of the target neighboring cell (the cell under the second network device can be used as the target neighboring cell) and/or the SSB frequency of the target neighboring cell.
  • the terminal device After receiving the RRC message from the first network device, the terminal device reads the broadcast message of the target neighboring cell, for example, SIB1, to obtain the first paging parameter.
  • the terminal device sends the first paging parameter of the cell under the second network device to the first network device through an RRC message.
  • the first network device may also send the second paging parameter of the cell under the first network device to the second network device.
  • the first paging parameter may also include N, Ns, firstPDCCH-MonitoringOccasionOfPO, PF_offset, and the length of default DRX Cycle.
  • the second paging parameter is associated with the cell under the first network device.
  • the method 300 further includes: the DU of the first network device sends the second paging parameter of the cell under the first network device to the CU of the first network device.
  • the second paging parameter is the paging parameter of the cell of the first network device.
  • the DU of the first network device may send the second paging parameter to the CU of the first network device.
  • the CU of the first network device can send the second paging parameters of the cell to the CU of the second network device, thereby assisting the second network device to configure the terminal device for measuring neighboring cells (for example, the second network
  • the neighboring cell of the cell under the device may be an additional resource of the cell under the first network device.
  • the method 300 further includes: the distributed unit DU of the second network device sends the first paging parameter to the centralized unit CU of the second network device.
  • the first paging parameter is the paging parameter of the second network device's own cell.
  • the DU of the second network device may also send the first paging parameter to the CU of the second network device.
  • the CU of the second network device can be made to send the first paging parameter to the CU of the first network device, thereby assisting the first network device to configure the terminal device for measuring neighboring cells (for example, the CU under the first network device)
  • the neighboring cell of the cell may be an additional resource of the cell under the second network device.
  • the cell under the first network device is cell 1
  • UE1 resides in cell 1
  • the first network device corresponds to CU1 and DU1
  • the cell under the second network device is cell 2
  • UE2 resides in cell 2
  • the second network device corresponds to CU2 and DU2 as an example for description.
  • DU1 exchanges the second paging parameter of cell 1 to CU1 through the F1 port.
  • CU1 exchanges the second paging parameter to CU2 through the Xn port or the X2 port.
  • the CU2 obtains the second paging parameter of the cell 1, when configuring the additional resources for the measurement of the neighboring cell (for example, the cell 1), the time domain position of the additional resource is as close as possible to the paging occasion of the neighboring cell.
  • CU2 may also obtain paging parameters of multiple other neighboring cells, such as cell 3, cell 4, etc., and then configure corresponding measurement resources.
  • CU2 may also exchange the configured additional resources to CU1 through the Xn port or X2 port.
  • CU1 may send the measurement configuration (including the additional resources configured by CU2) to UE1, so that UE1 measures cell 2 according to the measurement configuration.
  • the additional reference signal in the embodiment of this application refers to an additional reference signal configured for the UE for the purpose of saving power. It can also be called a temporary RS (temporary RS), or other names. The embodiment of this application There is no restriction on this.
  • FIG. 4 shows a schematic flowchart of a method 400 for cell measurement according to another embodiment of the present application. As shown in FIG. 4, the method 400 includes:
  • the first network device determines a configuration of a first additional reference signal, where the configuration of the first additional reference signal includes time domain information and/or frequency domain information.
  • the configuration of the first additional reference signal includes one or more of the following: frequency domain information of the additional reference signal (for example, frequency point, subcarrier interval, starting PRB (physical resource block, physical resource block)) , How many PRBs are occupied in total, etc.), additional reference signal time-domain information (for example, transmission period, transmission start time (send start time can be characterized by offset), transmission duration, density (density) Wait.
  • frequency domain information of the additional reference signal for example, frequency point, subcarrier interval, starting PRB (physical resource block, physical resource block)
  • starting PRB physical resource block, physical resource block
  • additional reference signal time-domain information for example, transmission period, transmission start time (send start time can be characterized by offset
  • transmission duration for example, transmission duration, density (density) Wait.
  • the first network device sends the configuration of the first additional reference signal to the second network device.
  • the second network device receives the configuration of the first additional reference signal.
  • the second network device may refer to the configuration of the first additional reference signal and configure the terminal device to perform measurement.
  • the first network device may indicate that the first additional reference signal is a reference signal for power saving of the terminal device.
  • the method 400 further includes: a configuration in which the DU of the first network device sends the first additional reference signal to the CU of the first network device.
  • the DU of the first network device can inform the CU of the first network device of the configuration of the first additional reference signal of the cell through the F1 port, so that the CU of the first network device can obtain the configuration of the first additional reference signal.
  • the configuration is sent to the neighboring cell, for example, the CU of the second network device, so as to assist the CU of the second network device to perform additional reference signal measurement configuration for the UE.
  • the second network device may also send a configuration of a second additional reference signal to the first network device, where the configuration of the second additional reference signal includes frequency domain information and/or time domain information.
  • the method 400 further includes: S430, the second network device sends the configuration of the second additional reference signal to the first network device.
  • the CU of the second network device sends the configuration of the second additional reference signal to the CU of the first network device.
  • the CU of the first network device receives the second additional reference signal configuration from the CU of the second network device.
  • the CU of the first network device sends the configuration of the second additional reference signal to the DU of the first network device.
  • the configuration of the second additional reference signal is the configuration of the additional reference signal of the neighboring cell of the cell under the first network device.
  • the CU of the first network device may send the additional reference signal configuration of the neighboring cell to the DU of the first network device.
  • the DU of the first network device When the DU of the first network device generates a measurement gap configuration, it may consider the additional reference signal configuration of the neighboring cell.
  • the DU of the first network device may send the generated gap configuration to the CU of the first network device.
  • the process of generating the gap configuration for the DU of the first network device can refer to existing methods, and in order to avoid redundancy, details are not described here.
  • the CU of the second network device may also send the configuration of the first additional reference signal to the DU of the second network device.
  • the configuration of the first additional reference signal is the configuration of the additional reference signal of the neighboring cell of the cell under the second network device.
  • the DU of the second network device may send the second additional reference signal configuration to the CU of the second network device.
  • the second additional reference signal configuration is the additional reference signal configuration of the cell.
  • the cell under the first network device is cell 1
  • cell 1 is the serving cell of UE1
  • the first network device corresponds to CU1 and DU1
  • the cell under the second network device is cell 2
  • cell 2 is the serving cell of UE2
  • the second network device corresponds to CU2 and DU2 as an example for description.
  • DU1 exchanges the configuration of the first additional reference signal of cell 1 to CU1 through the F1 port.
  • CU1 exchanges the configuration of the first additional reference signal to CU2 through the Xn port or the X2 port.
  • CU2 obtains the configuration of the first additional reference signal of cell 1, it configures the measurement configuration for UE2, where the measurement configuration configured for UE2 includes the measurement configuration of the neighboring cell CU1 (the measurement configuration refers to the configuration of the first additional reference signal. generate).
  • UE2 can measure cell 1 according to the measurement configuration.
  • This application also provides an embodiment in which network devices can exchange channel state information reference signal CSI-RS configuration, so as to configure terminal devices to measure CSI-RS in neighboring cells.
  • FIG. 5 shows a schematic flowchart of a method 500 for cell measurement according to another embodiment of the present application. As shown in FIG. 5, the method 500 includes:
  • the DU of the first network device sends the first channel state information reference signal CSI-RS configuration to the CU of the first network device.
  • the first CSI-RS configuration includes one or more of the following: CSI-RS resource index (index), CSI-RS resource frequency point information, CSI-RS time domain information (for example, sending Time slot, period, etc.), CSI-RS resource density (density), associated SSB (associated SSB), start position of OFDM symbol (firstOFDMSymbolInTimeDomatin), sequence used for scrambling (sequenceGenerationConfig), etc.
  • S520 The CU of the first network device sends the first CSI-RS configuration to the CU of the second network device.
  • the CU of the second network device receives the first CSI-RS configuration from the CU of the first network device.
  • the method 500 further includes: S530.
  • the CU of the second network device sends the first CSI-RS configuration to the DU of the second network device.
  • the first CSI-RS configuration is the CSI-RS configuration of the neighboring cell of the cell under the second network device.
  • the CU of the second network device may send the CSI-RS configuration of the neighboring cell to the DU of the second network device.
  • the method 500 further includes: the DU of the second network device sends the second CSI-RS configuration to the CU of the second network device; the CU of the second network device sends the second CSI-RS to the CU of the first network device. RS configuration.
  • the CU of the first network device receives the second CSI-RS configuration from the CU of the second network device.
  • the second network device may also exchange its second CSI-RS configuration to the first network device.
  • the CU of the first network device sends the second CSI-RS configuration to the DU of the first network device.
  • the second CSI-RS configuration is an additional reference signal configuration of the neighboring cell of the cell under the first network device.
  • the CU of the first network device may send the CSI-RS configuration of the neighboring cell to the DU of the first network device.
  • the CSI-RS configuration of the neighboring cell may be considered.
  • the DU of the first network device may send the generated gap configuration to the CU of the first network device.
  • the process of generating the gap configuration for the DU of the first network device can refer to existing methods, and in order to avoid redundancy, details are not described here.
  • the cell under the first network device is cell 1
  • cell 1 is the serving cell of UE1
  • the first network device corresponds to CU1 and DU1
  • the cell under the second network device is cell 2
  • cell 2 is the serving cell of UE2
  • the second network device corresponds to CU2 and DU2 as an example for description.
  • DU1 exchanges the first CSI-RS configuration of cell 1 to CU1 through the F1 port. Then, CU1 exchanges the first CSI-RS configuration to CU2 through the Xn port or the X2 port.
  • CU2 configures a measurement configuration for UE2, where the measurement configuration configured for UE2 includes the measurement configuration of neighboring cell CU1 (the measurement configuration is generated with reference to the first CSI-RS configuration) .
  • UE2 can measure cell 1 according to the measurement configuration.
  • This application also provides an embodiment: the CU of the network device sends a cell group configuration (CG-Config) information element (IE) to the DU of the network device.
  • CG-Config cell group configuration
  • IE information element
  • the CG-Config information element may include one or more of the following: SCG cell configuration, SCG radio bearer (RB) configuration, SCG discontinuous reception (DRX) configuration, SN
  • SCG cell configuration SCG radio bearer (RB) configuration
  • RB radio bearer
  • DRX SCG discontinuous reception
  • SN The list of candidate cells for the SN, the measurement configuration of the SN, the band combination selected by the SN, the frequency information of the SN, the maximum power that the UE can use in the SCG serving cell that the SN requests from the MN, etc.
  • the CG-Config information element may be carried in the CU to DU RRC Information element. That is, the CU of the network device sends the CU to DU RRC Information to the DU of the network device, and the CU to DU RRC Information element includes the CG-Config information element.
  • a network device sends the CG-Config configuration to the DU of the network device through the CU, so that the DU of the network device can obtain the DRX configuration, bandcombination configuration, and power of the SN. Configure and other related information for corresponding processing.
  • NE-DC is E-UTRA NR dual connectivity (E-UTRA NR Dual Connectivity);
  • NR-DC is NR dual connectivity (NR NR Dual Connectivity).
  • the solution of "the CU of the network device sending the CG-Config cell to the DU of the network device" provided in this embodiment can be implemented separately; or, it can be combined with the various embodiments described above, or it can be based on internal The logic is combined, which is not limited in this application.
  • the DU of the network device sends the SN request to the CU of the network device to allow the SCG to configure the maximum cell reference number corresponding to the PDCCH blind detection (requestedPDCCH-BlindDetectionSCG).
  • the value of the requestedPDCCH-BlindDetectionSCG cell may be an integer.
  • requestedPDCCH-BlindDetectionSCG can take any value from 1 to 15.
  • the requestedPDCCH-BlindDetectionSCG information element may be carried in the DU to CU RRC Information element. That is, the CU of the network device sends a DU to CU RRC Information cell to the DU of the network device, and the DU to RRC Information cell includes the requestedPDCCH-BlindDetectionSCG cell.
  • the network device sends the requestedPDCCH-BlindDetectionSCG information element to the CU of the network device through the DU, so that the DU can obtain the ability to configure a new PDCCH blind detection.
  • the method of "the DU of the network device interacting with the CU of the network device requestedPDCCH-BlindDetectionSCG" provided in this embodiment can be implemented separately; or, it can also be combined with the various embodiments described above according to the internal logic. This application does not limit this.
  • the DU of the network device interacts with the CU of the network device to allow the MCG to configure the maximum value (requestedPDCCH-BlindDetectionMCG) cell of the cell reference corresponding to the blind detection of the PDCCH requested by the MN.
  • the value of the requestedPDCCH-BlindDetectionMCG information element may be an integer.
  • the value of the requestedPDCCH-BlindDetectionMCG cell can take any value from 1 to 15.
  • the requestedPDCCH-BlindDetectionMCG cell may be carried in the DU to CU RRC Information cell.
  • the network device sends the requested PDCCH-BlindDetectionMCG information element to the CU through the DU, so that the DU can obtain the ability to configure a new PDCCH blind detection.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic.
  • the various numerical numbers or serial numbers involved in the foregoing processes are only for easy distinction for description, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 and a transceiving unit 1200.
  • the communication device 1000 may correspond to the first network device in the above method embodiment, for example, it may be the first network device, or a chip configured in the first network device.
  • the communication device 1000 may correspond to the first network device in the method 300 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the first network device in the method 300 in FIG. 3 , Or, a unit that executes the method executed by the first network device in the method 400 in FIG. 4, or a unit that executes the method executed by the first network device in the method 500 in FIG. 5.
  • each unit in the communication device 1000 and other operations or functions described above are used to implement the corresponding process of the first network device in the method 300 in FIG. 3, or to implement the corresponding process of the first network device in the method 400 in FIG.
  • the process, or respectively, is to implement the corresponding process of the first network device in the method 500 in FIG. 5.
  • the processing unit 1100 is configured to obtain the first paging parameter of the cell under the second network device, and the first paging parameter is used to instruct the terminal device to monitor the cell from the second network device. 2. The first time domain position of the paging message of the network device;
  • the processing unit 1100 is further configured to, according to the first paging parameter, call the transceiver unit 1200 to send a reference signal, wherein the time domain position of the reference signal is determined according to the first time domain position.
  • the processing unit 1100 is configured to obtain the first paging parameter of the cell under the second network device, including:
  • the calling transceiver unit 1200 receives the first paging parameter from the second network device.
  • the processing unit 1100 is configured to obtain the first paging parameter of the cell under the second network device, including:
  • the transceiving unit 1200 is further configured to send configuration information to the terminal device, where the configuration information is used to configure the terminal device to report the first paging parameter.
  • the configuration information includes the identity and/or frequency of the cell under the second network device.
  • the apparatus 1000 is a first network device, and the first network device further includes: a distributed unit DU and a centralized unit CU;
  • the DU of the first network device sends the second paging parameter of the cell under the first network device to the CU of the first network device.
  • the apparatus 1000 is a second network device, and the second network device includes: a processing unit 1100 and a transceiver unit 1200;
  • the processing unit 1100 is configured to generate a first paging parameter of a cell under the second network device, and the first paging parameter is used to instruct a terminal device to monitor a paging message from the second network device The first time domain position;
  • the transceiving unit 1200 is configured to send the first paging parameter to a first network device, where the first paging parameter is used by the first network device to send a reference signal according to the first paging parameter, so The time domain position of the reference signal is determined according to the first time domain position.
  • the second network device further includes: a distributed unit DU and a centralized unit CU; the DU of the second network device sends the first paging parameter to the CU of the second network device.
  • the apparatus 1000 is a first network device
  • the first network device includes: a distributed unit and a centralized unit (not shown in the figure), and the distributed unit of the first network device
  • the unit DU is used to send the first channel state information reference signal CSI-RS configuration to the centralized unit CU of the first network device; the CU of the first network device is also used to send the first CSI-RS configuration through the transceiver unit 1200 2.
  • the CU of the network device sends the first CSI-RS configuration.
  • the CU of the first network device is further configured to: receive a second CSI-RS configuration from the CU of the second network device through the transceiving unit 1200; and send the second CSI-RS configuration DU for the first network device.
  • the apparatus 1000 is a first network device, and the processing unit 1100 is configured to determine a configuration of a first additional reference signal, where the configuration of the first additional reference signal includes time domain information And/or frequency domain information; the transceiving unit 1200 is configured to send the configuration of the first additional reference signal to a second network device.
  • the first network device includes: a distributed unit DU and a centralized unit CU (not shown in the figure), and the distributed unit DU of the first network device is connected to the centralized unit of the first network device.
  • the unit CU sends the configuration of the first additional reference signal.
  • the CU of the first network device is further configured to: receive the configuration of a second additional reference signal of the CU from the second network device; and send the configuration of the second additional reference signal to the first The DU of the network device.
  • the apparatus 1000 is a second network device, and the transceiver unit is configured to receive a configuration of a first additional reference signal from the first network device, and the first additional reference
  • the configuration of the signal includes frequency domain information and/or time domain information.
  • the second network device can refer to the first additional reference channel configuration and configure the terminal device to perform measurements on the neighboring cell.
  • the second network device includes: a distributed unit DU and a centralized unit CU (not shown in the figure).
  • the centralized unit CU of the second network device is used to send the configuration of the first additional reference signal to the distributed unit DU of the second network device.
  • the distributed unit DU of the second network device is configured to send a second additional reference signal to the centralized unit CU of the second network device.
  • the transceiver unit 1200 in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 7
  • the processing unit 1100 in the communication device 1000 may correspond to the processor 3100 in the network device 3000 shown in FIG. 7.
  • the transceiver unit 1200 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 300 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 300 in FIG. 3, or execute The unit of the method executed by the terminal device in the method 400 in FIG. 4 or the unit of the method executed by the terminal device in the method 500 in FIG. 5.
  • the units in the communication device 1000 and the other operations or functions described above are used to implement the corresponding process of the terminal device in the method 300 in FIG. 3, or, respectively, to implement the corresponding process of the terminal device in the method 400 in FIG. 4, or, In order to realize the corresponding process of the terminal device in the method 500 in FIG. 5 respectively.
  • the processing unit 1100 is configured to obtain the first paging parameter of the cell under the second network device, and the first paging parameter is used to instruct the terminal device to monitor the cell from the second network device. 2.
  • the first time domain position of the paging message of the network device; the transceiver unit 1200 is configured to send the first paging parameter to the first network device.
  • the transceiver unit 1200 is further configured to receive configuration information from the first network device, where the configuration information is used to configure the terminal device to report the first paging parameter.
  • the configuration information includes the identity and/or frequency of the cell under the second network device.
  • the transceiver unit 1200 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 8, and the processing unit 1100 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 8.
  • the transceiver unit 1200 in the communication device 1000 may be an input/output interface.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 may be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3200.
  • RRU 3100 may be called a transceiver unit or a communication unit, and corresponds to the transceiver unit 1200 in FIG. 6.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the 3200 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1100 in FIG. 6, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate configuration information reported by the CSI.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 7 can implement various processes involving network devices in the foregoing method embodiments shown in FIGS. 3 to 5.
  • the operation or function of each module in the base station 3000 is to implement the corresponding process in the foregoing method embodiment.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • FIG. 8 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control or data signals.
  • the memory 2030 is used to store computer programs, and the processor 2010 is used to call and transfer from the memory 2030. Run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the aforementioned processor 2010 and the memory 2030 can be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to implement the aforementioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit 1100 in FIG. 6.
  • the above transceiver 2020 may correspond to the communication unit in FIG. 6 and may also be referred to as a transceiver unit 1200.
  • the transceiver 2020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 8 can implement various processes involving the terminal device in the method embodiments shown in FIGS. 3 to 5.
  • the operation or function of each module in the terminal device 2000 is to implement the corresponding process in the foregoing method embodiment.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit A speaker 2082, a microphone 2084, etc. may also be included.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 5 The method on the terminal device side in the embodiment is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 5 The method on the side of the first network device in the embodiment is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 5 The method on the second network device side in the embodiment is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices (first network device or second network device).
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the communication method in any of the foregoing method embodiments.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application specific integrated circuit (ASIC) , Ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or system on chip (SoC), or central processing
  • the central processor unit (CPU) can also be a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit, MCU) It can also be a programmable logic device (PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • PLD programmable logic device
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program, or computer running on the processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process or thread of execution, and the components can be located on one computer or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can pass a local signal based on a signal having one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through signals). Or remote process to communicate.
  • a signal having one or more data packets for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through signals.
  • remote process to communicate for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through signals.
  • a corresponding to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the item can be any of the following: A; B ; C; A and B; A and C; B and C; A, B and C; A and A; A, A and A; A, A and B; A, A and C, A, B and B; A , C and C; B and B, B, B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • the item can be any of the following: A; B ; C; A and B; A and C; B and C; A, B and C; A and A; A and B; A, A and C, A, B and B; A , C and C; B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • the item includes at least one of the following: A, B,..., and X"
  • the applicable items of the item can also be obtained according to the aforementioned rules.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples, and the embodiments of this application can also perform other operations or various Deformation of operation. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供了一种用于小区测量的方法和装置,通过交互寻呼参数,以便于配置合适的测量位置,有助于节省终端设备的功耗。该方法包括:第一网络设备获取第二网络设备下的小区的第一寻呼参数,第一寻呼参数用于指示终端设备监听来自于第二网络设备的寻呼消息的第一时域位置,并根据第一寻呼参数发送参考信号,其中,参考信号的时域位置是根据第一时域位置确定的。

Description

用于小区测量的方法和装置
本申请要求于2019年8月15日提交中国专利局、申请号为201910755809.8、申请名称为“用于小区测量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于小区测量的方法和装置。
背景技术
在无线通信系统中,终端设备通常有三种状态,分别是无线资源控制(radio resource control,RRC)连接态(RRC_CONNECTED)和RRC空闲态(RRC_IDLE)、RRC去激活态(RRC_INACTIVE)。当处于空闲态或去激活态时,终端设备无法与网络设备直接进行通信。为了网络设备能够有效地找到空闲态/去激活态的终端设备,网络设备一般会通过寻呼的方式,即定期地向终端设备发送寻呼调度信息,以指示终端设备是否应该从空闲态/去激活态切换至连接态,以便与网络设备进行通信。终端设备在收到寻呼调度信息后可以醒来进入连接态,以便发送或接收业务数据。
处于空闲态/去激活态的终端设备会在某个寻呼周期内醒来监听寻呼消息。终端设备醒来的时刻称为寻呼时机(paging occasion,PO)。网络设备会在该时刻将寻呼消息从空口发出,以便终端设备在该时刻接收到寻呼消息。终端设备监听寻呼消息的行为是需要付出一些功耗的。另外,终端设备还需要在某一时刻醒来做无线资源管理(radio resource management,RRM)测量,这也需要一些功耗的。因此,亟需提出一种方法来节省终端设备的功耗。
发明内容
有鉴于此,本申请提供一种用于小区测量的方法和装置,有助于节省终端设备的功耗。
第一方面,提供了一种用于小区测量的方法,包括:第一网络设备获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;第一网络设备根据所述第一寻呼参数,发送参考信号,其中,所述参考信号的时域位置是根据所述第一时域位置确定的。这里,所述参考信号的时域位置与根据所述第一时域位置需要尽可能接近,以保证终端设备既能监听寻呼消息,又能作测量,有助于节省终端设备的功耗。换句话说,本申请实施例可以通过尽可能的减少寻呼位置与参考信号的时域位置之间的时间差,使得终端设备一次醒来后既能监听寻呼消息,又能作测量,从而节省终端设备的功耗。
在一种可能的实现方式中,第一网络设备获取第二网络设备下的小区的第一寻呼参数,包括:所述第一网络设备接收来自第二网络设备的所述第一寻呼参数。因此,第一网 络设备可以直接接收第二网络设备发送的第一寻呼参数。
在另一种可能的实现方式中,第一网络设备获取第二网络设备下的小区的第一寻呼参数,包括:所述第一网络设备接收来自终端设备的所述第一寻呼参数。因此,第一网络设备可以接收终端设备上报的第一寻呼参数。
可选地,在所述第一网络设备接收来自终端设备的所述第一寻呼参数前,所述方法还包括:第一网络设备向所述终端设备发送配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。这里,第一网络设备可以预先配置终端设备上报第一寻呼参数。
可选地,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
可选地,所述方法还包括:所述第一网络设备向所述第二网络设备发送所述第一网络设备下的小区的第二寻呼参数。这里,第一网络设备也可以将自己的第二寻呼参数告知给第二网络设备,以便于第二网络设备配置终端设备的测量。
可选地,所述方法还包括:第一网络设备的分布式单元DU向所述第一网络设备的集中式单元CU发送所述第一网络设备下的小区的第二寻呼参数。这里,第一网络设备的DU可以将自己的第二寻呼参数告知给第一网络设备的CU。
第二方面,提供了一种用于小区测量的方法,包括:第二网络设备生成所述第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;第二网络设备向第一网络设备发送所述第一寻呼参数,所述第一寻呼参数用于所述第一网络设备根据所述第一寻呼参数发送参考信号,所述参考信号的时域位置是根据所述第一时域位置确定的。这里,第二网络设备将第一寻呼参数发送给第一网络设备,以便于第一网络设备根据所述第一寻呼参数发送参考信号。这里,所述参考信号的时域位置与根据所述第一时域位置需要尽可能接近,以保证终端设备既能监听寻呼消息,又能作测量,有助于节省终端设备的功耗。
可选地,所述方法还包括:第二网络设备的分布式单元DU将所述第一寻呼参数发送给所述第二网络设备的集中式单元CU。
可选地,所述方法还包括:第二网络设备接收来自所述第一网络设备的所述第一网络设备下的小区的第二寻呼参数。
第三方面,提供了一种用于小区测量的方法,包括:终端设备获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;终端设备向第一网络设备发送所述第一寻呼参数。因此,终端设备可以接收第二网络设备下的小区的第一寻呼参数,以便于向第一网络设备发送所述第一寻呼参数。
可选地,在所述终端设备向所述第一网络设备发送所述第一寻呼参数前,所述方法还包括:所述终端设备接收来自所述第一网络设备的配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。因此,终端设备可以基于第一网络设备的配置,向第一网络设备发送第一寻呼参数。
可选地,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
第四方面,提供了一种用于小区测量的方法,包括:第一网络设备的分布式单元DU向所述第一网络设备的集中式单元CU发送第一信道状态信息参考信号CSI-RS配置;所述第一网络设备的CU向第二网络设备的CU发送所述第一CSI-RS配置。因此,第一网 络设备的DU可以将自己的CSI-RS配置发送给自己的CU。
可选地,所述方法还包括:所述第一网络设备的CU接收来自所述第二网络设备的CU的第二CSI-RS配置;所述第一网络设备的CU将所述第二CSI-RS配置发送给所述第一网络设备的DU。因此,第一网络设备的CU可以将第二网络设备的下的小区的CSI-RS配置发送给自己的DU。
第五方面,提供了一种用于小区测量的方法,包括:第一网络设备确定第一额外参考信号的配置,所述第一额外参考信号的配置包括时域信息和/或频域信息;所述第一网络设备向第二网络设备发送所述第一额外参考信号的配置。因此,第一网络设备可以将自己的第一额外参考信号的配置发送给第二网络设备,以便于第二网络设备配置终端设备的测量。
可选地,所述方法还包括:所述第一网络设备的分布式单元DU向所述第一网络设备的集中式单元CU发送所述第一额外参考信号的配置。
可选地,所述方法还包括:所述第一网络设备的CU接收来自所述第二网络设备的CU第二额外参考信号的配置;所述第一网络设备的CU将所述第二额外参考信号的配置发送给所述第一网络设备的DU。
第六方面,提供了一种用于小区测量的方法,包括:第二网络设备接收来自所述第一网络设备的第一额外参考信号的配置,所述第一额外参考信号的配置包括频域信息和/或时域信息。这样,第二网络设备可以参考第一额外参考信道配置,配置终端设备进行对邻区进行测量。
可选地,所述方法还包括:所述第二网络设备的集中式单元CU向所述第二网络设备的分布式单元DU发送所述第一额外参考信号的配置。
可选地,所述方法还包括:所述第二网络设备的分布式单元DU向所述第二网络设备的集中式单元CU发送第二额外参考信号的配置。
第七方面,提供了一种通信装置,该通信装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块;或者,包括用于执行上述第四方面或第四方面的任意可能的实现方式中的方法的模块;或者,包括用于执行上述第五方面或第五方面的任意可能的实现方式中的方法的模块。
第八方面,提供了一种通信装置,该通信装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块;或者,包括用于执行上述第六方面或第六方面的任意可能的实现方式中的方法的模块。
第九方面,提供了一种通信装置,该通信装置包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的模块。
第十方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第一方面的任意可能的实现方式中的方法,或者,该处理器通过逻辑电路或执行代码指令用于实现前述第四方面或第四方面的任意可能的实现方式中的方法,或者,该处理器通过逻辑电路或执行代码指令用于实现前述第五方面或第五方面的任意可能的实现方式中的方法。
第十一方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第二方面的任意可能的实现方式中的方法,或者,该处理器通过逻辑电路或执行代码指令用于实现前述第六方面或第六方面的任意可能的实现方式中的方法。
第十二方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第一方面的任意可能的实现方式中的方法,或者,该处理器通过逻辑电路或执行代码指令用于实现前述第三方面或第三方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第二方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第三方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第四方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第五方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第六方面及其可能的实现方式中任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现上述第一方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第二方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第三方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第四方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第五方面及其可能的实现方式中任意可能的实现方式中的方法,或者,实现上述第六方面及其可能的实现方式中任意可能的实现方式中的方法。
第十五方面,提供了一种通信芯片,其中存储有指令,当其在计算机设备上运行时,使得所述通信芯片执行上述第一方面至第六方面中任一方面的任意可能的实现方式中的方法。
第十六方面,提供了一种通信系统,该通信系统包括前述第七方面的通信装置,第八方面的通信装置以及第九方面的通信装置。
第十七方面,提供了一种通信系统,该通信系统包括前述第十方面的通信装置,第十一方面的通信装置以及第十二方面的通信装置。
附图说明
图1是适用本申请实施例的通信系统的示意图;
图2是适用本申请实施例的通信系统的另一示意图;
图3是根据本申请实施例的用于小区测量的方法的示意性流程图;
图4是根据本申请另一实施例的用于小区测量的方法的示意性流程图;
图5是根据本申请另一实施例的用于小区测量的方法的示意性流程图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的网络设备的结构示意图;
图8是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“多个”可以理解为“至少两个”或“两个或两个以上”;“多项”可以理解为“至少两项”或“两项或两项以上”。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统中的新无线(new radio,NR)系统以及未来的移动通信系统。
图1示出了适用于本申请实施例的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。
图2示出了适用于本申请实施例的通信系统200的另一示意图。如图所示,该通信系统200可以包括至少两个网络设备,例如图2中所示的网络设备210和220;该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备230。该终端设备230可以通过双连接(dual connectivity,DC)技术或者多连接技术与网络设备210和网络设备220建立无线链路。其中,网络设备210例如可以为主基站,网络设备220例如可以为辅基站。此情况下,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的无线资源控制(radio resource control,RRC)通信,网络设备220可以是RRC重配置时添加的,用于提供额外的无线资源。
此外,如图2所示,该两个网络设备之中,可以有一个网络设备,如网络设备210,负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备210可以称之为主节点(master node,MN),例如,主节点可以是MeNB或者MgNB,不限定于此;则另一个网络设备,如网络设备220,可以称之为辅节点(secondary node,SN),例如,辅节点可以是辅基站(secondary evloved NodeB,SeNB)或者(secondary next generation NodeB,SgNB),不限定于此。其中,主节点中的多个服务小区可以组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个辅小区(secondary cell,SCell)。辅节点中的多个服务小区可以组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
类似的,终端设备也可以同时与多个网络设备存在通信连接并可收发数据,该多个网络设备之中,可以有一个网络设备负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备可以称之为MN,则其余的网络设备可以称之为SN。
当然,网络设备220也可以为主基站或主节点,网络设备210也可以为辅基站或辅节点,本申请对此不做限定。另外,图中仅为便于理解,示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更 多的网络设备建立无线链路。
各通信设备,如图1中的网络设备110或终端设备120,或者图2中的网络设备210、网络设备220或终端设备230,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
本申请实施例中的网络设备终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evloved NodeB,eNB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、传输点、未来移动通信系统中的基站或无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU),或,集中式单元(centralized unit,CU),或,集中式单元控制面(centralized unit control plane,CU-CP)和集中式单元用户面(centralized unit user plane,CU-UP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在一些部署中,gNB可以包括CU和DU。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。一个CU可以连接一个DU,或者也可以多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU实现gNB的部分功能;DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,以实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。
应理解,CU和DU的切分可以按照上述协议栈进行切分,本申请实施例中并不完全限定上述协议栈切分方式,还可以有其它的切分方式,具体可以参考TR38.801v14.0.0。例如,可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如,按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU和DU之间通过F1接口连接。CU代表gNB通过Ng接口和核心网连接。更进一步,集中式单元CU还可以划分为控制面(CU-CP)和用户面(CU-UP)。其中CU-CP负责控制面功能,主要包含RRC和分组数据汇聚层协议控制面(packet data convergence protocol control,PDCP-C)。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等至少一种功能。CU-UP负责用户面功能,主要包含业务数据适配协议(service data adaptation protocol,SDAP)和分组数据汇聚层协议用户面(packet data convergence protocol  user,PDCP-U)。其中SDAP主要负责将核心网的数据进行处理并将flow映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过Ng接口和核心网连接。通过F1-C(控制面)和DU连接。CU-UP通过F1-U(用户面)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。
gNB还可以包括有源天线单元(active antenna unit,AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、CU-CP节点、CU-UP节点、AAU节点中一项或多项的设备。此外,CU可以作为接入网中的网络设备,也可以作为核心网(core network,CN)中的网络设备,本申请对此不做限定。
终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为了便于理解,这里对本申请实施例涉及到的一些术语或概念作简单介绍。
寻呼(paging)消息的内容是网络设备通过物理下行共享信道(physical downlink shared channel,PDSCH)资源位置发给终端设备的。其中,PDSCH资源是通过寻呼无线网络临时标识(paging radio network temporary identity,P-RNTI)加扰物理下行控制信道(physical downlink control channel,PDCCH)指示的。终端设备要获得寻呼消息,首先要周期性地醒来监视P-RNTI加扰的PDCCH信道,然后解析下行控制信息(downlink control information,DCI),进一步得到PDSCH信道的时频位置,最后在对应的PDSCH信道的位置解析寻呼消息的内容。
其中,寻呼消息所占的频域资源是由P-RNTI加扰的PDCCH指定的。在时域上,终端设备会在寻呼周期内的某个特定帧(paging frame,PF)的寻呼时机(paging occasion,PO)去尝试接收寻呼消息。PF是一个无线帧,该无线帧包括一个或多个PO。
额外参考信号(additional reference signal,additional RS)是区别于Release-15版本现有的参考信号之外,基站提供的参考信号,用于辅助终端设备进行以下行为中的一项或多项:精确同步,信道/波束追踪,CSI/RRM测量等。额外参考信号可以用于非连续接收(discontinuous reception,DRX),带宽部分(bandwidth part,BWP)切换,快速SCell激活,减少PDCCH检测,和/或RRM测量等。PO是PDCCH监测时机(monitoring occasions)的集合,可能包含多个时隙(或者子帧,或者正交频分复用(orthogonal frequency division multiplexing,OFDM)符号),在该PO上可能会有使用P-RNTI加扰,并指示Paging消息的PDCCH。当使用了DRX,终端设备在每个DRX周期(cycle)上只需要检测1个PO,也就是说,对于每个终端设备,在每个Paging周期内只有1个PO可用于发送Paging。其中,对于idle态(空闲态)/inactive态(去激活态)UE来说,DRX cycle与Paging周期是同一概念。
寻呼参数包括寻呼帧号、寻呼周期、寻呼密度、寻呼帧的个数、寻呼帧中寻呼时机的个数等其他可能的参数。比如,寻呼参数可以包括以下中的一项或多项:N,Ns,firstPDCCH-MonitoringOccasionOfPO,PF_offset,以及缺省DRX Cycle的长度(the length of default DRX Cycle)等。N表示一个周期内的PF数,Ns表示PF内的PO数。
其中,对于firstPDCCHMonitoringOccasionOfPO,该信息元素(information element,IE)用来确定PO的起始位置。defaultPagingCycle是默认Paging周期,可表示为“T”。比如,T表示UE的DRX周期。
应理解,这里只是简单介绍了与寻呼相关的内容,对于未涉及到的解释或概念具体可以参考现有协议TS 38.213,TS38.304,TS38.331等中的描述,为了简洁,这里不作赘述。
额外资源(additional resource):根据TR 38.340,RRM测量采用额外资源(additional resource)有益于终端设备省电。额外资源是指:在现有的同步信号块(synchronization signal block,SSB)测量和信道状态信息参考信号(channel-state information reference signal,CSI-RS)测量之外,引入额外的参考信号用于RRM测量的资源。可选地,额外的参考信号可以是CSI-RS,或者辅同步信号(secondary synchronization signal,SSS),或者SSB,或者解调参考信号(demodulation reference signal,DMRS)等。额外资源可以适用于处于空闲(idle)/非激活(inactive)/连接(connected)态的终端设备。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
在本申请实施例中,网络设备间通过交互寻呼参数,以便于在配置测量资源时能考虑邻区的寻呼参数,从而尽量减少参考信号对应的时域位置与寻呼消息对应的时域位置之间的时间差,使得终端设备在一次醒来后既能监听寻呼消息,又能对参考信号进行测量,有助于节省终端设备的功耗。
图3示出了根据本申请实施例的用于小区测量的方法300的示意性流程图。如图3所示,所述方法300包括:
S310,第一网络设备获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于第二网络设备的寻呼消息的第一时域位置。
第一网络设备下的小区与第二网络设备下的小区互为邻区。比如,对于第一网络设备下的小区而言,第二网络设备下的小区是第一网络设备下的小区的邻区;又比如,对于第二网络设备而言,第一网络设备下的小区是第二网络设备下的小区的邻区。
应理解,第一网络设备和第二网络设备可以互相获取对方对应的寻呼参数,比如,第二网络设备也可以获取第一网络设备下的小区的第二寻呼参数,这里以第一网络设备获取第二网络设备下的小区的第一寻呼参数为例进行说明。
第一寻呼参数可用于直接或间接指示终端设备监听来自于第二网络设备的寻呼消息的第一时域位置。比如,第一时域位置是终端设备的寻呼时机PO。若采用直接指示的方式,第一寻呼参数可以直接指示第一时域位置;若采用间接指示的方式,第一寻呼参数中包括的内容可以用于计算第一时域位置。
示例性地,第一寻呼参数可以包括以下中的一项或多项:N,Ns,firstPDCCH-MonitoringOccasionOfPO,PF_offset,以及缺省DRX周期长度(the length of default DRX Cycle)等其他信息。这里,各个参数的解释可以参考前文描述,为了简洁,这里不作赘述。第一寻呼参数与第二网络设备下的小区关联。
应理解,上述第一寻呼参数中包括的内容只是示例性地描述,并不对本申请实施例构成限定,事实上,第一寻呼参数中也可以包括其他关于寻呼的参数。
S320,第一网络设备根据第一寻呼参数,发送参考信号,其中,所述参考信号的时域位置的根据所述第一时域位置确定的。这里,第一时域位置与参考信号的时域位置距离比较靠近。
在具体实现时,第一网络设备可以将用于发送参考信号的时域位置,与第一时域位置尽量靠近,以便于终端设备一次醒来既能监听寻呼消息,又能对参考信号进行测量,有助 于节省终端设备的功耗。应理解,本申请实施例对终端设备在一次醒来后,“监听寻呼消息”和“测量参考信号”的先后顺序不作具体限定,可以是“监听寻呼消息”在前“测量参考信号”在后,也可以是“测量参考信号”在前“监听寻呼消息”在后,也可以是同时进行。
在本申请实施例中,第一网络设备可以接收来自第二网络设备或终端设备的第一寻呼参数。下面将分别进行描述。
可选地,作为一种实现方式,第一寻呼参数可以是第二网络设备发送给第一网络设备的。第二网络设备向第一网络设备发送所述第一寻呼参数。对应的,S310包括:S311,第一网络设备接收来自第二网络设备的所述第一寻呼参数。这里,第一网络设备可以直接接收第二网络设备通过X2口或Xn口发送的第一寻呼参数。
可选地,作为另一种实现方式,第一寻呼参数可以是终端设备发送给第一网络设备的。终端设备向第一网络设备发送第一寻呼参数。对应的,S310包括:S312,第一网络设备接收来自终端设备的所述第一寻呼参数。这里,第一网络设备可以预先配置终端设备上报寻呼参数。
可选地,在第一网络设备接收来自终端设备的第一寻呼参数前,第一网络设备向所述终端设备发送配置信息,所述配置信息用于配置所述终端设备上报第一寻呼参数。可选地,所述配置信息中包括第二网络设备下的小区的标识和/或频率。
举例来说,第一网络设备向终端设备发送RRC消息,以配置终端设备上报第二网络设备下的小区的第一寻呼参数。RRC消息中包括目标邻区的标识(可以将第二网络设备下的小区作为目标邻区)和/或目标邻区的SSB频率等信息。终端设备在收到第一网络设备的RRC消息后,通过读取目标邻区的广播消息,比如,SIB1,以获取第一寻呼参数。终端设备通过RRC消息将第二网络设备下的小区的第一寻呼参数发送给第一网络设备。
第一网络设备还可以向第二网络设备发送第一网络设备下的小区的第二寻呼参数。示例性地,第一寻呼参数也可以包括N,Ns,firstPDCCH-MonitoringOccasionOfPO,PF_offset,and the length of default DRX Cycle。第二寻呼参数与第一网络设备下的小区关联。
可选地,所述方法300还包括:第一网络设备的DU向第一网络设备的CU发送第一网络设备下的小区的第二寻呼参数。对于第一网络设备而言,第二寻呼参数是第一网络设备的本小区的寻呼参数。第一网络设备的DU可以将第二寻呼参数发送给第一网络设备的CU。这样,可以使得第一网络设备的CU将本小区的第二寻呼参数发送给第二网络设备的CU,从而可以辅助第二网络设备为终端设备配置用于测量邻区(比如,第二网络设备下的小区的邻区可以是第一网络设备下的小区)的额外资源。
类似地,所述方法300还包括:所述第二网络设备的分布式单元DU将所述第一寻呼参数发送给所述第二网络设备的集中式单元CU。对于第二网络设备而言,第一寻呼参数是第二网络设备的本小区的寻呼参数。第二网络设备的DU也可以将第一寻呼参数发送给第二网络设备的CU。这样,可以使得第二网络设备的CU将第一寻呼参数发送给第一网络设备的CU,从而可以辅助第一网络设备为终端设备配置用于测量邻区(比如,第一网络设备下的小区的邻区可以是第二网络设备下的小区)的额外资源。
为了便于理解,下面结合具体实例进行描述。这里以第一网络设备下的小区为小区1,UE1驻留在小区1,第一网络设备对应CU1和DU1;以及,第二网络设备下的小区为小区2,UE2驻留在小区2,第二网络设备对应CU2和DU2为例进行说明。
举例来说,DU1通过F1口将小区1的第二寻呼参数交互给CU1。CU1通过Xn口或X2口将第二寻呼参数交互给CU2。CU2在得到小区1的第二寻呼参数后,在配置用于邻区(比如,小区1)测量的额外资源时,尽量让额外资源的时域位置接近邻区的寻呼时机。可选地,CU2也可以获取其他多个邻区的寻呼参数,比如,小区3,小区4等等,然后配置相应的测量资源。可选地,CU2也可以将配置的额外资源通过Xn口或X2口交互给CU1。CU1可以将测量配置(包括CU2配置的额外资源)发送给UE1,使得UE1根据该测量配置对小区2进行测量。
本申请还提供了一种实施例,网络设备间可以交互额外参考信号的配置,以便于配置终端设备测量邻区的额外参考信号。其中,额外参考信号的配置用于终端设备进行RRM测量。应理解,本申请各个实施例可以独立使用,也可以组合使用,对此不作限定。本申请实施例中的额外参考信号(additional RS),指的是为了省电的目的为UE配置的额外的参考信号,也可以称为临时RS(temporary RS),或其它名称,本申请实施例对此不做限定。
图4示出了根据本申请另一实施例的用于小区测量的方法400的示意性流程图。如图4所示,所述方法400包括:
S410,第一网络设备确定第一额外参考信号的配置,所述第一额外参考信号的配置包括时域信息和/或频域信息。
示例性地,第一额外参考信号的配置包括以下中的一项或多项:额外参考信号的频域信息(比如,频点,子载波间隔,起始PRB(physical resource block,物理资源块),总共占用多少个PRB等),额外参考信号的时域信息(比如,发送周期,发送起始时间(发送起始时间可以用偏移offset来表征),发送时长(duration),密度(density)等。
S420,第一网络设备向第二网络设备发送所述第一额外参考信号的配置。对应的,第二网络设备接收所述第一额外参考信号的配置。第二网络设备可以参考第一额外参考信号的配置,配置终端设备进行测量。
可选地,第一网络设备可以指示第一额外参考信号是用于终端设备省电的参考信号。
可选地,所述方法400还包括:第一网络设备的DU向第一网络设备的CU发送第一额外参考信号的配置。具体而言,第一网络设备的DU可以通过F1口将本小区的第一额外参考信号的配置告诉给第一网络设备的CU,以便于第一网络设备的CU可以将第一额外参考信号的配置发送给邻区,比如,第二网络设备的CU,从而可以辅助第二网络设备的CU对UE进行额外参考信号的测量配置。
类似地,第二网络设备也可以向第一网络设备发送第二额外参考信号的配置,所述第二额外参考信号的配置包括频域信息和/或时域信息。可选地,所述方法400还包括:S430,第二网络设备向第一网络设备发送第二额外参考信号的配置。具体地,第二网络设备的CU向第一网络设备的CU发送第二额外参考信号的配置。对应的,第一网络设备的CU接收来自第二网络设备的CU的第二额外参考信号配置。
可选地,第一网络设备的CU将第二额外参考信号的配置发送给第一网络设备的DU。这里,对于第一网络设备而言,第二额外参考信号的配置是第一网络设备下小区的邻区的额外参考信号配置。第一网络设备的CU可以将邻区的额外参考信号配置发送给第一网络设备的DU。第一网络设备的DU在生成测量间隙(measurement gap)配置时,可以考虑 邻区的额外参考信号配置。第一网络设备的DU可以将生成的间隙配置发送给第一网络设备的CU。其中,第一网络设备的DU生成间隙配置的过程可以参考现有手段,为了避免冗余,这里不作赘述。
类似地,第二网络设备的CU也可以将第一额外参考信号的配置发送给第二网络设备的DU。这里,对于第二网络设备而言,第一额外参考信号的配置是第二网络设备下小区的邻区的额外参考信号配置。
类似地,第二网络设备的DU可以将第二额外参考信号配置发送给第二网络设备的CU。这里,对于第二网络设备而言,第二额外参考信号配置是本小区的额外参考信号配置。
为了便于理解,下面结合具体实例进行描述。这里以第一网络设备下的小区为小区1,小区1是UE1的服务小区,第一网络设备对应CU1和DU1;以及,第二网络设备下的小区为小区2,小区2是UE2的服务小区,第二网络设备对应CU2和DU2为例进行说明。
举例来说,DU1通过F1口将小区1的第一额外参考信号的配置交互给CU1。然后,CU1通过Xn口或X2口将第一额外参考信号的配置交互给CU2。CU2在得到小区1的第一额外参考信号的配置后,给UE2配置测量配置,其中,给UE2配置的测量配置中包括邻区CU1的测量配置(该测量配置参考第一额外参考信号的配置来生成)。UE2可以根据该测量配置对小区1进行测量。
本申请还提供了一种实施例,网络设备间可以交互信道状态信息参考信号CSI-RS的配置,以便于配置终端设备对邻区的CSI-RS进行测量。
图5示出了根据本申请又一实施例的用于小区测量的方法500的示意性流程图。如图5所示,所述方法500包括:
S510,第一网络设备的DU向第一网络设备的CU发送第一信道状态信息参考信号CSI-RS配置。
示例性地,第一CSI-RS配置包括以下中的一项或多项:CSI-RS资源的索引(index),CSI-RS资源的频点信息,CSI-RS的时域信息(比如,发送的时隙,周期等),CSI-RS资源的密度(density),关联的SSB(associated SSB),OFDM符号的起始位置(firstOFDMSymbolInTimeDomatin),加扰所用的序列(sequenceGenerationConfig)等。
S520,第一网络设备的CU向第二网络设备的CU发送第一CSI-RS配置。对应的,第二网络设备的CU接收来自第一网络设备的CU的第一CSI-RS配置。
可选地,所述方法500还包括:S530,第二网络设备的CU向第二网络设备的DU发送第一CSI-RS配置。这里,对于第二网络设备而言,第一CSI-RS配置是第二网络设备下的小区的邻区的CSI-RS配置。第二网络设备的CU可以把邻区的CSI-RS配置发送给第二网络设备的DU。
可选地,所述方法500还包括:第二网络设备的DU向第二网络设备的CU发送第二CSI-RS配置;第二网络设备的CU向第一网络设备的CU发送第二CSI-RS配置。对应的,第一网络设备的CU接收来自所述第二网络设备的CU的第二CSI-RS配置。也就是说,第二网络设备也可以将自己的第二CSI-RS配置交互给第一网络设备。
可选地,第一网络设备的CU将第二CSI-RS配置发送给第一网络设备的DU。这里,对于第一网络设备而言,第二CSI-RS配置是第一网络设备下小区的邻区的额外参考信号 配置。第一网络设备的CU可以将邻区的CSI-RS配置发送给第一网络设备的DU。第一网络设备的DU在生成测量间隙(measurement gap)配置时,可以考虑邻区的CSI-RS配置。第一网络设备的DU可以将生成的间隙配置发送给第一网络设备的CU。其中,第一网络设备的DU生成间隙配置的过程可以参考现有手段,为了避免冗余,这里不作赘述。
为了便于理解,下面结合具体实例进行描述。这里以第一网络设备下的小区为小区1,小区1是UE1的服务小区,第一网络设备对应CU1和DU1;以及,第二网络设备下的小区为小区2,小区2是UE2的服务小区,第二网络设备对应CU2和DU2为例进行说明。
举例来说,DU1通过F1口将小区1的第一CSI-RS配置交互给CU1。然后,CU1通过Xn口或X2口将第一CSI-RS配置交互给CU2。CU2在得到小区1的第一CSI-RS配置后,给UE2配置测量配置,其中,给UE2配置的测量配置中包括邻区CU1的测量配置(该测量配置参考第一CSI-RS配置来生成)。UE2可以根据该测量配置对小区1进行测量。
本申请还提供了一种实施例:网络设备的CU向该网络设备的DU发送小区组配置(CG-Config)信元(information element,IE)。
可选地,该CG-Config信元可以包括以下一项或多项:SCG的小区配置,SCG的无线承载(radio bearer,RB)配置,SCG的非连续接收(discontinuous reception,DRX)配置,SN的候选小区列表,SN的测量配置,SN选择的频带组合(band combination),SN的频点信息,SN向MN请求的SCG服务小区下UE能够使用的最大功率等。
可选地,该CG-Config信元可以携带于CU to DU RRC Information信元中。也就是说,网络设备的CU向该网络设备的DU发送CU to DU RRC Information,该CU to DU RRC Information信元中包括该CG-Config信元。
例如,在NE-DC和NR-DC场景下,网络设备的通过CU向该网络设备的DU发送所述CG-Config配置,可以使得该网络设备的DU获取SN的DRX配置、band combination配置、功率配置等相关信息,以进行相应的处理。其中,NE-DC是E-UTRA NR双连接(E-UTRA NR Dual Connectivity);NR-DC是NR双连接(NR NR Dual Connectivity)。
应理解,该实施例中提供的“网络设备的CU向该网络设备的DU发送CG-Config信元”的方案可以单独实施;或者,也可以与上文描述的各个实施例,也可以根据内在逻辑进行组合,本申请对此不作限定。
本申请还提供了一种实施例:网络设备的DU向该网络设备的CU发送SN请求的允许SCG配置PDCCH盲检测对应的小区参考数目的最大值(requestedPDCCH-BlindDetectionSCG)。
其中,该requestedPDCCH-BlindDetectionSCG信元的取值可以是整数。比如,requestedPDCCH-BlindDetectionSCG可以取1到15中的任一值。
可选地,该requestedPDCCH-BlindDetectionSCG信元可以携带于DU to CU RRC Information信元中。也就是说,网络设备的CU向该网络设备的DU发送DU to CU RRC Information信元,该DU to CU RRC Information信元中包括该requestedPDCCH-BlindDetectionSCG信元。
例如,在NR-DC场景下,网络设备的通过DU向该网络设备的CU发送该requestedPDCCH-BlindDetectionSCG信元,可以使得DU获得配置新的PDCCH盲检测的能力。
应理解,本实施例提供的“网络设备的DU向该网络设备的CU交互requestedPDCCH-BlindDetectionSCG”的方法可以单独实施;或者,也可以与与上文描述的各个实施例,根据内在逻辑进行组合,本申请对此不作限定。
本申请还提供了一种实施例:网络设备的DU向该网络设备的CU交互MN请求的允许MCG配置PDCCH盲检测对应的小区参考书目的最大值(requestedPDCCH-BlindDetectionMCG)信元。
可选地,该requestedPDCCH-BlindDetectionMCG信元的取值可以是整数。比如,该requestedPDCCH-BlindDetectionMCG信元的取值可以取1到15中的任一值。
可选地,该requestedPDCCH-BlindDetectionMCG信元可以携带于DU to CU RRC Information信元中。
例如,在NR-DC场景下,网络设备的通过DU向CU发送所述requestedPDCCH-BlindDetectionMCG信元,可以使得DU获得配置新的PDCCH盲检测的能力。
应理解,本实施例提供的DU向CU交互requestedPDCCH-BlindDetectionMCG的方案与上文实施例可以单独实施;或者,与上文描述的各个实施例,根据内在逻辑进行组合,本申请对此不作限定。
还应理解,本申请各个实施例可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图5详细描述了根据本申请实施例的用于小区测量的方法。下面将结合图6至图8描述根据本申请实施例的用于小区测量的装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该通信装置1000可以包括处理单元1100和收发单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的第一网络设备,例如,可以为第一网络设备,或者配置于第一网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法300中的第一网络设备,该通信装置1000可以包括用于执行图3中方法300中的第一网络设备执行的方法的单元,或者,执行图4中方法400中第一网络设备执行的方法的单元,或者,执行图5中方法500中第一网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作或功能分别为了实现图3中方法300中的第一网络设备相应流程,或者,分别为了实现图4中方法400中的第一网络设备相应流程,或者,分别为了实现图5中方法500中的第一网络设备相应流程。
在一种可能的实现方式中,所述处理单元1100,用于获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
所述处理单元1100还用于,根据所述第一寻呼参数,调用所述收发单元1200发送参 考信号,其中,所述参考信号的时域位置是根据所述第一时域位置确定的。
可选地,所述处理单元1100用于获取第二网络设备下的小区的第一寻呼参数,包括:
调用收发单元1200接收来自第二网络设备的所述第一寻呼参数。
可选地,所述处理单元1100用于获取第二网络设备下的小区的第一寻呼参数,包括:
接收来自终端设备的所述第一寻呼参数。
可选地,所述收发单元1200还用于向所述终端设备发送配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。
可选地,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
可选地,所述装置1000为第一网络设备,所述第一网络设备还包括:分布式单元DU和集中式单元CU;
所述第一网络设备的DU向所述第一网络设备的CU发送所述第一网络设备下的小区的第二寻呼参数。
在另一种可能的实现方式中,所述装置1000为第二网络设备,所述第二网络设备包括:处理单元1100和收发单元1200;
所述处理单元1100,用于生成所述第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
所述收发单元1200,用于向第一网络设备发送所述第一寻呼参数,所述第一寻呼参数用于所述第一网络设备根据所述第一寻呼参数发送参考信号,所述参考信号的时域位置是根据所述第一时域位置确定的。
可选地,所述第二网络设备还包括:分布式单元DU和集中式单元CU;所述第二网络设备的DU将所述第一寻呼参数发送给所述第二网络设备的CU。
在又一种可能的实现方式中,所述装置1000为第一网络设备,所述第一网络设备包括:分布式单元和集中式单元(图中未示出),第一网络设备的分布式单元DU,用于向所述第一网络设备的集中式单元CU发送第一信道状态信息参考信号CSI-RS配置;所述第一网络设备的CU还用于,通过所述收发单元1200向第二网络设备的CU发送所述第一CSI-RS配置。
可选地,所述第一网络设备的CU还用于:通过所述收发单元1200接收来自所述第二网络设备的CU的第二CSI-RS配置;将所述第二CSI-RS配置发送给所述第一网络设备的DU。
在又一种可能的实现方式中,所述装置1000为第一网络设备,所述处理单元1100用于,确定第一额外参考信号的配置,所述第一额外参考信号的配置包括时域信息和/或频域信息;所述收发单元1200用于向第二网络设备发送所述第一额外参考信号的配置。
可选地,所述第一网络设备包括:分布式单元DU和集中式单元CU(图中未示出),所述第一网络设备的分布式单元DU向所述第一网络设备的集中式单元CU发送所述第一额外参考信号的配置。
可选地,所述第一网络设备的CU还用于:接收来自所述第二网络设备的CU第二额外参考信号的配置;将所述第二额外参考信号的配置发送给所述第一网络设备的DU。
在另一种可能的实现方式中,所述装置1000为第二网络设备,所述收发单元用于,接收来自所述第一网络设备的第一额外参考信号的配置,所述第一额外参考信号的配置包 括频域信息和/或时域信息。这样,第二网络设备可以参考第一额外参考信道配置,配置终端设备进行对邻区进行测量。
可选地,所述第二网络设备包括:分布式单元DU和集中式单元CU(图中未示出)。所述第二网络设备的集中式单元CU用于向所述第二网络设备的分布式单元DU发送所述第一额外参考信号的配置。
可选地,所述第二网络设备的分布式单元DU用于向所述第二网络设备的集中式单元CU发送第二额外参考信号的配置。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备(第一网络设备或第二网络设备)时,该通信装置1000中的收发单元1200可对应于图7中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1100可对应于图7中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1200可以为输入/输出接口。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法300中的终端设备,该通信装置1000可以包括用于执行图3中方法300中的终端设备执行的方法的单元,或者,执行图4中方法400中终端设备执行的方法的单元,或者,执行图5中方法500中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作或功能分别为了实现图3中方法300中的终端设备相应流程,或者,分别为了实现图4中方法400中的终端设备相应流程,或者,分别为了实现图5中方法500中的终端设备相应流程。
在一种可能的实现方式中,所述处理单元1100,用于获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;所述收发单元1200,用于向第一网络设备发送所述第一寻呼参数。
可选地,所述收发单元1200还用于:接收来自所述第一网络设备的配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。
可选地,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可对应于图8中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1100可对应于图8中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的收发单元1200可以为输入/输出接口。
图7是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1或图2所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio  unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元或通信单元,与图6中的收发单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图6中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成CSI上报的配置信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图7所示的基站3000能够实现前述图3至图5所示方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
图8是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1或图2所示的系统中,执行上述方法实施例中终端设备的功能。如图8所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图6中的处理单元1100对应。
上述收发器2020可以与图6中的通信单元对应,也可以称为收发单元1200。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图8所示的终端设备2000能够实现图3至图5所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图5所示实施例中终端设备侧的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图5所示实施例中第一网络设备侧的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图5所示实施例中第二网络设备侧的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备(第一网络设备或第二网络设备)。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的 硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个 部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种用于小区测量的方法,其特征在于,包括:
    第一网络设备获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述第一网络设备根据所述第一寻呼参数,发送参考信号,其中,所述参考信号的时域位置是根据所述第一时域位置确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备获取第二网络设备下的小区的第一寻呼参数,包括:
    所述第一网络设备接收来自第二网络设备的所述第一寻呼参数。
  3. 根据权利要求1所述的方法,其特征在于,所述第一网络设备获取第二网络设备下的小区的第一寻呼参数,包括:
    所述第一网络设备接收来自终端设备的所述第一寻呼参数。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一网络设备接收来自终端设备的所述第一寻呼参数前,所述方法还包括:
    所述第一网络设备向所述终端设备发送配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。
  5. 根据权利要求4所述的方法,其特征在于,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备的分布式单元DU向所述第一网络设备的集中式单元CU发送所述第一网络设备下的小区的第二寻呼参数。
  7. 一种用于小区测量的方法,其特征在于,包括:
    第二网络设备生成所述第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述第二网络设备向第一网络设备发送所述第一寻呼参数,所述第一寻呼参数用于所述第一网络设备根据所述第一寻呼参数发送参考信号,所述参考信号的时域位置是根据所述第一时域位置确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备的分布式单元DU将所述第一寻呼参数发送给所述第二网络设备的集中式单元CU。
  9. 一种用于小区测量的方法,其特征在于,包括:
    终端设备获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述终端设备向第一网络设备发送所述第一寻呼参数。
  10. 根据权利要求9所述的方法,其特征在于,在所述终端设备向所述第一网络设备发送所述第一寻呼参数前,所述方法还包括:
    所述终端设备接收来自所述第一网络设备的配置信息,所述配置信息用于配置所述终 端设备上报所述第一寻呼参数。
  11. 根据权利要求10所述的方法,其特征在于,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
  12. 一种用于小区测量的装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述处理单元还用于,根据所述第一寻呼参数,调用所述收发单元发送参考信号,其中,所述参考信号的时域位置是根据所述第一时域位置确定的。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元用于获取第二网络设备下的小区的第一寻呼参数,包括:
    调用收发单元接收来自第二网络设备的所述第一寻呼参数。
  14. 根据权利要求12所述的装置,其特征在于,所述处理单元用于获取第二网络设备下的小区的第一寻呼参数,包括:
    接收来自终端设备的所述第一寻呼参数。
  15. 根据权利要求14所述的装置,其特征在于,所述收发单元还用于向所述终端设备发送配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。
  16. 根据权利要求15所述的装置,其特征在于,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
  17. 根据权利要求12至16中任一项所述的装置,其特征在于,所述装置为第一网络设备,所述第一网络设备还包括:分布式单元DU和集中式单元CU;
    所述第一网络设备的DU向所述第一网络设备的CU发送所述第一网络设备下的小区的第二寻呼参数。
  18. 一种用于小区测量的装置,其特征在于,所述装置为第二网络设备,所述第二网络设备包括:处理单元和收发单元;
    所述处理单元,用于生成所述第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述收发单元,用于向第一网络设备发送所述第一寻呼参数,所述第一寻呼参数用于所述第一网络设备根据所述第一寻呼参数发送参考信号,所述参考信号的时域位置是根据所述第一时域位置确定的。
  19. 根据权利要求18所述的装置,其特征在于,所述第二网络设备还包括:分布式单元DU和集中式单元CU;
    所述第二网络设备的DU将所述第一寻呼参数发送给所述第二网络设备的CU。
  20. 一种用于小区测量的装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于获取第二网络设备下的小区的第一寻呼参数,所述第一寻呼参数用于指示终端设备监听来自于所述第二网络设备的寻呼消息的第一时域位置;
    所述收发单元,用于向第一网络设备发送所述第一寻呼参数。
  21. 根据权利要求20所述的装置,其特征在于,所述收发单元还用于:接收来自所述第一网络设备的配置信息,所述配置信息用于配置所述终端设备上报所述第一寻呼参数。
  22. 根据权利要求21所述的装置,其特征在于,所述配置信息包括所述第二网络设备下的小区的标识和/或频率。
PCT/CN2020/108810 2019-08-15 2020-08-13 用于小区测量的方法和装置 WO2021027864A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20851911.6A EP4007365A4 (en) 2019-08-15 2020-08-13 METHOD AND DEVICE FOR CELL MEASUREMENT
US17/670,566 US20220167200A1 (en) 2019-08-15 2022-02-14 Cell measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755809.8 2019-08-15
CN201910755809.8A CN112399498B (zh) 2019-08-15 2019-08-15 用于小区测量的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/670,566 Continuation US20220167200A1 (en) 2019-08-15 2022-02-14 Cell measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2021027864A1 true WO2021027864A1 (zh) 2021-02-18

Family

ID=74570539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108810 WO2021027864A1 (zh) 2019-08-15 2020-08-13 用于小区测量的方法和装置

Country Status (4)

Country Link
US (1) US20220167200A1 (zh)
EP (1) EP4007365A4 (zh)
CN (1) CN112399498B (zh)
WO (1) WO2021027864A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116962979A (zh) * 2022-04-20 2023-10-27 华为技术有限公司 通信方法及装置
WO2024065462A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547174A (zh) * 2017-08-10 2019-03-29 华为技术有限公司 一种时间配置的方法、网络设备及ue
US20190150094A1 (en) * 2017-11-13 2019-05-16 Qualcomm Incorporated Radio resource management configuration for user equipment with wake-up signal receivers
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9148837B2 (en) * 2012-06-17 2015-09-29 Qualcomm Incorporated Methods and devices for parallel page decoding from neighboring cells
CN106550435A (zh) * 2015-09-17 2017-03-29 中兴通讯股份有限公司 一种降低寻呼消息传输时间间隔的方法和装置
CN106559776B (zh) * 2015-09-25 2020-09-25 成都鼎桥通信技术有限公司 一种lte系统中的系统信息更新方法和装置
EP3536069B1 (en) * 2016-11-04 2020-05-13 Telefonaktiebolaget LM Ericsson (PUBL) Methods and apparatuses for managing paging in a wireless communication network
CN110035498B (zh) * 2018-01-12 2022-08-26 华为技术有限公司 一种通信方法,设备及其系统
CN113099531A (zh) * 2018-02-13 2021-07-09 维沃移动通信有限公司 确定寻呼消息位置的方法、通信设备、网络侧、用户设备
BR112020026566A2 (pt) * 2018-06-27 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método para transmitir um sinal e dispositivo terminal
CN110730504B (zh) * 2018-07-16 2021-03-12 维沃移动通信有限公司 一种寻呼指示方法、装置及系统
CN110278603B (zh) * 2019-06-20 2022-02-11 重庆邮电大学 一种移动终端动态功耗调整的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547174A (zh) * 2017-08-10 2019-03-29 华为技术有限公司 一种时间配置的方法、网络设备及ue
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
US20190150094A1 (en) * 2017-11-13 2019-05-16 Qualcomm Incorporated Radio resource management configuration for user equipment with wake-up signal receivers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007365A4
VIVO: "UE Power Consumption Reduction in RRM Measurements", 3GPP DRAFT; R1-1813862 UE POWER CONSUMPTION REDUCTION IN RRM MEASUREMENTS - FINAL, vol. RAN WG1, 7 November 2018 (2018-11-07), Spokane, US, pages 1 - 8, XP051480068 *

Also Published As

Publication number Publication date
EP4007365A1 (en) 2022-06-01
EP4007365A4 (en) 2022-10-05
US20220167200A1 (en) 2022-05-26
CN112399498A (zh) 2021-02-23
CN112399498B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
JP7405207B2 (ja) 無線アクセスネットワークノード、無線端末、及びこれらの方法
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2015062475A1 (zh) D2d信号的传输方法和装置
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2020125433A1 (zh) 一种通信方法及装置
WO2020221318A1 (zh) 一种上行波束管理方法及装置
WO2019214699A1 (zh) 一种控制信息的接收方法及通信装置
WO2021204434A1 (en) User equipment and base station involved in paging
WO2021027876A1 (zh) 传输定时偏差的方法与装置
BR112015010206B1 (pt) Método e aparelho para recebimento de informação de tempo de uma célula ou rede em um modo menos ativo
JP7418447B2 (ja) ユーザ機器、基地局及び方法
TWI762614B (zh) 資源判斷方法、裝置以及電腦設備
WO2020199765A1 (zh) 一种配置信息的方法与装置
US20220167200A1 (en) Cell measurement method and apparatus
US20220167451A1 (en) Methods and Apparatuses for Managing SCell State during UE Suspend/Resume
US20230164680A1 (en) Cell access method and apparatus
US20210235506A1 (en) Information processing method and apparatus
JP2023500050A (ja) 無線リンク障害(rlf)レポートにおいて隣接セルをソートするための方法
WO2020221326A1 (zh) 一种资源调度的方法及通信装置
WO2021134616A1 (zh) 一种资源配置方法和装置
WO2019047936A1 (zh) 一种无线通信方法及装置
TWI678939B (zh) 一種資訊傳輸方法及裝置
WO2022152427A1 (en) User equipment and base station involved in paging
WO2021159503A1 (zh) 资源配置方法和装置
JP7217799B2 (ja) Lte-mにおけるチャネル品質報告

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851911

Country of ref document: EP

Effective date: 20220223