WO2020199765A1 - 一种配置信息的方法与装置 - Google Patents

一种配置信息的方法与装置 Download PDF

Info

Publication number
WO2020199765A1
WO2020199765A1 PCT/CN2020/075397 CN2020075397W WO2020199765A1 WO 2020199765 A1 WO2020199765 A1 WO 2020199765A1 CN 2020075397 W CN2020075397 W CN 2020075397W WO 2020199765 A1 WO2020199765 A1 WO 2020199765A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access resource
information
configuration information
rmsi
Prior art date
Application number
PCT/CN2020/075397
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
邱晶
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020199765A1 publication Critical patent/WO2020199765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communications, in particular to a method and device for configuring information.
  • the method for terminal equipment to obtain random access resources is: after powering on, it is determined to carry random access resources by detecting synchronization signal/physical broadcast channel block (synchronization signal block/physical broadcast channel block, SS/PBCH block) The time domain position and frequency domain position of the remaining minimum system information (Remaining Minimum System Information, RMSI) of the configuration information. After the RMSI is detected according to the indicated position, the configuration information of the random access resource can be obtained, and the network is accessed based on the random access resource indicated by the configuration information.
  • synchronization signal/physical broadcast channel block synchronization signal block/physical broadcast channel block, SS/PBCH block
  • RMSI remaining Minimum System Information
  • IAB nodes may determine random access resources and initiate random access in a process similar to terminal equipment.
  • the network equipment needs to broadcast two sets of random access resource configuration information, one for terminal equipment to access the network, and the other for IAB nodes to access the network. All RMSIs need to broadcast the random access used by the terminal equipment.
  • the configuration information of incoming resources needs to broadcast the configuration information of random access resources used by the IAB, and the signaling overhead is relatively large.
  • This application provides a method and device for configuring information, by carrying configuration information of random access resources dedicated to IAB nodes in only part of the RMSI, and at least part of the RMSI carrying information indicating configuration information of random access resources dedicated to IAB nodes.
  • the indication information of the time domain position eliminates the need to carry configuration information of random access resources dedicated to terminal equipment and IAB nodes in all RMSIs, which can reduce system overhead.
  • a method for configuring information includes a first node generating a plurality of residual minimum system information RMSIs, wherein some of the RMSIs carry configuration information of the first random access resource, which is used by an IAB node to initiate random access And, at least part of the RMSI includes indication information, the indication information is used to indicate the time domain position of the configuration information of the first random access resource; and the multiple RMSIs are periodically sent.
  • each RMSI carries configuration information of the second random access resource for the terminal device to initiate random access.
  • the indication information is a system frame offset value X
  • the X indicates that the first random access resource is carried in the Xth system frame from the current system frame
  • the value of X is greater than or equal to 1.
  • the indication information is the number of RMSI cycles Y, and the Y indicates that after Y RMSI cycles, the first random access is present on the Y+1 RMSI Resource configuration information, the value of Y is greater than or equal to 1.
  • the indication information is a period T and an offset value M of the configuration information of the first random access resource.
  • system frame number F where the first random access resource is located satisfies the following formula:
  • the indication information is a multiple of the RMSI period N, where N indicates that the configuration information of the first random access resource exists on every N RMSI, or every The configuration information of the first random access resource exists every N-1 RMSI, and the value of N is greater than or equal to 1.
  • the configuration information of the random access resource includes one or more of the following information:
  • Physical random access channel PRACH configuration index random access resource period scaling parameter, random access resource frame offset, random access resource slot offset, message 1 frequency division, zero autocorrelation area configuration, preamble sequence The maximum number of transmissions, the length of the random access request response window, the number of available preambles, the number of random access opportunities RO associated with a synchronization signal block, the type of the associated synchronization signal block, and the subcarrier used to send message 1 interval.
  • a method for configuring information includes: periodically receiving multiple remaining minimum system information RMSIs sent by an upper-level node, wherein some of the RMSIs carry configuration information of the first random access resource for The IAB node initiates random access, and at least part of the RMSI includes indication information, the indication information is used to indicate the time domain position of the first random access resource configuration information; based on the indication information, the The first random access resource; based on the random access resource, random access is initiated.
  • each RMSI carries configuration information of the second random access resource, which is used by the terminal device to initiate random access.
  • the indication information is a system frame offset value X
  • the X represents the Xth system frame from the current system frame carrying the first random access resource
  • the value of X is greater than or equal to 1.
  • the indication information is the number of RMSI cycles Y, and the Y indicates that after Y RMSI cycles, the first random access exists on the Y+1 RMSI Resource configuration information, the value of Y is greater than or equal to 1.
  • the indication information is a period T and an offset value M in which the configuration information of the first random access resource appears.
  • the system frame number F where the configuration information of the first random access resource is located satisfies the following formula: take the remainder of the period T, and the remainder is the offset Shift value M.
  • the indication information is a multiple N of the RMSI period, where N indicates that there is configuration information of the first random access resource on every N RMSI, or every The configuration information of the first random access resource exists every N-1 RMSI, and the value of N is greater than or equal to 1.
  • the configuration information of the first random access resource includes one or more of the following information:
  • Physical random access channel PRACH configuration index random access resource period scaling parameter, random access resource frame offset, random access resource slot offset, message 1 frequency division, zero autocorrelation area configuration, preamble sequence The maximum number of transmissions, the length of the random access request response window, the number of available preambles, the number of random access opportunities RO associated with a synchronization signal block, the type of the associated synchronization signal block, and the subcarrier used to send message 1 interval.
  • the technical solution provided by this application does not need to carry configuration information of random access resources dedicated to IAB nodes in each RMSI period, but only needs to carry configuration information of random access resources dedicated to IAB nodes in certain RMSIs, and then based on configuration Information, determine random access resources, and access the network. Compared with each RMSI carrying configuration information of random access resources dedicated to terminal equipment and configuration information of random access resources dedicated to IAB nodes, this technical solution can save signaling overhead.
  • an apparatus including: a processing unit, configured to obtain multiple residual minimum system information RMSIs, wherein some of the RMSIs carry configuration information of the first random access resource and are used by an IAB node to initiate random access And, at least part of the RMSI includes indication information, the indication information is used to indicate the time domain position of the configuration information of the first random access resource; the generating unit sends the multiple RMSI periodically.
  • a processing unit configured to obtain multiple residual minimum system information RMSIs, wherein some of the RMSIs carry configuration information of the first random access resource and are used by an IAB node to initiate random access And, at least part of the RMSI includes indication information, the indication information is used to indicate the time domain position of the configuration information of the first random access resource; the generating unit sends the multiple RMSI periodically.
  • each RMSI carries configuration information of the second random access resource, which is used by the terminal device to initiate random access.
  • the indication information is a system frame offset value X
  • the X indicates that the first random access resource is carried in the Xth system frame from the current system frame
  • the value of X is greater than or equal to 1.
  • the indication information is the number of RMSI cycles Y, and the Y indicates that the first random access exists on the Y+1 RMSI period after Y number of RMSI cycles.
  • Resource configuration information the value of Y is greater than or equal to 1.
  • the indication information is the period T and the offset value M of the configuration information of the first random access resource.
  • system frame number F where the first random access resource is located satisfies the following formula:
  • the indication information is a multiple N of the RMSI period, where N indicates that there is configuration information of the first random access resource on every N RMSI, or every The configuration information of the first random access resource exists every N-1 RMSI, and the value of N is greater than or equal to 1.
  • the configuration information of the first random access resource includes one or more of the following information:
  • Physical random access channel PRACH configuration index random access resource period scaling parameter, random access resource frame offset, random access resource slot offset, message 1 frequency division, zero autocorrelation area configuration, preamble sequence The maximum number of transmissions, the length of the random access request response window, the number of available preambles, the number of random access opportunities RO associated with a synchronization signal block, the type of the associated synchronization signal block, and the subcarrier used to send message 1 interval.
  • an apparatus including: a receiving unit configured to periodically receive multiple remaining minimum system information RMSIs sent by an upper node, wherein some of the RMSIs carry configuration information of the first random access resource, Is used for the IAB node to initiate random access, and at least part of the RMSI includes indication information, the indication information is used to indicate the time domain position of the configuration information of the first random access resource; the processing unit is based on the Indicating information, determining the first random access resource; and, based on the first random access resource, initiating random access to the upper node.
  • the indication information is a system frame offset value X
  • the X indicates that the first random access resource is carried in the Xth system frame from the current system frame
  • the value of X is greater than or equal to 1.
  • the indication information is the number of RMSI cycles Y, and the Y indicates that after Y RMSI cycles, the first random access is present on the Y+1 RMSI Resource configuration information, the value of Y is greater than or equal to 1.
  • the indication information is a period T and an offset value M in which the first random access resource appears.
  • system frame number F where the configuration information of the first random access resource is located satisfies the following formula:
  • the indication information is a multiple N of the RMSI period, where N indicates that the configuration information of the first random access resource exists on every N RMSI, or every The configuration information of the first random access resource exists every N-1 RMSI, and the value of N is greater than or equal to 1.
  • the configuration information of the first random access resource includes one or more of the following information:
  • Physical random access channel PRACH configuration index random access resource period scaling parameter, random access resource frame offset, random access resource slot offset, message 1 frequency division, zero autocorrelation area configuration, preamble sequence The maximum number of transmissions, the length of the random access request response window, the number of available preambles, the number of random access opportunities RO associated with a synchronization signal block, the type of the associated synchronization signal block, and the subcarrier used to send message 1 interval.
  • a method for configuring information includes:
  • the first node generates multiple remaining minimum system information RMSIs, wherein at least part of the RMSI carries scheduling information, and the scheduling information is used to indicate the time-frequency position of the configuration information of the first random access resource for the IAB node to initiate Random access
  • the scheduling information includes one or more of the following information:
  • the period of the first random access resource configuration information, the frequency domain location of the first random access resource configuration information, the type of scheduling information, and the update indication is the period of the first random access resource configuration information, the frequency domain location of the first random access resource configuration information, the type of scheduling information, and the update indication.
  • the technical solution provided by this application is different from the first embodiment.
  • the configuration information of the first random access resource in this embodiment can be carried on other system information OSI, and only the scheduling information is carried on the RMSI, indicating the random access dedicated to the IAB node.
  • the time domain position of the configuration information of the input resource can be saved.
  • the frequency domain position of the configuration information of the first random access resource is index information of the search space.
  • the type of the scheduling information when the type of the scheduling information takes the first value, it indicates that the scheduling information is scheduling information of other system information OSI;
  • the type of the scheduling information takes the second value, it characterizes that the scheduling information is scheduling information of the configuration information of the first random access resource.
  • the update indication when the update indication takes a first value, it means that the lower-level node does not need to update its own random access resources; when the update indication takes a second value, it means The lower-level node needs to update its own random access resource.
  • a method for configuring information including:
  • the scheduling information includes one or more of the following information:
  • the frequency domain position of the first random access resource configuration information is index information of the search space.
  • the type of the scheduling information when the type of the scheduling information takes the first value, it indicates that the scheduling information is scheduling information of other system information OSI;
  • the scheduling information is the scheduling information of the first random access resource configuration information.
  • the update indication when the update indication takes a first value, it means that it does not need to update its own random access resource; when the update indication takes a second value, it means it needs to update its own random access resource. Random access resources.
  • a device including:
  • the processing unit is configured to generate a plurality of residual minimum system information RMSIs, wherein at least part of the RMSI carries scheduling information, and the scheduling information is used to indicate the time-frequency position of the configuration information of the first random access resource for the lower level
  • the node initiates random access;
  • a sending unit configured to periodically send the multiple RMSI to the lower-level node
  • the scheduling information includes one or more of the following information:
  • the period of the first random access resource configuration information, the frequency domain location of the first random access resource configuration information, the type of scheduling information, and the update indication is the period of the first random access resource configuration information, the frequency domain location of the first random access resource configuration information, the type of scheduling information, and the update indication.
  • an apparatus including:
  • the receiving unit is configured to periodically receive multiple remaining minimum system information RMSIs, wherein at least part of the RMSI carries scheduling information, and the scheduling information is used to indicate the time-frequency position of the configuration information of the first random access resource, Used to initiate random access; wherein, the scheduling information includes one or more of the following information:
  • the processing unit is configured to determine a random access resource based on the configuration information of the random access resource indicated by the scheduling information; and access an upper node based on the determined random access resource.
  • the technical solution provided in this application does not require each RMSI to carry the configuration information of the random access resource dedicated to the IAB node.
  • the configuration information of the random access resource dedicated to the IAB node may not be carried on the RMSI, but may be other time domain locations, such as , On OSI. It is only necessary to carry the scheduling information of the random access resource dedicated to the IAB node in part or all of the RMSI, and the scheduling information indicates the configuration information of the random access resource dedicated to the IAB node, which can save resources.
  • a communication device configured to execute the method provided in the first aspect or the second aspect.
  • the communication device may include a module for executing the method provided in the first aspect or the second aspect.
  • the communication device is configured to execute the method provided by the fifth aspect or the sixth aspect.
  • the communication device may include a module for executing the method provided in the fifth aspect or the sixth aspect.
  • a communication device in a tenth aspect, includes a memory and a processor, the memory is used to store instructions, and the processor is used to execute instructions stored in the memory, and to respond to the instructions stored in the memory.
  • the execution of causes the processor to execute the method provided in the first aspect or the second aspect; or, the processor causes the processor to execute the method provided in the fifth aspect or the sixth aspect.
  • a chip in an eleventh aspect, includes a processing module and a communication interface.
  • the processing module is used to control the communication interface to communicate with the outside.
  • the processing module is also used to implement the first aspect or the second aspect. The method provided by the aspect.
  • a computer-readable storage medium is provided with a computer program stored thereon, which when executed by a computer causes the computer to implement the first aspect or any one of the possible implementation manners of the first aspect method.
  • a computer program product containing instructions is provided, which when executed by a computer causes the computer to implement the method provided in the first aspect or the second aspect.
  • a communication system including a first device and a second device, wherein the first device includes the device as described in the third aspect or any possible implementation manner of the third aspect, and the second device Including the device as described in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the solution provided by this application reports the interference resources of the channel resources to the network equipment through the terminal equipment, so that the network equipment can learn the interference resources of the channel resources more accurately, so that the network equipment can perform reasonable beam interference management. Avoid simultaneously using multiple beams with strong mutual interference for multi-user transmission, thereby improving the performance and efficiency of multi-user transmission.
  • Fig. 1 is a schematic diagram of a communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a base station/relay device provided by this application.
  • Figure 3 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 4A is a schematic flowchart of a method for configuring information provided by the present application.
  • FIG. 4B is a schematic diagram of indicating a dedicated random access resource for an IAB node provided by this application.
  • FIG. 4C is another schematic diagram of indicating dedicated random access resources for IAB nodes provided by this application.
  • FIG. 4D is another schematic diagram of indicating dedicated random access resources for IAB nodes provided by this application.
  • FIG. 5A is a schematic flowchart of a method for configuring information provided by this application.
  • FIG. 5B is a schematic diagram of indicating a dedicated random access resource for an IAB node provided by this application.
  • FIG. 6 is a schematic diagram of resource allocation for IAB nodes to access backhaul links provided by this application.
  • FIG. 7A is a schematic diagram of a method for configuring information provided by this application.
  • FIG. 7B is a schematic diagram of random access resource allocation for IAB nodes provided by this application.
  • FIG. 8A is a schematic diagram of a method for configuring information provided by this application.
  • FIG. 8B is a schematic diagram of another IAB node random access resource allocation provided by this application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to a beam-based multi-carrier communication system, for example, a 5G system or a new radio (NR) system.
  • a beam-based multi-carrier communication system for example, a 5G system or a new radio (NR) system.
  • NR new radio
  • Figure 1 is an IAB communication system provided by an embodiment of the application.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • An IAB system includes at least one donor base station (Donor gNB, DgNB), and one or more terminal devices it serves (Figure 1 takes UE as an example) 101, and one or more IAB nodes ( Figure 1 takes TRP as an example) rTRP 110.
  • the rTRP 110 is connected to the donor base station 100 through a wireless backhaul link 113, and one or more UEs 111 served by the rTRP 110.
  • the donor base station includes but is not limited to: evolved Node Base (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC) , Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), or next-generation new radio (NR, New Radio) base station (Such as gNB) and so on.
  • eNB evolved Node Base
  • RNC Radio Network Controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • baseband unit BaseBand Unit, BBU
  • NR New Radio
  • IAB nodes include but are not limited to: evolved Node B (evolved Node Base, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC) , Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), or next-generation new radio (NR, New Radio) base station (Such as gNB), Transmission Reception Point (TRP), etc.
  • eNB evolved Node B
  • RNC Radio Network Controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • baseband unit BaseBand Unit, BBU
  • NR New Radio
  • TRP Transmission Reception Point
  • the IAB system may also include another or more IAB nodes rTRP 120.
  • the one or more IAB nodes rTRP 120 are connected to the IAB node rTRP 110 through a wireless backhaul link 123 to access the system, and one or more of the IAB nodes served Multiple UE 121.
  • the IAB nodes rTRP 110 and rTRP 120 are both connected to the network through a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the IAB node.
  • the wireless backhaul link 113 is the backhaul link of the IAB node rTRP 110
  • the wireless backhaul link 123 is the backhaul link of the IAB node rTRP 120.
  • an IAB node such as 120
  • a node that provides wireless backhaul link resources, such as 110 is called an upstream node or an upper node
  • an IAB node that accesses the network via a wireless backhaul link, such as 120 is called a downstream node or a lower node.
  • the downstream node can be regarded as a terminal of the upstream node.
  • an IAB node in the IAB system shown in Figure 1, an IAB node is connected to an upstream node, but in the future IAB system, in order to improve the reliability of the wireless backhaul link, an IAB node, such as 120, may have multiple upstream nodes.
  • the node also provides services for an IAB node.
  • the terminal equipment UE 102, 112, 122 may be stationary or mobile equipment.
  • the mobile device can be a mobile phone, a smart terminal, a tablet, a laptop, a video game console, a multimedia player, or even a mobile or stationary IAB node.
  • Stationary devices are usually located in fixed locations, such as computers, access points (connected to the network via wireless links, such as IAB nodes), and so on.
  • the name of the IAB node rTRP 110, 120 does not limit the deployment scenario or network, and can be any other name such as relay, RN, etc. The use of rTRP in this application is only for the convenience of description.
  • all wireless links 102, 112, 122, 113, 123 are bidirectional links, including uplink and downlink transmission links.
  • wireless backhaul links 113, 123 can be used by upstream nodes to provide services for downstream nodes, for example, upstream node 100 is a downstream node.
  • 110 provides wireless backhaul services.
  • the downlink transmission refers to an upstream node, such as node 100, which is a downstream node, such as node 110, for transmission
  • the uplink transmission refers to a downstream node, such as node 110, which transmits data to an upstream node, such as node 100.
  • the node is not limited to whether it is a network node or a UE.
  • the UE can act as a relay node to serve other UEs.
  • the wireless backhaul link may be an access link in some scenarios.
  • the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also an access link of the node 100.
  • the donor base station may include a baseband processing unit (Building Baseband Unit, BBU) 201 and a remote radio unit (Remote Radio Unit, RRU) 202 , RRU 202 is connected to antenna feeder system 203, BBU 201 and RRU 202 can be disassembled and used as needed.
  • BBU 201 is used to realize the operation and maintenance of the entire node, realize signaling processing, radio resource management, and transmission interface to the packet core network, and realize the main control functions of the physical layer, medium access control layer, L3 signaling, and operation and maintenance.
  • the RRU 202 is used to realize the conversion between baseband signals and radio frequency signals, demodulation of wireless received signals, modulation and power amplification of transmitted signals, etc.
  • the antenna feeder system 203 may include multiple antennas to realize the reception and transmission of wireless air interface signals.
  • the donor base station may also adopt other general hardware structures, and is not limited to the hardware structure shown in FIG. 2.
  • the mobile phone may include: an RF (radio frequency) circuit 310, a memory 320, and other input devices 330 , Display screen 340, sensor 350, audio circuit 360, I/O subsystem 370, processor 380, and power supply 390.
  • RF radio frequency
  • the processor 380 is respectively connected to the RF circuit 310, the memory 320, the audio circuit 360, and the power supply 390.
  • the I/O subsystem 370 is connected to other input devices 330, display screen 340, and sensor 350 respectively.
  • the RF circuit 310 can be used for receiving and sending signals during the process of receiving and sending information or talking. In particular, after receiving the downlink information of the base station, it is sent to the processor 380 for processing.
  • the memory 320 may be used to store software programs and modules.
  • the processor 380 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 320.
  • the other input device 330 can be used to receive inputted numeric or character information, and generate key signal input related to the user settings and function control of the mobile phone.
  • the display screen 340 may be used to display information input by the user or information provided to the user and various menus of the mobile phone, and may also accept user input.
  • the display screen 340 may include a display panel 341 and a touch panel 342.
  • the sensor 350 may be a light sensor, a motion sensor or other sensors.
  • the audio circuit 360 can provide an audio interface between the user and the mobile phone.
  • the I/O subsystem 370 is used to control input and output external devices.
  • the external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 380 is the control center of the mobile phone.
  • the power supply 390 (such as a battery) is used to supply power to the above-mentioned components.
  • the power supply can be logically connected to the processor 380 through a power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, which will not be repeated here.
  • functional modules or devices such as a camera and a Bluetooth module, which will not be repeated here.
  • FIG. 3 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of some components, or different component arrangements.
  • the access link refers to the link through which network equipment (for example, IAB node, donor, base station, TRP, etc.) provides access services for ordinary terminal equipment.
  • the backhaul link refers to the link between network devices that transmit information and data to each other. These information and data include the signaling and data that are sent from the core network or higher-level network device nodes and are necessary for the operation of the network devices, including terminal devices. Data and signaling.
  • Mobile Terminal/Distributed Unit (Mobile-Termination/Distributed Unit, MT/DU)
  • the MT module (also called MT function) is defined as a component similar to a terminal device.
  • the MT is called a function that resides on the IAB node. Since MT is similar to the function of an ordinary terminal device, it can be understood that the IAB node is connected to the upper node or the donor base station through the MT module, and the IAB node is the terminal device or the next level IAB node through the DU module (also called the DU function) Provide access services.
  • the MT module and the DU module are logical functional divisions, not actual physical module divisions.
  • the MT module can be executed by software, hardware, or both software and hardware.
  • the DU module can also be executed by software, can also be executed by hardware, and can also be executed by both software and hardware.
  • TDM Time division multiplexing
  • the wireless resources are divided according to the time scale, and multiple modules can use all the resources of the system (including frequency domain resources and hardware resources) on the allocated time resources.
  • TDM specifically refers to the transmission of the MT module and the DU module of the IAB in a time-division manner. In a specific time unit, either only the MT module or only the DU module is working.
  • the half-duplex constraint means that when the MT module of an IAB node is sending, the DU module cannot receive.
  • the MT module when the DU module is sending, the MT module cannot receive. That is, for IAB nodes without full-duplex capability, the MT/DU module cannot send and receive at the same time.
  • the random access resource used by the IAB node to access its superior node can be called the random access resource of the backhaul link.
  • the upstream node 100 provides a wireless backhaul service for the downstream node 110.
  • the random access resource used by it to access the upstream node 100 is the random access resource of the backhaul link.
  • the random access resource configured by the IAB node for its subordinate node access can be referred to as the random access resource of the access link for the IAB node.
  • the upstream node 100 provides a wireless backhaul service for the downstream node 110.
  • the random access resource configured by the downstream node 100 which is the random access resource of the access link.
  • a terminal device When a terminal device accesses a network device, it needs to initiate random access to the network device. Before that, the terminal device obtains PRACH configuration information (PRACH configuration info) by reading the remaining minimum system message RMSI broadcast by the network device.
  • PRACH configuration information indicates the time domain and frequency domain resources that the terminal device can use, preamble information, retransmission times, transmission power, etc., for the terminal device to initiate a random access process.
  • Integrated Access and Backhaul (IAB) nodes also follow a similar process to terminal equipment to determine the configuration information of random access resources, and then A random access resource is determined based on the configuration information, and random access is initiated on the determined random access resource.
  • the random access resource may be one or more random access channel opportunities (RACH occasion, RO).
  • IAB nodes In the IAB system, IAB nodes have more receiving antennas and higher deployment positions than general terminal equipment. Compared with terminal equipment, the antenna receiving gain of IAB nodes may be higher. Therefore, IAB nodes are involved in more than normal cells. It is still possible to access the cell after the coverage area.
  • the IAB node can use the same random access resource as the terminal device to initiate random access in a farther place, so that super cell coverage access occurs. The result is access failure and interference to other terminal equipment in the base station.
  • the configuration of random access is related to the coverage of the cell in network planning and design, because different random access preamble signal formats support different maximum access distances.
  • each company proposes to configure the random access resource of the backhaul link for the IAB node (that is, the random access resource used by the IAB node to access the upper node).
  • the time domain and frequency domain positions of the random access resources used by the terminal equipment to access the IAB node are different, and other parameters may also be different.
  • the random access resource of the backhaul link can use a preamble format different from that of the terminal device to support longer-distance access.
  • the random access resources of the backhaul link can use a relatively long period, a sparser density, and reduce overhead.
  • the PRACH configuration information used by the terminal equipment has been recorded in the 3GPP standard Release 15.
  • the configuration random access index (the value in the first column in the following table) is used to indicate the PRACH configuration information adopted by the current serving cell of the terminal device.
  • the terminal device can obtain PRACH configuration information by looking up the table.
  • the table is defined in the standard Release15 and currently has 256 values. One value is given below as an example:
  • Embodiment 1 of the present application provides a method for configuration information that can reduce overhead.
  • FIG. 4A is a schematic flowchart of a method 400 for configuring information provided by an embodiment of this application.
  • the method 400 includes the following steps:
  • the first node obtains multiple RMSIs, where part of the RMSI carries first random access resource configuration information (also called PRACH configuration), and the first random access resource configuration information is used by the second node to communicate with all
  • the first node initiates random access, and at least part of the RMSI includes indication information, and the indication information is used to indicate the time domain location of the first random access resource configuration information;
  • the second node periodically receives the multiple RMSIs and reads the indication information; based on the indication information, obtains configuration information of the first random access resource.
  • the second node accesses the first node.
  • each RMSI also carries second random access resource configuration information
  • the second random access configuration resource is a random access resource used by the terminal device to access the first node.
  • the first random access resource and the second random access resource may have different configurations in the time domain and the frequency domain.
  • the first node obtains multiple RMSIs, which can be understood as the first node itself generates multiple RMSIs, and part of the RMSI carries the first random access resource configuration information; it can also be understood as the first node from its superior
  • the node receives multiple RMSIs, where at least part of the RMSI carries configuration information of the first random access resource.
  • the RMSI may also be referred to as system information block 1 (system information block 1, SIB1), and the RMSI carries the PRACH configuration.
  • SIB1 system information block 1
  • the RMSI is sent periodically, for example, the period of the RMSI may be 20 ms, or the period of the RMSI is the same as the period of the synchronization signal/physical broadcast channel block SS/PBCH block.
  • Each RMSI carries the PRACH configuration for terminal device access, and only some RMSI carries the PRACH configuration for IAB node access. On which RMSI the PRACH configuration of these IAB nodes is carried, further instructions are required Information is OK.
  • These indication information are also carried on at least part of the RMSI (may be part of the RMSI or all of the RMSI), and the indication information may be implemented in multiple ways.
  • the indication information is the system frame offset value
  • X is used to represent the indication information
  • the X represents the RMSI on the Xth system frame from the current system frame that carries the IAB node PRACH configuration information (that is, the first random access resource configuration information in the method 400)
  • the value of X is greater than 1.
  • the value of X is 4, and each system frame is 10ms long.
  • the frame number of the current system frame can be obtained.
  • the RMSI on 40 ms after the current system frame (that is, the third system frame in FIG. 4A) carries the configuration information of the random access resource of the IAB node.
  • the IAB node detects the PBCH and determines the time-frequency position of the RMSI on the system frame.
  • the time domain position and frequency domain position of the RMSI in the system frame may be indicated by the system information block SIB message in the physical broadcast channel PBCH.
  • the parameters PDCCH-ConfigSIB1" and "PDCCH-ConfigSIB1" also include the configuration of CORESET#0 and Search space#0.
  • the search space search space includes the time domain information for detecting RMSI.
  • the IAB node reads the MIB message of the PBCH , Obtain the time-frequency position of the RMSI on the system frame, and then obtain the PRACH configuration information.
  • the indication information is the number of RMSI periods.
  • the value of the indication information is Y
  • the Y indicates that the random access resource of the IAB node exists on the Y+1 RMSI after Y cycles of RMSI, and the value of Y is greater than 1.
  • the IAB node determines the RMSI period, and obtains which RMSI carries the configuration information of the random access resource of the IAB node through the value of Y carried in the RMSI.
  • the IAB node can determine the RMSI period in the following ways: blind detection, determining the SS/PBCH block period, determining the RMSI period according to the SS/PBCH block period, determining the PBCH period, and determining the RMSI period according to the PBCH period. For example, if the IAB node obtains the RMSI period of 20ms through blind detection, and the value of Y is 2, then there is configuration information of the random access resource of the IAB node every 40ms, that is, there is one RMSI on every two RMSIs. There is configuration information of the random access resource of the IAB node.
  • the indication information is the period T and the offset value M of the random access resource configuration information of the IAB node. According to the indication information, the system frame number F carrying the random access resource configuration information of the IAB node is determined, and then the random access resource configuration information is obtained from the system frame.
  • the system frame number F where the random access resource of the IAB node is located satisfies the following formula:
  • the period T is 8, that is, only one RMSI carries the random access resource of the IAB node in every eight RMSIs.
  • the offset value M takes a value of 5, that is, the configuration information of the random access resource of the IAB node exists on the frame numbers of 5, 13, 21, 29...
  • the IAB node obtains the configuration information of the random access resource from the specific time-frequency position on the system frame.
  • the specific time-frequency position that is, the time-frequency position of the RMSI on the system frame, can be obtained according to the SIB indication in the PDCCH.
  • the parameters PDCCH-ConfigSIB1" and "PDCCH-ConfigSIB1" also include the configuration of CORESET#0 and Search space#0.
  • the search space search space includes the time domain information for detecting RMSI.
  • the IAB node reads the MIB message of the PBCH , Get the time-frequency position of RMSI on the system frame, and then get PRACH configuration information
  • the indication information is a multiple X of the RMSI period and an offset value M.
  • the IAB node determines that the RMSI period is 20ms through blind detection, and the value X is 4, that is, there is one RMSI that carries the configuration information of the random access resource of the IAB node in every four RMSI.
  • the offset value M takes a value of 2, that is, the second, sixth, tenth, fourteenth... RMSI carries the configuration information of the random access resource of the IAB node.
  • the configuration information of the random access resource of the IAB node mentioned in this application includes one or more of the following information:
  • Physical random access channel configuration index for example, represented by the parameter prach-ConfigurationIndex. Used to determine the preamble format and resource time domain information for random access (for example, the time slot where the random access resource is located, the symbol where it is located). This parameter can be stored in a table similar to Table 1, and the time domain position and frequency domain position of the PRACH configuration are determined through the PRACH configuration index broadcast by the upper node.
  • Message 1 frequency division for example, represented by the parameter msg1-FDM. It is used to indicate whether there are multiple frequency division random access opportunities (RACH occasions, RO) in one time domain.
  • RACH occasions, RO frequency division random access opportunities
  • the value can be 1, 2, 4, or 8.
  • Zero autocorrelation zone configuration for example, represented by the parameter zeroCorrelationZoneConfig, used to determine the preamble sequence.
  • the length of the window of random access request response for example, expressed by ra-ResponseWindow.
  • the number of available preambles for example, represented by TotalNumberOfRA-Preambles, and the value range is 1-63.
  • the number of ROs associated with an SSB for example, expressed by the parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB, for example, the value is 1, 2, 4, and 8.
  • the associated SSB type for example, represented by the parameter Association-ssb-type.
  • the associated SSB type is the SSB dedicated to the IAB node, that is, invisible to the terminal device; when the value of this parameter is 0, the associated SSB type is the traditional SSB, that is Visible to all terminal devices.
  • the subcarrier spacing used to send message for example, expressed by msg1-SubcarrierSpacing.
  • PRACH resource frame offset configuration for example, represented by y_offset.
  • the physical random access channel configuration index first determines the value of y (y in Table 2), and then applies the y_offset value, for example, adding the value of y after the offset .
  • the value range of y_offset can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. It should be understood that the frame offset y_offset is used to implement the random access resource of the backhaul link between the IAB node and the upper node, and the time division multiplexing between the random access resource of the IAB node and the child node. Considering that in a typical IAB deployment scenario, the number of nodes will not be too large, the maximum value of 15 can meet the deployment needs. And a larger value requires more bits to be used, which brings additional overhead.
  • the first item of the above 12 items of information may be stored in the IAB node in the form of a table, similar to the form of Table 1. For example, as shown in Table 2 below:
  • the technical solution provided in the first embodiment of the present application does not need to carry the random access resource configuration information of the second node in every RMSI period, but only needs to carry the random access resource configuration information of the second node and at least part of the RMSI in the partial RMSI. Carrying these configuration information instructions can greatly save signaling overhead.
  • This application also provides the second embodiment, which can also solve the technical problem of high overhead caused by carrying two sets of PRACH configuration information in each RMSI.
  • the PRACH configuration information dedicated to the IAB node is carried in other broadcast signals, such as OSI. . Only part or all of the RMSI carries the scheduling information of the PRACH configuration information of the IAB node, which reduces the overhead.
  • FIG. 5A is a schematic flowchart of a method 500 for configuring information provided by an embodiment of this application.
  • the method 500 includes the following steps:
  • the first node obtains multiple RMSIs, and at least part of the RMSI carries scheduling information, the scheduling information is used to indicate the time domain location of the configuration information of the first random access resource, and the configuration of the first random access resource The information is used for random access of the backhaul link of the second node;
  • the scheduling information includes one or more of the following information:
  • the time domain location of the first random access resource configuration information the frequency domain location of the first random access resource configuration information, the type of scheduling information, and the update indication.
  • the second node periodically receives the multiple RMSIs, and obtains configuration information of the first random access resource based on the scheduling information.
  • the second node accesses the first node based on the first random access resource indicated by the configuration information.
  • the second node determines the time domain position of the PRACH configuration based on the time domain position and the frequency domain position of the first random access resource configuration information included in the scheduling information, and then obtains the random access resource at the corresponding time domain position.
  • the parameters included in the first PRACH configuration reference may be made to the introduction of Embodiment 1, which will not be repeated here.
  • the first PRACH configuration may be carried in other broadcast signals, such as other system information (OSI), or other SIBs.
  • OSI system information
  • SIBs other SIBs.
  • the RMSI may carry other system information (other system information, OSI) scheduling information, to indicate distinction, when the type of the scheduling information is the first value, it means that the scheduling information is OSI scheduling information; When the information type is the second value, it indicates that the scheduling information is scheduling information of the first random access resource configuration information.
  • OSI system information
  • the resource update indication is used to identify whether the IAB node needs to update its own random access resources. For example, in some special scenarios, such as link failure recovery scenario, handover scenario, cell reselection scenario, when the IAB node initiates random access, it has already obtained the configuration information of the first random access resource of the target cell to be accessed . At this time, the IAB node determines whether it needs to update its own random access resource configuration information according to the resource update instruction.
  • the resource update indication can be understood as a "version number" of the first random access resource configuration information.
  • the IAB node obtains the random access resource configuration information, it will also obtain the "version number" of this resource configuration, for example, "2".
  • the IAB node needs to send random access, it first determines whether the currently saved configuration has expired according to the resource update indication in the scheduling information in the RMSI. If the version number of the resource configuration saved locally is inconsistent with the version number obtained by reading the system information currently, for example, "1", the IAB node needs to update its own random access resource configuration information.
  • the technical solution provided in the second embodiment of this application carries the PRACH configuration used for the IAB node backhaul link in other broadcast signals, and only carries the scheduling information of the PRACH configuration in the RMSI, which reduces the overhead compared to directly carrying the PRACH configuration. , Saving resources.
  • the embodiment of the present invention also provides a third embodiment. Compared with the first and second embodiments, the third embodiment solves different technical problems.
  • the specific description is as follows:
  • IAB nodes Due to the introduction of IAB nodes in the network architecture, two sets of random access resources need to be broadcast, one set is used for random access of terminal equipment, and the other set is used for random access of backhaul links of IAB nodes.
  • the IAB node itself needs to be connected to other IAB nodes (from the topological structure, the connected node is called the upper node, and the connected node is called the lower node.
  • rTRP1 is rTRP2. (Upper node).
  • backhaul link switching may occur (for example, rTRP1 is the superior node of rTRP2, rTRP2 needs to be switched to rTRP3, so that rTRP3 is the superior node of rTRP2), and the backhaul link fails (link failure) In this case, it is necessary to resume the communication of the backhaul link by sending a random access request to the neighboring node or the upper-level node.
  • the IAB node accesses the upper-level node through the MT module, and the DU module of the IAB node needs to receive the random access request sent by the terminal device and the random access request sent by the lower-level IAB node on two time domain resources.
  • the DU module of the IAB is on the time domain resource (access link) that receives the random access request, and the MT module of the IAB cannot be the superior node Initiate random access (backhaul link).
  • the three random access resources involved in the IAB node should be staggered in time.
  • the time domain resource of the random access resource sent by the MT module changes, which may cause the DU module to receive changes in the time domain position of the subordinate node or terminal device, resulting in the subordinate nodes of the node and The entire link at the lower level is affected, and the Donor base station may need to reconfigure the random access resources of multiple nodes, which is expensive.
  • This application provides the following third embodiment, which may not need to reconfigure the random access resources of multiple nodes and reduce the overhead.
  • Embodiment 3 of the present application provides a method 700 for configuring information, including:
  • the donor base station sends PRACH configuration information to all lower-level nodes (also referred to as child nodes) on a link through the first signaling, where the PRACH configuration information indicates at least two random access resources (also referred to as Random access opportunity), the two random access resources do not completely overlap at least in the time domain (may partially overlap or may not overlap at all), wherein the at least two sets of first random access configurations are used for the
  • the DU module of the lower-level node receives the random access request of the lower-level IAB node.
  • the PRACH configuration information may be sent through a broadcast signal, such as a physical broadcast channel PBCH.
  • a broadcast signal such as a physical broadcast channel PBCH.
  • the PRACH configuration information may be located in the RMSI, or OSI, or other time domain locations on the PBCH.
  • RMSI or OSI
  • the multiple indication methods described in the first embodiment can be used, which will not be repeated here.
  • the Donor base station is the upper node of IAB1, IAB1 is the upper node of IAB2, and IAB2 is the upper node of IAB3.
  • Donor base stations, IAB1, IAB2, and IAB3 belong to nodes on a link.
  • the Donor base station broadcasts PRACH configuration to all subordinate nodes, including IAB1-IAB3.
  • All lower-level nodes (including IAB1-IAB3) receive the broadcast signal of the Donor base station.
  • the broadcast signal includes at least two sets of PRACH configurations. The at least two sets of PRACH configurations partially overlap or do not overlap in the time domain, as shown in gray in Figure 7B The resource indicated by the shade.
  • the two sets of PRACH configurations are PRACH configurations available to the DU module of each IAB node (that is, resources for receiving random access request messages from lower-level nodes).
  • the PRACH configurations available for the DU module of IAB1 are in system frame 2 and system frame 3, and system frame 6 and system frame 7.
  • the PRACH configurations available for the DU module of IAB2 are located in system frame 2 and system frame 3, as well as system frames 6 and 7;
  • the PRACH configurations available for the DU module of IAB3 are located in system frame 2 and system frame 3, as well as system frame 6 and system frame 7.
  • the donor base station sends a second random access configuration to the child node of the first level (ie IAB1 in FIG. 7B) through a broadcast signal, and the second random access configuration is used for the MT module of the child node of the first level Access the donor base station.
  • the Donor base station broadcasts the PRACH configuration for the MT module of IAB1 to access the Donor base station, and the time domain positions of the PRACH configuration are system frame 2 and system frame 6.
  • the MT module of the node IAB1 obtains the PRACH configuration information from the system frame 2 and the system frame 6, and then accesses the Donor base station based on the random access resources indicated by the PRACH configuration information.
  • the DU module of the first-level child node determines the PRACH configuration that can be used for the access of the second-level child node (for example, the IAB2 node), where the PRACH configuration for the second-level child node It does not overlap in time domain with the PRACH configuration adopted by the MT module of the first-level child node, or partially does not overlap.
  • the DU module of the first-level child node sends the configuration for random access of the second-level child node MT module to the second-level child node through a broadcast signal.
  • the MT module of the first-level child node initiates a random access request to the Donor base station through a second random access configuration.
  • the MT module of the second-level child node accesses the first-level child node through the random access configuration in step 740.
  • the MT module of IAB1 uses system frame 2 and system frame 6 to access the Donor base station. Due to half-duplex constraints, the DU module of IAB1 cannot use system frame 2 and system frame 6. The DU module of IAB1 determines that the currently available PRACH resources are system frame 3 and system frame 7. Therefore, the DU module of IAB1 broadcasts system frame 3 and system frame 7 as PRACH configuration to the lower node IAB2.
  • the MT module of the node IAB2 uses the system frame 3 and the system frame 7 to access the upper-level node IAB1. Due to the half-duplex constraint, the DU module of the node IAB2 cannot use the system frame 3 and the system frame 7 as the PRACH configuration broadcast to the lower node IAB3. Therefore, the DU module of the node IAB2 broadcasts the PRACH configuration carried in the system frame 2 and the system frame 6 to the lower-level node IAB3.
  • the MT module of the node IAB3 uses the PRACH configuration on the system frame 2 and the system frame 6 to access the upper-level node IAB2.
  • the DU module of IAB3 can broadcast system frame 3 and system frame 7 for lower-level IAB nodes that may access IAB3 (not shown in the figure).
  • the first signaling may be F1-AP (F1 application protocol, access protocol) signaling.
  • F1-AP F1 application protocol, access protocol
  • the parameters included in the first random access configuration may be part or all of the parameters included in the random access configuration mentioned in the first embodiment, which will not be repeated here.
  • the parameters included in the second random access configuration may be part or all of the parameters included in the random access configuration mentioned in the first embodiment, and will not be repeated here.
  • the location of the random access resource sent by the IAB MT module needs to be changed according to the new upper-level node.
  • the donor base station needs to reconfigure the node, the child nodes of the node, and the nodes on the entire link at the lower level, which greatly reduces the signaling overhead.
  • the embodiment of the present invention also provides the fourth embodiment.
  • the fourth embodiment and the third embodiment solve the same technical problems, but the technical means are different. details as follows:
  • an embodiment of the present application provides a method 800 for configuring information, including:
  • the donor base station sends PRACH configuration information to all lower-level nodes (also called sub-nodes, for example, IAB1-IAB3 in FIG. 8B) on a link through the first signaling, where the PRACH configuration information is carried in the part In the RMSI, at least part of the RMSI carries the system frame where the PRACH configuration information is located or the first indication information of the RMSI where it is located.
  • all lower-level nodes also called sub-nodes, for example, IAB1-IAB3 in FIG. 8B
  • the first signaling may be F1-AP signaling.
  • the PRACH configuration is sent through the broadcast channel PBCH.
  • the donor base station sends second indication information to the first-level child node, where the second indication information is used to indicate the time domain position of the available random access resource configuration information, or to indicate the silent random access resource configuration information. Time domain location.
  • the second indication information is the available random access resource configuration information or the period and offset value of the muted random access resource configuration information.
  • the second indication information is the available random access resource configuration information or the frame number of the system frame where the muted random access resource configuration information is located.
  • the second indication information can be sent through explicit signaling, can be sent separately, or together with random access resources.
  • the instruction information can also be broadcast through system messages. For example, it can be indicated by SS/PBCH block.
  • 1 bit may be used for indication.
  • the bit when the bit is 0, it means that the random access resource on the system frame with an even number is an available resource (or, when the bit is 0, it means the random access resource on the system frame with an even number). Is a silent resource); when the bit is 1, it means that the random access resource on an odd-numbered system frame is an available resource (or, when the bit is 1, it means that the random access resource on an odd-numbered system frame is The random access resource is the resource that is muted); vice versa.
  • the upper node is a Donor base station
  • the lower nodes are nodes IAB1-IAB3, where the node IAB1 is the upper node of the node IAB2, and the node IAB2 is the upper node of the node IAB3.
  • the random access resources configured by the Donor base station for the nodes IABA1-IAB3 have the same time domain resources. For example, all random access resources are on system frames 1, 7, 13, 19...
  • the MT module of the first-level child node determines available random access resources. For example, the MT module of the first-level child node initiates a random access request based on the random access resource configuration information that is not muted.
  • the MT module of the first-level child node accesses the Donor base station based on the random access resource determined in step 830.
  • the DU module of the first-level child node determines an available random access resource configuration, where the available random access resource configuration is a resource other than the resource used by the MT module among the PRACH resources configured by the Donor.
  • the DU module of the first-level child node sends the available random access resource configuration to the second-level child node.
  • the MT module of the second-level child node accesses the first-level child node in the random access resource configuration described in step 850; and determines the random access resource configuration available to its own DU module, where the second-level The random access resource configuration available for the DU module of the child node is a resource other than the resources used by the MT module of the second-level child node among the PRACH resources configured by the donor.
  • each box represents a system frame, which is marked as system frame 1 to system frame 8.
  • Donor is the superior node of IAB1
  • IAB1 is the superior node of IAB2
  • IAB2 is the superior node of IAB3.
  • an upper-level node for example, donor in FIG. 8B
  • sends a random access configuration and indication information to a lower-level node for example, node IAB1 in FIG. 8B
  • the indication information indicates that the period of random access resources is 4.
  • the offset value is 2. That is, the system frame 2 and the system frame 6 carry the random access configuration, and the random access configuration can be used for the node IAB1 to access the donor.
  • node IAB1 Due to the half-duplex constraint of node IAB1, it cannot have both sending and receiving operations in the same time domain. That is, the MT module of node IAB1 in Figure 8B sends a random access request (which can be marked as BackHaul access, BH access), then the DU module of IAB1 cannot receive the random access request sent by the MT module of the subordinate node IAB2 on the system frame 2. At this time, the DU module of IAB1 can muting the random access resources of the system frame 2. , And in the next cycle (system frame 6), the random access request sent by the MT module of the lower-level node IAB2 is received.
  • a random access request which can be marked as BackHaul access, BH access
  • the MT module of IAB1 Since the DU module of IAB1 receives the random access request of the MT module of IAB2 in system frame 6, the MT module of IAB1 cannot send the BH access request in system frame 6, so the MT module of IAB1 needs to silence the random access of system frame 6. Resources.
  • the MT module of IAB2 needs the random access resource of the silent system frame 2
  • the DU module of IAB2 needs the random access resource of the silent system frame 6.
  • the MT module of IAB3 needs the random access resource of silent system frame 6, and the DU module of IAB3 needs the random access resource of silent system frame 2.
  • the technical solution provided by the example of the present invention provides a set of shared random access configuration without sending additional random access configuration, which can greatly reduce signaling overhead.
  • IAB DU can quickly determine the time domain position where it receives the random access request of the child node, without the donor reconfiguring random access resources.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit 910 can communicate with the outside, and the processing unit 910 is used for data processing.
  • the transceiving unit 910 may also be referred to as a communication interface or a communication unit.
  • the communication device 900 may be used to perform actions performed by an IAB node (for example, the IAB node mentioned above, or a subordinate node, or a relay device) in the above method embodiment, or the communication device 900 may It is used to perform actions performed by a network device (for example, a donor base station, an upper node) in the above method embodiment.
  • an IAB node for example, the IAB node mentioned above, or a subordinate node, or a relay device
  • a network device for example, a donor base station, an upper node
  • the communication device 900 may be used to execute the IAB node (for example, the IAB node mentioned above, or the subordinate node, or the relay device) in the above method embodiment 1 to embodiment 4
  • the communication device 900 may be referred to as an IAB node.
  • the transceiving unit 910 is configured to perform the transceiving-related operations of the IAB node (for example, the IAB node mentioned above, or the lower-level node, or the relay device) in the first to fourth embodiments of the above method
  • the processing unit 920 is configured to Perform the processing related operations of the IAB node (for example, the IAB node mentioned above, or the subordinate node, or the relay device) in the above method embodiment 1 to embodiment 4.
  • the transceiver unit 910 is configured to periodically receive a plurality of residual minimum system information RMSIs from an upper-level node, where some of the RMSIs carry configuration information of the first random access resource, and the first random access
  • the configuration information of the incoming resource is used to initiate random access to the superior node, and at least part of the RMSI includes indication information, and the indication information is used to indicate the time domain of the configuration information of the first random access resource position;
  • the processing unit 420 is configured to obtain the first random access resource based on the indication information; and, based on the first random access resource, initiate random access to the upper node.
  • the solution provided by the present application is achieved by carrying configuration information of the random access resource of the IAB node in only part of the RMSI, and at least part of the RMSI carries an indication of the time domain location of the random access resource configuration information of the IAB node. Information, so that it is not necessary to carry the random access resource configuration information of the terminal device and the random access resource configuration information of the IAB node in all RMSIs, which can reduce the system overhead.
  • the indication information is a system frame offset value, with a value of X, where X represents the Xth system frame from the current system frame carrying the first random access Resource configuration information, the value of X is greater than or equal to 1.
  • the indication information is the number of RMSI periods, the value is Y, and the Y indicates that after Y RMSI periods, the first random number is present on the Y+1 RMSI period.
  • Access resource configuration information the value of Y is greater than or equal to 1.
  • the indication information is the period T and the offset value M of the configuration information of the first random access resource.
  • the system frame number F where the first random access resource is located satisfies the following formula:
  • the indication information is a multiple of the RMSI period, the value is N, and the N indicates that the configuration information of the first random access resource exists on every N RMSI, or , The configuration information of the first random access resource exists on every N-1 RMSI, and the value of N is greater than or equal to 1.
  • the configuration information of the first random access resource includes one or more of the following information:
  • Physical random access channel PRACH configuration index random access resource period scaling parameter, random access resource frame offset, random access resource slot offset, message 1 frequency division, zero autocorrelation area configuration, preamble sequence The maximum number of transmissions, the length of the random access request response window, the number of available preambles, the number of random access opportunities RO associated with a synchronization signal block, the type of the associated synchronization signal block, and the subcarrier used to send message 1 interval.
  • the transceiver unit 910 is configured to periodically receive multiple remaining minimum system information RMSIs, wherein at least part of the RMSI carries scheduling information, and the scheduling information is used to indicate the first random access
  • the time-frequency position of the resource configuration information, the configuration information of the first random access resource is used to initiate random access to the superior node; wherein, the scheduling information includes one or more of the following information:
  • the processing unit 920 is configured to determine a random access resource based on the configuration information of the first random access resource indicated by the scheduling information; and access an upper-level node based on the determined random access resource.
  • the frequency domain position of the configuration information of the first random access resource is index information of the search space.
  • the type of the scheduling information when the type of the scheduling information takes the first value, it indicates that the scheduling information is other system information OSI scheduling information;
  • the type of the scheduling information takes the second value, it indicates that the scheduling information is the scheduling information of the configuration information of the first random access resource;
  • the update indication when the update indication takes the first value, it indicates that the node does not need to update its own random access resource; when the update indication takes the second value, it indicates that the node needs to update its own random access resource. Random access resources.
  • the configuration information of the first random access resource in this embodiment can be carried on other system information OSI, and only the scheduling information is carried on the RMSI, indicating the time domain position of the configuration information of the random access resource of the IAB node, which can save overhead .
  • the transceiver unit 910 is configured to periodically receive configuration information of random access resources from the donor base station, where the configuration information of random access resources indicates at least two first random access resources , The at least two first random access resources do not completely overlap in the time domain, and the at least two first random access resources are random access requests received by the DU module from a subordinate node;
  • the transceiving unit 910 is further configured to receive configuration information of a second random access resource from the donor base station, where the configuration information of the second random access resource is used by the MT module to access the donor base station.
  • the processing unit 920 is configured to determine, according to the configuration information of the first random access resource and the configuration information of the second random access resource, one of the two first access resources as the DU module configured for the lower node Wherein, the random access resource configured by the DU module for the subordinate node and the second random access resource do not overlap in the time domain.
  • the location of the random access resource sent by the IAB MT module needs to be changed according to the new upper-level node, and the donor base station does not need to reconfigure the node ,
  • the child nodes of this node and the nodes on the entire link at the lower level greatly reduce the signaling overhead.
  • the transceiver unit 910 is configured to periodically receive configuration information of random access resources from the donor base station, which is carried in a part of the RMSI, and at least part of the RMSI carries the system frame where the PRACH configuration information is located, or The first indication information of the RMSI.
  • the transceiving unit 910 is further configured to receive second indication information from the donor base station, where the second indication information is used to indicate the time domain location of the available random access resource configuration information, or to indicate silent random access The time domain location of the resource configuration information.
  • the processing unit 920 is configured to determine random access resources available to the MT module based on the second indication information.
  • the communication device 900 can be used to perform the actions performed by the network device (for example, the upper-level node or the donor base station) in the foregoing method embodiment 1 to embodiment 4.
  • the communication The device 900 may be referred to as a network device.
  • the transceiving unit 910 is configured to perform the transceiving-related operations on the network device side in the foregoing method embodiments 1 to 4, and the processing unit 920 is configured to perform the processing related operations of the network device in the foregoing method embodiments 1 to 4.
  • the processing unit 920 is configured to obtain a plurality of residual minimum system information RMSIs, where some of the RMSIs carry configuration information of the first random access resource and are used for random access of the backhaul link of the lower-level node, and, at least Part of the RMSI includes indication information, where the indication information is used to indicate the time domain location of the configuration information of the first random access resource;
  • the transceiver unit 910 is configured to periodically send the multiple RMSI.
  • the RMSI only part of the RMSI carries the configuration information of the random access resource of the IAB node, and at least part of the RMSI carries indication information indicating the time domain location of the random access resource configuration information of the IAB node , So that there is no need to carry configuration information of terminal equipment-specific and IAB-specific random access resources in all RMSIs, which can reduce system overhead.
  • the processing unit 920 is configured to obtain multiple remaining minimum system information RMSIs, wherein at least part of the RMSI carries scheduling information, and the scheduling information is used to indicate configuration information of the first random access resource The time-frequency position of is used for random access of the link back to the lower-level node; wherein, the scheduling information includes one or more of the following information:
  • the period of the configuration information of the first random access resource, the frequency domain position of the configuration information of the first random access resource, the type of scheduling information, and the update indication is the period of the configuration information of the first random access resource, the frequency domain position of the configuration information of the first random access resource, the type of scheduling information, and the update indication.
  • the transceiver unit 910 is configured to periodically send the multiple RMSIs to the underground node.
  • processing unit 920 in the above embodiments may be implemented by a processor or a processor-related circuit
  • transceiver unit 910 may be implemented by a transceiver or a transceiver-related circuit.
  • an embodiment of the present application also provides a communication device 1000.
  • the communication device 1000 includes a processor 1010, a memory 1020, and a transceiver 1030.
  • the memory 1020 stores a program.
  • the processor 1010 is used to execute the program stored in the memory 1020, and executes the program stored in the memory 1020 so that the processor 1010 uses In executing the relevant processing steps in the above method embodiment, the execution of the program stored in the memory 1020 enables the processor 1010 to control the transceiver 1030 to perform the transceiving-related steps in the above method embodiment.
  • the transceiver 1030 includes a radio frequency circuit and an antenna.
  • the processing unit 1020 is used to perform step 410 in FIG. 4A, or to perform step 510 in FIG. 5A, or to perform step 730 in FIG. 7A, or to use Execute step 830 in FIG. 8A.
  • the transceiver unit 1010 is further configured to perform step 420 shown in FIG. 4A, or step 520 in FIG. 5A, or, steps 710 and 720 in FIG. 7A, or steps 810 and 820 in FIG. 8A.
  • the processing unit 1020 is configured to execute step 440 in FIG. 4A or, alternatively, execute step 540 in FIG. 5A.
  • FIG. 10 is only an example and not a limitation, and the foregoing communication device including a transceiver unit and a processing unit may not rely on the structure shown in FIG.
  • the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种配置信息的方法与装置,该方法包括:第一节点得到多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置,第一随机接入资源用于第二节点随机接入所述第一节点;周期性地发送所述多个RMSI。本申请提供的技术方案不需要每个RMSI周期都携带第一随机接入资源的配置信息,只需要在特定某些RMSI中携带第一随机接入资源的配置信息,可以节省资源。

Description

一种配置信息的方法与装置 技术领域
本申请涉及通信领域,具体涉及一种配置信息的方法与装置。
背景技术
现有技术中,终端设备获取随机接入资源的方法是:开机后,通过检测同步信号/物理广播信道块(synchronization signal block/physical broadcast channel block,SS/PBCH块),确定携带随机接入资源配置信息的剩余最小系统信息(Remaining Minimum System Information,RMSI)的时域位置和频域位置。按照所指示的位置检测RMSI后,可以获取随机接入资源的配置信息,基于此配置信息所指示的随机接入资源,接入网络。
在5G当前的标准讨论中,集成接入回传(Integrated Access and Backhaul,IAB)节点(未来不排除其他类型的设备)可能按照与终端设备相似的流程,确定随机接入资源,发起随机接入。
这样,网络设备需要广播两套随机接入资源的配置信息,一套用于终端设备接入网络,另一套用于IAB节点接入网络,在所有的RMSI中既需要广播终端设备所使用的随机接入资源的配置信息,又需要广播IAB所使用的随机接入资源的配置信息,信令开销较大。
发明内容
本申请提供一种配置信息的方法及装置,通过仅在部分RMSI中携带IAB节点专用的随机接入资源的配置信息,且,至少部分RMSI中携带指示IAB节点专用的随机接入资源配置信息的时域位置的指示信息,使得无需在所有的RMSI中都携带终端设备专用和IAB节点专用的随机接入资源的配置信息,可以降低系统开销。
第一方面,一种配置信息的方法,包括第一节点生成多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,用于IAB节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;周期性地发送所述多个RMSI。
在第一方面的一种可能的实现方式汇总,所述每个RMSI中携带第二随机接入资源的配置信息,用于终端设备发起随机接入。
在第一方面的一种可能的实现方式中,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
在第一方面的另一种可能的实现方式中,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
在第一方面的另一种可能的实现方式中,所述指示信息为所述第一随机接入资源的配置信息的周期T和偏移值M。
在第一方面的另一种可能的实现方式中,所述第一随机接入资源所位于的系统帧号F满足以下公式:
对所述周期T取余,所述余数为所述偏移值M。
在第一方面的另一种可能的实现方式中,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
在第一方面的另一种可能的实现方式中,所述随机接入资源的配置信息包括如下信息的一种或多种:
物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
第二方面,提供一种配置信息的方法,包括:周期性地接收上级节点发送的多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,用于IAB节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源配置信息的时域位置;基于所述指示信息,确定所述第一随机接入资源;基于所述随机接入资源,发起随机接入。
在第二方面的一种可能的实现方式中,所述每个RMSI中携带第二随机接入资源的配置信息,用于终端设备发起随机接入。
在第二方面的一种可能的实现方式中,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
在第二方面的另一种可能的实现方式中,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
在第二方面的另一种可能的实现方式中,所述指示信息为所述第一随机接入资源的配置信息出现的周期T和偏移值M。
在第二方面的另一种可能的实现方式中,所述第一随机接入资源的配置信息所在的系统帧号F满足以下公式:对所述周期T取余,所述余数为所述偏移值M。
在第二方面的另一种可能的实现方式中,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
在第二方面的另一种可能的实现方式中,所述第一随机接入资源的配置信息包括如下信息中的一种或多种:
物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
本申请提供的技术方案不需要每个RMSI周期都携带IAB节点专用的随机接入资源的配置信息,只需要在特定某些RMSI中携带IAB节点专用的随机接入资源的配置信息,进而基于配置信息,确定随机接入资源,接入网络。这种技术方案相比每个RMSI上都携带终端设备专用的随机接入资源配置信息和IAB节点专用的随机接入资源的配置信息,可以节省信令开销。
第三方面,提供一种装置,包括:处理单元,用于得到多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,用于IAB节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示第一随机接入资源的配置信息的时域位置;发生单元,周期性地发送所述多个RMSI。
在第三方面的一种可能的实现方式中,所述每个RMSI中携带第二随机接入资源的配置信息,用于终端设备发起随机接入。
在第三方面的一种可能的实现方式中,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
在第三方面的另一种可能的实现方式中,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
在第三方面的另一种可能的实现方式中,所述指示信息为所述第一随机接入资源的配置信息的周期T和偏移值M。
在第三方面的另一种可能的实现方式中,所述第一随机接入资源所位于的系统帧号F满足以下公式:
对所述周期T取余,所述余数为所述偏移值M。
在第三方面的另一种可能的实现方式中,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
在第三方面的另一种可能的实现方式中,所述第一随机接入资源的配置信息包括如下信息中的一种或多种:
物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
第四方面,提供一种装置,包括:接收单元,用于周期性地接收上级节点发送的多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,用于IAB节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;处理单元,基于所述指示信息,确定所述第一随机接入资源;以及,基于所述第一随机接入资源,向所述上级节点发起随机接入。
在第四方面的一种可能的实现方式中,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
在第四方面的另一种可能的实现方式中,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
在第四方面的另一种可能的实现方式中,所述指示信息为所述第一随机接入资源出现的周期T和偏移值M。
在第四方面的另一种可能的实现方式中,所述第一随机接入资源的的配置信息所在的系统帧号F满足以下公式:
对所述周期T取余,所述余数为所述偏移值M。
在第四方面的另一种可能的实现方式中,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
在第四方面的另一种可能的实现方式中,所述第一随机接入资源的配置信息包括如下信息的一种或多种:
物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
第五方面,一种配置信息的方法,包括:
第一节点生成多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,用于IAB节点发起随机接入;
周期性地发送所述多个RMSI;
其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源配置信息的周期、第一随机接入资源配置信息的频域位置、调度信息的类型、更新指示。
本申请提供的技术方案与实施例一不同,本实施例中的第一随机接入资源的配置信息可以承载在其他系统信息OSI上,仅在RMSI上携带调度信息,指示IAB节点专用的随机接入资源的配置信息的时域位置,可以节省开销。
在第五方面的一种可能的实现方式中,所述第一随机接入资源的配置信息的频域位置为搜索空间的索引信息。
在第五方面的另一种可能的实现方式中,当所述调度信息的类型取第一值,表征所述调度信息为其他系统信息OSI的调度信息;
当所述调度信息的类型取第二值,表征所述调度信息为所述第一随机接入资源的配置信息的调度信息。
在第五方面的另一种可能的实现方式中,当所述更新指示取第一值,表征所述下级节点不需要更新自身的随机接入资源;当所述更新指示取第二值,表征所述下级节点需要更新自身的随机接入资源。
第六方面,提供一种配置信息的方法,包括:
周期性地接收多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,用于IAB节点发起随机接入;其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源配置信息的周期、第一随机接入资源配置信息的频域位置、调度信息的类型、更新指示;
基于所述调度信息所指示的第一随机接入资源的配置信息,确定随机接入资源;
基于所述确定的随机接入资源,接入上级节点。
在第六方面的一种可能的实现方式中,所述第一随机接入资源配置信息的频域位置为搜索空间的索引信息。
在第六方面的另一种可能的实现方式中,当所述调度信息的类型取第一值,表征所述调度信息为其他系统信息OSI的调度信息;
当所述调度信息的类型取第二值,表征所述调度信息为所述第一随机接入资源配置信息的调度信息。
在第六方面的另一种可能的实现方式中,当所述更新指示取第一值,表征不需要更新自身的随机接入资源;当所述更新指示取第二值,表征需要更新自身的随机接入资源。
第七方面,提供一种装置,包括:
处理单元,用于生成多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,用于下级节点发起随机接入;
发送单元,用于周期性地向所述下级节点发送所述多个RMSI;
其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源配置信息的周期、第一随机接入资源配置信息的频域位置、调度信息的类型、更新指示。
第八方面,提供一种装置,包括:
接收单元,用于周期性地接收多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,用于发起随机接入;其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源配置信息的周期、第一随机接入资源配置信息的频域位置、调度信息的类型、更新指示;
处理单元,用于基于所述调度信息所指示的随机接入资源的配置信息,确定随机接入资源;基于所述确定的随机接入资源,接入上级节点。
本申请提供的技术方案不用每个RMSI都携带IAB节点专用的随机接入资源的配置信息,IAB节点专用的随机接入资源的配置信息可以不承载在RMSI上,可以是其他时域位置,比如,OSI上。只需要在部分或全部RMSI中携带IAB节点专用的随机接入资源的调度信息,调度信息指示IAB节点专用的随机接入资源的配置信息,可以节省资源。
第九方面,提供一种通信设备,所述通信设备用于执行上述第一方面或第二方面提供的方法。具体地,所述通信设备可以包括用于执行第一方面或第二方面提供的方法的模块。或者,所述通信设备用于执行上述第五方面或第六方面提供的方法。具体地,所述通信设备可以包括用于执行第五方面或第六方面提供的方法的模块。
第十方面,提供一种通信设备,所述通信设备包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面或第二方面提供的方法;或者,使得所述处理器执行第五方面或第六方面提供的方法。
第十一方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面或第二方面提供的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程 序被计算机执行时使得所述计算机实现第一方面或第一方面的任一可能的实现方式中的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第一方面或第二方面提供的方法。
第十四方面,提供一种通信系统,包括第一设备和第二设备,其中,所述第一设备包括如第三方面或第三方面任何一可能的实现方式所述的装置,第二设备包括如第四方面或第四方面任何一可能的实现方式所述的装置。
基于上述描述,本申请提供的方案,通过终端设备向网络设备上报信道资源的干扰资源,可以使得网络设备较准确地获知信道资源的干扰资源,以便于网络设备进行合理的波束干扰管理,从而可以避免同时采用具有较强相互干扰的多个波束进行多用户传输,进而提高多用户传输的性能与效率。
附图说明
图1是本申请实施例应用的通信系统的示意图;
图2为本申请提供的一种基站/中继设备的结构示意图;
图3为本申请提供的一种终端设备的结构示意图;
图4A本申请提供的一种配置信息的方法示意性流程图;
图4B为本申请提供的一种指示IAB节点专用随机接入资源的示意图;
图4C为本申请提供的另一种指示IAB节点专用随机接入资源的示意图;
图4D为本申请提供的另一种指示IAB节点专用随机接入资源的示意图;
图5A为本申请提供的一种配置信息的方法示意性流程图;
图5B为本申请提供的一种指示IAB节点专用随机接入资源的示意图;
图6为本申请提供的一种IAB节点接入回传链路的资源分配示意图;
图7A为本申请提供的一种配置信息的方法示意图;
图7B为本申请提供的一种IAB节点随机接入资源分配的示意图;
图8A为本申请提供的一种配置信息的方法示意图;
图8B为本申请提供的另一种IAB节点随机接入资源分配的示意图;
图9是本申请实施例提供的通信设备的示意性框图;
图10是本申请实施例提供的通信设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例可以应用于基于波束的多载波通信系统,例如,5G系统或新无线(new radio,NR)系统。
图1为本申请实施例提供的IAB通信系统。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网系统(Narrow  Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE),以及5G移动通信系统。
在图1所示的通信系统中,给出了集成接入回传IAB系统。一个IAB系统至少包括一个宿主基站(Donor gNB,DgNB),及它所服务的一个或多个终端设备(图1以UE为示例)101,一个或多个IAB节点(图1以TRP为例)rTRP 110。该rTRP 110通过无线回程链路113连接到宿主基站100,及该rTRP 110所服务的一个或多个UE 111。宿主基站包括但不限于:演进型节点B(evolved Node Base,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、或下一代新无线电(NR,New Radio)基站(比如gNB)等。IAB节点包括但不限于:演进型节点B(evolved Node Base,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、或下一代新无线电(NR,New Radio)基站(比如gNB)、传输接收点(Transmission Reception Point,TRP)等
IAB系统还可以包括另一个或多个IAB节点rTRP 120,该一个或多个IAB节点rTRP 120通过无线回程链路123连接到IAB节点rTRP 110以接入到系统的,及其所服务的一个或多个UE 121。图1中,IAB节点rTRP 110和rTRP 120都通过无线回程链路连接到网络。在本申请中,所述无线回程链路都是从IAB节点的角度来看的,比如无线回程链路113是IAB节点rTRP 110的回程链路,无线回程链路123是IAB节点rTRP 120的回程链路。如图1所示,一个IAB节点,如120,可以通过无线回程链路,如123,连接另一个IAB节点,如110,从而连接到网络,而且,IAB系统可以经过多级无线中继连接到网络。通常,把提供无线回程链路资源的节点,如110,称为上游节点或者上级节点,把通过无线回程链路接入到网络的IAB节点,如120,称为下游节点或者下级节点。通常,下游节点可以看作是上游节点的一个终端。应理解,图1所示的IAB系统中,一个IAB节点连接一个上游节点,但是在未来的IAB系统中,为了提高无线回程链路的可靠性,一个IAB节点,如120,可以有多个上游节点同时为一个IAB节点提供服务。在本申请中,所述终端设备UE 102,112,122,可以是静止或移动设备。例如移动设备可以是移动电话,智能终端,平板电脑(tablet),笔记本电脑(laptop),视频游戏控制台,多媒体播放器,甚至是移动或静止的IAB节点等。静止设备通常位于固定位置,如计算机,接入点(通过无线链路连接到网络,如IAB节点)等。IAB节点rTRP 110,120的名称并不限制其所部署的场景或网络,可以是比如中继relay,RN等任何其他名称。本申请使用rTRP仅是方便描述的需要。
在图1中,所有无线链路102,112,122,113,123都是双向链路,包括上行和下行传输链路,特别地,无线回程链路113,123可以用于上游节点为下游节点提供服务,如上游节点100为下游节点110提供无线回程服务。所述下行传输是指上游节点,如节点100,为下 游节点,如节点110,进行传输,上行传输是指下游节点,如节点110,给上游节点,如节点100,传输数据。所述节点不限于是网络节点还是UE,例如,在D2D(Device to Device,D2D)场景下,UE可以充当中继节点为其他UE服务。无线回程链路在某些场景下又可以是接入链路,如回程链路123对节点110来说也可以被视作接入链路,回程链路113也是节点100的接入链路。
如图2所示,为本申请实施例提供的一种宿主基站的结构示意图,该宿主基站可以包括基带处理单元(Building Baseband Unit,BBU)201和远端射频模块(Remote Radio Unit,RRU)202,RRU 202和天馈系统203连接,BBU 201和RRU 202可以根据需要拆开使用。比如,RRU可以拉远,位于一个云平台中。BBU 201用于实现整个节点的操作维护,实现信令处理、无线资源管理、以及到分组核心网的传输接口,实现物理层、介质接入控制层、L3信令、操作维护主控功能。RRU 202用于实现基带信号与射频信号之间的转换,实现无线接收信号的解调和发送信号的调制和功率放大等。天馈系统203可包括多个天线,用于实现无线空口信号的接收和发送。本领域人员可以理解的是,在具体实现过程中,宿主基站还可以采用其他通用的硬件结构,而并非仅仅局限于图2所示的硬件结构。
如图3所示,为本申请实施例提供的一种终端设备的结构示意图,以用户设备是手机为例,手机可以包括:RF(radio frequency,射频)电路310、存储器320、其他输入设备330、显示屏340、传感器350、音频电路360、I/O子系统370、处理器380、以及电源390等部件。下面结合图3对手机的各个构成部件进行具体的介绍:
其中,处理器380分别与RF电路310、存储器320、音频电路360、以及电源390均连接。I/O子系统370分别与其他输入设备330、显示屏340、传感器350均连接。其中,RF电路310可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器380处理。存储器320可用于存储软件程序以及模块。处理器380通过运行存储在存储器320的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。其他输入设备330可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。显示屏340可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入,显示屏340可以包括显示面板341和触摸面板342。传感器350可以为光传感器、运动传感器或者其他传感器。音频电路360可提供用户与手机之间的音频接口。I/O子系统370用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器380是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。电源390(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。本领域技术人员可以理解,图3中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
为便于理解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
1、集成接入回传
对于IAB网络,其中可用资源的总和对于接入和回传链路是固定的,但是可以动态地 改变接入和回传链路之间的资源划分,并满足终端设备跨网络的即时需求。其中,接入链路是指网络设备(例如,IAB节点、donor,基站,TRP等)为普通终端设备提供接入服务的链路。回传链路是指网络设备之间相互传输信息与数据的链路,这些信息与数据包括来自核心网或上级网络设备节点发送的,网络设备工作所必须的信令与数据,也包括终端设备的数据与信令。
2、移动终端/分发单元:(Mobile-Termination/Distributed Unit,MT/DU)
MT模块(也可以称为MT功能)被定义为类似终端设备的一个组件。在IAB网络中,MT被称为驻留在IAB节点上的功能。由于MT类似一个普通终端设备的功能,那么可以理解为IAB节点通过MT模块接入到上级节点或者宿主基站,IAB节点通过DU模块(也可以称为DU功能)为终端设备或者下一级IAB节点提供接入服务。
MT模块和DU模块是逻辑上的功能划分,并非实际的物理模块划分。MT模块可以由软件执行,也可以由硬件执行,还可以由软件和硬件共同执行。同样地,DU模块也可以由软件执行,也可以由硬件执行,还可以由软件和硬件共同执行。
3、时分复用(time division multiplexing,TDM):
将无线资源按照时间的尺度进行划分,多个模块在所分配的时间资源上可以使用系统的全部资源(包括频域资源,硬件资源)。在IAB网络中,TDM特指IAB的MT模块和DU模块以时分的方式进行传输,在一个特定时间单元内,要么只有MT模块在工作,或者只有DU模块在工作。
4、半双工约束(half duplex constraint)
在IAB网络中,半双工约束是指一个IAB节点的MT模块在进行发送时,DU模块不能进行接收。相应地,DU模块在进行发送时,MT模块不能接收。即对于没有全双工能力的IAB节点,MT/DU模块不能同时收发。
5、回传链路的随机接入资源
对于某一个IAB节点来说,该IAB节点接入其上级节点所采用的随机接入资源,可以称为回传链路的随机接入资源。以图1为例,上游节点100为下游节点110提供无线回程服务,对下游节点110来说,其接入上游节点100所采用的随机接入资源,是回传链路的随机接入资源。
6、接入链路的随机接入资源
对于某一个IAB节点来说,该IAB节点为其下级节点接入所配置的随机接入资源,对该IAB节点来说可以称为接入链路的随机接入资源。以图1为例,上游节点100为下游节点110提供无线回程服务,对上游节点100来说,其为下游节点100所配置的随机接入资源,是接入链路的随机接入资源。
终端设备接入网络设备时,需要向网络设备发起随机接入。在此之前,终端设备通过读取网络设备广播的剩余最小系统消息RMSI,获取PRACH配置信息(PRACH configuration info)。该PRACH配置信息指示终端设备可以使用的时域、频域资源,前导码信息、重传次数、发送功率等,用于终端设备发起随机接入过程。
在5G当前的标准讨论中,集成接入回传(Integrated Access and Backhaul,IAB)节点(未来不排除其他类型的设备)也按照与终端设备相似的流程,确定随机接入资源的配置信息,进而基于配置信息确定随机接入资源,在所述确定的随机接入资源上发起随机接入。随机接入资源可以为一个或多个随机接入信道机会(RACH occasion,RO)。
在IAB系统中,IAB节点比一般的终端设备具有更多的接收天线,更高的部署位置,相比终端设备,IAB节点的天线接收增益可能更高,所以,IAB节点在超出正常小区所涉及的覆盖范围后仍然可能会接入小区。IAB节点可以在更远的地方,使用与终端设备相同的随机接入资源发起随机接入,从而发生超小区覆盖范围接入。其结果是导致接入失败,并且对基站内的其他终端设备造成干扰。随机接入的配置与网络规划设计的小区覆盖方位有关,因为不同随机接入的前导信号格式支持不同的最大接入距离。
如果为了这种极少发起随机接入的IAB节点,设计整个小区的终端设备都使用更长循环前缀(cycle prefix,CP)的前导格式,也没有必要。一方面,长CP的前导格式会占用更多的OFDM符号,增加每个随机接入信道机会(RACH occasion,RO)的时间长度,占用更多的时间资源,降低系统频谱效率。另一方面,不利于网络规划部署。例如,本来只规划覆盖5km的小区,为了能够让IAB节点接入网络把小区扩大到覆盖10km,终端设备发起随机接入可能会对邻区造成干扰。
为了解决上述问题,3GPP标准讨论制定中,各个公司建议为IAB节点配置回传链路的随机接入资源(即,IAB节点接入上级节点所采用的随机接入资源),该回传链路的随机接入资源与终端设备接入IAB节点所采用的随机接入资源的时域、频域位置不同,其他参数也可能有所不同。例如,回传链路的随机接入资源可以使用一个与终端设备不同的前导格式,来支持更远距离的接入。另外,该回传链路的随机接入资源可以使用一个相对长的周期,更稀疏的密度,降低开销。
其中,终端设备使用的PRACH配置信息,已经在3GPP标准Release15中记载。例如,通过配置随机接入索引(下表中第一列的值)指示终端设备当前服务小区采用的PRACH配置信息。终端设备可以通过查表的方式,得到PRACH配置信息。其中,表格是标准Release15中定义的,当前有256个值,下面给出一个值作为示例:
表1
Figure PCTCN2020075397-appb-000001
比如,以表1为例,终端设备采用PRACH配置索引为0的随机接入资源配置,表示终端设备发送的随机接入前导格式为A1,随机接入资源出现的帧号为系统帧1、17、39、49……(可以通过表中的x和y,计算出随机接入资源的周期和偏移,具体地,通过系统帧号除以x以及相应的余数确定位置。以表1中的x=16和y=1为例,终端设备可以计算出,当前服务小区的随机接入资源出现在第1,17,39,49,…系统帧上),随机接入资源在相应系统帧的第4,9,14,19,24,29,34,39个时隙上的符号上。随机接入资源从符号0开始。每个时隙中有6个RO,每个RO的长度为2个符号。
但是,如果在每个RMSI上都携带两套PRACH配置,开销较大。因此,本申请实施例一提供一种可以降低开销的配置信息的方法。
实施例一:
图4A为本申请实施例提供的配置信息的方法400的示意性流程图。该方法400包括如下步骤:
410,第一节点得到多个RMSI,其中,部分RMSI中携带第一随机接入资源配置信息(也可以称为PRACH配置),第一随机接入资源配置信息用于所述第二节点向所述第一节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源配置信息的时域位置;
420,周期性地发送所述多个RMSI。
430,第二节点周期性地接收所述多个RMSI,读取所述指示信息;基于所述指示信息,获取所述第一随机接入资源的配置信息。
440,基于所述配置信息指示的第一随机接入资源,第二节点接入所述第一节点。
可选地,每个RMSI中还携带第二随机接入资源配置信息,第二随机接入配置资源为终端设备接入第一节点所采用的随机接入资源。所述第一随机接入资源和第二随机接入资源可以在时域上、频域上有不同的配置。
具体地,步骤410中,第一节点得到多个RMSI,可以理解为第一节点自身生成多个RMSI,部分RMSI中携带第一随机接入资源配置信息;也可以理解为第一节点从其上级节点接收多个RMSI,其中,至少部分RMSI中携带第一随机接入资源的配置信息。
具体地,在步骤410中,RMSI也可以称为系统信息块1(system information block 1,SIB1),所述RMSI承载有PRACH配置。在一个调度周期内,所述RMSI是周期性发送的,比如,RMSI的周期可以为20ms,或者,RMSI的周期与同步信号/物理广播信道块SS/PBCH块的周期相同。所述每个RMSI上承载有用于终端设备接入的PRACH配置,仅有部分RMSI上承载有用于IAB节点接入的PRACH配置,这些IAB节点的PRACH配置承载在哪些RMSI上,需要根据进一步的指示信息确定。这些指示信息也承载在至少部分RMSI(可以是部分RMSI,也可以是全部RMSI)上,所述指示信息可以有多种实现方式。
比如,一种可能的实现方式为:所述指示信息为系统帧偏移值,用X表示该指示信息,所述X表示距离当前系统帧的第X个系统帧上的RMSI携带有IAB节点的PRACH配置信息(即方法400中的第一随机接入资源配置信息),所述X的取值大于1。
如图4B所示,例如,X取值为4,每个系统帧长10ms,当IAB节点与上级节点时间同步后,可以获取当前系统帧的帧号。在当前系统帧之后的40ms(即图4A中的第三个系统帧)上的RMSI中,携带有IAB节点的随机接入资源的配置信息。
IAB节点检测PBCH,确定RMSI在系统帧上的时频位置。例如,RMSI在系统帧的时域位置和频域位置可以由物理广播信道PBCH中的系统信息块SIB消息指示。例如,参数PDCCH-ConfigSIB1”,“PDCCH-ConfigSIB1”中又包括CORESET#0和Search space#0的配置。搜索空间search space就包括了检测RMSI的时域信息。IAB节点通过读取PBCH的MIB消息,获得RMSI在系统帧上的时频位置,进而获取到PRACH配置信息。
再比如,另一种可能的实现方式为:所述指示信息为RMSI周期的个数。比如,指示信息取值为Y,所述Y表示经历了Y个RMSI周期后,在第Y+1个RMSI上存在所述IAB节点的随机接入资源,所述Y的取值大于1。
如图4C所示,首先,IAB节点确定RMSI周期,通过RMSI中携带的Y的取值,获取哪些RMSI上携带有IAB节点的随机接入资源的配置信息。
IAB节点确定RMSI周期可以通过如下几种方式:盲检、确定SS/PBCH块周期,根据 SS/PBCH块的周期确定RMSI的周期、确定PBCH的周期,根据PBCH的周期确定RMSI的周期。例如,比如,IAB节点通过盲检的方式获取RMSI周期为20ms,Y的取值为2,那么每40ms就存在IAB节点的随机接入资源的配置信息,即每两个RMSI上有一个RMSI上存在IAB节点的随机接入资源的配置信息。
再比如,另一种可能的实现方式为:所述指示信息为IAB节点的随机接入资源配置信息的周期T和偏移值M。根据所述指示信息,确定携带IAB节点的随机接入资源配置信息的系统帧号F,进而从所述系统帧上获取随机接入资源的配置信息。
其中,IAB节点的随机接入资源所在的系统帧号F,满足以下公式:
对所述周期T取余,所述余数为偏移值M。
例如,如图4C所示,周期T为8,即,每8个RMSI才有一个RMSI中携带有IAB节点的随机接入资源。偏移值M取值为5,即,帧号为5、13、21、29…上存在IAB节点的随机接入资源的配置信息。
进而,IAB节点再从该系统帧上的特定时频位置,获取随机接入资源的配置信息。该特定的时频位置即RMSI在系统帧上的时频位置,可以根据PDCCH中的SIB指示获取。例如,参数PDCCH-ConfigSIB1”,“PDCCH-ConfigSIB1”中又包括CORESET#0和Search space#0的配置。搜索空间search space就包括了检测RMSI的时域信息。IAB节点通过读取PBCH的MIB消息,获得RMSI在系统帧上的时频位置,进而获取到PRACH配置信息
再比如,另一种可能的实现方式为:所述指示信息为RMSI周期的倍数X和偏移值M。
例如,如图4D所示,IAB节点通过盲检的方式确定RMSI周期为20ms,X取值为4,即每四个RMSI中存在一个RMSI中携带有IAB节点的随机接入资源的配置信息,偏移值M取值为2,即第2、6、10、14…个RMSI上携带有IAB节点的随机接入资源的配置信息。
本申请中提到的IAB节点的随机接入资源的配置信息,包括如下信息中的一种或多种:
1、物理随机接入信道配置索引,例如,用参数prach-ConfigurationIndex表示。用于确定随机接入的前导格式,资源时域信息(例如,随机接入资源所在的时隙、所在的符号)。这一参数可以类似与表1存储在表格中,通过上级节点广播的PRACH配置索引确定PRACH配置的时域位置与频域位置。
2、消息1频分,例如,用参数msg1-FDM表示。用于指示在一个时域内是否有多个频分的随机接入机会(RACH occasion,RO),取值可以为1,2,4,8。
3、零自相关区域配置,例如,用参数zeroCorrelationZoneConfig表示,用于确定前导序列。
4、前导序列的最大传输次数,例如,用参数preambleTransMax表示。
5、随机接入请求响应的窗口长度,例如,用ra-ResponseWindow表示。
6、可用的前导个数,例如,用TotalNumberOfRA-Preambles表示,取值范围为1-63。
7、一个SSB关联的RO的个数,例如,用参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB表示,比如,取值为1,2,4,8。
8、关联的SSB类型,例如,用参数Association-ssb-type表示。IAB网络中,除了传统的SSB,还有一些SSB专于IAB节点间相互测量发现,这些SSB对初始接入的终端设备不可见。比如,当该参数取值为1时,表征关联的SSB类型为IAB节点专用的SSB,即对终端设备不可见;当该参数取值为0时,表征关联的SSB类型为传统的SSB,即对所有终端设备可见。
9、发送消息1所使用的子载波间隔,例如,采用msg1-SubcarrierSpacing表示。
10、PRACH资源帧偏移配置,例如,采用y_offset表示。当IAB节点确定随机接入资源的时域位置时,先物理随机接入信道配置索引确定y(表2中的y)的值,再应用y_offset值,例如相加得到偏移后的y的值。y_offset的取值范围可以是1,2,3,4,5,6,7,8,9,10,11,12,13,14,15。应理解,存在帧偏移量y_offset是用于实现IAB节点与上级节点回传链路的随机接入资源以及IAB节点与子节点随机接入资源之间时分复用。考虑到典型的IAB部署场景中,节点的数量不会太大,最大取值15可以满足部署需要。而且更大的取值需要使用更多比特,带来额外开销。
11、随机接入资源周期缩放参数
12、随机接入资源帧偏移量
应理解,上述12项信息中第一项可以以表格的方式存储在IAB节点,类似于表1的形式。比如,如下表2所示:
表2
Figure PCTCN2020075397-appb-000002
其他的几项参数,可以通过广播信号配置给下级节点。
示例性地,如表2所示,根据配置索引为1,得到具体的时域和频域配置信息。再根据广播信号中其他几项参数,确定确定随机接入资源,进而接入上级节点。
本申请实施例一提供的技术方案不需要每个RMSI周期都携带第二节点的随机接入资源配置信息,只需要在部分RMSI中携带第二节点的随机接入资源的配置信息以及至少部分RMSI携带这些配置信息的指示信息,可以大大地节省信令开销。
本申请还提供实施例二,也可以解决在每个RMSI都携带两套PRACH配置信息导致开销较大的技术问题,通过将IAB节点专用的PRACH配置信息承载在其他广播信号中,比如,OSI中。仅在部分或全部RMSI中携带IAB节点的PRACH配置信息的调度信息,降低了开销。
实施例二:
图5A为本申请实施例提供的配置信息的方法500的示意性流程图。该方法500包括如下步骤:
510、第一节点得到多个RMSI,至少部分RMSI中携带有调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时域位置,所述第一随机接入资源的配置信息用于第二节点的回传链路的随机接入;
其中,所述调度信息包括以下信息中的一种或多种:
第一随机接入资源配置信息的时域位置、第一随机接入资源配置信息的频域位置、调度信息的类型、更新指示。
520、周期性地向第二节点发送所述多个RMSI。
530、第二节点周期性地接收该多个RMSI,基于该调度信息,获取第一随机接入资源的配置信息;
540、第二节点基于配置信息所指示的第一随机接入资源,接入第一节点。
具体地,第二节点基于调度信息中包括的第一随机接入资源配置信息的时域位置和频域位置,确定PRACH配置的时域位置,进而在相应的时域位置获得随机接入资源。其中,第一PRACH配置包括的参数可以参考实施例一的介绍,这里不再赘述。
如图5B所示,本申请实施例二中,第一PRACH配置可以承载其他广播信号中,比如其他系统信息(other system information,OSI),或者,其他SIB中。
可选地,由于RMSI中可能携带其他系统信息(other system information,OSI)的调度信息,为表示区分,当调度信息的类型为第一值时,表征该调度信息为OSI的调度信息;当调度信息的类型为第二值时,表征该调度信息为第一随机接入资源配置信息的调度信息。
资源更新指示,用于标识IAB节点是否需要更新自身的随机接入资源。比如,在一些特殊场景,例如,链路失败恢复场景、切换场景、小区重选场景中,IAB节点发起随机接入时,已经获取了待接入目标小区的第一随机接入资源的配置信息。此时,IAB节点根据资源更新指示确定是否需要更新自身的随机接入资源的配置信息。
资源更新指示可以理解为第一随机接入资源配置信息的一个“版本号”,IAB节点获取随机接入资源配置信息时,会同时获得这个资源配置的“版本号”,比如,“2”。当IAB节点需要发送随机接入时,先根据RMSI中调度信息中的资源更新指示,确定当前保存的配置是否过期。如果本地保存的资源配置的版本号与当前读取系统信息获取的版本号不一致,比如,“1”,则IAB节点需要更新自身的随机接入资源配置信息。
本申请实施例二提供的技术方案,将用于IAB节点回传链路的PRACH配置承载在其他广播信号中,仅在RMSI中携带了该PRACH配置的调度信息,比直接携带PRACH配置降低了开销,节省了资源。
本发明实施例还提供实施例三,与实施例一和二相比,实施例三解决不同的技术问题。具体描述如下:
由于网络架构中,引入了IAB节点,需要广播两套随机接入资源,一套用于终端设备的随机接入,另一套用于IAB节点的回传链路的随机接入。IAB节点作为一种中继节点,自身需要连接到其他IAB节点上(从拓扑结构上,被连接的节点称为上级节点,连接的节点称为下级节点,如图1所示,rTRP1为rTRP2的上级节点)。在IAB节点接入网络后,可能发生回传链路切换(比如,rTRP1为rTRP2的上级节点,rTRP2需要切换到rTRP3上,使得rTRP3为rTRP2的上级节点)、回传链路失败(link failure)等情况,此时需要通过向相邻节点或者上级节点发送随机接入请求,来恢复回传链路的通信。
对于一个IAB节点来说,需要有一个用于随机接入的时域资源,还需要有另外的两个时域资源,一个用于接收终端设备的随机接入,另一个用于接收下级IAB节点的随机接入。
IAB节点通过MT模块接入上级节点,IAB节点的DU模块需要在两个时域资源上接收终端设备发送的随机接入请求,以及下级IAB节点发送的随机接入请求。为了满足半双工约束(即IAB节点不能同时进行发送和接收动作),IAB的DU模块在接收随机接入请求的时域资源上(接入链路),IAB的MT模块是不能向上级节点发起随机接入的(回传链路)。
例如,如图6所示,IAB节点涉及的三种随机接入资源在时间上应该是错开的。
IAB节点在发生回传链路切换时,MT模块发送随机接入资源的时域资源发生变化,可能导致DU模块接收下级节点或终端设备的时域位置发送变化,从而导致该节点的下级节点以及下级一整条链路都受到影响,可能需要Donor基站重配多个节点的随机接入资源,开销较大。
本申请提供如下实施例三,可以不需要重配多个节点的随机接入资源,降低开销。
如图7A所示,本申请实施例三提供一种配置信息的方法700,包括:
710、宿主基站通过第一信令向处于一条链路上的所有下级节点(也可以称为子节点)发送PRACH配置信息,所述PRACH配置信息至少指示两个随机接入资源(也可以称为随机接入机会),所述两个随机接入资源至少在时域上不完全重叠(可以部分重叠,可以完全不重叠),其中,所述至少两套第一随机接入配置用于所述下级节点的DU模块接收其下级IAB节点的随机接入请求。
其中,所述PRACH配置信息可以通过广播信号发送,例如物理广播信道PBCH。
可选地,所述PRACH配置信息可以位于PBCH上的RMSI、或者OSI、或者其他时域位置。所述PRACH配置承载在哪些RMSI(或OSI)或者系统帧,可以通过实施例一所描述的多种指示方式,这里不再赘述。
示例性地,如图7B所示,Donor基站为IAB1的上级节点,IAB1为IAB2的上级节点,IAB2为IAB3的上级节点。Donor基站,IAB1,IAB2,IAB3属于一条链路上的节点。Donor基站广播PRACH配置给所有的下级节点,包括IAB1-IAB3。所有下级节点(包括IAB1-IAB3)都接收Donor基站的广播信号,该广播信号包括至少两套PRACH配置,该至少两套PRACH配置在时域上部分重叠或者完全不重叠,如图7B上的灰色阴影所指示的资源。该两套PRACH配置为每个IAB节点的DU模块可用的PRACH配置(即用于接收下级节点随机接入请求消息的资源)。比如,图7B中,IAB1的DU模块可用的PRACH配置位于系统帧2和系统帧3,以及系统帧6和系统帧7。IAB2的DU模块可用的PRACH配置位于系统帧2和系统帧3,以及系统帧6和系统帧7;IAB3的DU模块可用的PRACH配置位于系统帧2和系统帧3,以及系统帧6和系统帧7。
720、宿主基站通过广播信号,向第一级的子节点(即图7B中的IAB1)发送第二随机接入配置,第二随机接入配置用于所述第一级的子节点的MT模块接入所述宿主基站。
示例性地,如图7B所示,Donor基站广播用于IAB1的MT模块接入Donor基站的PRACH配置,该PRACH配置的时域位置为系统帧2和系统帧6。
节点IAB1的MT模块从所述系统帧2和系统帧6获取PRACH配置信息,进而基于该PRACH配置信息所指示的随机接入资源接入Donor基站。
730、第一级子节点(例如,IAB1节点)的DU模块确定可用于第二级子节点(例如,IAB2节点)接入的PRACH配置,其中,所述用于第二级子节点的PRACH配置与所述第一级子节点的MT模块所采用的PRACH配置时域上不重叠,或者部分不重叠。
740、所述第一级子节点的DU模块通过广播信号,将所述用于第二级子节点MT模块的随机接入的配置发送给所述第二级子节点。
750、所述第一级子节点的MT模块通过第二随机接入配置,向所述Donor基站发起随机接入请求。
760、所述第二级子节点的MT模块通过步骤740中的随机接入配置,接入第一级子 节点。
示例性地,如图7B所示,IAB1的MT模块使用了系统帧2和系统帧6接入Donor基站,由于半双工约束,IAB1的DU模块不能使用系统帧2和系统帧6。IAB1的DU模块确定当前可用的PRACH资源为系统帧3和系统帧7。因此,IAB1的DU模块将系统帧3和系统帧7作为PRACH配置广播给下级节点IAB2。
相应地,节点IAB2的MT模块使用系统帧3和系统帧7接入上级节点IAB1。由于半双工约束,节点IAB2的DU模块不能使用系统帧3和系统帧7作为PRACH配置广播给下级节点IAB3。因此,节点IAB2的DU模块将系统帧2和系统帧6携带的PRACH配置广播给下级节点IAB3。
相应地,节点IAB3的MT模块使用系统帧2和系统帧6上的PRACH配置接入上级节点IAB2。IAB3的DU模块可以将系统帧3和系统帧7广播,用于可能接入IAB3的下级IAB节点(图中未示出)。
需要说明书的是,本申请实施例三中的步骤顺序可以调整,比如,更换步骤750和步骤760的顺序。
其中,第一信令可以为F1-AP(F1 applicationprotocol,接入协议)信令。
第一随机接入配置所包含的参数可以是实施例一中所提到的随机接入配置所包含的参数中的部分或全部,不再赘述。
第二随机接入配置所包含的参数可以是实施例一中所提到的随机接入配置所包含的参数中的部分或全部,不再赘述。
通过上述实施例所提供的配置信息的方法,即使IAB节点发生回传链路切换(包括恢复到其他邻节点),IAB MT模块发送随机接入资源位置需要根据新的上级节点而发生变化,不需要宿主基站重配置该节点、该节点的子节点以及下级一整条链路上的节点,大大地降低了信令开销。
本发明实施例还提供实施例四,实施例四与实施例三解决的技术问题相同,技术手段有所不同。具体如下:
实施例四
如图8A所示,本申请实施例提供一种配置信息的方法800,包括:
810、宿主基站通过第一信令向处于一条链路上的所有下级节点(也可以称为子节点,例如,图8B中的IAB1-IAB3)发送PRACH配置信息,所述PRACH配置信息承载在部分RMSI中,至少部分RMSI上携带有PRACH配置信息所在的系统帧或者所在的RMSI的第一指示信息。
PRACH配置的指示方式有多种实现方式,具体可以参考实施例一的描述,这里不再赘述。
所述第一信令可以为F1-AP信令。
所述PRACH配置通过广播信道PBCH发送。
820、宿主基站向第一级子节点发送第二指示信息,所述第二指示信息用于指示可用的随机接入资源配置信息的时域位置,或者指示被静默的随机接入资源配置信息的时域位置。
可选地,所述第二指示信息为可用的随机接入资源配置信息或者被静默的随机接入资源的配置信息的周期和偏移值。
可选地,所述第二指示信息为可用的随机接入资源配置信息或者被静默的随机接入资源配置信息所在的系统帧的帧号。
所述第二指示信息可以通过显式信令的方式,可以单独发送,也可以与随机接入资源一起发送。所述指示信息还可以通过系统消息广播。例如,可以通过SS/PBCH块进行指示。
示例性地,当所述第二指示信息是通过系统信息广播,可以采用1比特进行指示。例如,当该比特为0时,表示帧号为偶数的系统帧上的随机接入资源为可用资源(或者,当该比特为0时,表示帧号为偶数的系统帧上的随机接入资源为被静默的资源);当该比特为1时,表示帧号为奇数的系统帧上的随机接入资源为可用资源(或者,当该比特为1时,表示帧号为奇数的系统帧上的随机接入资源为被静默的资源);反之亦然。
比如,上级节点为Donor基站,下级节点为节点IAB1-IAB3,其中,节点IAB1是节点IAB2的上级节点,节点IAB2是节点IAB3的上级节点。Donor基站为节点IABA1-IAB3配置的随机接入资源的时域资源相同。比如,所有的随机接入资源都在系统帧1,7,13,19…上。
830、基于所述第二指示信息,所述第一级子节点的MT模块确定可用的随机接入资源。比如,第一级子节点的MT模块基于未被静默的随机接入资源配置信息,发起随机接入请求。
840,第一级子节点的MT模块基于步骤830中确定的随机接入资源,接入Donor基站。
850、所述第一级子节点的DU模块确定可用的随机接入资源配置,其中,可用的随机接入资源配置为所述Donor配置的PRACH资源中除了MT模块使用的资源以外的资源。
860、所述第一级子节点的DU模块将所述可用的随机接入资源配置,发送给所述第二级子节点。
870、第二级子节点的MT模块在步骤850中所述的随机接入资源配置,接入第一级子节点;以及,确定自身DU模块可用的随机接入资源配置,其中,第二级子节点DU模块可用的随机接入资源配置为所述donor配置的PRACH资源中除了第二级子节点MT模块使用的资源以外的资源。
例如,如图8B所示,每一个框代表一个系统帧,分别标记为系统帧1-系统帧8。Donor为IAB1的上级节点,IAB1为IAB2的上级节点,IAB2为IAB3的上级节点。在步骤810中,上级节点(例如,图8B中的donor)向下级节点(例如,图8B中的节点IAB1)发送随机接入配置以及指示信息,指示信息指示随机接入资源的周期为4,偏移值为2。即,系统帧2和系统帧6上携带有随机接入配置,该随机接入配置可以用于节点IAB1接入donor。
由于节点IAB1的半双工约束,不能在同一个时域既有发送操作又有接收操作,即图8B中节点IAB1的MT模块在系统帧2上发送随机接入请求(可以标记为BackHaul access,BH access),那么IAB1的DU模块不能在系统帧2上接收下级节点IAB2的MT模块发送的随机接入请求,此时,IAB1的DU模块可以通过静默(muting)系统帧2的随机接入资源,而在下一个周期(系统帧6),再接收下级节点IAB2的MT模块发送的随机接入请求。
由于IAB1的DU模块在系统帧6上接收IAB2的MT模块的随机接入请求,那么IAB1的MT模块在系统帧6不能发送BH access请求,那么IAB1的MT模块需要静默系统帧6 的随机接入资源。
同理地,可以得到IAB2的MT模块需要静默系统帧2的随机接入资源,IAB2的DU模块需要静默系统帧6的随机接入资源。
IAB3的MT模块需要静默系统帧6的随机接入资源,IAB3的DU模块需要静默系统帧2的随机接入资源。
本发明实例例提供的技术方案通过提供一套共用的随机接入配置,不需要发送额外的随机接入配置,可以大大的降低信令开销。另外,在链路回传的场景下,IAB DU能快速的确定自身接收子节点的随机接入请求的时域位置,无需donor重配随机接入资源。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9为本申请实施例提供的通信设备900的示意性框图。该通信设备900包括收发单元910和处理单元920。收发单元910可以与外部进行通信,处理单元910用于进行数据处理。收发单元910还可以称为通信接口或通信单元。
该通信设备900可以用于执行上文方法实施例中IAB节点(例如,上文中提到的IAB节点,或者,下级节点,或者,中继设备)所执行的动作,或者,该通信设备900可以用于执行上文方法实施例中网络设备(例如,donor基站,上级节点)所执行的动作。
作为一种实现方式,通信设备900可以用于执行上文方法实施例一至实施例四中IAB节点(例如,上文中提到的IAB节点,或者,下级节点,或者,中继设备)所执行的动作,这时,该通信设备900可以称为IAB节点。收发单元910用于执行上文方法实施例一至实施例四中IAB节点(例如,上文中提到的IAB节点,或者,下级节点,或者,中继设备)的收发相关操作,处理单元920用于执行上文方法实施例一至实施例四中IAB节点(例如, 上文中提到的IAB节点,或者,下级节点,或者,中继设备)的处理相关操作。
在一种实现方式中,收发单元910,用于周期性地接收来自上级节点多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,第一随机接入资源的配置信息用于向所述上级节点发起随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
处理单元420,用于基于所述指示信息,获取所述第一随机接入资源;以及,基于所述第一随机接入资源,向所述上级节点发起随机接入。
因此,本申请提供的方案,通过通过仅在部分RMSI中携带IAB节点的随机接入资源的配置信息,且,至少部分RMSI中携带指示IAB节点的随机接入资源配置信息的时域位置的指示信息,使得无需在所有的RMSI中都携带终端设备的随机接入资源配置信息和IAB节点的随机接入资源的配置信息,可以降低系统开销。
可选地,在一些实施例中,所述指示信息为系统帧偏移值,取值为X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
可选地,在一些实施例中,所述指示信息为RMSI周期个数,所述取值为Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
可选地,在一些实施例中,所述指示信息为所述第一随机接入资源的配置信息的周期T和偏移值M。
可选地,在一些实施例中,所述第一随机接入资源所位于的系统帧号F满足以下公式:
对所述周期T取余,所述余数为所述偏移值M。
可选地,在一些实施例中,所述指示信息为RMSI周期的倍数,所述取值为N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
可选地,在一些实施例中,所述第一随机接入资源的配置信息包括如下信息中的一种或多种:
物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
在另一种实施例中,收发单元910,用于周期性地接收多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,所述第一随机接入资源的配置信息用于向上级节点发起随机接入;其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示;
处理单元920,用于基于所述调度信息所指示的第一随机接入资源的配置信息,确定随机接入资源;基于所述确定的随机接入资源,接入上级节点。所述第一随机接入资源的配置信息的频域位置为搜索空间的索引信息。
可选地,在一些实施例中,当所述调度信息的类型取第一值,表征所述调度信息为其 他系统信息OSI的调度信息;
当所述调度信息的类型取第二值,指示所述调度信息为所述第一随机接入资源的配置信息的调度信息;
可选地,在一些实施例中,当所述更新指示取第一值,指示本节点不需要更新自身的随机接入资源;当所述更新指示取第二值,指示本节点需要更新自身的随机接入资源。
本实施例中的第一随机接入资源的配置信息可以承载在其他系统信息OSI上,仅在RMSI上携带调度信息,指示IAB节点的随机接入资源的配置信息的时域位置,可以节省开销。
在另一种实施例中,所述收发单元910,用于周期性地从宿主基站接收随机接入资源的配置信息,所述随机接入资源的配置信息至少指示两个第一随机接入资源,所述至少两个第一随机接入资源在时域上不完全重叠,所述至少两个第一随机接入资源为DU模块接收下级节点的随机接入请求;
所述收发单元910,还用于从所述宿主基站接收第二随机接入资源的配置信息,所述第二随机接入资源的配置信息用于MT模块接入所述宿主基站。
处理单元920,用于根据所述第一随机接入资源的配置信息和第二随机接入资源的配置信息,将所述两个第一接入资源中的一个确定为DU模块为下级节点配置的随机接入资源,其中,所述DU模块为下级节点配置的随机接入资源与第二随机接入资源在时域上不重叠。
本实施例中,即使IAB节点发生回传链路切换(包括恢复到其他邻节点),IAB MT模块发送随机接入资源位置需要根据新的上级节点而发生变化,不需要宿主基站重配置该节点、该节点的子节点以及下级一整条链路上的节点,大大地降低了信令开销。
在另一个实施例中,所述收发单元910,用于周期性地从宿主基站接收随机接入资源的配置信息,承载在部分RMSI中,至少部分RMSI上携带有PRACH配置信息所在的系统帧或者所在的RMSI的第一指示信息。
所述收发单元910,还用于从所述宿主基站接收第二指示信息,所述第二指示信息用于指示可用的随机接入资源配置信息的时域位置,或者指示被静默的随机接入资源配置信息的时域位置。
处理单元920,用于基于所述第二指示信息,确定MT模块可用的随机接入资源。
作为另一种实现方式,通信设备900可以用于执行上文方法实施例一至实施例四中网络设备(例如,上文中的上级节点,或者,donor基站)所执行的动作,这时,该通信设备900可以称为网络设备。收发单元910用于执行上文方法实施例一至实施例四中网络设备侧的收发相关操作,处理单元920用于执行上文方法实施例一至实施例四中网络设备的处理相关操作。
在本实现方式中,
处理单元920,用于得到多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,用于下级节点的回传链路的随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
收发单元910,用于周期性地发送所述多个RMSI。
因此,本申请提供的方案,通过仅在部分RMSI中携带IAB节点的随机接入资源的配 置信息,且,至少部分RMSI中携带指示IAB节点的随机接入资源配置信息的时域位置的指示信息,使得无需在所有的RMSI中都携带终端设备专用和IAB专用的随机接入资源的配置信息,可以降低系统开销。
另一种实施例中,处理单元920,用于得到多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,用于向下级节点回传链路的随机接入;其中,所述调度信息包括如下信息中的一种或多种:
第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示。
收发单元910,用于周期性地下级节点发送所述多个RMSI。
应理解,上文实施例中的处理单元920可以由处理器或处理器相关电路实现,收发单元910可以由收发器或收发器相关电路实现。
如图10所示,本申请实施例还提供一种通信设备1000。通信设备1000包括处理器1010、存储器1020和收发器1030,存储器1020中存储有程序,处理器1010用于执行存储器1020中存储的程序,对存储器1020中存储的程序的执行,使得处理器1010用于执行上文方法实施例中的相关处理步骤,对存储器1020中存储的程序的执行,使得处理器1010控制收发器1030执行上文方法实施例中的收发相关步骤。
具体地,所述收发器1030包括射频电路和天线。例如,在一种实现方式中,处理单元1020,用于执行图4A中的步骤410,或者,用于执行图5A中的步骤510,或者,用于执行图7A中的步骤730,或者,用于执行图8A中的步骤830。收发单元1010还用于执行图4A中所示的步骤420、或者,图5A中的步骤520,或者,图7A中的步骤710和720,或者,图8A中的步骤810和820。
又例如,在另一种实现方式中,处理单元1020,用于执行图4A中的步骤440,或者,用于执行图5A中的步骤540。
应理解,图10仅为示例而非限定,上述包括收发单元和处理单元的通信设备可以不依赖于图10所示的结构。
当该通信设备1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统, 例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种配置信息方法,其特征在于,包括:
    第一节点得到多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,,所述第一随机接入资源的配置信息用于第二节点接入所述第一节点,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
    周期性地发送所述多个RMSI。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
  3. 根据权利要求1所述的方法,其特征在于,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
  4. 根据权利要求1所述的方法,其特征在于,所述指示信息为所述第一随机接入资源的配置信息的周期T和偏移值M。
  5. 根据权利要求4所述的方法,其特征在于,所述第一随机接入资源的配置信息所位于的系统帧号F满足以下公式:
    对所述周期T取余,所述余数为所述偏移值M。
  6. 根据权利要求1所述的方法,其特征在于,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述随机接入资源的配置信息包括如下信息的一种或多种:
    物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
  8. 一种配置信息方法,其特征在于,包括:
    第一节点周期性地接收来自第二节点的多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,所述第一随机接入资源的配置信息用于所述第一节点接入所述第二节点,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
    所述第一节点基于所述指示信息,确定所述第一随机接入资源;
    所述第一节点基于所述第一随机接入资源,向所述第二节点发起随机接入。
  9. 根据权利要求8所述的方法,其特征在于,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
  10. 根据权利要求8所述的方法,其特征在于,所述指示信息为RMSI周期个数或者倍数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资 源的配置信息,所述Y的取值大于等于1。
  11. 根据权利要求8所述的方法,其特征在于,所述指示信息为所述第一随机接入资源的配置信息所出现的周期T和偏移值M。
  12. 根据权利要求11所述的方法,其特征在于,所述第一随机接入资源的配置信息所在的系统帧号F满足以下公式:
    对所述周期T取余,所述余数为所述偏移值M。
  13. 根据权利要求8所述的方法,其特征在于,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述第一随机接入资源的配置信息包括如下信息中的一种或多种:
    物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
  15. 一种装置,其特征在于,包括:
    处理单元,用于得到多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,所述第一随机接入资源的配置信息用于下级节点的回传链路的随机接入,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
    发送单元,周期性地向所述下级节点发送所述多个RMSI。
  16. 根据权利要求15所述的装置,其特征在于,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
  17. 根据权利要求15所述的装置,其特征在于,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
  18. 根据权利要求15所述的装置,其特征在于,所述指示信息为所述第一随机接入资源的配置信息的周期T和偏移值M。
  19. 根据权利要求18所述的装置,其特征在于,所述第一随机接入资源所位于的系统帧号F满足以下公式:
    对所述周期T取余,所述余数为所述偏移值M。
  20. 根据权利要求15所述的装置,其特征在于,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一随机接入资源的配置信息包括如下信息中的一种或多种:
    物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接 入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
  22. 一种装置,其特征在于,包括:
    接收单元,用于周期性地接收来自上级节点多个剩余最小系统信息RMSI,其中,部分所述RMSI中携带第一随机接入资源的配置信息,所述第一随机接入资源的配置信息用于接入所述上级节点,以及,至少部分所述RMSI中包括指示信息,所述指示信息用于指示所述第一随机接入资源的配置信息的时域位置;
    处理单元,基于所述指示信息,获取所述第一随机接入资源;以及,基于所述第一随机接入资源,向所述上级节点发起随机接入。
  23. 根据权利要求22所述的装置,其特征在于,所述指示信息为系统帧偏移值X,所述X表示为距离当前系统帧的第X个系统帧上携带所述第一随机接入资源的配置信息,所述X的取值大于等于1。
  24. 根据权利要求22所述的装置,其特征在于,所述指示信息为RMSI周期个数Y,所述Y表示经历Y个RMSI周期后,在第Y+1RMSI上存在所述第一随机接入资源的配置信息,所述Y的取值大于等于1。
  25. 根据权利要求22所述的装置,其特征在于,所述指示信息为所述第一随机接入资源的配置信息出现的周期T和偏移值M。
  26. 根据权利要求25所述的装置,其特征在于,所述第一随机接入资源的配置信息所在的系统帧号F满足以下公式:
    对所述周期T取余,所述余数为所述偏移值M。
  27. 根据权利要求22所述的装置,其特征在于,所述指示信息为RMSI周期的倍数N,所述N表示每N个RMSI上存在所述第一随机接入资源的配置信息,或者,每隔N-1个RMSI上存在所述第一随机接入资源的配置信息,所述N的取值大于等于1。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述第一随机接入资源的配置信息包括如下信息的一种或多种:
    物理随机接入信道PRACH配置索引,随机接入资源周期缩放参数,随机接入资源帧偏移量,随机接入资源时隙偏移量,消息1频分,零自相关区域配置,前导序列的最大传输次数,随机接入请求响应的窗口长度,可用的前导个数,一个同步信号块关联的随机接入机会RO的个数,关联的同步信号块的类型,发送消息1所使用的子载波间隔。
  29. 一种配置信息的方法,其特征在于,包括:
    得到多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,所述第一随机接入资源的配置信息用于下级节点的回传链路的随机接入;
    周期性地向所述下级节点发送所述多个RMSI;
    其中,所述调度信息包括如下信息中的一种或多种:
    第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示。
  30. 根据权利要求29所述的方法,其特征在于,所述第一随机接入资源的配置信息的频域位置为搜索空间的索引信息。
  31. 根据权利要求29或30所述的方法,其特征在于,当所述调度信息的类型取第一值,表征所述调度信息为其他系统信息OSI的调度信息;
    当所述调度信息的类型取第二值,表征所述调度信息为所述第一随机接入资源的调度信息。
  32. 根据权利要求29-31任一项所述的方法,其特征在于,当所述更新指示取第一值,指示所述下级节点不需要更新自身的随机接入资源;当所述更新指示取第二值,指示所述下级节点需要更新自身的随机接入资源。
  33. 一种配置信息的方法,其特征在于,包括:
    下级节点周期性地接收多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,所述第一随机接入资源的配置信息用于所述下级节点的回传链路的随机接入;其中,所述调度信息包括如下信息中的一种或多种:
    第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示;
    基于所述调度信息所指示的第一随机接入资源的配置信息,确定随机接入资源;
    基于所述确定的随机接入资源,接入上级节点。
  34. 根据权利要求33所述的方法,其特征在于,所述第一随机接入资源的配置信息的频域位置为搜索空间的索引信息。
  35. 根据权利要求33或34所述的方法,其特征在于,当所述调度信息的类型取第一值,表征所述调度信息为其他系统信息OSI的调度信息;
    当所述调度信息的类型取第二值,指示所述调度信息为所述第一随机接入资源的配置信息的调度信息。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,当所述更新指示取第一值,指示所述下级节点不需要更新自身的随机接入资源;当所述更新指示取第二值,指示所述下级节点需要更新自身的随机接入资源。
  37. 一种装置,其特征在于,包括:
    处理单元,用于得到多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,所述第一随机接入资源的配置信息用于下级节点的回传链路的随机接入;
    发送单元,用于周期性地向所述下级节点发送所述多个RMSI;
    其中,所述调度信息包括如下信息中的一种或多种:
    第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示。
  38. 一种装置,其特征在于,包括:
    接收单元,用于周期性地从上级节点接收多个剩余最小系统信息RMSI,其中,至少部分所述RMSI中携带调度信息,所述调度信息用于指示第一随机接入资源的配置信息的时频位置,所述第一随机接入资源的配置信息用于回传链路的随机接入;其中,所述调度信息包括如下信息中的一种或多种:
    第一随机接入资源的配置信息的周期、第一随机接入资源的配置信息的频域位置、调度信息的类型、更新指示;
    处理单元,用于基于所述调度信息所指示的第一随机接入资源的配置信息,确定随机接入资源;基于所述确定的随机接入资源,接入所述上级节点。
  39. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现如权利要求1-7任一项所述的方法,或者,使得所述计算机实现如权利要求8-13任一项所述的方法,或者,使得所述计算机实现如权利要求29-32任一项所述的方法,或者,使得所述计算机实现如权利要求33-36任一项所述的方法。
PCT/CN2020/075397 2019-03-29 2020-02-14 一种配置信息的方法与装置 WO2020199765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910252117.1A CN111757484B (zh) 2019-03-29 2019-03-29 一种配置信息的方法与装置
CN201910252117.1 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199765A1 true WO2020199765A1 (zh) 2020-10-08

Family

ID=72664436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075397 WO2020199765A1 (zh) 2019-03-29 2020-02-14 一种配置信息的方法与装置

Country Status (2)

Country Link
CN (1) CN111757484B (zh)
WO (1) WO2020199765A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650548A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质
WO2022233008A1 (zh) * 2021-05-06 2022-11-10 富士通株式会社 消息发送方法、装置和系统
CN114257282A (zh) * 2021-12-17 2022-03-29 锐捷网络股份有限公司 报文发送方法、装置、智能终端和存储介质
CN116963205A (zh) * 2022-04-20 2023-10-27 大唐移动通信设备有限公司 一种信息接收方法、信息发送方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131985A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for performing random access
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN109152084A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 消息的发送方法和装置
CN110167164A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 随机接入资源配置的方法和通信设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110583092B (zh) * 2017-05-05 2023-06-02 三星电子株式会社 管理无线通信系统中的随机接入信道配置的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131985A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for performing random access
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN109152084A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 消息的发送方法和装置
CN110167164A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 随机接入资源配置的方法和通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AT&T: "Summary of 7.2.3.1 Enhancements to support NR backhaul links;", 3GPP DRAFT; R1-1809857, 24 August 2018 (2018-08-24), Gothenburg, Sweden, pages 1 - 21, XP051517214 *
HUAWEI; HISILICON: "Initial access and uplink operations with SUL", 3GPP DRAFT; R1-1712165, 25 August 2017 (2017-08-25), Prague, Czech Republic, pages 1 - 6, XP051314984 *

Also Published As

Publication number Publication date
CN111757484B (zh) 2024-01-02
CN111757484A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2020199765A1 (zh) 一种配置信息的方法与装置
JP7340061B2 (ja) 反復のためのシグナリング
JP7044886B2 (ja) Msg3送信のための時間リソース割り当てシグナリングメカニズム
WO2020038331A1 (zh) 确定上行资源的方法与装置
AU2017305147A1 (en) Coordination of signaling and resource allocation in a wireless network using radio access technology
US20220416975A1 (en) Signal transmission method and device
CN110114999B (zh) 下行链路共享信道的时域资源分配
MX2015005626A (es) Metodo y aparato para recibir informacion de temporizacion desde una celda o red en un modo menos activo.
CN111972034B (zh) 允许后续数据用于提早数据传输
WO2020206582A1 (zh) 一种用于中继通信的方法和装置
US11997655B2 (en) Resource indication method and apparatus and communication system
US20190081769A1 (en) Resource determining method, related device, and system
EP4167647A1 (en) Method and apparatus for accessing cell
US20220174684A1 (en) Information transmission method and apparatus
EP3963998A1 (en) Scheduling information for transmission
WO2021027864A1 (zh) 用于小区测量的方法和装置
JP2023536913A (ja) 物理アップリンク共有チャネル上のMsg3送信およびMsgA送信のカバレッジ拡張
CN109005579A (zh) 一种功率控制的方法、装置以及计算机存储介质
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2020258051A1 (zh) 小区接入的方法和设备
WO2022213872A1 (zh) 通信方法和通信装置
WO2021082985A1 (zh) 接入网络设备的方法和装置
WO2020147087A1 (zh) 系统消息处理的方法和装置
WO2022147672A1 (en) Measurement enhancement for l1-rsrp
WO2021204169A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784807

Country of ref document: EP

Kind code of ref document: A1