WO2021082985A1 - 接入网络设备的方法和装置 - Google Patents

接入网络设备的方法和装置 Download PDF

Info

Publication number
WO2021082985A1
WO2021082985A1 PCT/CN2020/122208 CN2020122208W WO2021082985A1 WO 2021082985 A1 WO2021082985 A1 WO 2021082985A1 CN 2020122208 W CN2020122208 W CN 2020122208W WO 2021082985 A1 WO2021082985 A1 WO 2021082985A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
configuration information
parameter configuration
information
indicate
Prior art date
Application number
PCT/CN2020/122208
Other languages
English (en)
French (fr)
Inventor
杨水根
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20883182.6A priority Critical patent/EP4044654A4/en
Publication of WO2021082985A1 publication Critical patent/WO2021082985A1/zh
Priority to US17/732,083 priority patent/US20220264334A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for accessing network equipment.
  • a terminal wants to access network equipment, it needs to go through processes such as cell search, public land mobile network (PLMN) selection, cell selection, and random access to achieve access to the network equipment.
  • PLMN public land mobile network
  • the terminal access to the network device requires multiple information interactions to obtain various parameter configurations required for access to the network device. For example, the terminal needs to obtain the cells that the terminal can use during the cell search process, and obtain the time-frequency resources that the terminal can use during the random access process.
  • the terminal needs to perform a large amount of signaling interaction to obtain various parameter configurations required to access the network device, which makes the signaling overhead of the terminal relatively large.
  • the present application provides a method and device for accessing network equipment, which can reduce the signaling overhead of the terminal.
  • a method for accessing a network device includes: receiving parameter configuration information, the parameter configuration information being used to indicate the time-frequency resources required for the terminal to transmit data and the cell that the terminal can use to transmit the data ; Access network equipment through this parameter configuration information.
  • the terminal receives parameter configuration information, which is used to indicate the time-frequency resources required by the terminal to transmit data and the cell that the terminal can use to transmit the data, and then access the network device according to the parameter configuration information.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • the method before receiving the parameter configuration information, further includes: receiving minimized drive test MDT configuration information; performing MDT measurement according to the MDT configuration information to obtain a measurement result, the measurement result including the terminal's Area information; send the measurement result.
  • the terminal receives the MDT configuration information, and performs MDT measurement according to the MDT configuration information to obtain a measurement result, and the measurement result may include the area information of the terminal.
  • the terminal sends the measurement result to the OAI network element, so that the OAI network element can determine parameter configuration information for the terminal based on the area information, thereby determining more appropriate parameter configuration information, saving signaling overhead, and improving communication efficiency or communication. quality.
  • the method before the receiving the parameter configuration information, further includes: sending trigger information, where the trigger information is used to trigger the operation assistance information OAI network element to send the parameter configuration information.
  • the terminal may send the trigger information to the OAI network element, and the OAI network element may configure parameter configuration information for the terminal after receiving the trigger information. This prevents the OAI network element from configuring the parameter configuration information for the terminal when the terminal does not need the parameter configuration information, which saves resource overhead.
  • the area information is used to indicate the location of the terminal.
  • This area information can be used to indicate the specific location of the terminal, that is, the OAI network element can configure different parameter configuration information for the terminal according to the location of the terminal, so that the OAI network element can determine more appropriate parameter configuration information and save signaling At the same time of overhead, communication efficiency or communication quality is improved.
  • the area information is used to indicate the historical movement track or the expected movement track of the terminal.
  • the area information is used to indicate the historical movement track or expected movement track of the terminal, so that the OAI network element can further determine more appropriate parameter configuration information, which saves signaling overhead and improves communication efficiency or communication quality.
  • a method for accessing network equipment includes: determining parameter configuration information, the parameter configuration information being used to indicate the time-frequency resource required for the terminal to transmit data and the cell that the terminal can use to transmit the data ; Send the parameter configuration information.
  • the OAI network element determines parameter configuration information, which is used to indicate the time-frequency resources required by the terminal to transmit data and the cells that the terminal can use to transmit the data, and send the parameter configuration information to the terminal.
  • the terminal accesses the network device according to the parameter configuration information. In other words, the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • the method further includes: receiving a measurement result from the access network device, the measurement result including area information of the terminal; wherein the determining parameter configuration information includes: determining the area information of the terminal according to the area information of the terminal. Parameter configuration information.
  • the OAI network element receives the measurement result including the area information of the terminal from the access network device, and determines the parameter configuration information for the terminal according to the area information, thereby determining more appropriate parameter configuration information, saving signaling overhead and improving Communication efficiency or communication quality.
  • the method further includes: receiving area information of the terminal from the access and mobility management function AMF network element; wherein the determining parameter configuration information includes: determining the parameter according to the area information of the terminal Configuration information.
  • the OAI network element can receive the area information of the terminal from the AMF network element, and determine the parameter configuration information for the terminal according to the area information, thereby determining more suitable parameter configuration information, saving signaling overhead, and improving communication efficiency or communication. quality.
  • the area information is used to indicate the location of the terminal.
  • This area information can be used to indicate the specific location of the terminal, that is, the OAI network element can configure different parameter configuration information for the terminal according to the location of the terminal, so that the OAI network element can determine more appropriate parameter configuration information and save signaling At the same time of overhead, communication efficiency or communication quality is improved.
  • the area information is used to indicate the historical movement track or the expected movement track of the terminal.
  • the area information is used to indicate the historical movement track or expected movement track of the terminal, so that the OAI network element can further determine more appropriate parameter configuration information, which saves signaling overhead and improves communication efficiency or communication quality.
  • a method for accessing network equipment includes: receiving parameter configuration information, where the parameter configuration information is used to indicate the time-frequency resource required for the terminal to transmit data and the cell that the terminal can use to transmit the data. ; Send the parameter configuration information to the terminal.
  • the access network device receives parameter configuration information from the OAI network element, the parameter configuration information is used to indicate the time-frequency resources required for the terminal to transmit data, and the cell that the terminal can use to transmit the data, and send the parameter configuration information to the terminal .
  • the terminal accesses the network device according to the parameter configuration information. In other words, the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • the method before receiving the parameter configuration information, further includes: obtaining the minimum drive test MDT configuration information; sending the minimum drive test MDT configuration information to the terminal; receiving the measurement result from the terminal, The measurement result is measured by the terminal according to the MDT configuration information, and the measurement result includes the area information of the terminal; the measurement result is sent to the OAI network element.
  • the access network device obtains the MDT configuration information and sends the MDT configuration information to the terminal, so that the terminal performs MDT measurement according to the MDT configuration information to obtain a measurement result, and the measurement result may include area information of the terminal.
  • the terminal sends the measurement result to the OAI network element, so that the OAI network element can determine parameter configuration information for the terminal based on the area information, thereby determining more appropriate parameter configuration information, saving signaling overhead, and improving communication efficiency or communication. quality.
  • the obtaining the MDT configuration information for minimizing drive test includes: receiving the MDT configuration information from the operation management and maintenance OAM network element; or receiving the MDT configuration information from the access and mobility management function AMF network element .
  • the access network device can obtain the MDT configuration information from the AMF network element, and can obtain the MDT configuration information from the OAM network element, thereby improving the application flexibility of the embodiments of the present application.
  • the area information is used to indicate the location of the terminal.
  • This area information can be used to indicate the specific location of the terminal, that is, the OAI network element can configure different parameter configuration information for the terminal according to the location of the terminal, so that the OAI network element can determine more appropriate parameter configuration information and save signaling At the same time of overhead, communication efficiency or communication quality is improved.
  • the area information is used to indicate the historical movement track or the expected movement track of the terminal.
  • the area information is used to indicate the historical movement track or expected movement track of the terminal, so that the OAI network element can further determine more appropriate parameter configuration information, which saves signaling overhead and improves communication efficiency or communication quality.
  • a device for accessing network equipment may be a terminal or a chip for the terminal, such as a chip that can be set in the terminal.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module.
  • the ground may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or from other instructions, so that the device executes the above-mentioned first aspect and various possible implementation methods.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the foregoing and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above The first aspect, as well as any possible implementation of the method of program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for accessing network equipment may be an OAI network element or a chip in the OAI network element.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module.
  • the ground may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the above-mentioned second aspect and various possible implementation methods.
  • the transceiver module when the device is a chip, the processing module and the transceiver module, the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the second aspect and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for accessing a network device may be a network device or a chip for the network device, such as a chip that can be set in the network device.
  • the device has the function of realizing the above-mentioned third aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module.
  • the device may also include a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module, and specifically may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the third aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the third aspect and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the method of the third aspect is an integrated circuit for program execution.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the third aspect and any possible implementations thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the third aspect described above, or any possible implementation manner thereof.
  • a communication system in a thirteenth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned method and various possible designs of implementing the above-mentioned second aspect. At least two of the above-mentioned devices with functions of the above-mentioned third aspect and the above-mentioned devices with various possible design functions.
  • a processor configured to be coupled with a memory and configured to execute the method in the above-mentioned first aspect or any possible implementation manner thereof.
  • a processor configured to be coupled with a memory and configured to execute the method in the above-mentioned second aspect or any possible implementation manner thereof.
  • a processor is provided, which is configured to be coupled with a memory and used to execute the method in the third aspect or any possible implementation manners thereof.
  • a chip in a seventeenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement the first aspect or any of its possible implementations. Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the first aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the terminal.
  • a chip in an eighteenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement any or any of the above-mentioned second aspects. The method in the implementation.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the second aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the OAI network element.
  • a chip in a nineteenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement any or any of the above-mentioned third aspects. The method in the implementation.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the third aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the network device.
  • the terminal receives parameter configuration information, which is used to indicate the time-frequency resources required for the terminal to transmit data, and the cell that the terminal can use to transmit the data, and then access the network according to the parameter configuration information equipment.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data through one parameter configuration information, instead of configuring different configuration information multiple times to obtain the time-frequency resources and time-frequency resources required for data transmission.
  • the parameter configuration information in the embodiment of the present application can be carried in one signaling, thereby saving signaling overhead.
  • Figure 1 is a schematic diagram of the structure of a communication system of the present application.
  • Figure 2 is a schematic diagram of the architecture of a separate base station in a communication system
  • FIG. 3 is a schematic flowchart of a method for accessing a network device according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for accessing a network device according to another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for accessing network equipment according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5th generation
  • NR new radio
  • the terminal in the embodiments of the present application may refer to a device with a wireless transceiver function, which may be called a terminal (terminal), user equipment (UE), mobile station (MS), and mobile terminal (mobile terminal). MT), vehicle-mounted terminal, remote station, remote terminal, etc.
  • the specific form of the terminal can be mobile phone (mobile phone), cellular phone, cordless phone, session initiation protocol (SIP) phone, wearable device tablet computer (pad), desktop computer, notebook computer, all-in-one machine, vehicle terminal , Wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearables Equipment, terminals in the future 5G network or terminals in the future evolved PLMN, etc.
  • mobile phone mobile phone
  • cellular phone cordless phone
  • SIP session initiation protocol
  • PDA personal digital assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearables Equipment
  • terminals in the future 5G network or terminals in the future evolved PLMN etc.
  • the terminal can be applied to the following scenarios: virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical surgery, Smart grid, transportation safety, smart city, smart home, etc.
  • the terminal can be fixed or mobile.
  • the terminal may support at least one wireless communication technology, such as LTE, NR, and wideband code division multiple access (WCDMA).
  • the network device in the embodiment of the present application may be a device that provides a wireless communication function for a terminal, and may also be referred to as a radio access network (RAN) device.
  • Network equipment includes but is not limited to: next generation node B (gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (BBU), transmitting and receiving point, TRP), transmitting point (TP), relay station, access point, etc.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, etc.
  • the network device may also be responsible for functions such as radio resource management, quality of service (QoS), data compression, and encryption on the air interface side.
  • the network device may support at least one wireless communication technology, such as LTE, NR, and so on.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU and AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal or a network device, or a functional module in the terminal or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • network devices and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of wireless access network equipment and terminals.
  • the core network equipment may be an access and mobility management function (AMF), which is responsible for functions such as access control, mobility management (MM), attachment and detachment, and gateway selection.
  • AMF access and mobility management function
  • MM mobility management
  • attachment and detachment and gateway selection.
  • gateway selection The core network equipment involved in the embodiments of the present application is not limited to AMF.
  • FIG. 1 is a schematic diagram of a communication system architecture.
  • the communication system includes core network equipment 101, base stations (base station 102 and base station 103 shown in FIG. 1), and terminals (terminal 104, terminal 105, and terminal 106 shown in FIG. 1).
  • the base station can be connected to at least one terminal.
  • the base station 102 is connected to the terminal 104 and the terminal 105
  • the base station 103 is connected to the terminal 106.
  • the base station may be connected to at least one core network device, for example, the base station 102 and the base station 103 are connected to the core network device 101 respectively.
  • the core network device 101 There are communication interfaces between the core network device 101 and the base station 102 and the base station 103 respectively, so that the core network device 101 can communicate with the base station 102 and the base station 103 respectively.
  • the communication interface is called N2 interface or NG interface in this application.
  • the two can communicate directly.
  • the direct communication means that the two base stations may not need to communicate through core network equipment or other equipment.
  • the communication interface between the base station 102 and the base station 103 may be called an Xn interface.
  • the two base stations without a communication interface can communicate through core network equipment.
  • FIG. 2 shows a schematic diagram of the architecture of a base station with CU-DU separation in a 5G communication system.
  • the 5G communication system includes a next generation core network (next generation core, 5GC) and a next generation radio access network (NG-RAN) node connected to the 5GC.
  • the NG-RAN node may be a gNB or a next generation-evolved NodeB (ng-eNB).
  • gNB provides the user plane function and control plane function of NR for the terminal
  • ng-eNB provides the user plane function and control plane function of evolved universal terrestrial radio access (E-UTRA) for the terminal.
  • E-UTRA evolved universal terrestrial radio access
  • gNB and ng-eNB are only a kind of names used to indicate base stations that support 5G network systems, and do not have a restrictive meaning.
  • the NG-RAN node can be connected to the 5GC through the NG-C (next generation control) interface and the NG-U (next generation user) interface.
  • NG-C next generation control
  • NG-U next generation user
  • connection between gNB and gNB, between gNB and ng-eNB, or between ng-eNB and ng-eNB may be connected through an Xn interface.
  • One gNB or ng-eNB may include one CU and one or more DUs.
  • one gNB or ng-eNB as shown in FIG. 2 includes one CU and two DUs.
  • a CU may include a centralized unit control plane (CU-control plane function, CU-CP) and one or more centralized unit user planes (CU-user plane function, CU-UP).
  • CU-control plane function CU-control plane function
  • CU-UP centralized unit user planes
  • the CU and DU can be connected through the F1 interface
  • the CU-CP and CU-UP can be connected through the E1 interface
  • the CU-CP and DU can be connected through the F1 control plane interface (F1-C) Connection
  • CU-UP and DU can be connected through the F1 user plane interface (F1-U).
  • the solid line represents control plane transmission
  • the dashed line represents user plane transmission.
  • the function division of CU and DU can be divided according to the protocol stack. Among them, one possible way is to deploy radio resource control (Radio Resource Control, RRC), Packet Data Convergence Protocol (PDCP) layer and Service Data Adaptation Protocol (SDAP) layer in the CU.
  • Radio link layer control protocol radio link control, RLC
  • media access control media access control
  • MAC physical layer
  • PHY physical layer
  • the CU has the processing capabilities of RRC, PDCP and SDAP.
  • DU has RLC, MAC, and PHY processing capabilities.
  • the CU includes the processing capabilities of RRC, PDCP, RLC, and SDAP, and the DU has the processing capabilities of MAC and PHY.
  • the CU includes the processing capabilities of RRC, PDCP, RLC, SDAP, and part of the MAC (for example, adding a MAC packet header), and the DU has the processing capability of PHY and part of the MAC (for example, scheduling).
  • the CU-CP has the control plane functions of the CU, for example, the processing capabilities of RRC and the control plane processing capabilities in PDCP.
  • CU-UP has the user plane functions of the CU, for example, the processing capabilities of SDAP and the user plane processing capabilities of PDCP. That is to say, the steps performed by the access network device involved in each embodiment of the present application may be performed by the base station, CU, CU-CP or CU-UP, which is not limited in the present application.
  • the terminal After the terminal is turned on, the initial state cannot learn the downlink configuration of the cell. At this time, the terminal obtains the settings of the network equipment through the synchronization signal, thereby obtaining frequency and symbol synchronization with the cell, obtaining the starting position of the downlink frame, and determining the physical cell identity of the cell. In order to support mobility, the terminal will constantly search for neighboring cells, obtain synchronization, and estimate the signal reception quality of the cell, thereby deciding whether to switch or reselect the cell. Specifically, the terminal obtains the reference time through the synchronization signal sent by the network equipment, obtains the frame synchronization and the physical layer cell group through the auxiliary synchronization signal sent by the network equipment, and obtains the physical cell identity through the downlink reference signal sent by the network equipment. The obtained frame synchronization and physical cell identification can be used to read system information on the broadcast channel to obtain other cell information.
  • the terminal Before the terminal accesses the network equipment, it is necessary to select a suitable PLMN and select a suitable cell. Specifically, the terminal scans all frequency bands in the frequency bands it can support, and on each carrier, the terminal searches for the cell with the strongest signal and reads system messages to find the PLMN to which the cell belongs. The terminal can use the relevant PLMN selection information stored on the universal subscriber identity module (USIM) card to try to register in the PLMN.
  • USIM universal subscriber identity module
  • the terminal completes downlink synchronization and decodes necessary system messages.
  • the terminal must reside in the cell or surrounding cells. This process is implemented through the cell selection process, and the terminal strives to find the cell with the best signal quality.
  • the terminal measures the reference signal receiving power (RSRP) of the wireless channel, calculates the measured cell reception level value for each cell, and then obtains other cell parameters and the relevant cell minimum level from the system message It is required to calculate the cell selection reception level value for each cell. If the cell selection receiving level value is greater than 0, the cell is regarded as a candidate cell, and the cell with the largest positive value is selected as the camping cell. After camping on the cell, the terminal starts a random access procedure.
  • RSRP reference signal receiving power
  • the terminal After the cell selection process, the terminal has achieved downlink synchronization with the cell. Therefore, the terminal can receive the downlink data, but the terminal can only perform uplink transmission if it obtains uplink synchronization with the cell. Specifically, the terminal can establish a connection with the cell and obtain uplink synchronization through a random access procedure (random access procedure). Random access can be either a four-step random access type or a two-step random access type.
  • the four-step random access process includes: the terminal sends a message 1 (message 1, msg 1) to the network device, and the message 1 is also a random access preamble.
  • the network device After detecting the random access preamble, the network device returns a response message, that is, message 2 (message 2), to the UE.
  • message 2 contains the uplink resources allocated by the network equipment for the UE.
  • the UE After receiving the message 2, the UE sends the message 3 on the uplink resource indicated by the message 2. If the network device can correctly decode message 3 (message 3), it returns message 4 (message 4) to the UE, and message 4 is used to notify the UE that the competition is successful. After the above 4 steps, the random access procedure is successful.
  • the two-step random access process includes: the terminal carries the random access preamble and data (that is, preamble and data) in the message A at the same time.
  • the data part is used for contention resolution, such as RRC messages. If there is no conflict between the terminals, the network device successfully decodes message 1 and returns message B to the terminal.
  • Message B includes both the response to the random access preamble and the response to the data.
  • the response to the random access preamble is also a random access response (RAR).
  • RAR random access response
  • the response to data is usually an RRC message.
  • the two responses can be sent at the same time or one after the other.
  • the terminal can decode the two parts of the response independently. After receiving the message 2, the terminal learns that the random access is successful.
  • the network device may not be able to successfully decode the data in message A, and the network device does not send message 2 to the terminal at this time. After sending message 1, the terminal waits for a time window. If message 2 is not received, it is considered that random access has failed.
  • a terminal that wants to access network equipment needs to go through processes such as cell search, PLMN selection, cell selection, and random access to achieve access to the network equipment. That is to say, the terminal needs to perform a large amount of signaling interaction to obtain various parameter configurations required to access the network device, which makes the signaling overhead of the terminal relatively large.
  • Fig. 3 shows a schematic flowchart of a method for accessing a network device according to an embodiment of the present application.
  • the operation assistance information (OAI) network element in the embodiment of this application may be an independent network element, a module in a core network network element, or an access network device. Module.
  • OAI operation assistance information
  • the embodiment shown in FIG. 3 takes the OAI as an independent network element as an example for description, but the application is not limited to this.
  • the OAI network element determines parameter configuration information, where the parameter configuration information is used to indicate the time-frequency resources required by the terminal to transmit data and the cells that the terminal can use to transmit the data.
  • the OAI network element may determine parameter configuration information, and the parameter configuration information may be used to indicate the time-frequency resources required by the terminal to transmit data and the cells that the terminal can use to transmit the data.
  • the parameter configuration information may also include time-frequency resources required by the terminal to receive data and a cell that the terminal can use to receive the data.
  • the cell that the terminal can use to transmit or receive data includes a cell global identifier (CGI).
  • CGI cell global identifier
  • the cell that the terminal can use to transmit or receive data may also include a PLMN identity.
  • the parameter configuration information may also include at least one of the following: the power required for the terminal to transmit data, the number of terminals that the cell that the terminal can use to transmit data can support, and the timing advance required for the terminal to transmit data (timing advance).
  • parameter configuration information may also include other parameters used to access network equipment, which is not limited in this application.
  • the OAI network element may receive the area information of the terminal from the AMF network element, so that the OAI network element can determine the parameter configuration information according to the area information.
  • the OAI network element may obtain the area information of the terminal from the AMF network element, and then configure parameter configuration information for the terminal according to the area information.
  • OAI network elements can configure different parameter configuration information for terminals in different regions.
  • the AMF network element may also actively send the area information to the OAI network element.
  • the AMF network element can send the area information to the OAI network element when it receives the registration request of the terminal.
  • the terminal may send a registration request to the AMF network element in the case of initial registration, mobility registration update, periodic registration update, or emergency registration.
  • the AMF network element Upon receiving the registration request, the AMF network element sends area information to the OAI network element, so that the OAI network element can configure parameter configuration information for the terminal according to the area information.
  • the OAI network element may receive a measurement result from the access network device, and the measurement result includes the area information of the terminal.
  • the access network device obtains minimization of drive tests (MDT) configuration information, and sends the MDT configuration information to the terminal.
  • the terminal receives the MDT configuration information, and performs MDT measurement according to the MDT configuration information to obtain a measurement result, and the measurement result may include the area information of the terminal.
  • the terminal sends the measurement result to the OAI network element, so that the OAI network element can determine parameter configuration information for the terminal according to the area information.
  • the terminal can perform MDT measurement and report the measurement result in two ways.
  • One way is for the terminal to record the MDT configuration information and perform MDT measurement when the terminal is in the RRC idle state or inactive state.
  • the terminal stores the measurement result, and sends the measurement result to the OAI network element when the terminal is in the RRC connected state.
  • Another way is for the terminal to perform MDT measurement immediately, that is, the terminal can perform MDT measurement when it is in the RRC connected state.
  • the terminal sends the measurement result to the OAI network element.
  • reporting condition may be pre-configured.
  • the measurement result may also include the carrier frequency of the serving cell, the physical cell identifier (PCI) of the serving cell, the RSRP of the serving cell, and the reference signal receiving quality (RSRQ) of the serving cell.
  • CQI channel quality indicator
  • SNR Signal noise ratio
  • the carrier frequency may refer to an absolute radio frequency channel number (ARFCN).
  • ARFCN absolute radio frequency channel number
  • the time stamp can be used to indicate the time when the MDT measurement is performed, and the time can be an absolute time or a relative time.
  • the absolute time is the specific time when the MDT measurement is performed.
  • the relative time is relative to the time when the terminal receives the MDT configuration information when the terminal performs MDT measurement. For example, the time of the MDT configuration information received by the terminal is 2019-07-22 12:00:00, and the time of MDT measurement is 2019-07-22 13:23:45, then the absolute time is 2019-07-22 13:23:45, the relative time can be 01:23:45.
  • the wireless access technology used by the terminal can be NR, E-UTRA, WLAN, Bluetooth, dual link or other wireless access technology, which is not limited in this application.
  • CQI is used to indicate the quality of the channel.
  • the quality of the channel is quantized as 0-15. The larger the value, the higher the modulation and coding method used, the greater the efficiency, and the higher the downlink peak throughput provided. Correspondingly, the better the channel quality.
  • SNR is used to measure the influence of noise on the signal. The larger the value, the smaller the noise in the signal and the higher the quality.
  • the band information is used to indicate the band that the terminal can detect.
  • the power amplifier information is used to indicate the ability of the terminal to convert a low-power radio frequency signal into a higher-power signal.
  • the number of failed call attempts which is used to indicate the number of times that the terminal initiated a call attempt in a cell, but the call failed.
  • the call drop rate is used to indicate the probability of a communication interruption of the terminal in a cell.
  • the probability of handover failure is used to indicate the probability of a terminal handover failure.
  • the radio link failure is used to indicate the CGI, PCI, carrier frequency, etc. of the cell where the terminal has a radio link failure.
  • the random access information is used to indicate the random access failure information of the terminal in the random access process in a cell.
  • the random access information includes information on the number of times the terminal sends a preamble during the random access process in the cell and whether the terminal detects contention.
  • the information of the number of times that the terminal has sent the preamble is used to indicate the number of times that the terminal has sent the preamble when it successfully completes the random access procedure last time. For example, if the terminal has not successfully completed the random access process for the first 9 times, and successfully completed the random access process for the 10th time, the number of times the UE sends the preamble is 10.
  • the information about whether the terminal has detected contention is used to indicate whether the UE has detected contention for at least one preamble in the sent preamble.
  • Uplink throughput or downlink throughput is used to indicate the amount of data (measured in bits, bytes, packets, etc.) that the terminal successfully transmits in a unit time in a cell.
  • Delay, jitter, and packet loss rate are used to indicate the data packet transmission delay, jitter, and packet loss rate of the terminal in a cell.
  • Application information is used to indicate the applications acquired by the terminal in a cell.
  • the information included in the measurement result may be information for a cell, or information for a synchronization signal and a physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB).
  • the SSB consists of a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH). It occupies 4 symbols in the time domain and occupies the frequency domain. 240 sub-carriers.
  • the cell corresponding to the SSB can use different beams to send the SSB, and the SSBs sent on multiple beams are called an SSB set (SS-Burst).
  • the SSB sent on each beam is uniquely identified by the SSB index (SSB index), that is, within an SSB set, the SSB sent on each beam has a unique SSB index.
  • SSB index SSB index
  • multiple SSBs can be transmitted, and each SSB corresponds to one PCI, and the PCIs corresponding to these SSBs can be the same or different.
  • the terminal can obtain PCI and uplink synchronization through the PSS, and the terminal can obtain the cyclic prefix (CP) length, physical cell group identifier (ID), and frame synchronization through the SSS.
  • the terminal can obtain the master information block by decoding the PBCH.
  • MIB MIB includes the number of common antenna ports, system frame number (SFN), downlink system bandwidth, and physical hybrid automatic repeat indication information (physical hybrid automatic repeat request indicator channel, PHICH) configuration information.
  • SFN system frame number
  • PHICH physical hybrid automatic repeat indication information
  • SSB SSB
  • NGI NR cell global identifier
  • this SSB is called a cell defining SSB (cell defining SSB, CD-SSB).
  • CD-SSB Only the CD-SSB can send MIB messages and system information block 1 (system information block 1, SIB1) messages, and the terminal only accesses based on the synchronization signal of the CD-SSB when making cell selection.
  • SIB1 system information block
  • the type of SSB is not limited in the embodiments of the present application.
  • the above-mentioned CD-SSB and non-CD-SSB may also be other types of SSB.
  • the OAI network element determines parameter configuration information, which is used to indicate the time-frequency resource required by the terminal to transmit data and the SSB that the terminal can use to transmit the data.
  • the parameter configuration information may also be used to indicate the time-frequency resource required by the terminal to receive the data and the SSB that the terminal can use to receive the data.
  • the SSB that the terminal can use to transmit or receive the data includes the SSB index of the SSB.
  • the MDT configuration information may be used to indicate at least one of the measurement duration, the measurement range, and the measurement report interval of the terminal.
  • the measurement range may be CGI or tracking area code (tracking area code, TAC).
  • the MDT configuration information acquired by the access network device may specifically be received from an operation, administration and maintenance (OAM) network element, or may be received from an AMF network element.
  • OAM operation, administration and maintenance
  • the terminal may send trigger information, where the trigger information is used to trigger the OAI network element to send the parameter configuration information.
  • the terminal may send the trigger information to the OAI network element, and the OAI network element may configure parameter configuration information for the terminal after receiving the trigger information. This prevents the OAI network element from configuring the parameter configuration information for the terminal when the terminal does not need the parameter configuration information, which saves resource overhead.
  • the trigger information may also be capability information.
  • the capability information includes auxiliary data used to generate the parameter configuration information.
  • the area information is used to indicate the location of the terminal.
  • the area information can be used to indicate the specific location of the terminal, that is, the OAI network element can configure different parameter configuration information for the terminal according to the location where the terminal is located.
  • the area information may include global navigation satellite system (global navigation satellite system, GNSS) location information, tracking area identification, CGI, or node ID of a network device, etc.
  • GNSS global navigation satellite system
  • the area information may be used to indicate the historical movement trajectory or the expected movement trajectory of the terminal.
  • the OAI network element can predict the location of the terminal based on the terminal's historical movement trajectory or expected movement trajectory, and then determine the parameter configuration information.
  • the expected movement trajectory of the terminal determines the parameter configuration information, and the parameter configuration information can also be determined according to the current location of the terminal, the historical movement trajectory of the terminal, and the expected movement trajectory of the terminal.
  • the area information may also be used to indicate at least one of the terminal's wireless capabilities, service quality requirements, and access control information.
  • the wireless capability of the terminal refers to the type of wireless access technology supported by the terminal, for example, NR, E-UTRA, dual link, and so on.
  • the service quality requirement is used to indicate the service quality required by the terminal, for example, 5 quality index (5quality index, 5QI), stream bit rate.
  • the access control information of the terminal is used to indicate which cells or network slices the terminal supports to access network equipment.
  • the OAI network element sends the parameter configuration information to the network device.
  • the access network device receives the parameter configuration information from the OAI network element.
  • the OAI network element may directly send parameter configuration information to the access network device.
  • the OAI network element may first send the parameter configuration information to the AMF, and then the AMF forwards the parameter configuration information to the access network device.
  • the parameter configuration information can be sent by being carried in a message. That is to say, compared with the traditional solution, the network device needs to configure the content of the parameter configuration information through multiple signaling transmissions, and step 302 configures the content of the parameter configuration information through one message, that is, only one signaling transmission is required. .
  • the network device shown in FIG. 3 can be an access network device, or an AMF network element and an access network device.
  • the network device sends the parameter configuration information to the terminal.
  • the terminal receives the parameter configuration information from the access network device.
  • the network device sending the parameter configuration information to the terminal includes: the network device is an access network device, and the access network device directly sends the parameter configuration information to the terminal, for example, the parameter configuration information carries In the system information.
  • the network device sending the parameter configuration information to the terminal includes: after the AMF network element receives the parameter configuration information, it can directly forward the parameter configuration information to the terminal, for example, the parameter configuration information carries In the NAS message.
  • the terminal accesses the network device through the parameter configuration information.
  • the terminal receives parameter configuration information, which is used to indicate the time-frequency resources required by the terminal to transmit data and the cells that the terminal can use to transmit the data, and then access the network device according to the parameter configuration information.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for data transmission at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the data transmission can be used. This saves signaling overhead.
  • Fig. 4 shows a schematic flowchart of a method for accessing a network device according to another embodiment of the present application.
  • An access network device determines parameter configuration information, where the parameter configuration information is used to indicate time-frequency resources required by the terminal to transmit data and a cell used by the terminal.
  • the OAI network element may be an access network device. That is, the execution subject of step 401 may be an access network device, or specifically a module in the access network device.
  • step 401 may specifically be that the access network device receives the area information of the terminal from the AMF, and determines the parameter configuration information according to the area information.
  • the AMF may actively send the area information to the access network device.
  • the AMF may also send the area information to the access network device after receiving the registration request sent by the terminal.
  • the access network device sends the parameter configuration information to the terminal.
  • the terminal accesses the network device according to the parameter configuration information.
  • the terminal receives parameter configuration information from the access network device, and the parameter configuration information is used to indicate the time-frequency resources required by the terminal to transmit data, and the cell that the terminal can use to transmit the data, and then configure the information according to the parameter.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for data transmission at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the data transmission can be used. This saves signaling overhead.
  • the methods and operations implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal, and the methods and operations implemented by the access network device can also be implemented by The components (such as chips or circuits) that can be used for access network equipment are implemented, and the methods and operations implemented by OAI network elements can also be implemented by components (such as chips or circuits) that can be used for OAI network elements.
  • each network element such as a terminal or an access network device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide functional modules of terminals, access network equipment, and OAI network elements according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated in In a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of an apparatus 500 for accessing a network device according to an embodiment of the present application.
  • the apparatus 500 may correspond to the terminal in the embodiment shown in FIG. 3 or FIG. 4, and may have any function of the terminal in the method.
  • the device 500 includes a transceiver module 510 and a processing module 520.
  • the transceiver module 510 is configured to receive parameter configuration information, where the parameter configuration information is used to indicate the time-frequency resource required by the terminal to transmit data and the cell that the terminal can use to transmit the data;
  • the processing module 520 is configured to access the network device through the parameter configuration information.
  • the transceiver module 510 is further configured to receive MDT configuration information for minimizing drive test; the processing module is also configured to perform MDT measurement according to the MDT configuration information to obtain a measurement result, the measurement result including area information of the terminal ; The transceiver module is also used to send the measurement result.
  • the transceiver module 510 is further configured to send trigger information, and the trigger information is used to trigger the operation assistance information OAI network element to send the parameter configuration information.
  • the area information is used to indicate the location of the terminal.
  • the area information is used to indicate a historical movement track or an expected movement track of the terminal.
  • the apparatus for accessing network equipment in the embodiment of the present application receives parameter configuration information, which is used to indicate the time-frequency resources required for the terminal to transmit data and the cell that the terminal can use to transmit the data, and then According to the parameter configuration information, it is connected to the network device.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • FIG. 6 shows an apparatus 600 for accessing network equipment provided by an embodiment of the present application.
  • the apparatus 600 may be the terminal described in FIG. 3 or FIG. 4.
  • the device can adopt the hardware architecture shown in FIG. 6.
  • the device may include a processor 610 and a transceiver 620.
  • the device may also include a memory 630, and the processor 610, the transceiver 620, and the memory 630 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 520 in FIG. 5 may be implemented by the processor 610, and the related functions implemented by the transceiver module 510 may be implemented by the processor 610 controlling the transceiver 620.
  • the processor 610 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of this application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices that access network equipment (such as base stations, terminals, or chips, etc.), execute software programs, and process software programs. data.
  • the processor 610 may include one or more processors, such as one or more central processing units (central processing unit, CPU).
  • processors such as one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 620 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 630 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • a compact disc read-only memory, CD-ROM
  • the memory 630 is used to store related instructions and data.
  • the memory 630 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 610.
  • the processor 610 is configured to control the transceiver and the access network device, or to perform information transmission with the OAI network element.
  • the processor 610 is configured to control the transceiver and the access network device, or to perform information transmission with the OAI network element.
  • the apparatus 600 may further include an output device and an input device.
  • the output device communicates with the processor 610 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 6 only shows a simplified design of an apparatus for accessing network equipment.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 600 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 610 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 7 shows a schematic block diagram of an apparatus 700 for accessing a network device according to an embodiment of the present application.
  • the apparatus 700 may correspond to the OAI network element in the embodiment shown in FIG. 3, or the access network device shown in FIG. 4, and may have any function of the OAI network element in the method.
  • the device 700 includes a processing module 710 and a transceiver module 720.
  • the processing module 710 is configured to determine parameter configuration information, where the parameter configuration information is used to indicate the time-frequency resources required by the terminal to transmit data and the cell that the terminal can use to transmit the data;
  • the transceiver module 720 is used to send the parameter configuration information.
  • the transceiver module 720 is further configured to receive a measurement result from the access network device, the measurement result including the area information of the terminal; wherein, the processing module 710 is specifically configured to: determine the area information of the terminal Parameter configuration information.
  • the transceiver module 720 is further configured to receive the area information of the terminal from the access and mobility management function AMF network element; wherein, the processing module 710 is specifically configured to: determine the parameter according to the area information of the terminal Configuration information.
  • the area information is used to indicate the location of the terminal.
  • the area information is used to indicate a historical movement track or an expected movement track of the terminal.
  • the apparatus for accessing network equipment in the embodiment of the present application determines parameter configuration information, which is used to indicate the time-frequency resources required by the terminal to transmit data and the cell that the terminal can use to transmit the data, and Send the parameter configuration information to the terminal.
  • the terminal accesses the network device according to the parameter configuration information.
  • the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • Fig. 8 shows an apparatus 800 for accessing network equipment provided by an embodiment of the present application.
  • the apparatus 800 may be the OAI network element described in Fig. 3 or the access network equipment shown in Fig. 4.
  • the device can adopt the hardware architecture shown in FIG. 8.
  • the device may include a processor 810 and a transceiver 820.
  • the device may also include a memory 830.
  • the processor 810, the transceiver 820, and the memory 830 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 710 in FIG. 7 may be implemented by the processor 810, and the related functions implemented by the transceiver module 720 may be implemented by the processor 810 controlling the transceiver 820.
  • the processor 810 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of this application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices that access network equipment (such as base stations, terminals, or chips, etc.), execute software programs, and process software programs. data.
  • the processor 810 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the processor may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 820 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 830 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • CD-ROM compact disc
  • the memory 830 is used to store program codes and data of the OAI network element, and may be a separate device or integrated in the processor 810.
  • the processor 810 is configured to control the transceiver and the terminal, or perform information transmission with the access network device. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • the apparatus 800 may further include an output device and an input device.
  • the output device communicates with the processor 810 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 8 only shows a simplified design of an apparatus for accessing network equipment.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all OAI network elements that can implement this application are included in this application. Within the scope of protection.
  • the device 800 may be a chip, for example, a communication chip that can be used in an OAI network element to implement related functions of the processor 810 in the OAI network element.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be an OAI network element or a circuit.
  • the device can be used to perform the actions performed by the OAI network element in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of an apparatus 900 for accessing a network device according to an embodiment of the present application.
  • the apparatus 900 may correspond to the network device in the embodiment shown in FIG. 3, and may have any function of the network device in the method.
  • the device 900 includes a transceiver module 910.
  • the device 900 may further include a processing module 920.
  • the transceiver module 910 is configured to receive parameter configuration information, where the parameter configuration information is used to indicate the time-frequency resources required by the terminal to transmit data and the cells that the terminal can use to transmit the data;
  • the transceiver module 910 is also used to send the parameter configuration information to the terminal.
  • the transceiver module is also used to obtain MDT minimized drive test configuration information; the transceiver module 910 is also used to send minimize drive test MDT configuration information to the terminal; the transceiver module 910 is also used to receive information from The measurement result of the terminal is measured by the terminal according to the MDT configuration information, and the measurement result includes the area information of the terminal; the transceiver module 910 is also used to send the measurement result to the OAI network element.
  • the transceiver module 910 is specifically configured to: receive the MDT configuration information from the operation management and maintenance OAM network element; or receive the MDT configuration information from the access and mobility management function AMF network element.
  • the area information is used to indicate the location of the terminal.
  • the area information is used to indicate a historical movement track or an expected movement track of the terminal.
  • the apparatus for accessing network equipment in the embodiment of the present application receives parameter configuration information from the OAI network element.
  • the parameter configuration information is used to indicate the time-frequency resources required by the terminal to transmit data, and the terminal can use the data to transmit the data. And send the parameter configuration information to the terminal.
  • the terminal accesses the network device according to the parameter configuration information. In other words, the terminal can obtain the time-frequency resources required for data transmission and the cells that can be used for the transmission data at one time, instead of multiple signaling interactions to obtain the time-frequency resources required for data transmission and the transmission data can be used. This saves signaling overhead.
  • FIG. 10 shows an apparatus 1000 for accessing network equipment provided by an embodiment of the present application.
  • the apparatus 1000 may be the network equipment described in FIG. 3.
  • the device can adopt the hardware architecture shown in FIG. 10.
  • the device may include a processor 1010 and a transceiver 1020.
  • the device may also include a memory 1030.
  • the processor 1010, the transceiver 1020, and the memory 1030 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 920 in FIG. 9 may be implemented by the processor 1010, and the related functions implemented by the transceiver module 910 may be implemented by the processor 1010 controlling the transceiver 1020.
  • the processor 1010 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices that access network equipment (such as base stations, terminals, or chips, etc.), execute software programs, and process software programs. data.
  • the processor 1010 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 1020 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1030 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • CD-ROM compact disc
  • the memory 1030 is used to store program codes and data of the network device, and may be a separate device or integrated in the processor 1010.
  • the processor 1010 is used to control the transceiver and the terminal, or perform information transmission with the OAI network element.
  • the processor 1010 is used to control the transceiver and the terminal, or perform information transmission with the OAI network element.
  • the processor 1010 is used to control the transceiver and the terminal, or perform information transmission with the OAI network element.
  • the apparatus 1000 may further include an output device and an input device.
  • the output device communicates with the processor 1010 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 10 only shows a simplified design of an apparatus for accessing network equipment.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all network devices that can implement this application are protected by this application. Within range.
  • the device 1000 may be a chip, for example, a communication chip that can be used in a network device to implement related functions of the processor 1010 in the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, which may be a network device or a circuit.
  • the device can be used to perform the actions performed by the network equipment in the above method embodiments.
  • FIG. 11 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 11. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1110 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1110 can be regarded as the sending unit, that is, the transceiving unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1110 is used to perform the sending and receiving operations on the terminal side in the foregoing method embodiment, and the processing unit 1120 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the processing unit 1120 is configured to execute the processing step 304 on the terminal side in FIG. 3.
  • the transceiver unit 1110 is configured to perform the transceiver operation in step 303 in FIG. 3, and/or the transceiver unit 1110 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device shown in FIG. 12 can also be referred to.
  • the device can perform functions similar to the processor 610 in FIG. 6.
  • the device includes a processor 1201, a data sending processor 1203, and a data receiving processor 1205.
  • the processing module 520 in the foregoing embodiment may be the processor 1201 in FIG. 12, and completes corresponding functions.
  • the transceiver module 510 in the foregoing embodiment may be the sending data processor 1203 and the receiving data processor 1205 in FIG. 12.
  • the channel encoder and the channel decoder are shown in FIG. 12, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • the processing device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304.
  • the processor 1303 completes the function of the aforementioned processing module 520
  • the interface 1304 completes the function of the aforementioned transceiver module 510.
  • the modulation subsystem includes a memory 1306, a processor 1303, and a program stored in the memory and capable of running on the processor. When the processor executes the program, the program described in the first to fifth embodiments is implemented. method.
  • the memory 1306 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1300, as long as the memory 1306 can be connected to the The processor 1303 is fine.
  • the network device may be as shown in FIG. 14, for example, the device 140 is a base station.
  • the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 140 may include one or more DU 1401 and one or more CU 1402.
  • CU1402 can communicate with the next-generation core network (NG core, NC).
  • the DU 1401 may include at least one antenna 14011, at least one radio frequency unit 14012, at least one processor 14013, and at least one memory 14014.
  • the DU 1401 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1402 may include at least one processor 14022 and at least one memory 14021.
  • CU1402 and DU1401 can communicate through interfaces, where the control plane interface can be Fs-C, such as F1-C, and the user plane interface can be Fs-U, such as F1-U.
  • the CU 1402 part is mainly used for baseband processing, control of the base station, and so on.
  • the DU 1401 and the CU 1402 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1402 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 1402 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), MAC, and physical functions.
  • the function of the (physical, PHY) layer is the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP.
  • functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • RRC radio resource control
  • packet data convergence protocol packet data convergence protocol
  • MAC medium access control
  • the base station 140 may include one or more radio frequency units (RU), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 14013 and at least one memory 14014
  • the RU may include at least one antenna 14011 and at least one radio frequency unit 14012
  • the CU may include at least one processor 14022 and at least one memory 14021.
  • the processor 14013 is configured to execute the processing steps on the network device side in FIG. 3.
  • the radio frequency unit 14012 is used to perform the transceiving operations in step 302 and step 303 in FIG. 3.
  • the processor 14013 may be used to execute the processing step 401 on the access network device side in FIG. 4.
  • the radio frequency unit 14012 is used to perform the transceiving step 402 on the access network device side in FIG. 4.
  • the CU1402 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 14021 and the processor 14022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1401 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can respectively support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 14014 and the processor 14013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application. The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种接入网络设备的方法和装置。终端接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到网络设备。也就是说,终端可以通过一个参数配置信息获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次配置不同的配置信息来获得传输数据所需的时频资源和传输数据能够使用的小区,由于传统方案中不同的配置信息通过不同的信令携带,本申请实施例的参数配置信息可以携带在一个信令中,从而节省了信令开销。

Description

接入网络设备的方法和装置
本申请要求于2019年10月31日提交中国专利局、申请号为201911051627.9、发明名称为“接入网络设备的方法和装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种接入网络设备的方法和装置。
背景技术
传统方案中,终端想要接入网络设备需要经过小区搜索、公用陆地移动通信网络(public land mobile network,PLMN)选择、小区选择、和随机接入等过程,才能实现接入网络设备。也就是说,终端接入网络设备需要进行多次的信息交互,从而获得接入到网络设备所需的各种参数配置。例如,终端需要在小区搜索过程中获得终端能够使用的小区,在随机接入过程中获得终端能够使用的时频资源。
也就是说,终端需要进行通过大量的信令交互,才能获得接入网络设备所需的各种参数配置,使得终端的信令开销较大。
发明内容
本申请提供一种接入网络设备的方法和装置,能够降低终端的信令开销。
第一方面,提供了一种接入网络设备的方法,该方法包括:接收参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;通过该参数配置信息接入网络设备。
终端接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
在一些可能的实现方式中,在接收该参数配置信息之前,该方法还包括:接收最小化路测MDT配置信息;根据该MDT配置信息进行MDT测量以得到测量结果,该测量结果包括该终端的区域信息;发送该测量结果。
终端接收到该MDT配置信息,并根据该MDT配置信息进行MDT测量以得到测量结果,该测量结果可以包括该终端的区域信息。终端将该测量结果发送该OAI网元,这样OAI网元可以根据该区域信息为该终端确定参数配置信息,从而确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该接收该参数配置信息之前,该方法还包括:发送触发信息,该触发信息用于触发运营辅助信息OAI网元发送该参数配置信息。
终端可以向OAI网元发送该触发信息,OAI网元接收到该触发信息之后可以为该终端配置参数配置信息。这样避免了在终端不需要该参数配置信息的情况下,OAI网元为终端配置该参数配置信息,节省了资源开销。
在一些可能的实现方式中,该区域信息用于指示该终端的位置。
该区域信息可以用于指示终端具体地的位置,即OAI网元可以根据终端所在的位置,为终端配置不同的参数配置信息,从而使得OAI网元确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹,使得OAI网元更进一步确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
第二方面,提供了一种接入网络设备的方法,该方法包括:确定参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;发送该参数配置信息。
OAI网元确定参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,并向终端发送该参数配置信息。终端根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
在一些可能的实现方式中,该方法还包括:从接入网设备接收测量结果,该测量结果包括该终端的区域信息;其中,该确定参数配置信息包括:根据该终端的区域信息,确定该参数配置信息。
OAI网元从接入网设备接收包括该终端的区域信息的测量结果,并根据该区域信息为该终端确定参数配置信息,从而确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该方法还包括:从接入及移动性管理功能AMF网元接收该终端的区域信息;其中,该确定参数配置信息包括:根据该终端的区域信息,确定该参数配置信息。
OAI网元可以从AMF网元接收该终端的区域信息,并根据该区域信息为该终端确定参数配置信息,从而确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该区域信息用于指示该终端的位置。
该区域信息可以用于指示终端具体地的位置,即OAI网元可以根据终端所在的位置,为终端配置不同的参数配置信息,从而使得OAI网元确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹,使得OAI网元更进一步确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
第三方面,提供了一种接入网络设备的方法,该方法包括:接收参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;向该终端发送该参数配置信息。
接入网设备从OAI网元接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,并向终端发送该参数配置信息。终端根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
在一些可能的实现方式中,在接收该参数配置信息之前,该方法还包括:获取最小化路测MDT配置信息;向该终端发送最小化路测MDT配置信息;接收来自该终端的测量结果,该测量结果为该终端根据该MDT配置信息测量得到的,且该测量结果包括该终端的区域信息;向OAI网元发送所述测量结果。
接入网设备获取MDT配置信息,并向终端发送该MDT配置信息,使得终端根据该MDT配置信息进行MDT测量以得到测量结果,该测量结果可以包括该终端的区域信息。终端将该测量结果发送该OAI网元,这样OAI网元可以根据该区域信息为该终端确定参数配置信息,从而确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该获取最小化路测MDT配置信息包括:从操作管理和维护OAM网元接收该MDT配置信息;或从接入及移动性管理功能AMF网元接收该MDT配置信息。
接入网设备可以从AMF网元获取该MDT配置信息,可以从OAM网元获取该MDT配置信息,从而提高了本申请实施例应用的灵活性。
在一些可能的实现方式中,该区域信息用于指示该终端的位置。
该区域信息可以用于指示终端具体地的位置,即OAI网元可以根据终端所在的位置,为终端配置不同的参数配置信息,从而使得OAI网元确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
在一些可能的实现方式中,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹,使得OAI网元更进一步确定出更加合适的参数配置信息,节省信令开销的同时,提高通信效率或通信质量。
第四方面,提供了一种接入网络设备的装置,该装置可以是终端,或是用于终端的芯片,比如可被设置于终端内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和收发模块,该收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以 使该装置执行上述第一方面,及各种可能的实现方式的方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:处理模块和收发模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述,以及任意可能的实现的方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面,以及任意可能的实现的方法的程序执行的集成电路。
第五方面,提供了一种接入网络设备的装置,该装置可以是OAI网元,也可以是OAI网元内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和收发模块,该收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,及各种可能的实现方式的方法。
在另一种可能的设计中,当该装置为芯片时,处理模块和收发模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第二方面,以及任意可能的实现的方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第二方面,以及任意可能的实现的方法的程序执行的集成电路。
第六方面,提供了一种接入网络设备的装置,该装置可以是网络设备,或是用于网络设备的芯片,比如可被设置于网络设备内的芯片。该装置具有实现上述第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块。可选地,该装置还可以包括处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第三方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第三方面,以及任意可能的实现的方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第三方面的方法的程序执行的集成电路。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第三方面,及其任意可能的实现方式中的方法的指令。
第十方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第三方面,或其任意可能的实现方式中的方法。
第十三方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置、上述具有实现上述第二方面的各方法及各种可能设计的功能的装置和上述具有实现上述第三方面的各方法及各种可能设计的功能的装置中的至少两项。
第十四方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第十五方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或其任意可能的实现方式中的方法。
第十六方面,提供了一种处理器,用于与存储器耦合,用于执行上述第三方面或其任意可能的实现方式中的方法。
第十七方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或其任意可能的实现方式中的 方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
第十八方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第二方面中任一方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在OAI网元上。
第十九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第三方面中任一方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第三方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在网络设备上。
基于上述技术方案,终端接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到网络设备。也就是说,终端可以通过一个参数配置信息获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次配置不同的配置信息来获得传输数据所需的时频资源和输数据能够使用的小区,由于传统方案中不同的配置信息通过不同的信令携带,本申请实施例的参数配置信息可以携带在一个信令中,从而节省了信令开销。
附图说明
图1是本申请一个通信系统结构的示意图;
图2是一种通信系统中的分离基站的架构示意图;
图3是本申请一个实施例的接入网络设备的方法的示意性流程图;
图4是本申请另一个实施例的接入网络设备的方法的示意性流程图;
图5是本申请实施例的接入网络设备的装置的示意性框图;
图6是本申请实施例的接入网络设备的装置的示意性结构图;
图7是本申请实施例的接入网络设备的装置的示意性框图;
图8是本申请实施例的接入网络设备的装置的示意性结构图;
图9是本申请实施例的接入网络设备的装置的示意性框图;
图10是本申请实施例的接入网络设备的装置的示意性结构图;
图11是本申请一个实施例的通信装置的示意性结构图;
图12是本申请另一个实施例的通信装置的示意性结构图;
图13是本申请另一个实施例的通信装置的示意性结构图;
图14是本申请另一个实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的移动通信系统等。
本申请实施例中的终端可以指一种具有无线收发功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、车载终端、远方站、远程终端等。终端具体的形态可以是手机(mobile phone)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、可穿戴设备平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN中的终端等。
此外,终端可以应用于如下场景:虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程手术(remote medical surgery)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)、智慧家庭(smart home)等。终端可以是固定的或者移动的。需要说明的是,终端可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。
本申请实施例中的网络设备可以是一种为终端提供无线通信功能的设备,也可称之为无线接入网(radio access network,RAN)设备等。网络设备包括但不限于:5G中的下一代基站(next generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、中继站、接入点等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等。此外,网络设备还可以负责空口侧的无线资源管理、服务质量管理(quality of service,QoS)、数据压缩和加密等功能。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR等。
在一些部署中,gNB可以包括集中式单元(central unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而, 在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
可以理解的是,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端的应用场景不做限定。
核心网设备可以是接入和移动性管理功能(access and mobility management function,AMF),用于负责接入控制、移动性管理(mobility management,MM)、附着与去附着以及网关选择等功能。本申请实施例所涉及的核心网设备不限于AMF。
图1为一种通信系统架构的示意图。该通信系统包括核心网设备101、基站(如图1所示的基站102和基站103)、终端(如图1所示的终端104、终端105和终端106)。如图1所示,可以看出,基站可以与至少一个终端相连接,例如,基站102分别与终端104和终端105相连接,基站103与终端106相连接。基站可以与至少一个核心网设备相连接,例如,基站102和基站103分别与核心网设备101相连接。
其中,核心网设备101分别与基站102和基站103之间存在通信接口,这样核心网设备101可以分别与基站102和基站103进行通信。例如该通信接口在本申请中称为N2接口或者NG接口。
若基站102和基站103之间有通信接口,则两者可以直接通信,这里的直接通信是指两个基站可以不需要通过核心网设备或者其他设备进行通信。例如,基站102和基站103之间的通信接口可以称为Xn接口。
若基站102和基站103之间没有通信接口,则两者不可以直接通信,在一种可能的方式中,没有通信接口的两个基站可以通过核心网设备进行通信。
图2示出了一种5G通信系统中的CU-DU分离的基站的架构示意图。如图2所示,5G通信系统包括下一代核心网(next generation core,5GC)和连接5GC的下一代无线接入网(next generation radio access network,NG-RAN)节点。NG-RAN节点可以为gNB或者下一代演进型基站(next generation-evolved NodeB,ng-eNB)。其中,gNB为终端提供NR的用户面功能和控制面功能,ng-eNB为终端提供演进型通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)的用户面功能和控制面功能,需要说明的是,gNB和ng-eNB仅是一种名称,用于表示支持5G网络系统的基站,并不具有限制意义。NG-RAN节点可以通过NG-C(next generation control)接口和NG-U(next generation user)接口与5GC连接。为了便于说明,图2中仅示出了一个gNB和一个ng-eNB。
可选的,gNB和gNB之间、gNB和ng-eNB之间、或者ng-eNB和ng-eNB之间可以通过Xn接口进行连接。一个gNB或者ng-eNB可以包括一个CU和一个或多个DU。比如,如图2所示的一个gNB或者ng-eNB包括一个CU和两个DU。进一步的,一个CU可以包括一个集中式单元控制面(CU-control plane function,CU-CP)和一个或多个集中式单元用户面(CU-user plane function,CU-UP)。其中,CU和DU之间可以通过F1接口进行连接,CU-CP和CU-UP之间可以通过E1接口进行连接,CU-CP和DU之间可以通过F1的控制面接口(F1-C)进行连接,CU-UP和DU之间可以通过F1的用户面接口(F1-U)进行连接。
如图2中所示,实线代表控制面传输,虚线代表用户面传输。CU和DU的功能切分可以按照协议栈进行切分。其中,一种可能的方式是将无线资源控制(radio resource control,RRC)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层和业务数据适应(service data adaptation protocol,SDAP)层部署在CU。无线链路层控制协议(radio link control,RLC)、媒体接入控制(media access control,MAC)、物理层(physical layer,PHY)部署在DU。相应地,CU具有RRC、PDCP和SDAP的处理能力。DU具有RLC、MAC、和PHY的处理能力。值得注意的是,上述功能切分只是一个例子,还有可能有其他切分的方式。例如,CU包括RRC、PDCP、RLC和SDAP的处理能力,DU具有MAC、和PHY的处理能力。又例如CU包括RRC、PDCP、RLC、SDAP和部分MAC(例如加MAC包头)的处理能力,DU具有PHY和部分MAC(例如调度)的处理能力。
可以理解的是,CU、DU的名字可能会发生变化,只要能实现上述功能的网络设备都可以看作是本申请中的CU、DU。CU-CP具有CU的控制面功能,例如,RRC的处理能力,和PDCP中的控制面处理能力。CU-UP具有CU的用户面功能,例如,SDAP的处理能力,和PDCP中的用户面处理能力。也就是说,本申请各实施例中涉及的接入网设备所执行的步骤,可以是基站、CU、CU-CP或者CU-UP来执行,本申请对此不做限定。
下面对本申请涉及到的术语进行介绍。
小区搜索:
终端开机后,起始状态并不能获知小区的下行配置。此时,终端通过同步信号获得网络设备的设置,从而与小区取得频率和符号同步、获取下行帧的起始位置以及确定小区的物理小区标识。为了支持移动性,终端会不停的搜索邻居小区、取得同步并估计该小区信 号的接收质量,从而决定是否进行切换或者小区重选。具体地,终端通过网络设备发送的同步信号获得基准时间,通过网络设备发送的辅助同步信号获得帧同步和物理层的小区组,以及通过网络设备发送的下行参考信号获得物理小区标识,这样终端根据获得的帧同步和物理小区标识,就可以在广播信道上读取系统信息,从而用于获取其他小区信息。
PLMN选择:
终端接入网络设备之前要选择一个合适的PLMN,并选择一个合适的小区。具体地,终端在它所能支持的频段内扫描所有的频段,在每个载波上,终端搜索最强信号小区并读取系统消息,以找到小区所属PLMN。终端可以利用存储在全球用户识别卡(universal subscriber identity module,USIM)卡上的有关PLMN选择信息,尝试在PLMN进行注册。
小区选择:
在小区搜索的过程中,终端完成了下行同步,并解码了必要的系统消息,此时终端就必须驻留在该小区或周围小区。这个过程通过小区选择流程来实现,终端力求找到最佳信号质量的小区。具体地,终端测量无线信道的参考信号接收功率(reference signal receiving power,RSRP),为每一个小区计算测量小区接收电平值,然后又从系统消息中获取其他小区参数和相关的小区最低电平要求,由此为每个小区计算小区选择接收电平值。如果小区选择接收电平值大于0,则把该小区当做候选小区,正值最大的小区选为驻留小区。驻留小区后,终端开始进行随机接入流程。
随机接入:
在小区选择过程之后,终端已经与小区取得了下行同步。因此,终端能够接收下行数据,但是终端只有与小区取得上行同步,才能进行上行传输。具体地,终端可以通过随机接入过程(random access procedure)与小区建立连接并取得上行同步。随机接入可以是四步随机接入类型,也可以是两步随机接入类型。
例如,四步随机接入过程包括:终端向网络设备发送消息1(message 1,msg 1),消息1也即随机接入前导码(preamble)。网络设备检测到随机接入前导码之后,向UE返回响应消息,也即消息2(message 2)。消息2中包含网络设备为UE分配的上行资源。UE接收到消息2之后,在消息2指示的上行资源上发送消息3。如果网络设备能够正确解码消息3(message 3),则向UE返回消息4(message 4),消息4用于通知UE竞争成功。经过上述4个步骤,随机接入流程成功。
再例如,两步随机接入过程包括:终端在消息A中同时携带随机接入前导码和数据(也即,preamble和data)。数据部分用于做竞争解决的,例如是RRC消息。如果终端之间没有冲突,网络设备成功解码消息1后向终端返回消息B。消息B中同时包括针对随机接入前导码的响应和针对数据的响应。其中,针对随机接入前导码的响应也即随机接入响应(random access response,RAR)。针对数据的响应通常是RRC消息。这两部响应可以同时发送,也可以先后发送。终端对这两部分响应可以是独立解码的。终端收到消息2后获知随机接入成功。如果终端之间有冲突,网络设备可能无法成功解出消息A中的数据,此时网络设备不向终端发送消息2。终端在发出消息1之后,等待一个时间窗,如果没有接收到消息2,认为随机接入失败。
传统方案中,终端想要接入网络设备需要经过小区搜索、PLMN选择、小区选择、和随机接入等过程,才能实现接入网络设备。也就是说,终端需要进行通过大量的信令交互, 才能获得接入网络设备所需的各种参数配置,使得终端的信令开销较大。
图3示出了本申请一个实施例的接入网络设备的方法的示意性流程图。
需要说明的是,本申请实施例中的运营辅助信息(operation assistance information,OAI)网元可以是独立的网元,也可以是核心网网元中的模块,或者还可以是接入网设备中的模块。为方便描述,图3所示的实施例以OAI为独立网元为例进行说明,但本申请并不限于此。
301,OAI网元确定参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区。
具体地,OAI网元可以确定参数配置信息,该参数配置信息可以用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区。
可选地,该参数配置信息还可以包括该终端接收数据所需的时频资源和该终端接收该数据能够使用的小区。
可选地,该终端传输或接收数据能够使用的小区包括小区全球标识(cell global identifier,CGI)。
可选地,该终端传输或接收数据能够使用的小区还可以包括PLMN标识。
可选地,该参数配置信息还可以包括以下至少一项:该终端传输数据所需的功率、该终端传输数据能够使用的小区所能支持的终端数量、该终端传输数据所需的时间提前量(timing advance)。
可以理解的是,该参数配置信息还可以包括其他用于接入网络设备的参数,本申请对此不进行限定。
在一个实施例中,在步骤301之前,OAI网元可以从AMF网元接收该终端的区域信息,这样OAI网元可以根据该区域信息,确定参数配置信息。
具体地,OAI网元可以从AMF网元获取终端的区域信息,进而根据该区域信息为终端配置参数配置信息。也就是说,OAI网元可以为不同区域的终端配置不同的参数配置信息。
可选地,AMF网元也可以主动向OAI网元发送该区域信息。
可选地,AMF网元可以接收到终端的注册请求的情况下,向OAI网元发送该区域信息。
具体地,终端可以在初始注册、移动性注册更新、周期性注册更新或者紧急注册的情况下,向AMF网元发送注册请求。AMF网元在接收到该注册请求的情况下,向OAI网元发送区域信息,使得OAI网元能够根据该区域信息为终端配置参数配置信息。
在另一个实施例中,在步骤301之前,OAI网元可以从接入网设备接收测量结果,该测量结果包括该终端的区域信息。
具体地,接入网设备获取最小化路测(minimization of drive tests,MDT)配置信息,并向终端发送该MDT配置信息。终端接收到该MDT配置信息,并根据该MDT配置信息进行MDT测量以得到测量结果,该测量结果可以包括该终端的区域信息。终端将该测量结果发送该OAI网元,这样OAI网元可以根据该区域信息为该终端确定参数配置信息。
其中,终端进行MDT测量并上报测量结果可以通过两种方式实现。一种方式为终端记录MDT配置信息,并在终端处于RRC空闲态或非激活态时进行MDT测量。终端将测 量结果进行存储,在终端处于RRC连接态时向OAI网元发送该测量结果。另一种方式为终端即时进行MDT测量,即终端可以在处于RRC连接态时进行MDT测量。在测量结果满足上报条件的情况下,终端将测量结果向OAI网元发送该测量结果。
可以理解的是,该上报条件可以是预先配置的。
可选地,该测量结果还可以包括服务小区的载波频率、服务小区的物理小区标识(physical cell identifier,PCI)、服务小区的RSRP、服务小区的参考信号接收质量(reference signal receiving quality,RSRQ)、邻居小区的载波频率、邻居小区的PCI、邻居小区的RSRP、邻居小区的RSRQ、时间戳(time stamp)、终端所使用的的无线接入技术、信道质量指示(channel quality indicator,CQI)、信噪比(signal noise ratio,SNR)、波段信息、功放信息、呼叫尝试失败次数、掉话率、切换失败概率、无线链路失败、随机接入信息、终端未检测到网络覆盖的具体位置信息、上行吞吐量、下行吞吐量、时延、抖动、丢包率、应用信息中的至少一项。
具体地,载波频率可以是指绝对射频信道号码(absolute radio frequency channel number,ARFCN)。
时间戳可以用于指示进行MDT测量时的时间,该时间可以是绝对时间,也可以是相对时间。绝对时间即为进行MDT测量时的具体时刻。相对时间即为终端进行MDT测量时相对于终端接收到MDT配置信息的时刻。例如,终端接收到的MDT配置信息的时间为2019-07-22 12:00:00,进行MDT测量时的时间是2019-07-22 13:23:45,则绝对时间是2019-07-22 13:23:45,相对时间可以是01:23:45。
终端所使用的无线接入技术可以是NR、E-UTRA,WLAN,蓝牙,双链接或其他无线接入技术,本申请对此不进行限定。
CQI用于指示信道质量的好坏。例如,将信道质量的好坏量化为0-15,值越大,所采用的的调制编码方式越高,效率越大,所提供的下行峰值吞吐量越高。相应地,信道质量越好。
SNR用于衡量噪声对信号的影响程度,值越大代表信号里的噪声越小,从而质量越高。
波段信息用于指示终端能够检测到的波段。
功放信息用于指示终端将低功率射频信号转换为更高功率信号的能力。
呼叫尝试失败次数,用于指示终端在一个小区中发起呼叫尝试,但是呼叫失败的次数。
掉话率,用于指示终端在一个小区中发生通信中断的概率。
切换失败概率,用于指示终端发生切换失败的概率。
无线链路失败,用于指示终端发生无线链路失败的小区的CGI,PCI,载波频率等。
随机接入信息,用于指示终端在一个小区中随机接入过程中的随机接入失败信息。具体地,该随机接入信息开包括在该小区中的随机接入过程中的终端发送前导(preamble)的次数和终端是否检测到竞争的信息。其中,终端发送preamble的次数的信息用于指示终端在最近一次成功完成随机接入流程时所发送的preamble的次数。例如,若终端在前9次都未成功完成随机接入流程,在第10次成功完成随机接入流程,则UE发送preamble的次数为10。终端是否检测到竞争的信息用于指示UE在已发送的前导中是否检测到至少一个preamble存在竞争。
上行吞吐量或下行吞吐量,用于指示终端在一个小区中的单位时间内成功地传送数据 的数量(以比特、字节、分组等测量)。
时延、抖动、丢包率,用于指示终端在一个小区中的数据包传输时延、抖动、丢包率等。
应用信息,用于指示终端在一个小区中所获取的应用。
可以理解的是,该测量结果包括的信息可以是针对小区的信息,也可以是针对同步信号与物理广播信道块(synchronization signal and physical broadcast channel block,SSB)的信息。SSB由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)构成,在时域上占用4个符号、在频域上占用240个子载波。在不同的时刻,该SSB对应的小区可以用不同的波束发送SSB,多个波束上发送的SSB称为一个SSB集合(SS-Burst)。每个波束上发送的SSB用SSB索引(SSB index)来唯一标识,即,在一个SSB集合内,每个波束上发送的SSB都有一个唯一的SSB index。在一个载波的频率范围内,可以传输多个SSB,每个SSB都对应一个PCI,并且这些SSB对应的PCI可以相同,也可以不同。其中,终端可以通过PSS获取PCI和上行同步,终端可以通过SSS获取循环前缀(cyclic prefix,CP)长度、物理小区组标识(ID)、帧同步,终端通过解码PBCH能够获得主信息块(master information block,MIB),MIB中包括公共天线端口数目、系统帧号(system frame number,SFN)、下行系统带宽、物理混合自动重传指示信息(physical hybrid automatic repeat request indicator channel,PHICH)配置信息。具体地,当一个SSB与剩余最小系统信息(remaining minimum system information,RMSI)相关联时,该SSB对应一个单独的小区,并且该小区具有唯一的NR小区全球标识(NR cell global identifier,NCGI)。此时,这种SSB称为小区定义SSB(cell defining SSB,CD-SSB)。只有CD-SSB才可以发送MIB消息和系统信息块1(system information block1,SIB1)消息,并且终端进行小区选择时只基于CD-SSB的同步信号接入。其他的SSB只能发送MIB消息,不能发送SIB1消息。
还可以理解的是,本申请实施例中并不限定SSB的类型,例如,上述CD-SSB和非CD-SSB,还可以是其他类型的SSB。
也就是说,本申请实施例中,OAI网元确定参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的SSB。可选地,该参数配置信息还可以用于指示终端接收数据所需的时频资源和该终端接收该数据能够使用的SSB。此时,该终端传输或接收该数据能够使用的SSB包括该SSB的SSB索引(index)。
可选地,MDT配置信息可以用于指示终端测量持续时间,测量范围,测量上报间隔中的至少一项。
具体地,该测量范围可以是CGI或跟踪区域码(tracking area code,TAC)。
可选地,接入网设备获取该MDT配置信息具体可以是从操作、管理和维护(operation,administration and maintenance,OAM)网元接收的,也可以是从AMF网元接收的。
可选地,终端在接收该参数配置信息之前,可以发送触发信息,该触发信息用于触发OAI网元发送该参数配置信息。
具体地,终端可以向OAI网元发送该触发信息,OAI网元接收到该触发信息之后可以为该终端配置参数配置信息。这样避免了在终端不需要该参数配置信息的情况下,OAI 网元为终端配置该参数配置信息,节省了资源开销。
可以理解的是,该触发信息也可以是能力信息,例如,该能力信息包括用于生成该参数配置信息的辅助数据。
可选地,该区域信息用于指示终端的位置。
具体地,该区域信息可以用于指示终端具体地的位置,即OAI网元可以根据终端所在的位置,为终端配置不同的参数配置信息。例如,该区域信息可以包括全球导航卫星系统(global navigation satellite system,GNSS)位置信息,跟踪区域标识,CGI,或者网络设备的节点ID等。
可选地,该区域信息可以用于指示终端的历史移动轨迹或预期移动轨迹。
具体地,OAI网元可以根据终端的历史移动轨迹或预期移动轨迹预测终端的位置,进而确定参数配置信息,也可以是根据终端的位置和终端的历史移动轨迹确定配置信息,还可以是根据终端的预期移动轨迹确定参数配置信息,还可以根据终端当前所在的位置、终端的历史移动轨迹以及终端的预期移动轨迹来确定参数配置信息。
可选地,该区域信息还可以用于指示终端的无线能力,服务质量需求,接入控制信息中的至少一项。
具体地,终端的无线能力即该终端支持的无线接入技术的类型,例如,NR、E-UTRA、双链接等。服务质量需求即用于指示终端需求的服务质量,例如,5质量指标(5quality index,5QI),流比特率。终端的接入控制信息用于指示终端支持在哪些小区或哪些网络切片上接入网络设备。
302,OAI网元向网络设备发送该参数配置信息。相应地,接入网设备从OAI网元接收该参数配置信息。
具体地,OAI网元可以直接向接入网设备发送参数配置信息。或者OAI网元可以先向AMF发送参数配置信息,再由AMF向接入网设备转发该参数配置信息。该参数配置信息可以通过携带在一条消息中发送。也就是说,相对于传统方案网络设备需要通过多次信令传输来配置该参数配置信息中的内容,而步骤302通过一个消息配置了该参数配置信息中的内容,即仅需要一次信令传输。
可以理解的是,图3所示的网络设备可以接入网设备,也可以是AMF网元和接入网设备。
303,该网络设备向该终端发送该参数配置信息。相应地,该终端从该接入网设接收该参数配置信息。
可以理解的是,该网络设备向该终端发送该参数配置信息,包括:该网络设备为接入网设备,该接入网设备直接向该终端发送该参数配置信息,例如,该参数配置信息携带在系统信息中。
还可以理解的是,该网络设备向该终端发送该参数配置信息,包括:AMF网元在接收到该参数配置信息后,可以直接向该终端转发该参数配置信息,例如,该参数配置信息携带在NAS消息中。
304,该终端通过该参数配置信息接入该网络设备。
具体地,终端接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到网络设 备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和输数据能够使用的小区,从而节省了信令开销。
图4示出了本申请另一个实施例的接入网络设备的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,图4所示的实施例中与图3所示的实施例中的相同术语表示的含义相同,为避免赘述,这里不再重复。
401,接入网络设备确定参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端使用的小区。
具体地,OAI网元可以是接入网设备。也就是说,步骤401的执行主体可以是接入网设备,还可以具体是接入网设备中的模块。
可选地,步骤401具体可以是接入网设备从AMF接收终端的区域信息,并根据该区域信息确定该参数配置信息。
可选地,AMF可以主动向该接入网设备发送该区域信息。
可选地,AMF也可以是在接收到终端发送的注册请求之后,再向接入网设备发送该区域信息。
402,该接入网设备向该终端发送该参数配置信息。
403,该终端根据该参数配置信息,接入网络设备。
具体地,终端从接入网设备接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到接入网设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和输数据能够使用的小区,从而节省了信令开销。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端实现的方法和操作,也可以由可用于终端的部件(例如芯片或者电路)实现,由接入网设备实现的方法和操作,也可以由可用于接入网设备的部件(例如芯片或者电路)实现,由OAI网元实现的方法和操作,也可以由可用于OAI网元的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端或者接入网设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端、接入网设备和OAI网元进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种 逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3和图4详细说明了本申请实施例提供的方法。以下,结合图5至图14详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图5示出了本申请实施例的接入网络设备的装置500的示意性框图。
应理解,该装置500可以对应于图3或图4所示的实施例中的终端,可以具有方法中的终端的任意功能。该装置500,包括收发模块510和处理模块520。
该收发模块510,用于接收参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;
该处理模块520,用于通过该参数配置信息接入网络设备。
可选地,该收发模块510,还用于接收最小化路测MDT配置信息;该处理模块,还用于根据该MDT配置信息进行MDT测量以得到测量结果,该测量结果包括该终端的区域信息;该收发模块,还用于发送该测量结果。
可选地,该收发模块510,还用于发送触发信息,该触发信息用于触发运营辅助信息OAI网元发送该参数配置信息。
可选地,该区域信息用于指示该终端的位置。
可选地,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
因此,本申请实施例的接入网络设备的装置,通过接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,进而根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
图6示出了本申请实施例提供的接入网络设备的装置600,该装置600可以为图3或图4中所述的终端。该装置可以采用如图6所示的硬件架构。该装置可以包括处理器610和收发器620,可选地,该装置还可以包括存储器630,该处理器610、收发器620和存储器630通过内部连接通路互相通信。图5中的处理模块520所实现的相关功能可以由处理器610来实现,收发模块510所实现的相关功能可以由处理器610控制收发器620来实现。
可选地,处理器610可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处 理器可以用于对接入网络设备的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器610可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器620用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器630包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器630用于存储相关指令及数据。
存储器630用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器610中。
具体地,所述处理器610用于控制收发器与接入网设备、或与OAI网元进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置600还可以包括输出设备和输入设备。输出设备和处理器610通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图6仅仅示出了接入网络设备的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置600可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器610的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图7示出了本申请实施例的接入网络设备的装置700的示意性框图。
应理解,该装置700可以对应于图3所示的实施例中的OAI网元,或图4所示的接入网设备,可以具有方法中的OAI网元的任意功能。该装置700,包括处理模块710和收发模块720。
该处理模块710,用于确定参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;
该收发模块720,用于发送该参数配置信息。
可选地,该收发模块720,还用于从接入网设备接收测量结果,该测量结果包括该终 端的区域信息;其中,该处理模块710具体用于:根据该终端的区域信息,确定该参数配置信息。
可选地,该收发模块720,还用于从接入及移动性管理功能AMF网元接收该终端的区域信息;其中,该处理模块710具体用于:根据该终端的区域信息,确定该参数配置信息。
可选地,该区域信息用于指示该终端的位置。
可选地,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
因此,本申请实施例的接入网络设备的装置,通过确定参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,并向终端发送该参数配置信息。终端根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
图8示出了本申请实施例提供的接入网络设备的装置800,该装置800可以为图3中所述的OAI网元或图4所示的接入网设备。该装置可以采用如图8所示的硬件架构。该装置可以包括处理器810和收发器820,可选地,该装置还可以包括存储器830,该处理器810、收发器820和存储器830通过内部连接通路互相通信。图7中的处理模块710所实现的相关功能可以由处理器810来实现,收发模块720所实现的相关功能可以由处理器810控制收发器820来实现。
可选地,处理器810可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对接入网络设备的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器810可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器820用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器830包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器830用于存储相关指令及数据。
存储器830用于存储OAI网元的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器810用于控制收发器与终端,或与接入网设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置800还可以包括输出设备和输入设备。输出设备和处理器810通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图8仅仅示出了接入网络设备的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的OAI网元都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于OAI网元中的通信芯片,用于实现OAI网元中处理器810的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是OAI网元也可以是电路。该装置可以用于执行上述方法实施例中由OAI网元所执行的动作。
图9示出了本申请实施例的接入网络设备的装置900的示意性框图。
应理解,该装置900可以对应于图3所示的实施例中的网络设备,可以具有方法中的网络设备的任意功能。该装置900,包括收发模块910。可选地,该装置900还可以包括处理模块920。
该收发模块910,用于接收参数配置信息,该参数配置信息用于指示终端传输数据所需的时频资源和该终端传输该数据能够使用的小区;
该收发模块910,还用于向该终端发送该参数配置信息。
可选地,该收发模块,还用于获取最小化路测MDT配置信息;该收发模块910,还用于向该终端发送最小化路测MDT配置信息;该收发模块910,还用于接收来自该终端的测量结果,该测量结果为该终端根据该MDT配置信息测量得到的,且该测量结果包括该终端的区域信息;该收发模块910,还用于向OAI网元发送该测量结果。
可选地,该收发模块910具体用于:从操作管理和维护OAM网元接收该MDT配置信息;或从接入及移动性管理功能AMF网元接收该MDT配置信息。
可选地,该区域信息用于指示该终端的位置。
可选地,该区域信息用于指示该终端的历史移动轨迹或预期移动轨迹。
因此,本申请实施例的接入网络设备的装置,通过从OAI网元接收参数配置信息,该参数配置信息用于指示该终端传输数据所需的时频资源,以及该终端传输该数据能够使用的小区,并向终端发送该参数配置信息。终端根据该参数配置信息接入到网络设备。也就是说,终端可以一次性获得传输数据所需的时频资源和传输数据能够使用的小区,而不需要通过多次的信令交互来获得传输数据所需的时频资源和传输数据能够使用的小区,从而节省了信令开销。
图10示出了本申请实施例提供的接入网络设备的装置1000,该装置1000可以为图3中所述的网络设备。该装置可以采用如图10所示的硬件架构。该装置可以包括处理器1010 和收发器1020,可选地,该装置还可以包括存储器1030,该处理器1010、收发器1020和存储器1030通过内部连接通路互相通信。图9中的处理模块920所实现的相关功能可以由处理器1010来实现,收发模块910所实现的相关功能可以由处理器1010控制收发器1020来实现。
可选地,处理器1010可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对接入网络设备的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1010可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1020用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1030包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1030用于存储相关指令及数据。
存储器1030用于存储网络设备的程序代码和数据,可以为单独的器件或集成在处理器1010中。
具体地,所述处理器1010用于控制收发器与终端,或与OAI网元进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1000还可以包括输出设备和输入设备。输出设备和处理器1010通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图10仅仅示出了接入网络设备的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的设计中,该装置1000可以是芯片,例如可以为可用于网络设备中的通信芯片,用于实现网络设备中处理器1010的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备也可以是电路。该装置可以用 于执行上述方法实施例中由网络设备所执行的动作。
可选地,本实施例中的装置为终端时,图11示出了一种简化的终端的结构示意图。便于理解和图示方便,图11中,终端以手机作为例子。如图11所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图11所示,终端包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1120用于执行图3中终端侧的处理步骤304。收发单元1110,用于执行图3中的步骤303中的收发操作,和/或收发单元1110还用于执行本申请实施例中终端侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图12所示的设备。作为一个例子,该设备可以完成类似于图6中处理器610的功能。在图12中,该设备包括处理器1201,发送数据处理器1203,接收数据处理器1205。上述实施例中的处理模块520可以是图12中的该处理器1201,并完成相应的功能。上述实施例中的收发模块510可以是图12中的发送数据处理器1203和接收数据处理器1205。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。处理装置1300中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该 调制子系统可以包括处理器1303,接口1304。其中处理器1303完成上述处理模块520的功能,接口1304完成上述收发模块510的功能。作为另一种变形,该调制子系统包括存储器1306、处理器1303及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例一至五之一所述方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
本实施例中的装置为网络设备时,该网络设备可以如图14所示,例如,该装置140为基站。该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站140可包括一个或多个DU 1401和一个或多个CU 1402。CU1402可以与下一代核心网(NG core,NC)通信。所述DU 1401可以包括至少一个天线14011,至少一个射频单元14012,至少一个处理器14013和至少一个存储器14014。所述DU 1401部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1402可以包括至少一个处理器14022和至少一个存储器14021。CU1402和DU1401之间可以通过接口进行通信,其中,控制面(control plane)接口可以为Fs-C,比如F1-C,用户面(user plane)接口可以为Fs-U,比如F1-U。
所述CU 1402部分主要用于进行基带处理,对基站进行控制等。所述DU 1401与CU 1402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1402可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、MAC和物理(physical,PHY)层的功能。
此外,可选的,基站140可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器14013和至少一个存储器14014,RU可以包括至少一个天线14011和至少一个射频单元14012,CU可以包括至少一个处理器14022和至少一个存储器14021。
例如,在一种实现方式中,处理器14013用于执行图3中网络设备侧的处理步骤。射频单元14012,用于执行图3中的步骤302和步骤303中的收发操作。在另一种实现方式中,处理器14013可以用于执行图4中的接入网设备侧的处理步骤401。射频单元14012用于执行图4中的接入网设备侧的收发步骤402。
在一个实例中,所述CU1402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器14021和处理器14022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1401可以由一个或 多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器14014和处理器14013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或 组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种接入网络设备的方法,其特征在于,包括:
    接收参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    通过所述参数配置信息接入网络设备。
  2. 根据权利要求1所述的方法,其特征在于,在接收所述参数配置信息之前,所述方法还包括:
    接收最小化路测MDT配置信息;
    根据所述MDT配置信息进行MDT测量以得到测量结果,所述测量结果包括所述终端的区域信息;
    发送所述测量结果。
  3. 根据权利要求2所述的方法,其特征在于,所述区域信息用于指示所述终端的位置。
  4. 根据权利要求2所述的方法,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述接收所述参数配置信息之前,所述方法还包括:
    发送触发信息,所述触发信息用于触发运营辅助信息OAI网元发送所述参数配置信息。
  6. 一种接入网络设备的方法,其特征在于,包括:
    确定参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    发送所述参数配置信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    从接入网设备接收测量结果,所述测量结果包括所述终端的区域信息;
    其中,所述确定参数配置信息包括:
    根据所述终端的区域信息,确定所述参数配置信息。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    从接入及移动性管理功能AMF网元接收所述终端的区域信息;
    其中,所述确定参数配置信息包括:
    根据所述终端的区域信息,确定所述参数配置信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述区域信息用于指示所述终端的位置。
  10. 根据权利要求7或8所述的方法,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
  11. 一种接入网络设备的方法,其特征在于,包括:
    接收参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    向所述终端发送所述参数配置信息。
  12. 根据权利要求11所述的方法,其特征在于,在接收所述参数配置信息之前,所述方法还包括:
    获取最小化路测MDT配置信息;
    向所述终端发送最小化路测MDT配置信息;
    接收来自所述终端的测量结果,所述测量结果为所述终端根据所述MDT配置信息测量得到的,且所述测量结果包括所述终端的区域信息;
    向运营辅助信息OAI网元发送所述测量结果。
  13. 根据权利要求12所述的方法,其特征在于,所述获取最小化路测MDT配置信息包括:
    从操作管理和维护OAM网元接收所述MDT配置信息;或
    从接入及移动性管理功能AMF网元接收所述MDT配置信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述区域信息用于指示所述终端的位置。
  15. 根据权利要求12或13所述的方法,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
  16. 一种接入网络设备的装置,其特征在于,包括:
    收发模块,用于接收参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    处理模块,用于通过所述参数配置信息接入网络设备。
  17. 根据权利要求16所述的装置,其特征在于,所述收发模块,还用于接收最小化路测MDT配置信息;
    所述处理模块,还用于根据所述MDT配置信息进行MDT测量以得到测量结果,所述测量结果包括所述终端的区域信息;
    所述收发模块,还用于发送所述测量结果。
  18. 根据权利要求17所述的装置,其特征在于,所述区域信息用于指示所述终端的位置。
  19. 根据权利要求17所述的装置,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述收发模块,还用于发送触发信息,所述触发信息用于触发运营辅助信息OAI网元发送所述参数配置信息。
  21. 一种接入网络设备的装置,其特征在于,包括:
    处理模块,用于确定参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    收发模块,用于发送所述参数配置信息。
  22. 根据权利要求21所述的装置,其特征在于,所述收发模块,还用于从接入网设备接收测量结果,所述测量结果包括所述终端的区域信息;
    其中,所述处理模块具体用于:
    根据所述终端的区域信息,确定所述参数配置信息。
  23. 根据权利要求21所述的装置,其特征在于,所述收发模块,还用于从接入及移动性管理功能AMF网元接收所述终端的区域信息;
    其中,所述处理模块具体用于:
    根据所述终端的区域信息,确定所述参数配置信息。
  24. 根据权利要求22或23所述的装置,其特征在于,所述区域信息用于指示所述终端的位置。
  25. 根据权利要求22或23所述的装置,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
  26. 一种接入网络设备的装置,其特征在于,包括:
    收发模块,用于接收参数配置信息,所述参数配置信息用于指示终端传输数据所需的时频资源和所述终端传输所述数据能够使用的小区;
    所述收发模块,还用于向所述终端发送所述参数配置信息。
  27. 根据权利要求26所述的装置,其特征在于,所述收发模块,还用于获取最小化路测MDT配置信息;
    所述收发模块,还用于向所述终端发送最小化路测MDT配置信息;
    所述收发模块,还用于接收来自所述终端的测量结果,所述测量结果为所述终端根据所述MDT配置信息测量得到的,且所述测量结果包括所述终端的区域信息;
    所述收发模块,还用于向运营辅助信息OAI网元发送所述测量结果。
  28. 根据权利要求27所述的装置,其特征在于,所述收发模块具体用于:
    从操作管理和维护OAM网元接收所述MDT配置信息;或
    从接入及移动性管理功能AMF网元接收所述MDT配置信息。
  29. 根据权利要求26或27所述的装置,其特征在于,所述区域信息用于指示所述终端的位置。
  30. 根据权利要求26或27所述的装置,其特征在于,所述区域信息用于指示所述终端的历史移动轨迹或预期移动轨迹。
PCT/CN2020/122208 2019-10-31 2020-10-20 接入网络设备的方法和装置 WO2021082985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20883182.6A EP4044654A4 (en) 2019-10-31 2020-10-20 METHOD AND APPARATUS FOR ACCESSING A NETWORK DEVICE
US17/732,083 US20220264334A1 (en) 2019-10-31 2022-04-28 Network device access method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911051627.9 2019-10-31
CN201911051627.9A CN112752276B (zh) 2019-10-31 2019-10-31 接入网络设备的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,083 Continuation US20220264334A1 (en) 2019-10-31 2022-04-28 Network device access method and apparatus

Publications (1)

Publication Number Publication Date
WO2021082985A1 true WO2021082985A1 (zh) 2021-05-06

Family

ID=75641336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122208 WO2021082985A1 (zh) 2019-10-31 2020-10-20 接入网络设备的方法和装置

Country Status (4)

Country Link
US (1) US20220264334A1 (zh)
EP (1) EP4044654A4 (zh)
CN (1) CN112752276B (zh)
WO (1) WO2021082985A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116234051A (zh) * 2021-12-02 2023-06-06 展讯半导体(南京)有限公司 随机接入方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045063A1 (zh) * 2014-09-25 2016-03-31 华为技术有限公司 随机接入方法、网络设备及用户设备
WO2016054808A1 (zh) * 2014-10-10 2016-04-14 华为技术有限公司 一种路测信息交互方法和装置
CN108076488A (zh) * 2016-11-14 2018-05-25 华为技术有限公司 用于小区切换的方法、装置和系统
CN109219133A (zh) * 2017-06-30 2019-01-15 中国移动通信有限公司研究院 一种接入处理方法、用户设备及网络设备
CN109874111A (zh) * 2017-12-05 2019-06-11 中兴通讯股份有限公司 调度方法、发送信息的方法、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108840B2 (ja) * 2013-01-09 2017-04-05 株式会社Nttドコモ 無線基地局
US20140334350A1 (en) * 2013-05-08 2014-11-13 Research In Motion Limited Methods and apparatus for cell measurement
CN105934969B (zh) * 2014-01-29 2019-04-05 Lg电子株式会社 在无线通信系统中发送报告消息的方法和装置
CN107889244B (zh) * 2016-09-30 2020-06-02 华为技术有限公司 通信方法、装置及计算机可读存储介质
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统
CN109474953B9 (zh) * 2017-09-08 2021-08-10 维沃移动通信有限公司 一种mdt的配置方法和相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045063A1 (zh) * 2014-09-25 2016-03-31 华为技术有限公司 随机接入方法、网络设备及用户设备
WO2016054808A1 (zh) * 2014-10-10 2016-04-14 华为技术有限公司 一种路测信息交互方法和装置
CN108076488A (zh) * 2016-11-14 2018-05-25 华为技术有限公司 用于小区切换的方法、装置和系统
CN109219133A (zh) * 2017-06-30 2019-01-15 中国移动通信有限公司研究院 一种接入处理方法、用户设备及网络设备
CN109874111A (zh) * 2017-12-05 2019-06-11 中兴通讯股份有限公司 调度方法、发送信息的方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Principles for immediate MDT", 3GPP DRAFT; R2-103197 PRINCIPLES FOR IMMEDIATE MDT, vol. RAN WG2, 3 May 2010 (2010-05-03), Montreal, Canada, pages 1 - 2, XP050423104 *

Also Published As

Publication number Publication date
EP4044654A4 (en) 2022-11-30
CN112752276B (zh) 2022-11-25
CN112752276A (zh) 2021-05-04
EP4044654A1 (en) 2022-08-17
US20220264334A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
WO2020062971A1 (zh) 传输信号的方法和通信装置
US11129191B2 (en) Signal transmission method and device
US10693548B2 (en) Two reference signal beam reporting and identification
US20200236636A1 (en) Method of synchronized signal block measurement, user equipment and network device
US20210167839A1 (en) Link failure recovery method and related device
US20210274513A1 (en) Uplink determining method and apparatus
US20230171771A1 (en) Apparatus and method of wireless communication
WO2021062764A1 (zh) 终端的定时提前量ta处理的方法和装置
US20210037575A1 (en) User equipment
JP7333827B2 (ja) 直流成分の周波数領域の位置を決定するための方法および装置、記憶媒体、端末、ならびに基地局
CN110831020A (zh) 检测dci的方法、配置pdcch的方法和通信装置
US20230247618A1 (en) Communication method and apparatus
US10944511B2 (en) Information bits for polar codes with mixed criteria
US20210337572A1 (en) Data transmission method and communication apparatus
US11540261B2 (en) Method for indicating number of transmitting ports of UE, UE and network device
US20240057127A1 (en) Pscch detection method and communication apparatus
US11553444B2 (en) Method, network apparatus, and terminal apparatus for indicating position of synchronization signal block
WO2021082985A1 (zh) 接入网络设备的方法和装置
EP4002912A1 (en) Beam failure recovery method and device
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2020221040A1 (zh) 通信方法和通信装置
US20240196399A1 (en) Monitoring method and terminal
WO2024001639A1 (zh) 配置方法,装置和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020883182

Country of ref document: EP

Effective date: 20220509

NENP Non-entry into the national phase

Ref country code: DE