WO2018171377A1 - 随机接入方法、用户设备、基站以及随机接入系统 - Google Patents

随机接入方法、用户设备、基站以及随机接入系统 Download PDF

Info

Publication number
WO2018171377A1
WO2018171377A1 PCT/CN2018/077103 CN2018077103W WO2018171377A1 WO 2018171377 A1 WO2018171377 A1 WO 2018171377A1 CN 2018077103 W CN2018077103 W CN 2018077103W WO 2018171377 A1 WO2018171377 A1 WO 2018171377A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
scrambling code
preamble sequence
service data
mapping
Prior art date
Application number
PCT/CN2018/077103
Other languages
English (en)
French (fr)
Inventor
赵泓毅
张锦芳
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772323.4A priority Critical patent/EP3573413A4/en
Publication of WO2018171377A1 publication Critical patent/WO2018171377A1/zh
Priority to US16/576,785 priority patent/US11284442B2/en
Priority to US17/682,509 priority patent/US11985709B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a random access method, a user equipment (User Equipment, UE), a base station, and a random access system.
  • UE User Equipment
  • the UE In order to access the wireless network and send uplink data, the UE needs to establish a connection with the cell through a random access procedure and obtain uplink synchronization.
  • LTE Long Term Evolution
  • the following six types of events trigger the random access procedure.
  • RRC_IDLE Radio Resource Control_IDLE
  • RRC_CONNECTED Radio Resource Control_CONNECTED
  • RRC Connection Re-establishment procedure for the UE to reestablish the wireless connection after a Radio Link Failure.
  • the uplink is in the "out of sync" state.
  • the uplink data arrives. For example, when the UE needs to report the measurement report to the network side or send the user data, the uplink is in the "out of sync" state or there is no physical uplink control channel available (English: Physical Uplink Control Channel, The PUCCH resource is used to transmit a scheduling request (English: Scheduling Request, SR).
  • SR Scheduling Request
  • the random access procedure is divided into “competitive” based and “non-competitive” based access procedures.
  • the contention-based access procedure is applicable to the first five events
  • the non-contention based access procedure is applicable to the third, fourth, and sixth events described above.
  • the contention based random access procedure includes the following four steps.
  • Step 1 The UE transmits a random access preamble sequence (English: Preamble) to the base station through message 1 (MSG1).
  • a random access preamble sequence English: Preamble
  • MSG1 message 1
  • Step 2 The base station sends a random access response (RAR) to the UE through message 2 (MSG2).
  • RAR random access response
  • Step 3 The UE sends a Layer 2 or Layer 3 (English: Layer 2/Layer 3, L2/L3) message to the base station through Message 3 (MSG3).
  • Layer 2 or Layer 3 (English: Layer 2/Layer 3, L2/L3) message
  • Step 4 The base station sends a contention conflict resolution message to the UE through message 4 (MSG4).
  • the UE When transmitting the MSG1, the UE usually allocates the generated Preamble to the time domain data, converts it into time domain data, and directly allocates the subcarrier, and transmits the processed Preamble through the antenna port of the UE.
  • the embodiment of the present application provides a random access method for improving the problem of large service delay in the prior art.
  • a random access method After a user equipment UE obtains downlink synchronization with a cell, determining a preamble sequence of the UE in the cell, the UE has not obtained uplink synchronization with the cell; The UE obtains the service data; the UE determines the scrambling code, the scrambling code has a one-to-one correspondence with the preamble sequence, or the scrambling code has a one-to-one correspondence with the identifier of the UE, or the scrambling code There is a one-to-one correspondence between the combination of the preamble sequence and the identifier of the UE; the UE performs scrambling processing on the service data according to the scrambling code to obtain scrambled service data; a resource mapping relationship, configured to allocate time-frequency resources respectively occupied by the preamble sequence and the scrambled service data; the UE sends the preamble sequence to a base station to which the cell belongs, on the configured time-frequency resource
  • the scrambling code There is
  • the UE when transmitting the MSG1, the UE sends the preamble sequence and the service data to the base station on the configured time-frequency resource, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station can obtain the service data in time from the received MSG1 to provide the UE with the service, and does not have to wait for the random access process to complete before obtaining the service data transmitted by the UE by using the additional time-frequency resource, thereby shortening the service delay. .
  • the scrambling code has a one-to-one correspondence with the preamble sequence
  • the determining the scrambling code includes: receiving, by the UE, a first scrambling code mapping indication sent by the base station, where the A scrambling code mapping indication is used to indicate a mapping manner of the preamble sequence and the scrambling code; the UE determines, according to the mapping manner and the preamble sequence, the scrambling code that has a one-to-one correspondence with the preamble sequence.
  • mapping methods include:
  • the scrambling code is the preamble sequence, where N is a natural number greater than 1, the u is a natural number, and 0 ⁇ u ⁇ N, or
  • the scrambling code is a 1/2 sequence of the preamble sequence
  • the scrambling code is a quarter sequence of the preamble sequence
  • the scrambling code is a ZC sequence of length M generated by using v as a root, where N and M are natural numbers greater than 1, respectively.
  • u and v be natural numbers, 0 ⁇ u ⁇ N, 0 ⁇ v ⁇ M, or
  • the scrambling code is another sequence having a one-to-one correspondence with the preamble sequence in a predetermined codebook, the predetermined codebook The one-to-one correspondence between the Z-series of length N generated by u as the root and the other sequence is included.
  • the first scrambling code mapping indication is that the base station notifies the UE by using a Physical Broadcast Channel (PBCH), or the base station passes system information (English: System The information, SI) message notifies the UE, or the base station notifies the UE by using a Physical Downlink Control Channel (PDCCH).
  • PBCH Physical Broadcast Channel
  • SI System The information
  • the scrambling code has a one-to-one correspondence with the identifier of the UE
  • the determining the scrambling code includes: receiving, by the UE, the second scrambling code mapping indication by the base station, where the The second scrambling code mapping is used to indicate a mapping manner of the preamble sequence and the identifier of the UE; and the UE determines, according to the mapping manner and the identifier of the UE, the one-to-one correspondence with the identifier of the UE. Scrambling code.
  • the mapping manner includes: if the UE is in an RRC_CONNECTED state or an RRC_INACTIVE state, the scrambling code is a ZC sequence that has a one-to-one correspondence with an identifier of the UE in a predetermined codebook.
  • the second scrambling code mapping indication is that the base station notifies the UE by using a PBCH, or the base station notifies the UE by using an SI message, or the base station notifies the PDCCH by using the PDCCH. UE's.
  • the scrambling code has a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE
  • the determining the scrambling code includes: the UE receiving the base station to which the cell belongs a third scrambling code mapping indication, the third scrambling code mapping indicating a mapping manner for indicating a combination of the preamble sequence and the identifier of the preamble sequence and the UE; the UE according to the mapping manner and the preamble And combining the sequence and the identifier of the UE to determine the scrambling code in a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE.
  • the mapping manner includes: if the UE is in an RRC_CONNECTED state or an RRC_INACTIVE state, the scrambling code is a combination of the preamble sequence and the identifier of the UE in a predetermined codebook. A ZC sequence of a corresponding relationship.
  • the third scrambling code mapping indication is that the base station notifies the UE by using a PBCH, or the base station notifies the UE by using an SI message, or the base station notifies the Said UE.
  • the configuring the time-frequency resource occupied by the preamble sequence and the scrambled service data according to the predetermined resource mapping relationship includes: receiving, by the UE, the resource sent by the base station a mapping indicator, the resource mapping indicator is used to indicate the predetermined resource mapping relationship; the UE configures the preamble sequence and the scrambled according to the resource mapping relationship indicated by the resource mapping indicator The time-frequency resources occupied by the business data respectively.
  • the resource mapping indicator is that the base station notifies the UE by using a PBCH, or the base station notifies the UE by using an SI message, or the base station notifies the UE by using a PDCCH. .
  • the predetermined resource mapping relationship includes a time domain resource mapping relationship and a frequency domain resource mapping relationship, where
  • the time domain resource mapping relationship includes
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the P+1th to P+Qth OFDM symbols in the first radio subframe, where P and Q are natural numbers greater than or equal to 1, and the sum of P+Q is smaller than the total number of OFDM symbols in the first wireless subframe, or
  • the scrambled service data occupies the first Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the Q+1th to P+Qth OFDM symbols in the first radio subframe, or
  • the preamble sequence occupies a last P OFDM symbols in a first radio subframe
  • the scrambled service data occupies a last P+1 to a last P+Q OFDM symbol in the first radio subframe
  • the scrambled service data occupies the last Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last Q+1th to the last P+Q OFDM symbols in the first radio subframe ,or
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the last Q OFDM symbols in the first radio subframe
  • the scrambled service data occupies the first Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last P OFDM symbols in the first radio subframe, or
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the length indicator NI occupies the P+1 to P+I OFDM symbols in the first radio subframe
  • the length indicator a number of subframes J for indicating the scrambled service data, where the scrambled service data occupies the remaining OFDM symbols starting from the P+I+1 OFDM symbols in the first radio subframe
  • an OFDM symbol in the first to the Jth wireless subframes adjacent to the first wireless subframe where I, J is a natural number greater than or equal to 1, or
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the remaining OFDM symbols starting from the P+1th OFDM symbol in the first radio subframe and An OFDM symbol in the first to the Jth radio subframes adjacent to the first radio subframe, where the end indicator occupies the last L OFDM symbols in the Jth radio subframe, the end The indicator is used to indicate that the scrambled service data has been transmitted;
  • the frequency domain resource mapping relationship includes
  • the preamble sequence and the scrambled service data respectively occupy different symbol symbols in the first subcarrier, where the first subcarrier includes X subcarriers, where X is a natural number greater than or equal to 1, or
  • the preamble sequence occupies a symbol in a first subcarrier
  • the scrambled service data occupies a symbol in a first subcarrier
  • the first subcarrier includes X subcarriers
  • the second subcarrier includes Y subcarriers Carrier, where X, Y are natural numbers greater than one.
  • the UE performs scrambling processing on the service data according to the scrambling code, including: the UE performs encoding processing on the service data according to a predetermined encoding manner, and obtains an encoding process.
  • the service data is: the UE performs scrambling processing on the encoded service data according to the scrambling code.
  • Encoding the service data before the scrambling process can improve the coding efficiency of the service data and improve the accuracy of the base station decoding.
  • the method before the UE performs the encoding process on the service data according to a predetermined coding manner, the method further includes: receiving, by the UE, an encoding mode indicator sent by the base station, where the coding mode indicator is Used to indicate the predetermined encoding mode.
  • the coding mode indicator is that the base station notifies the UE by using a PBCH, or the base station notifies the UE by using an SI message, or the base station notifies the UE by using a PDCCH. .
  • the random access response includes response data
  • the response data is generated by the base station according to the service data.
  • the method further includes: receiving response data sent by the base station, where the response data is The base station generates according to the service data.
  • a second aspect provides a random access method, including: determining, by a base station, time-frequency resources occupied by a preamble sequence and service data in a cell covered by the base station according to a predetermined resource mapping relationship; Receiving, by the UE, a preamble sequence and service data sent by the UE, the UE has obtained downlink synchronization with the cell, and has not obtained uplink synchronization with the cell; the base station determines a scrambling code, the scrambling code and receiving There is a one-to-one correspondence between the preamble sequence and the identifier of the UE, or a one-to-one correspondence between the scrambling code and the combination of the received preamble sequence and the identifier of the UE.
  • the base station performs descrambling processing on the service data sent by the UE according to the scrambling code to obtain descrambled service data; and the base station sends a random access response to the UE according to the preamble sequence.
  • the base station When receiving the MSG1, the base station receives the preamble sequence and the service data sent by the UE in the time-frequency resource with the mapping relationship, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station does not have to wait for the random access procedure to complete, and then provides services for the UE, which shortens the service delay.
  • the method before receiving the preamble sequence and the service data sent by the UE, the method further includes: the base station sending a resource mapping indicator to the UE, where the resource mapping indicator is used to indicate the A predetermined resource mapping relationship.
  • the resource mapping indicator is that the base station notifies the UE by using a PBCH, or the base station notifies the UE by using an SI message, or the base station notifies the UE by using a PDCCH. .
  • the predetermined resource mapping relationship includes a time domain resource mapping relationship and a frequency domain resource mapping relationship, where
  • the time domain resource mapping relationship includes
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the P+1th to P+Qth OFDM symbols in the first radio subframe, where P and Q are natural numbers greater than or equal to 1, and the sum of P+Q is smaller than the total number of OFDM symbols in the first wireless subframe, or
  • the scrambled service data occupies the first Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the Q+1th to P+Qth OFDM symbols in the first radio subframe, or
  • the preamble sequence occupies a last P OFDM symbols in a first radio subframe
  • the scrambled service data occupies a last P+1 to a last P+Q OFDM symbol in the first radio subframe
  • the scrambled service data occupies the last Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last Q+1th to the last P+Q OFDM symbols in the first radio subframe ,or
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the last Q OFDM symbols in the first radio subframe
  • the scrambled service data occupies the first Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last P OFDM symbols in the first radio subframe, or
  • the preamble sequence occupies a first P OFDM symbol in a first radio subframe
  • the scrambled service data occupies a P+1 to P+Q OFDM symbol in the first radio subframe
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the length indicator NI occupies the P+1 to P+I OFDM symbols in the first radio subframe
  • the length indicator a number of subframes J for indicating the scrambled service data, where the scrambled service data occupies the remaining OFDM symbols starting from the P+I+1 OFDM symbols in the first radio subframe
  • an OFDM symbol in the first to the Jth wireless subframes adjacent to the first wireless subframe where I, J is a natural number greater than or equal to 1, or
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the remaining OFDM symbols starting from the P+1th OFDM symbol in the first radio subframe and An OFDM symbol in the first to the Jth radio subframes adjacent to the first radio subframe, where the end indicator occupies the last L OFDM symbols in the Jth radio subframe, the end The indicator is used to indicate that the scrambled service data has been transmitted;
  • the frequency domain resource mapping relationship includes
  • the preamble sequence and the scrambled service data respectively occupy different symbol symbols in the first subcarrier, where the first subcarrier includes X subcarriers, where X is a natural number greater than or equal to 1, or
  • the preamble sequence occupies a symbol in a first subcarrier
  • the scrambled service data occupies a symbol in a first subcarrier
  • the first subcarrier includes X subcarriers
  • the second subcarrier includes Y subcarriers Carrier, where X, Y are natural numbers greater than one.
  • the scrambling code has a one-to-one correspondence with the preamble sequence
  • the method further includes: sending, by the base station, the A scrambling code mapping indicates that the first scrambling code mapping indicates a mapping manner for indicating a preamble sequence and a scrambling code.
  • mapping method includes:
  • the scrambling code is the preamble sequence, where N is a natural number greater than 1, the u is a natural number, and 0 ⁇ u ⁇ N, or
  • the scrambling code is a 1/2 sequence of the preamble sequence
  • the scrambling code is a quarter sequence of the preamble sequence
  • the scrambling code is a ZC sequence of length M generated by using v as a root, where N and M are natural numbers greater than 1, respectively.
  • u and v be natural numbers, 0 ⁇ u ⁇ N, 0 ⁇ v ⁇ M, or
  • the scrambling code is another sequence having a one-to-one correspondence with the preamble sequence in a predetermined codebook, the predetermined codebook The one-to-one correspondence between the Z-series of length N generated by u as the root and the other sequence is included.
  • the first scrambling code mapping indication is sent by the base station by using a PBCH, or sent by the base station by using an SI message, or sent by the base station by using a PDCCH.
  • the scrambling code has a one-to-one correspondence with the identifier of the UE, and before receiving the preamble sequence and the service data sent by the UE, the method further includes: sending, by the base station, the UE The second scrambling code mapping indicates that the second scrambling code mapping indicates a mapping manner for indicating an indication of the preamble sequence and the UE.
  • the mapping manner includes: if the UE is in an RRC_CONNECTED state or an RRC_ACTIVE state, the scrambling code is a ZC sequence that has a one-to-one correspondence with an identifier of the UE in a predetermined codebook.
  • the second scrambling code mapping indication is sent by the base station by using a PBCH, or the base station is sent by using an SI message, or the base station is sent by using a PDCCH.
  • the scrambling code has a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE, and before receiving the preamble sequence and the service data sent by the UE, the method further includes: The base station sends a third scrambling code mapping indication to the UE, where the third scrambling code mapping indicates a mapping manner for indicating a combination of the preamble sequence and the identifier of the preamble sequence and the UE.
  • the mapping manner includes: if the UE is in an RRC_CONNECTED state or an RRC_INACTIVE state, the scrambling code is a combination of the preamble sequence and the identifier of the UE in a predetermined codebook. A ZC sequence of a corresponding relationship.
  • the third scrambling code mapping indication is sent by the base station by using a PBCH, or sent by the base station by using an SI message, or sent by the base station by using a PDCCH.
  • the base station after obtaining the descrambled service data, further includes: generating, by the base station, response data according to the descrambled service data; and sending, by the base station, the response data to the UE, where The response data is carried in the random access response or the response data is sent after the random access response.
  • the base station further includes: decoding, by the base station, the descrambled service data according to a decoding manner corresponding to a predetermined coding manner.
  • the base station should also perform corresponding decoding processing.
  • the reliability of data transmission can be improved by encoding and decoding.
  • the method before receiving the preamble sequence and the service data sent by the UE, the method further includes: the base station sending an encoding mode indicator to the UE, where the encoding mode indicator is used to indicate the The predetermined encoding method.
  • the coding mode indicator is sent by the base station through a PBCH, or sent by the base station by using an SI message, or sent by the base station by using a PDCCH.
  • the base station generates response data according to the decoded service data; the base station sends the response data to the UE, where the response data is carried in the random access response. Or the response data is sent after the random access response.
  • the present application provides a UE, including: a processor, a memory, a transceiver, and an input/output device, wherein the processor is mainly used to process a communication protocol and communication data, and control the entire user equipment.
  • Execute a software program that processes the data of the software program.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the transceiver includes a control circuit and an antenna, and is mainly used for transmitting and receiving an RF signal in the form of electromagnetic waves.
  • the processor, the memory, the transceiver, and the input/output device are configured to implement the steps in a random access method provided by the above first aspect.
  • the present application provides a base station, where the base station device includes one or more transceivers and one or more processors for implementing the steps in a random access method provided by the foregoing second aspect.
  • the present application provides a random access system, including the UE described in any one of the third aspect or the third aspect, and any one of the fourth aspect or the fourth aspect The base station described in the possible design manner.
  • the embodiment of the present application provides a computer storage medium, configured to store computer software instructions used by the UE, and includes any possible implementation manner for performing the foregoing first aspect or the foregoing first aspect.
  • the embodiment of the present application provides a computer storage medium, configured to store computer software instructions used by the base station, and includes any possible implementation manner for performing the foregoing second aspect or the foregoing second aspect.
  • FIG. 1 is a schematic diagram of a random access method according to an embodiment of the present application
  • FIG. 3A is a first schematic diagram of a time domain resource mapping relationship according to an embodiment of the present disclosure
  • FIG. 3B is a second schematic diagram of a time domain resource mapping relationship according to an embodiment of the present disclosure.
  • 3C is a third schematic diagram of a time domain resource mapping relationship provided by an embodiment of the present application.
  • FIG. 3D is a fourth schematic diagram of a time domain resource mapping relationship according to an embodiment of the present disclosure.
  • 3E is a fifth schematic diagram of a time domain resource mapping relationship provided by an embodiment of the present application.
  • FIG. 3F is a sixth schematic diagram of a time domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 3G is a seventh schematic diagram of a time domain resource mapping relationship provided by an embodiment of the present application.
  • 3H is a schematic diagram of an eighth type of time domain resource mapping relationship provided by an embodiment of the present application.
  • FIG. 3 is a ninth schematic diagram of a time domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 3 is a first schematic diagram of a first frequency domain resource mapping relationship according to an embodiment of the present application
  • FIG. 3K is a first schematic diagram of a first frequency domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 3L is a second schematic diagram of a first frequency domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of a first frequency domain resource mapping relationship provided by an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of a first frequency domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of a first frequency domain resource mapping relationship according to an embodiment of the present application.
  • FIG. 4 is another flowchart of a random access method according to an embodiment of the present disclosure.
  • FIG. 5 is another flowchart of a random access method according to an embodiment of the present application.
  • FIG. 6 is another flowchart of a random access method according to an embodiment of the present application.
  • FIG. 7 is another flowchart of a random access method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the UE and the network side need to transmit service data through more time-frequency resources, such as in the Internet of Things or the Internet of Things.
  • the UE needs to report the current measurement value of the location, the environment, and the like, so that the network side sends a control command to the UE. In this way, the UE needs to wait for a long time to obtain the services provided by the network side.
  • the location of the vehicle where the UE is located, and the surrounding environment may have changed compared with when the UE initiates the random access procedure.
  • the embodiment of the present application provides a random access method.
  • the UE not only carries the Preamble but also carries the service data in the MSG1 of the random access procedure.
  • the base station can obtain the service data from the received MSG1, and does not have to wait for the random access procedure to complete before obtaining the service data transmitted by the UE by using the additional time-frequency resources.
  • the base station can provide services for the UE according to the service data carried in the MSG1. Therefore, the random access scheme provided by the embodiment of the present application can shorten the service delay.
  • the UE In order to transmit data with the network side, the UE first needs to establish a connection with a cell. Downlink synchronization and uplink synchronization are involved in establishing a connection with a cell.
  • the UE obtains downlink synchronization with one cell through the cell search process and obtains system information of the cell.
  • the UE not only needs to perform cell search at the time of power-on, but in order to support mobility, the UE continuously searches for neighbor cells, obtains synchronization, and estimates the reception quality of the cell signal, thereby determining whether to perform handover in the RRC_CONNECTED state of the UE, or in the UE. Whether to perform cell reselection when in the RRC_IDLE state.
  • the UE After obtaining the downlink synchronization, the UE establishes uplink synchronization with the cell that has obtained downlink synchronization through a random access procedure.
  • FIG. 1 is a schematic diagram of a random access method provided by an embodiment of the present application.
  • the random access method is applicable to "competitive" based and “non-competitive” based access procedures.
  • the UE Before step 10 in FIG. 1, the UE has obtained downlink synchronization with a cell through a cell search process, that is, acquires frequency and symbol synchronization with the cell, acquires a starting position of a downlink frame, and determines a physical layer cell identifier of the cell ( English: Physical-layer Cell Identity, PCI). However, the UE has not yet obtained uplink synchronization with the cell.
  • a cell refers to a cell that has obtained downlink synchronization in the cell search process but has not obtained uplink synchronization, that is, a cell that is a random access target.
  • Step 10 The UE sends the MSG1 to the base station to which the cell belongs.
  • MSG1 contains not only the preamble sequence but also the scrambled service data.
  • the time-frequency resources occupied by the preamble sequence and the scrambled service data respectively meet the predetermined resource mapping relationship.
  • the process of determining the preamble sequence by the UE is similar to the existing random access procedure, including obtaining resources that can be used for transmitting the preamble sequence from the broadcast system information SIB2 sent by the base station, and for contention-based random access and non-contention based random access. Enter the separately configured preamble sequence grouping.
  • the UE selects a preamble sequence from the preamble sequence group according to the estimated size of the MSG3. Other details of the UE determining the preamble sequence are not described herein again.
  • the UE After determining the preamble sequence, the UE configures a time-frequency resource required to send the determined preamble sequence and service data according to a predetermined resource mapping relationship. The UE then sends the preamble sequence and service data to the base station to which the cell belongs on the configured time-frequency resource.
  • a predetermined resource mapping relationship The latter embodiment will describe in detail the resource mapping relationship and more details of the UE transmitting MSG1.
  • the business data includes various control information, or business information of the application.
  • the service information of the application may be a measurement parameter value of the current location, environment, and the like of the UE.
  • the UE may perform scrambling processing on the service data according to the scrambling code corresponding to the preamble sequence of the UE before transmitting the service data.
  • Step 20 The UE receives the MSG2 sent by the base station, and the MSG2 is a random access response.
  • the random access response includes an RA-RNTI, an identifier of the random access preamble sequence, a time advance command determined according to the estimated delay between the base station and the UE, and a temporary C-RNTI, an uplink resource allocated for the MSG3, and the like.
  • the UE may determine whether the MSG2 corresponding to the MSG1 that has been sent is successfully received according to the RA-RNTI and the identifier of the preamble sequence carried in the MSG2, and perform subsequent processing.
  • the preamble sequence is UE-specific, so there is no collision. And the UE already has a unique identifier C-RNTI in the access cell, so the base station is not required to allocate the C-RNTI to the UE, so the access procedure is completed. Only the contention-based random access needs to continue to perform the subsequent steps, that is, the UE transmits the MSG3 and the MSG4 transmitted by the receiving base station.
  • the subsequent steps are basically similar to the existing random access process, and are not described here.
  • the UE when transmitting the MSG1, the UE sends the preamble sequence and the service data to the base station on the configured time-frequency resource, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station can obtain the service data in time from the received MSG1 to provide the UE with the service, and does not have to wait for the random access process to complete before obtaining the service data transmitted by the UE by using the additional time-frequency resource, thereby shortening the service delay. .
  • FIG. 2 is a schematic diagram of a random access method according to an embodiment of the present application.
  • FIG. 2 focuses on the implementation details of the random access method from the perspective of the UE.
  • Step 21 After obtaining the downlink synchronization with the cell, the UE determines a preamble sequence of the UE in the cell.
  • the process of determining the preamble sequence by the UE is similar to the existing random access procedure and will not be repeated here.
  • the leader sequence is a Zadoff-Chu ZC sequence, an M sequence or a Golden sequence, and the like.
  • the UE obtains service data.
  • the UE can obtain service data from an application installed by the UE.
  • step 21 and step 22 It is not necessary to define the execution order of step 21 and step 22. After the execution of step 21 and step 22 is completed, the UE performs step 23.
  • step 23 the UE determines a scrambling code for performing scrambling processing on the service data.
  • the scrambling code has a one-to-one correspondence with the preamble sequence determined in step 21, and the RRC state of the UE is not limited.
  • the scrambling code has a one-to-one correspondence with the identifier of the UE, or the scrambling code has a one-to-one correspondence with the combination of the preamble sequence determined by step 21 and the identifier of the UE.
  • the RRC_INACTIVE state has the following feature:
  • the network side reserves context information of the UE in RRC_INACTIVE.
  • the network side can know the location of the UE in the RRC_INACTIVE state at the RNA layer, that is, the network layer can know which RNA the UE is in.
  • the identifier of the UE refers to the unique identifier of the UE in the base station, including the Cell Radio Network Temporary Identifier (C-RNTI) and the temporary identifier (English: Temporary Mobile Subscriber) Identity, TMSI), international mobile subscriber identity (IMSI), etc.
  • C-RNTI Cell Radio Network Temporary Identifier
  • TMSI Temporary Mobile Subscriber Identity
  • IMSI international mobile subscriber identity
  • the determining manner of the scrambling code is that the UE and the base station to which the cell belongs are known in advance. After determining the preamble sequence, the UE may determine a corresponding scrambling code according to the preamble sequence and/or the identifier of the UE.
  • the manner of determining the scrambling code is configured by default in the base station and the UE.
  • the determining manner of the foregoing scrambling code is that the base station notifies the UE by using a scrambling code mapping indication.
  • the base station uses three scrambling code mapping indications to indicate one of the above three correspondences and a specific mapping manner.
  • the first scrambling code mapping indication is used to indicate a mapping manner of the preamble sequence and the scrambling code.
  • the first scrambling code mapping indication is 1X, where 1 is used to indicate that the scrambling code has a one-to-one correspondence with the preamble sequence, and X is used to indicate a mapping manner of the preamble sequence and the scrambling code.
  • the mapping manner of the preamble sequence and the scrambling code includes, but is not limited to, any one of the following (1) to (5).
  • the scrambling code is the preamble sequence, where N is a natural number greater than 1, and the u is a natural number. And 0 ⁇ u ⁇ N.
  • the first scrambling code mapping indication may be 11.
  • the scrambling code is a 1/2 sequence of the preamble sequence.
  • the first scrambling code mapping indication may be 12.
  • the scrambling code is a 1/4 sequence of the preamble sequence.
  • the first scrambling code mapping indication may be 13.
  • the scrambling code is a ZC sequence of length M generated by using v as a root, where N and M are respectively greater than 1.
  • u and v are natural numbers, respectively, 0 ⁇ u ⁇ N, 0 ⁇ v ⁇ M.
  • the first scrambling code mapping indication may be 14.
  • the scrambling code is another sequence having a one-to-one correspondence with the preamble sequence in a predetermined codebook
  • the predetermined codebook includes a one-to-one correspondence between the ZC sequence of length N generated by u and the other sequence.
  • the first scrambling code mapping indication may be 15.
  • the second scrambling code mapping indication is used to indicate a mapping manner of the preamble sequence and the identifier of the UE.
  • the second scrambling code mapping indication is 2X, where 2 is used to indicate a one-to-one correspondence with the identifier of the UE, and X is used to indicate a mapping manner of the preamble sequence and the identifier of the UE.
  • the mapping manner of the preamble sequence and the identifier of the UE includes: if the UE is in an RRC_CONNECTED state or an RRC_ACTIVE state, the scrambling code is a ZC sequence that has a one-to-one correspondence with the identifier of the UE in a predetermined codebook.
  • the second scrambling code mapping indication may be 21.
  • the third scrambling code mapping indicates a mapping manner for indicating a combination of the preamble sequence and the identifier of the preamble sequence and the UE.
  • the third scrambling code mapping indication is 3X, where 3 is used to indicate that the scrambling code has a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE, and X is used to indicate the preamble sequence and the preamble sequence and the The mapping manner of the combination of the identifiers of the UEs.
  • the mapping manner of the combination of the preamble sequence and the identifier of the preamble sequence and the identifier of the UE includes: the scrambling code is a ZC sequence in a one-to-one correspondence between the preamble sequence and the identifier of the UE in a predetermined codebook.
  • the third scrambling code mapping indication may be 31.
  • the UE receives the first scrambling code mapping indication sent by the base station. And determining, by the UE, the scrambling code that has a one-to-one correspondence with the preamble sequence according to the mapping manner indicated by the first scrambling code mapping indication and the preamble sequence.
  • the UE receives the second scrambling code mapping indication sent by the base station.
  • the UE determines, according to the mapping manner indicated by the second scrambling code mapping indication and the identifier of the UE, the scrambling code that has a one-to-one correspondence with the identifier of the UE.
  • the UE receives a third scrambling code mapping indication sent by the base station to which the cell belongs.
  • the UE determines, according to the mapping manner indicated by the third scrambling code mapping indication and the combination of the preamble sequence and the identifier of the UE, the interference that has a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE. code.
  • the base station notifies the UE of one of the three types of scrambling code mapping indications by using any one of the following manners, where the notification manner includes but is not limited to:
  • the base station notifies the UE of the scrambling code mapping indication through the PBCH;
  • the base station After the cell search process is completed, the base station notifies the UE of the scrambling code mapping by using the SI of the cell;
  • the base station For a UE in the RRC_CONNECTED, RRC_ACTIVE or RRC_INACTIVE state, the base station notifies the specific UE of the scrambling code mapping through the PDCCH or the dedicated channel.
  • Step 24 The UE performs scrambling processing on the service data according to the scrambling code to obtain the scrambled service data.
  • Scrambling processing refers to encrypting a signal carrying service data with a scrambling code. Scrambling can improve the security of data transmission.
  • Step 25 The UE configures time-frequency resources respectively occupied by the preamble sequence and the scrambled service data according to a predetermined resource mapping relationship.
  • the predetermined resource mapping relationship is known in advance by both the UE and the base station to which the cell belongs.
  • the UE determines the time-frequency resource used for the subsequent transmission of the preamble sequence according to the resource that can be used to transmit the preamble sequence indicated in the SIB2, and determines the corresponding service data corresponding to the scrambled resource according to the time-frequency resource used by the preamble sequence and the predetermined resource mapping relationship. Time-frequency resources occupied.
  • the foregoing predetermined resource mapping relationship is configured by default in the base station and the UE.
  • the foregoing predetermined resource mapping relationship is that the base station notifies the UE.
  • the base station uses a resource mapping indicator to indicate a predetermined resource mapping relationship.
  • the base station sends a resource mapping indicator to the UE, and the UE receives the resource mapping indicator sent by the base station.
  • the UE configures a time-frequency resource occupied by the preamble sequence and the scrambled service data according to the resource mapping relationship indicated by the resource mapping indicator.
  • the base station notifies the UE of the resource mapping indicator by any one of the following methods, including but not limited to:
  • the base station notifies the UE of the resource mapping indicator through the PBCH;
  • the base station After the cell search process is completed, the base station notifies the UE of the resource mapping indicator by using the SI of the cell;
  • the base station For a UE in the RRC_CONNECTED, RRC_ACTIVE or RRC_INACTIVE state, the base station notifies the specific UE of the resource mapping indicator through the PDCCH or the dedicated channel.
  • the predetermined resource mapping relationship includes a time domain resource mapping relationship and a frequency domain resource mapping relationship.
  • the time domain resource mapping relationship includes any one of the following (1) to (9).
  • the preamble sequence and the scrambled service data use symbols in the same radio subframe, as shown in (1)-(6).
  • the preamble sequence and the scrambled service data can also use symbols in different radio subframes, as shown in (7)-(11), which is more suitable for the case where the data volume of the service data is large.
  • the preamble sequence and the symbol occupied by the scrambled service data refer to orthogonal frequency division multiplexing except for the cyclic prefix (English: Cycle Prefix, CP) in the wireless subframe (English: Orthogonal Frequency Division Multiplexing) , OFDM) symbol.
  • Whether to add a CP to a wireless subframe and the length of the CP can be set according to application requirements.
  • GT Guard Time
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the P+1 to P+Q OFDM in the first radio subframe A symbol, where P and Q are natural numbers greater than or equal to 1, and the sum of P+Q is less than the total number K of OFDM symbols in the first wireless subframe.
  • P and Q are natural numbers greater than or equal to 1
  • the sum of P+Q is less than the total number K of OFDM symbols in the first wireless subframe.
  • the scrambled service data occupies the first Q OFDM symbols except the CP in the first radio subframe, and the preamble sequence occupies the Q+1 to Pth in the first radio subframe. + Q OFDM symbols. As shown in Figure 3B.
  • the preamble sequence occupies the last P OFDM symbols in the first radio subframe
  • the scrambled service data occupies the last P+1 to the last P+Q in the first radio subframe OFDM symbols. As shown in Figure 3C.
  • the scrambled service data occupies the last Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last Q+1 to the last P+Q in the first radio subframe. OFDM symbols. As shown in Figure 3D.
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe, and the scrambled service data occupies the last Q OFDM symbols in the first radio subframe. As shown in Figure 3E.
  • the scrambled service data occupies the first Q OFDM symbols in the first radio subframe, and the preamble sequence occupies the last P OFDM symbols in the first radio subframe. As shown in Figure 3F.
  • MSG1 continues for a predetermined number of wireless subframes.
  • the pre-P OFDM symbols in these wireless subframes are preamble sequences, and the scrambled traffic data occupies the remaining OFDM symbols in each radio subframe. That is, the preamble sequence appears in each of the wireless subframes of these wireless subframes.
  • the scrambled traffic data is carried by symbols other than the preamble sequence in these radio subframes.
  • the number of wireless subframes can be pre-specified by protocol standards. In the example shown in Figure 3G, MSG1 continues for 2 radio subframes.
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe
  • the length indicator NI occupies the P+1th to P+Ith OFDM symbols in the first radio subframe
  • the length indicator is used to indicate the number of subframes J occupied by the scrambled service data, and the scrambled service data occupies from the P+I+1 OFDM symbols in the first radio subframe.
  • the preamble sequence occupies the first P OFDM symbols in the first radio subframe, and the scrambled service data occupies the remaining from the P+1 OFDM symbol in the first radio subframe.
  • the end indicator is used to indicate that the scrambled service data has been transmitted.
  • the end indicator may be a preamble sequence or another sequence having a preset mapping relationship with the preamble sequence, as long as both the UE and the base station can recognize the end indicator. As shown in Figure 3I.
  • the frequency domain resource mapping relationship includes any one of the following (1) to (2).
  • the preamble sequence and the scrambled traffic data use different symbols in the same subcarrier. That is, the preamble sequence and the scrambled service data respectively occupy different symbol symbols in the first subcarrier, and the first subcarrier includes X subcarriers, where X is a natural number greater than or equal to 1.
  • the first subcarrier here may be one subcarrier, may be multiple consecutive subcarriers, or may be multiple subcarriers that are not consecutive. As shown in Figure 3J, 3K.
  • the preamble sequence and the scrambled traffic data use symbols in different subcarriers. That is, the preamble sequence occupies a symbol in the first subcarrier, the scrambled service data occupies a symbol in the first subcarrier, the first subcarrier includes X subcarriers, and the second subcarrier includes Y Subcarriers, where X and Y are natural numbers greater than one.
  • the first subcarrier and the second subcarrier may be consecutive subcarriers as shown in FIG. 3L.
  • the first subcarrier and the second subcarrier may be discontinuous subcarriers as shown in FIG. 3M.
  • the first subcarrier and the second subcarrier may be uniformly spaced subcarriers as shown in FIG. 3N.
  • the first subcarrier and the second subcarrier may be non-uniformly spaced subcarriers, as shown in FIG. 3O.
  • the resource mapping relationship may be determined by any one of the foregoing time domain resource mapping relationships and any one of the frequency domain resource mapping relationship combinations.
  • the resource mapping relationship determined by the combination of the (1) time domain resource mapping relationship and the (1) frequency domain resource mapping relationship is that the preamble sequence and the scrambled service data use the same wireless subcarrier in the same subcarrier. a symbol in the frame, and wherein the preamble sequence occupies the first P OFDM symbols in the radio subframe, and the scrambled service data occupies the P+1th to P+Qth OFDM symbols in the first radio subframe .
  • the case of other combinations is not listed one by one.
  • Step 26 The UE sends the preamble sequence and the scrambled service data to the base station to which the cell belongs on the configured time-frequency resource.
  • Step 27 The UE receives a random access response sent by the base station according to the preamble sequence.
  • the base station may notify the UE of the scrambling code mapping indication and the resource mapping indicator in the same manner, or may notify the UE of the scrambling code mapping indication and the resource mapping indicator in different manners.
  • the base station may notify the UE of the scrambling code mapping indication and the resource mapping indicator through different time-frequency resources in the physical broadcast channel.
  • the base station may also notify the UE of the scrambling code mapping indication through the physical broadcast channel, and notify the UE of the resource mapping indicator through the SI.
  • the service data may be first performed according to a predetermined coding mode. Encoding processing. Then, the obtained processed service data is scrambled.
  • the encoding process also helps to distinguish between different types of business data.
  • the flowchart of the random access method is shown in FIG. 4, wherein steps 21-23 and 25 are similar to the corresponding steps in FIG. 2. For details of implementation, refer to the description of the corresponding steps in FIG. 2, and no longer here. repeat.
  • Step 21 After obtaining the downlink synchronization with the cell, the UE determines a preamble sequence of the UE in the cell.
  • step 22 the UE obtains service data.
  • step 23 the UE determines a scrambling code for performing scrambling processing on the service data.
  • the UE After obtaining the service data, the UE performs step 241.
  • Step 241 The UE performs encoding processing on the service data according to a predetermined encoding manner, and obtains the encoded service data.
  • the predetermined coding mode is that the UE and the base station to which the cell belongs are known in advance.
  • the foregoing predetermined coding mode is configured by default in the base station and the UE.
  • the foregoing predetermined coding manner is that the base station notifies the UE by using an coding mode indicator, where the coding mode indicator is used to indicate the predetermined coding mode.
  • the coding method includes but is not limited to Turbo code coding or polarization coding.
  • the first coding mode indicator indicates Turbo code coding
  • the second coding mode indicator indicates polarization coding
  • the third coding mode indicator indicates Low Density Parity Check Code (LDPC).
  • LDPC Low Density Parity Check Code
  • step 23 and step 241 need not be limited. After the execution of step 23 and step 241 is completed, step 242 is performed.
  • Step 242 The UE performs scrambling processing on the service data encoded in step 241 according to the scrambling code determined in step 23, to obtain the scrambled service data.
  • step 25 the UE configures the time-frequency resource occupied by the preamble sequence and the scrambled service data obtained in step 242 according to the predetermined resource mapping relationship.
  • Step 26 The UE sends the preamble sequence and the scrambled service data to the base station to which the cell belongs on the configured time-frequency resource.
  • Step 27 The UE receives a random access response sent by the base station according to the preamble sequence.
  • the base station may notify the UE of the scrambling code mapping indication, the resource mapping indicator, and the coding mode indicator in the same manner, or may use different methods to set the scrambling code mapping indication, the resource mapping indicator, and the coding mode indicator. Notify the UE. Or the base station may notify the UE of the scrambling code mapping indication, the resource mapping indicator, and the coding mode indicator by using different time-frequency resources of the SI, for example, the scrambling code mapping indication, the resource mapping indicator, and the coding mode indicator by using different symbols in the SIB2. Notify the UE. Alternatively, the base station may notify the UE of the scrambling code mapping indication and the resource mapping indicator through the physical broadcast channel, and notify the UE of the coding mode indicator by using the SI.
  • the base station needs to send the response data including the control command to the UE according to the service data that is reported by the UE and includes the measured value of the current location and the environment.
  • the application provides a way for two base stations to send response data to the UE. The two response modes will be described in detail in conjunction with FIG. 5 and FIG. 6 respectively.
  • FIG. 5 is a flowchart of a random access method according to an embodiment of the present application. After the base station generates corresponding response data according to the service data in the MSG1, the base station sends the response data to the UE through the MSG2.
  • the method includes:
  • Step 10 The UE sends the MSG1 to the base station to which the cell belongs.
  • MSG1 contains not only the preamble sequence but also the scrambled service data. This step is similar to step 10 in FIG.
  • Step 20' the UE receives the MSG2 sent by the base station, and the MSG2 is a random access response.
  • the random access response further includes response data generated by the base station according to the service data.
  • the base station can send response data through MSG2 in a variety of ways. For example, the base station carries the response data in the padding field, or redefines the field content of the existing random access response, and passes some existing fields in the random access response, such as a UL-Grant field and a Temporary C-RNTI field. Wait, to carry the response data.
  • the base station may send the response data to the UE through the MSG2, for the service data of the service data is small, or the base station generates the response data based on the service data, and the process is simple and time-consuming.
  • the impact on the existing random access procedure is not large, and the completion time of the random access procedure is not greatly extended.
  • the UE after receiving the MSG2, the UE can obtain the service, which greatly shortens the service delay and improves the timeliness of the service.
  • the method includes:
  • Step 10 The UE sends the MSG1 to the base station to which the cell belongs.
  • MSG1 contains not only the preamble sequence but also the scrambled service data. This step is similar to step 10 in FIG.
  • Step 20 The UE receives the MSG2 sent by the base station, and the MSG2 is a random access response. This step is similar to step 20 in Figure 1, and will not be repeated here.
  • Step 30 The UE receives response data sent by the base station after the random access procedure is completed.
  • the base station may send the response data to the UE through the downlink channel after the random access process is completed, for the traffic data of the service data is large, or the base station generates the response data based on the service data.
  • the downlink channel is a Physical Downlink Shared Channel (PDSCH), or a Physical Downlink Control Channel (PDCCH).
  • the UE needs to send service data to the base station after the random access is completed, and then waits to receive the response data sent by the base station.
  • the random access scheme provided by the embodiment has sent the service data to the base station through the MSG1, so the UE does not need to send the service data after the random access is completed. After the random access procedure is completed, the UE can directly receive the response data.
  • the random access method provided by the embodiment can shorten the time for the UE to obtain the service and improve the timeliness of the service.
  • FIG. 7 is a schematic diagram of a random access method provided by the present application.
  • FIG. 7 focuses on the implementation details of the random access method from the perspective of the base station.
  • Step 70 The base station determines, according to the predetermined resource mapping relationship, a time-frequency resource occupied by the preamble sequence and the service data in the cell covered by the base station.
  • the number of preamble sequences available to each cell is limited, for example in an LTE network, each cell has 64 possible preamble sequences.
  • the preamble sequence is transmitted on a physical layer random access channel (English: Physical Random Access Channel, PRACH).
  • PRACH Physical Random Access Channel
  • the base station will notify all UEs by broadcasting system information SIB2, and on which time-frequency resources are allowed to transmit the preamble sequence.
  • the base station may determine the time-frequency resource occupied by the corresponding service data according to the foregoing predetermined resource mapping relationship and the time-frequency resource occupied by each preamble sequence.
  • the foregoing predetermined resource mapping relationship is that the base station and the UE are known in advance before the UE sends the preamble sequence and the service data.
  • the foregoing predetermined resource mapping relationship is configured by default in the base station and the UE.
  • the foregoing predetermined resource mapping relationship is that the base station notifies the UE.
  • the base station uses a resource mapping indicator to indicate a predetermined resource mapping relationship.
  • the base station sends a resource mapping indicator to the UE, and the UE receives the resource mapping indicator sent by the base station.
  • the UE configures a time-frequency resource occupied by the preamble sequence and the scrambled service data according to the resource mapping relationship indicated by the resource mapping indicator.
  • the resource mapping relationship please refer to the description in the previous embodiment, and will not be repeated here.
  • Step 71 The base station receives the preamble sequence and the service data sent by the UE on the determined time-frequency resource, and the UE has obtained downlink synchronization with the cell, and has not obtained uplink synchronization with the cell.
  • Step 72 The base station determines a scrambling code, and the scrambling code has a one-to-one correspondence with the received preamble sequence, or the scrambling code has a one-to-one correspondence with the identifier of the UE, or the scrambling code is received and received. There is a one-to-one correspondence between the combination of the preamble sequence and the identity of the UE.
  • the scrambling code has a one-to-one correspondence with the preamble sequence sent by the UE, and the RRC state of the UE is not limited.
  • the scrambling code has a one-to-one correspondence with the identifier of the UE, or the scrambling code has a one-to-one correspondence with the combination of the preamble sequence sent by the UE and the identifier of the UE.
  • the determining manner of the scrambling code is that the UE and the base station to which the cell belongs are known in advance.
  • the base station determines a corresponding scrambling code according to the preamble sequence and/or the identity of the UE in the RRC_CONNECTED, RRC_INACTIVE state, based on the determined manner of the known scrambling code.
  • the manner of determining the scrambling code is configured by default in the base station and the UE.
  • the determining manner of the foregoing scrambling code is that the base station notifies the UE by using a scrambling code mapping indication.
  • Step 73 The base station performs descrambling processing on the received service data according to the scrambling code to obtain the descrambled service data.
  • the Descrambling process is an inverse process of the scrambling process, that is, the signal carrying the service data is decrypted by the scrambling code. After obtaining the descrambled service data, the base station can provide the corresponding service to the user according to the service data.
  • Step 74 The base station sends a random access response to the UE according to the preamble sequence.
  • the base station when receiving the MSG1, the base station receives the preamble sequence and the service data sent by the UE in the time-frequency resource with the mapping relationship, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station does not have to wait for the random access procedure to complete, and then provides services for the UE, which shortens the service delay.
  • the method where the base station shown in FIG. 7 receives the preamble sequence and the service data from the UE, the method further includes: the base station sending a resource mapping indicator to the UE, where the resource mapping indicator is used to indicate The predetermined resource mapping relationship.
  • the base station shown in FIG. 7 further includes: the base station sends a scrambling code mapping indication to the UE.
  • the first scrambling code mapping indication is used to indicate a mapping manner of the preamble sequence and the scrambling code
  • the second scrambling code mapping indication is used to indicate a mapping manner of the preamble sequence and the identifier of the UE
  • the third scrambling code mapping indication is used for A mapping manner indicating a combination of a preamble sequence and an identifier of the preamble sequence and the UE.
  • the present application provides a manner in which the two base stations send the response data to the UE.
  • the base station may send the response data to the UE in the random access response, or send the response data to the UE after the random access procedure is completed.
  • the manner in which the two types of response data are sent can be selected according to the amount of data of the service data and the processing time and difficulty of the service data.
  • the UE may perform coding processing on the service data before performing the scrambling process.
  • the base station should also perform corresponding decoding processing.
  • the random access method further includes:
  • Step 75 The base station performs decoding processing on the descrambled service data according to a decoding manner corresponding to a predetermined coding mode.
  • the predetermined coding mode is that the UE and the base station to which the cell belongs are known in advance.
  • the foregoing predetermined coding mode is configured by default in the base station and the UE.
  • the foregoing predetermined coding manner is that the base station notifies the UE by using an coding mode indicator, where the coding mode indicator is used to indicate the predetermined coding mode.
  • the base station Before receiving the preamble sequence and the service data sent by the UE, the base station further includes: the base station sending an encoding mode indicator to the UE, where the encoding mode indicator is used to indicate the predetermined encoding mode.
  • the base station sends the coding mode indicator refer to the description in the previous embodiment, which is not repeated here.
  • the base station needs to perform decoding processing on the descrambled service data, obtain the decoded service data, and generate response data according to the decoded service data.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • the UE can complete the functions of the UE in the processes shown in FIGS. 1, 2, and 4.
  • Figure 8 shows only the main components of the UE.
  • the UE includes a processor 81, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire user equipment, executing the software program, and processing the data of the software program, for example, for supporting the UE to execute the flow shown in the drawings 1, 2, and 4
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna may also be referred to as a transceiver 82, primarily for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the MSG1 is transmitted to the base station, and the MSG2 and the like transmitted by the base station are received.
  • the processor 81 can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 81 is configured to determine, by the UE, downlink sequence synchronization with the cell, determine a preamble sequence of the UE in the cell, the UE has not obtained uplink synchronization with the cell, obtain service data, and determine a scrambling code.
  • the scrambling code has a one-to-one correspondence with the preamble sequence, or the scrambling code has a one-to-one correspondence with the identifier of the UE, or a combination of the scrambling code and the identifier of the preamble sequence and the UE There is a one-to-one correspondence; the service data is scrambled according to the scrambling code to obtain the scrambled service data; and the preamble sequence and the scrambled service data are configured according to a predetermined resource mapping relationship. Time-frequency resources occupied separately.
  • the transceiver 82 is configured to send, by using the time-frequency resource configured by the processor 81, the preamble sequence and the scrambled service data to a base station to which the cell belongs, and receive the base station according to the preamble sequence.
  • the UE provided by the embodiment of the present invention sends the preamble sequence and the service data to the base station on the configured time-frequency resource when the MSG1 is sent, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station can obtain the service data in time from the received MSG1 to provide the UE with the service, and does not have to wait for the random access process to complete before obtaining the service data transmitted by the UE by using the additional time-frequency resource, thereby shortening the service delay. .
  • the scrambling code has a one-to-one correspondence with the preamble sequence
  • the transceiver 82 is further configured to receive a first scrambling code mapping indication sent by the base station, where the first scrambling code mapping indication is used. Indicates how the preamble sequence is mapped to the scrambling code.
  • the processor 81 is further configured to determine, according to the mapping manner and the preamble sequence, the scrambling code that has a one-to-one correspondence with the preamble sequence.
  • the scrambling code has a one-to-one correspondence with the identifier of the UE
  • the transceiver 82 is further configured to receive, by the base station, a second scrambling code mapping indication, where the second scrambling code mapping indication is used.
  • the processor 81 is further configured to determine, according to the mapping manner and the identifier of the UE, the one-to-one correspondence between the identifiers of the UEs and the identifiers of the UEs. Scrambling code.
  • the scrambling code has a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE
  • the transceiver 82 is further configured to receive a third scrambling code mapping sent by the base station to which the cell belongs. And indicating that the third scrambling code mapping indicates a mapping manner for indicating a combination of the preamble sequence and the identifier of the preamble sequence and the UE; the processor 81 is further configured to: according to the mapping manner and the preamble And combining the sequence and the identifier of the UE to determine the scrambling code in a one-to-one correspondence with the combination of the preamble sequence and the identifier of the UE.
  • the transceiver 82 is further configured to receive a resource mapping indicator sent by the base station, where the resource mapping indicator is used to indicate the predetermined resource mapping relationship; and the processor 81 is further configured to: And configuring, according to the resource mapping relationship indicated by the resource mapping indicator, a time-frequency resource occupied by the preamble sequence and the scrambled service data respectively.
  • the transceiver 82 is further configured to receive an encoding mode indicator sent by the base station, where the encoding mode indicator is used to indicate the predetermined encoding mode.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station device can be used as the base station in Figures 1, 2, 4 and 5.
  • the base station device includes one or more transceivers 91 and one or more baseband units (abbreviated as: BBUs) 92.
  • the transceiver 91 can be referred to as a remote radio unit (English: remote radio unit, RRU), a transceiver unit, a transceiver, or a transceiver circuit.
  • the transceiver 91 can include at least one antenna 911 and a radio frequency unit 912.
  • the transceiver 91 is mainly used for transceiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the processor 92 is mainly used for performing baseband processing, controlling a base station, and the like.
  • the transceiver 91 and the baseband unit 92 may be physically disposed together or physically separated, that is, distributed base stations.
  • the baseband unit 92 is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the baseband unit 92 may be composed of one or more single boards, and multiple boards may jointly support a single access system radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
  • Baseband unit 92 includes a processor 921.
  • the processor 921 can be used to control the flow performed by the base station shown in FIG. 9 to perform the base station execution in the various embodiments described above.
  • baseband unit 92 may also include a memory 922 for storing the necessary instructions and data.
  • the processor 921 is configured to determine, according to a predetermined resource mapping relationship, a time-frequency resource occupied by a preamble sequence and service data in a cell covered by the base station.
  • the transceiver 91 is configured to receive, according to the determined time-frequency resource, a preamble sequence and service data sent by the UE, where the UE has obtained downlink synchronization with the cell, and has not obtained uplink synchronization with the cell.
  • the processor 921 is further configured to determine a scrambling code, where the scrambling code has a one-to-one correspondence with the received preamble sequence, or the scrambling code has a one-to-one correspondence with the identifier of the UE, or the scrambling code There is a one-to-one correspondence between the received preamble sequence and the identifier of the UE; the service data sent by the UE is descrambled according to the scrambling code, and the descrambled service data is obtained.
  • the transceiver 91 is further configured to send a random access response to the UE according to the preamble sequence.
  • the base station When receiving the MSG1, the base station provided by the embodiment of the present application receives the preamble sequence and the service data sent by the UE in the time-frequency resource with the mapping relationship, that is, the MSG1 not only carries the Preamble but also carries the service data. Therefore, the base station does not have to wait for the random access procedure to complete, and then provides services for the UE, which shortens the service delay.
  • the transceiver 91 is further configured to send a resource mapping indicator to the UE, where the resource mapping indicator is used to indicate the predetermined resource mapping relationship.
  • the transceiver 91 is further configured to: before receiving the preamble sequence and the service data sent by the UE, send a first scrambling code mapping indication to the UE, where the first scrambling code mapping indication is used to indicate a preamble The way the sequence is mapped to the scrambling code.
  • the transceiver 91 is further configured to: before receiving the preamble sequence and the service data sent by the UE, send a second scrambling code mapping indication to the UE, where the second scrambling code mapping indication is used to indicate a preamble The manner in which the sequence is mapped to the identity of the UE.
  • the transceiver 91 is further configured to: before receiving the preamble sequence and the service data sent by the UE, send a third scrambling code mapping indication to the UE, where the third scrambling code mapping indication is used to indicate a preamble A mapping of the sequence to the combination of the preamble sequence and the identity of the UE.
  • the UE performs coding processing on the data to be sent before performing the scrambling process on the service data to be sent.
  • the base station also performs descrambling processing on the received service data, and then performs decoding processing.
  • the processor 921 is further configured to: after obtaining the descrambled service data, perform decoding processing on the descrambled service data according to a decoding manner corresponding to a predetermined coding manner.
  • the transceiver 91 is further configured to: before receiving the preamble sequence and the service data sent by the UE, send an encoding mode indicator to the UE, where the encoding mode indicator is used to indicate the predetermined encoding mode.
  • the embodiment of the present application further provides a random access system for a UE, including a base station and a UE.
  • a UE including a base station and a UE.
  • the structure of the base station please refer to the description of FIG. 9.
  • the structure of the UE please refer to the description of FIG.
  • the interaction process between the base station and the UE refer to the description in the foregoing method embodiment.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、用户设备UE、基站以及随机接入系统,用以改善现有技术中业务延时较大的问题。该方法包括:UE取得与小区的下行同步后,确定UE在所述小区的前导序列,所述UE尚未取得与所述小区的上行同步;所述UE获得业务数据;所述UE确定扰码;所述UE根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据;所述UE根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源;所述UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据;所述UE接收所述基站根据所述前导序列发送的随机接入响应。

Description

随机接入方法、用户设备、基站以及随机接入系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种随机接入方法、一种用户设备(英文:User Equipment,UE)、一种基站及一种随机接入系统。
背景技术
UE为了接入无线网络,发送上行数据,需要通过随机接入过程与小区建立连接并取得上行同步。在长期演进(英文:Long Term Evolution,LTE)中,以下六类事件会触发随机接入过程。
1.初始接入时建立无线连接:UE从无线资源控制空闲(Radio Resource Control_IDLE,RRC_IDLE)状态转换到无线资源控制连接(Radio Resource Control_CONNECTED,RRC_CONNECTED)状态。
2.RRC连接重建过程(RRC Connection Re-establishment procedure):以便UE在无线链路失败(Radio Link Failure)后重建无线连接。
3.切换(handover):此时UE需要与新的小区建立上行同步。
4.RRC_CONNECTED状态下,下行数据到达,UE需要向网络侧回复ACK/NACK时,上行处于“不同步”状态。
5.RRC_CONNECTED状态下,上行数据到达,例如UE需要向网络侧上报测量报告或者发送用户数据时,上行处于“不同步”状态或没有可用的物理上行链路控制信道(英文:Physical Uplink Control Channel,PUCCH)资源用于传输调度请求(英文:Scheduling Request,SR)。
6.RRC_CONNECTED状态下,为了定位UE,需要定时提前(timing advance)。
通常随机接入过程分为基于“竞争”的和基于“非竞争”的接入过程。例如基于竞争的接入过程适用于前五种事件,基于非竞争的接入过程适用于上述第三、四、六这三种事件。
基于竞争的随机接入过程包括以下四个步骤。
步骤1.UE通过消息1(MSG1)向基站传输随机接入前导序列(英文:Preamble)。
步骤2.基站通过消息2(MSG2)向UE发送随机接入响应(英文:Random Access Response,RAR)。
步骤3.UE通过消息3(MSG3)向基站发送二层或三层(英文:Layer 2/Layer 3,L2/L3)消息。
步骤4.基站通过消息4(MSG4)向UE发送竞争冲突解决消息。
UE在发送MSG1时,通常是将生成的Preamble经过频谱搬移、转换为时域 数据后直接配置子载波上,通过UE的天线端口发送经上述处理的Preamble。
随着物联网等新业务的普及,出现了一些数据量不大、但对时延要求较高的业务,这些业务需要及时得到服务。上述基于竞争的随机接入过程在接入延时方面,难以满足以这类业务对时延的要求。
发明内容
本申请实施例提供一种随机接入方法,用以改善现有技术中业务延时较大的问题。
第一方面,提供了一种随机接入方法,用户设备UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列,所述UE尚未取得与所述小区的上行同步;所述UE获得业务数据;所述UE确定扰码,所述扰码与所述前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系;所述UE根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据;所述UE根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源;所述UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据;所述UE接收所述基站根据所述前导序列发送的随机接入响应。
在本申请实施例提供的随机接入方法中,UE在发送MSG1时,在配置的时频资源上向基站发送前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。以便于基站从接收到的MSG1中就可以及时获得业务数据进而为UE提供服务,而不必等到随机接入过程完成之后,才能获得UE利用额外的时频资源传输的业务数据,缩短了业务时延。
在一种可能的设计中,所述扰码与所述前导序列存在一一对应关系,所述确定扰码,包括:所述UE接收所述基站发送的第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式;所述UE根据所述映射方式以及所述前导序列,确定与所述前导序列存在一一对应关系的所述扰码。
在一种可能的设计中,映射方式包括:
如果所述前导序列为以u为根生成的长度为N的Zadoff-Chu ZC序列,则所述扰码为所述前导序列,其中N为大于1的自然数,所述u为自然数,且0≤u<N,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/2序列,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/4序列,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为以v为根产生的长度为M的ZC序列,其中N、M分别为大于1的自然数,所述u、v分别为自然数,0≤u<N、0≤v<M,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为在预定码本中与所述前导序列存在一一对应关系的另一序列,所述预定码本包括所述以u为根生成的长度为N的ZC序列与所述另一序列的一一对应关系。
在一种可能的设计中,所述第一扰码映射指示是所述基站通过物理广播信道(英文:Physical Broadcast Channel,PBCH)通知所述UE的,或者所述基站通过系统信息(英文:System Information,SI)消息通知所述UE的,或者所述基站通过物理下行控制信道(英文Physical Downlink Control Channel,PDCCH)通知所述UE的。
在一种可能的设计中,所述扰码与所述UE的标识存在一一对应关系,所述确定扰码,包括:所述UE接收所述基站发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式;所述UE根据所述映射方式以及所述UE的标识,确定与所述UE的标识存在一一对应关系的所述扰码。
在一种可能的设计中,所述映射方式包括:如果所述UE处于RRC_CONNECTED状态或者RRC_INACTIVE状态,所述扰码为在预定码本中与所述UE的标识存在一一对应关系的ZC序列。
在一种可能的设计中,所述第二扰码映射指示是所述基站通过PBCH通知所述UE的,或者所述基站通过SI消息通知所述UE的,或者所述基站通过PDCCH通知所述UE的。
在一种可能的设计中,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,所述确定扰码,包括:所述UE接收所述小区所属的基站发送的第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式;所述UE根据所述映射方式以及所述前导序列和所述UE的标识的组合,确定与所述前导序列和所述UE的标识的组合存在一一对应关系的所述扰码。
在一种可能的设计中,所述映射方式包括:如果所述UE处于RRC_CONNECTED状态或者RRC_INACTIVE状态,所述扰码为在预定码本中与所述前导序列和所述UE的标识的组合存在一一对应关系的ZC序列。
在一种可能的设计中,所述第三扰码映射指示是所述基站通过PBCH通知所述UE的,或者所述基站通过SI消息通知所述UE的,或者所述基站通过物理PDCCH通知所述UE的。
在一种可能的设计中,所述根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源,包括:所述UE接收所述基站发送的资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系;所述UE根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
在一种可能的设计中,所述资源映射指示符是所述基站通过PBCH通知所述UE的,或者所述基站通过SI消息通知所述UE的,或者所述基站通过PDCCH通 知所述UE的。
在一种可能的设计中,所述预定的资源映射关系包括时域资源映射关系和频域资源映射关系,其中
所述时域资源映射关系包括
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的第P+1至第P+Q个OFDM符号,其中P和Q为大于等于1的自然数、且P+Q的和小于所述第一无线子帧中的OFDM符号总数K,或者
所述加扰后的业务数据占用第一无线子帧中的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的第Q+1至第P+Q个OFDM符号,或者
所述前导序列占用第一无线子帧中的后P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的倒数第P+1至倒数第P+Q个OFDM符号,或者
所述加扰后的业务数据占用第一无线子帧中的后Q个OFDM符号,所述前导序列占用所述第一无线子帧中的倒数第Q+1至倒数第P+Q个OFDM符号,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的后Q个OFDM符号,或者
所述加扰后的业务数据占用第一无线子帧中的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的后P个OFDM符号,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,长度指示符NI占用所述第一无线子帧中的第P+1至第P+I个OFDM符号,所述长度指示符用于指示所述加扰后的业务数据占用的子帧个数J,所述加扰后的业务数据占用第一无线子帧中从第P+I+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中I,J为大于等于1的自然数,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中从第P+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中结束指示符占用所述第J个无线子帧中的后L个OFDM符号,所述结束指示符用于指示所述加扰后的业务数据已传输完毕;
所述频域资源映射关系包括
所述前导序列和所述加扰后的业务数据分别占用第一子载波中的不同符号symbol,所述第一子载波包括X个子载波,其中X为大于等于1的自然数,或者
所述前导序列占用第一子载波中的符号,所述加扰后的业务数据占用第一子载波中的符号,所述第一子载波包括X个子载波,所述第二子载波包括Y个子载波,其中X、Y为大于1的自然数。
在一种可能的设计中,所述UE根据所述扰码对所述业务数据进行加扰处理,包括:所述UE根据预定的编码方式,对所述业务数据进行编码处理,获得编码 处理后的业务数据;所述UE根据所述扰码,对所述编码处理后的业务数据进行加扰处理。
在加扰处理之前对业务数据进行编码处理,可以提高业务数据的编码效率、提升基站译码的准确性。
在一种可能的设计中,所述UE根据预定的编码方式,对所述业务数据进行编码处理之前,还包括:所述UE接收所述基站发送的编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
在一种可能的设计中,所述编码方式指示符是所述基站通过PBCH通知所述UE的,或者所述基站通过SI消息通知所述UE的,或者所述基站通过PDCCH通知所述UE的。
在一种可能的设计中,所述随机接入响应中包括响应数据,所述响应数据是所述基站根据所述业务数据生成的。
在一种可能的设计中,所述UE接收所述基站根据所述前导序列发送的随机接入响应之后,所述方法还包括:接收所述基站发送的响应数据,所述响应数据是所述基站根据所述业务数据生成的。
第二方面,提供了随机接入方法,包括:基站根据预定的资源映射关系,确定所述基站覆盖的小区中的前导序列和业务数据分别占用的时频资源;所述基站在确定的时频资源上,接收UE发送的前导序列和业务数据,所述UE已取得与所述小区的下行同步、且尚未取得与所述小区的上行同步;所述基站确定扰码,所述扰码与接收到前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与接收到的前导序列和所述UE的标识的组合存在一一对应关系;所述基站根据所述扰码对所述UE发送的业务数据进行解扰处理,获得解扰后的业务数据;所述基站根据所述前导序列向所述UE发送随机接入响应。
基站在接收到MSG1时,在具有映射关系的时频资源接收UE发送的前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。基站从而不必等到随机接入过程完成后,再为UE提供服务,缩短了业务时延。
在一种可能的设计中,所述接收所述UE发送的前导序列和业务数据之前,还包括:所述基站向所述UE发送资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系。
在一种可能的设计中,所述资源映射指示符是所述基站通过PBCH通知所述UE的,或者所述基站通过SI消息通知所述UE的,或者所述基站通过PDCCH通知所述UE的。
在一种可能的设计中,所述预定的资源映射关系包括时域资源映射关系和频域资源映射关系,其中
所述时域资源映射关系包括
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的第P+1至第P+Q个OFDM符号,其中P和Q为 大于等于1的自然数、且P+Q的和小于所述第一无线子帧中的OFDM符号总数K,或者
所述加扰后的业务数据占用第一无线子帧中的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的第Q+1至第P+Q个OFDM符号,或者
所述前导序列占用第一无线子帧中的后P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的倒数第P+1至倒数第P+Q个OFDM符号,或者
所述加扰后的业务数据占用第一无线子帧中的后Q个OFDM符号,所述前导序列占用所述第一无线子帧中的倒数第Q+1至倒数第P+Q个OFDM符号,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的后Q个OFDM符号,或者
所述加扰后的业务数据占用第一无线子帧中的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的后P个OFDM符号,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的第P+1至第P+Q个OFDM符号,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,长度指示符NI占用所述第一无线子帧中的第P+1至第P+I个OFDM符号,所述长度指示符用于指示所述加扰后的业务数据占用的子帧个数J,所述加扰后的业务数据占用第一无线子帧中从第P+I+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中I,J为大于等于1的自然数,或者
所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中从第P+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中结束指示符占用所述第J个无线子帧中的后L个OFDM符号,所述结束指示符用于指示所述加扰后的业务数据已传输完毕;
所述频域资源映射关系包括
所述前导序列和所述加扰后的业务数据分别占用第一子载波中的不同符号symbol,所述第一子载波包括X个子载波,其中X为大于等于1的自然数,或者
所述前导序列占用第一子载波中的符号,所述加扰后的业务数据占用第一子载波中的符号,所述第一子载波包括X个子载波,所述第二子载波包括Y个子载波,其中X、Y为大于1的自然数。
在一种可能的设计中,所述扰码与所述前导序列存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:所述基站向所述UE发送第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式。
在一种可能的设计中,所述映射方式包括:
如果所述前导序列为以u为根生成的长度为N的Zadoff-Chu ZC序列,则所 述扰码为所述前导序列,其中N为大于1的自然数,所述u为自然数,且0≤u<N,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/2序列,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/4序列,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为以v为根产生的长度为M的ZC序列,其中N、M分别为大于1的自然数,所述u、v分别为自然数,0≤u<N、0≤v<M,或
如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为在预定码本中与所述前导序列存在一一对应关系的另一序列,所述预定码本包括所述以u为根生成的长度为N的ZC序列与所述另一序列的一一对应关系。
在一种可能的设计中,所述第一扰码映射指示是所述基站通过PBCH发送的,或者所述基站通过SI消息发送的,或者所述基站通过PDCCH发送的。
在一种可能的设计中,所述扰码与所述UE的标识存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:所述基站向所述UE发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式。
在一种可能的设计中,所述映射方式包括:如果所述UE处于RRC_CONNECTED状态或者RRC_ACTIVE状态,所述扰码为在预定码本中与所述UE的标识存在一一对应关系的ZC序列。
在一种可能的设计中,所述第二扰码映射指示是所述基站通过PBCH发送的,或者所述基站通过SI消息发送的,或者所述基站通过PDCCH发送的。
在一种可能的设计中,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:所述基站向所述UE发送第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
在一种可能的设计中,所述映射方式包括:如果所述UE处于RRC_CONNECTED状态或者RRC_INACTIVE状态,所述扰码为在预定码本中与所述前导序列和所述UE的标识的组合存在一一对应关系的ZC序列。
在一种可能的设计中,所述第三扰码映射指示是所述基站通过PBCH发送的,或者所述基站通过SI消息发送的,或者所述基站通过PDCCH发送的。
在一种可能的设计中,获得解扰后的业务数据之后还包括:所述基站根据所述解扰后的业务数据,生成响应数据;所述基站向所述UE发送所述响应数据,所述响应数据携带在所述随机接入响应中或者所述响应数据是在所述随机接入响应之后发送的。
在一种可能的设计中,获得解扰后的业务数据之后,还包括:所述基站根据与预定的编码方式对应的解码方式,对所述解扰后的业务数据进行解码处理。
如果UE在进行加扰处理之前可以对业务数据进行编码处理,对应地,基站在进行解扰处理之后,还应执行对应的解码处理。通过编码和解码,可以提高数据传输的可靠性。
在一种可能的设计中,所述接收所述UE发送的前导序列和业务数据之前,还包括:所述基站向所述UE发送编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
在一种可能的设计中,所述编码方式指示符是所述基站通过PBCH发送的,或者所述基站通过SI消息发送的,或者所述基站通过PDCCH发送的。
在一种可能的设计中,所述基站根据所述解码后的业务数据,生成响应数据;所述基站向所述UE发送所述响应数据,所述响应数据携带在所述随机接入响应中或者所述响应数据是在所述随机接入响应之后发送的。
第三方面,本申请提供了一种UE,包括:处理器、存储器、收发器以及输入输出装置,其中,处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。收发器包括控制电路和天线,主要用于收发电磁波形式的射频信号。该处理器、存储器、收发器以及输入输出装置用于实现上述第一方面提供的一种随机接入方法中的步骤。
第四方面,本申请提供了一种基站,该基站设备包括一个或多个收发器和一个或多个处理器,用于实现上述第二方面提供的一种随机接入方法中的步骤。
第五方面,本申请提供了一种随机接入系统,包括一个第三方面或第三方面的任意一种可能的设计方式所述的UE,以及一个第四方面或第四方面的任意一种可能的设计方式所述的基站。
第六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述UE所用的计算机软件指令,其包含用于执行上述第一方面或上述第一方面的任意一种可能的实现方式所设计的程序。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述第二方面或上述第二方面的任意一种可能的实现方式所设计的程序。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的随机接入方法的示意图;
图2为本申请实施例提供的一种随机接入方法的流程图;
图3A为本申请实施例提供的时域资源映射关系的第一种示意图;
图3B为本申请实施例提供的时域资源映射关系的第二种示意图;
图3C为本申请实施例提供的时域资源映射关系的第三种示意图;
图3D为本申请实施例提供的时域资源映射关系的第四种示意图;
图3E为本申请实施例提供的时域资源映射关系的第五种示意图;
图3F为本申请实施例提供的时域资源映射关系的第六种示意图;
图3G为本申请实施例提供的时域资源映射关系的第七种示意图;
图3H为本申请实施例提供的时域资源映射关系的第八种示意图;
图3I为本申请实施例提供的时域资源映射关系的第九种示意图;
图3J为本申请实施例提供的第一种频域资源映射关系的第一种示意图;
图3K为本申请实施例提供的第一种频域资源映射关系的第一种示意图;
图3L为本申请实施例提供的第一种频域资源映射关系的第二种示意图;
图3M为本申请实施例提供的第一种频域资源映射关系的第二种示意图;
图3N为本申请实施例提供的第一种频域资源映射关系的第二种示意图;
图3O为本申请实施例提供的第一种频域资源映射关系的第二种示意图;
图4为本申请实施例提供的随机接入方法的另一流程图;
图5为本申请实施例提供的随机接入方法的另一流程图;
图6为本申请实施例提供的随机接入方法的另一流程图;
图7为本申请实施例提供的随机接入方法的另一流程图;
图8为本申请实施例提供的一种UE的结构示意图;
图9为本申请实施例提供的一种基站的结构示意图。
具体实施方式
在现有基于竞争的随机接入过程中,UE和基站之间至少需要交互4次消息才能取得上行同步与小区建立连接。这种随机接入方式往往难以满足对数据量不大、却对时延要求很高的业务的需求。具体来说,对于一些业务而言,在完成包含4步骤的随机接入过程之后,UE与网络侧之间还需要通过更多的时频资源来传输业务数据,例如在物联网或车联网业务中,UE需要上报当前的位置、环境等方面的测量参数值,以便于网络侧向UE下发控制指令。这样,UE需要等待较长时间才能获得网络侧提供的服务。UE获得服务时,UE所在的车辆位置、以及周边环境与UE发起随机接入过程时相比,可能早已发生变化。
为了缩短接入延时,本申请实施例提供了一种随机接入方法。UE在随机接入过程的MSG1中不仅携带Preamble,还携带业务数据。这样,基站从接收到的MSG1中就可以获得业务数据,而不必等到随机接入过程完成之后,才能获得UE利用额外的时频资源传输的业务数据。基站可以根据MSG1中携带的业务数据,为UE提供服务。因而,本申请实施例提供的随机接入方案能够缩短业务时延。
下面结合各个附图对本发明实施例技术方案的主要实现原理、具体实施方式 及其对应能够达到的有益效果进行详细的阐述。
UE为了与网络侧传输数据,首先需要与一个小区建立连接。在与一个小区建立连接的过程中涉及下行同步和上行同步。UE通过小区搜索过程获得与一个小区的下行同步并获得小区的系统信息。UE不仅需要在开机时进行小区搜索,为了支持移动性,UE会不停地搜索邻居小区,取得同步并估计该小区信号的接收质量,从而在UE处于RRC_CONNECTED状态下决定是否进行切换,或者在UE处于RRC_IDLE状态时是否进行小区重选。在获得下行同步之后,UE通过随机接入过程与已获得下行同步的小区建立上行同步。
附图1是本申请实施例提供的随机接入方法的示意图。该随机接入方法适用于基于“竞争”的和基于“非竞争”的接入过程。在附图1中步骤10之前,UE已经通过小区搜索过程与一个小区取得下行同步,即与该小区取得频率和符号同步,获取下行帧的起始位置,确定所述小区的物理层小区标识(英文:Physical-layer Cell Identity,PCI)。但是,UE尚未取得与所述小区的上行同步。在本申请所介绍的随机接入方法中,小区是指UE在小区搜索过程中已获得下行同步,但未取得上行同步的一个小区,即作为随机接入目标的一个小区。
步骤10,UE向小区所属的基站发送MSG1。MSG1不仅包含前导序列,还包含加扰后的业务数据。前导序列和加扰后的业务数据分别占用的时频资源符合预定的资源映射关系。
UE确定前导序列的过程与现有随机接入过程类似,包括从基站发送的广播系统信息SIB2中获得可以用于传输前导序列的资源、以及为基于竞争的随机接入和基于非竞争的随机接入分别配置的前导序列分组。UE根据估计的MSG3的大小,从前导序列分组中选择出一个前导序列。UE确定前导序列的其他细节在这里不再赘述。
UE确定出前导序列后,根据预定的资源映射关系,配置发送所述确定出的前导序列以及业务数据所需的时频资源。然后UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和业务数据。后面的实施例将对资源映射关系、以及UE发送MSG1的更多细节进行详细描述。
在本申请中,业务数据包括各种控制信息,或应用的业务信息。例如,在物联网或车联网业务中,应用的业务信息可以是UE当前的位置、环境等方面的测量参数值。
为了便于基站区分出来自于不同用户的业务数据,UE在发送业务数据之前可以根据与UE的前导序列一一对应的加扰码对业务数据进行加扰处理。
步骤20,UE接收所述基站发送的MSG2,MSG2为随机接入响应。随机接入响应中包含RA-RNTI、随机接入前导序列的标识、根据估计出的基站和UE之间的时延确定出的时间提前指令、以及临时C-RNTI,为MSG3分配的上行资源等等可选信息。UE可以根据MSG2中携带的RA-RNTI和前导序列的标识确定是否成功接收到已发送的MSG1对应的MSG2,并执行后续处理。
如果是基于非竞争的随机接入,前导序列是UE专用的,所以不存在冲突。 并且该UE已经具有在接入小区内的唯一标识C-RNTI,所以不需要基站为UE分配C-RNTI,因此接入过程完成。只有基于竞争的随机接入需要继续执行后续步骤,即UE发送MSG3和接收基站发送的MSG4。后续步骤与现有随机接入过程基本类似,在这里不再赘述。
在本申请实施例提供的随机接入方法中,UE在发送MSG1时,在配置的时频资源上向基站发送前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。以便于基站从接收到的MSG1中就可以及时获得业务数据进而为UE提供服务,而不必等到随机接入过程完成之后,才能获得UE利用额外的时频资源传输的业务数据,缩短了业务时延。
附图2是本申请实施例提供的一种随机接入方法的示意图。附图2着重从UE的角度详细介绍该随机接入方法的实现细节。
步骤21,UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列。UE确定前导序列的过程与现有随机接入过程类似,在这里不再重复。可选地,前导序列是Zadoff-Chu ZC序列,M序列或Golden序列等等。
步骤22,UE获得业务数据。UE可以从该UE安装的应用程序中获得业务数据。
无需限定步骤21和步骤22的执行顺序,在步骤21和步骤22执行完成之后,UE执行步骤23。
步骤23,UE确定用于对业务数据进行加扰处理的扰码。
可选地,加扰码与步骤21确定出的前导序列存在一一对应关系,此时不限定UE的RRC状态。或者,当UE处于RRC_CONNECTED,RRC_INACTIVE状态时,扰码与所述UE的标识存在一一对应关系,或者扰码与步骤21确定出的前导序列和所述UE的标识的组合存在一一对应关系。:RRC_INACTIVE状态具有以下特点:网络侧保留处于RRC_INACTIVE的UE的上下文(context)信息。基站和核心网保留处于RRC_INACTIVE的UE的连接信息。网络侧可以获知处于RRC_INACTIVE状态的UE在RNA层的位置,即网络层可以知晓UE在哪个RNA中。在本实施例中,UE的标识是指UE在所述基站中的唯一标识,包括小区无线网络临时标识(英文:Cell Radio Network Temporary Identifier,C-RNTI)、临时识别码(英文:Temporary Mobile Subscriber Identity,TMSI)、国际移动用户识别码(英文:international mobile subscriber identity,IMSI)等等。
可选地,加扰码的确定方式是UE和小区所属基站双方预先知晓的。UE在确定出前导序列后,可以根据前导序列和/或UE的标识确定出对应的扰码。
可选地,加扰码的确定方式是基站和UE中默认配置的。
可选地,上述加扰码的确定方式是基站通过扰码映射指示通知UE的。例如,基站使用3个扰码映射指示分别指示上述三种对应关系中的一种对应关系以及具体的映射方式。
下面结合具体的实例,对扰码映射指示以及具体的映射方式进行说明。
1、第一扰码映射指示用于指示前导序列与扰码的映射方式。例如,第一扰 码映射指示为1X,其中1用来指示扰码与所述前导序列存在一一对应关系,X用于指示前导序列与扰码的映射方式。
前导序列与扰码的映射方式包括但不限于以下(1)-(5)中任意一种。
(1)如果所述前导序列为以u为根生成的长度为N的Zadoff-Chu ZC序列,则所述扰码为所述前导序列,其中N为大于1的自然数,所述u为自然数,且0≤u<N。第一扰码映射指示可以为11。
(2)如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/2序列。第一扰码映射指示可以为12。
(3)如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为所述前导序列的1/4序列。第一扰码映射指示可以为13。
(4)如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为以v为根产生的长度为M的ZC序列,其中N、M分别为大于1的自然数,所述u、v分别为自然数,0≤u<N、0≤v<M。第一扰码映射指示可以为14。
(5)如果所述前导序列为以u为根生成的长度为N的ZC序列,则所述扰码为在预定码本中与所述前导序列存在一一对应关系的另一序列,所述预定码本包括所述以u为根生成的长度为N的ZC序列与所述另一序列的一一对应关系。第一扰码映射指示可以为15。
2、第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式。例如,第二扰码映射指示为2X,其中2用来指示与所述UE的标识存在一一对应关系,X用于指示前导序列与UE的标识的映射方式。
前导序列与所述UE的标识的映射方式包括:如果所述UE处于RRC_CONNECTED状态或者RRC_ACTIVE状态,所述扰码为在预定码本中与所述UE的标识存在一一对应关系的ZC序列。第二扰码映射指示可以为21。
3、第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。例如,第三扰码映射指示为3X,其中3用来指示扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,X用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
前导序列与所述前导序列和所述UE的标识的组合的映射方式包括:扰码为在预定码本中与所述前导序列和所述UE的标识的组合存在一一对应关系的ZC序列。第三扰码映射指示可以为31。
如果扰码与所述前导序列存在一一对应关系,UE接收所述基站发送的第一扰码映射指示。UE根据第一扰码映射指示所指示的映射方式以及所述前导序列,确定与所述前导序列存在一一对应关系的所述扰码。
如果扰码与所述UE的标识存在一一对应关系,所述UE接收所述基站发送第二扰码映射指示。UE根据第二扰码映射指示所指示的映射方式以及所述UE的标识,确定与所述UE的标识存在一一对应关系的所述扰码。
如果扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,UE 接收所述小区所属的基站发送的第三扰码映射指示。UE根据第三扰码映射指示所指示的映射方式以及所述前导序列和所述UE的标识的组合,确定与所述前导序列和所述UE的标识的组合存在一一对应关系的所述扰码。
可选地,基站通过下列任意一种方式将上述三种扰码映射指示中的一种扰码映射指示通知UE,通知方式包括但不限于:
1、基站通过PBCH将扰码映射指示通知UE;
2、小区搜索过程完成后,基站通过小区的SI将扰码映射通知UE;
3、对于处于RRC_CONNECTED、RRC_ACTIVE或RRC_INACTIVE状态的UE,基站通过PDCCH或专用信道将扰码映射通知特定UE。
步骤24,UE根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据。
加扰(Scrambling)处理是指将承载业务数据的信号用扰码加密。加扰可以提高数据传输的安全性.
步骤25,UE根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
预定的资源映射关系是UE和小区所属基站双方预先知晓的。UE根据SIB2中指示的可以用于传输前导序列的资源,确定后续传输前导序列时使用的时频资源,再根据前导序列使用的时频资源以及预定的资源映射关系确定加扰后的业务数据对应占用的时频资源。
可选地,上述预定的资源映射关系是基站和UE中默认配置的。
可选地,上述预定的资源映射关系是基站通知UE的。例如,基站使用资源映射指示符指示预定的资源映射关系。基站向UE发送资源映射指示符,UE接收所述基站发送的资源映射指示符。UE根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
基站通过下列任意一种方式将资源映射指示符通知UE,通知方式包括但不限于:
1、基站通过PBCH将资源映射指示符通知UE;
2、小区搜索过程完成后,基站通过小区的SI将资源映射指示符通知UE;
3、对于处于RRC_CONNECTED、RRC_ACTIVE或RRC_INACTIVE状态的UE,基站通过PDCCH或专用信道将资源映射指示符通知特定UE。
可选地,预定的资源映射关系包括时域资源映射关系和频域资源映射关系。
其中时域资源映射关系包括以下(1)-(9)中的任意一种。其中前导序列和加扰后的业务数据使用同一个无线子帧中的符号,如(1)-(6)所示。前导序列和加扰后的业务数据也可以使用不同无线子帧中的符号,如(7)-(11)所示,这种方式对于业务数据的数据量较大的情况更为适用。本申请实施例中前导序列和加扰后的业务数据占用的符号是指无线子帧中除循环前缀(英文:Cycle Prefix,CP)之外的正交频分复用(英文:Orthogonal Frequency Division Multiplexing,OFDM)符号。是否在无线子帧中添加CP、以及CP的长度可以根 据应用需求而设置。是否在无线子帧中添加GT(Guard Time)、以及GT的长度可以根据应用需求而设置。
(1)所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的第P+1至第P+Q个OFDM符号,其中P和Q为大于等于1的自然数、且P+Q的和小于所述第一无线子帧中的OFDM符号总数K。如图3A所示。
(2)所述加扰后的业务数据占用第一无线子帧中除CP之外的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的第Q+1至第P+Q个OFDM符号。如图3B所示。
(3)所述前导序列占用第一无线子帧中的后P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的倒数第P+1至倒数第P+Q个OFDM符号。如图3C所示。
(4)所述加扰后的业务数据占用第一无线子帧中的后Q个OFDM符号,所述前导序列占用所述第一无线子帧中的倒数第Q+1至倒数第P+Q个OFDM符号。如图3D所示。
(5)所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中的后Q个OFDM符号。如图3E所示。
(6)所述加扰后的业务数据占用第一无线子帧中的前Q个OFDM符号,所述前导序列占用所述第一无线子帧中的后P个OFDM符号。如图3F所示。
(7)MSG1持续预定数量个无线子帧。在这些无线子帧中前P个OFDM符号是前导序列,加扰后的业务数据占用每个无线子帧中的其余OFDM符号。即前导序列在这些无线子帧的每个无线子帧中均出现。加扰后的业务数据由这些无线子帧中除前导序列之外的符号来承载。无线子帧的数量可以通过协议标准预先指定。在附图3G所示的例子中,MSG1持续2个无线子帧。
(8)所述前导序列占用第一无线子帧中的前P个OFDM符号,长度指示符NI占用所述第一无线子帧中的第P+1至第P+I个OFDM符号,所述长度指示符用于指示所述加扰后的业务数据占用的子帧个数J,所述加扰后的业务数据占用第一无线子帧中从第P+I+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中I,J为大于等于1的自然数。如图3H所示。
(9)所述前导序列占用第一无线子帧中的前P个OFDM符号,所述加扰后的业务数据占用所述第一无线子帧中从第P+1个OFDM符号起始的剩余OFDM符号以及所述第一无线子帧之后相邻的第1个至第J个无线子帧中的OFDM符号,其中结束指示符占用所述第J个无线子帧中的后L个OFDM符号,所述结束指示符用于指示所述加扰后的业务数据已传输完毕。结束指示符可以是前导序列,也可以是另一个与前导序列具有预设映射关系的序列,只要UE和基站双方均可识别出结束指示符即可。如图3I所示。
所述频域资源映射关系包括以下(1)-(2)中的任意一种。
(1)前导序列和加扰后的业务数据使用同一个子载波中的不同符号。即所述前导序列和所述加扰后的业务数据分别占用第一子载波中的不同符号symbol,所述第一子载波包括X个子载波,其中X为大于等于1的自然数。这里的第一子载波可以是一个子载波,也可以是连续的多个子载波,也可以是不连续的多个子载波。如图3J,3K所示。
(2)前导序列和加扰后的业务数据使用不同子载波中的符号。即所述前导序列占用第一子载波中的符号,所述加扰后的业务数据占用第一子载波中的符号,所述第一子载波包括X个子载波,所述第二子载波包括Y个子载波,其中X、Y为大于1的自然数。第一子载波和第二子载波可以是连续的子载波,如图3L所示。第一子载波和第二子载波可以是不连续的子载波,如图3M所示。第一子载波和第二子载波可以是均匀相间隔的子载波,如图3N所示。第一子载波和第二子载波可以是不均匀相间隔的子载波,如图3O所示。
其中资源映射关系可以是由上述任意一种时域资源映射关系和任意一种频域资源映射关系组合确定出的。例如,第(1)种时域资源映射关系和第(1)种频域资源映射关系组合确定出的资源映射关系为前导序列和加扰后的业务数据使用同一个子载波中的同一个无线子帧中的符号,且其中前导序列占用该无线子帧中的前P个OFDM符号,加扰后的业务数据占用所述第一无线子帧中的第P+1至第P+Q个OFDM符号。其他组合的情况不再一一列举。
步骤26,UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据。
步骤27,UE接收所述基站根据所述前导序列发送的随机接入响应。
这里需要说明的是,基站可以采用同一种方式将扰码映射指示和资源映射指示符通知UE,也可以采用不同方式将扰码映射指示和资源映射指示符通知UE。例如基站可以通过物理广播信道中的不同时频资源将扰码映射指示和资源映射指示符通知UE。基站也可以通过物理广播信道将扰码映射指示通知UE,通过SI将资源映射指示符通知UE。
可选地,为了提高业务数据的编码效率、提升基站译码的准确性,在根据所述扰码对所述业务数据进行加扰处理之前,还可以根据预定的编码方式,对业务数据先进行编码处理。然后再对编码处理后的获得业务数据进行加扰处理。编码处理还有助于区分不同类型的业务数据。这种随机接入方法的流程图如图4所示,其中步骤21-23、步骤25与附图2中的对应步骤类似,实现细节请参照附图2中对应步骤的说明,在这里不再重复。
步骤21,UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列。
步骤22,UE获得业务数据。
步骤23,UE确定用于对业务数据进行加扰处理的扰码。
UE在获得业务数据之后,执行步骤241。
步骤241,UE根据预定的编码方式,对所述业务数据进行编码处理,获得 编码处理后的业务数据。
可选地,预定的编码方式是UE和小区所属基站双方预先知晓的。
可选地,上述预定的编码方式是基站和UE中默认配置的。
可选地,上述预定的编码方式是基站通过编码方式指示符通知UE的,其中编码方式指示符用于指示所述预定的编码方式。编码方式包括但不限于Turbo码编码、或者极化编码。例如,第一编码方式指示符指示Turbo码编码,第二编码方式指示符指示极化编码、第三编码方式指示符指示低密度奇偶校验码(英文:Low Density Parity Check Code,LDPC)。
需要说明的是,无需限定步骤23和步骤241的执行顺序,在步骤23和步骤241执行完成之后,执行步骤242。
步骤242,UE根据步骤23确定出的扰码对步骤241编码处理后的业务数据进行加扰处理,获得加扰后的业务数据。
步骤25,UE根据预定的资源映射关系,配置所述前导序列和步骤242得到的加扰后的业务数据分别占用的时频资源。
步骤26,UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据。
步骤27,UE接收所述基站根据所述前导序列发送的随机接入响应。
这里需要说明的是,基站可以采用同一种方式将扰码映射指示、资源映射指示符和编码方式指示符通知UE,也可以采用不同方式将扰码映射指示、资源映射指示符和编码方式指示符通知UE。或者基站可以通过SI的不同时频资源将扰码映射指示、资源映射指示符和编码方式指示符通知UE,例如通过SIB2中的不同符号将扰码映射指示、资源映射指示符和编码方式指示符通知UE。或者基站也可以通过物理广播信道将扰码映射指示和资源映射指示符通知UE,通过SI将编码方式指示符通知UE。
可选地,对于一些需要基站根据UE发送的业务数据提供对应的响应数据才能完成的服务。例如在物联网或车联网业务中,基站需要根据UE上报的包含当前的位置、环境等方面的测量参数值的业务数据,向UE下发包含控制指令的响应数据。本申请提供了两种基站向UE下发响应数据的方式。本申请将结合附图5和附图6分别对这两种响应方式进行详细说明。
附图5是本申请实施例提供的一种随机接入方法的流程图。基站根据MSG1中的业务数据生成对应的响应数据后,通过MSG2向UE发送响应数据。该方法包括:
步骤10,UE向小区所属的基站发送MSG1。MSG1不仅包含前导序列,还包含加扰后的业务数据。该步骤与附图1中的步骤10类似。UE生成MSG1的过程具体请参考附图2、附图3和附图4及其相关描述,在这里不再重复。
步骤20’,UE接收所述基站发送的MSG2,MSG2为随机接入响应。随机接入响应中还包括响应数据,所述响应数据是所述基站根据所述业务数据生成的。基站可以有多种方式通过MSG2发送响应数据。例如,基站将响应数据携带在 padding字段中,或者对于现有随机接入响应的字段内容进行重新定义,通过随机接入响应中已有的一些字段,例如UL-Grant字段、Temporary C-RNTI字段等,来携带响应数据。
对于业务数据的数据量较小、或者基站基于业务数据生成响应数据的流程较为简单、耗时较少的业务,基站可以将响应数据通过MSG2发送给UE。一方面,对现有随机接入过程的影响不大,不致于导致随机接入过程完成时间大大延长。另一方面,UE接收到MSG2后就可以获得服务,大大缩短了业务延迟,提升了服务的及时性。
附图6是本申请提供的另一种随机接入方法的流程图。UE在随机接入过程完成后,接收基站发送的响应数据。该方法包括:
步骤10,UE向小区所属的基站发送MSG1。MSG1不仅包含前导序列,还包含加扰后的业务数据。该步骤与附图1中的步骤10类似。UE生成MSG1的过程具体请参考附图2、附图3和附图4及其相关描述,在这里不再重复。
步骤20,UE接收所述基站发送的MSG2,MSG2为随机接入响应。该步骤与附图1中的步骤20类似,在这里不再重复。
步骤30,UE接收所述基站在所述随机接入过程完成后发送的响应数据。
对于业务数据的数据量较大,或者基站基于业务数据生成响应数据的流程较为复杂、耗时较长的业务,基站可以在随机接入过程完成后,通过下行信道将响应数据发送给UE。可选地,下行信道是物理下行共享信道(英文:Physical Downlink Shared Channel,PDSCH),或者物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH)等等。
在现有随机接入方案中,UE需要在随机接入完成后向基站发送业务数据,再等待接收基站发送的响应数据。本实施例提供的随机接入方案UE已经将业务数据通过MSG1发送给基站,所以UE无需在随机接入完成后再发送业务数据。UE在随机接入过程完成后,可以直接接收响应数据。与现有随机接入方案相比,采用本实施例提供的随机接入方法可以缩短UE得到服务的时间,提升了服务的及时性。
附图7是本申请提供的一种随机接入方法的示意图。附图7着重从基站的角度详细介绍该随机接入方法的实现细节。
步骤70,基站根据预定的资源映射关系,确定所述基站覆盖的小区中的前导序列和业务数据分别占用的时频资源。
每个小区可用的前导序列的数目是有限的,例如在LTE网络中,每个小区有64个可以的前导序列。前导序列在物理层随机接入信道(英文:Physical Random Access Channel,PRACH)上发送。基站会通过广播系统信息SIB2来通知所有UE,允许在哪些时频资源上传输前导序列。
基站可以根据上述预定的资源映射关系,以及每个前导序列占用的时频资源确定对应的业务数据占用的时频资源。
可选地,上述预定的资源映射关系是基站和UE在UE发送前导序列和业务 数据之前双方预先知晓的。
可选地,上述预定的资源映射关系是基站和UE中默认配置的。
可选地,上述预定的资源映射关系是基站通知UE的。例如,基站使用资源映射指示符指示预定的资源映射关系。基站向UE发送资源映射指示符,UE接收所述基站发送的资源映射指示符。UE根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。关于资源映射关系的详细内容,请参考前面实施例中的描述,在这里不再重复。
步骤71,基站在确定的时频资源上,接收UE发送的前导序列和业务数据,所述UE已取得与所述小区的下行同步、且尚未取得与所述小区的上行同步。
步骤72,所述基站确定扰码,所述扰码与接收到前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与接收到的前导序列和所述UE的标识的组合存在一一对应关系。
可选地,可选地,加扰码与UE发送的前导序列存在一一对应关系,此时不限定UE的RRC状态。或者,当UE处于RRC_CONNECTED,RRC_INACTIVE状态时,扰码与所述UE的标识存在一一对应关系,或者扰码与UE发送的前导序列和所述UE的标识的组合存在一一对应关系。可选地,加扰码的确定方式是UE和小区所属基站双方预先知晓的。基站基于已知的加扰码的确定方式,根据前导序列和/或处于RRC_CONNECTED,RRC_INACTIVE状态的UE的标识确定出对应的扰码。可选地,加扰码的确定方式是基站和UE中默认配置的。可选地,上述加扰码的确定方式是基站通过扰码映射指示通知UE的。
关于加扰码的确定方式以及上述三种对应关系中的每种对应关系的详细内容,请参考前面实施例中的描述,在这里不再重复。
步骤73,基站根据所述扰码对接收到的业务数据进行解扰处理,获得解扰后的业务数据。
解扰(Descrambling)处理是加扰处理的逆处理,即将承载业务数据的信号用扰码解密。基站获得解扰后的业务数据后,可以根据业务数据为用户提供对应的服务。
步骤74,基站根据所述前导序列向所述UE发送随机接入响应。
本申请实施例提供的随机接入方法中,基站在接收到MSG1时,在具有映射关系的时频资源接收UE发送的前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。基站从而不必等到随机接入过程完成后,再为UE提供服务,缩短了业务时延。
可选地,附图7所示的方法基站在步骤71接收来自于UE的前导序列和业务数据之前,还包括:基站向所述UE发送资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系。
可选地,附图7所示的方法基站在步骤71接收来自于UE的前导序列和业务数据之前,还包括:基站向所述UE发送扰码映射指示。具体地,第一扰码映射指示用于指示前导序列与扰码的映射方式,第二扰码映射指示用于指示前导序 列与所述UE的标识的映射方式,第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
基站向UE发送资源映射指示符或扰码映射指示的方式请参考前面实施例中的描述,在这里不再重复。
可选地,对于一些需要基站根据UE发送的业务数据提供对应的响应数据才能完成的服务,本申请提供了两种基站向UE下发响应数据的方式。可选地,基站可以将响应数据携带在所述随机接入响应发送给UE,也可以在随机接入过程完成后将响应数据发送给UE。具体发送方式请参照前面实施例中的描述,在这里不再重复。这两种响应数据的发送方式可以根据业务数据的数据量、以及业务数据的处理时间和难度选择。
可选地,为了提高数据传输的可靠性,UE在进行加扰处理之前可以对业务数据进行编码处理。对应地,基站在进行解扰处理之后,还应执行对应的解码处理。如附图7所示,随机接入方法还包括:
步骤75,基站根据与预定的编码方式对应的解码方式,对所述解扰后的业务数据进行解码处理。
可选地,预定的编码方式是UE和小区所属基站双方预先知晓的。
可选地,上述预定的编码方式是基站和UE中默认配置的。
可选地,上述预定的编码方式是基站通过编码方式指示符通知UE的,其中编码方式指示符用于指示所述预定的编码方式。基站接收所述UE发送的前导序列和业务数据之前,还包括:基站向所述UE发送编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。基站发送编码方式指示符的方式请参照前面实施例中的描述,在这里不再重复。
需要说明的是在UE对业务数据进行编码处理的情况下,基站需要对解扰后的业务数据进行解码处理,获得解码后的业务数据之后,再根据解码后的业务数据,生成响应数据。
附图8是本申请实施例提供的一种UE的结构示意图。该UE可以完成附图1、2、4所示流程中的UE的功能。为了便于说明,图8仅示出了UE的主要部件。如图8所示,UE包括处理器81、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持UE执行附图1、2、4所示流程部分所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器82,主要用于收发电磁波形式的射频信号。例如向基站发送MSG1,接收基站发送的MSG2等。
当用户设备开机后,处理器81可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。
处理器81,用于所述UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列,所述UE尚未取得与所述小区的上行同步;获得业务数据;确定 扰码,所述扰码与所述前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系;根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据;根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
收发器82,用于在所述处理器81配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据;接收所述基站根据所述前导序列发送的随机接入响应。
本申请实施例提供的UE在发送MSG1时,在配置的时频资源上向基站发送前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。以便于基站从接收到的MSG1中就可以及时获得业务数据进而为UE提供服务,而不必等到随机接入过程完成之后,才能获得UE利用额外的时频资源传输的业务数据,缩短了业务时延。
可选地,所述扰码与所述前导序列存在一一对应关系,所述收发器82,还用于接收所述基站发送的第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式。所述处理器81,还用于根据所述映射方式以及所述前导序列,确定与所述前导序列存在一一对应关系的所述扰码。
可选地,所述扰码与所述UE的标识存在一一对应关系,所述收发器82,还用于接收所述基站发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式;所述处理器81,还用于根据所述映射方式以及所述UE的标识,确定与所述UE的标识存在一一对应关系的所述扰码。
可选地,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,所述收发器82,还用于接收所述小区所属的基站发送的第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式;所述处理器81,还用于根据所述映射方式以及所述前导序列和所述UE的标识的组合,确定与所述前导序列和所述UE的标识的组合存在一一对应关系的所述扰码。
可选地,所述收发器82,还用于接收所述基站发送的资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系;所述处理器81,还用于根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
可选地,所述收发器82,还用于接收所述基站发送的编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
上述扰码映射指示、资源映射指示符、以及编码方式指示符的发送方式以及更多实现细节请参照前面方法实施例中的描述,在这里不再重复。
图9是本申请实施例提供的一种基站的结构示意图。该基站设备可以作为附图1、2、4和5中的基站。如图9所述,该基站设备包括一个或多个收发器91和一个或多个基带单元(英文:baseband unit,简称:BBU)92。收发器91可以 称为远端射频单元(英文:remote radio unit,简称:RRU)、收发单元、收发机、或者收发电路等等。收发器91可以包括至少一个天线911和射频单元912。
所述收发器91主要用于射频信号的收发以及射频信号与基带信号的转换9。所述处理器92主要用于进行基带处理,对基站进行控制等。所述收发器91与基带单元92可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述基带单元92主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个示例中,基带单元92可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。基带单元92包括处理器921。处理器921可以用于控制附图9所示基站执行上述各个实施例中基站执行的流程。可选地,基带单元92还可以包括存储器922,用以存储必要的指令和数据。
处理器921,用于根据预定的资源映射关系,确定所述基站覆盖的小区中的前导序列和业务数据分别占用的时频资源。
收发器91,用于在确定的时频资源上,接收UE发送的前导序列和业务数据,所述UE已取得与所述小区的下行同步、且尚未取得与所述小区的上行同步。
所述处理器921,还用于确定扰码,所述扰码与接收到前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与接收到的前导序列和所述UE的标识的组合存在一一对应关系;根据所述扰码对所述UE发送的业务数据进行解扰处理,获得解扰后的业务数据。
所述收发器91,还用于根据所述前导序列向所述UE发送随机接入响应。
本申请实施例提供的基站在接收到MSG1时,在具有映射关系的时频资源接收UE发送的前导序列和业务数据,即MSG1不仅携带Preamble,还携带业务数据。基站从而不必等到随机接入过程完成后,再为UE提供服务,缩短了业务时延。
可选地,所述收发器91,还用于向所述UE发送资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系。
可选地,所述收发器91,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式。
可选地,所述收发器91,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式。
可选地,所述收发器91,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
可选地,为了提高业务数据传输的可靠性,UE在对待发送的业务数据进行加扰处理之前,还对待发送的数据进行编码处理。对应地,基站也应对接收到的 业务数据执行解扰处理之后,执行解码处理。在这种情况下,所述处理器921,还用于获得解扰后的业务数据之后,根据与预定的编码方式对应的解码方式,对所述解扰后的业务数据进行解码处理。所述收发器91,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
上述扰码映射指示、资源映射指示符、以及编码方式指示符的发送方式以及更多实现细节请参照前面方法实施例中的描述,在这里不再重复。
本申请实施例还提供了一种UE的随机接入系统,包括一个基站和一个UE。基站的结构请参照附图9的描述,UE的结构请参照附图8的描述。基站和UE的交互过程请参照前面方法实施例中的描述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的范围。这样,倘若本申请的这些修改和变型属于本发明权利要求的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (47)

  1. 一种随机接入方法,其特征在于,包括:
    用户设备UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列,所述UE尚未取得与所述小区的上行同步;
    所述UE获得业务数据;
    所述UE确定扰码,所述扰码与所述前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系;
    所述UE根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据;
    所述UE根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源;
    所述UE在配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据;
    所述UE接收所述基站根据所述前导序列发送的随机接入响应。
  2. 根据权利要求1所述的方法,其特征在于,所述扰码与所述前导序列存在一一对应关系,所述确定扰码,包括:
    所述UE接收所述基站发送的第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式;
    所述UE根据所述映射方式以及所述前导序列,确定与所述前导序列存在一一对应关系的所述扰码。
  3. 根据权利要求2所述的方法,其特征在于,所述第一扰码映射指示是所述基站通过物理广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH(Physical Downlink Control Channel)通知所述UE的。
  4. 根据权利要求1所述的方法,其特征在于,所述扰码与所述UE的标识存在一一对应关系,所述确定扰码,包括:
    所述UE接收所述基站发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式;
    所述UE根据所述映射方式以及所述UE的标识,确定与所述UE的标识存在一一对应关系的所述扰码。
  5. 根据权利要求4所述的方法,其特征在于,所述第二扰码映射指示是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  6. 根据权利要求1所述的方法,其特征在于,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,所述确定扰码,包括:
    所述UE接收所述小区所属的基站发送的第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方 式;
    所述UE根据所述映射方式以及所述前导序列和所述UE的标识的组合,确定与所述前导序列和所述UE的标识的组合存在一一对应关系的所述扰码。
  7. 根据权利要求6所述的方法,其特征在于,所述第三扰码映射指示是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源,包括:
    所述UE接收所述基站发送的资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系;
    所述UE根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
  9. 根据权利要求8所述的方法,其特征在于,所述资源映射指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  10. 根据权利要求1至9所述的方法,其特征在于,所述UE根据所述扰码对所述业务数据进行加扰处理,包括:
    所述UE根据预定的编码方式,对所述业务数据进行编码处理,获得编码处理后的业务数据;
    所述UE根据所述扰码,对所述编码处理后的业务数据进行加扰处理。
  11. 根据权利要求10所述的方法,其特征在于,所述UE根据预定的编码方式,对所述业务数据进行编码处理之前,还包括:
    所述UE接收所述基站发送的编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
  12. 根据权利要求11所述的方法,其特征在于,所述编码方式指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  13. 一种随机接入方法,其特征在于,包括:
    基站根据预定的资源映射关系,确定所述基站覆盖的小区中的前导序列和业务数据分别占用的时频资源;
    所述基站在确定的时频资源上,接收UE发送的前导序列和业务数据,所述UE已取得与所述小区的下行同步、且尚未取得与所述小区的上行同步;
    所述基站确定扰码,所述扰码与接收到前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与接收到的前导序列和所述UE的标识的组合存在一一对应关系;
    所述基站根据所述扰码对所述UE发送的业务数据进行解扰处理,获得解扰后的业务数据;
    所述基站根据所述前导序列向所述UE发送随机接入响应。
  14. 根据权利要求13所述的方法,其特征在于,所述接收所述UE发送的前导序列和业务数据之前,还包括:
    所述基站向所述UE发送资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系。
  15. 根据权利要求14所述的方法,其特征在于,所述资源映射指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  16. 根据权利要求13至15任一所述的方法,其特征在于,所述扰码与所述前导序列存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:
    所述基站向所述UE发送第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式。
  17. 根据权利要求16所述的方法,其特征在于,所述第一扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  18. 根据权利要求13至15任一所述的方法,其特征在于,所述扰码与所述UE的标识存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:
    所述基站向所述UE发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式。
  19. 根据权利要求18所述的方法,其特征在于,所述第二扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  20. 根据权利要求13至15任一所述的方法,其特征在于,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,所述接收所述UE发送的前导序列和业务数据之前,还包括:
    所述基站向所述UE发送第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
  21. 根据权利要求20所述的方法,其特征在于,所述第三扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  22. 根据权利要求13至21任一所述的方法,其特征在于,获得解扰后的业务数据之后,还包括:
    所述基站根据与预定的编码方式对应的解码方式,对所述解扰后的业务数据进行解码处理。
  23. 根据权利要求22所述的方法,其特征在于,所述接收所述UE发送的前导序列和业务数据之前,还包括:
    所述基站向所述UE发送编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
  24. 根据权利要求23所述所述的方法,其特征在于,所述编码方式指示符是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  25. 一种用户设备UE,其特征在于,包括收发器和处理器,其中,
    所述处理器,用于所述UE取得与小区的下行同步后,确定所述UE在所述小区的前导序列,所述UE尚未取得与所述小区的上行同步;
    获得业务数据;
    确定扰码,所述扰码与所述前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系;根据所述扰码对所述业务数据进行加扰处理,获得加扰后的业务数据;
    根据预定的资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源;
    所述收发器,用于在所述处理器配置的时频资源上,向所述小区所属的基站发送所述前导序列和所述加扰后的业务数据;接收所述基站根据所述前导序列发送的随机接入响应。
  26. 根据权利要求25所述的UE,其特征在于,所述扰码与所述前导序列存在一一对应关系,
    所述收发器,还用于接收所述基站发送的第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式;
    所述处理器,还用于根据所述映射方式以及所述前导序列,确定与所述前导序列存在一一对应关系的所述扰码。
  27. 根据权利要求26所述的UE,其特征在于,所述第一扰码映射指示是所述基站通过物理广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  28. 根据权利要求25所述的UE,其特征在于,所述扰码与所述UE的标识存在一一对应关系,
    所述收发器,还用于接收所述基站发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式;
    所述处理器,还用于根据所述映射方式以及所述UE的标识,确定与所述UE的标识存在一一对应关系的所述扰码。
  29. 根据权利要求28所述的UE,其特征在于,所述第二扰码映射指示是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  30. 根据权利要求25所述的UE,其特征在于,所述扰码与所述前导序列和所述UE的标识的组合存在一一对应关系,
    所述收发器,还用于接收所述小区所属的基站发送的第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式;
    所述处理器,还用于根据所述映射方式以及所述前导序列和所述UE的标识的组合,确定与所述前导序列和所述UE的标识的组合存在一一对应关系的所述扰码。
  31. 根据权利要求30所述的UE,其特征在于,所述第三扰码映射指示是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  32. 根据权利要求25至31任一所述的UE,其特征在于,
    所述收发器,还用于接收所述基站发送的资源映射指示符,所述资源映射指示符用于指示所述预定的资源映射关系;
    所述处理器,还用于根据所述资源映射指示符指示的所述资源映射关系,配置所述前导序列和所述加扰后的业务数据分别占用的时频资源。
  33. 根据权利要求32所述的UE,其特征在于,所述资源映射指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  34. 根据权利要求25至33任一所述的UE,其特征在于,
    所述收发器,还用于接收所述基站发送的编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
  35. 根据权利要求34所述的UE,其特征在于,
    所述编码方式指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  36. 一种基站,其特征在于,包括处理器和收发器,其中
    所述处理器,用于根据预定的资源映射关系,确定所述基站覆盖的小区中的前导序列和业务数据分别占用的时频资源;
    所述收发器,用于在确定的时频资源上,接收UE发送的前导序列和业务数据,所述UE已取得与所述小区的下行同步、且尚未取得与所述小区的上行同步;
    所述处理器,还用于确定扰码,所述扰码与接收到前导序列存在一一对应关系,或者所述扰码与所述UE的标识存在一一对应关系,或者所述扰码与接收到的前导序列和所述UE的标识的组合存在一一对应关系;根据所述扰码对所述UE发送的业务数据进行解扰处理,获得解扰后的业务数据;
    所述收发器,还用于根据所述前导序列向所述UE发送随机接入响应。
  37. 根据权利要求36所述的基站,其特征在于,
    所述收发器,还用于向所述UE发送资源映射指示符,所述资源映射指示符 用于指示所述预定的资源映射关系。
  38. 根据权利要求37所述的基站,其特征在于,
    所述资源映射指示符是所述基站通过广播信道PBCH通知所述UE的,或者所述基站通过系统信息SI消息通知所述UE的,或者所述基站通过物理下行控制信道PDCCH通知所述UE的。
  39. 根据权利要求36至38任一所述的基站,其特征在于,
    所述收发器,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第一扰码映射指示,所述第一扰码映射指示用于指示前导序列与扰码的映射方式。
  40. 根据权利要求39所述的基站,其特征在于,所述第一扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  41. 根据权利要求36至38任一所述的基站,其特征在于,
    所述收发器,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第二扰码映射指示,所述第二扰码映射指示用于指示前导序列与所述UE的标识的映射方式。
  42. 根据权利要求36所述的基站,其特征在于,所述第二扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  43. 根据权利要求36-38任一所述的基站,其特征在于,
    所述收发器,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送第三扰码映射指示,所述第三扰码映射指示用于指示前导序列与所述前导序列和所述UE的标识的组合的映射方式。
  44. 根据权利要求43所述的基站,其特征在于,所述第三扰码映射指示是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
  45. 根据权利要求36-44任一所述的基站,其特征在于,
    所述处理器,还用于获得解扰后的业务数据之后,根据与预定的编码方式对应的解码方式,对所述解扰后的业务数据进行解码处理。
  46. 根据权利要求45所述的基站,其特征在于,
    所述收发器,还用于接收所述UE发送的前导序列和业务数据之前,向所述UE发送编码方式指示符,所述编码方式指示符用于指示所述预定的编码方式。
  47. 根据权利要求46所述的基站,其特征在于,所述编码方式指示符是所述基站通过广播信道PBCH发送的,或者所述基站通过系统信息SI消息发送的,或者所述基站通过物理下行控制信道PDCCH发送的。
PCT/CN2018/077103 2017-03-20 2018-02-24 随机接入方法、用户设备、基站以及随机接入系统 WO2018171377A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18772323.4A EP3573413A4 (en) 2017-03-20 2018-02-24 RANDOM ACCESS METHOD, USER EQUIPMENT, BASE STATION AND RANDOM ACCESS SYSTEM
US16/576,785 US11284442B2 (en) 2017-03-20 2019-09-20 Random access method, user equipment, base station, and random access system
US17/682,509 US11985709B2 (en) 2017-03-20 2022-02-28 Random access method, user equipment, base station, and random access system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710166657.9 2017-03-20
CN201710166657.9A CN108633104B (zh) 2017-03-20 2017-03-20 随机接入方法、用户设备、基站以及随机接入系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/576,785 Continuation US11284442B2 (en) 2017-03-20 2019-09-20 Random access method, user equipment, base station, and random access system

Publications (1)

Publication Number Publication Date
WO2018171377A1 true WO2018171377A1 (zh) 2018-09-27

Family

ID=63586264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077103 WO2018171377A1 (zh) 2017-03-20 2018-02-24 随机接入方法、用户设备、基站以及随机接入系统

Country Status (4)

Country Link
US (2) US11284442B2 (zh)
EP (1) EP3573413A4 (zh)
CN (2) CN108633104B (zh)
WO (1) WO2018171377A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633013B (zh) * 2017-03-22 2019-09-17 电信科学技术研究院 一种收发物理随机接入信道前导码序列的方法及装置
US20220159745A1 (en) * 2019-03-29 2022-05-19 Nokia Technologies Oy Information transmission in random access
WO2020223921A1 (zh) * 2019-05-08 2020-11-12 哈尔滨海能达科技有限公司 一种信号处理方法、相关设备及LoRa无线系统
CN112838906B (zh) * 2019-11-25 2022-12-02 华为技术有限公司 一种数据处理的方法以及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102298A (zh) * 2006-07-06 2008-01-09 华为技术有限公司 多载波传输系统中部分带宽的使用方法和系统
CN102548015A (zh) * 2012-01-13 2012-07-04 电信科学技术研究院 一种随机接入及其控制方法、装置和系统
WO2016089146A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 셀 선택 방법 및 이를 위한 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169992B2 (en) * 2007-08-08 2012-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scrambling during random access
KR101588047B1 (ko) * 2007-10-31 2016-01-25 코닌클리케 필립스 엔.브이. 랜덤 액세스 채널들을 시그널링하는 방법
US9357563B2 (en) * 2008-08-12 2016-05-31 Google Technology Holdings LLC Preventing misuse of random access procedure in wireless communication system
WO2010067968A2 (ko) * 2008-12-10 2010-06-17 엘지전자 주식회사 단말의 효율적인 펨토 기지국 검출 및 검색 방법
US8660165B2 (en) * 2009-06-11 2014-02-25 Andrew Llc System and method for detecting spread spectrum signals in a wireless environment
KR101217574B1 (ko) 2009-06-16 2013-01-18 한국전자통신연구원 나노선 메모리
US8989117B2 (en) * 2011-08-16 2015-03-24 Telefonaktiebolaget L M Ericsson (Publ) Enhanced dedicated-channel signaling in a CELL—FACH state
WO2014023026A1 (zh) * 2012-08-10 2014-02-13 华为技术有限公司 随机接入方法、基站及终端
US9468022B2 (en) 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
EP2974457B1 (en) 2013-03-15 2018-01-31 Qualcomm Incorporated Improved random access procedure with beamforming in lte
CN104754702A (zh) * 2013-12-26 2015-07-01 华为技术有限公司 一种随机接入的干扰控制方法、设备及系统
EP3105878B1 (en) * 2014-02-16 2019-04-03 LG Electronics Inc. Method and apparatus for transmitting uplink data in a wireless communication system
US9924542B2 (en) * 2014-03-27 2018-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedures for machine-type communications
CN105376009A (zh) * 2014-08-27 2016-03-02 华为技术有限公司 一种上行数据传输方法及装置
US10700830B2 (en) * 2014-10-21 2020-06-30 Qualcomm Incorporated Techniques for conveying identification information in a preamble transmission
US10142980B2 (en) * 2016-02-26 2018-11-27 Qualcomm Incorporated Discovery reference signal transmission window detection and discovery reference signal measurement configuration
BR112019012954A2 (pt) * 2017-01-05 2019-11-26 Guangdong Oppo Mobile Telecommunications Corp Ltd método e dispositivo para acesso aleatório
CN110235406A (zh) * 2017-01-23 2019-09-13 瑞典爱立信有限公司 用于两步随机接入的方法和设备
US20200288506A1 (en) * 2019-02-15 2020-09-10 Qualcomm Incorporated Techniques for supporting co-existence between 2-step random access and 4-step random access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102298A (zh) * 2006-07-06 2008-01-09 华为技术有限公司 多载波传输系统中部分带宽的使用方法和系统
CN102548015A (zh) * 2012-01-13 2012-07-04 电信科学技术研究院 一种随机接入及其控制方法、装置和系统
WO2016089146A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 셀 선택 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573413A4 *

Also Published As

Publication number Publication date
CN111818664A (zh) 2020-10-23
CN108633104B (zh) 2020-06-16
US20220256616A1 (en) 2022-08-11
US11985709B2 (en) 2024-05-14
EP3573413A4 (en) 2020-02-19
US11284442B2 (en) 2022-03-22
CN108633104A (zh) 2018-10-09
EP3573413A1 (en) 2019-11-27
CN111818664B (zh) 2023-01-13
US20200015282A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US11102825B2 (en) Method and device for responding to random access
US11503643B2 (en) Random access method and device
WO2019120260A1 (zh) 通信方法和装置
US10791575B2 (en) Data transmission method, device and system
KR102429435B1 (ko) 랜덤 액세스 프로세스에서 시간-주파수 리소스를 결정하고 구성하는 방법들 및 장치들
US20200245200A1 (en) Random access method, network node and user equipment
AU2012254356B2 (en) Methods and apparatus for random access procedures with carrier aggregation for LTE-advanced systems
US11284442B2 (en) Random access method, user equipment, base station, and random access system
WO2017133555A1 (zh) 一种随机接入方法、基站、终端和计算机存储介质
CN112311422B (zh) 一种信号传输方法及装置
JP2022033957A (ja) 情報伝送方法及び装置、ランダムアクセス方法及び装置、並びに通信システム
EP3780808A1 (en) Terminal device, base station device, and communication method
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
JP7393431B2 (ja) ランダムアクセス方法および装置
JP7220797B2 (ja) ランダムアクセス手順のための方法、端末デバイスおよび基地局
JP7402327B2 (ja) 情報表示方法及び装置
US9681439B2 (en) Method and arrangement in a telecommunication system
JP2019533371A (ja) ダウンリンク制御信号を伝送する方法及び装置
US20190239257A1 (en) Random access method, terminal device, and network device
WO2017118177A1 (zh) 确定随机接入无线网络临时标识的方法、用户设备和基站
US20230007703A1 (en) Contention resolution in wireless communication systems
EP2810488B1 (en) Method and arrangement in a telecommunication system
WO2018176407A1 (zh) 随机接入方法、装置以及通信系统
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
WO2018201811A1 (zh) 随机接入方法、终端、基站和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018772323

Country of ref document: EP

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE