WO2014023026A1 - 随机接入方法、基站及终端 - Google Patents

随机接入方法、基站及终端 Download PDF

Info

Publication number
WO2014023026A1
WO2014023026A1 PCT/CN2012/079972 CN2012079972W WO2014023026A1 WO 2014023026 A1 WO2014023026 A1 WO 2014023026A1 CN 2012079972 W CN2012079972 W CN 2012079972W WO 2014023026 A1 WO2014023026 A1 WO 2014023026A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
sequence
domain resource
random access
preamble sequence
Prior art date
Application number
PCT/CN2012/079972
Other languages
English (en)
French (fr)
Inventor
余政
南方
张宁波
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280001945.4A priority Critical patent/CN103748942B/zh
Priority to EP12882828.2A priority patent/EP2876955B1/en
Priority to PCT/CN2012/079972 priority patent/WO2014023026A1/zh
Publication of WO2014023026A1 publication Critical patent/WO2014023026A1/zh
Priority to US14/618,330 priority patent/US9769831B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a random access method, a base station, and a terminal. Background technique
  • the Internet of Things refers to the network that realizes the interconnection of people, things, objects and objects by deploying various devices with certain sensing, computing, execution and communication capabilities to acquire information of the physical world and realize information transmission, coordination and processing through the network.
  • 3GPP 3rd Generation Partnership Project
  • M2M Machine to Machine
  • LTE Long Term Evolution
  • M2M applications are usually implemented based on LTE networks, and the maximum system bandwidth that LTE can support is 20M. For ordinary terminals, it can support the transmission and reception of services on the entire frequency band of LTE.
  • MTC Machine Type Communication
  • the MTC terminal When the terminal needs to establish a connection with the network, it needs to complete the Random Access (RA) process.
  • the MTC terminal has the same random access procedure as the ordinary terminal, including a contention random access procedure and a non-contention random access procedure.
  • the competitive random access consists of the following four steps: First, the transmission preamble sequence: The terminal randomly selects one from the random access sequence set, and passes the physical random access channel on the random access resource pre-designated by the base station (Physical Random The access channel (PRACH) transmits a preamble sequence to the base station.
  • PRACH Physical Random The access channel
  • the second step is a random access response (RAR): the terminal receives the RAR sent by the base station on the physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the third step the layer 2/layer 3 message
  • the UE sends a random to the base station on the physical uplink shared channel (PUSCH) specified in the RAR by using the Cellular Radio Network Temporary Identifier (C-RNTI) included in the RAR.
  • the access procedure message where the random access procedure message includes the identifier of the UE in the local cell, The identifier is used for contention resolution; the fourth step is to resolve the competition: the terminal receives the contention resolution message sent by the base station, and completes the random access procedure.
  • the non-competitive random access procedure includes the first two steps of the above-mentioned competitive random access procedure.
  • the competition between the MTC terminal and the ordinary terminal in a random process is aggravated, affecting the performance and capacity of the PRACH, and reducing The success probability of random access affects the random access process of the ordinary terminal.
  • the base station sends a random access response to the MTC terminal and the ordinary terminal.
  • the message in the two steps can be sent only in a small bandwidth, thereby reducing the receiving performance of the ordinary terminal and affecting the random access of the ordinary terminal. quality.
  • the embodiments of the present invention provide a random access method, a base station, and a terminal, to solve the problem that the MTC terminal and the normal terminal in the prior art adopt the same random access mode, which affects the random access quality of the ordinary terminal.
  • a random access method where the method includes:
  • the base station receives a preamble sequence sent by the terminal during random access
  • the identifying the type of the terminal according to the preamble sequence comprises:
  • the type of the terminal is identified according to the type of the preamble sequence.
  • the message in the random access procedure includes: a random access response message and a contention resolution message;
  • the random access response message and the contention resolution message are sent to the terminal on the first bandwidth supported by the MTC terminal, and when the terminal is an ordinary terminal, the second bandwidth supported by the common terminal is used. Sending a random access response message and a contention resolution message to the terminal.
  • the terminal When the terminal accesses the random access, the terminal sends a preamble sequence to the base station according to the type of the terminal; And receiving, by the base station, a message in a random access procedure sent to the terminal on a processing bandwidth supported by the terminal, after the type of the terminal is identified according to the preamble sequence.
  • the sending the preamble sequence to the base station according to the type of the terminal includes:
  • a base station in a third aspect, includes:
  • a receiving unit configured to receive a preamble sequence sent by the terminal during random access
  • An identifying unit configured to identify a type of the terminal according to a preamble sequence received by the receiving unit, and a sending unit, configured to: according to a type of the terminal identified by the identifying unit, on a processing bandwidth supported by the terminal
  • the terminal sends a message in the random access process.
  • the identifying unit includes at least one of the following units:
  • a first identifying subunit configured to identify a type of the terminal according to a time domain resource that sends the preamble sequence
  • a second identifying subunit configured to identify a type of the terminal according to a frequency domain resource that sends the preamble sequence
  • a third identification subunit configured to identify a type of the terminal according to a type of the preamble sequence.
  • the message in the random access procedure includes: a random access response message and a contention resolution message;
  • the sending unit is specifically configured to: when the terminal is an MTC terminal, send a random access response message and a contention resolution message to the terminal on a first bandwidth supported by the MTC terminal, when the terminal is an ordinary terminal, The random access response message and the contention resolution message are sent to the terminal on the second bandwidth supported by the common terminal, where the first bandwidth is smaller than the second bandwidth.
  • another base station is provided, where the base station includes:
  • a receiver configured to receive a preamble sequence sent by the terminal during random access
  • a processor configured to identify a type of the terminal according to the preamble sequence
  • a transmitter configured to send, in the processing bandwidth supported by the terminal, a message in a random access procedure to the terminal according to the type of the terminal.
  • the processor is specifically configured to: identify, according to a time domain resource that sends the preamble sequence, a type of the terminal, and/or according to the sending the preamble sequence
  • the frequency domain resource identifies the type of the terminal, and/or identifies the type of the terminal based on the type of the preamble sequence.
  • the transmitter is specifically configured to: when the terminal is an MTC terminal, on a first bandwidth supported by the MTC terminal The terminal sends a random access response message and a contention resolution message, and when the terminal is a normal terminal, sends a random access response message and a contention resolution message to the terminal on the second bandwidth supported by the common terminal, where The first bandwidth is smaller than the second bandwidth.
  • a fifth aspect provides a terminal, where the terminal includes:
  • a sending unit configured to send, by the terminal, a preamble sequence to the base station according to the type of the terminal during random access
  • a receiving unit configured to receive, according to the preamble sequence sent by the sending unit, the message in the random access procedure sent to the terminal on a processing bandwidth supported by the terminal, after the type of the terminal is identified.
  • the sending unit includes at least one of the following units:
  • a first sending subunit configured to send a preamble sequence to the base station on a time domain resource corresponding to the type of the terminal
  • a second sending subunit configured to send a preamble sequence to the base station on a frequency domain resource corresponding to the type of the terminal
  • a third sending subunit configured to send, to the base station, a preamble sequence corresponding to the type of the terminal.
  • another terminal where the terminal includes:
  • a transmitter configured to send, by the terminal, a preamble sequence to the base station according to the type of the terminal
  • a receiver configured to receive, after the base station identifies the type of the terminal according to the preamble sequence, A message in a random access procedure sent to the terminal on a processing bandwidth supported by the terminal.
  • the transmitter is specifically configured to send a preamble sequence to a base station on a time domain resource corresponding to a type of the terminal, and/or A frequency domain resource corresponding to the type of the terminal transmits a preamble sequence to the base station, and/or transmits a preamble sequence corresponding to the type of the terminal to the base station.
  • the base station receives the preamble sequence that is sent by the terminal during the random access, and identifies the type of the terminal according to the preamble sequence, and sends a message in the random access procedure to the terminal on the processing bandwidth supported by the terminal according to the type of the terminal.
  • the MTC terminal and the common terminal can be distinguished in the random access process, and the impact of the MTC terminal on the random access process of the ordinary terminal is reduced, and the MTC terminal and the ordinary terminal are prevented from transmitting the preamble sequence on the same time-frequency resource.
  • the base The station can know the terminal type, so the MTC terminal can send the message that the MTC terminal can process on the small bandwidth, and the normal terminal can send the message that the ordinary terminal can process on the full frequency band, so as to ensure that the receiving performance of the ordinary terminal is not Affected by MTC terminals.
  • FIG. 1 is a flow chart of an embodiment of a random access method according to the present invention.
  • FIG. 2 is a flow chart of another embodiment of a random access method according to the present invention:
  • FIG. 3 is a flow chart of another embodiment of a random access method according to the present invention.
  • FIG. 4 is a flow chart of another embodiment of a random access method according to the present invention.
  • FIG. 5 is a flowchart of another embodiment of a random access method according to the present invention.
  • FIG. 6 is a block diagram of an embodiment of a base station according to the present invention.
  • FIG. 7 is a block diagram of another embodiment of a base station according to the present invention.
  • Figure 8 is a block diagram of an embodiment of a terminal of the present invention.
  • FIG. 9 is a block diagram of another embodiment of a terminal of the present invention. detailed description
  • the following embodiments of the present invention provide a random access method, a base station, and a terminal.
  • the embodiment of the present invention can be applied to an LTE system.
  • the bandwidth resource of the LTE system is divided into several symbols in the time domain, and is divided into several subcarriers in the frequency domain.
  • An LTE system frame contains 10 subframes, one subframe contains two slots, one subframe is lms long, and for a universal cyclic prefix, 14 symbols are included, and the length of one subframe is a transmission time interval (Transmission Time Interval, TTI).
  • TTI Transmission Time Interval
  • the size of a Resource Block (RB) is defined as 12 subcarriers in the frequency domain, and the length of one slot in the time domain, that is, 7 symbols for the universal cyclic prefix.
  • a terminal in the embodiment of the present invention may also be referred to as a user equipment (User Equipment, UE). Referring to FIG. 1, an embodiment of a random access method according to the present invention is described. This embodiment describes a random access procedure of a terminal from a base station side:
  • Step 101 The base station receives a preamble sequence sent by the terminal during random access.
  • the preamble sequence sent by the terminal to the base station is carried by a physical random access channel (PRACH), and the preamble sequence is composed of a sequence duration (T SEQ ) and a cyclic prefix duration (T CP ).
  • PRACH physical random access channel
  • T SEQ sequence duration
  • T CP cyclic prefix duration
  • the preamble sequence format 0 to 3 in Table 1 can be used.
  • the time Division Duplex (TDD) system as shown in Table 1, The preamble sequence format is 0 to 4, where format 4 is only used for the preamble sequence configuration of the special subframe in the TDD system.
  • Step 102 Identify a type of the terminal that sends the preamble sequence according to the received preamble sequence.
  • the base station may identify the type of the terminal according to the time domain resource of the sending preamble sequence, that is, the common terminal and the MTC terminal may send the preamble sequence through different time domain resources; and/or may also be based on the frequency domain resource that sends the preamble sequence. Identifying the type of the terminal, that is, the normal terminal and the MTC terminal may send the preamble sequence through different frequency domain resources; and/or, the type of the terminal may be identified according to the type of the preamble sequence, that is, the preamble sequence sent by the ordinary terminal and the MTC terminal is different. .
  • the first mode, the first random access resource configuration table is pre-configured, and the first random access resource configuration table includes an indication relationship between the random access configuration index and the first time domain resource and the second time domain resource. And configuring, by using the same random access configuration index, the first time domain resource and the second time domain resource that are different for the common terminal and the MTC terminal respectively; and randomly, the terminal notification is performed by using RRC broadcast or unicast signaling Parameters entered, RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal; when a preamble sequence sent by the terminal is detected on the first time domain resource indicated by the one random access configuration index, And determining that the terminal is a normal terminal, and when detecting a preamble sequence sent by the terminal on the second time domain resource indicated by the one random access configuration index, determining that the terminal is an MTC terminal.
  • the common terminal resource configuration table and the MTC terminal resource configuration table are pre-configured, and the common terminal resource configuration table includes an indication relationship between the first random access configuration index and the first time domain resource, where the MTC is The terminal resource configuration table includes an indication relationship between the second random access configuration index and the second time domain resource; the terminal is notified of the parameter for performing random access by using RRC broadcast or unicast signaling, where the RRC broadcast or The unicast signaling includes a first random access configuration index configured for the normal terminal, and a second random access configuration index configured for the MTC terminal; when indicated by the first random access configuration index
  • the preamble sequence sent by the terminal is detected on the first time domain resource, the terminal is determined to be a normal terminal, and the terminal is detected to be sent on the second time domain resource indicated by the one second random access configuration index.
  • the preamble sequence it is determined that the terminal is an MTC terminal.
  • the second resource configuration table is pre-configured, where the second resource configuration table includes an indication relationship between the random access configuration index of the terminal and the time domain resource; the RRC broadcast or unicast signaling is used to Notifying, by the terminal, a parameter for performing random access, where the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal; when time domain resources indicated by the one random access configuration index When detecting the preamble sequence sent by the terminal, determining that the terminal is a normal terminal, when the time domain resource indicated by the one random access configuration index is offset according to the specified time domain resource offset value When the preamble sequence sent by the terminal is detected on the resource, it is determined that the terminal is an MTC terminal.
  • the specified time domain resource offset value is a time domain resource offset value notified by the RRC broadcast or unicast signaling, or a pre-configured time domain resource offset value.
  • the terminal is notified of the parameter of the random access by using the RRC broadcast or the unicast signaling, where the RRC broadcast or the unicast signaling includes the indication information of the first frequency domain resource configured for the common terminal, And the indication information of the second frequency domain resource configured for the MTC terminal; when detecting that the terminal sends the preamble sequence in the first frequency domain resource, determining that the terminal is an ordinary terminal, and detecting that the terminal is in the second frequency domain resource sending front When the sequence is determined, the terminal is determined to be an MTC terminal, and the first frequency domain resource and the second frequency domain resource are different frequency domain resources.
  • the informing the terminal of the parameter for performing the random access by using the RRC broadcast or the unicast signaling may include: notifying, as the indication of the first frequency domain resource, configured for the common terminal in the RRC broadcast or the unicast signaling The first physical random access channel frequency offset of the information, prach-Frequencyoffset, and the configuration configured for the MTC terminal a second physical random access channel frequency offset prach-Frequency offset of the indication information of the second frequency domain resource; and/or, configured in the RRC broadcast or unicast signaling, as the first frequency configured for the common terminal a first random access configuration index of the indication information of the domain resource, and a second random access configuration index configured as an indication information of the second frequency domain resource for the MTC terminal; and/or, in RRC broadcast or unicast Notifying, in the signaling, the same random access configuration index that is configured by the common terminal and the MTC terminal as the indication information of the first frequency domain resource and the indication information of the second frequency domain resource, the same random access configuration index And used to indicate
  • the terminal is notified of the parameter of the random access by using the RRC broadcast or the unicast signaling, where the RRC broadcast or the unicast signaling includes the indication information of the first frequency domain resource configured for the terminal.
  • the indication information of the first frequency domain resource includes a physical random access channel frequency offset prach-Frequency offset and/or a random access configuration index; when it is detected that the terminal sends a preamble sequence in the first frequency domain resource, determining the The terminal is an ordinary terminal.
  • the frequency domain resource of the preamble sequence sent by the terminal is a frequency domain resource that is offset by the first frequency domain resource according to the specified frequency domain resource offset value, determining that the terminal is MTC terminal.
  • the specified frequency domain resource offset value is a frequency domain resource offset value notified by the RRC broadcast or unicast signaling, or a pre-configured frequency domain resource offset value.
  • the terminal when receiving the first preamble sequence sent by the terminal, determining that the terminal is a normal terminal, when receiving the second preamble sequence sent by the terminal Determining, the terminal is an MTC terminal, where the first preamble sequence is an existing preamble sequence, and the second preamble sequence is a new preamble sequence newly defined for the MTC terminal; or, the first preamble sequence In the existing preamble sequence, except for the preamble sequence outside the dedicated sequence, the second preamble sequence is a plurality of preamble sequences demarcated from the dedicated sequence.
  • the method for generating the newly defined sequence of the preamble may include: generating a root sequence of the 64th preamble sequence in the existing preamble sequence, and sequentially increasing the cyclic sequence to increase the cyclic shift value to generate the new definition.
  • a preamble sequence when the number of the newly defined preamble sequences generated according to the root sequence is less than a preset number, sequentially selecting a root sequence corresponding to a logical sequence number consecutive to a logical sequence number of the root sequence, and selecting by using The root sequence is cyclically shifted to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies the preset number; or the logic of notifying the root sequence of the MTC terminal by RRC broadcast or unicast signaling Sequence number, sequentially increasing the cyclic shift value of the root sequence of the MTC terminal to generate the newly defined preamble sequence, when the number of newly defined preamble sequences generated according to the root sequence of the MTC terminal is less than a preset number, And sequentially selecting a root sequence corresponding to a logical sequence number consecutive to a logical sequence number of the root sequence of the MTC terminal, and performing cyclic shift on the selected root sequence Generating the preamble sequence newly defined until a new definition of the leader sequence
  • the manner in which the second preamble sequence is a plurality of preamble sequences that are demarcated from the dedicated sequence may include: notifying, by using RRC broadcast or unicast signaling, the dedicated sequence as the second preamble sequence
  • the number of sequences, the second preamble sequence is obtained according to the number of the sequence and the specified sequence number as the start sequence of the second preamble sequence, wherein the sequence number of the specified start sequence is passed
  • Step 103 Send a message in the random access procedure to the terminal according to the type of the identified terminal, on the processing bandwidth supported by the terminal.
  • the message in the random access procedure may include: a random access response message and a contention resolution message.
  • the random access response message and the contention resolution message are sent to the terminal on the first bandwidth supported by the MTC terminal.
  • the terminal When the terminal is an ordinary terminal, the terminal supports the common terminal. Sending a random access response message and a contention resolution message to the terminal on the second bandwidth, where the first bandwidth is smaller than the second bandwidth.
  • the base station can distinguish between the MTC terminal and the common terminal in the random access process, thereby reducing the impact of the MTC terminal on the random access process of the ordinary terminal, and avoiding the same time frequency of the MTC terminal and the ordinary terminal.
  • the collision of the preamble sequence is transmitted on the resource, which reduces the competition between the MTC terminal and the ordinary terminal in the random access process, and improves the random access quality of the ordinary terminal.
  • the base station can know The type of the terminal, so that the MTC terminal can send a message that the MTC terminal can process on a small bandwidth, and the normal terminal can send a message that can be processed by the ordinary terminal on the entire frequency band, thereby ensuring that the receiving performance of the ordinary terminal is not affected by the MTC terminal. influences.
  • FIG. 2 it is another embodiment of a random access method according to the present invention. The embodiment shows a random access procedure in which a base station distinguishes a terminal type according to a preamble sequence sent by a terminal on different time domain resources:
  • Step 201 The base station receives a preamble sequence sent by the terminal during random access.
  • the preamble sequence sent by the terminal to the base station is carried by the PRACH, and the preamble sequence is composed of a sequence duration (T sm ) and a cyclic prefix duration (T CT ).
  • the composition of the preamble sequence carried by the PRACH is divided into five formats, as shown in Table 1 above. Among them, for the FDD system, the preamble sequence formats 0 to 3 as in Table 1 can be used, and for the TDD system, the preamble sequence formats 0 to 4 as in Table 1 can be used.
  • the type of the terminal is divided into an ordinary terminal and an MTC terminal, and the ordinary terminal and the MTC terminal transmit the preamble sequence on different time domain resources.
  • Step 202 Identify the type of the terminal according to the time domain resource of the sending preamble sequence.
  • the base station distinguishes the type of the terminal by using a preamble sequence transmitted by the ordinary terminal and the MTC terminal on different time domain resources.
  • the base station may identify the type of the terminal according to the configuration manner of the three time domain resources.
  • the base station pre-configures a first random access resource configuration table, where the first random access resource configuration table includes a random access configuration index (prach-Configurationlndex) and the first time domain resource and the second
  • the first time domain resource and the second time domain resource are configured differently for the common terminal and the MTC terminal by using the same random access configuration index, and the base station passes the RRC broadcast or the unicast signal.
  • the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal, and the terminal searches for the first random connection according to the random access configuration index.
  • the resource configuration table is configured to obtain a time domain resource corresponding to the type to which the user belongs, and send a preamble sequence on the acquired time domain resource; after receiving the preamble sequence sent by the terminal, the base station indicates, in the random access configuration index, When the preamble sequence sent by the terminal is detected on the first time domain resource, it is determined that the terminal is a normal terminal, when the one is randomly connected. Upon detecting the preamble sequence sent by the terminal when the second domain resource configuration index is indicated on the terminal is determined as said MTC terminal. In this implementation manner, the base station only needs to carry a random access configuration index in the RRC signaling when the terminal is notified of the random access, so the format of the RRC signaling can adopt the same format as the prior art.
  • the first random access resource configuration table is shown in Table 2, and in Table 2, the relationship between the prach-Configurationlndex and the preamble sequence format, the system frame number, and the subframe number is included.
  • the indication relationship wherein the first time domain resource is determined by a system frame number and a subframe number of a normal terminal, and the second time domain resource is determined by a system frame number and a subframe number of the MTC terminal.
  • multiple PRACH frequency domain resources are allowed in one uplink subframe or special subframe.
  • a maximum of six terminals are allowed to simultaneously transmit a PRACH preamble sequence in one uplink subframe or a special subframe, and are performed in the frequency domain.
  • the parameter prach-Configurationlndex configured by the upper layer RRC signaling indicates the relationship between various formats of the PRACH, the PRACH resource density value, and the version index.
  • the physical region of the frequency domain resource available for the PRACH preamble sequence is set by the physical random access channel frequency offset parameter (prach-FrequencyOffset) configured by the upper layer RRC signaling.
  • resource block number ( "P. ffset)
  • PRACH preamble sequences may be frequency domain resource by the beginning / ⁇ , the number of available uplink RB's, where the system frame The number, the number of downlink up conversion points, and t ⁇ are calculated together.
  • the first time domain resource is determined by the values of t ⁇ , t ⁇ , and t in the resource configuration of the common terminal, and the second time domain resource is configured by the resource of the MTC terminal.
  • the values of t ⁇ , t ⁇ and t are determined.
  • the prach-Configurationlndex can obtain different time domain resources and perform random access to the base station according to different time domain resources.
  • the base station pre-configures the common terminal resource configuration table and the MTC terminal resource configuration table, where the common terminal resource configuration table includes an indication relationship between the first random access configuration index and the first time domain resource.
  • the MTC terminal resource configuration table includes a reference between the second random access configuration index and the second time domain resource.
  • the base station notifies the terminal of the random access parameter by using the RRC broadcast or the unicast signaling, where the RRC broadcast or the unicast signaling includes a first random access configuration index configured for the common terminal, and a second random access configuration index configured for the MTC terminal; the terminal acquires a corresponding random access configuration index in the RRC signaling according to its type, and searches for a time domain resource corresponding to the random access configuration index, and searches through the
  • the obtained time domain resource sends a preamble sequence to the base station; after receiving the preamble sequence, the base station determines, when the preamble sequence sent by the terminal is detected on the first time domain resource indicated by the one first random access configuration index,
  • the terminal is
  • the MTC terminal and the normal terminal are configured with different prach-ConfigurationIndex in the RRC signaling.
  • the information element PRACH-ConfigInfo in the RRC signaling may contain:
  • PRACH-Configlnfo : : SEQUENCE ⁇
  • the parameter prach-Conf iglndex-for-NonMTC is the prach-Conf igurationlndex configured by the base station for the common UE, that is, the first random access configuration index
  • the parameter The prach-Conf iglndex-for-MTC is a prach-Conf i gurat i on Index configured by the base station for the MTC UE, that is, the second random access configuration index
  • the two prach-Conf igurationlndex ranges from 0 to 63.
  • the parameter highSpeedFlag is the high-speed flag
  • the parameter zeroCorrelationZoneConf ig is the parameter value indicating the size of the cyclic shift
  • the parameter prach-FreqOffset is the frequency offset. Move the value " p . Ffsrt , " ⁇ at
  • FDD indicates the sequence number of the first RB that the PRACH preamble sequence can occupy, and determines a frequency domain resource in a subframe, P.
  • the ffset determines the frequency domain resources that the PRACH preamble sequence can occupy when the TDD is combined with the sequence number of the frequency resource and the number of available RBs.
  • the normal terminal After receiving the RRC signaling, the normal terminal searches for the following table 4 according to the parameter prach-Conf iglndex-for-NonMTC in the RRC signaling, and obtains a system frame and a subframe that can be used to transmit the PRACH preamble sequence.
  • Table 4 below is an example of a common terminal resource configuration table pre-configured by the base station, including the first An indication relationship between a random access configuration index and a preamble sequence format, a system frame number, and a subframe number, wherein the first time domain resource is determined by the system frame number and the subframe number in the table 4.
  • the normal terminal After receiving the RRC signaling, the normal terminal searches for the following table 5 according to the parameter prach-Configlndex-for-NonMTC in the RRC signaling, and obtains a system frame and a subframe position that can be used to transmit the PRACH preamble sequence.
  • Table 5 is a resource configuration table of the common terminal pre-configured by the base station, where the first time domain resource is determined by the values of t ⁇ , t ⁇ , and t in Table 5.
  • Tables 4 and 5 above are identical to the configuration tables for FDD and TDD systems in existing protocols.
  • the MTC terminal After receiving the RRC signaling, the MTC terminal searches the following table 6 according to the parameter prach-Configlndex-for-NonMTC in the RRC signaling to obtain a system frame and a subframe position that can be used to transmit the PRACH preamble sequence.
  • the following table 6 is the MTC terminal resource configuration table pre-configured by the base station, and includes an indication relationship between the second random access configuration index and the preamble sequence format, the system frame number, and the subframe number, where the second time The domain resource is determined by the system frame number and the subframe number in the table. Table 6
  • the MTC terminal After receiving the RRC signaling, the MTC terminal searches the following table 7 according to the parameter prach-Configlndex-for-NonMTC in the RRC signaling, and obtains a system frame and a subframe position that can be used to transmit the PRACH preamble sequence.
  • Table 7 below is the MTC terminal resource configuration table pre-configured by the base station, where the second time domain resource is determined by the values of t ⁇ , t ⁇ , and t in Table 7.
  • the four parameters in parentheses indicate ⁇ , , ⁇ , and the meanings of the above four parameters are consistent with the foregoing description, and are not described herein again.
  • the base station may detect the time domain resource where the preamble sequence is located after the terminal sends the preamble sequence, and if the time domain resource is found in Table 4 or Table 6, It can be determined that the terminal is a normal terminal. If the time domain resource is found in Table 5 or Table 7, it can be determined that the terminal is an MTC terminal.
  • the base station pre-configures a second resource configuration table, where the second resource configuration table includes an indication relationship between the random access configuration index of the terminal and the time domain resource; the base station transmits the RRC broadcast or the unicast signal. And the RRC broadcast or the unicast signaling includes a random access configuration index configured for the terminal, and the terminal searches for the second resource configuration according to the random access configuration index.
  • the table if it is a normal terminal, directly sends the preamble sequence according to the time domain resource found in the second resource configuration table.
  • the time domain resource found in the second resource configuration table is specified according to the specified
  • the time domain resource offset value is offset, and the preamble sequence is sent on the offset time domain resource; after receiving the preamble sequence, the base station detects when the time domain resource indicated by the one random access configuration index is detected
  • the terminal is determined to be a normal terminal, and the time domain resource indicated by the one random access configuration index is specified.
  • the time domain resource offset value is used to detect the preamble sequence sent by the terminal on the offset time domain resource, it is determined that the terminal is an MTC terminal.
  • the time domain resource offset value of the foregoing common terminal and the MTC terminal transmitting the preamble sequence is a time domain resource offset value notified by the RRC broadcast or unicast signaling, or a pre-configured time domain resource offset value, such as by an agreement.
  • the agreed time domain resource offset value is not limited in this embodiment.
  • the information element PRACH-ConfigInfo in the RRC signaling may include:
  • PRACH-Configlnfo : : SEQUENCE ⁇
  • the parameter subframeOff set indicates the time domain resource offset value of the preamble sequence transmitted by the normal terminal and the MTC terminal, and the value may be an integer from 0 to 9
  • the parameter prach -Conf iglndex configures the index for the random access, and the meanings of other parameters are the same as the prior art, which is consistent with the foregoing description. I will not repeat them here.
  • the second resource configuration table may specifically adopt the foregoing Table 4.
  • the second resource configuration table may specifically adopt the foregoing Table 5, and details are not described herein again.
  • the terminal when the base station in the RRC signaling informs that the prach-Configlndex is 1, and the subframeOff set is 1, when the terminal receives the RRC signaling, the terminal obtains the table according to the prach-Conf iglndex 1
  • the frame number is "4".
  • the preamble sequence is transmitted on the 4th subframe.
  • the subframe number "4" is added to the subframeOff set "1" to obtain the subframe number "5".
  • the MTC terminal transmits the preamble sequence on the fifth subframe; after receiving the preamble sequence, the base station detects that the preamble sequence is transmitted in the fourth subframe, and finds the corresponding according to the prach-Conf iglndex "1" in the RRC signaling. If the subframe number is "4", it can be determined that the terminal transmitting the preamble sequence is a normal terminal.
  • Step 203 Send a random access response message and a contention resolution message to the terminal on the processing bandwidth supported by the terminal according to the type of the terminal.
  • different time domain resources are configured for the preamble sequence transmitted by the MTC terminal and the ordinary terminal.
  • the MTC terminal can send the message on the small bandwidth that the MTC terminal can handle, and the common terminal can These messages are sent on full bandwidth.
  • the MTC terminal and the normal terminal can detect the physical downlink control channel (PDCCH) by using different Random Access Radio Network Temporary Identifier (RA-RNTI) values, and then continue to demodulate the PDCCH.
  • PDCCH physical downlink control channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • MAC PDU Media Access Control Protocol Data Unit
  • PDSCH physical downlink shared channel
  • the access response message is located on different PDSCHs and includes different temporary C-RNTIs, thereby avoiding collisions between the MTC terminal and the ordinary terminal in the random access process.
  • the base station can distinguish the MTC terminal from the normal terminal according to different time domain resources in the random access process, thereby reducing the impact of the MTC terminal on the random access process of the ordinary terminal, and avoiding the MTC terminal and the common
  • the terminal transmits the collision of the preamble sequence on the same time-frequency resource, which reduces the competition between the MTC terminal and the ordinary terminal in the random access process, improves the random access quality of the ordinary terminal, and further, the terminal sends the preamble sequence to the base station.
  • the base station can know the terminal type, so it can be used for the MTC terminal.
  • a message that can be processed by the MTC terminal is sent on a small bandwidth, and a message that can be processed by the ordinary terminal can be transmitted on the entire frequency band for the normal terminal, thereby ensuring that the reception performance of the ordinary terminal is not affected by the MTC terminal.
  • FIG. 3 it is another embodiment of a random access method according to the present invention.
  • the embodiment shows a random access procedure in which a base station distinguishes a terminal type according to a preamble sequence sent by a terminal on different frequency domain resources:
  • Step 301 The base station receives a preamble sequence sent by the terminal during random access.
  • the preamble sequence sent by the terminal to the base station is carried by the PRACH, and the preamble sequence is composed of a sequence duration (T sm ) and a cyclic prefix duration (T CT ).
  • the composition of the preamble sequence carried by the PRACH is divided into five formats, as shown in Table 1 above. Among them, for the FDD system, the preamble sequence formats 0 to 3 as in Table 1 can be used, and for the TDD system, the preamble sequence formats 0 to 4 as in Table 1 can be used.
  • the type of the terminal is divided into an ordinary terminal and an MTC terminal, and the ordinary terminal and the MTC terminal transmit the preamble sequence on different frequency domain resources.
  • Step 302 Identify the type of the terminal according to the frequency domain resource of the sending preamble sequence.
  • the base station distinguishes the type of the terminal by using a preamble sequence transmitted by the ordinary terminal and the MTC terminal on different frequency domain resources.
  • the base station can identify the type of the terminal according to the configuration manner of the two frequency domain resources.
  • the base station notifies the terminal of the parameter for performing random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes the first frequency domain resource configured for the common terminal.
  • the indication information, and the indication information of the second frequency domain resource configured for the MTC terminal after receiving the RRC signaling, the terminal acquires the corresponding frequency domain resource according to the type of the terminal, and if it is an ordinary terminal, the resource in the first frequency domain Sending a preamble sequence, if it is an MTC terminal, transmitting a preamble sequence on the second frequency domain resource; after receiving the preamble sequence sent by the terminal, the base station determines, when detecting that the terminal sends the preamble sequence in the first frequency domain resource, determining the The terminal is a normal terminal. When it is detected that the terminal sends a preamble sequence in the second frequency domain, the terminal determines that the terminal is an MTC terminal, and the first frequency domain resource and the second frequency domain resource are different frequency domain resources.
  • the first physical random access channel frequency offset prach-Frequencyoffset which is the indication information of the first frequency domain resource configured for the common terminal, may be notified in the RRC broadcast or the unicast signaling, and
  • the second physical random access channel frequency offset prach-Frequencyoffset configured as the indication information of the second frequency domain resource, and the information element PRACH-ConfigInfo in the RRC signaling may include:
  • PRACH-Configlnfo : : SEQUENCE ⁇
  • prach-FreqOffset -for- MTC INTEGER (0. . 94)
  • the parameters prach-FreqOff set-for-NonMTC and prach-FreqOffset -for-MTC respectively represent the first physical random access of the ordinary terminal a channel frequency offset and a second physical random access channel frequency offset of the MTC terminal, which set different sequence numbers of the first physical resource block that can be occupied when transmitting the preamble sequence, respectively indicating that the frame is common in one subframe a starting point of a first frequency resource of the terminal and a starting point of a second frequency resource of the MTC terminal, so that there are two frequency domain resources that can be used to transmit the preamble sequence in one subframe, and the other parameters in the above PRACH-ConfigInfo The meaning is the same as the prior art, and will not be described here.
  • the first physical random access channel frequency which is the indication information of the first frequency domain resource configured for the common terminal, may be notified in the RRC broadcast or unicast signaling in the same manner as the FDD system.
  • Offset prach-Frequencyoffset, and a second physical random access channel frequency offset prach-Frequencyoffset configured for the MTC terminal as the indication information of the second frequency domain resource.
  • the parameters prach-FreqOff set-for-NonMTC and prach-FreqOffset-for-MTC respectively indicate the first physical random access channel frequency offset of the ordinary terminal and the MTC terminal
  • the second physical random access channel frequency offset is configured by using the parameters prach-FreqOffset-for-NonMTC and the prach-FreqOff set-for-MTC to configure different physical resource block serial numbers for the common terminal and the MTC terminal, and the foregoing manner can be used as shown in Table 1.
  • the format shown is 0-3.
  • the common terminal may calculate the starting point of the first frequency domain resource that the preamble sequence of the ordinary terminal can occupy according to parameters such as the prach-FreqOff set-for-NonMTC, the frequency domain resource sequence number, and the number of available uplink RBs; the MTC terminal may be based on the prach-
  • the starting point of the second frequency domain resource that the preamble sequence of the MTC terminal can occupy is calculated by parameters such as the frequency domain resource sequence number and the number of uplink available RBs.
  • the starting point of the first frequency domain resource calculated by the ordinary terminal is different from the starting point of the second frequency domain resource calculated by the MTC terminal, because the TDD system in the prior art allows a maximum of 6 frequencies for random access in one uplink subframe.
  • the base station may also adopt an RRC broadcast or a single manner in a manner similar to the first manner in the foregoing embodiment shown in FIG. 2 .
  • the same random access configuration index prach-Configurationlndex is used to indicate the first frequency domain resource and the second frequency domain resource for the common terminal and the MTC terminal, respectively. That is, in the parameter ( ⁇ , ⁇ , ⁇ , ⁇ ) indicating the location of the resource indicated by prach-Configurationlndex, the value of the MTC terminal and the ordinary terminal may be different.
  • the value can be up to 12, with prach-Configurationlndex as 57, and TDD up/down ratio 3 as an example.
  • the starting point for calculating the first frequency resource for the MTC terminal, may be 6, 7, 8, 9, 10, for calculating the starting point of the second frequency resource, so that there may be up to 12 for random connection in one subframe.
  • This configuration can be used in format 0-4 as shown in Table 1.
  • the base station may also adopt an RRC broadcast or single in a similar manner to the second method in the foregoing embodiment shown in FIG. 2 . Notifying, in the broadcast signaling, a first random access configuration index that is an indication information of the first frequency domain resource configured for the normal terminal, and a second information that is configured as an indication information of the second frequency domain resource configured for the MTC terminal Random access configuration index.
  • the parameter prach-Configlndex-for-NonMTC is the prach-Configurationlndex configured by the base station for the common terminal, that is, the first random access configuration index
  • the parameter prach-Conf iglndex-for-MTC is the prach-Conf i configured by the base station for the MTC UE.
  • the ordinary terminal obtains the foregoing table 5 according to the prach-Conf iglndex-for-NonMTC, and is used to calculate the starting point of the first frequency resource, and the MTC terminal is based on the prach-Conf iglndex
  • the -for-MTC lookup table 7 obtains / RA, which is used to calculate the starting point of the second frequency resource, and the value of the normal terminal and the MTC terminal may be different.
  • the value can be up to 12, and there can be up to 12 frequency domain resources for random access in one subframe. This configuration can be used in format 0-4 as shown in Table 1.
  • the terminal is notified of the parameter for performing random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes the first frequency domain resource configured for the terminal.
  • Instructing information the indication information of the first frequency domain resource includes a physical random access channel frequency offset prach-Frequency offset and/or a random access configuration index; after receiving the RRC signaling, the terminal directly follows the RRC signaling
  • the first frequency domain resource sends a preamble sequence, if it is an MTC terminal, the first frequency domain resource is offset according to the specified frequency domain resource offset value, and the offset frequency domain resource is obtained, and according to the offset
  • the frequency domain resource sends a preamble sequence; after receiving the preamble sequence, the base station determines that the terminal is a normal terminal when detecting the preamble sequence of the first frequency domain resource, and detects the frequency of sending the preamble sequence by the terminal.
  • the domain resource is the frequency domain resource after the first frequency domain resource is offset according to the specified frequency domain resource offset
  • the specified frequency domain resource offset value is a frequency domain resource offset value notified by the RRC broadcast or unicast signaling, or a pre-configured frequency domain resource offset value, such as a frequency domain resource offset agreed by a protocol
  • the value is set, and this embodiment is not limited.
  • the information element PRACH-ConfigInfo in the RRC signaling may include:
  • PRACH-Configlnfo : : SEQUENCE ⁇
  • the parameter prach-FreqOff set-forMTC indicates the frequency domain resource offset value
  • the parameter prach-Configlndex is the random access configuration index
  • the parameter The prach-FreqOf f set is a physical random access channel frequency offset, and both can be used as indication information of the first frequency domain resource.
  • the common terminal can directly obtain the first frequency domain resource for transmitting the preamble sequence according to the prach-FreqOffset, and the MTC terminal can be used for sending according to the prach-FrequencyOffset and the prach-FreqOffset-forMTC.
  • the frequency domain resource of the preamble sequence can directly obtain the first frequency domain resource for transmitting the preamble sequence according to the prach-FreqOffset, and the MTC terminal can be used for sending according to the prach-FrequencyOffset and the prach-FreqOffset-forMTC.
  • the MTC terminal can be based on /ra , prach-FrequencyOf f set prach-FreqOff set-forMTC and uplink available RB.
  • the number of parameters jointly calculate the starting point of the frequency domain resource used for transmitting the preamble sequence.
  • the MTC terminal may use the number of uplink available RBs according to / ⁇ , prach-FreqOff set-forMTC,
  • the system frame number, the downlink uplink conversion point number, and the t ⁇ jointly calculate the starting point of the frequency domain resource used to transmit the preamble sequence.
  • the process of calculating the frequency domain resources according to various parameters is consistent with the prior art, and details are not described herein again.
  • Step 303 Send a random access response message and a contention resolution message to the terminal on the processing bandwidth supported by the terminal according to the type of the terminal.
  • the preamble sequence can use up to 12 frequency domain resources in one subframe.
  • f_id is the sequence number of the occupied frequency domain resource of the PRACH carrying the preamble sequence in one subframe, and the value range needs to be from the existing 0 f_id ⁇ 6, changed to 0 f_id ⁇ 12.
  • the table defined by RNTI can be changed to the format shown in Table 8 below:
  • the value of Value is in hexadecimal, and the range of RA-RNTI is 0001-0078.
  • different frequency domain resources are configured for the preamble sequence transmitted by the MTC terminal and the normal terminal.
  • the MTC terminal can send the message on the small bandwidth that the MTC terminal can handle, and the common terminal can These messages are sent on full bandwidth.
  • the MTC terminal and the normal terminal can detect the PDCCH by using different RA-RNTI values, and then continue to demodulate the MAC PDU carried on the PDSCH indicated by the PDCCH. Therefore, the random access response message sent by the base station to the MTC terminal and the ordinary terminal is different.
  • the PDSCH includes different temporary C-RNTIs, thereby avoiding collisions between the MTC terminal and the ordinary terminal in the random access process.
  • the base station can distinguish the MTC terminal from the normal terminal according to different frequency domain resources in the random access process, thereby reducing the impact of the MTC terminal on the random access process of the ordinary terminal, and avoiding the MTC terminal and the common
  • the terminal transmits the collision of the preamble sequence on the same time-frequency resource, which reduces the competition between the MTC terminal and the ordinary terminal in the random access process, improves the random access quality of the ordinary terminal, and further, the terminal sends the preamble sequence to the base station.
  • the base station can know the terminal type, so the MTC terminal can send the message that the MTC terminal can process on the small bandwidth, and can send the common frequency on the full frequency band for the ordinary terminal.
  • FIG. 4 it is another embodiment of a random access method according to the present invention.
  • the embodiment shows a random access procedure in which a base station distinguishes a terminal type according to different preamble sequences sent by a terminal:
  • Step 401 The base station receives a preamble sequence sent by the terminal during random access.
  • the preamble sequence sent by the terminal to the base station is carried by the PRACH, and the preamble sequence is composed of a sequence duration (T sm ) and a cyclic prefix duration (T CT ).
  • the composition of the preamble sequence carried by the PRACH is divided into five formats, as shown in Table 1 above. Among them, for the FDD system, the preamble sequence formats 0 to 3 as in Table 1 can be used, and for the TDD system, the preamble sequence formats 0 to 4 as in Table 1 can be used.
  • the type of the terminal is divided into an ordinary terminal and an MTC terminal, and the normal terminal and the MTC terminal use different preamble sequences in random access.
  • Step 402 Identify the type of the terminal according to the type of the received preamble sequence.
  • the base station distinguishes the types of terminals by different preamble sequences sent by the ordinary terminal and the MTC terminal.
  • the base station can identify the type of the terminal according to the transmission manner of two different preamble sequences.
  • the terminal is determined to be an ordinary terminal.
  • the terminal is determined to be an MTC terminal.
  • the first preamble sequence may use an existing preamble sequence
  • the second preamble sequence may be a number of preamble sequences newly defined for the MTC terminal.
  • the base station can increase the number of preamble sequences used for random access in one cell to 64+N, and the first 64 preamble sequences are configured.
  • the first 64 sequences include Ncf proprietary sequences, and the last N preamble sequences are configured for use by the MTC terminal.
  • the N preamble sequences are newly defined for the MTC terminal, and the last N preamble sequences are numbered 65. , 66, ..., 64+N, N is an integer.
  • the sent preamble sequence may also be configured as a preamble sequence in the Ncf proprietary sequence, or a part of the preamble sequence drawn in the N newly defined preamble sequences.
  • Non-contention random access specifically for MTC terminals.
  • the newly defined N preamble sequences may be generated by generating a root sequence of the 64th preamble sequence in the existing preamble sequence, and generating according to the generation manner of the existing preamble sequence, and sequentially increasing the root sequence.
  • the shift value generates the newly defined preamble sequence.
  • the number of the newly defined preamble sequences generated according to the root sequence is less than N
  • the logical sequence numbers corresponding to the logical sequence numbers of the root sequences are sequentially selected.
  • the root sequence is generated by cyclically shifting the selected root sequence to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies N.
  • the base station may also notify the logical sequence number of the root sequence of the MTC terminal by using RRC broadcast or unicast signaling, where the root sequence indicated by the logical sequence number of the root sequence is the first one used to generate the preamble sequence used by the MTC UE. Root sequence.
  • the logical sequence number of the root sequence can be notified by an Information Element (IE) PRACH-ConfigSIB or PRACH-Config.
  • IE Information Element
  • the information element PRACH-ConfigSIB in the RRC signaling may include:
  • PRACH-ConfigSIB : : SEQUENCE ⁇
  • the information element in the RRC signaling PRACH-Config may include:
  • PRACH-Config : : SEQUENCE ⁇
  • rootSequencelndex-for-NonMTC is the logical sequence number of the first root sequence used to generate the preamble sequence used by the normal terminal
  • rootSequencelndex-for-MTC is the The logical sequence number of the root sequence of the MTC terminal indicates the root sequence of the MTC terminal.
  • the base station notifies the logical sequence number of the root sequence of the common terminal by using RRC broadcast or unicast signaling, and obtains the root sequence of the MTC terminal according to the specified root sequence offset value and the logical sequence number of the root sequence of the common terminal.
  • the specified root sequence offset value is a root sequence offset value notified by RRC broadcast or unicast signaling, or a pre-configured root sequence offset value, such as a root sequence offset value agreed by a protocol
  • the information element PRACH-ConfigSIB in the RRC signaling may include:
  • PRACH-ConfigSIB : : SEQUENCE ⁇
  • the information element in the RRC signaling PRACH-Config can contain:
  • rootSequencelndex is the logical sequence number of the root sequence of the ordinary terminal
  • rootSequence Index-offset indicates the root sequence offset value
  • the MTC terminal is calculated according to rootSequencelndex-offset and rootSequencelndex. The logical sequence number of the root sequence further obtains the root sequence of the MTC terminal.
  • a base station uses a 6-bit Random Access Preamble Identify (RAPID) to indicate the first 64 preamble sequences of an ordinary terminal.
  • RAPID Random Access Preamble Identify
  • the preamble sequence of 65, 66, and 64+N, when N is less than or equal to 64, is also represented by the 6-bit RAPID, so that it is not necessary to distinguish between the ordinary terminal and the MTC terminal in the RAPID.
  • the number of bits of the RAPID is extended to "log 2 C64 + N" for indicating different preamble sequences, that is, the values of the RAPID are different for the normal terminal and the MTC terminal.
  • the first preamble sequence is a preamble sequence other than the dedicated sequence in the existing preamble sequence
  • the second preamble sequence is a plurality of preamble sequences demarcated from the dedicated sequence
  • the base station may notify the Ncf dedicated sequences as the sequence number of the second preamble sequence by using RRC broadcast or unicast signaling.
  • the preamblelnfo in RACH-ConfigCommon can contain:
  • numberOfRA-Preambles indicates the number of the first preamble sequence, and for 64 preamble sequences, a preamble sequence numbered 0 to numberOfRA-Preambles-1 is used as the first preamble sequence, a preamble sequence is used for contention random access of a normal terminal; numberOfRA-PreamblesforMTC indicates the number of the second preamble sequence, the number of the second preamble sequence and the specified start sequence of the second preamble sequence The sequence number obtains the second preamble sequence, and the second preamble sequence is usable for contention random access of the MTC terminal.
  • the meaning of the other parameters is the same as in the prior art.
  • the sequence number of the specified start sequence may be a sequence number of a start sequence that is notified by RRC broadcast or unicast signaling.
  • the foregoing preamblelnfo may further include an IE, as follows: startPreamb le-forMTC ENUMERATED ⁇ X, Y, Z ⁇
  • the above formula represents the sequence number of the starting sequence.
  • the preamble sequence having the sequence number of startPreamb le-forMTC to startPreamb 1 e-forMTC+numberOfRA-Preamb 1 esforMTC-1 is used as the second preamble sequence.
  • sequence number of the specified start sequence may be pre-configured, for example, configured as numberOf RA-Pr eamb 1 es , and the sequence number is numberOf RA-Pr eamb 1 es to numberOfRA-Preambles-l+
  • the leader sequence of numberOfRA-PreamblesforMTC serves as the second preamble sequence.
  • sequence number of the specified start sequence may also be obtained according to numberOfRA-PreamblesforMTC, for example, 64-numberOfRA-Preambles for MTC+l is used as the sequence number of the start sequence, and at this time, the sequence number is 64-numberOfRA- A preamble of Preambles for MTC+1 to 64 is used as the second preamble sequence.
  • the preamble sequences other than the first preamble sequence and the second preamble sequence are used for non-contention random access of the normal terminal and the MTC terminal.
  • Step 403 Send a random access response message and a contention resolution message to the terminal on the processing bandwidth supported by the terminal according to the type of the terminal.
  • the base station may separately send the random access response message and the contention resolution message of the common terminal and the MTC terminal on different PDSCHs, and may calculate the RA-RNTI according to the detected time-frequency position of the preamble sequence. , distinguish between ordinary terminals and MTC terminals, which can be calculated according to the following formula:
  • RA-RNTI 1 +t_id+ 10*f_id+X
  • t_id and f_id have the same meaning as the prior art, and X is used to distinguish between an ordinary terminal and an MTC terminal.
  • X can be obtained in the following ways:
  • the RNTI definition table can be changed to the format shown in Table 9 below: Table 9 Value (hexa-decimal) RNTI
  • the value of Value is in hexadecimal, and the value range of RA-RNTI is 0001-FFF3.
  • the MTC terminal and the normal terminal use different preamble sequences when transmitting the preamble sequence.
  • the corresponding base station sends random
  • the access response RAR is also different.
  • the Cell-Radio Network Temporary Identifier (C-RNTI) included in the RAR is also different, thereby avoiding the MTC terminal and the ordinary terminal when transmitting the preamble sequence. conflict.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the MTC terminal and the normal terminal may detect the PDCCH by using different RA-RNTI values, and then continue to demodulate the PDSCH indicated by the PDCCH.
  • the bearer MAC PDU therefore, the RTR of the MTC terminal and the normal terminal are located on different PDSCHs, and contain different temporary C-RNTIs, which not only avoids conflicts between the MTC terminal and the ordinary terminal, but also identifies the type of the terminal.
  • the terminal sends a message related to the random access response and the contention resolution, the MTC terminal can send the messages on the small bandwidth that it can handle, and the ordinary terminal can send the messages on the full bandwidth.
  • the base station can distinguish the MTC terminal from the normal terminal according to different preamble sequences in the random access process, thereby reducing the impact of the MTC terminal on the random access process of the ordinary terminal, and avoiding the MTC terminal and the ordinary terminal.
  • the collision of the preamble sequence is transmitted on the same time-frequency resource, which reduces the competition of the MTC terminal and the ordinary terminal in the random access process, and improves the random access quality of the ordinary terminal; in addition, after the terminal sends the preamble sequence to the base station,
  • the base station can know the terminal type, so the MTC terminal can send the message that the MTC terminal can process on the small bandwidth, and the ordinary terminal can send the message that the ordinary terminal can process on the entire frequency band, thereby ensuring the receiving performance of the ordinary terminal. Not affected by the MTC terminal.
  • FIG. 2 which is another embodiment of a random access method according to the present invention, the embodiment is described from the terminal side.
  • Machine access process
  • Step 501 When the terminal accesses the random access, send the preamble sequence to the base station according to the type of the terminal.
  • the terminal may send a preamble sequence to the base station on the time domain resource corresponding to the type of the terminal; and/or, send a preamble sequence to the base station on the frequency domain resource corresponding to the type of the terminal; and Or, transmitting a preamble sequence corresponding to the type of the terminal to the base station.
  • the terminal may pre-configure a first random access resource configuration table, where the first random access resource configuration table includes a random access configuration index, a first time domain resource, and a second time
  • the first time domain resource and the second time domain resource are configured differently for the common terminal and the MTC terminal by using the same random access configuration index, and the terminal receiving the base station through the RRC broadcast or
  • the unicast signaling is used to notify the terminal of a random access parameter, where the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal; when the terminal is an ordinary terminal,
  • the terminal sends a preamble sequence to the base station on the first time domain resource indicated by the one random access configuration index; when the terminal is an MTC terminal, the terminal is indicated by the one random access configuration index
  • the preamble sequence is sent to the base station on the second time domain resource.
  • the terminal when the terminal is an ordinary terminal, the terminal pre-configures a common terminal resource configuration table.
  • the terminal When the terminal is an MTC terminal, the terminal pre-configures an MTC terminal resource configuration table.
  • the common terminal resource configuration table includes an indication relationship between the first random access configuration index and the first time domain resource, where the MTC terminal resource configuration table includes the second random access configuration index and the second time domain resource.
  • the terminal when the terminal is a normal terminal, the terminal is instructed by the first random access configuration index Transmitting a preamble sequence to a base station on a time domain resource; when the terminal is an MTC terminal, the terminal is instructed with the one second random access configuration index Two o'clock domain preamble sequence transmitted to the base station resources.
  • the terminal pre-configures a second resource configuration table, where the second resource configuration table includes an indication relationship between a random access configuration index of the terminal and a time domain resource; Receiving, by the RRC broadcast or unicast signaling, a parameter for the terminal to perform random access, where the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal;
  • the terminal When the terminal is an ordinary terminal, the terminal sends a preamble sequence to the base station on the time domain resource indicated by the one random access configuration index.
  • the terminal When the terminal is an MTC terminal, the terminal configures the random access configuration.
  • the time domain resource indicated by the index is offset according to the specified time domain resource offset value, and the preamble sequence is sent to the base station on the offset time domain resource.
  • the specified time domain resource offset value is a time domain resource offset value that is received by the terminal by the RRC broadcast or unicast signaling, or a pre-configured time domain resource offset value.
  • the terminal receives a parameter that the base station notifies the terminal to perform random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes the first configured for the common terminal.
  • the indication information of a frequency domain resource, and the indication information of the second frequency domain resource configured for the MTC terminal when the terminal is a normal terminal, sending a preamble sequence to the base station on the first frequency domain resource, when When the terminal is an MTC terminal, the preamble sequence is sent to the base station on the second frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different frequency domain resources.
  • the parameter for notifying the terminal to perform random access by using the RRC broadcast or the unicast signaling may include: receiving, by the base station, the normal terminal configured in the RRC broadcast or the unicast signaling as the first a first physical random access channel frequency offset prach-Frequencyoffset of the indication information of the frequency domain resource, and a second physical random access channel frequency offset prach configured as an indication information of the second frequency domain resource configured for the MTC terminal -Frequencyoffset; and/or, receiving, by the base station, the first random access configuration index configured as the indication information of the first frequency domain resource configured for the common terminal, which is notified in the RRC broadcast or the unicast signaling, and configured for the MTC terminal a second random access configuration index as the indication information of the second frequency domain resource; and/or, configured by the receiving base station in the RRC broadcast or unicast signaling, configured for the normal terminal and the MTC terminal The same random access configuration index of the indication information of a frequency domain resource and the indication information of the second frequency domain resource,
  • the terminal receives a parameter that the base station notifies the terminal to perform random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes the configuration configured for the terminal.
  • the indication information of the first frequency domain resource where the indication information of the first frequency domain resource includes a physical random access channel frequency offset prach-Frequency offset and/or a random access configuration index; when the terminal is an ordinary terminal, Sending a preamble sequence to the base station on the first frequency domain resource, and when the terminal is an MTC terminal, offsetting the first frequency domain resource according to a specified frequency domain resource offset value, and offsetting The preamble sequence is sent to the base station on the subsequent frequency domain resources.
  • the specified frequency domain resource offset value is a frequency domain resource offset value that is received by the terminal by the RRC broadcast or unicast signaling, or a preset frequency domain resource offset value.
  • the terminal when the terminal is a normal terminal, sending a first preamble sequence to the base station, and when the terminal is an MTC terminal, sending a second preamble sequence to the base station;
  • the first preamble sequence is an existing preamble sequence
  • the second preamble sequence is a new preamble sequence newly defined for the MTC terminal; or the first preamble sequence is in an existing preamble sequence, except for a dedicated sequence.
  • Lead sequence The two preamble sequences are a number of preamble sequences that are delimited from the dedicated sequence.
  • the method for generating the newly defined sequence of the preamble may include: generating a root sequence of the 64th preamble sequence in the existing preamble sequence, and sequentially increasing the cyclic sequence to increase the cyclic shift value to generate the new definition.
  • a preamble sequence when the number of the newly defined preamble sequences generated according to the root sequence is less than a preset number, sequentially selecting a root sequence corresponding to a logical sequence number consecutive to a logical sequence number of the root sequence, and selecting by using The root sequence is cyclically shifted to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies the preset number; or, the root of the MTC terminal that the base station notifies by RRC broadcast or unicast signaling is received.
  • the logical sequence number of the sequence, the cyclic sequence shift value is sequentially added to the root sequence of the MTC terminal to generate the newly defined preamble sequence, and the number of newly defined preamble sequences generated according to the root sequence of the MTC terminal is less than a preset.
  • the root sequence corresponding to the logical sequence number consecutive to the logical sequence number of the root sequence of the MTC terminal is sequentially selected, and the selected The root sequence is cyclically shifted to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies the preset number; or, the receiving base station notifies the root sequence of the ordinary terminal by using RRC broadcast or unicast signaling a logical sequence number, the root sequence of the MTC terminal is obtained according to a specified root sequence offset value and a logical sequence number of the root sequence of the common terminal, and the root sequence of the MTC terminal is sequentially increased by a cyclic shift value to generate the a newly defined preamble sequence, when the number of newly defined preamble sequences generated according to the root sequence of the MTC terminal is less than a preset number, sequentially selecting a logical sequence number consecutive to a logical sequence number of the root sequence of the MTC terminal a root sequence, the cyclically shifting the selected root sequence to generate the newly defined pre
  • the manner in which the second preamble sequence is a plurality of preamble sequences that are demarcated from the dedicated sequence may include: receiving, by the receiving base station, the private sequence by using RRC broadcast or unicast signaling, as the second The number of the sequence of the leader sequence, the second leader sequence is obtained according to the number of the sequence and the designated sequence number as the start sequence of the second leader sequence, wherein the sequence number of the specified start sequence is The sequence number of the start sequence notified by the base station through RRC broadcast or unicast signaling, or the sequence number of the pre-configured start sequence, or the sequence number of the start sequence obtained according to the number of the sequence.
  • Step 502 After receiving the type of the terminal according to the preamble sequence, the receiving base station sends a message in the random access procedure to the terminal on the processing bandwidth supported by the terminal.
  • the message in the random access procedure may include a random access response message and a contention resolution message.
  • the random access procedure described in the foregoing embodiment is consistent with the random access procedure described in the foregoing FIG. 1 to FIG. 4 on the base station side, and details are not described herein again.
  • the base station can distinguish between the MTC terminal and the common terminal in the random access process, which reduces the impact of the MTC terminal on the random access process of the ordinary terminal, and avoids the same time-frequency resource of the MTC terminal and the ordinary terminal.
  • the collision of the preamble sequence is transmitted, which reduces the contention of the MTC terminal and the ordinary terminal in the random access process, and improves the random access quality of the ordinary terminal.
  • the base station can know the The type of the terminal, so that the MTC terminal can send the message that the MTC terminal can process on the small bandwidth, and the normal terminal can send the message that the ordinary terminal can process on the entire frequency band, so as to ensure that the receiving performance of the ordinary terminal is not affected by the MTC terminal.
  • the present invention also provides an embodiment of a base station and a terminal. Referring to FIG. 6, a block diagram of an embodiment of a base station according to the present invention is shown:
  • the base station includes: a receiving unit 610, an identifying unit 620, and a transmitting unit 630.
  • the receiving unit 610 is configured to receive a preamble sequence sent by the terminal during random access
  • the identifying unit 620 is configured to identify the type of the terminal according to the preamble sequence received by the receiving unit, and the sending unit 630 is configured to: according to the type of the terminal identified by the identifying unit, on a processing bandwidth supported by the terminal Sending a message in the random access procedure to the terminal.
  • the identification unit may include at least one of the following units:
  • a first identifying subunit configured to identify a type of the terminal according to a time domain resource that sends the preamble sequence
  • a second identifying subunit configured to identify a type of the terminal according to a frequency domain resource that sends the preamble sequence
  • a third identification subunit configured to identify a type of the terminal according to a type of the preamble sequence.
  • the base station may further include: a first configuration unit, configured to pre-configure a first random access resource configuration table, where the first random access resource configuration table includes a random access configuration index and a first time domain resource and a The first time domain resource and the second time domain resource are configured differently for the common terminal and the MTC terminal by using the same random access configuration index, and the first notification unit is used for Notifying, by the RRC broadcast or the unicast signaling, the parameter for performing random access, where the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal;
  • the first identifying sub-unit is configured to: when the preamble sequence sent by the terminal is detected on the first time domain resource indicated by the one random access configuration index, determine that the terminal is an ordinary terminal, when When the preamble sequence sent by the terminal is detected on the second time domain resource indicated by the one random access configuration index, the terminal is determined to be an MTC terminal.
  • the base station may further include: a second configuration unit, configured to pre-configure a common terminal resource configuration table and an MTC terminal resource configuration table, where the common terminal resource configuration table includes a first random access configuration index and a first time domain resource In the indication relationship, the MTC terminal resource configuration table includes an indication relationship between the second random access configuration index and the second time domain resource; the second notification unit is configured to use RRC broadcast or unicast signaling The terminal notifies the parameter for performing random access, where the RRC broadcast or unicast signaling includes a first random access configuration index configured for the common terminal, and a second random access configuration index configured for the MTC terminal. ;
  • the first identifying sub-unit is configured to: when the preamble sequence sent by the terminal is detected on the first time domain resource indicated by the one first random access configuration index, determine that the terminal is an ordinary terminal, When the preamble sequence sent by the terminal is detected on the second time domain resource indicated by the one second random access configuration index, the terminal is determined to be an MTC terminal.
  • the base station may further include: a third configuration unit, configured to pre-configure a second resource configuration table, where the second resource configuration table includes an indication relationship between the random access configuration index of the terminal and the time domain resource; a notification unit, configured to notify, by using RRC broadcast or unicast signaling, a parameter for performing random access, where the RRC broadcast or unicast signaling includes a random access configuration index configured for the terminal;
  • the first identifying sub-unit specifically, when detecting a preamble sequence sent by the terminal on the time domain resource indicated by the one random access configuration index, determining that the terminal is an ordinary terminal, when When the time domain resource indicated by the random access configuration index is used to detect the preamble sequence sent by the terminal on the time domain resource offset by the specified time domain resource offset value, the terminal is determined to be the MTC terminal;
  • the specified time domain resource offset value is a time domain resource offset value notified by the RRC broadcast or unicast signaling, or a pre-configured time domain resource offset value.
  • the base station may further include: a fourth notification unit, configured to notify, by using RRC broadcast or unicast signaling, a parameter for performing random access, where the RRC broadcast or unicast signaling is configured for an ordinary terminal
  • a fourth notification unit configured to notify, by using RRC broadcast or unicast signaling, a parameter for performing random access, where the RRC broadcast or unicast signaling is configured for an ordinary terminal
  • the indication information of the first frequency domain resource, and the indication information of the second frequency domain resource configured for the MTC terminal configured to notify, by using RRC broadcast or unicast signaling, a parameter for performing random access, where the RRC broadcast or unicast signaling is configured for an ordinary terminal
  • the second identifying sub-unit is specifically configured to: when detecting that the terminal sends the preamble sequence in the first frequency domain resource, determining that the terminal is an ordinary terminal, and determining that the terminal sends the preamble sequence in the second frequency domain resource, determining The terminal is an MTC terminal, and the first frequency domain resource and the second frequency domain resource are different frequency domain resources.
  • the fourth notification unit may include at least one of the following units: a first frequency domain resource notification subunit, configured to notify, as the first frequency domain resource, that is configured for a common terminal in RRC broadcast or unicast signaling Indicating information of the first physical random access channel frequency offset prach-Frequencyoffset, and configuring for the MTC terminal a second physical random access channel frequency offset prach-Frequency offset set as the indication information of the second frequency domain resource; a second frequency domain resource notification subunit, configured to notify the common in RRC broadcast or unicast signaling a first random access configuration index configured by the terminal as the indication information of the first frequency domain resource, and a second random access configuration index configured as an indication information of the second frequency domain resource configured for the MTC terminal; a tri-frequency domain resource notification sub-unit, configured to notify, in RRC broadcast or unicast signaling, the same as the indication information of the first frequency domain resource and the indication information of the second frequency domain resource configured for the common terminal and the MTC terminal A random access configuration index, where
  • the base station may further include: a fifth notification unit, configured to notify, by using RRC broadcast or unicast signaling, a parameter for performing random access, where the RRC broadcast or unicast signaling includes configuring the terminal
  • the indication information of the first frequency domain resource, the indication information of the first frequency domain resource includes a physical random access channel frequency offset prach-Frequency offset and/or a random access configuration index;
  • the second identifying sub-unit is specifically configured to: when detecting that the terminal sends the preamble sequence in the first frequency domain resource, determining that the terminal is an ordinary terminal, and detecting that the frequency domain resource of the preamble sequence sent by the terminal is When the first frequency domain resource performs the offset frequency domain resource according to the specified frequency domain resource offset value, determining that the terminal is an MTC terminal; wherein the specified frequency domain resource offset value is broadcast through the RRC Or the frequency domain resource offset value of the unicast signaling, or the pre-configured frequency domain resource offset value.
  • the third identifying sub-unit is specifically configured to: when receiving the first preamble sequence sent by the terminal, determine that the terminal is an ordinary terminal, and when receiving the second preamble sequence sent by the terminal, determining that the terminal is an MTC terminal.
  • the first preamble sequence is an existing preamble sequence
  • the second preamble sequence is a new preamble sequence newly defined for the MTC terminal; or the first preamble sequence is in an existing preamble sequence, except A preamble sequence outside the dedicated sequence, the second preamble sequence being a number of preamble sequences demarcated from the dedicated sequence.
  • the method for generating the newly defined sequence of the preamble may include: generating a root sequence of the 64th preamble sequence in the existing preamble sequence, and sequentially increasing the cyclic sequence to increase the cyclic shift value to generate the new definition.
  • a preamble sequence when the number of the newly defined preamble sequences generated according to the root sequence is less than a preset number, sequentially selecting a root sequence corresponding to a logical sequence number consecutive to a logical sequence number of the root sequence, and selecting by using The root sequence is cyclically shifted to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies the preset number; or the logic of notifying the root sequence of the MTC terminal by RRC broadcast or unicast signaling Serial number, sequentially increasing the cyclic shift value of the root sequence of the MTC terminal to generate the newly defined preamble sequence, according to the When the number of newly defined preamble sequences generated by the root sequence of the MTC terminal is less than a preset number, the root sequence corresponding to the logical sequence number consecutive to the logical sequence of the root sequence of the MTC terminal is sequentially selected, and the selected root sequence is selected.
  • the root sequence corresponding to the logical sequence number consecutive to the logical sequence number of the root sequence of the MTC terminal is sequentially selected, and the root sequence is selected.
  • the selected root sequence is cyclically shifted to generate the newly defined preamble sequence until the newly defined preamble sequence satisfies the preset number
  • the specified root sequence offset value is a root sequence offset value notified by RRC broadcast or unicast signaling, or a pre-configured root sequence offset value; wherein the newly defined preamble sequence and the location
  • the existing leader sequences are different leader sequences.
  • the manner in which the second preamble sequence is a plurality of preamble sequences that are demarcated from the dedicated sequence may include: notifying, by using RRC broadcast or unicast signaling, the dedicated sequence as the second preamble sequence
  • the number of sequences, the second preamble sequence is obtained according to the number of the sequence and the specified sequence number as the start sequence of the second preamble sequence, wherein the sequence number of the specified start sequence is passed
  • the message in the random access process may include: a random access response message and a contention resolution message; and the sending unit is specifically configured to: when the terminal is an MTC terminal, the first supported by the MTC terminal Sending a random access response message and a contention resolution message to the terminal in the bandwidth, and when the terminal is a normal terminal, sending a random access response message and a contention resolution message to the terminal on the second bandwidth supported by the common terminal,
  • the first bandwidth is smaller than the second bandwidth.
  • the base station includes: a receiver 710, a processor 720, and a transmitter 730.
  • the receiver 710 is configured to receive a preamble sequence sent by the terminal during random access.
  • the processor 720 is configured to identify a type of the terminal according to the preamble sequence
  • the transmitter 730 is configured to send, according to the type of the terminal, a message in a random access procedure to the terminal on a processing bandwidth supported by the terminal.
  • the processor 720 may be specifically configured to: identify, according to a time domain resource that sends the preamble sequence Determining the type of the terminal, and/or identifying the type of the terminal according to the frequency domain resource transmitting the preamble sequence, and/or identifying the type of the terminal according to the type of the preamble sequence.
  • the transmitter 730 may be specifically configured to: when the terminal is an MTC terminal, send a random access response message and a contention resolution message to the terminal on a first bandwidth supported by the MTC terminal, where the terminal is When the terminal is a normal terminal, the random access response message and the contention resolution message are sent to the terminal on the second bandwidth supported by the common terminal, where the first bandwidth is smaller than the second bandwidth.
  • FIG. 8 it is a block diagram of an embodiment of a terminal of the present invention:
  • the terminal includes: a transmitting unit 810 and a receiving unit 820.
  • the sending unit 810 is configured to send, by the terminal, a preamble sequence to the base station according to the type of the terminal during random access;
  • the receiving unit 820 is configured to receive a message in the random access procedure sent by the base station to the terminal after processing the type of the terminal according to the preamble sequence sent by the sending unit, and the processing bandwidth supported by the terminal .
  • the sending unit may include at least one of the following units:
  • a first sending subunit configured to send a preamble sequence to the base station on a time domain resource corresponding to the type of the terminal
  • a second sending subunit configured to send a preamble sequence to the base station on a frequency domain resource corresponding to the type of the terminal
  • a third sending subunit configured to send, to the base station, a preamble sequence corresponding to the type of the terminal.
  • the terminal may further include: a first configuration unit, configured to pre-configure a first random access resource configuration table, where the first random access resource configuration table includes a random access configuration index and a first time domain resource and a The first time domain resource and the second time domain resource are configured differently for the common terminal and the MTC terminal by using the same random access configuration index.
  • a first configuration unit configured to pre-configure a first random access resource configuration table, where the first random access resource configuration table includes a random access configuration index and a first time domain resource and a The first time domain resource and the second time domain resource are configured differently for the common terminal and the MTC terminal by using the same random access configuration index.
  • the receiving unit is further configured to receive, by the RRC broadcast or the unicast signaling, a parameter that the base station notifies the terminal to perform random access, where the RRC broadcast or unicast signaling includes a random connection configured for the terminal.
  • the first sending sub-unit specifically, when the terminal is an ordinary terminal, the terminal sends a preamble sequence to the base station on the first time domain resource indicated by the one random access configuration index;
  • the terminal When the terminal is an MTC terminal, the terminal sends the second time domain resource indicated by the one random access configuration index to the base station. Lead sequence.
  • the terminal may further include: a second configuration unit, configured to: when the terminal is an ordinary terminal, the terminal pre-configures a common terminal resource configuration table, where the terminal is pre-configured with an MTC terminal when the terminal is an MTC terminal a resource configuration table, where the normal terminal resource configuration table includes an indication relationship between the first random access configuration index and the first time domain resource, where the MTC terminal resource configuration table includes a second random access configuration index and a An indication relationship between two time domain resources;
  • a second configuration unit configured to: when the terminal is an ordinary terminal, the terminal pre-configures a common terminal resource configuration table, where the terminal is pre-configured with an MTC terminal when the terminal is an MTC terminal a resource configuration table, where the normal terminal resource configuration table includes an indication relationship between the first random access configuration index and the first time domain resource, where the MTC terminal resource configuration table includes a second random access configuration index and a An indication relationship between two time domain resources;
  • the receiving unit is further configured to receive, by the RRC broadcast or the unicast signaling, a parameter for the terminal to perform random access, where the RRC broadcast or the unicast signaling includes a first random configured for the common terminal. Access configuration index, and a second random access configuration index configured for the MTC terminal;
  • the first sending sub-unit specifically, when the terminal is an ordinary terminal, the terminal sends a preamble sequence to the base station on the first time domain resource indicated by the one first random access configuration index;
  • the terminal sends a preamble sequence to the base station on the second time domain resource indicated by the one second random access configuration index.
  • the terminal may further include: a third configuration unit, configured to pre-configure a second resource configuration table, where the second resource configuration table includes an indication relationship between the random access configuration index of the terminal and the time domain resource;
  • the receiving unit is further configured to receive, by the RRC broadcast or the unicast signaling, a parameter that the base station notifies the terminal to perform random access, where the RRC broadcast or unicast signaling includes a random connection configured for the terminal.
  • the first sending sub-unit is specifically configured to: when the terminal is an ordinary terminal, the terminal sends a preamble sequence to the base station on the time domain resource indicated by the one random access configuration index, where the terminal is The MTC terminal, the terminal offsets the time domain resource indicated by the one random access configuration index according to the specified time domain resource offset value, and sends the preamble sequence to the base station on the offset time domain resource.
  • the specified time domain resource offset value is a time domain resource offset value that is received by the terminal by the RRC broadcast or unicast signaling, or a pre-configured time domain resource offset value.
  • the receiving unit is further configured to receive a parameter that the base station notifies the terminal to perform random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes a first frequency domain configured for an ordinary terminal.
  • the indication information of the resource, and the indication information of the second frequency domain resource configured for the MTC terminal specifically, the terminal receives a parameter that the base station notifies the terminal to perform random access by using RRC broadcast or unicast signaling, and may include : Receiving base a first physical random access channel frequency offset prach-Frequency offset set as the indication information of the first frequency domain resource configured for the normal terminal, which is notified in the RRC broadcast or unicast signaling, and configured as an MTC terminal a second physical random access channel frequency offset prach-Frequency offset of the indication information of the second frequency domain resource; and/or, configured by the receiving base station in the RRC broadcast or unicast signaling, configured for the common terminal a first random access configuration index of the indication information of the first frequency domain resource,
  • the second sending subunit is specifically configured to: when the terminal is an ordinary terminal, send a preamble sequence to the base station on the first frequency domain resource, when the terminal is an MTC terminal, in the A preamble sequence is sent to the base station on the second frequency domain resource, where the first frequency domain resource and the second frequency domain resource are different frequency domain resources.
  • the receiving unit is further configured to receive a parameter that the base station notifies the terminal to perform random access by using RRC broadcast or unicast signaling, where the RRC broadcast or unicast signaling includes a first frequency configured for the terminal
  • the indication information of the domain resource includes: a physical random access channel frequency offset prach-Frequency offset and/or a random access configuration index;
  • the second sending subunit is specifically configured to send a preamble sequence to the base station on the first frequency domain resource when the terminal is an ordinary terminal, and when the terminal is an MTC terminal,
  • the frequency domain resource is offset according to the specified frequency domain resource offset value, and the preamble sequence is sent to the base station on the offset frequency domain resource; wherein the specified frequency domain resource offset value is
  • the terminal receives a frequency domain resource offset value notified by the base station through the RRC broadcast or unicast signaling, or a preset frequency domain resource offset value.
  • the third sending subunit is specifically configured to: when the terminal is a normal terminal, send a first preamble sequence to the base station, and when the terminal is an MTC terminal, send a second preamble sequence to the base station;
  • the first preamble sequence is an existing preamble sequence
  • the second preamble sequence is a new preamble sequence newly defined for the MTC terminal; or the first preamble sequence is in an existing preamble sequence, except for a dedicated sequence.
  • An outer preamble sequence, the second preamble sequence being a number of preamble sequences demarcated from the dedicated sequence.
  • the method for generating the newly defined sequence of the preamble may include: generating a root sequence of the 64th preamble sequence in the existing preamble sequence, and sequentially increasing the cyclic sequence to increase the cyclic shift value to generate the new definition.
  • a preamble sequence when the number of the newly defined preamble sequences generated according to the root sequence is less than a preset number And selecting a root sequence corresponding to a logical sequence number consecutive to the logical sequence number of the root sequence, and generating the newly defined preamble sequence by cyclically shifting the selected root sequence until the newly defined preamble sequence Or satisfying the preset number; or receiving a logical sequence number of a root sequence of the MTC terminal notified by the base station by using an RRC broadcast or a unicast signaling, and sequentially increasing the cyclic shift value of the root sequence of the MTC terminal to generate the new definition a preamble sequence, when the number of newly defined preamble sequences generated according to the root sequence of the MTC terminal is less than a preset number, sequentially selecting a root sequence corresponding to a logical sequence number consecutive to a logical sequence number of the root sequence of the MTC terminal Generating the newly defined preamble sequence by cyclically shifting the selected root sequence until the newly defined preamble sequence
  • the manner in which the second preamble sequence is a plurality of preamble sequences that are demarcated from the dedicated sequence may include: receiving, by the receiving base station, the private sequence by using RRC broadcast or unicast signaling, as the second The number of the sequence of the leader sequence, the second leader sequence is obtained according to the number of the sequence and the designated sequence number as the start sequence of the second leader sequence, wherein the sequence number of the specified start sequence is The sequence number of the start sequence notified by the base station through RRC broadcast or unicast signaling, or the sequence number of the pre-configured start sequence, or the sequence number of the start sequence obtained according to the number of the sequence.
  • FIG. 9 a block diagram of another embodiment of the terminal of the present invention is as follows:
  • the terminal includes: a transmitter 910 and a receiver 920.
  • the transmitter 910 is configured to send, by the terminal, a preamble sequence to the base station according to the type of the terminal during random access;
  • the receiver 920 is configured to receive a message in the random access procedure sent by the base station to the terminal on a processing bandwidth supported by the terminal after the base station identifies the type of the terminal according to the preamble sequence.
  • the transmitter may be specifically configured to send a preamble sequence to the base station on a time domain resource corresponding to the type of the terminal, and/or to the base station on a frequency domain resource corresponding to the type of the terminal. Pre-send Columns, and/or transmitting a preamble sequence corresponding to the type of the terminal to the base station. It can be seen from the foregoing embodiment that the base station receives the preamble sequence sent by the terminal during random access, identifies the type of the terminal according to the preamble sequence, and sends a message in the random access procedure to the terminal on the processing bandwidth supported by the terminal according to the type of the terminal. .
  • the MTC terminal and the common terminal can be distinguished in the random access process, and the impact of the MTC terminal on the random access process of the ordinary terminal is reduced, and the MTC terminal and the ordinary terminal are prevented from transmitting the preamble sequence on the same time-frequency resource. Collision reduces the competition between the MTC terminal and the ordinary terminal in the random access process, and improves the random access quality of the ordinary terminal.
  • the base station can know the terminal type,
  • the MTC terminal can send a message that the MTC terminal can process on a small bandwidth, and can send a message that the normal terminal can process on the entire frequency band for the common terminal, so as to ensure that the receiving performance of the ordinary terminal is not affected by the MTC terminal.
  • the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a diskette, an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or in some portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Abstract

公开随机接入方法、基站及终端,该方法包括:基站接收终端在随机接入时发送的前导序列;根据所述前导序列识别所述终端的类型;按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发送随机接入过程中的消息。本发明实施例可以在随机接入过程中区分MTC终端和普通终端,降低了MTC终端对普通终端在随机接入过程的影响,避免了MTC终端和普通终端在相同的时频资源上发送前导序列的碰撞,减轻了MTC终端和普通终端在随机接入过程中的竞争,提高了普通终端的随机接入质量。

Description

随机接入方法、 基站及终端
技术领域 本发明涉及通信技术领域, 特别涉及随机接入方法、 基站及终端。 背景技术
物联网指通过部署具有一定感知、 计算、执行和通信能力的各种设备, 获取物理 世界的信息, 通过网络实现信息传输、 协同和处理, 从而实现人与物、 物与物的互联 的网络。 标准化组织第三代合作项目 (3rd Generation Partnership Project, 3GPP) 提出通过机器对机器 (Machine to Machine , M2M) 承载物联网应用。 随着长期演进 ( Long Term Evolution, LTE) 网络的大规模部署, M2M应用通常基于 LTE网络实现, LTE可以支持的最大系统带宽为 20M。 对于普通终端, 能够支持在 LTE的全频段上进 行业务的收发; 而在日益发展的 M2M技术中, 为了降低终端成本, 需要低成本的机器 类型通信 (Machine Type Communication, MTC) 终端, 这些 MTC终端为小带宽低端 终端 ( Low cost UE), 例如支持 1. 4M带宽的终端。
当终端需要和网络建立连接时, 需要完成随机接入 (Random Access, RA) 过程。 在现有 LTE系统中, MTC终端与普通终端的随机接入过程相同, 包括竞争的随机接入 过程和非竞争的随机接入过程。 竞争的随机接入由以下四步组成: 第一步, 传输前导 序列: 终端从随机接入序列集合中随机选取一个,在基站预先指定的随机接入资源上 通过物理随机接入信道 (Physical Random Access Channel , PRACH) 向基站发送前 导序列; 第二步, 随机接入响应 (Random Access Response, RAR): 终端在物理下行 共享信道 (Physical Downl ink Shared Channel , PDSCH)上接收来自基站下发的 RAR, 并根据是否接收到与自己发送前导序列相对应的响应来判断随机接入成功与否,其中 使用相同 PRACH资源的终端在同一个 PDSCH上接收该 RAR; 第三步, 层 2/层 3消息发 送: 终端使用 RAR 中包含的临时小区无线网络临时标识 (Cel l Radio Network Temporary Identifier, C-RNTI ) , 在 RAR 中指定的物理上行共享信道 ( Physical Upl ink Shared Channel , PUSCH) 上向基站传送随机接入过程消息, 随机接入过程消 息中包括了 UE在本小区中的标识, 该标识用于竞争解决; 第四步, 竞争的解决: 终 端接收来自基站发送的竞争解决消息, 完成随机接入过程。非竞争的随机接入过程包 括上述竞争的随机接入过程的前两步。 现有 LTE系统中,由于 MTC终端和普通终端采用相同的随机接入过程,当 MTC 终端数量较多时,则会加剧 MTC终端与普通终端在随机过程中的竞争,影响 PRACH 的性能和容量,降低随机接入的成功概率,对普通终端的随机接入过程造成影响; 另外, 如果 MTC终端仅能处理较小带宽范围内的数据, 那么当基站侧向 MTC终端 和普通终端下发随机接入响应消息和竞争解决消息时, 为了保证 MTC终端可以正 常接收, 只能在较小带宽范围内下发这两个步骤中的消息, 由此造成普通终端的 接收性能下降, 影响普通终端的随机接入质量。 发明内容
本发明实施例提供随机接入方法、基站及终端, 以解决现有技术中 MTC终端和普 通终端采用相同的随机接入方式, 影响普通终端随机接入质量的问题。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
第一方面, 提供一种随机接入方法, 所述方法包括:
基站接收终端在随机接入时发送的前导序列;
根据所述前导序列识别所述终端的类型;
按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发送随机接入过 程中的消息。
结合第一方面,在第一种可能的实现方式中,所述根据所述前导序列识别所述终 端的类型包括:
根据发送所述前导序列的时域资源识别所述终端的类型; 和 /或,
根据发送所述前导序列的频域资源识别所述终端的类型; 和 /或,
根据所述前导序列的类型识别所述终端的类型。
结合第一方面和第一种可能的实现方式,在第二种可能的实现方式中,所述随机 接入过程中的消息包括: 随机接入响应消息和竞争解决消息;
所述按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发送随机接 入过程中的消息包括:
当所述终端为 MTC终端时,在 MTC终端支持的第一带宽上向所述终端发送随机接 入响应消息和竞争解决消息, 当所述终端为普通终端时,在普通终端支持的第二带宽 上向所述终端发送随机接入响应消息和竞争解决消息。
第二方面, 提供另一种随机接入方法, 所述方法包括:
终端在随机接入时, 按照所述终端的类型向基站发送前导序列; 接收所述基站根据所述前导序列识别出所述终端的类型后,在所述终端支持的处 理带宽上向所述终端发送的随机接入过程中的消息。
结合第二方面,在第一种可能的实现方式中,所述按照所述终端的类型向基站发 送前导序列包括:
在与所述终端的类型对应的时域资源上, 向基站发送前导序列; 和 /或, 在与所述终端的类型对应的频域资源上, 向基站发送前导序列; 和 /或, 向基站发送与所述终端的类型对应的前导序列。
第三方面, 提供一种基站, 所述基站包括:
接收单元, 用于接收终端在随机接入时发送的前导序列;
识别单元, 用于根据所述接收单元接收到的前导序列识别所述终端的类型; 发送单元,用于按照所述识别单元识别出的终端的类型,在所述终端支持的处理 带宽上向所述终端发送随机接入过程中的消息。
结合第三方面,在第一种可能的实现方式中,所述识别单元包括至少一个下述单 元:
第一识别子单元, 用于根据发送所述前导序列的时域资源识别所述终端的类型; 第二识别子单元, 用于根据发送所述前导序列的频域资源识别所述终端的类型; 第三识别子单元, 用于根据所述前导序列的类型识别所述终端的类型。
结合第三方面和第一种可能的实现方式,在第二种可能的实现方式中,所述随机 接入过程中的消息包括: 随机接入响应消息和竞争解决消息;
所述发送单元, 具体用于当所述终端为 MTC终端时,在 MTC终端支持的第一带宽 上向所述终端发送随机接入响应消息和竞争解决消息, 当所述终端为普通终端时,在 普通终端支持的第二带宽上向所述终端发送随机接入响应消息和竞争解决消息, 其 中, 所述第一带宽小于所述第二带宽。
第四方面, 提供另一种基站, 所述基站包括:
接收机, 用于接收终端在随机接入时发送的前导序列;
处理器, 用于根据所述前导序列识别所述终端的类型;
发射机,用于按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发 送随机接入过程中的消息。
结合第四方面, 在第一种可能的实现方式中, 所述处理器具体用于, 根据发送所 述前导序列的时域资源识别所述终端的类型, 和 /或根据发送所述前导序列的频域资 源识别所述终端的类型, 和 /或根据所述前导序列的类型识别所述终端的类型。 结合第四方面和第一种可能的实现方式,在第二种可能的实现方式中,所述发射 机具体用于, 当所述终端为 MTC终端时, 在 MTC终端支持的第一带宽上向所述终端发 送随机接入响应消息和竞争解决消息, 当所述终端为普通终端时,在普通终端支持的 第二带宽上向所述终端发送随机接入响应消息和竞争解决消息,其中,所述第一带宽 小于所述第二带宽。
第五方面, 提供一种终端, 所述终端包括:
发送单元,用于所述终端在随机接入时, 按照所述终端的类型向基站发送前导序 列;
接收单元,用于接收所述基站根据所述发送单元发送的前导序列识别出所述终端 的类型后, 在所述终端支持的处理带宽上向所述终端发送的随机接入过程中的消息。
结合第五方面,在第一种可能的实现方式中,所述发送单元包括至少一个下述单 元:
第一发送子单元,用于在与所述终端的类型对应的时域资源上, 向基站发送前导 序列;
第二发送子单元,用于在与所述终端的类型对应的频域资源上, 向基站发送前导 序列;
第三发送子单元, 用于向基站发送与所述终端的类型对应的前导序列。
第六方面, 提供另一种终端, 所述终端包括:
发射机,用于所述终端在随机接入时,按照所述终端的类型向基站发送前导序列; 接收机,用于接收所述基站根据所述前导序列识别出所述终端的类型后,在所述 终端支持的处理带宽上向所述终端发送的随机接入过程中的消息。
结合第六方面, 在第一种可能的实现方式中, 所述发射机, 具体用于在与所述终 端的类型对应的时域资源上, 向基站发送前导序列, 和 /或在与所述终端的类型对应 的频域资源上, 向基站发送前导序列, 和 /或向基站发送与所述终端的类型对应的前 导序列。
本发明实施例中,基站接收终端在随机接入时发送的前导序列,根据前导序列识 别终端的类型, 按照终端的类型,在该终端支持的处理带宽上向终端发送随机接入过 程中的消息。本发明实施例可以在随机接入过程中区分 MTC终端和普通终端, 降低了 MTC终端对普通终端在随机接入过程的影响, 避免了 MTC终端和普通终端在相同的时 频资源上发送前导序列的碰撞, 减轻了 MTC 终端和普通终端在随机接入过程中的竞 争, 提高了普通终端的随机接入质量; 另外, 由于终端在向基站发送前导序列后, 基 站就可以知道该终端类型,因此针对 MTC终端可以在小带宽上发送 MTC终端可以处理 的消息, 并且针对普通终端可以在全频带上发送普通终端可以处理的消息, 从而保证 普通终端的接收性能不受 MTC终端的影响。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本发明随机接入方法的一个实施例流程图;
图 2为本发明随机接入方法的另一个实施例流程图:
图 3为本发明随机接入方法的另一个实施例流程图;
图 4为本发明随机接入方法的另一个实施例流程图;
图 5为本发明随机接入方法的另一个实施例流程图;
图 6为本发明基站的一个实施例框图;
图 7为本发明基站的另一个实施例框图;
图 8为本发明终端的一个实施例框图;
图 9为本发明终端的另一个实施例框图。 具体实施方式
本发明如下实施例提供了随机接入方法、 基站及终端。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实 施例的上述目的、特征和优点能够更加明显易懂, 下面结合附图对本发明实施例中技 术方案作进一步详细的说明。
本发明实施例可以应用在 LTE系统中, LTE系统的带宽资源在时域上被划分为若 干个符号, 在频域上被划分为若干个子载波。 一个 LTE系统帧包含 10个子帧, 一个 子帧包含两个时隙, 一个子帧长 lms, 对于通用循环前缀, 包含 14个符号, 一个子 帧的时间长度为一个传输时间间隔 (Transmission Time Interval , TTI )。 定义一个 资源块 (Resource Block, RB) 的大小为在频域上的 12个子载波, 在时域上为一个 时隙的长度, 即对于通用循环前缀包含了 7个符号。本发明实施例中的终端也可以称 为用户设备 (User Equipment, UE)。 参见图 1, 为本发明随机接入方法的一个实施例, 该实施例从基站侧描述了终端 的随机接入过程:
步骤 101 : 基站接收终端在随机接入时发送的前导序列。
终端向基站发送的前导序列通过物理随机接入信道 (Physical Random Access Channel , PRACH) 承载, 前导序列由序列持续时间 (TSEQ) 和循环前缀持续时间 (TCP) 组成。 PRACH承载的前导序列的组成分为五种格式, 如下表 1所示:
表 1
Figure imgf000007_0001
上表 1中, ;表示一个时间单元, 通常 Ts=l/ (15000x2048)秒, 该表 1相当于规 定了 PRACH的时域长度, 而在频域上, PRACH占用 1. 08MHz, 即 6个 RB的频域资源。 其中, 对于频分双工 (Frequency Division Duplex, FDD) 系统, 可以使用如表 1 中的前导序列格式 0至 3, 对于时分双工 (Time Division Duplex, TDD) 系统, 可 以使用如表 1中的前导序列格式 0至 4, 其中格式 4仅用于 TDD系统中特殊子帧的前 导序列配置。
步骤 102: 根据接收到的前导序列识别发送该前导序列的终端的类型。
可选的,基站可以根据发送前导序列的时域资源识别终端的类型, 即普通终端和 MTC 终端可以通过不同的时域资源发送前导序列; 和 /或, 也可以根据发送前导序列 的频域资源识别终端的类型,即普通终端和 MTC终端可以通过不同的频域资源发送前 导序列; 和 /或, 也可以根据前导序列的类型识别终端的类型, 即普通终端和 MTC终 端所发送的前导序列不同。
其中,在根据发送前导序列的时域资源识别终端的类型时,可以具体采用如下三 种方式:
第一种方式, 预先配置第一随机接入资源配置表,所述第一随机接入资源配置表 中包含随机接入配置索引与第一时域资源和第二时域资源之间的指示关系,并通过同 一个随机接入配置索引,分别为普通终端和 MTC终端配置不相同的第一时域资源和第 二时域资源; 通过 RRC 广播或单播信令为所述终端通知进行随机接入的参数, 所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置索引; 当在所述一个 随机接入配置索引所指示的第一时域资源上检测到终端发送的前导序列时,则确定所 述终端为普通终端,当在所述一个随机接入配置索引所指示的第二时域资源上检测到 终端发送的前导序列时, 则确定所述终端为 MTC终端。
第二种方式, 预先配置普通终端资源配置表和 MTC终端资源配置表,所述普通终 端资源配置表中包含第一随机接入配置索引与第一时域资源之间的指示关系, 所述 MTC终端资源配置表中包含第二随机接入配置索引与第二时域资源之间的指示关系; 通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广播或单播 信令中包含为普通终端配置的一个第一随机接入配置索引,和为 MTC终端配置的一个 第二随机接入配置索引;当在所述一个第一随机接入配置索引所指示的第一时域资源 上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在与所述一个第二 随机接入配置索引所指示的第二时域资源上检测到终端发送的前导序列时,则确定所 述终端为 MTC终端。
第三种方式, 预先配置第二资源配置表,所述第二资源配置表中包含终端的随机 接入配置索引与时域资源之间的指示关系;通过 RRC广播或单播信令为所述终端通知 进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接 入配置索引;当在所述一个随机接入配置索引所指示的时域资源上检测到终端发送的 前导序列时, 则确定所述终端为普通终端, 当在所述一个随机接入配置索引所指示的 时域资源按照指定的时域资源偏置值进行偏移后的时域资源上检测到终端发送的前 导序列时, 则确定所述终端为 MTC终端。其中, 所述指定的时域资源偏置值为通过所 述 RRC广播或单播信令通知的时域资源偏置值, 或者预先配置的时域资源偏置值。
其中,在根据发送前导序列的频域资源识别终端的类型时,可以采用如下二种方 式:
第一种方式,通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所 述 RRC广播或单播信令中包含为普通终端配置的第一频域资源的指示信息, 以及为 MTC终端配置的第二频域资源的指示信息; 当检测到终端在第一频域资源发送前导序 列时, 确定所述终端为普通终端, 当检测到终端在第二频域资源发送前导序列时, 确 定所述终端为 MTC终端, 所述第一频域资源和所述第二频域资源为不同的频域资源。 其中, 通过 RRC广播或单播信令为所述终端通知进行随机接入的参数, 可以包括: 在 RRC 广播或单播信令中通知为普通终端配置的作为所述第一频域资源的指示信息的 第一物理随机接入信道频率偏移 prach-Frequencyoffset , 和为 MTC终端配置的作为 所述第二频域资源的指示信息的第二物理随机接入信道频率偏移 prach-Frequencyoffset; 和 /或,在 RRC广播或单播信令中通知为普通终端配置的作 为所述第一频域资源的指示信息的第一随机接入配置索引,和为 MTC终端配置的作为 所述第二频域资源的指示信息的第二随机接入配置索引; 和 /或, 在 RRC广播或单播 信令中通知为普通终端和 MTC 终端配置的作为所述第一频域资源的指示信息和第二 频域资源的指示信息的同一个随机接入配置索引,所述同一个随机接入配置索引用于 分别为普通终端和 MTC终端指示第一频域资源和第二频域资源。
第二种方式,通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所 述 RRC广播或单播信令中包含为所述终端配置的第一频域资源的指示信息,所述第一 频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或 随机接入配置索引; 当检测到终端在第一频域资源发送前导序列时,确定所述终端为 普通终端,当检测到所述终端发送前导序列的频域资源为所述第一频域资源按照指定 的频域资源偏置值进行偏移后的频域资源时, 确定所述终端为 MTC终端。其中, 指定 的频域资源偏置值为通过所述 RRC广播或单播信令通知的频域资源偏置值,或者预先 配置的频域资源偏置值。
其中, 在根据前导序列的类型识别终端的类型时, 可以采用如下方式: 当接收到终端发送的第一前导序列时,确定所述终端为普通终端, 当接收到终端 发送的第二前导序列时, 确定所述终端为 MTC终端; 其中, 所述第一前导序列是现有 前导序列, 所述第二前导序列是为所述 MTC终端新定义的若干前导序列; 或者, 所述 第一前导序列为现有前导序列中, 除专用序列外的前导序列,所述第二前导序列为从 所述专用序列中划分出的若干前导序列。
具体的, 所述新定义的若干前导序列的生成方式可以包括: 采用生成现有前导 序列中第 64个前导序列的根序列, 将所述根序列依次增大循环移位值生成所述新定 义的前导序列,当根据所述根序列生成的所述新定义的前导序列的数量小于预设数量 时, 依次选取与所述根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取 的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满 足所述预设数量;或者,通过 RRC广播或单播信令通知 MTC终端的根序列的逻辑序号, 对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据所 述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选取与所 述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取的根序 列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满足所述 预设数量; 或者, 通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号, 根据 指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC 终端的根序 列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列, 当根 据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选取 与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取的 根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满足 所述预设数量,其中,所述指定的根序列偏移值为通过 RRC广播或单播信令通知的根 序列偏移值, 或者预先配置的根序列偏移值; 其中, 所述新定义的前导序列和所述现 有前导序列是不相同的前导序列。
具体的,所述第二前导序列为从所述专用序列中划分出的若干前导序列的划分方 式可以包括: 通过 RRC广播或单播信令通知所述专用序列中, 作为所述第二前导序列 的序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的序列号 获取所述第二前导序列,其中,所述指定的起始序列的序列号为通过 RRC广播或单播 信令通知的起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述 序列个数得到的起始序列的序列号。
步骤 103 : 按照识别出的终端的类型, 在该终端支持的处理带宽上向该终端发送 随机接入过程中的消息。
可选的,所述随机接入过程中的消息可以包括: 随机接入响应消息和竞争解决消 息。
可选的, 当所述终端为 MTC终端时,在 MTC终端支持的第一带宽上向所述终端发 送随机接入响应消息和竞争解决消息, 当所述终端为普通终端时,在普通终端支持的 第二带宽上向所述终端发送随机接入响应消息和竞争解决消息,其中,所述第一带宽 小于所述第二带宽。
由上述实施例可见, 由于基站可以在随机接入过程中区分 MTC终端和普通终端, 因此降低了 MTC终端对普通终端在随机接入过程的影响,避免了 MTC终端和普通终端 在相同的时频资源上发送前导序列的碰撞,减轻了 MTC终端和普通终端在随机接入过 程中的竞争, 提高了普通终端的随机接入质量; 另外, 由于终端在向基站发送前导序 列后,基站就可以知道该终端类型, 因此针对 MTC终端可以在小带宽上发送 MTC终端 可以处理的消息, 并且针对普通终端可以在全频带上发送普通终端可以处理的消息, 从而保证普通终端的接收性能不受 MTC终端的影响。 参见图 2, 为本发明随机接入方法的另一个实施例, 该实施例示出了基站根据终 端在不同时域资源上发送的前导序列对终端类型进行区分的随机接入过程:
步骤 201 : 基站接收终端在随机接入时发送的前导序列。
终端向基站发送的前导序列通过 PRACH承载, 前导序列由序列持续时间 ( Tsm) 和循环前缀持续时间 (TCT ) 组成。 PRACH承载的前导序列的组成分为五种格式, 如前 述表 1所示。 其中, 对于 FDD系统, 可以使用如表 1中的前导序列格式 0至 3, 对于 TDD系统, 可以使用如表 1中的前导序列格式 0至 4。
本实施例中, 终端的类型分为普通终端和 MTC终端,普通终端和 MTC终端在不同 的时域资源上发送前导序列。
步骤 202 : 根据发送前导序列的时域资源识别终端的类型。
基站通过普通终端和 MTC 终端在不同时域资源上发送的前导序列区分终端的类 型。 可选的, 基站可以根据三种时域资源的配置方式识别终端的类型。
在第一种方式中,基站预先配置第一随机接入资源配置表,所述第一随机接入资 源配置表中包含随机接入配置索引(prach-Configurationlndex )与第一时域资源和 第二时域资源之间的指示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端配置不相同的第一时域资源和第二时域资源; 基站通过 RRC广播或单播信令 为所述终端通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配 置的一个随机接入配置索引;终端根据该随机接入配置索引查找第一随机接入资源配 置表, 获取与自身所属类型对应的时域资源, 并在获取的时域资源上发送前导序列; 基站接收到终端发送的前导序列后,当在所述一个随机接入配置索引所指示的第一时 域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在所述一个 随机接入配置索引所指示的第二时域资源上检测到终端发送的前导序列时,则确定所 述终端为 MTC终端。 本实现方式中, 由于基站在通知终端随机接入时, 仅需要在 RRC 信令中携带一个随机接入配置索引,因此该 RRC信令的格式可以采用与现有技术相同 的格式。
其中, 对于 FDD系统, 所述第一随机接入资源配置表的一种示例如下表 2所示, 在表 2中, 包含了 prach-Configurationlndex和前导序列格式、 系统帧号及子帧号 之间的指示关系,其中所述第一时域资源由系统帧号和普通终端的子帧号确定,所述 第二时域资源由系统帧号和 MTC终端的子帧号确定。
表 2 Prach-Conf i gurat i on 前导序列格式 系统帧号 MTC终端的子 普通终端
Index 帧号 的子帧号
0 0 Even 3 1
1 0 Even 5 4
2 0 Even 2 7
3 0 Any 3 1
4 0 Any 5 4
5 0 Any 2 7
6 0 Any 3, 8 1, 6
7 0 Any 4,9 2 , 7
(略) 在上表 2中,仅示例性的示出了前导序列格式 0时的部分时域资源配置信息,其 中对 MTC终端和普通终端在相同的 prach-Configurationlndex下, 可以配置不同的 子帧, 以表示发送 PRACH前导序列采用不同的时域资源, 系统帧号下的 Even表示偶 数类的系统帧号, Any表示任意系统帧号。
其中, 对于 TDD系统, 允许一个上行子帧或特殊子帧中有多个 PRACH频域资源, 通常允许最多 6个终端同时在一个上行子帧或特殊子帧发送 PRACH前导序列,在频域 上进行频分复用。 由高层 RRC信令配置的参数 prach-Configurationlndex 指示了 PRACH的各种格式、 PRACH资源密度值和版本索引的关系。
由 prach-Configurationlndex指示的表示资源位置的参数包括 , 其中 ΛΑ表示频率资源的序号,最多有 6个值; t^ = 0,1, 2分别表示 PRACH资源是在所 有的系统帧内出现 ( = o ), 在偶数帧号的系统帧出现 ( = i ), 或在奇数帧号的 系统帧出现 ( = 2 ) ;
Figure imgf000012_0001
0,1分别表示 PRACH资源位于前半个系统帧 (t = 0 ), 或者后半个系统帧 (^1 = 1 ); ^^是前导序列开始的上行子帧号, 在两个连续的下行 到上行转换点之间从 0开始计数, 当采用格式 4时, ^表示为 (*)。
当采用如表 1所示的格式 0-3时, PRACH前导序列可用的频域资源起点由 、 高层 RRC信令配置的物理随机接入信道频率偏移参数 (prach-FrequencyOffset) 所 设定的物理资源块序号(《Pffset )、 上行可用 RB的个数共同计算得出, 当采用格式 4 时, PRACH前导序列可用的频域资源起点由/ ^、 上行可用 RB的个数、 所在的系统帧 号、 下行上行转换点数以及 t^共同计算得出。
当普通终端和 MTC终端 t^和 /或 t^和 /或 t 的取值不一样时,表示普通终端和 MTC 终端采用不同的时域资源, TDD第一随机接入资源配置表的一种示例, 如下表 3所示, 其中, 所述第一时域资源由普通终端的资源配置中的 t^、 t^和 t 的取值确定, 所 述第二时域资源由 MTC终端的资源配置中的 t^、 t^和 t 的取值确定。
表 3
Prach - TDD UL/DL配置普通终端的资源配置 TDD UL/DL配置 MTC终端的资源配置
Configuration 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Index
0 (0,1, (0,1, (0,1, (0,1, (0,1, (0,1, (0,1, (0,2, (0,2, (0,2, (0,2, (0,2, (0,2, (0,2,
0,2) 0,1) 0, 0) 0,2) 0,1) 0, 0) 0,2) 0,2) 0,1) 0, 0) 0,2) 0,1) 0, 0) 0,2)
1 (0,2, (0,2 (0,2, (0,2, (0,2, (0,2, (0,2, (0,1, (0,1, (0,1, (0,1, (0,1, (0,1, (0,1,
0,2) ,0,1) 0, 0) 0,2) 0,1) 0, 0) 0,2) 0,2) 0,1) 0, 0) 0,2) 0,1) 0, 0) 0,2)
2 (0,1, (0,1, (0,1, (0,1, (0,1, N/A (0,1, (0,2, (0,2, (0,2, (0,2, (0,2, N/A (0,2,
1,2) 1,1) 1,0) 0,1) 0, 0) 1,1) 1,2) 1,1) 1,0) 0,1) 0, 0) 1,1)
3 (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (1,0, (0, 0,
0,2) 0,1) 0, 0) 0,2) 0,1) 0, 0) 0,2) 1,2) 1,1) 1,0) 0, 0) 0, 0) 0, 0) 1,1)
4 (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, N/A (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, N/A (0, 0,
1,2) 1,1) 1,0) 0,1) 0, 0) 1,1) 0,2) 0,1) 0, 0) 0,2) 0,1) 0,2)
5 (0, 0, (0, 0, N/A (0, 0, N/A N/A (0, 0, (0, 0, (0, 0, N/A (0, 0, N/A N/A (0, 0,
0,1) 0, 0) 0, 0) 0,1) 1,1) 1,0) 0,1) 1,1)
6 (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (1,0, (0, 0, (1,0, (2,0, (0, 0,
0,2) 0,1) 0, 0) 0,1) 0, 0) 0, 0) 0,2) 0, 0) 0, 0) 0, 0) 0, 0) 0, 0) 0, 0) 0, 0)
(0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (1,0, (0, 0, (0, 0, (0, 0, (1,0, (0, 0, (1,0, (3,0, (0, 0,
1,2) 1,1) 1,0) 0,2) 0,1) 0, 0) 1,1) 1,0) 1,0) 1,0) 0,1) 0,1) 0, 0) 1,1)
7 (0, 0, (0, 0, N/A (0, 0, N/A N/A (0, 0, (0, 0, (0, 0, N/A (0, 0, N/A N/A (0, 0,
0,1) 0, 0) 0, 0) 0,1) 0,2) 0,1) 0,1) 0,2)
(0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0,
1,1) 1,0) 0,2) 1,0) 1,2) 1,1) 0,2) 1,1)
8 (0, 0, N/A N/A (0, 0, N/A N/A (0, 0, (0, 0, N/A N/A (0, 0, N/A N/A (0, 0,
0, 0) 0, 0) 0, 0) 0,1) 0, 0) 0,1)
(0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0,
1,0) 0,1) 1,1) 1,1) 0,2) 1,0)
(略)
29 /39 (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (3,0, (3,0, (6, 0, (6, 0, (3,0,
0,1) 0, 0) 0,1) 0, 0) 0,1) 0,1) 0, 0) 0,1) 0, 0) 0,1)
(0, 0, (0, 0, N/A (1,0, (1,0, N/A (0, 0, (3,0, (3,0, N/A (7,0, (7,0, N/A (3,0,
1,1) 1,0) 0,1) 0, 0) 1,0) 1,1) 1,0) 0,1) 0, 0) 1,0)
(1,0, (1,0, (2,0, (2,0, (1,0, (4, 0, (4, 0, (8, 0, (8, 0, (4, 0, 0,1) 0, 0) 0,1) 0, 0) 0,1) 0,1) 0, 0) 0,1) 0, 0) 0,1)
(ι,ο, (1,0, (3,0, (3,0, (1,0, (4, 0, (4, 0, (9, 0, (9, 0, (4, 0,
1,1) 1,0) 0,1) 0, 0) 1,0) 1,1) 1,0) 0,1) 0, 0) 1,0)
(2,0 (2,0, (4, 0, (4, 0, (2,0, (5,0, (5,0, (10, 0, (10, 0, (5,0,
,0,1) 0, 0) 0,1) 0, 0) 0,1) 0,1) 0, 0) 0,1) 0, 0) 0,1)
(2,0, (2,0, (5,0, (5,0, (2,0, (5,0, (5,0, (11, 0, (11, 0, (5,0,
1,1) 1,0) 0,1) 0, 0) 1,0) 1,1) 1,0) 0,1) 0, 0) 1,0)
(略)
57 (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (0, 0, (3,0, (3,0, (3,0, (6, 0, (6, 0, (6, 0, (3,0,
0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *)
(0, 0, (0, 0, (0, 0, (1,0, (1,0, (1,0, (0, 0, (3,0, (3,0, (3,0, (7,0, (7,0, (7,0, (3,0,
1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*) 1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*)
(1,0, (1,0, (1,0, (2,0, (2,0, (2,0, (1,0, (4, 0, (4, 0, (4, 0, (8, 0, (8, 0, (8, 0, (4, 0,
0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *)
(1,0, (1,0, (1,0, (3,0, (3,0, (3,0, (1,0, (4, 0, (4, 0, (4, 0, (9, 0, (9, 0, (9, 0, (4, 0,
1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*) 1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*)
(2,0, (2,0, (2,0, (4, 0, (4, 0, (4, 0, (2,0, (5,0, (5,0, (5,0, (10, 0, (10, 0, (10, 0, (5,0,
0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *) 0, *)
(2,0, (2,0, (2,0, (5,0, (5,0, (5,0, (2,0, (5,0, (5,0, (5,0, (11, 0, (11, 0, (11, 0, (5,0,
1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*) 1,*) 1,*) 1,*) 0, *) 0, *) 0, *) 1,*)
(略) 上表 3 中, 以 prach-Configurationlndex 为 0, 普通终端的第 0个资源配置 (0, 1,0,2) 为例, 括号中的四个参数分别表示了 υ^, ,^^。
无论对于上述 FDD系统中的配置 (表 2), 还是 TDD系统中的配置 (表 3), 在同 一个 prach-Configurationlndex下, 都分别对普通终端和 MTC终端配置了不同的时 域资源 。 因此 , 当基站通过高层 RRC 信令 向 终端下发 同 一个
prach-Configurationlndex 时 , 普 通 终 端 和 MTC 终 端 根 据 该
prach-Configurationlndex 可以获取到不同的时域资源, 并按照不同的时域资源向 基站进行随机接入。
在第二种方式中,基站预先配置普通终端资源配置表和 MTC终端资源配置表,所 述普通终端资源配置表中包含第一随机接入配置索引与第一时域资源之间的指示关 系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二时域资源之间的指 示关系; 基站通过 RRC 广播或单播信令为所述终端通知进行随机接入的参数, 所述 RRC广播或单播信令中包含为普通终端配置的一个第一随机接入配置索引, 和为 MTC 终端配置的一个第二随机接入配置索引;终端根据自身的类型获取该 RRC信令中对应 的随机接入配置索引, 并查找与该随机接入配置索引对应的时域资源,通过查找到的 时域资源向基站发送前导序列; 基站接收到前导序列后, 当在所述一个第一随机接入 配置索引所指示的第一时域资源上检测到终端发送的前导序列时,则确定所述终端为 普通终端,当在与所述一个第二随机接入配置索引所指示的第二时域资源上检测到终 端发送的前导序列时, 则确定所述终端为 MTC终端。
如下所示, 为第二种方式中的 RRC信令的一种示例, 该 RRC信令中给 MTC终端和 普通终端配置不相同的 prach-ConfigurationIndex。 该 RRC 信令中的信息元素 PRACH-Configlnfo可以包含:
PRACH-Configlnfo : : = SEQUENCE {
prach-Configlndex-for-MTC INTEGER (0. . 63) ,
prach-Conf iglndex-for-NonMTC INTEGER (0. . 63),
highSpeedFlag BOOLEAN,
zeroCorrelationZoneConf ig INTEGER (0. . 15),
prach-FreqOff set INTEGER (0. . 94) 上述 PRACH-Configlnfo中,参数 prach-Conf iglndex-for-NonMTC是基站为普通 UE 配置的 prach-Conf igurationlndex , 即所述第一随机接入配置索引, 参数 prach-Conf iglndex-for-MTC是基站为 MTC UE配置的 prach-Conf i gurat i on Index , 即所述第二随机接入配置索引, 上述两个 prach-Conf igurationlndex的取值范围为 0到 63中的整数, 上述 PRACH-Configlnfo中, 其它参数的含义和现有技术相同, 参 数 highSpeedFlag是高速标志位,参数 zeroCorrelationZoneConf ig是指示用于计算 循环移位大小的参数值, 参数 prach-FreqOffset 为频率偏移值《pffsrt, 《^^^在
FDD时表示了 PRACH前导序列可以占用的第一个 RB的序号, 决定了一个子帧内的一 个频域资源, 《Pffset在 TDD时和频率资源的序号 、 上行可用 RB个数等参数共同 决定了 PRACH前导序列可以占用的频域资源。
其中, 对于 FDD系统, 当普通终端接收到 RRC信令后, 根据该 RRC信令中的参数 prach-Conf iglndex-for-NonMTC查找如下查表 4,获得可用来发送 PRACH前导序列的 系统帧和子帧位置, 下表 4为基站预先配置的普通终端资源配置表的示例,包含了第 一随机接入配置索引和前导序列格式、系统帧号及子帧号之间的指示关系,其中所述 第一时域资源由该表 4中的系统帧号和子帧号确定。
表 4
Figure imgf000017_0001
在上表 4中,仅示出了对于普通终端,在前导序列格式 0时的部分时域资源配置 信息, 系统帧号下的 Even表示偶数类的系统帧号, Any表示任意系统帧号。
其中, 对于 TDD系统, 当普通终端接收到 RRC信令后, 根据该 RRC信令中的参数 prach-Configlndex-for-NonMTC查找如下查表 5,获得可用来发送 PRACH前导序列的 系统帧和子帧位置, 下表 5为基站预先配置的所述普通终端的资源配置表, 其中, 所 述第一时域资源由表 5中的 t^、 t^和 t 的取值确定。
表 5
Figure imgf000018_0001
上表 5中, 以 prach-Configurationlndex为 0的第 0个资源配置 ( 0, 1, 0, 2) ¾ 例, 括号中的四个参数分别表示了 υ^, , ^^ , 上述四个参数的含义与前述描述 一致, 在此不再赘述。
上述表 4和表 5与现有协议中 FDD和 TDD系统的配置表相同。
其中, 对于 FDD系统, 当 MTC终端接收到 RRC信令后, 根据该 RRC信令中的参数 prach-Configlndex-for-NonMTC查找如下查表 6,获得可用来发送 PRACH前导序列的 系统帧和子帧位置, 下表 6为基站预先配置的所述 MTC终端资源配置表,包含了第二 随机接入配置索引和前导序列格式、系统帧号及子帧号之间的指示关系,其中所述第 二时域资源由该表中系统帧号和子帧号确定。 表 6
Figure imgf000019_0001
在上表 6中,仅示例性的示出了对于 MTC终端,在前导序列格式 0时的部分时域 资源配置信息, 系统帧号下的 Even表示偶数类的系统帧号, Any表示任意系统帧号。
其中, 对于 TDD系统, 当 MTC终端接收到 RRC信令后, 根据该 RRC信令中的参数 prach-Configlndex-for-NonMTC查找如下查表 7,获得可用来发送 PRACH前导序列的 系统帧和子帧位置, 下表 7为基站预先配置的所述 MTC终端资源配置表, 其中, 所述 第二时域资源由表 7中的 t^、 t^和 t 的取值确定。
(Ζ 'Ο 'Ζ Ό)甚 ^^ 0 ^ 0 epuiuoi^jnSijuoo-noOjd 'Ψ ¾
Figure imgf000020_0001
Z.66.0/ZTOZN3/X3d 9Z0£請 ΪΟΖ OAV
61· 例, 括号中的四个参数分别表示了 υ^, , ^^ , 上述四个参数的含义与前述描述 一致, 在此不再赘述。 无论对于上述 FDD系统, 或者 TDD系统, 当终端发送前导序列 后, 基站可以在检测到该终端发送前导序列所在的时域资源后, 如果在表 4 或表 6 中查找到该时域资源, 则可以确定终端为普通终端, 如果在表 5或表 7中查找到该时 域资源, 则可以确定终端为 MTC终端。
在第三种方式中: 基站预先配置第二资源配置表,所述第二资源配置表中包含终 端的随机接入配置索引与时域资源之间的指示关系;基站通过 RRC广播或单播信令为 所述终端通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置 的一个随机接入配置索引; 终端根据该随机接入配置索引查找第二资源配置表, 如果 为普通终端, 则直接按照从第二资源配置表中查找到的时域资源发送前导序列, 如果 为 MTC终端,则将从第二资源配置表中查找到的时域资源按照指定的时域资源偏置值 进行偏移, 并在偏移后的时域资源上发送前导序列; 基站接收到前导序列后, 当在所 述一个随机接入配置索引所指示的时域资源上检测到终端发送的前导序列时,则确定 所述终端为普通终端,当在所述一个随机接入配置索引所指示的时域资源按照指定的 时域资源偏置值进行偏移后的时域资源上检测到终端发送的前导序列时,则确定所述 终端为 MTC终端。
上述普通终端与 MTC终端发送前导序列的时域资源偏置值为通过所述 RRC广播或 单播信令通知的时域资源偏置值, 或者预先配置的时域资源偏置值, 如通过协议约定 的时域资源偏置值, 对此本实施例不进行限制。
如下所示, 为第三种方式中的 RRC 信令的一种示例, RRC 信令中的信息元素 PRACH-Configlnfo可以包含:
PRACH-Configlnfo : : = SEQUENCE {
prach-Conf iglndex INTEGER (0. . 63),
subframeOff set INTEGER (0. . 9),
highSpeedFlag BOOLEAN,
zeroCorrelationZoneConf ig INTEGER (0. . 15),
prach-FreqOff set INTEGER (0. . 94) 上述 PRACH-Configlnfo中,参数 subframeOff set表示普通终端与 MTC终端发送 前导序列的时域资源偏置值, 其取值可以是 0到 9的整数, 参数 prach-Conf iglndex 为所述一个随机接入配置索引, 其它参数的含义和现有技术相同, 与前述描述一致, 在此不再赘述。
在上述第三种方式中, 对于 FDD系统, 第二资源配置表可以具体采用前述表 4, 对于 TDD系统, 第二资源配置表可以具体采用前述表 5, 在此不再赘述。 以 FDD系统 为例, 当基站在 RRC信令中通知的 prach-Configlndex为 1, subframeOff set为 1 时, 则终端接收到 RRC信令时, 根据 prach-Conf iglndex为 1查找表 4, 得到的子帧 号为 "4", 对于普通终端则在第 4个子帧上发送前导序列, 对于 MTC终端, 则将子帧 号 "4"与 subframeOff set " 1 "相加, 得到子帧号 " 5 ", 则 MTC终端在第 5个子帧 上发送前导序列;基站接收到前导序列后,如果检测到前导序列在第 4个子帧上发送, 并按照 RRC信令中的 prach-Conf iglndex " 1 "查找到对应的子帧号为 "4", 则可以 确定发送前导序列的终端为普通终端, 如果检测到前导序列在第 5个子帧上发送, 并 按照 RRC信令中的 prach-Conf iglndex " 1 "查找到对应的子帧号为 "4", 将子帧号 为 "4"与 subframeOff set " 1 "相加后, 得到的子帧号 " 5 "与检测到的子帧一致, 因此可以确定发送前导序列的终端为 MTC终端。
步骤 203: 按照终端的类型, 在该终端支持的处理带宽上向终端发送随机接入响 应消息和竞争解决消息。
在本实施例的三种识别终端类型的方式中,为 MTC终端和普通终端所发送的前导 序列配置了不同的时域资源。相应的, 基站在识别出终端的类型, 并向终端发送与随 机接入响应和竞争解决相关的消息时,针对 MTC终端可以在其能够处理的小带宽上发 送这些消息, 针对普通终端则可以在全带宽上发送这些消息。 MTC终端和普通终端可 以利用不同的随机接入无线网络临时标识 (Random Access Radio Network Temporary Identifier , RA-RNTI ) 值检测物理下行控制信道 ( Physical Downl ink Control Channel , PDCCH) , 进而继续解调该 PDCCH所指示的物理下行共享信道 (Physical Downl ink Shared Channel , PDSCH) 上所承载的媒体接入控制协议数据单元 (Media Access Control Protocol Data Unit, MAC PDU), 因此基站向 MTC 终端和普通终端 发送的随机接入响应消息位于不同的 PDSCH, 包含不同的临时 C-RNTI , 由此避免了 MTC终端和普通终端在随机接入过程中的冲突。
由上述实施例可见, 由于基站可以在随机接入过程中根据不同的时域资源区分 MTC终端和普通终端, 因此降低了 MTC终端对普通终端在随机接入过程的影响, 避免 了 MTC终端和普通终端在相同的时频资源上发送前导序列的碰撞,减轻了 MTC终端和 普通终端在随机接入过程中的竞争, 提高了普通终端的随机接入质量; 另外, 由于终 端在向基站发送前导序列后,基站就可以知道该终端类型, 因此针对 MTC终端可以在 小带宽上发送 MTC终端可以处理的消息,并且针对普通终端可以在全频带上发送普通 终端可以处理的消息, 从而保证普通终端的接收性能不受 MTC终端的影响。 参见图 3, 为本发明随机接入方法的另一个实施例, 该实施例示出了基站根据终 端在不同频域资源上发送的前导序列对终端类型进行区分的随机接入过程:
步骤 301 : 基站接收终端在随机接入时发送的前导序列。
终端向基站发送的前导序列通过 PRACH承载, 前导序列由序列持续时间 ( Tsm) 和循环前缀持续时间 (TCT) 组成。 PRACH承载的前导序列的组成分为五种格式, 如前 述表 1所示。 其中, 对于 FDD系统, 可以使用如表 1中的前导序列格式 0至 3, 对于 TDD系统, 可以使用如表 1中的前导序列格式 0至 4。
本实施例中, 终端的类型分为普通终端和 MTC终端,普通终端和 MTC终端在不同 的频域资源上发送前导序列。
步骤 302: 根据发送前导序列的频域资源识别终端的类型。
基站通过普通终端和 MTC 终端在不同频域资源上发送的前导序列区分终端的类 型。 其中, 基站可以根据二种频域资源的配置方式识别终端的类型。
在第一种方式中:基站通过 RRC广播或单播信令为所述终端通知进行随机接入的 参数, 所述 RRC广播或单播信令中包含为普通终端配置的第一频域资源的指示信息, 以及为 MTC终端配置的第二频域资源的指示信息; 终端在接收到 RRC信令后,根据自 身所属类型获取对应的频域资源, 如果为普通终端, 则在第一频域资源上发送前导序 列, 如果为 MTC终端, 则在第二频域资源上发送前导序列; 基站接收到终端发送的前 导序列后,当检测到终端在第一频域资源发送前导序列时,确定所述终端为普通终端, 当检测到终端在第二频域资源发送前导序列时,确定所述终端为 MTC终端,所述第一 频域资源和所述第二频域资源为不同的频域资源。
其中,对于 FDD系统,可以在 RRC广播或单播信令中通知为普通终端配置的作为 所述第一频域资源的指示信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset, 和为 MTC终端配置的作为所述第二频域资源的指示信息的 第二物理随机接入信道频率偏移 prach-Frequencyoffset, 该 RRC信令中的信息元素 PRACH-Configlnfo可以包含:
PRACH-Configlnfo : : = SEQUENCE {
prach-Configlndex INTEGER (0. . 63) ,
highSpeedFlag BOOLEAN, zeroCorrelationZoneConf ig INTEGER (0. . 15) , prach-FreqOffset - for- NonMTC INTEGER (0. . 94)
prach-FreqOffset -for- MTC INTEGER (0. . 94) 上 述 PRACH-Configlnfo 中 , 参 数 prach-FreqOff set-for-NonMTC 禾口 prach-FreqOffset -for-MTC 分别表示了普通终端的第一物理随机接入信道频率偏 移和 MTC终端的第二物理随机接入信道频率偏移,它们设定了不相同的发送前导序列 时可以占用的第一个物理资源块的序号,分别指示在一个子帧内普通终端的一个第一 频率资源的起点和 MTC终端的一个第二频率资源的起点,这样在一个子帧内可以用来 发送前导序列的频域资源总共有两个, 上述 PRACH-Configlnfo中, 其它参数的含义 和现有技术相同, 在此不再赘述。
其中, 对于 TDD系统, 可以采用和 FDD系统相同的方式, 在 RRC广播或单播信令 中通知为普通终端配置的作为所述第一频域资源的指示信息的第一物理随机接入信 道频率偏移 prach-Frequencyoffset, 和为 MTC终端配置的作为所述第二频域资源的 指示信息的第二物理随机接入信道频率偏移 prach-Frequencyoffset。在 RRC信令中 的信息元素 PRACH-Configlnfo 中, 参数 prach-FreqOff set-for-NonMTC 和 prach-FreqOffset -for-MTC 分别表示了普通终端的第一物理随机接入信道频率偏 移和 MTC 终端 的第二物理随机接入信道频率偏移 , 通过参数 prach-FreqOffset-for-NonMTC和 prach-FreqOff set-for-MTC为普通终端和 MTC终 端配置不同的物理资源块序号, 上述方式可用于如表 1所示的格式 0-3。 普通终端可 以根据 prach-FreqOff set-for-NonMTC、频域资源序号 、和上行可用 RB个数等参 数计算该普通终端的前导序列可以占用的第一频域资源的起点; MTC 终端可以根据 prach-FreqOff set-for-MTC,频域资源序号 、上行可用 RB个数等参数计算该 MTC 终端的前导序列可以占用的第二频域资源的起点。普通终端计算出的第一频域资源起 点和 MTC终端计算出的第二频域资源起点不一样,由于现有技术中 TDD系统允许一个 上行子帧中最多有 6个用于随机接入的频域资源, 而本实施例中, 由于分别为普通终 端和 MTC终端分配不同的频域资源, 因此一个子帧内最多可以有 12个用于随机接入 的频域资源。
另外, 可选的, 本实施例中在为不同类型终端配置不同的频域资源时, 基站也可 以采用与前述图 2所示实施例中的第一种方式类似的方式,在 RRC广播或单播信令中 通知为普通终端和 MTC 终端配置的作为所述第一频域资源的指示信息和第二频域资 源的指示信息的同一个随机接入配置索引 prach-Configurationlndex, 所述同一个 随机接入配置索引 prach-Configurationlndex用于分别为普通终端和 MTC终端指示 第一频域资源和第二频域资源, 即由 prach-Configurationlndex指示的表示资源位 置的参数 (ΛΛ,^,^Ι,^)中, 对 MTC终端和普通终端, 的取值可以不一样。 例如 前述表 3所示, 的取值最多可以有 12个, 以 prach-Configurationlndex为 57, TDD 上下行配比 3为例, 对普通终端, 可以取 0、 1、 2、 3、 4、 5, 用于计算第一 频率资源的起点, 对 MTC终端, 可以取 6、 7、 8、 9、 10, 用于计算第二频率资源 的起点, 因此一个子帧内最多可以有 12个用于随机接入的频域资源。 这种配置方式 可用于如表 1所示的格式 0-4。
另外, 可选的, 本实施例中在为不同类型终端配置不同的频域资源时, 基站也可 以采用与前述图 2所示实施例中的第二种方式类似的方式,在 RRC广播或单播信令中 通知为普通终端配置的作为所述第一频域资源的指示信息的第一随机接入配置索引, 和为 MTC终端配置的作为所述第二频域资源的指示信息的第二随机接入配置索引。参 数 prach-Configlndex-for-NonMTC 是 基 站 为 普 通 终 端 配 置 的 prach-Configurationlndex , 即 所述第 一 随机接入配置索 引 , 参数 prach-Conf iglndex-for-MTC是基站为 MTC UE配置的 prach-Conf i gurat i on Index , 即所述第二随机接入配置索引, 普通终端根据 prach-Conf iglndex-for-NonMTC查找 前述表 5 得到 , 用于计算第一频率资源的起点, MTC 终端 根据 prach-Conf iglndex-for-MTC查表 7得到/ RA, 用于计算第二频率资源的起点, 普通 终端和 MTC终端 的取值可以不一样。 的取值最多可以有 12个, 一个子帧内最 多可以有 12 个用于随机接入的频域资源。 这种配置方式可用于如表 1 所示的格式 0-4。
在第二种方式中: 通过 RRC广播或单播信令为所述终端通知进行随机接入的参 数,所述 RRC广播或单播信令中包含为所述终端配置的第一频域资源的指示信息,所 述第一频域资源 的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引; 终端接收到 RRC信令后, 如果为 普通终端, 则直接按照第一频域资源发送前导序列, 如果为 MTC终端, 则将第一频域 资源按照指定的频域资源偏置值进行偏移后,得到偏移后的频域资源, 并按照所述偏 移后的频域资源发送前导序列; 基站接收到前导序列后, 当检测到终端在第一频域资 源发送前导序列时,确定所述终端为普通终端, 当检测到所述终端发送前导序列的频 域资源为所述第一频域资源按照指定的频域资源偏置值进行偏移后的频域资源时,确 定所述终端为 MTC终端。
所述指定的频域资源偏置值为通过所述 RRC 广播或单播信令通知的频域资源偏 置值, 或者预先配置的频域资源偏置值, 如通过协议约定的频域资源偏置值, 对此本 实施例不进行限制。 如下所示, 为第二种方式中 RRC信令的一种示例, RRC信令中的 信息元素 PRACH-Configlnfo可以包含:
PRACH-Configlnfo : : = SEQUENCE {
prach-Configlndex INTEGER (0. . 63) ,
highSpeedFlag BOOLEAN,
zeroCorrelationZoneConf ig INTEGER (0. . 15),
prach-FreqOff set INTEGER (0. . 94)
prach-FreqOff set -forMTC INTEGER (0. . 94) 上述 PRACH-Configlnfo中, 参数 prach-FreqOff set-forMTC表示所述频域资源 偏置值,参数 prach-Configlndex为所述随机接入配置索引,参数 prach-FreqOf f set 为物理随机接入信道频率偏移, 二者均可以作为所述第一频域资源的指示信息。其它 参数的含义和现有技术相同, 与前述描述一致, 在此不再赘述。
在上述第二种方式中,对于 FDD系统,普通终端可以直接根据 prach-FreqOffset 得到用于发送前导序列的第一频域资源, MTC终端可以根据 prach-FrequencyOffset 和 prach-FreqOffset-forMTC得到用于发送前导序列的频域资源。
在上述第二种方式中, 对于 TDD系统, 当采用如表 1所示的格式 0-3时, MTC终 端可以根据 /ra、 prach-FrequencyOf f set prach-FreqOff set-forMTC和上行可用 RB 的个数等参数共同计算用于发送前导序列的频域资源的起点,当采用如表 1所示的格 式 4时, MTC 终端可以根据/ ^、 prach-FreqOff set-forMTC, 上行可用 RB的个数、 所在的系统帧号、 下行上行转换点数、 和 t^共同计算用于发送前导序列的频域资源 的起点。 上述根据各种参数计算频域资源的过程与现有技术一致, 在此不再赘述。
步骤 303: 按照终端的类型, 在该终端支持的处理带宽上向终端发送随机接入响 应消息和竞争解决消息。
在本实施例的方案中, 由于区分普通终端和 MTC终端, 因此前导序列在一个子帧 内可以使用的频域资源最多有 12个。 相应的, 基站在向终端发送随机接入响应消息 中, 可以根据检测出来的前导序列的时频位置计算 RA-RNTI , 具体可以按照下式进行 计算: RA-RNTI=l+t_id+10*f_id , 其中, 0 t_id <10 上式中, f_id是承载前导序列的 PRACH在一个子帧中的占用频域资源的序号, 其取值范围需要从现有的 0 f_id< 6, 修改为 0 f_id〈 12。 相应的, 在 TS36. 321 标准中, RNTI定义的表格可以改为如下表 8所示的格式:
表 8
Figure imgf000027_0001
上表 8中, Value的取值为十六进制,其中 RA-RNTI对应的取值范围为 0001-0078。 在本实施例的二种识别终端类型的方式中,为 MTC终端和普通终端所发送的前导 序列配置了不同的频域资源。相应的, 基站在识别出终端的类型, 并向终端发送与随 机接入响应和竞争解决相关的消息时,针对 MTC终端可以在其能够处理的小带宽上发 送这些消息, 针对普通终端则可以在全带宽上发送这些消息。 MTC终端和普通终端可 以利用不同的 RA-RNTI值检测 PDCCH, 进而继续解调该 PDCCH所指示的 PDSCH上所承 载的 MAC PDU, 因此基站向 MTC终端和普通终端发送的随机接入响应消息位于不同的 PDSCH, 包含不同的临时 C-RNTI , 由此避免了 MTC终端和普通终端在随机接入过程中 的冲突。
由上述实施例可见, 由于基站可以在随机接入过程中根据不同的频域资源区分 MTC终端和普通终端, 因此降低了 MTC终端对普通终端在随机接入过程的影响, 避免 了 MTC终端和普通终端在相同的时频资源上发送前导序列的碰撞,减轻了 MTC终端和 普通终端在随机接入过程中的竞争, 提高了普通终端的随机接入质量; 另外, 由于终 端在向基站发送前导序列后,基站就可以知道该终端类型, 因此针对 MTC终端可以在 小带宽上发送 MTC终端可以处理的消息,并且针对普通终端可以在全频带上发送普通 终端可以处理的消息, 从而保证普通终端的接收性能不受 MTC终端的影响。 参见图 4, 为本发明随机接入方法的另一个实施例, 该实施例示出了基站根据终 端发送的不同的前导序列对终端类型进行区分的随机接入过程:
步骤 401 : 基站接收终端在随机接入时发送的前导序列。
终端向基站发送的前导序列通过 PRACH承载, 前导序列由序列持续时间 ( Tsm) 和循环前缀持续时间 (TCT ) 组成。 PRACH承载的前导序列的组成分为五种格式, 如前 述表 1所示。 其中, 对于 FDD系统, 可以使用如表 1中的前导序列格式 0至 3, 对于 TDD系统, 可以使用如表 1中的前导序列格式 0至 4。
本实施例中, 终端的类型分为普通终端和 MTC终端,普通终端和 MTC终端在随机 接入时采用不同的前导序列。
步骤 402 : 根据接收到的前导序列的类型识别终端的类型。
基站通过普通终端和 MTC终端发送的不同的前导序列区分终端的类型。其中,基 站可以根据二种不同前导序列的发送方式识别终端的类型。其中, 当接收到终端发送 的第一前导序列时,确定所述终端为普通终端,当接收到终端发送的第二前导序列时, 确定所述终端为 MTC终端。
在第一种方式中: 第一前导序列可以使用现有的前导序列,第二前导序列可以是 为 MTC终端新定义的若干前导序列。
现有技术中一个小区内的前导序列共有 64个, 本实施例中, 基站可以增加一个 小区内用于随机接入的前导序列的个数至 64+N个,其中前 64个前导序列配置给普通 终端使用, 前 64个序列中包含 Ncf个专有序列, 后 N个前导序列配置给 MTC终端使 用,是为所述 MTC终端新定义的 N个前导序列,后 N个前导序列的编号为 65, 66,……, 64+N, N为整数。 可选的, 对于 MTC终端的非竞争随机接入, 所发送的前导序列也可 以配置为 Ncf个专有序列中的前导序列,也可以在 N个新定义的前导序列中划出的一 部分前导序列专门用于 MTC终端的非竞争随机接入。
其中, 可选的, 上述新定义的 N个前导序列可以采用生成现有前导序列中第 64 个前导序列的根序列, 按照现有前导序列的生成方式生成,将所述根序列依次增大循 环移位值生成所述新定义的前导序列,当根据所述根序列生成的所述新定义的前导序 列的数量小于 N个时,依次选取与所述根序列的逻辑序号相连续的逻辑序号对应的根 序列, 通过对选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新 定义的前导序列满足 N个。 可选的,基站也可以通过 RRC广播或单播信令通知 MTC终端的根序列的逻辑序号, 该根序列的逻辑序号指示的根序列是用于生成给 MTC UE使用的前导序列的第一个根 序列。 该根序列的逻辑序号可以通过信息元素 (Information Element , IE ) PRACH-ConfigSIB或 PRACH-Config进行通知。
例如, RRC信令中的信息元素 PRACH-ConfigSIB中可以包含:
PRACH-ConfigSIB : : = SEQUENCE {
rootSequencelndex-for-NonMTC INTEGER (0. . 837) , rootSequencelndex-for-MTC INTEGER (0. . 837) ,
prach-Conf iglnfo PRACH-Conf iglnfo
}
例如, RRC信令中的信息元素 PRACH-Config中可以包含:
PRACH-Config : : = SEQUENCE {
rootSequencelndex-for-NonMTC INTEGER (0. . 837) , rootSequencelndex-for-MTC INTEGER (0. . 837) ,
prach-Conf iglnfo PRACH-Conf iglnfo
OPTIONAL ― Need ON 上述 IE PRACH-ConfigSIB或 PRACH - Conf ig中, rootSequencelndex-for-NonMTC 是用于生成给普通终端使用的前导序列的第一个根序列的逻辑序号, rootSequencelndex-for-MTC是所述 MTC终端的根序列的逻辑序号, 指示了 MTC终端 的根序列。 对所述 MTC 终端的根序列依次增大循环移位值生成所述新定义的前导序 列, 当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于 N个, 依次选 取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取 的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满 足 N个。 其中, rootSequenceIndex_for_NonMTC禾口 rootSequencelndex-for- MTC的 选取需要保证生成的 6N个前导序列和普通终端的 64个前导序列互不相同。
可选的,基站通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号,根据 指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC 终端的根序 列,其中,所述指定的根序列偏移值为通过 RRC广播或单播信令通知的根序列偏移值, 或者预先配置的根序列偏移值, 如通过协议约定的根序列偏移值,对此本实施例不进 行限制。 例如, RRC信令中的信息元素 PRACH-ConfigSIB中可以包含:
PRACH-ConfigSIB : : = SEQUENCE {
rootSequencelndex INTEGER (0. . 837) ,
rootSequence Index-offset INTEGER (0. . 837) ,
prach-Conf iglnfo PRACH-Conf iglnfo 例如, RRC信令中的信息元素 PRACH-Config中可以包含:
PRACH-Conf ig : : = SEQUENCE {
rootSequencelndex INTEGER (0. . 837) ,
rootSequence Index-offset INTEGER (0. . 837) ,
prach-Conf iglnfo PRACH-Conf iglnfo
OPTIONAL ― Need ON 上述 IE PRACH-ConfigSIB或 PRACH-Conf ig中, rootSequencelndex 是普通终端 的根序列的逻辑序号, rootSequence Index-offset 表示了根序列偏移值, 根据 rootSequencelndex-offset和 rootSequencelndex共同计算出 MTC终端根序列的逻 辑序号,进一步获得所述 MTC终端的根序列。对所述 MTC终端的根序列依次增大循环 移位值生成所述新定义的前导序列,当根据所述 MTC终端的根序列生成的新定义的前 导序列的数量小于 N个,依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑 序号对应的根序列,通过对选取的根序列进行循环移位,生成所述新定义的前导序列, 直到所述新定义的前导序列满足 N个。 rootSequencelndex-offset的选取需要保证 生成的 N个前导序列和普通终端的 64个前导序列互不相同。
在现有技术中,基站用 6比特的随机接入前导序列序号(Random Access Preamble Identify, RAPID )表示普通终端的前 64个前导序列。 本实施例中, 对于 MTC终端的
65, 66, , 64+N的前导序列, 当 N小于等于 64时, 也用这 6比特的 RAPID表示, 因此在 RAPID中可以不用区分普通终端和 MTC终端。或者,将 RAPID的比特个数扩充 到「log2C64 + N)]个,用于表示不同的前导序列,即,对于普通终端和 MTC终端, RAPID 的值不同。
在第二种方式中: 第一前导序列为现有前导序列中, 除专用序列外的前导序列, 所述第二前导序列为从该专用序列中划分出的若干前导序列。
现有技术中的前导序列共有 64个, 在其中保留有用于非竞争的随机接入的 Ncf 个专用序列,可以从该 Ncf个专有序列中划分出一部分前导序列专门用于 MTC终端竞 争的随机接入。基站可以通过 RRC广播或单播信令通知所述 Ncf个专用序列中, 作为 所述第二前导序列的序列个数。
例如, 在 RACH-ConfigCommon中的 preamblelnfo中可以包含:
preamble Info SEQUENCE {
numberOfRA- Preambles ENUMERATED {
n4 n8 nl2 nl6 n20 n24 n28 n32, n36, n40, n44, n48, n52, n56, n60 n64}
numberOfRA- Preambles forMTC ENUMERATED {X, Y Z }
preamb 1 e sGroupAConf i g SEQUENCE
s i zeOfRA-Preamb 1 e sGroupA ENUMERATED {
n4 n8 nl2 nl6 n20 n24 n28 n32, n36, n40, n44, n48, n52, n56 n60}
messageSizeGroupA ENUMERATED {b56 bl44 b208 b256} messagePowerOff setGroupB ENUMERATED {
mi infinity, dBO, dB5 dB8 dB10 dB12
dB15 dB18}
OPTIONAL Need OP 上述 preamblelnfo中, numberOfRA-Preambles表示所述第一前导序列的个数, 对于 64个前导序列,序号为 0到 numberOfRA-Preambles-1的前导序列作为所述第一 前导序列, 所述第一前导序列用于普通终端的竞争随机接入; numberOfRA- PreamblesforMTC表示所述第二前导序列的个数, 由所述第二前导序列个数和指定的 作为所述第二前导序列的起始序列的序列号获取所述第二前导序列,所述第二前导序 列可用于 MTC终端的竞争的随机接入。 其它参数的含义和现有技术相同。
其中,可选的,所述指定的起始序列的序列号可以为通过 RRC广播或单播信令通 知的起始序列的序列号, 具体的, 上述 preamblelnfo中还可以包含 IE, 如下所示: startPreamb le-forMTC ENUMERATED {X, Y, Z }
上式表示所述起始序列的序列号。 此时, 将序列号为 startPreamb le-forMTC到 startPreamb 1 e-forMTC+numberOfRA-Preamb 1 esforMTC- 1 的前导序列作为所述第二 前导序列。
可选的, 所述指定的起始序列的序列号可以预先配置, 比如配置为 numberOf RA-Pr eamb 1 e s , 此 时 , 将 序 列 号 为 numberOf RA-Pr eamb 1 e s 到 numberOfRA-Preambles-l+numberOfRA-PreamblesforMTC 的前导序列作为所述第二 前导序列。
可选的, 所述指定的起始序列的序列号也可以根据 numberOfRA- PreamblesforMTC得到, 比如用 64-numberOfRA-PreamblesforMTC+l作为起始序列的 序列号, 此时, 将序列号为 64-numberOfRA-PreamblesforMTC+l到 64的前导序列作 为所述第二前导序列。
在一个小区内 64个前导序列中, 除第一前导序列和第二前导序列之外的前导序 列用于普通终端和 MTC终端非竞争的随机接入。
步骤 403 :按照终端的类型, 在该终端支持的处理带宽上向终端发送随机接入响 应消息和竞争解决消息。
在本实施例的方案中,基站为了在不同的 PDSCH上分别发送普通终端和 MTC终端 的随机接入响应消息和竞争解决消息,可在根据检测出来的前导序列的时频位置计算 RA-RNTI时, 区分普通终端和 MTC终端, 具体可以按照下式进行计算:
RA-RNTI= 1 +t_id+ 10*f_id+X
上式中, t_id和 f_id和现有技术含义相同, X用于区分普通终端和 MTC终端。 例如, X可以采用以下方式获得:
X=Y*(l+max (t_id) +10*max (f_id)) 其中, Y=0时表示普通终端, Y=l时表示 MTC终端。
相应的, 在 TS36. 321标准中, RNTI定义表格可以改为如下表 9所示的格式: 表 9 Value (hexa-decimal) RNTI
0000 N/A
0001-FFF3 RA-RNTI, C-RNTI, Semi-Persistent Scheduling C-RNTI, Temporary
C-RNTI, TPC-PUCCH-RNTI and TPC- PUSCH- RNTI
FFF4-FFFC Reserved for future use
FFFD M-RNTI
FFFE P-RNTI
FFFF SI- RNTI 上表 9中, Value的取值为十六进制,其中 RA-RNTI对应的取值范围为 0001- FFF3。 在本实施例的二种识别终端类型的方案中,由于 MTC终端和普通终端在发送前导 序列时采用不同的前导序列, 对于这两种类型的终端, 其 RAPID不同时, 相应的基站 发送的随机接入响应 RAR 也就不同, 该 RAR 中包含的临时小区无线网络临时标识 (Cell-Radio Network Temporary Identifier, C-RNTI ) 也不相同, 由此避免了 MTC 终端和普通终端在发送前导序列时的冲突。 可选的, 当基站在 RA-RNTI中携带信息 X 指示 MTC终端和普通终端时, MTC终端和普通终端可以利用不同的 RA-RNTI值检测 PDCCH, 进而继续解调该 PDCCH所指示的 PDSCH上所承载的 MAC PDU, 因此, MTC 终 端和普通终端的 RAR位于不同的 PDSCH上,包含不同的临时 C-RNTI , 不仅避免了 MTC 终端和普通终端之间的冲突, 同时, 基站在识别出终端的类型, 并向终端发送与随机 接入响应和竞争解决相关的消息时,针对 MTC终端可以在其能够处理的小带宽上发送 这些消息, 针对普通终端则可以在全带宽上发送这些消息。
由上述实施例可见, 由于基站可以在随机接入过程中根据不同的前导序列区分 MTC终端和普通终端, 因此降低了 MTC终端对普通终端在随机接入过程的影响, 避免 了 MTC终端和普通终端在相同的时频资源上发送前导序列的碰撞,减轻了 MTC终端和 普通终端在随机接入过程中的竞争, 提高了普通终端的随机接入质量; 另外, 由于终 端在向基站发送前导序列后,基站就可以知道该终端类型, 因此针对 MTC终端可以在 小带宽上发送 MTC终端可以处理的消息,并且针对普通终端可以在全频带上发送普通 终端可以处理的消息, 从而保证普通终端的接收性能不受 MTC终端的影响。
需要说明的是, 本发明图 2、 图 3、 图 4所示的随机接入方法的实施例在实际应 用中, 可以单独使用, 也可以结合起来使用, 对此, 本发明实施例不做限定。 参见图 5, 为本发明随机接入方法的另一个实施例, 该实施例从终端侧描述了随 机接入过程:
步骤 501 : 终端在随机接入时, 按照该终端的类型向基站发送前导序列。
其中, 终端可以在与所述终端的类型对应的时域资源上, 向基站发送前导序列; 和 /或, 在与所述终端的类型对应的频域资源上, 向基站发送前导序列; 和 /或, 向基 站发送与所述终端的类型对应的前导序列。
在第一个具体的实现方式中, 终端可以预先配置第一随机接入资源配置表,所述 第一随机接入资源配置表中包含随机接入配置索引与第一时域资源和第二时域资源 之间的指示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端配置 不相同的第一时域资源和第二时域资源;所述终端接收基站通过 RRC广播或单播信令 为所述终端通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配 置的一个随机接入配置索引; 当所述终端为普通终端时,所述终端在所述一个随机接 入配置索引所指示的第一时域资源上向基站发送前导序列; 当所述终端为 MTC 终端 时,所述终端在所述一个随机接入配置索引所指示的第二时域资源上向基站发送前导 序列。
在第二个具体的实现方式中, 当所述终端为普通终端时,所述终端预先配置普通 终端资源配置表,当所述终端为 MTC终端时,所述终端预先配置 MTC终端资源配置表, 所述普通终端资源配置表中包含第一随机接入配置索引与第一时域资源之间的指示 关系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二时域资源之间的 指示关系;所述终端接收基站通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第一随机接入配置索 弓 I, 和为 MTC终端配置的一个第二随机接入配置索引; 当所述终端为普通终端时, 所 述终端在所述一个第一随机接入配置索引所指示的第一时域资源上向基站发送前导 序列; 当所述终端为 MTC终端时,所述终端在与所述一个第二随机接入配置索引所指 示的第二时域资源上向基站发送前导序列。
在第三个具体的实现方式中,所述终端预先配置第二资源配置表,所述第二资源 配置表中包含终端的随机接入配置索引与时域资源之间的指示关系;所述终端接收基 站通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广播或单 播信令中包含为所述终端配置的一个随机接入配置索引; 当所述终端为普通终端时, 所述终端在所述一个随机接入配置索引所指示的时域资源上向基站发送前导序列,当 所述终端为 MTC终端时,所述终端将所述一个随机接入配置索引所指示的时域资源按 照指定的时域资源偏置值进行偏移, 并在偏移后的时域资源上向基站发送前导序列。 其中,所述指定的时域资源偏置值为所述终端接收基站通过所述 RRC广播或单播信令 通知的时域资源偏置值, 或者预先配置的时域资源偏置值。
在第四个具体的实现方式中,终端接收基站通过 RRC广播或单播信令为所述终端 通知进行随机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的第一频 域资源的指示信息, 以及为 MTC终端配置的第二频域资源的指示信息; 当所述终端为 普通终端时, 在所述第一频域资源上向所述基站发送前导序列, 当所述终端为 MTC 终端时,在所述第二频域资源上向所述基站发送前导序列,所述第一频域资源和所述 第二频域资源为不同的频域资源。
其中,所述通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,可以 包括:接收基站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一频域 资源的指示信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset , 和为 MTC 终端配置的作为所述第二频域资源的指示信息的第二物理随机接入信道频率偏 移 prach-Frequencyoffset; 和 /或, 接收基站在 RRC广播或单播信令中通知的为普 通终端配置的作为所述第一频域资源的指示信息的第一随机接入配置索引, 和为 MTC 终端配置的作为所述第二频域资源的指示信息的第二随机接入配置索引; 和 /或, 接 收基站在 RRC广播或单播信令中通知的为普通终端和 MTC终端配置的作为所述第一频 域资源的指示信息和第二频域资源的指示信息的同一个随机接入配置索引,所述同一 个随机接入配置索引用于分别为普通终端和 MTC 终端指示第一频域资源和第二频域 资源。
在第五个具体的实现方式中,终端接收基站通过 RRC广播或单播信令为所述终端 通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的第一频 域资源的指示信息, 所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset 和 /或随机接入配置索引; 当所述终端为普通终端时, 在所 述第一频域资源上向所述基站发送前导序列, 当所述终端为 MTC终端时,将所述第一 频域资源按照指定的频域资源偏置值进行偏移,并在偏移后的频域资源上向所述基站 发送前导序列。 其中, 所述指定的频域资源偏置值为所述终端接收基站通过所述 RRC 广播或单播信令通知的频域资源偏置值, 或者预先配置的频域资源偏置值。
在第六个具体的实现方式中, 当所述终端为普通终端时, 向所述基站发送第一前 导序列, 当所述终端为 MTC终端时, 向所述基站发送第二前导序列; 其中, 所述第一 前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新定义的若干前导序 列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列外的前导序列, 所述第 二前导序列为从所述专用序列中划分出的若干前导序列。
具体的,所述新定义的若干前导序列的生成方式可以包括: 采用生成现有前导序 列中第 64个前导序列的根序列, 将所述根序列依次增大循环移位值生成所述新定义 的前导序列, 当根据所述根序列生成的所述新定义的前导序列的数量小于预设数量 时, 依次选取与所述根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取 的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满 足所述预设数量; 或者,接收基站通过 RRC广播或单播信令通知的 MTC终端的根序列 的逻辑序号,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序 列, 当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时, 依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过 对选取的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导 序列满足所述预设数量; 或者,接收基站通过 RRC广播或单播信令通知普通终端的根 序列的逻辑序号,根据指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得 所述 MTC终端的根序列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定 义的前导序列,当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预 设数量时,依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根 序列, 通过对选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新 定义的前导序列满足所述预设数量,其中,所述指定的根序列偏移值为接收基站通过 RRC广播或单播信令通知的根序列偏移值, 或者预先配置的根序列偏移值; 其中, 所 述新定义的前导序列和所述现有前导序列是不相同的前导序列。
具体的,所述第二前导序列为从所述专用序列中划分出的若干前导序列的划分方 式可以包括: 接收基站通过 RRC广播或单播信令通知所述专用序列中, 作为所述第二 前导序列序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的 序列号获取所述第二前导序列,其中,所述指定的起始序列的序列号为接收基站通过 RRC广播或单播信令通知的起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个数得到的起始序列的序列号。
步骤 502 : 接收基站根据前导序列识别出终端的类型后, 在该终端支持的处理带 宽上向该终端发送的随机接入过程中的消息。
可选的, 随机接入过程中的消息可以包括随机接入响应消息和竞争解决消息。 需要说明的是,上述实施例在终端侧描述的随机接入过程与前述图 1至图 4在基 站侧描述的随机接入过程一致, 在此不再赘述。 由上述实施例可见, 由于基站可以在随机接入过程中区分 MTC终端和普通终端, 降低了 MTC终端对普通终端在随机接入过程的影响,避免了 MTC终端和普通终端在相 同的时频资源上发送前导序列的碰撞,减轻了 MTC终端和普通终端在随机接入过程中 的竞争,提高了普通终端的随机接入质量;另外, 由于终端在向基站发送前导序列后, 基站就可以知道该终端类型,因此针对 MTC终端可以在小带宽上发送 MTC终端可以处 理的消息, 并且针对普通终端可以在全频带上发送普通终端可以处理的消息, 从而保 证普通终端的接收性能不受 MTC终端的影响。 与本发明随机接入方法的实施例相对应, 本发明还提供了基站和终端的实施例。 参见图 6, 为本发明基站的一个实施例框图:
该基站包括: 接收单元 610、 识别单元 620和发送单元 630。
其中, 接收单元 610, 用于接收终端在随机接入时发送的前导序列;
识别单元 620, 用于根据所述接收单元接收到的前导序列识别所述终端的类型; 发送单元 630, 用于按照所述识别单元识别出的终端的类型, 在所述终端支持的 处理带宽上向所述终端发送随机接入过程中的消息。
其中, 所述识别单元可以包括至少一个下述单元:
第一识别子单元, 用于根据发送所述前导序列的时域资源识别所述终端的类型; 第二识别子单元, 用于根据发送所述前导序列的频域资源识别所述终端的类型; 第三识别子单元, 用于根据所述前导序列的类型识别所述终端的类型。
在一个具体实施例中:
所述基站还可以包括: 第一配置单元, 用于预先配置第一随机接入资源配置表, 所述第一随机接入资源配置表中包含随机接入配置索引与第一时域资源和第二时域 资源之间的指示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端 配置不相同的第一时域资源和第二时域资源; 第一通知单元,用于通过 RRC广播或单 播信令为所述终端通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述 终端配置的一个随机接入配置索引;
所述第一识别子单元,具体用于当在所述一个随机接入配置索引所指示的第一时 域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在所述一个 随机接入配置索引所指示的第二时域资源上检测到终端发送的前导序列时,则确定所 述终端为 MTC终端。
在另一个具体实施例中: 所述基站还可以包括: 第二配置单元, 用于预先配置普通终端资源配置表和 MTC 终端资源配置表,所述普通终端资源配置表中包含第一随机接入配置索引与第一时域 资源之间的指示关系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二 时域资源之间的指示关系; 第二通知单元,用于通过 RRC广播或单播信令为所述终端 通知进行随机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第 一随机接入配置索引, 和为 MTC终端配置的一个第二随机接入配置索引;
所述第一识别子单元,具体用于当在所述一个第一随机接入配置索引所指示的第 一时域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在与所 述一个第二随机接入配置索引所指示的第二时域资源上检测到终端发送的前导序列 时, 则确定所述终端为 MTC终端。
在另一个具体实施例中:
所述基站还可以包括: 第三配置单元, 用于预先配置第二资源配置表, 所述第二 资源配置表中包含终端的随机接入配置索引与时域资源之间的指示关系;第三通知单 元, 用于通过 RRC广播或单播信令为所述终端通知进行随机接入的参数, 所述 RRC 广播或单播信令中包含为所述终端配置的一个随机接入配置索引;
所述第一识别子单元,具体用于当在所述一个随机接入配置索引所指示的时域资 源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在所述一个随机 接入配置索引所指示的时域资源按照指定的时域资源偏置值进行偏移后的时域资源 上检测到终端发送的前导序列时, 则确定所述终端为 MTC终端; 其中, 所述指定的时 域资源偏置值为通过所述 RRC广播或单播信令通知的时域资源偏置值,或者预先配置 的时域资源偏置值。
在另一个具体实施例中:
所述基站还可以包括: 第四通知单元,用于通过 RRC广播或单播信令为所述终端 通知进行随机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的第一频 域资源的指示信息, 以及为 MTC终端配置的第二频域资源的指示信息;
所述第二识别子单元, 具体用于当检测到终端在第一频域资源发送前导序列时, 确定所述终端为普通终端, 当检测到终端在第二频域资源发送前导序列时,确定所述 终端为 MTC终端, 所述第一频域资源和所述第二频域资源为不同的频域资源。
具体的, 第四通知单元可以包括至少一个下述单元: 第一频域资源通知子单元, 用于在 RRC广播或单播信令中通知为普通终端配置的作为所述第一频域资源的指示 信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset , 和为 MTC终端配置 的作为所述第二频域资源的指示信息的第二物理随机接入信道频率偏移 prach-Frequencyoffset; 第二频域资源通知子单元,用于在 RRC广播或单播信令中 通知为普通终端配置的作为所述第一频域资源的指示信息的第一随机接入配置索引, 和为 MTC终端配置的作为所述第二频域资源的指示信息的第二随机接入配置索引;第 三频域资源通知子单元,用于在 RRC广播或单播信令中通知为普通终端和 MTC终端配 置的作为所述第一频域资源的指示信息和第二频域资源的指示信息的同一个随机接 入配置索引,所述同一个随机接入配置索引用于分别为普通终端和 MTC终端指示第一 频域资源和第二频域资源。
在另一个具体实施例中:
所述基站还可以包括: 第五通知单元,用于通过 RRC广播或单播信令为所述终端 通知进行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的第一频 域资源的指示信息, 所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引;
所述第二识别子单元, 具体用于当检测到终端在第一频域资源发送前导序列时, 确定所述终端为普通终端,当检测到所述终端发送前导序列的频域资源为所述第一频 域资源按照指定的频域资源偏置值进行偏移后的频域资源时, 确定所述终端为 MTC 终端; 其中,所述指定的频域资源偏置值为通过所述 RRC广播或单播信令通知的频域 资源偏置值, 或者预先配置的频域资源偏置值。
在另一个具体实施例中:
所述第三识别子单元, 具体用于当接收到终端发送的第一前导序列时,确定所述 终端为普通终端, 当接收到终端发送的第二前导序列时, 确定所述终端为 MTC终端; 其中,所述第一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新定 义的若干前导序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列外的前 导序列, 所述第二前导序列为从所述专用序列中划分出的若干前导序列。
具体的,所述新定义的若干前导序列的生成方式可以包括: 采用生成现有前导序 列中第 64个前导序列的根序列, 将所述根序列依次增大循环移位值生成所述新定义 的前导序列, 当根据所述根序列生成的所述新定义的前导序列的数量小于预设数量 时, 依次选取与所述根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取 的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满 足所述预设数量;或者,通过 RRC广播或单播信令通知 MTC终端的根序列的逻辑序号, 对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据所 述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选取与所 述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取的根序 列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满足所述 预设数量; 或者, 通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号, 根据 指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC 终端的根序 列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列, 当根 据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选取 与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取的 根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满足 所述预设数量,其中,所述指定的根序列偏移值为通过 RRC广播或单播信令通知的根 序列偏移值, 或者预先配置的根序列偏移值; 其中, 所述新定义的前导序列和所述现 有前导序列是不相同的前导序列。
具体的,所述第二前导序列为从所述专用序列中划分出的若干前导序列的划分方 式可以包括: 通过 RRC广播或单播信令通知所述专用序列中, 作为所述第二前导序列 的序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的序列号 获取所述第二前导序列,其中,所述指定的起始序列的序列号为通过 RRC广播或单播 信令通知的起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述 序列个数得到的起始序列的序列号。
可选的,所述随机接入过程中的消息可以包括: 随机接入响应消息和竞争解决消 息; 所述发送单元, 具体用于当所述终端为 MTC终端时, 在 MTC终端支持的第一带宽 上向所述终端发送随机接入响应消息和竞争解决消息, 当所述终端为普通终端时,在 普通终端支持的第二带宽上向所述终端发送随机接入响应消息和竞争解决消息, 其 中, 所述第一带宽小于所述第二带宽。 参见图 7, 为本发明基站的另一个实施例框图:
该基站包括: 接收机 710、 处理器 720和发射机 730。
其中, 接收机 710, 用于接收终端在随机接入时发送的前导序列;
处理器 720, 用于根据所述前导序列识别所述终端的类型;
发射机 730, 用于按照所述终端的类型, 在所述终端支持的处理带宽上向所述终 端发送随机接入过程中的消息。
其中,所述处理器 720可以具体用于,根据发送所述前导序列的时域资源识别所 述终端的类型, 和 /或根据发送所述前导序列的频域资源识别所述终端的类型, 和 / 或根据所述前导序列的类型识别所述终端的类型。
其中, 所述发射机 730可以具体用于, 当所述终端为 MTC终端时, 在 MTC终端支 持的第一带宽上向所述终端发送随机接入响应消息和竞争解决消息,当所述终端为普 通终端时,在普通终端支持的第二带宽上向所述终端发送随机接入响应消息和竞争解 决消息, 其中, 所述第一带宽小于所述第二带宽。 参见图 8, 为本发明终端的一个实施例框图:
该终端包括: 发送单元 810和接收单元 820。
其中, 发送单元 810, 用于所述终端在随机接入时, 按照所述终端的类型向基站 发送前导序列;
接收单元 820, 用于接收所述基站根据所述发送单元发送的前导序列识别出所述 终端的类型后,在所述终端支持的处理带宽上向所述终端发送的随机接入过程中的消 息。
其中, 发送单元可以包括至少一个下述单元:
第一发送子单元,用于在与所述终端的类型对应的时域资源上, 向基站发送前导 序列;
第二发送子单元,用于在与所述终端的类型对应的频域资源上, 向基站发送前导 序列;
第三发送子单元, 用于向基站发送与所述终端的类型对应的前导序列。
在一个具体的实施例中:
所述终端还可以包括: 第一配置单元, 用于预先配置第一随机接入资源配置表, 所述第一随机接入资源配置表中包含随机接入配置索引与第一时域资源和第二时域 资源之间的指示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端 配置不相同的第一时域资源和第二时域资源;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进行随 机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置 索引;
所述第一发送子单元, 具体用于当所述终端为普通终端时,所述终端在所述一个 随机接入配置索引所指示的第一时域资源上向基站发送前导序列; 当所述终端为 MTC 终端时,所述终端在所述一个随机接入配置索引所指示的第二时域资源上向基站发送 前导序列。
在另一个具体的实施例中:
所述终端还可以包括: 第二配置单元, 用于当所述终端为普通终端时, 所述终端 预先配置普通终端资源配置表, 当所述终端为 MTC 终端时, 所述终端预先配置 MTC 终端资源配置表,所述普通终端资源配置表中包含第一随机接入配置索引与第一时域 资源之间的指示关系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二 时域资源之间的指示关系;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进行随 机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第一随机接入 配置索引, 和为 MTC终端配置的一个第二随机接入配置索引;
所述第一发送子单元, 具体用于当所述终端为普通终端时,所述终端在所述一个 第一随机接入配置索引所指示的第一时域资源上向基站发送前导序列;当所述终端为
MTC终端时, 所述终端在与所述一个第二随机接入配置索引所指示的第二时域资源上 向基站发送前导序列。
在另一个具体的实施例中:
所述终端还可以包括: 第三配置单元, 用于预先配置第二资源配置表, 所述第二 资源配置表中包含终端的随机接入配置索引与时域资源之间的指示关系;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进行随 机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置 索引;
所述第一发送子单元, 具体用于当所述终端为普通终端时,所述终端在所述一个 随机接入配置索引所指示的时域资源上向基站发送前导序列,当所述终端为 MTC终端 时,所述终端将所述一个随机接入配置索引所指示的时域资源按照指定的时域资源偏 置值进行偏移, 并在偏移后的时域资源上向基站发送前导序列; 其中, 所述指定的时 域资源偏置值为所述终端接收基站通过所述 RRC广播或单播信令通知的时域资源偏 置值, 或者预先配置的时域资源偏置值。
在另一个具体的实施例中:
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进行随 机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的第一频域资源的指 示信息, 以及为 MTC终端配置的第二频域资源的指示信息; 具体的, 所述终端接收基 站通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,可以包括: 接收基 站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一频域资源的指示 信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset, 和为 MTC终端配置 的作为所述第二频域资源的指示信息的第二物理随机接入信道频率偏移 prach-Frequencyoffset; 和 /或,接收基站在 RRC广播或单播信令中通知的为普通终 端配置的作为所述第一频域资源的指示信息的第一随机接入配置索引,和为 MTC终端 配置的作为所述第二频域资源的指示信息的第二随机接入配置索引; 和 /或, 接收基 站在 RRC广播或单播信令中通知的为普通终端和 MTC终端配置的作为所述第一频域资 源的指示信息和第二频域资源的指示信息的同一个随机接入配置索引,所述同一个随 机接入配置索引用于分别为普通终端和 MTC终端指示第一频域资源和第二频域资源。
所述第二发送子单元, 具体用于当所述终端为普通终端时,在所述第一频域资源 上向所述基站发送前导序列, 当所述终端为 MTC终端时,在所述第二频域资源上向所 述基站发送前导序列, 所述第一频域资源和所述第二频域资源为不同的频域资源。
在另一个具体的实施例中:
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进行随 机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的第一频域资源的指 示信息, 所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引;
所述第二发送子单元, 具体用于当所述终端为普通终端时,在所述第一频域资源 上向所述基站发送前导序列, 当所述终端为 MTC终端时,将所述第一频域资源按照指 定的频域资源偏置值进行偏移, 并在偏移后的频域资源上向所述基站发送前导序列; 其中,所述指定的频域资源偏置值为所述终端接收基站通过所述 RRC广播或单播信令 通知的频域资源偏置值, 或者预先配置的频域资源偏置值。
在另一个具体的实施例中:
所述第三发送子单元, 具体用于当所述终端为普通终端时, 向所述基站发送第一 前导序列, 当所述终端为 MTC终端时, 向所述基站发送第二前导序列; 其中, 所述第 一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新定义的若干前导 序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列外的前导序列, 所述 第二前导序列为从所述专用序列中划分出的若干前导序列。
具体的,所述新定义的若干前导序列的生成方式可以包括: 采用生成现有前导序 列中第 64个前导序列的根序列, 将所述根序列依次增大循环移位值生成所述新定义 的前导序列, 当根据所述根序列生成的所述新定义的前导序列的数量小于预设数量 时, 依次选取与所述根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对选取 的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导序列满 足所述预设数量; 或者,接收基站通过 RRC广播或单播信令通知的 MTC终端的根序列 的逻辑序号,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序 列, 当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时, 依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过 对选取的根序列进行循环移位, 生成所述新定义的前导序列,直到所述新定义的前导 序列满足所述预设数量; 或者,接收基站通过 RRC广播或单播信令通知普通终端的根 序列的逻辑序号,根据指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得 所述 MTC终端的根序列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定 义的前导序列,当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预 设数量时,依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根 序列, 通过对选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新 定义的前导序列满足所述预设数量,其中,所述指定的根序列偏移值为接收基站通过 RRC广播或单播信令通知的根序列偏移值, 或者预先配置的根序列偏移值; 其中, 所 述新定义的前导序列和所述现有前导序列是不相同的前导序列。
具体的,所述第二前导序列为从所述专用序列中划分出的若干前导序列的划分方 式可以包括: 接收基站通过 RRC广播或单播信令通知所述专用序列中, 作为所述第二 前导序列序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的 序列号获取所述第二前导序列,其中,所述指定的起始序列的序列号为接收基站通过 RRC广播或单播信令通知的起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个数得到的起始序列的序列号。 参见图 9, 为本发明终端的另一个实施例框图:
该终端包括: 发射机 910和接收机 920。
其中, 发射机 910, 用于所述终端在随机接入时, 按照所述终端的类型向基站发 送前导序列;
接收机 920, 用于接收所述基站根据所述前导序列识别出所述终端的类型后, 在 所述终端支持的处理带宽上向所述终端发送的随机接入过程中的消息。
其中, 所述发射机, 可以具体用于在与所述终端的类型对应的时域资源上, 向基 站发送前导序列, 和 /或在与所述终端的类型对应的频域资源上, 向基站发送前导序 列, 和 /或向基站发送与所述终端的类型对应的前导序列。 由上述实施例可见,基站接收终端在随机接入时发送的前导序列,根据前导序列 识别终端的类型, 按照终端的类型,在该终端支持的处理带宽上向终端发送随机接入 过程中的消息。本发明实施例可以在随机接入过程中区分 MTC终端和普通终端, 降低 了 MTC终端对普通终端在随机接入过程的影响,避免了 MTC终端和普通终端在相同的 时频资源上发送前导序列的碰撞,减轻了 MTC终端和普通终端在随机接入过程中的竞 争, 提高了普通终端的随机接入质量; 另外, 由于终端在向基站发送前导序列后, 基 站就可以知道该终端类型,因此针对 MTC终端可以在小带宽上发送 MTC终端可以处理 的消息, 并且针对普通终端可以在全频带上发送普通终端可以处理的消息, 从而保证 普通终端的接收性能不受 MTC终端的影响。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需 的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上 或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产 品可以存储在存储介质中, 如 R0M/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例 或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部 分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。尤其, 对于 系统实施例而言, 由于其基本相似于方法实施例, 所以描述的比较简单, 相关之处参 见方法实施例的部分说明即可。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。任何在本发明 的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围之 内。

Claims

权 利 要 求
1、 一种随机接入方法, 其特征在于, 所述方法包括:
基站接收终端在随机接入时发送的前导序列;
根据所述前导序列识别所述终端的类型;
按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发送随机接 入过程中的消息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述前导序列识别 所述终端的类型包括:
根据发送所述前导序列的时域资源识别所述终端的类型; 和 /或, 根据发送所述前导序列的频域资源识别所述终端的类型; 和 /或, 根据所述前导序列的类型识别所述终端的类型。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 预先配置第一随机接入资源配置表,所述第一随机接入资源配置表中包含随 机接入配置索引与第一时域资源和第二时域资源之间的指示关系,并通过同一个 随机接入配置索引,分别为普通终端和 MTC终端配置不相同的第一时域资源和第 二时域资源;
通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广 播或单播信令中包含为所述终端配置的一个随机接入配置索引;
所述根据发送所述前导序列的时域资源识别所述终端的类型包括: 当在所述一个随机接入配置索引所指示的第一时域资源上检测到终端发送 的前导序列时, 则确定所述终端为普通终端, 当在所述一个随机接入配置索引所 指示的第二时域资源上检测到终端发送的前导序列时,则确定所述终端为 MTC终 端。
4、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 预先配置普通终端资源配置表和 MTC终端资源配置表,所述普通终端资源配 置表中包含第一随机接入配置索引与第一时域资源之间的指示关系,所述 MTC终 端资源配置表中包含第二随机接入配置索引与第二时域资源之间的指示关系; 通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广 播或单播信令中包含为普通终端配置的一个第一随机接入配置索引,和为 MTC终 端配置的一个第二随机接入配置索引;
所述根据发送所述前导序列的时域资源识别所述终端的类型包括: 当在所述一个第一随机接入配置索引所指示的第一时域资源上检测到终端 发送的前导序列时, 则确定所述终端为普通终端, 当在与所述一个第二随机接入 配置索引所指示的第二时域资源上检测到终端发送的前导序列时,则确定所述终 端为 MTC终端。
5、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 预先配置第二资源配置表,所述第二资源配置表中包含终端的随机接入配置 索引与时域资源之间的指示关系;
通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广 播或单播信令中包含为所述终端配置的一个随机接入配置索引;
所述根据发送所述前导序列的时域资源识别所述终端的类型包括: 当在所述一个随机接入配置索引所指示的时域资源上检测到终端发送的前 导序列时, 则确定所述终端为普通终端, 当在所述一个随机接入配置索引所指示 的时域资源按照指定的时域资源偏置值进行偏移后的时域资源上检测到终端发 送的前导序列时, 则确定所述终端为 MTC终端。
6、 根据权利要求 5所述的方法, 其特征在于, 所述指定的时域资源偏置值 为通过所述 RRC广播或单播信令通知的时域资源偏置值,或者预先配置的时域资 源偏置值。
7、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广 播或单播信令中包含为普通终端配置的第一频域资源的指示信息,以及为 MTC终 端配置的第二频域资源的指示信息;
所述根据发送所述前导序列的频域资源识别所述终端的类型包括: 当检测到终端在第一频域资源发送前导序列时, 确定所述终端为普通终端, 当检测到终端在第二频域资源发送前导序列时, 确定所述终端为 MTC终端, 所述 第一频域资源和所述第二频域资源为不同的频域资源。
8、 根据权利要求 7所述的方法, 其特征在于, 所述通过 RRC广播或单播信 令为所述终端通知进行随机接入的参数, 包括:
在 RRC广播或单播信令中通知为普通终端配置的作为所述第一频域资源的 指示信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset, 和为 MTC 终端配置的作为所述第二频域资源的指示信息的第二物理随机接入信道频率偏 移 prach-Frequencyoffset; 禾口 /或,
在 RRC广播或单播信令中通知为普通终端配置的作为所述第一频域资源的 指示信息的第一随机接入配置索引,和为 MTC终端配置的作为所述第二频域资源 的指示信息的第二随机接入配置索引; 和 /或,
在 RRC广播或单播信令中通知为普通终端和 MTC终端配置的作为所述第一频 域资源的指示信息和第二频域资源的指示信息的同一个随机接入配置索引,所述 同一个随机接入配置索引用于分别为普通终端和 MTC 终端指示第一频域资源和 第二频域资源。
9、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 通过 RRC广播或单播信令为所述终端通知进行随机接入的参数,所述 RRC广 播或单播信令中包含为所述终端配置的第一频域资源的指示信息,所述第一频域 资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或 随机接入配置索引;
所述根据发送所述前导序列的频域资源识别所述终端的类型包括: 当检测到终端在第一频域资源发送前导序列时, 确定所述终端为普通终端, 当检测到所述终端发送前导序列的频域资源为所述第一频域资源按照指定的频 域资源偏置值进行偏移后的频域资源时, 确定所述终端为 MTC终端。
10、根据权利要求 9所述的方法, 其特征在于, 所述指定的频域资源偏置值 为通过所述 RRC广播或单播信令通知的频域资源偏置值,或者预先配置的频域资 源偏置值。
11、根据权利要求 2所述的方法, 其特征在于, 所述根据所述前导序列的类 型识别所述终端的类型包括:
当接收到终端发送的第一前导序列时, 确定所述终端为普通终端, 当接收到 终端发送的第二前导序列时, 确定所述终端为 MTC终端; 其中, 所述第一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新 定义的若干前导序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列 外的前导序列, 所述第二前导序列为从所述专用序列中划分出的若干前导序列。
12、 根据权利要求 11所述的方法, 其特征在于, 所述新定义的若干前导序 列的生成方式包括:
采用生成现有前导序列中第 64个前导序列的根序列, 将所述根序列依次增 大循环移位值生成所述新定义的前导序列,当根据所述根序列生成的所述新定义 的前导序列的数量小于预设数量时,依次选取与所述根序列的逻辑序号相连续的 逻辑序号对应的根序列, 通过对选取的根序列进行循环移位, 生成所述新定义的 前导序列, 直到所述新定义的前导序列满足所述预设数量; 或者,
通过 RRC广播或单播信令通知 MTC终端的根序列的逻辑序号,对所述 MTC终 端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据所述 MTC终 端的根序列生成的新定义的前导序列的数量小于预设数量时, 依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列, 通过对选取的根 序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前导序列满 足所述预设数量; 或者,
通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号,根据指定的根 序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC终端的根序列,对 所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据 所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选 取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对 选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前 导序列满足所述预设数量, 其中, 所述指定的根序列偏移值为通过 RRC广播或单 播信令通知的根序列偏移值, 或者预先配置的根序列偏移值; 其中,
所述新定义的前导序列和所述现有前导序列是不相同的前导序列。
13、 根据权利要求 11所述的方法, 其特征在于, 所述第二前导序列为从所 述专用序列中划分出的若干前导序列的划分方式包括:
通过 RRC广播或单播信令通知所述专用序列中,作为所述第二前导序列的序 列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的序列号 获取所述第二前导序列, 其中, 所述指定的起始序列的序列号为通过 RRC广播或单播信令通知的起始序列 的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个数得到的 起始序列的序列号。
14、 根据权利要求 1至 13任意一项所述的方法, 其特征在于, 所述随机接 入过程中的消息包括: 随机接入响应消息和竞争解决消息;
所述按照所述终端的类型,在所述终端支持的处理带宽上向所述终端发送随 机接入过程中的消息包括:
当所述终端为 MTC终端时,在 MTC终端支持的第一带宽上向所述终端发送随 机接入响应消息和竞争解决消息, 当所述终端为普通终端时, 在普通终端支持的 第二带宽上向所述终端发送随机接入响应消息和竞争解决消息, 其中, 所述第一 带宽小于所述第二带宽。
15、 一种随机接入方法, 其特征在于, 所述方法包括:
终端在随机接入时, 按照所述终端的类型向基站发送前导序列; 接收所述基站根据所述前导序列识别出所述终端的类型后,在所述终端支持 的处理带宽上向所述终端发送的随机接入过程中的消息。
16、 根据权利要求 15所述的方法, 其特征在于, 所述按照所述终端的类型 向基站发送前导序列包括:
在与所述终端的类型对应的时域资源上, 向基站发送前导序列; 和 /或, 在与所述终端的类型对应的频域资源上, 向基站发送前导序列; 和 /或, 向基站发送与所述终端的类型对应的前导序列。
17、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 预先配置第一随机接入资源配置表,所述第一随机接入资源配置表中包含随 机接入配置索引与第一时域资源和第二时域资源之间的指示关系,并通过同一个 随机接入配置索引,分别为普通终端和 MTC终端配置不相同的第一时域资源和第 二时域资源;
所述终端接收基站通过 RRC 广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置索 引; 所述在与所述终端的类型对应的时域资源上, 向基站发送前导序列包括: 当所述终端为普通终端时,所述终端在所述一个随机接入配置索引所指示的 第一时域资源上向基站发送前导序列; 当所述终端为 MTC终端时, 所述终端在所 述一个随机接入配置索引所指示的第二时域资源上向基站发送前导序列。
18、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 当所述终端为普通终端时, 所述终端预先配置普通终端资源配置表, 当所述 终端为 MTC终端时, 所述终端预先配置 MTC终端资源配置表, 所述普通终端资源 配置表中包含第一随机接入配置索引与第一时域资源之间的指示关系, 所述 MTC 终端资源配置表中包含第二随机接入配置索引与第二时域资源之间的指示关系; 所述终端接收基站通过 RRC 广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第一随机接入配 置索引, 和为 MTC终端配置的一个第二随机接入配置索引;
所述在与所述终端的类型对应的时域资源上, 向基站发送前导序列包括: 当所述终端为普通终端时,所述终端在所述一个第一随机接入配置索引所指 示的第一时域资源上向基站发送前导序列; 当所述终端为 MTC终端时, 所述终端 在与所述一个第二随机接入配置索引所指示的第二时域资源上向基站发送前导 序列。
19、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 所述终端预先配置第二资源配置表,所述第二资源配置表中包含终端的随机 接入配置索引与时域资源之间的指示关系;
所述终端接收基站通过 RRC 广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置索 引;
所述在与所述终端的类型对应的时域资源上, 向基站发送前导序列包括: 当所述终端为普通终端时,所述终端在所述一个随机接入配置索引所指示的 时域资源上向基站发送前导序列, 当所述终端为 MTC终端时, 所述终端将所述一 个随机接入配置索引所指示的时域资源按照指定的时域资源偏置值进行偏移,并 在偏移后的时域资源上向基站发送前导序列。
20、 根据权利要求 19所述的方法, 其特征在于, 所述指定的时域资源偏置 值为所述终端接收基站通过所述 RRC广播或单播信令通知的时域资源偏置值,或 者预先配置的时域资源偏置值。
21、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 终端接收基站通过 RRC广播或单播信令为所述终端通知进行随机接入的参 数, 所述 RRC广播或单播信令中包含为普通终端配置的第一频域资源的指示信 息, 以及为 MTC终端配置的第二频域资源的指示信息;
所述在与所述终端的类型对应的频域资源上, 向基站发送前导序列包括: 当所述终端为普通终端时, 在所述第一频域资源上向所述基站发送前导序 列,当所述终端为 MTC终端时,在所述第二频域资源上向所述基站发送前导序列, 所述第一频域资源和所述第二频域资源为不同的频域资源。
22、根据权利要求 21所述的方法,其特征在于,所述终端接收基站通过 RRC 广播或单播信令为所述终端通知进行随机接入的参数, 包括:
接收基站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一 频 域 资 源 的 指示信 息 的 第 一物 理 随机接 入信道频 率偏移 prach-Frequencyoffset, 和为 MTC终端配置的作为所述第二频域资源的指示信 息的第二物理随机接入信道频率偏移 prach-Frequencyoffset; 和 /或,
接收基站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一 频域资源的指示信息的第一随机接入配置索引,和为 MTC终端配置的作为所述第 二频域资源的指示信息的第二随机接入配置索引; 和 /或,
接收基站在 RRC广播或单播信令中通知的为普通终端和 MTC终端配置的作为 所述第一频域资源的指示信息和第二频域资源的指示信息的同一个随机接入配 置索引,所述同一个随机接入配置索引用于分别为普通终端和 MTC终端指示第一 频域资源和第二频域资源。
23、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 终端接收基站通过 RRC广播或单播信令为所述终端通知进行随机接入的参 数, 所述 RRC广播或单播信令中包含为所述终端配置的第一频域资源的指示信 息, 所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引;
所述在与所述终端的类型对应的频域资源上, 向基站发送前导序列包括: 当所述终端为普通终端时, 在所述第一频域资源上向所述基站发送前导序 列, 当所述终端为 MTC终端时, 将所述第一频域资源按照指定的频域资源偏置值 进行偏移, 并在偏移后的频域资源上向所述基站发送前导序列。
24、 根据权利要求 23所述的方法, 其特征在于, 所述指定的频域资源偏置 值为所述终端接收基站通过所述 RRC广播或单播信令通知的频域资源偏置值,或 者预先配置的频域资源偏置值。
25、 根据权利要求 16所述的方法, 其特征在于, 所述向基站发送与所述终 端的类型对应的前导序列包括:
当所述终端为普通终端时, 向所述基站发送第一前导序列, 当所述终端为
MTC终端时, 向所述基站发送第二前导序列; 其中,
所述第一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新 定义的若干前导序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列 外的前导序列, 所述第二前导序列为从所述专用序列中划分出的若干前导序列。
26、 根据权利要求 25所述的方法, 其特征在于, 所述新定义的若干前导序 列的生成方式包括:
采用生成现有前导序列中第 64个前导序列的根序列, 将所述根序列依次增 大循环移位值生成所述新定义的前导序列,当根据所述根序列生成的所述新定义 的前导序列的数量小于预设数量时,依次选取与所述根序列的逻辑序号相连续的 逻辑序号对应的根序列, 通过对选取的根序列进行循环移位, 生成所述新定义的 前导序列, 直到所述新定义的前导序列满足所述预设数量; 或者,
接收基站通过 RRC广播或单播信令通知的 MTC终端的根序列的逻辑序号,对 所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据 所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选 取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对 选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前 导序列满足所述预设数量; 或者,
接收基站通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号,根据 指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC 终端的 根序列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序 列,当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量 时,依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序 列, 通过对选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述 新定义的前导序列满足所述预设数量, 其中, 所述指定的根序列偏移值为接收基 站通过 RRC广播或单播信令通知的根序列偏移值, 或者预先配置的根序列偏移 值; 其中,
所述新定义的前导序列和所述现有前导序列是不相同的前导序列。
27、 根据权利要求 25所述的方法, 其特征在于, 所述第二前导序列为从所 述专用序列中划分出的若干前导序列的划分方式包括:
接收基站通过 RRC广播或单播信令通知所述专用序列中,作为所述第二前导 序列序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的 序列号获取所述第二前导序列, 其中,
所述指定的起始序列的序列号为接收基站通过 RRC广播或单播信令通知的 起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个 数得到的起始序列的序列号。
28、 一种基站, 其特征在于, 所述基站包括:
接收单元, 用于接收终端在随机接入时发送的前导序列;
识别单元, 用于根据所述接收单元接收到的前导序列识别所述终端的类型; 发送单元, 用于按照所述识别单元识别出的终端的类型, 在所述终端支持的 处理带宽上向所述终端发送随机接入过程中的消息。
29、 根据权利要求 28所述的基站, 其特征在于, 所述识别单元包括至少一 个下述单元:
第一识别子单元,用于根据发送所述前导序列的时域资源识别所述终端的类 型;
第二识别子单元,用于根据发送所述前导序列的频域资源识别所述终端的类 型;
第三识别子单元, 用于根据所述前导序列的类型识别所述终端的类型。
30、 根据权利要求 29所述的基站, 其特征在于, 所述基站还包括: 第一配置单元, 用于预先配置第一随机接入资源配置表, 所述第一随机接入 资源配置表中包含随机接入配置索引与第一时域资源和第二时域资源之间的指 示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端配置不相 同的第一时域资源和第二时域资源;
第一通知单元,用于通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置索 引;
所述第一识别子单元,具体用于当在所述一个随机接入配置索引所指示的第 一时域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在 所述一个随机接入配置索引所指示的第二时域资源上检测到终端发送的前导序 列时, 则确定所述终端为 MTC终端。
31、 根据权利要求 29所述的基站, 其特征在于, 所述基站还包括: 第二配置单元, 用于预先配置普通终端资源配置表和 MTC终端资源配置表, 所述普通终端资源配置表中包含第一随机接入配置索引与第一时域资源之间的 指示关系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二时域资 源之间的指示关系;
第二通知单元,用于通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第一随机接入配 置索引, 和为 MTC终端配置的一个第二随机接入配置索引;
所述第一识别子单元,具体用于当在所述一个第一随机接入配置索引所指示 的第一时域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在与所述一个第二随机接入配置索引所指示的第二时域资源上检测到终端发 送的前导序列时, 则确定所述终端为 MTC终端。
32、 根据权利要求 29所述的基站, 其特征在于, 所述基站还包括: 第三配置单元, 用于预先配置第二资源配置表, 所述第二资源配置表中包含 终端的随机接入配置索引与时域资源之间的指示关系;
第三通知单元,用于通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机接入配置索 引;
所述第一识别子单元,具体用于当在所述一个随机接入配置索引所指示的时 域资源上检测到终端发送的前导序列时, 则确定所述终端为普通终端, 当在所述 一个随机接入配置索引所指示的时域资源按照指定的时域资源偏置值进行偏移 后的时域资源上检测到终端发送的前导序列时, 则确定所述终端为 MTC终端; 其中,所述指定的时域资源偏置值为通过所述 RRC广播或单播信令通知的时 域资源偏置值, 或者预先配置的时域资源偏置值。
33、 根据权利要求 29所述的基站, 其特征在于, 所述基站还包括: 第四通知单元,用于通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为普通终端配置的第一频域资源的指示 信息, 以及为 MTC终端配置的第二频域资源的指示信息;
所述第二识别子单元,具体用于当检测到终端在第一频域资源发送前导序列 时, 确定所述终端为普通终端, 当检测到终端在第二频域资源发送前导序列时, 确定所述终端为 MTC终端,所述第一频域资源和所述第二频域资源为不同的频域 资源。
34、 根据权利要求 33所述的基站, 其特征在于, 所述第四通知单元包括至 少一个下述单元:
第一频域资源通知子单元,用于在 RRC广播或单播信令中通知为普通终端配 置的作为所述第一频域资源的指示信息的第一物理随机接入信道频率偏移 prach-Frequencyoffset, 和为 MTC终端配置的作为所述第二频域资源的指示信 息的第二物理随机接入信道频率偏移 prach-Frequencyoffset;
第二频域资源通知子单元,用于在 RRC广播或单播信令中通知为普通终端配 置的作为所述第一频域资源的指示信息的第一随机接入配置索引,和为 MTC终端 配置的作为所述第二频域资源的指示信息的第二随机接入配置索引;
第三频域资源通知子单元,用于在 RRC广播或单播信令中通知为普通终端和
MTC终端配置的作为所述第一频域资源的指示信息和第二频域资源的指示信息的 同一个随机接入配置索引,所述同一个随机接入配置索引用于分别为普通终端和 MTC终端指示第一频域资源和第二频域资源。
35、 根据权利要求 29所述的基站, 其特征在于, 所述基站还包括: 第五通知单元,用于通过 RRC广播或单播信令为所述终端通知进行随机接入 的参数,所述 RRC广播或单播信令中包含为所述终端配置的第一频域资源的指示 信息, 所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引;
所述第二识别子单元,具体用于当检测到终端在第一频域资源发送前导序列 时, 确定所述终端为普通终端, 当检测到所述终端发送前导序列的频域资源为所 述第一频域资源按照指定的频域资源偏置值进行偏移后的频域资源时,确定所述 终端为 MTC终端;
其中,所述指定的频域资源偏置值为通过所述 RRC广播或单播信令通知的频 域资源偏置值, 或者预先配置的频域资源偏置值。
36、 根据权利要求 29所述的基站, 其特征在于,
所述第三识别子单元, 具体用于当接收到终端发送的第一前导序列时, 确定 所述终端为普通终端, 当接收到终端发送的第二前导序列时, 确定所述终端为 MTC终端; 其中,
所述第一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新 定义的若干前导序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列 外的前导序列, 所述第二前导序列为从所述专用序列中划分出的若干前导序列。
37、 根据权利要求 36所述的基站, 其特征在于, 所述新定义的若干前导序 列的生成方式包括:
采用生成现有前导序列中第 64个前导序列的根序列, 将所述根序列依次增 大循环移位值生成所述新定义的前导序列,当根据所述根序列生成的所述新定义 的前导序列的数量小于预设数量时,依次选取与所述根序列的逻辑序号相连续的 逻辑序号对应的根序列, 通过对选取的根序列进行循环移位, 生成所述新定义的 前导序列, 直到所述新定义的前导序列满足所述预设数量; 或者,
通过 RRC广播或单播信令通知 MTC终端的根序列的逻辑序号,对所述 MTC终 端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据所述 MTC终 端的根序列生成的新定义的前导序列的数量小于预设数量时, 依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列, 通过对选取的根 序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前导序列满 足所述预设数量; 或者,
通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号,根据指定的根 序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC终端的根序列,对 所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据 所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选 取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对 选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前 导序列满足所述预设数量, 其中, 所述指定的根序列偏移值为通过 RRC广播或单 播信令通知的根序列偏移值, 或者预先配置的根序列偏移值; 其中,
所述新定义的前导序列和所述现有前导序列是不相同的前导序列。
38、 根据权利要求 36所述的基站, 其特征在于, 所述第二前导序列为从所 述专用序列中划分出的若干前导序列的划分方式包括:
通过 RRC广播或单播信令通知所述专用序列中,作为所述第二前导序列的序 列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的序列号 获取所述第二前导序列, 其中,
所述指定的起始序列的序列号为通过 RRC广播或单播信令通知的起始序列 的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个数得到的 起始序列的序列号。
39、根据权利要求 28至 38任意一项所述的基站, 其特征在于, 所述随机接 入过程中的消息包括: 随机接入响应消息和竞争解决消息;
所述发送单元, 具体用于当所述终端为 MTC终端时, 在 MTC终端支持的第一 带宽上向所述终端发送随机接入响应消息和竞争解决消息,当所述终端为普通终 端时,在普通终端支持的第二带宽上向所述终端发送随机接入响应消息和竞争解 决消息, 其中, 所述第一带宽小于所述第二带宽。
40、 一种基站, 其特征在于, 所述基站包括:
接收机, 用于接收终端在随机接入时发送的前导序列;
处理器, 用于根据所述前导序列识别所述终端的类型;
发射机, 用于按照所述终端的类型, 在所述终端支持的处理带宽上向所述终 端发送随机接入过程中的消息。
41、 根据权利要求 40所述的基站, 其特征在于, 所述处理器具体用于, 根 据发送所述前导序列的时域资源识别所述终端的类型, 和 /或根据发送所述前导 序列的频域资源识别所述终端的类型, 和 /或根据所述前导序列的类型识别所述 终端的类型。
42、根据权利要求 40或 41所述的基站,其特征在于,所述发射机具体用于, 当所述终端为 MTC终端时,在 MTC终端支持的第一带宽上向所述终端发送随机接 入响应消息和竞争解决消息, 当所述终端为普通终端时, 在普通终端支持的第二 带宽上向所述终端发送随机接入响应消息和竞争解决消息, 其中, 所述第一带宽 小于所述第二带宽。
43、 一种终端, 其特征在于, 所述终端包括:
发送单元, 用于所述终端在随机接入时, 按照所述终端的类型向基站发送前 导序列;
接收单元,用于接收所述基站根据所述发送单元发送的前导序列识别出所述 终端的类型后,在所述终端支持的处理带宽上向所述终端发送的随机接入过程中 的消息。
44、 根据权利要求 43所述的终端, 其特征在于, 所述发送单元包括至少一 个下述单元:
第一发送子单元, 用于在与所述终端的类型对应的时域资源上, 向基站发送 前导序列;
第二发送子单元, 用于在与所述终端的类型对应的频域资源上, 向基站发送 前导序列;
第三发送子单元, 用于向基站发送与所述终端的类型对应的前导序列。
45、 根据权利要求 44所述的终端, 其特征在于, 所述终端还包括: 第一配置单元, 用于预先配置第一随机接入资源配置表, 所述第一随机接入 资源配置表中包含随机接入配置索引与第一时域资源和第二时域资源之间的指 示关系, 并通过同一个随机接入配置索引, 分别为普通终端和 MTC终端配置不相 同的第一时域资源和第二时域资源;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进 行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机 接入配置索引; 所述第一发送子单元, 具体用于当所述终端为普通终端时, 所述终端在所述 一个随机接入配置索引所指示的第一时域资源上向基站发送前导序列;当所述终 端为 MTC终端时,所述终端在所述一个随机接入配置索引所指示的第二时域资源 上向基站发送前导序列。
46、 根据权利要求 44所述的终端, 其特征在于, 所述终端还包括: 第二配置单元, 用于当所述终端为普通终端时, 所述终端预先配置普通终端 资源配置表,当所述终端为 MTC终端时,所述终端预先配置 MTC终端资源配置表, 所述普通终端资源配置表中包含第一随机接入配置索引与第一时域资源之间的 指示关系,所述 MTC终端资源配置表中包含第二随机接入配置索引与第二时域资 源之间的指示关系;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进 行随机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的一个第一 随机接入配置索引, 和为 MTC终端配置的一个第二随机接入配置索引;
所述第一发送子单元, 具体用于当所述终端为普通终端时, 所述终端在所述 一个第一随机接入配置索引所指示的第一时域资源上向基站发送前导序列;当所 述终端为 MTC终端时,所述终端在与所述一个第二随机接入配置索引所指示的第 二时域资源上向基站发送前导序列。
47、 根据权利要求 44所述的终端, 其特征在于, 所述终端还包括: 第三配置单元, 用于预先配置第二资源配置表, 所述第二资源配置表中包含 终端的随机接入配置索引与时域资源之间的指示关系;
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进 行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的一个随机 接入配置索引;
所述第一发送子单元, 具体用于当所述终端为普通终端时, 所述终端在所述 一个随机接入配置索引所指示的时域资源上向基站发送前导序列,当所述终端为 MTC终端时, 所述终端将所述一个随机接入配置索引所指示的时域资源按照指定 的时域资源偏置值进行偏移, 并在偏移后的时域资源上向基站发送前导序列; 其中,所述指定的时域资源偏置值为所述终端接收基站通过所述 RRC广播或 单播信令通知的时域资源偏置值, 或者预先配置的时域资源偏置值。
48、 根据权利要求 44所述的终端, 其特征在于,
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进 行随机接入的参数,所述 RRC广播或单播信令中包含为普通终端配置的第一频域 资源的指示信息, 以及为 MTC终端配置的第二频域资源的指示信息;
所述第二发送子单元, 具体用于当所述终端为普通终端时, 在所述第一频域 资源上向所述基站发送前导序列, 当所述终端为 MTC终端时, 在所述第二频域资 源上向所述基站发送前导序列,所述第一频域资源和所述第二频域资源为不同的 频域资源。
49、根据权利要求 48所述的终端,其特征在于,所述终端接收基站通过 RRC 广播或单播信令为所述终端通知进行随机接入的参数, 包括:
接收基站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一 频 域 资 源 的 指示信 息 的 第 一物 理 随机接 入信道频 率偏移 prach-Frequencyoffset, 和为 MTC终端配置的作为所述第二频域资源的指示信 息的第二物理随机接入信道频率偏移 prach-Frequencyoffset; 和 /或,
接收基站在 RRC广播或单播信令中通知的为普通终端配置的作为所述第一 频域资源的指示信息的第一随机接入配置索引,和为 MTC终端配置的作为所述第 二频域资源的指示信息的第二随机接入配置索引; 和 /或,
接收基站在 RRC广播或单播信令中通知的为普通终端和 MTC终端配置的作为 所述第一频域资源的指示信息和第二频域资源的指示信息的同一个随机接入配 置索引,所述同一个随机接入配置索引用于分别为普通终端和 MTC终端指示第一 频域资源和第二频域资源。
50、 根据权利要求 44所述的终端, 其特征在于,
所述接收单元,还用于接收基站通过 RRC广播或单播信令为所述终端通知进 行随机接入的参数,所述 RRC广播或单播信令中包含为所述终端配置的第一频域 资源的指示信息,所述第一频域资源的指示信息包括物理随机接入信道频率偏移 prach-Frequencyoffset和 /或随机接入配置索引;
所述第二发送子单元, 具体用于当所述终端为普通终端时, 在所述第一频域 资源上向所述基站发送前导序列, 当所述终端为 MTC终端时, 将所述第一频域资 源按照指定的频域资源偏置值进行偏移,并在偏移后的频域资源上向所述基站发 送前导序列; 其中,所述指定的频域资源偏置值为所述终端接收基站通过所述 RRC广播或 单播信令通知的频域资源偏置值, 或者预先配置的频域资源偏置值。
51、 根据权利要求 44所述的终端, 其特征在于,
所述第三发送子单元, 具体用于当所述终端为普通终端时, 向所述基站发送 第一前导序列,当所述终端为 MTC终端时, 向所述基站发送第二前导序列;其中, 所述第一前导序列是现有前导序列,所述第二前导序列是为所述 MTC终端新定义 的若干前导序列; 或者, 所述第一前导序列为现有前导序列中, 除专用序列外的 前导序列, 所述第二前导序列为从所述专用序列中划分出的若干前导序列。
52、 根据权利要求 51所述的终端, 其特征在于, 所述新定义的若干前导序 列的生成方式包括:
采用生成现有前导序列中第 64个前导序列的根序列, 将所述根序列依次增 大循环移位值生成所述新定义的前导序列,当根据所述根序列生成的所述新定义 的前导序列的数量小于预设数量时,依次选取与所述根序列的逻辑序号相连续的 逻辑序号对应的根序列, 通过对选取的根序列进行循环移位, 生成所述新定义的 前导序列, 直到所述新定义的前导序列满足所述预设数量; 或者,
接收基站通过 RRC广播或单播信令通知的 MTC终端的根序列的逻辑序号,对 所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序列,当根据 所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量时,依次选 取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序列,通过对 选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述新定义的前 导序列满足所述预设数量; 或者,
接收基站通过 RRC广播或单播信令通知普通终端的根序列的逻辑序号,根据 指定的根序列偏移值和所述普通终端的根序列的逻辑序号获得所述 MTC 终端的 根序列,对所述 MTC终端的根序列依次增大循环移位值生成所述新定义的前导序 列,当根据所述 MTC终端的根序列生成的新定义的前导序列的数量小于预设数量 时,依次选取与所述 MTC终端的根序列的逻辑序号相连续的逻辑序号对应的根序 列, 通过对选取的根序列进行循环移位, 生成所述新定义的前导序列, 直到所述 新定义的前导序列满足所述预设数量, 其中, 所述指定的根序列偏移值为接收基 站通过 RRC广播或单播信令通知的根序列偏移值, 或者预先配置的根序列偏移 值; 其中, 所述新定义的前导序列和所述现有前导序列是不相同的前导序列。
53、 根据权利要求 51所述的终端, 其特征在于, 所述第二前导序列为从所 述专用序列中划分出的若干前导序列的划分方式包括:
接收基站通过 RRC广播或单播信令通知所述专用序列中,作为所述第二前导 序列序列个数,根据所述序列个数和指定的作为所述第二前导序列的起始序列的 序列号获取所述第二前导序列, 其中,
所述指定的起始序列的序列号为接收基站通过 RRC广播或单播信令通知的 起始序列的序列号, 或者预先配置的起始序列的序列号, 或者为根据所述序列个 数得到的起始序列的序列号。
54、 一种终端, 其特征在于, 所述终端包括:
发射机, 用于所述终端在随机接入时, 按照所述终端的类型向基站发送前导 序列;
接收机, 用于接收所述基站根据所述前导序列识别出所述终端的类型后, 在 所述终端支持的处理带宽上向所述终端发送的随机接入过程中的消息。
55、 根据权利要求 54所述的终端, 其特征在于, 所述发射机, 具体用于在 与所述终端的类型对应的时域资源上, 向基站发送前导序列, 和 /或在与所述终 端的类型对应的频域资源上, 向基站发送前导序列, 和 /或向基站发送与所述终 端的类型对应的前导序列。
PCT/CN2012/079972 2012-08-10 2012-08-10 随机接入方法、基站及终端 WO2014023026A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280001945.4A CN103748942B (zh) 2012-08-10 2012-08-10 随机接入方法、基站及终端
EP12882828.2A EP2876955B1 (en) 2012-08-10 2012-08-10 Method and bs for random access
PCT/CN2012/079972 WO2014023026A1 (zh) 2012-08-10 2012-08-10 随机接入方法、基站及终端
US14/618,330 US9769831B2 (en) 2012-08-10 2015-02-10 Random access method, base station and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079972 WO2014023026A1 (zh) 2012-08-10 2012-08-10 随机接入方法、基站及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/618,330 Continuation US9769831B2 (en) 2012-08-10 2015-02-10 Random access method, base station and terminal

Publications (1)

Publication Number Publication Date
WO2014023026A1 true WO2014023026A1 (zh) 2014-02-13

Family

ID=50067407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079972 WO2014023026A1 (zh) 2012-08-10 2012-08-10 随机接入方法、基站及终端

Country Status (4)

Country Link
US (1) US9769831B2 (zh)
EP (1) EP2876955B1 (zh)
CN (1) CN103748942B (zh)
WO (1) WO2014023026A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105230107A (zh) * 2014-03-21 2016-01-06 华为技术有限公司 一种随机接入响应方法、基站及终端
JP2018506910A (ja) * 2015-01-26 2018-03-08 華為技術有限公司Huawei Technologies Co.,Ltd. ランダムアクセス方法、端末、および基地局
CN108282900A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 随机接入信号的发送和接收方法、网络设备和用户设备
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端
CN110035536A (zh) * 2018-01-11 2019-07-19 北京三星通信技术研究有限公司 一种时频资源的确定方法,配置方法和设备
CN110313208A (zh) * 2017-02-21 2019-10-08 三星电子株式会社 重新分配根序列索引的方法及其装置
CN110720248A (zh) * 2018-05-11 2020-01-21 瑞典爱立信有限公司 使用时域资源分配的指示信息的方法和装置
CN113271644A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种终端识别方法、基站及终端
CN113271675A (zh) * 2020-02-17 2021-08-17 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
WO2022006722A1 (zh) * 2020-07-06 2022-01-13 北京小米移动软件有限公司 随机接入资源配置方法、装置及存储介质
WO2022028340A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 频域资源的确定方法、设备及存储介质
WO2023019524A1 (zh) * 2021-08-19 2023-02-23 深圳传音控股股份有限公司 指示方法、通信设备、通信系统及存储介质

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748942B (zh) * 2012-08-10 2018-03-13 华为技术有限公司 随机接入方法、基站及终端
WO2015071025A1 (en) * 2013-11-14 2015-05-21 Sony Corporation Communications system, infrastructure equipment, communications devices and method
GB2530566A (en) 2014-09-26 2016-03-30 Nec Corp Communication system
US10700830B2 (en) * 2014-10-21 2020-06-30 Qualcomm Incorporated Techniques for conveying identification information in a preamble transmission
US11089574B2 (en) * 2014-11-06 2021-08-10 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
CN107535001B (zh) * 2015-04-09 2021-09-14 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
KR102357511B1 (ko) * 2015-05-21 2022-02-04 삼성전자주식회사 무선 통신 시스템에서 복수의 디바이스들을 위한 랜덤 액세스 방법 및 장치
US10165423B2 (en) * 2015-07-10 2018-12-25 Qualcomm Incorporated Common search space for machine type communications
DE102016212714A1 (de) * 2015-07-17 2017-01-19 Apple Inc. Direktzugriffsmechanismen für Link-Budget-beschränkte Vorrichtungen
US10080243B2 (en) * 2015-07-17 2018-09-18 Apple Inc. Mechanisms to facilitate random access by link-budget-limited devices
CN107432037B (zh) 2015-08-13 2020-09-22 松下电器(美国)知识产权公司 无线通信方法、eNodeB和用户设备
US10499444B2 (en) * 2015-09-11 2019-12-03 Intel IP Corporation Radio network access of wearable devices
US10039132B2 (en) * 2015-09-24 2018-07-31 Kt Corporation Method and apparatus for receiving random access response for MTC UE
US10327249B2 (en) 2015-11-09 2019-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Uplink resource allocation in a unidirectional single frequency network arrangement for high speed trains
EP3375235B1 (en) * 2015-11-09 2019-11-20 Telefonaktiebolaget LM Ericsson (PUBL) Random access handling in single frequency network with unidirectional antenna node arrangement
WO2017088783A1 (zh) * 2015-11-24 2017-06-01 联发科技(新加坡)私人有限公司 上报传输模式的方法以及用户设备
US11202282B2 (en) * 2015-12-16 2021-12-14 Qualcomm Incorporated Contention-based physical uplink shared channel
CN107197532B (zh) * 2016-03-15 2022-10-28 中兴通讯股份有限公司 接入处理方法及装置
US10143015B2 (en) * 2016-03-18 2018-11-27 Qualcomm Incorporated Contention-based random access in unlicensed spectrum
US10476714B2 (en) * 2016-04-07 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio-network node, wireless device and methods performed therein
CN107425899B (zh) * 2016-05-24 2022-03-01 中兴通讯股份有限公司 基站、终端、端口的确定方法及装置
US10973055B2 (en) * 2016-10-20 2021-04-06 Alcatel Lucent System and method for preamble sequence transmission and reception to control network traffic
US10349449B2 (en) * 2016-10-30 2019-07-09 Lg Electronics Inc. Method and user equipment for performing random access procedure
CN112087814B (zh) * 2016-12-26 2022-10-28 Oppo广东移动通信有限公司 随机接入方法和装置
CN108633104B (zh) 2017-03-20 2020-06-16 华为技术有限公司 随机接入方法、用户设备、基站以及随机接入系统
JP6973502B2 (ja) * 2017-04-28 2021-12-01 日本電気株式会社 ランダムアクセスプロセスの方法、端末デバイス、ネットワーク要素、および装置
CN109152029B (zh) * 2017-06-16 2024-04-16 华为技术有限公司 一种通信方法、网络设备及用户设备
WO2019009619A1 (en) * 2017-07-04 2019-01-10 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR COMMUNICATION BASED ON FRAME STRUCTURE
CN109803434B (zh) * 2017-11-17 2022-11-25 珠海市魅族科技有限公司 配置或划分随机接入集合的方法及装置
CN116321510A (zh) 2017-11-17 2023-06-23 华为技术有限公司 用于随机接入的方法、终端设备和网络设备
CN111357232B (zh) * 2017-11-17 2022-06-03 瑞典爱立信有限公司 时域资源分配表的选择方法、无线设备及网络节点
WO2019160814A1 (en) * 2018-02-15 2019-08-22 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN110225598A (zh) * 2018-03-01 2019-09-10 中兴通讯股份有限公司 随机接入方法、装置及设备、计算机可读存储介质
CN110351852B (zh) * 2018-04-04 2021-12-10 华为技术有限公司 一种通信方法及装置
CN110381543B (zh) 2018-04-13 2022-11-11 华为技术有限公司 一种激活频域资源的方法、设备及系统
CN115720373B (zh) * 2018-04-13 2023-10-20 华为技术有限公司 一种激活频域资源的方法、设备及系统
CN116321503A (zh) * 2018-05-28 2023-06-23 中兴通讯股份有限公司 一种随机接入序列资源的分配方法、相关装置及存储介质
CN110719633B (zh) * 2018-07-13 2022-08-09 大唐移动通信设备有限公司 一种上行资源分配方法、装置、基站及终端
CN110933766B (zh) * 2018-09-19 2022-02-08 维沃移动通信有限公司 随机接入信息的获取、发送方法及网络节点
SG10201809360VA (en) * 2018-10-23 2020-05-28 Panasonic Ip Corp America Communication apparatuses and communication methods for random access
WO2020258051A1 (zh) * 2019-06-25 2020-12-30 Oppo广东移动通信有限公司 小区接入的方法和设备
CN113453341B (zh) * 2020-03-24 2023-10-24 华为技术有限公司 随机接入消息的发送方法、用户设备类型确定方法及设备
JP2023532042A (ja) * 2020-06-24 2023-07-26 北京小米移動軟件有限公司 情報伝送方法、装置、通信機器及び記憶媒体
EP4272378A1 (en) 2020-12-30 2023-11-08 Rosas Bustos, Jose R. Systems and methods of creating and operating a cloudless infrastructure of computing devices
CN115696590A (zh) * 2021-07-27 2023-02-03 中国移动通信有限公司研究院 通信方法、装置、终端、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801096A (zh) * 2009-02-10 2010-08-11 大唐移动通信设备有限公司 一种随机接入的方法、系统及设备
CN101998646A (zh) * 2009-08-19 2011-03-30 中兴通讯股份有限公司 用于长期演进系统的随机接入方法及装置
CN102291822A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种mtc设备随机接入回退时间通知方法和系统
US20120077507A1 (en) * 2010-09-28 2012-03-29 Lee Kidong Preamble set separation for random access control in large scale cellular networks

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548748B1 (ko) * 2008-08-07 2015-09-11 엘지전자 주식회사 랜덤 접속 절차를 수행하는 방법
WO2011046377A2 (en) * 2009-10-14 2011-04-21 Lg Electronics Inc. Radio resource allocation
US20110170515A1 (en) * 2010-01-12 2011-07-14 Electronics And Telecommunications Research Institute Resource allocation apparatus in ip uplink
CN106028270B (zh) * 2010-02-12 2020-08-04 交互数字专利控股公司 从wtru执行随机接入信道传输的方法、wtru、以及节点b
WO2011149252A2 (en) * 2010-05-26 2011-12-01 Lg Electronics Inc. Nas-based signaling protocol for overload protection of random access in massive machine type communication
CN102355734B (zh) * 2010-09-30 2015-01-07 开曼群岛威睿电通股份有限公司 配置信道资源的系统和方法
CN101977401A (zh) * 2010-10-27 2011-02-16 中兴通讯股份有限公司 一种用户终端的随机接入方法和系统
EP3244690A1 (en) * 2010-11-04 2017-11-15 InterDigital Patent Holdings, Inc. Method and apparatus for establishing peer-to-peer communication
KR20120071229A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 이동통신 시스템의 데이터 전송 방법
KR20120070689A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 사물 통신 서비스를 위한 랜덤 액세스 방법 및 이를 이용한 무선 통신 장치
GB2487907B (en) * 2011-02-04 2015-08-26 Sca Ipla Holdings Inc Telecommunications method and system
US9191942B2 (en) * 2011-03-09 2015-11-17 Lg Electronics Inc. Method and device for allocating group resources for M2M device in wireless communication system
CN102740403B (zh) * 2011-04-02 2015-03-11 上海贝尔股份有限公司 一种在通信网络的终端中用于接入的方法及装置
WO2012150801A2 (ko) * 2011-05-02 2012-11-08 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스 수행 방법 및 이를 지원하는 장치
US9210711B2 (en) * 2011-05-05 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for adapting random access allocation of resources to user equipments
KR101550126B1 (ko) * 2011-06-15 2015-09-11 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
KR101469427B1 (ko) * 2011-07-21 2014-12-04 엘지전자 주식회사 다수의 랜덤 엑세스 우선순위 등급을 갖는 무선 통신 시스템에서 랜덤 엑세스 프리앰블을 관리하는 방법 및 장치
KR101967721B1 (ko) * 2011-08-10 2019-04-10 삼성전자 주식회사 무선 통신 시스템에서 확장 접속 차단 적용 방법 및 장치
US20130182680A1 (en) * 2012-01-18 2013-07-18 Electronics And Telecommunications Research Institute Method for machine type communication user equipment to connect to evolved node-b and apparatus employing the same
CN103220811B (zh) * 2012-01-19 2018-04-27 中兴通讯股份有限公司 信息处理方法、mtc ue随机接入lte系统的方法
EP2751946A1 (en) * 2012-01-25 2014-07-09 Fujitsu Limited Uplink channel for wireless communication
CN103313419A (zh) * 2012-03-09 2013-09-18 上海贝尔股份有限公司 一种随机接入方法及装置
US9363827B2 (en) * 2012-07-23 2016-06-07 Broadcom Corporation Vehicle gateway access in cellular network for vehicle communications
CN103748942B (zh) * 2012-08-10 2018-03-13 华为技术有限公司 随机接入方法、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801096A (zh) * 2009-02-10 2010-08-11 大唐移动通信设备有限公司 一种随机接入的方法、系统及设备
CN101998646A (zh) * 2009-08-19 2011-03-30 中兴通讯股份有限公司 用于长期演进系统的随机接入方法及装置
CN102291822A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种mtc设备随机接入回退时间通知方法和系统
US20120077507A1 (en) * 2010-09-28 2012-03-29 Lee Kidong Preamble set separation for random access control in large scale cellular networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2876955A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285197B2 (en) 2014-03-21 2019-05-07 Huawei Technologies Co., Ltd. Random access response method, base station and terminal
EP3113569A4 (en) * 2014-03-21 2017-03-08 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
AU2014387275B2 (en) * 2014-03-21 2017-12-21 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
CN105230107A (zh) * 2014-03-21 2016-01-06 华为技术有限公司 一种随机接入响应方法、基站及终端
CN105230107B (zh) * 2014-03-21 2019-07-19 华为技术有限公司 一种随机接入响应方法、基站及终端
AU2018200491B2 (en) * 2014-03-21 2019-05-09 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
JP2018506910A (ja) * 2015-01-26 2018-03-08 華為技術有限公司Huawei Technologies Co.,Ltd. ランダムアクセス方法、端末、および基地局
US10681737B2 (en) 2015-01-26 2020-06-09 Huawei Technologies Co., Ltd. Random access method, terminal, and base station
CN108282900A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 随机接入信号的发送和接收方法、网络设备和用户设备
CN108282900B (zh) * 2017-01-05 2023-10-20 华为技术有限公司 随机接入信号的发送和接收方法、网络设备和用户设备
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端
US11178697B2 (en) 2017-01-06 2021-11-16 Datang Mobile Communications Equipment Co., Ltd. Random access method and terminal
CN108282895B (zh) * 2017-01-06 2019-12-20 电信科学技术研究院 一种随机接入方法及终端
US11895709B2 (en) 2017-01-06 2024-02-06 Datang Mobile Communications Equipment Co., Ltd. Random access method and terminal
CN110313208A (zh) * 2017-02-21 2019-10-08 三星电子株式会社 重新分配根序列索引的方法及其装置
CN110313208B (zh) * 2017-02-21 2023-10-03 三星电子株式会社 重新分配根序列索引的方法及其装置
CN110035536B (zh) * 2018-01-11 2024-04-09 北京三星通信技术研究有限公司 一种时频资源的确定方法,配置方法和设备
CN110035536A (zh) * 2018-01-11 2019-07-19 北京三星通信技术研究有限公司 一种时频资源的确定方法,配置方法和设备
CN110720248A (zh) * 2018-05-11 2020-01-21 瑞典爱立信有限公司 使用时域资源分配的指示信息的方法和装置
US11812432B2 (en) 2018-05-11 2023-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for using indication information of time domain resource allocation
US11388740B2 (en) 2018-05-11 2022-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for using indication information of time domain resource allocation
CN113271644A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种终端识别方法、基站及终端
WO2021159956A1 (zh) * 2020-02-14 2021-08-19 大唐移动通信设备有限公司 一种终端识别方法、基站及终端
CN113271675B (zh) * 2020-02-17 2023-03-28 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
WO2021164601A1 (zh) * 2020-02-17 2021-08-26 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN113271675A (zh) * 2020-02-17 2021-08-17 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN114271012A (zh) * 2020-07-06 2022-04-01 北京小米移动软件有限公司 随机接入资源配置方法、装置及存储介质
WO2022006722A1 (zh) * 2020-07-06 2022-01-13 北京小米移动软件有限公司 随机接入资源配置方法、装置及存储介质
CN114271012B (zh) * 2020-07-06 2024-05-07 北京小米移动软件有限公司 随机接入资源配置方法、装置及存储介质
WO2022028340A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 频域资源的确定方法、设备及存储介质
WO2023019524A1 (zh) * 2021-08-19 2023-02-23 深圳传音控股股份有限公司 指示方法、通信设备、通信系统及存储介质

Also Published As

Publication number Publication date
EP2876955A4 (en) 2015-06-24
CN103748942A (zh) 2014-04-23
US9769831B2 (en) 2017-09-19
CN103748942B (zh) 2018-03-13
EP2876955B1 (en) 2017-11-15
US20150156760A1 (en) 2015-06-04
EP2876955A1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2014023026A1 (zh) 随机接入方法、基站及终端
CN108476539B (zh) 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
CN111867130B (zh) 一种随机接入方法、装置及存储介质
CN111566979A (zh) 用于非授权频带中的新型无线电操作的信道接入方法和先听后说解决方案
WO2019029300A1 (zh) 传输随机接入响应的方法、接入网设备和终端设备
US11438923B2 (en) Method and apparatus for transmitting data in random access process
JP2019054430A (ja) 端末装置、基地局装置、および、通信方法
WO2013107251A1 (zh) 信息处理方法、mtc ue随机接入lte系统的方法
JP2017511088A (ja) 無線通信システムにおけるデータ送信方法及び装置
WO2014019436A1 (zh) 一种mtc ue接入lte系统的方法、演进的基站和终端
WO2014124608A1 (zh) 设备到设备通信的设备发现方法及用户设备、网络侧设备
WO2018199240A1 (ja) 端末装置、基地局装置、および、通信方法
WO2019176593A1 (ja) 端末装置、基地局装置、および、通信方法
WO2019187989A1 (ja) 端末装置、基地局装置、および、通信方法
WO2017128889A1 (zh) 前导序列的发送和接收方法、装置及系统
KR20230044459A (ko) 랜덤 액세스 절차에서의 pusch 반복 방법 및 장치
WO2012097696A1 (zh) 随机接入方法、用户设备及网络设备
US11284442B2 (en) Random access method, user equipment, base station, and random access system
WO2012155693A1 (zh) 载波聚合中的prach传输方法及装置
WO2017026324A1 (ja) 端末装置、通信方法、および、集積回路
WO2021057793A1 (en) Method and apparatus for random access procedure
US20230180299A1 (en) Method and apparatus for random access
WO2020059419A1 (ja) 端末装置、基地局装置、および、通信方法
JPWO2017026322A1 (ja) 端末装置、通信方法、および、集積回路
CN108886774B (zh) 终端装置、基站装置、通信方法以及集成电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012882828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012882828

Country of ref document: EP