WO2017128889A1 - 前导序列的发送和接收方法、装置及系统 - Google Patents

前导序列的发送和接收方法、装置及系统 Download PDF

Info

Publication number
WO2017128889A1
WO2017128889A1 PCT/CN2016/111269 CN2016111269W WO2017128889A1 WO 2017128889 A1 WO2017128889 A1 WO 2017128889A1 CN 2016111269 W CN2016111269 W CN 2016111269W WO 2017128889 A1 WO2017128889 A1 WO 2017128889A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
preamble sequence
preamble
subset
base station
Prior art date
Application number
PCT/CN2016/111269
Other languages
English (en)
French (fr)
Inventor
王坚
罗禾佳
张公正
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017128889A1 publication Critical patent/WO2017128889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance

Definitions

  • the present patent application relates to the field of wireless communications, and in particular, to a method, device and system for transmitting and receiving a preamble sequence.
  • the Internet of Things is one of the main services supported by cellular mobile communication systems. Unlike mobile broad band (MBB), IoT's main service scenario is massive and/or highly reliable machine-type communications (MTC). Among them, the main features of massive MTC are: massive connections, small data packets, low cost, and so on.
  • LTE long term evolution
  • the prior art proposes a solution for preamble coding and transmission.
  • the scheme combines multiple time slots of a time-frequency resource of a random access channel (PRACH).
  • a user equipment (UE) transmits a preamble sequence on each time slot of the combined time slot.
  • the preamble sequences transmitted on multiple time slots form a coding effect, increasing the number of equivalent preamble sequences.
  • Embodiments of the present patent application provide a method, device, and system for transmitting and receiving a preamble sequence, At least the problem of the pseudo user detected by the base station caused by the existing method for transmitting the preamble sequence can be solved, and the pseudo user probability of the preamble sequence transmission can be reduced.
  • a method of transmitting a preamble sequence includes: the user equipment UE generates a random backoff time; after the random backoff time of the start point of the physical random access channel PRACH slot of the UE, the UE sends the encoded multi-level preamble sequence.
  • the UE sends the encoded multi-level preamble sequence after the random backoff time generated by the UE at the start point of the PRACH time slot, and the base station according to the time deviation of the start point of the PRACH time slot of the base station according to the received preamble sequence, A preamble sequence having the same time offset is combined to distinguish different UEs.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • a second aspect provides a method for receiving a preamble sequence, the method comprising: receiving, by a base station, a signal on a PRACH slot of a physical random access channel; and if detecting a preamble sequence, acquiring, by the base station, a arrival time of the preamble sequence and the base station Time offset of the start point of the PRACH slot, the time offset being equal to the random backoff time plus the propagation time determined by the distance between the user equipment UE and the base station; the base station combining the preamble sequence having the time offset, obtaining the The encoded multi-level preamble sequence sent by the UE.
  • the base station receives and demodulates the signal on the PRACH slot by using the foregoing method, if the preamble sequence in the multi-level preamble sequence is detected, the time of arrival of the preamble sequence and the start time of the PRACH slot of the base station are acquired. The deviation, and thus the preamble sequence having the time offset, is combined to obtain a coded multi-level preamble sequence transmitted by the UE.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • a user equipment UE includes: a processing unit and a sending unit.
  • the processing unit is configured to generate a random backoff time
  • the sending unit is configured to send the encoded multi-level preamble sequence after the random backoff time of the start point of the physical random access channel (PRACH) slot of the UE.
  • PRACH physical random access channel
  • the UE in the embodiment of the present application can be used to perform the sending method of the preamble sequence described in the foregoing first aspect. Therefore, the technical effects that can be obtained by the UE may be referred to when the UE performs the preamble sending method in the foregoing first aspect. The technical effects are not described here.
  • a base station comprising: a receiving unit and a processing unit.
  • a receiving unit configured to receive a signal on a PRACH time slot of a physical random access channel;
  • a processing unit configured to demodulate a signal on a PRACH time slot;
  • a processing unit configured to acquire, when the preamble sequence is detected, an arrival of the preamble sequence a time offset from a start point of a PRACH slot of the base station, the time offset being equal to a random backoff time plus a propagation time determined by a distance between the user equipment UE and the base station;
  • the processing unit is further configured to have a combination
  • the preamble sequence of the time offset obtains the encoded multi-level preamble sequence transmitted by the UE.
  • the base station in the embodiment of the present application can be used to perform the receiving method of the preamble sequence described in the foregoing second aspect. Therefore, the technical effects that can be obtained by referring to the method for receiving the preamble sequence performed by the base station in the second aspect above may be referred to. The technical effects are not described here.
  • the random backoff time is between 0 and n i T s , where n i As an integer, T s represents the sampling period set by the system.
  • the UE in combination with the first possible implementation manner of the first aspect, in a second possible implementation manner of the foregoing aspect, the UE generates a random backoff time, which may include:
  • the UE generates a random backoff time according to the following first formula:
  • T1 (C i modn i ) ⁇ T s , where T1 represents a random backoff time, C i is a pseudo random number, and mod() represents a remainder.
  • the processing unit is specifically configured to:
  • T1 (C i modn i ) ⁇ T s , where T1 represents a random backoff time, C i is a pseudo random number, and mod() represents a remainder.
  • the random backoff time is generated by using the following first formula:
  • T1 (C i modn i ) ⁇ T s , where T1 represents a random backoff time, C i is a pseudo random number, and mod() represents a remainder.
  • the manner of generating the random backoff time by using the first formula is only one possible way to generate the backoff time.
  • the UE may generate a random backoff time between 0 and n i T s that is subject to the agreed distribution in any manner, which is not specifically limited in this patent application embodiment.
  • the multi-level preamble sequence includes The information preamble sequence and the collision avoidance preamble sequence are used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the method may further include: determining, by the UE, the information preamble sequence according to the state information of the UE, and the UE randomly selecting to obtain the collision avoidance preamble sequence.
  • the state information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the UE.
  • the determining, by the UE, the information preamble sequence according to the state information of the UE may include: determining, by the UE, the information preamble sequence from the information preamble sequence subset corresponding to the information of the first state of the UE according to the information of the first state of the UE and the mapping relationship.
  • the multi-level preamble sequence includes The information preamble sequence and the collision avoidance preamble sequence are used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the method may further include: the base station decoding the codeword corresponding to the multi-level preamble sequence according to the codebook configured by the system, to obtain the information preamble sequence and Collision backoff sequence; base station based on this information
  • the preamble sequence determines status information of the UE.
  • the state information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the base station.
  • the determining, by the base station, the status information of the UE according to the information preamble sequence may include: determining, by the base station, the information of the first state corresponding to the information preamble sequence subset of the information preamble sequence as the UE according to the information preamble sequence and the mapping relationship Information about the first state.
  • the multi-level preamble sequence includes The information preamble sequence and the collision avoidance preamble sequence are used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the processing unit is further configured to: before the UE sends the encoded multi-level preamble sequence, determine an information preamble sequence according to the state information of the UE, and randomly select to obtain a collision avoidance preamble sequence.
  • the state information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the UE;
  • the processing unit is configured to determine, according to the information about the first state of the UE and the mapping relationship, the information preamble sequence from the information preamble sequence subset corresponding to the information of the first state of the UE.
  • the multi-level preamble sequence includes The information preamble sequence and the collision avoidance preamble sequence are used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the processing unit is further configured to: after combining the preamble sequence having the time offset, obtain the encoded multi-level preamble sequence sent by the UE, decode the codeword corresponding to the multi-level preamble sequence according to the codebook configured by the system, and obtain the information preamble sequence and The collision backoff sequence.
  • the processing unit is further configured to determine status information of the UE according to the information preamble sequence.
  • the status information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the base station.
  • the processing unit is configured to: determine, according to the information preamble sequence and the mapping relationship, the information of the first state corresponding to the information preamble sequence subset where the information preamble sequence is located, and the information of the first state of the UE.
  • the information preamble sequence in the embodiment of the present application can be used to represent the state information of the UE, that is, the state information of the UE can be implicitly carried, so that the signaling overhead reported by the state information in the mass connection scenario can be reduced, and system resources are saved. . Meanwhile, since the collision avoidance preamble sequence in the embodiment of the present patent application is used to distinguish UEs having the same state information (that is, users who select the same information preamble sequence), and the collision avoidance preamble sequence is randomly selected, the difference is also reduced. The probability of collision of the UE's random access.
  • the number of preamble sequences in the subset of the information preamble sequence Si may be configured in multiple manners. Three configurations are exemplarily given below:
  • the number of preamble sequences in the subset of each information preamble sequence is the same.
  • all information preamble sequences are evenly distributed in each subset, that is, the number of preamble sequences in each information preamble sequence subset is the same.
  • the UE and the base station only need to determine the preamble sequence number in each subset according to the number of information preamble sequences and the number of subsets. This method is the simplest and has the lowest signaling overhead.
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences may be configured by using the following second formula:
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences may be configured by the following third formula:
  • the information preamble sequence is divided into sub-sets with a probability distribution of the required carrying state. This method makes more efficient use of the limited preamble sequence.
  • Manner 3 In a subset of multiple information preamble sequences, the number of preamble sequences in the subset of each information preamble sequence may be dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • the number of collisions of the information preamble sequence in the subset Si relative to other subsets is significantly increased, the number of information preamble sequences of the subset may be increased; if the information preamble sequence in the subset Si is relative to the other The number of collisions of the subset is significantly reduced, and the number of information preamble sequences of the subset is correspondingly reduced.
  • This method can track the state of the system most effectively and maximize the utilization of the preamble sequence, but dynamic adjustment requires base station broadcasting and requires additional signaling overhead.
  • the foregoing merely exemplifies the configuration of the number of preamble sequences in the subset Si of the three kinds of information preamble sequences.
  • the preamble sequence in the subset of the information preamble sequence The number of the first embodiment is not limited to the above-mentioned three types, and the number of the preamble sequences in the subset of the subsets of the information preamble sequence Si may be configured by other methods.
  • any one of the foregoing optional implementations of the first aspect or the first aspect; or, in the optional implementation manner of the foregoing second aspect or the second aspect; or The aspect or any optional implementation of the third aspect; or, in the foregoing fourth aspect or any optional implementation manner of the fourth aspect if the PRACH time slot is sufficiently long, multiple preamble sequences may be The transmission is completed within one PRACH slot. That is, the multi-level preamble sequences are distributed in the same PRACH slot.
  • the multi-level preamble sequence needs to be sent through multiple PRACH slots. That is, each preamble sequence in the multi-level preamble sequence is distributed in different PRACH slots, respectively.
  • the UE may use a timer to count the start time of the PRACH time slot of the UE, and the timing of the timer is configured as the random backoff time. Further, when the timer time is 0, the UE sends the encoded multi-level preamble sequence or the first-level preamble sequence in the encoded multi-level preamble sequence; or, the UE may use a timer to perform timing, and the initial time is configured as 0, when timing When the timing of the timer is the random backoff time described above, the UE transmits the encoded multi-level preamble sequence or the first-order preamble sequence in the encoded multi-level preamble sequence.
  • the manner in which the UE is timed by the embodiment of the present patent application is not specifically limited.
  • each of the preamble sequences in the multi-level preamble sequence may be as follows The fourth formula is generated:
  • Z u function(u), where Z u represents the preamble sequence numbered u, u is the number of the preamble sequence, and function() represents the function.
  • the UE may generate a ZC sequence using a network selected and broadcast ZC (zadoff-chu) root sequence identifier, and generate a set of preamble sequences according to a left shift N (N is specified by the system) bit, according to the preamble sequence.
  • N is specified by the system
  • the order is numbered. Since the root sequence identification and the shift mode are the same, the base station and all UEs know the number information of the preamble sequence.
  • a user equipment UE comprising: a transmitter; a memory and a processor.
  • the memory is configured to store instructions; the processor is separately coupled to the transmitter and the memory for executing instructions stored in the memory to generate a random backoff time; and the random backoff time is at a starting point of the physical random access channel PRACH slot of the UE After that, the transmitter is instructed to send the encoded multi-level preamble sequence.
  • the random backoff time is between 0 and n i T s , where n i is an integer, and T s represents a system setting. Sampling period.
  • the generating the random backoff time may include:
  • T1 (C i modn i ) ⁇ T s , where T1 represents a random backoff time, C i is a pseudo random number, and mod() represents a remainder.
  • the multi-level preamble sequence distribution within the same PRACH slot; or each of the preamble sequences in the multi-level preamble sequence is distributed in different PRACH slots.
  • the multi-level preamble sequence includes an information preamble
  • the sequence and collision avoidance preamble sequence is used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the method further includes: determining an information preamble sequence according to the state information of the UE, and randomly selecting to obtain the collision avoidance preamble sequence.
  • the state information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the UE.
  • Determining the information preamble sequence according to the state information of the UE may include: determining, according to information about the first state of the UE, the information preamble from the information preamble sequence subset corresponding to the information of the first state of the UE. sequence.
  • the subset of the plurality of information preamble sequences is configured by the following second formula:
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences is configured by the following third formula:
  • the subset of the multiple information preamble sequences, the sub-information of each information preamble sequence is the same.
  • the number of preamble sequences in the subset of each information preamble sequence is dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • each of the multi-level preamble sequences is generated by the following fourth formula:
  • Z u function(u), where Z u represents the preamble sequence numbered u, u is the number of the preamble sequence, and function() represents the function.
  • the technical effects that can be obtained can be referred to the above.
  • the technical effect of the method for transmitting the preamble sequence by the UE in the first aspect or the optional implementation manner of the first aspect is not described herein again.
  • a base station comprising: a processor, a memory, and a receiver.
  • the memory is configured to store instructions; the processor is coupled to the transmitter and the memory, respectively, for executing instructions stored in the memory to receive and demodulate signals on the physical random access channel PRACH time slot by the receiver; if the processor detects the preamble The sequence obtains a time offset between the arrival time of the preamble sequence and the start point of the PRACH slot of the base station, and combines the preamble sequence having the time offset to obtain a coded multi-level preamble sequence sent by the user equipment UE, where the time offset is equal to The random backoff time plus the sum of the propagation times determined by the distance between the user equipment UE and the base station.
  • the random backoff time is between 0 and n i T s , where n i is an integer, and T s represents a system setting.
  • the sampling period is between 0 and n i T s , where n i is an integer, and T s represents a system setting.
  • the random backoff time is generated by using the first formula:
  • T1 (C i modn i ) ⁇ T s , where T1 represents a random backoff time, C i is a pseudo random number, and mod() represents a remainder.
  • the multi-level preamble sequence distribution within the same PRACH slot; or each of the preamble sequences in the multi-level preamble sequence is distributed in different PRACH slots.
  • the multi-level preamble sequence includes an information preamble
  • the sequence and collision avoidance preamble sequence is used to characterize the state information of the UE, and the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the method may further include: decoding, by the processor according to the codebook configured by the system, the codeword corresponding to the multi-level preamble sequence to obtain information. a preamble sequence and a collision backoff preamble sequence; determining state information of the UE according to the information preamble sequence.
  • the status information includes information of the first state.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the base station.
  • the determining, by the processor, the status information of the UE according to the information preamble sequence may include: determining, by the processor, the first state information corresponding to the information preamble sequence subset of the information preamble sequence according to the information preamble sequence and the mapping relationship Information for the first state of the UE.
  • the subset of the plurality of information preamble sequences is configured by the following second formula:
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences is configured by the following third formula:
  • the subset of the multiple information preamble sequences, the preamble sequence of the subset of each information preamble sequence The number is the same.
  • the number of preamble sequences in the subset of each information preamble sequence is dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • the multi-level preamble sequence is generated by the following fourth formula:
  • Z u function(u), where Z u represents the preamble sequence numbered u, u is the number of the preamble sequence, and function() represents the function.
  • the base station in the embodiment of the present application can be used to perform the receiving method of the preamble sequence described in the foregoing second aspect or any alternative implementation manner of the second aspect, so that the technical effects can be obtained by referring to the foregoing.
  • the technical effect of the receiving method of the preamble sequence performed by the base station in the second aspect or the optional implementation manner of the second aspect is not described herein again.
  • a seventh aspect a transmitting and receiving system for a preamble sequence, comprising the base station according to the fourth aspect or the optional implementation of any one of the fourth aspect, and the plurality of third or third aspects a UE as described in any one of the optional implementations; or a base station as described in the optional implementation of any of the sixth or sixth aspect, and the plurality of the fifth or fifth aspect The UE described in any of the alternative implementations.
  • the UE transmits the encoded multi-level preamble sequence after the random backoff time generated by the UE at the start point of the PRACH slot of the UE, and if the base station demodulates the signal on the PRACH slot, if the signal is detected Obtaining a preamble sequence in the multi-level preamble sequence, obtaining a time offset of an arrival time of the preamble sequence and a start point of a PRACH slot of the base station, and combining the preamble sequence having the time offset to obtain a multi-level of coding of the UE Lead sequence.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • a readable medium comprising: computer-executed instructions, when the processor of the UE executes the computer to execute an instruction, the UE performs the optional implementation in any one of the foregoing first aspect or the first aspect The method of transmitting the preamble sequence described.
  • a readable medium comprising computer-executable instructions, when the processor of the base station executes the computer to execute an instruction, the base station performs the second aspect or the second aspect as described above A method of receiving a preamble sequence as described in an alternative implementation.
  • 1 is a schematic flowchart of a random access procedure in an LTE or LTE-A system
  • FIG. 3 is a schematic flowchart 1 of a method for transmitting and receiving a preamble sequence according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a transmission timing of a preamble sequence provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a base station side preamble sequence arrival time according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a multi-level preamble sequence provided by an embodiment of the present application.
  • FIG. 7 is a second schematic flowchart of a method for transmitting and receiving a preamble sequence according to an embodiment of the present disclosure
  • FIG. 8 is a first configuration manner of PRACH resources provided by an embodiment of the present application.
  • FIG. 9 is a second configuration manner of PRACH resources provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 1 of a UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 1 of a base station according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram 2 of a UE according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 2 of a base station according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a random access procedure in an LTE or advanced LTE-Advanced (LTE-A) system, where the random access procedure specifically includes steps 101-104:
  • Message 1 The UE sends a random access preamble sequence to the base station through the PRACH.
  • message 2 the base station replies to the random access response (random access) Response, RAR).
  • RAR random access response
  • UE sends an initial uplink transmission in a random access procedure to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • Message 4 The base station replies to the UE with a contention resolution message.
  • step 101 Specifically, in step 101:
  • the random access preamble sequence is one of a plurality of preamble sequence formats, and each preamble sequence format includes a cyclic prefix and a sequence.
  • the PRACH occupies 1.08 MHz, that is, six physical random blocks (PRBs).
  • the UE sends a random access preamble sequence on a predefined time resource and frequency resource.
  • some dedicated random access preamble sequences are reserved for non-contention based random access, and only 54 random access preambles are used.
  • the sequence is used for contention based random access.
  • the UE randomly selects one of the contention-based random access preamble sequence sets for transmission, so there is a possibility that multiple UEs simultaneously select the same random access preamble sequence, which requires subsequent Competitive program.
  • the base station configures a dedicated random access preamble sequence through dedicated signaling, and the UE performs random access by using the dedicated random access preamble sequence.
  • step 102 Specifically, in step 102:
  • the UE After transmitting the random access preamble sequence, the UE detects a physical downlink control channel (PDCCH) in each subframe in a random access response window.
  • the downlink control information (DCI) carried by the PDCCH is used to schedule a physical downlink shared channel (PDSCH), and the RAR is carried by the PDSCH.
  • the base station uses a random access radio network temporary identifier (random access radio network temporary identifier, RA-RNTI) calculates the scrambling code sequence and scrambles the PDCCH.
  • RA-RNTI random access radio network temporary identifier
  • the scrambling of the PDCCH is performed by scrambling a cyclic redundancy check (CRC) of the DCI carried by the PDCCH, and the RA-RNTI is configured by the base station according to the PRACH combining formula of the random access preamble sequence detected by the bearer.
  • CRC cyclic redundancy check
  • RA-RNTI 1+t_id+10*f_id Formula (1)
  • the t_id indicates the sequence number of the first subframe in which the PRACH carrying the random access preamble sequence detected by the base station is located, 0 ⁇ t_id ⁇ 10.
  • F_id represents the PRACH second index of the first subframe in which the PRACH carrying the random access preamble sequence is located, 0 ⁇ f_id ⁇ 6.
  • the UE obtains the RA-RNTI according to the PRACH combining formula (1) that carries the random access preamble sequence sent by the UE.
  • the UE After detecting the PDCCH scrambled by the scrambling code sequence calculated by the RA-RNTI, the UE continues to detect the DCI carried by the PDCCH.
  • the scheduled PDSCH is in the MAC header part of the media access contro (MAC) protocol data unit (PDU) carried by the PDSCH, and the UE searches for the random access preamble selected by itself.
  • the MAC subheader of the random access preamble index (RAPID) of the sequence, the RAPID is used to indicate the random access preamble sequence detected by the base station, and includes 6 bits for indicating 64 preambles. sequence.
  • the MAC subheader indicates that the MAC PDU includes an RAR for the UE. If the UE does not receive the RAR for itself within the random access response window, it will retransmit the random access preamble. When the retransmission reaches a certain number of times, the random access fails.
  • the RAR also includes information such as a timing alignment command, an initial uplink resource for message 3 grant transmission, and a cell radio network temporary identifier (C-RNTI).
  • step 103 Specifically, in step 103:
  • the UE After successfully receiving the RAR in the random access response window, the UE transmits the initial uplink transmission in the random access process to the base station through the PUSCH in a certain subframe after receiving the RAR, such as radio resource control (radio). Resource control, RRC) link request, tracking area update or scheduling request, etc.
  • the message 3 is scrambled according to the temporary C-RNTI included in the RAR, and includes the identifier of the UE in the cell for contention resolution.
  • step 101 in a contention random access procedure, there may be cases where multiple UEs simultaneously transmit the same preamble sequence. In this case, different UEs will receive the same RAR, thus obtaining the same temporary C-RNTI, and thus at the same time according to the same temporary C-RNTI.
  • Message 3 is sent on the inter-resource and frequency resources, causing the collision of the transmission of the message 3. If the base station cannot successfully decode the message 3, the UE needs to retransmit the message 3. When the UE reaches the maximum number of retransmissions, a new random will start. Access process. If the base station can successfully decode the message 3, step 104 is performed.
  • step 104 Specifically, in step 104:
  • the UE receives the contention resolution message according to the identifier of the UE in the local cell or contains the identifier of the UE in the local cell, the random access is considered successful; otherwise, when the timer expires, the random access fails.
  • the non-contention based random access procedure includes the first two steps of the foregoing random access procedure, and the contention based random access procedure includes all four steps of the random access procedure.
  • the prior art proposes a solution for preamble coding and transmission.
  • the scheme combines multiple time slots of PRACH time-frequency resources.
  • the UE transmits a preamble sequence on each time slot of the combined time slot.
  • the preamble sequences transmitted on multiple time slots form a coding effect, increasing the number of equivalent preamble sequences.
  • preamble sequences Take two preamble sequences in two time slots as an example. It is assumed that the preamble sequence has two optional A and B preamble sequences for contention based random access.
  • the four combinations shown in Table 1 can be generated by coded transmission of two time slots. The total number of combinations grows quadratically with the size of the set of preamble sequences. When the number of current pilot sequences increases, the number of equivalent preambles available after encoding is transmitted will be more.
  • the preamble sequence set has four A, B, C, and D for contention-based random access preambles.
  • User 1 transmits (A, B) on two time slots
  • User 2 transmits (C, D) on two time slots.
  • the base station decodes the preamble sequences A and C on the first time slot, and decodes the B and D in the second time slot, which may be considered as (A, B), (C, D), (A, D) and (C, B) A preamble sequence sent by four users, which allocates uplink resources for four users, thereby causing waste of resources.
  • the embodiment of the present application provides a method, a device and a system for transmitting and receiving a preamble sequence.
  • the core idea is that the UE sends the encoded multi-level preamble sequence after a random backoff time.
  • the base station combines the preamble sequences having the same time offset to distinguish different UEs according to the time deviation of receiving the preamble sequence from the start point of the base station's PRACH slot.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence with the same time offset can be considered to be sent by the same UE.
  • the preamble sequence thereby reducing the probability of pseudo-users transmitted by the preamble sequence.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers.
  • the pieces can be executed from a variety of computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • the wireless communication network in the present application is a network that provides wireless communication functions.
  • Wireless communication networks may employ different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), and time division multiple access (TDMA).
  • Code division multiple access CDMA
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • Frequency division multiple access (FDMA) orthogonal frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • carrier Sense of multiple access with collision avoidance According to the capacity, rate, delay and other factors of different networks, the network can be divided into 2G (English: generation) network, 3G network or 4G network.
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM general packet radio service
  • GPRS general packet radio service
  • a typical 3G network includes a universal mobile communication system (universal mobile communication system).
  • a typical 4G network includes a long term evolution (LTE) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (E-).
  • E- evolved universal terrestrial radio access network
  • UTRAN Universal Terrestriality
  • it can be divided into a cellular communication network and a wireless local area network (WLAN), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • WLAN wireless local area network
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks.
  • a UE is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
  • the device is mainly used to receive or send business data.
  • User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc.
  • the user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functionality.
  • a device providing a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device providing the base station function in the 3G network includes a Node B (NodeB) and the wireless device.
  • a radio network controller (RNC) which provides a base station function in a 4G network, includes an evolved NodeB (eNB).
  • eNB evolved NodeB
  • a device that provides a base station function is an access point (AP). ).
  • a wireless network device which may be a base station, which may be used to communicate with one or more user devices, or may be used with one or more functions having partial user devices.
  • the base station performs communication (such as communication between the macro base station and the micro base station, such as an access point);
  • the wireless network device can also be a user equipment, and the user equipment can be used for communication by one or more user equipments (such as device to device) (device-to-device, D2D) communication, which can also be used to communicate with one or more base stations.
  • D2D device-to-device
  • User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
  • the user equipment can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a wireless local loop (WLL) station, a personal digital assistant (PDA). ), a laptop computer, a handheld communication device, a handheld computing device, a satellite wireless device, a wireless modem card, and/or other processing device for communicating over a wireless system.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B, or some other network entity. And may include some or all of the functions of the above network entities.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame to an IP packet, wherein the access network includes an internet protocol (IP) network.
  • IP internet protocol
  • the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
  • the present application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the words “exemplary” or “such as” are used to mean an example, an illustration, or a description. Any embodiment or design described as “example” or “such as” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present a concept in a specific manner.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present patent application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present patent application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present patent application are equally applicable to similar technical problems.
  • the embodiment of the present patent application is based on the scenario of the 4G network in the wireless communication network. It should be noted that the solution in the embodiment of the present patent application can also be applied to other wireless communication networks, and the corresponding names can also be used in other wireless communication networks. Replace the name of the corresponding function in .
  • FIG. 2 it is a schematic diagram of a transmission and reception system architecture of a preamble sequence provided by an embodiment of the present application.
  • the transmission and reception system of the preamble sequence includes a base station, and multiple UEs in a cell managed by the base station.
  • the base station can separately communicate with each of the multiple UEs.
  • the embodiment of the present application provides a method for transmitting and receiving a preamble sequence, and the base station interacts with any UE in the cell managed by the base station as an example. As shown in FIG. 3, steps S301-S305 are included:
  • the UE generates a random backoff time.
  • the UE After the random backoff time of the start point of the PRACH slot of the UE, the UE sends the encoded multi-level preamble sequence.
  • the base station demodulates the signal on the PRACH slot.
  • the base station acquires a time offset between an arrival time of the preamble sequence and a start point of a PRACH slot of the base station.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the base station combines the preamble sequence with the time offset to obtain a coded multi-level preamble sequence sent by the UE.
  • step S301 of the embodiment of the present patent application
  • the UE may generate a random backoff time between 0 and n i T s that is subject to the agreed distribution in any manner, which is not specifically limited in this patent application embodiment.
  • the agreed distribution may be evenly distributed.
  • the UE may generate a random backoff time by using the following first formula (formula (2)):
  • T1 represents a random backoff time
  • C i is a pseudo random number
  • mod() represents a remainder
  • n i is an integer
  • T s represents a sampling period
  • the random backoff time T1 is within the interval [0, n i T s ].
  • Table 2 lists the random access preamble parameters including the random backoff parameter values, and the use of these parameters depends on the frame structure and the random access configuration.
  • the random access configuration is controlled by the upper layer.
  • the random backoff parameter value is determined by the cell coverage and/or the system load to improve the resolution of the base station for users with different backoff times, while ensuring that the transmission of the preamble sequence is within the PRACH slot.
  • step S302 of the embodiment of the present patent application
  • Each of the preamble sequences in the multi-level leader sequence can be specifically generated by the following fourth formula (formula (3)):
  • Z u represents the preamble sequence numbered u
  • u is the number of the preamble sequence
  • function() represents the function
  • the UE may generate a ZC sequence using a network selected and broadcast ZC (zadoff-chu) root sequence identifier, and generate a set of preamble sequences according to a left shift N (N is specified by the system) bit, according to the preamble sequence.
  • N is specified by the system
  • the order is numbered. Since the root sequence identification and the shift mode are the same, the base station and all UEs know the number information of the preamble sequence.
  • the UE may use the existing coding preamble sequence to encode the multi-level preamble sequence, which is not specifically limited in this patent application embodiment.
  • the UE sends a preamble sequence on a PRACH slot designated by the base station.
  • the time Tp required to transmit the preamble sequence is less than the duration T of the PRACH slot.
  • the start time of the UE transmitting the preamble sequence is the start point of the PRACH slot plus a random backoff time, that is, the UE starts transmitting the preamble sequence after a random backoff time. Since the random backoff time is a random value, that is, the UE randomly selects the start transmission time, and the distance between the user and the base station is different, the time at which the preamble sequence transmitted by each UE arrives at the base station is different.
  • steps S304 and S305 of the embodiment of the present patent application are identical to steps S304 and S305 of the embodiment of the present patent application:
  • the time deviation of the arrival time of the preamble sequence from the start point of the PRACH slot of the base station is equal to the random backoff time in the first formula (formula (2)) plus the propagation time determined by the distance between the UE and the base station. And.
  • the same UE transmits a preamble sequence in each time slot of multiple PRACH slots, when multiple preamble sequences of the same UE arrive at the base station, they have the same deviation from the start point of the PRACH slot of the base station; Since the random backoff time is randomly selected when the preamble sequence is transmitted, and the distance to the base station is different, the preamble sequences transmitted by different UEs have different timing offsets.
  • the UE is in the UE according to the method for transmitting and receiving the preamble sequence provided by the embodiment of the present patent application.
  • the start point of the PRACH time slot is transmitted by the UE after the random backoff time, and the coded multi-level preamble sequence is transmitted.
  • the base station demodulates the signal on the PRACH time slot, if the preamble sequence in the multi-level preamble sequence is detected, the The time difference between the arrival time of the preamble sequence and the start point of the PRACH slot of the base station, and then combining the preamble sequence having the time offset to obtain the encoded multi-level preamble sequence transmitted by the UE.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station. That is, the base station combines the preamble sequences having the same time offset to distinguish different UEs according to the time deviation of the received preamble sequence from the start point of the PRACH slot of the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • the multi-level preamble sequence in step S302 may specifically include an information preamble sequence and a collision avoidance preamble sequence, where the information preamble sequence is used to represent the UE. Status information, the collision avoidance preamble sequence is used to distinguish UEs with the same status information.
  • FIG. 6 is only a schematic diagram showing the structure of a multi-level preamble sequence, where the information preamble sequence in the multi-level preamble sequence includes one preamble sequence, and the collision avoidance preamble sequence includes two. Lead sequence.
  • the information preamble sequence is not limited to one preamble sequence
  • the collision avoidance preamble sequence is not limited to two preamble sequences.
  • the number of preamble sequences in the information preamble sequence and the collision avoidance preamble sequence may be any value. This is not specifically limited.
  • the configuration of the multi-level preamble sequence is not limited to the embodiment of the present application, and may be applied to other schemes including the multi-level preamble sequence as a separate solution, which is not specifically limited in this patent application embodiment.
  • the UE sends the encoded multi-level preamble sequence (step S302), and may further include step S306:
  • the UE determines an information preamble sequence according to the state information of the UE, and the UE randomly selects to obtain a collision avoidance preamble sequence.
  • step S307 and step S308 may also be included:
  • the base station decodes the codeword corresponding to the multi-level preamble sequence according to the codebook configured by the system, and obtains the information preamble sequence and the collision backoff preamble sequence.
  • the base station determines status information of the UE according to the information preamble sequence.
  • the codebook configuration of the system is usually controlled by a higher layer.
  • a list of all available preambles is listed in Table 3.
  • one codeword corresponds to at least two preamble sequences.
  • the preamble sequence codebook can be specified by adding a prach-Code Book Index field to the PRACH configuration (English: PRACH-ConfigInfo) in the System Information Block (SIB) 2.
  • SIB2 can be as follows:
  • RadioResourceConfigCommonSIB:: SEQUENCE ⁇
  • PRACH-ConfigInfo:: SEQUENCE ⁇
  • the information preamble sequence in the embodiment of the present application can be used to represent the state information of the UE, that is, the state information of the UE can be implicitly carried, so that the signaling overhead reported by the state information in the mass connection scenario can be reduced, and system resources are saved. . Meanwhile, since the collision avoidance preamble sequence in the embodiment of the present patent application is used to distinguish UEs having the same state information (that is, users who select the same information preamble sequence), and the collision avoidance preamble sequence is randomly selected, the difference is also reduced. The probability of collision of the UE's random access.
  • the status information in the embodiment shown in FIG. 7 may specifically include information of the first status.
  • the first state may be a cached state, or may be a state of various UEs, such as a user level, which is not specifically limited in this patent application embodiment.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is pre-stored in the UE and the base station.
  • step S306 the UE determines the information preamble sequence according to the state information of the UE, which may specifically include:
  • the UE determines the information preamble sequence from the information preamble sequence subset corresponding to the information of the first state of the UE according to the information and the mapping relationship of the first state of the UE.
  • the determining, by the base station, the status information of the UE according to the information preamble sequence may specifically include:
  • the base station determines, according to the information preamble sequence and the mapping relationship, the information of the first state corresponding to the information preamble sequence subset where the information preamble sequence is located, and the information of the first state of the UE.
  • the first state is specifically a buffer state
  • a probability distribution of the cache size of the UE may be obtained.
  • the buffer size space is divided into multiple parts, each part representing a cache state, and the preamble sequence set is divided into multiple subsets.
  • the number of buffer states is equal to the number of subsets of the preamble sequence, and one-to-one correspondence.
  • the mapping relationship between the information preamble sequence subset Si and the buffer state information may be as shown in Table 4.
  • the UE may determine that the information preamble sequence of the UE is the preamble sequence in the information preamble sequence subset S2 according to the information of the buffer status.
  • the base station may determine that the information of the buffer status of the UE is within the [B 1 , B 2 ] interval according to the information preamble sequence and the fourth table. In this way, by carrying the information of the buffer state of the UE in the information preamble sequence, the signaling overhead reported by the state information in the massive connection scenario can be reduced, and system resources are saved.
  • the preamble sequence set may be divided into a plurality of subsets.
  • the number of user levels and the number of preamble sequences are equal, and one-to-one correspondence.
  • the mapping relationship between the information preamble sequence subset Si and the user level information may be as shown in Table 5.
  • the UE may determine that the information preamble sequence of the UE is the preamble sequence in the information preamble sequence subset S2 according to the information of the user level, and the base station receives the information preamble sent by the UE.
  • the sequence (assumed to be Z i0 )
  • the user level information of the UE can be determined to be 2 according to the information preamble sequence and Table 5. In this way, by carrying the information of the user level of the UE in the information preamble sequence, the signaling overhead reported by the state information in the massive connection scenario can be reduced, and system resources are saved.
  • the number of preamble sequences in the subset of the subset of information preambles in the embodiment of the present patent application may have multiple configurations.
  • the following three exemplary configurations are given by way of example:
  • the number of preamble sequences in the subset of each information preamble sequence is the same.
  • all information preamble sequences are evenly distributed in each subset, that is, the number of preamble sequences in each information preamble sequence subset is the same.
  • the UE and the base station only need to determine the preamble sequence number in each subset according to the number of information preamble sequences and the number of subsets. This method is the simplest and has the lowest signaling overhead.
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences may be configured by the following second formula (formula (4)):
  • the number of preamble sequences in the subset subset Si of the plurality of information preamble sequences may be configured by the following third formula (formula (5)):
  • the information preamble sequence is divided into sub-sets with a probability distribution of the required carrying state. This method makes more efficient use of the limited preamble sequence.
  • Manner 3 In a subset of multiple information preamble sequences, the number of preamble sequences in the subset of each information preamble sequence may be dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • the number of information preamble sequences of the subset may be increased; if the information preamble sequence in the subset Si is relative to the other The number of collisions of the subset is significantly reduced, and the information of the subset is reduced accordingly.
  • the number of leading sequences This method can track the state of the system most effectively and maximize the utilization of the preamble sequence, but dynamic adjustment requires base station broadcasting and requires additional signaling overhead.
  • the foregoing merely exemplifies the configuration of the number of preamble sequences in the subset Si of the three kinds of information preamble sequences.
  • the preamble sequence in the subset of the information preamble sequence The number of the first embodiment is not limited to the above-mentioned three types, and the number of the preamble sequences in the subset of the subsets of the information preamble sequence Si may be configured by other methods.
  • FIG. 8 shows the configuration of the PRACH resource by taking two preamble sequences in one PRACH slot as an example.
  • the UE sends the encoded multi-level preamble sequence (step S302), which may specifically include:
  • the UE If the multi-level preamble sequence is sent through one PRACH slot, the UE starts timing at the beginning of the PRACH slot; when the timing is a random backoff time, the UE transmits the encoded multi-level preamble sequence.
  • the UE may use a timer to perform timing, and the timing of the timer is configured as the random backoff time. Further, when the timer time is 0, the UE sends the encoded multi-level preamble sequence; or, the UE may use a timer to perform timing, and the initial time is configured as 0. When the timer time is the random backoff time, the UE The encoded multi-level leader sequence is transmitted.
  • the manner in which the UE is timed by the embodiment of the present patent application is not specifically limited.
  • the timer may be started at the beginning of the most recently available PRACH slot.
  • the selected plurality of preamble sequences are continuously transmitted.
  • the base station detects two preamble sequences by demodulating the signals on the PRACH resources, and can combine the preamble sequences whose arrival times differ by one preamble transmission time.
  • the multi-level preamble sequence needs to be sent through multiple PRACH time slots. That is, each preamble sequence in the multi-level preamble sequence is respectively distributed in different PRACH slots.
  • Figure 9 is sent in two PRACH slots.
  • the two preamble sequences give an example of how the PRACH resources are configured.
  • the UE sends the encoded multi-level preamble sequence (step S302), which may specifically include:
  • the UE If the primary preamble sequence is sent through one PRACH slot, the UE starts timing at the beginning of the multiple available PRACH slots, and when the timing is the random backoff time, the UE separately sends one of the encoded multi-level preamble sequences. Level leader sequence.
  • the UE may use a timer to perform timing, and the timing of the timer is configured as the random backoff time. Further, when the timer time is 0, the UE sends the first-level preamble sequence in the encoded multi-level preamble sequence; or, the UE may use a timer to perform timing, and the initial time is configured as 0, when the timer is timed as described above. At the random backoff time, the UE transmits a primary preamble sequence in the encoded multi-level preamble sequence.
  • the manner in which the UE is timed by the embodiment of the present patent application is not specifically limited.
  • the timer may be started at the start point of the most recently available PRACH slot, and the first preamble sequence is sent when the timer reaches 0;
  • the start point of the PRACH slot restarts the timer, the timing is still t RA , and the second preamble sequence is sent at the end of the timing.
  • the base station detects the preamble sequence of each time slot by demodulating the signal on the PRACH resource, and can combine the preamble sequences whose arrival time has a correlation deviation from the start point of the PRACH time slot.
  • the embodiment of the present application provides a UE 100, which is used to perform the steps performed by the UE in the method for transmitting and receiving the preamble sequence shown in FIG. 3 or FIG. 7 above.
  • the UE 100 may include a unit corresponding to the corresponding step.
  • the processing unit 1001 and the sending unit 1002 may be included.
  • the processing unit 1001 is configured to generate a random backoff time.
  • the sending unit 1002 is configured to send the encoded multi-level preamble sequence after the random backoff time of the start point of the PRACH slot of the UE.
  • each preamble sequence in the multi-level preamble sequence may be generated by using the foregoing formula (3), and details are not described herein again.
  • the UE may generate a random backoff time between 0 and n i T s that is subject to the agreed distribution in any manner, which is not specifically limited in this patent application embodiment.
  • the agreed distribution may be evenly distributed.
  • the processing unit 1001 can generate a random backoff time by using the above formula (2), which is not described herein again.
  • the multiple preamble sequences may be sent in one PRACH time slot. That is, the multi-level preamble sequences are distributed in the same PRACH slot.
  • the multi-level preamble sequence needs to be sent through multiple PRACH slots. That is, each preamble sequence in the multi-level preamble sequence is respectively distributed in different PRACH slots.
  • the multi-level preamble sequence includes an information preamble sequence and a collision avoidance preamble sequence, where the information preamble sequence is used to represent state information of the UE 100, where the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the processing unit 1001 is further configured to: before the sending unit 1002 sends the encoded multi-level preamble sequence, determine an information preamble sequence according to the state information of the UE 100, and randomly select to obtain a collision avoidance preamble sequence.
  • the status information includes information of the first status.
  • mapping relationship between the information of the plurality of first states and the subset of the plurality of information preamble sequences is stored in advance in the UE 100.
  • the processing unit 1001 is specifically configured to:
  • the information preamble sequence is determined from the information preamble sequence subset corresponding to the information of the first state of the UE 100 according to the information of the first state of the UE 100 and the mapping relationship.
  • the number of preamble sequences in the subset of the subset of information preambles in the embodiment of the present patent application may have multiple configurations.
  • the following three exemplary configurations are given by way of example:
  • the number of preamble sequences in the subset of each information preamble sequence is the same.
  • all information preamble sequences are evenly distributed in each subset, that is, the number of preamble sequences in each information preamble sequence subset is the same.
  • the UE 100 and the base station only need to determine the preamble sequence number in each subset according to the number of information preamble sequences and the number of subsets.
  • the The method is the simplest and the signaling overhead is minimal.
  • the number of the preamble sequence in the subset of the plurality of information preambles is configured by the above formula (4), and the details of the present application are not described herein again. .
  • the number of the preamble sequences in the subset of the plurality of information preambles is configured by the above formula (5), and the details of the present application are not described herein again.
  • the information preamble sequence is divided into sub-sets with a probability distribution of the required carrying state. This method makes more efficient use of the limited preamble sequence.
  • Manner 3 In a subset of multiple information preamble sequences, the number of preamble sequences in the subset of each information preamble sequence may be dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • the number of collisions of the information preamble sequence in the subset Si relative to other subsets is significantly increased, the number of information preamble sequences of the subset may be increased; if the information preamble sequence in the subset Si is relative to the other The number of collisions of the subset is significantly reduced, and the number of information preamble sequences of the subset is correspondingly reduced.
  • This method can track the state of the system most effectively and maximize the utilization of the preamble sequence, but dynamic adjustment requires base station broadcasting and requires additional signaling overhead.
  • the sending unit 1002 in the embodiment of the present application may be an interface circuit, such as a transmitter or a transmitter, having a receiving function on the UE 100.
  • the processing unit 1001 may be a separately set processor or integrated in the UE 100. It can be implemented in a certain processor, and can also be stored in the memory of the UE 100 in the form of program code, and is called by one of the UEs 100 and executes the functions of the above processing unit 1001.
  • the processor described herein may be a central processing unit (CPU), or may be other general purpose processors, digital signal processing (DSP), application specific integrated circuits (ASICs).
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may further include other dedicated areas having the UE 100. The function of the chip.
  • the UE 100 in the embodiment of the present patent application may correspond to the UE in the sending and receiving method of the preamble sequence shown in FIG. 3 or FIG. 7 above, and the division and division of each unit in the UE 100 in this patent application embodiment.
  • the function of the transmitting and receiving methods of the preamble sequence shown in FIG. 3 or FIG. 7 is implemented in the above, and is not described here for brevity.
  • the UE transmits the encoded multi-level preamble sequence after the random backoff time generated by the UE at the start point of the PRACH slot of the UE, and the base station receives the preamble sequence and the PRACH of the base station according to the received base station.
  • the time offset of the start point of the time slot combining the preamble sequences with the same time offset to distinguish different UEs.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • the embodiment of the present application provides a base station 110 for performing the steps performed by a base station in the method for transmitting and receiving a preamble sequence shown in FIG. 3 or FIG. 7 above.
  • the base station 110 may include a unit corresponding to the corresponding step.
  • the receiving unit 1102 and the processing unit 1101 may be included.
  • the receiving unit 1102 is configured to receive a signal on a PRACH slot.
  • the processing unit 1101 is configured to demodulate a signal on a PRACH slot.
  • the processing unit 1101 is further configured to: if the preamble sequence is detected, obtain a time offset between an arrival time of the preamble sequence and a start point of the PRACH slot of the base station 110, where the time offset is equal to the random backoff time plus the UE and the The sum of the propagation times determined by the distance between the base stations.
  • the processing unit 1101 is further configured to combine the preamble sequence having the time offset to obtain an encoded multi-level preamble sequence sent by the UE.
  • each preamble sequence in the multi-level preamble sequence may be generated by using the foregoing formula (3), and details are not described herein again.
  • a random backoff time between 0 and n i T s of the agreed distribution may be generated in any manner, which is not specifically limited in this patent application embodiment.
  • the agreed distribution may be evenly distributed.
  • the random backoff time can be generated by the above formula (2), and the embodiments of the present application are not described herein again.
  • the multi-level preamble sequence includes an information preamble sequence and a collision avoidance preamble sequence, where the information preamble sequence is used to represent state information of the UE, where the collision avoidance preamble sequence is used to distinguish UEs with the same state information.
  • the processing unit 1101 is further configured to: after combining the preamble sequence having the time offset, obtain the coded multi-level preamble sequence sent by the UE, decode the codeword corresponding to the multi-level preamble sequence according to the codebook configured by the system, and obtain the information preamble Sequence and collision backoff sequences.
  • the processing unit 1101 is further configured to determine status information of the UE according to the information preamble sequence.
  • the status information includes information of the first status.
  • the base station 110 stores in advance a mapping relationship between a plurality of information of the first state and a subset of the plurality of information preamble sequences.
  • the processing unit 1101 is specifically configured to:
  • the information of the first state corresponding to the information preamble sequence subset where the information preamble sequence is located is the information of the first state of the UE.
  • the number of preamble sequences in the subset of the subset of information preambles in the embodiment of the present patent application may have multiple configurations.
  • the following three exemplary configurations are given by way of example:
  • the number of preamble sequences in the subset of each information preamble sequence is the same.
  • all information preamble sequences are evenly distributed in each subset, that is, the number of preamble sequences in each information preamble sequence subset is the same.
  • the UE and the base station 110 only need to determine the preamble sequence number in each subset according to the number of information preamble sequences and the number of subsets. This method is the simplest and has the lowest signaling overhead.
  • the number of the preamble sequence in the subset of the plurality of information preambles is configured by the above formula (4), and the details of the present application are not described herein again. .
  • the number of the preamble sequences in the subset of the plurality of information preambles is configured by the above formula (5), and the details of the present application are not described herein again.
  • the information preamble sequence is divided into sub-sets with a probability distribution of the required carrying state. This method makes more efficient use of the limited preamble sequence.
  • Manner 3 In a subset of multiple information preamble sequences, the number of preamble sequences in the subset of each information preamble sequence may be dynamically configured according to the number of random access collisions of the information preamble sequence subset relative to other subsets.
  • the number of collisions of the information preamble sequence in the subset Si relative to other subsets is significantly increased, the number of information preamble sequences of the subset may be increased; if the information preamble sequence in the subset Si is relative to the other.
  • the number of collisions of the subset is significantly reduced, and the number of information preamble sequences of the subset is correspondingly reduced.
  • the method can track the state of the system most effectively and maximize the utilization of the preamble sequence, but the dynamic adjustment requires the base station 110 to broadcast, requiring additional signaling overhead.
  • the receiving unit 1002 in the embodiment of the present disclosure may be an interface circuit, such as a receiver or a receiver, having a receiving function on the base station 110.
  • the processing unit 1101 may be a separately set processor or may be integrated in the base station 110. It can be implemented in one of the processors, and can also be stored in the memory of the base station 110 in the form of program code, and the function of the above processing unit 1101 is called and executed by one of the processors of the base station 110.
  • the processor described herein may be a CPU, and may be other general purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like.
  • the dedicated processor may also include a chip having other dedicated processing functions of the base station 110.
  • the base station 110 in the embodiment of the present patent application may correspond to the base station in the sending and receiving method of the preamble sequence shown in FIG. 3 or FIG. 7 above, and the units in the base station 110 in the embodiment of the present patent application.
  • the division and/or function are used to implement the method for transmitting and receiving the preamble sequence shown in FIG. 3 or FIG. 7 .
  • details are not described herein again.
  • the base station when the base station demodulates the signal on the PRACH time slot, if the preamble sequence in the multi-level preamble sequence is detected, the arrival time of the preamble sequence and the PRACH time slot of the base station are obtained.
  • the time deviation is equal to a random backoff time plus a propagation time determined by a distance between the UE and the base station The sum of the two.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • the embodiment of the present application provides a UE 120, which is used to perform the steps performed by the UE in the sending and receiving method of the preamble sequence shown in FIG. 3 or FIG. 7, the UE 120 includes: a processor 1201. A memory 1202, a bus 1203, and a transmitter 1204.
  • the memory 1202 is configured to store instructions, and the processor 1201 is connected to the transmitter 1204 and the memory 1202 via a bus 1203, respectively, for executing instructions stored in the memory 1202 to perform the transmission method of the preamble sequence described in FIG. 3 or FIG. 7 above.
  • the processor 1201 in this patent application may be a CPU, and may also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 1201 may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the UE 120.
  • the memory 1202 may include a volatile memory (English: volatile memory), such as a random-access memory (RAM); the memory 1202 may also include a non-volatile memory (English: non-volatile memory), for example, only Read-only memory (ROM), flash memory (English: flash memory), hard disk drive (HDD) or solid-state drive (SSD); in addition, the memory 1202 may also include the above types a combination of memory.
  • volatile memory such as a random-access memory (RAM)
  • non-volatile memory for example, only Read-only memory (ROM), flash memory (English: flash memory), hard disk drive (HDD) or solid-state drive (SSD); in addition, the memory 1202 may also include the above types a combination of memory.
  • the bus 1203 may include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as a bus 1203 in FIG.
  • each step performed by the UE in the sending and receiving method of the preamble sequence shown in FIG. 3 or FIG. 7 may execute a computer-executed instruction in a software format stored in the memory 1302 by the processor 1301 in a hardware form. achieve. To avoid repetition, we will not repeat them here.
  • the UE transmits the encoded multi-level preamble sequence after the random backoff time generated by the UE at the start point of the PRACH slot of the UE, and the base station receives the preamble sequence and the PRACH of the base station according to the received base station.
  • the time offset of the start point of the time slot combining the preamble sequences with the same time offset to distinguish different UEs.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • the embodiment of the present application provides a base station 130 for performing the steps performed by a base station in the method for transmitting and receiving a preamble sequence shown in FIG. 3 or FIG. 7, the base station 130 includes: a processor 1301, a memory 1302, a bus 1303, and a receiver 1304.
  • the memory 1302 is configured to store instructions, and the processor 1301 is connected to the receiver 1304 and the memory 1302 via a bus 1303, respectively, for executing instructions stored in the memory 1302 to perform the receiving method of the preamble sequence described in FIG. 3 or FIG. 7 above.
  • the processor 1301 in this patent application may be a CPU, and may also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 1301 may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the base station 130.
  • the memory 1302 may include a volatile memory (English: volatile memory), such as a RAM; the memory 1302 may also include a non-volatile memory (English: non-volatile memory), such as a ROM, a flash memory (English: flash memory), The HDD or SSD; in addition, the memory 1302 may also include a combination of the above types of memories.
  • a volatile memory such as a RAM
  • the memory 1302 may also include a non-volatile memory (English: non-volatile memory), such as a ROM, a flash memory (English: flash memory),
  • the HDD or SSD in addition, the memory 1302 may also include a combination of the above types of memories.
  • the bus 1303 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as a bus 1303 in FIG.
  • each step performed by the base station in the method for transmitting and receiving the preamble sequence shown in FIG. 3 or FIG. 7 may be performed by the processor 1301 in hardware form.
  • the computer-executed instructions in software form stored in the device 1302 are implemented. To avoid repetition, we will not repeat them here.
  • the base station when the base station demodulates the signal on the PRACH time slot, if the preamble sequence in the multi-level preamble sequence is detected, the arrival time of the preamble sequence and the PRACH time slot of the base station are obtained.
  • the time offset is equal to the sum of the random backoff time plus the propagation time determined by the distance between the UE and the base station.
  • the preamble sequence of the time offset can be regarded as a preamble sequence transmitted by the same UE, so that the pseudo-user probability of the preamble sequence coding transmission can be reduced.
  • the embodiment of the present application further provides a readable medium, including computer execution instructions, when the processor of the UE executes the computer to execute the instruction, the UE may perform the sending of the preamble sequence shown in FIG. 3 or FIG. 7 above. And the steps performed by the UE in the receiving method.
  • a method for transmitting and receiving a specific preamble sequence refer to the related description in the foregoing embodiment shown in FIG. 3 or FIG. 7 , and details are not described herein again.
  • the embodiment of the present application further provides a readable medium, including computer execution instructions, when the processor of the base station executes the computer to execute the instruction, the base station may perform the sending of the preamble sequence shown in FIG. 3 or FIG. 7 above. And the steps performed by the base station in the receiving method.
  • a method for transmitting and receiving a specific preamble sequence refer to the related description in the foregoing embodiment shown in FIG. 3 or FIG. 7 , and details are not described herein again.
  • the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are only for example, the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or integrated into another system, or Some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present patent application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present patent application or the part contributing to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present patent application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store a program code.

Abstract

本专利申请实施例提供前导序列的发送和接收方法、装置及系统,以至少解决现有的前导序列编码发送的方法带来的基站检测的伪用户的问题,能够降低前导序列编码发送的伪用户概率。方法包括:UE生成随机退避时间;在所述UE的PRACH时隙的开始点经所述随机退避时间后,所述UE发送编码的多级前导序列。本专利申请适用于无线通信领域。

Description

前导序列的发送和接收方法、装置及系统
本申请要求于2016年01月29日提交中国专利局、申请号为201610067908.3、发明名称为“前导序列的发送和接收方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本专利申请涉及无线通信领域,尤其涉及前导序列的发送和接收方法、装置及系统。
背景技术
物联网(internet of things,IoT)是蜂窝移动通信系统支撑的主要业务之一。不同于移动带宽(mobile broad band,MBB),IoT的主要服务场景是海量和/或高可靠的机器类型通信(machine-type communications,MTC)。其中,海量MTC的主要特点有:海量连接、小数据包、低代价等。
若在海量连接的场景下进行随机接入,随机接入用户数较多,而目前的长期演进(long term evolution,LTE)系统中,一个LTE小区仅有64个前导序列,前导序列数量相对较少,从而导致随机接入的冲突概率较大。
为解决前导序列数量不足的问题,现有技术提出了前导序列编码发送的解决方案。该方案将随机接入信道(random access channel,PRACH)时频资源的多个时隙组合。用户设备(user equipment,UE)在组合时隙的每个时隙上发送一个前导序列。多个时隙上发送的前导序列形成编码效应,增加了等效前导序列的数量。
然而,这种前导序列编码发送的方法将带来基站检测的伪用户问题。如何降低前导序列编码发送的伪用户概率,成为目前亟待解决的问题。
发明内容
本专利申请实施例提供前导序列的发送和接收方法、装置及系统,以 至少解决现有的前导序列编码发送的方法带来的基站检测的伪用户的问题,能够降低前导序列编码发送的伪用户概率。
为达到上述目的,本专利申请实施例提供如下技术方案:
第一方面,提供一种前导序列的发送方法。该方法包括:用户设备UE生成随机退避时间;在该UE的物理随机接入信道PRACH时隙的开始点经该随机退避时间后,UE发送编码的多级前导序列。
通过上述方法,该UE在PRACH时隙的开始点经UE生成的随机退避时间后发送编码的多级前导序列,由基站根据接收到前导序列与该基站的PRACH时隙的开始点的时间偏差,组合具有相同时间偏差的前导序列来区分不同的UE。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
第二方面,提供一种前导序列的接收方法,该方法包括:基站接收并解调物理随机接入信道PRACH时隙上的信号;若检测到前导序列,基站获取前导序列的到达时刻与该基站的PRACH时隙的开始点的时间偏差,该时间偏差等于随机退避时间加上由用户设备UE和所述基站间的距离决定的传播时间的和;基站组合具有该时间偏差的前导序列,获得该UE发送的编码的多级前导序列。
通过上述方法,该基站接收并解调PRACH时隙上的信号时,若检测到该多级前导序列中的前导序列,获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差,进而组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
第三方面,提供一种用户设备UE,该UE包括:处理单元和发送单元。处理单元,用于生成随机退避时间;发送单元,用于在该UE的物理随机接入信道PRACH时隙的开始点经该随机退避时间后,发送编码的多级前导序列。
由于本专利申请实施例中的UE可以用于执行上述第一方面中所述的前导序列的发送方法,因此其所能获得的技术效果可以参考上述第一方面中UE执行前导序列的发送方法时的技术效果,此处不再赘述。
第四方面,提供一种基站,该基站包括:接收单元和处理单元。接收单元,用于接收物理随机接入信道PRACH时隙上的信号;处理单元,用于解调PRACH时隙上的信号;处理单元,还用于若检测到前导序列,获取该前导序列的到达时刻与该基站的PRACH时隙的开始点的时间偏差,该时间偏差等于随机退避时间加上由用户设备UE和所述基站间的距离决定的传播时间的和;处理单元,还用于组合具有该时间偏差的前导序列,获得该UE发送的编码的多级前导序列。
由于本专利申请实施例中的基站可以用于执行上述第二方面中所述的前导序列的接收方法,因此其所能获得的技术效果可以参考上述第二方面中基站执行前导序列的接收方法时的技术效果,此处不再赘述。
可选的,结合第一方面,在第一方面第一种可能的实现方式中,或者,结合第二方面,在第二方面第一种可能的实现方式中,或者,结合第三方面,在第三方面第一种可能的实现方式中,或者,结合第四方面,在第四方面第一种可能的实现方式中,该随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
可选的,结合第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,UE生成随机退避时间,具体可以包括:
UE根据如下第一公式生成随机退避时间:
T1=(Cimodni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
可选的,结合第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,处理单元具体用于:
根据如下第一公式生成随机退避时间:
T1=(Cimodni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
可选的,结合第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,或者,结合第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,该随机退避时间通过如下第一公式生成:
T1=(Cimodni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
需要说明的是,上述采用第一公式生成随机退避时间的方式仅是一种可能的生成退避时间的方式。UE可以采用任何方式生成一个服从约定分布的0到niTs之间的随机退避时间,本专利申请实施例对此不作具体限定。
可选的,结合第一方面或者第一方面第一种可能的实现方式或者第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
在UE发送编码的多级前导序列之前,还可以包括:UE根据UE的状态信息确定信息前导序列,以及UE随机选择获得冲突避免前导序列。
可选的,结合第一方面第三种可能的实现方式,在第一方面第四种可能的实现方式中,该状态信息包括第一状态的信息。
UE中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
UE根据UE的状态信息确定信息前导序列,具体可以包括:UE根据UE的第一状态的信息和该映射关系,从UE的第一状态的信息对应的信息前导序列子集中确定信息前导序列。
可选的,结合第二方面或者第二方面第一种可能的实现方式或者第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
在基站组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,还可以包括:基站根据系统配置的码本,解码多级前导序列对应的码字,获得信息前导序列和冲突退避前导序列;基站根据该信息 前导序列,确定UE的状态信息。
可选的,结合第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,该状态信息包括第一状态的信息。
基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
基站根据该信息前导序列,确定UE的状态信息,具体可以包括:基站根据该信息前导序列和该映射关系,确定该信息前导序列所在的信息前导序列子集对应的第一状态的信息为UE的第一状态的信息。
可选的,结合第三方面或者第三方面第一种可能的实现方式或者第三方面第二种可能的实现方式,在第三方面第三种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
处理单元,还用于在UE发送编码的多级前导序列之前,根据UE的状态信息确定信息前导序列,以及随机选择获得冲突避免前导序列。
可选的,结合第三方面第三种可能的实现方式,在第三方面第四种可能的实现方式中,该状态信息包括第一状态的信息。
UE中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系;
处理单元具体用于:根据UE的第一状态的信息和该映射关系,从UE的第一状态的信息对应的信息前导序列子集中确定信息前导序列。
可选的,结合第四方面或者第四方面第一种可能的实现方式或者第四方面第二种可能的实现方式,在第四方面第三种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
处理单元,还用于在组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,根据系统配置的码本,解码多级前导序列对应的码字,获得信息前导序列和冲突退避前导序列。
处理单元,还用于根据该信息前导序列,确定UE的状态信息。
可选的,结合第四方面第三种可能的实现方式,在第四方面第四种可能的实现方式中,该状态信息包括第一状态的信息。
基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
处理单元具体用于:根据该信息前导序列和该映射关系,确定该信息前导序列所在的信息前导序列子集对应的第一状态的信息为UE的第一状态的信息。
由于本专利申请实施例中的信息前导序列可用于表征UE的状态信息,也就是说可以隐式携带UE的状态信息,因此可以减少海量连接场景下状态信息上报的信令开销,节省了系统资源。同时,由于本专利申请实施例中的冲突避免前导序列用于区分状态信息相同的UE(即选择了相同信息前导序列的用户),而该冲突避免前导序列是随机选择的,因此也降低了不同UE随机接入的冲突概率。
可选的,在上述第一方面第四种可能的实现方式中;或者,在上述第二方面第四种可能的实现方式中;或者,在上述第三方面第四种可能的实现方式中;或者,在上述第四方面第四种可能的实现方式中,信息前导序列的子集中子集Si中前导序列的个数可以有多种配置方式,下面将示例性的给出三种配置方式:
方式一、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同。
即,该实现方式中,所有的信息前导序列均匀地分布在各子集内,即各信息前导序列子集内的前导序列数目相同。UE和基站只需要根据信息前导序列的数目和子集的数目即可确定各子集内的前导序列编号。该方法最简单,信令开销最小。
方式二、具体的,若上述的第一状态包括缓存状态,则多个信息前导序列的子集中子集Si中前导序列的个数可通过如下第二公式配置:
|Si|=round(|S|×Pr{Bi-1<b<Bi})
其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入。
若上述的第一状态包括用户等级,则多个信息前导序列的子集中子集Si中前导序列的个数可通过如下第三公式配置:
|Si|=round(|S|×Pi)
其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
即,该实现方式中,信息前导序列以所需携带状态的概率分布划分到各子集中。该方法可以更有效地利用有限的前导序列。
方式三、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数可根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置。
示例性的,若子集Si中的信息前导序列相对于其它子集的冲突次数明显增大,则可以增加该子集的信息前导序列个数;若子集Si中的信息前导序列相对于其它子集的冲突次数明显减小,则相应减少该子集的信息前导序列个数。该方法能够最有效地跟踪系统状态,使前导序列的利用率最大化,但是动态调整需要基站广播,需要额外的信令开销。
需要说明的是,上述仅是示例性的给出了三种信息前导序列的子集中子集Si中前导序列的个数的配置方式,当然,信息前导序列的子集中子集Si中前导序列的个数的配置方式不限于上述列举的三种,还可以为通过其它方式配置信息前导序列的子集中子集Si中前导序列的个数,本专利申请实施例对此不作具体限定。
可选的,在上述第一方面或者第一方面任意一种可选的实现方式中;或者,在上述第二方面或者第二方面任意一种可选的实现方式中;或者,在上述第三方面或者第三方面任意一种可选的实现方式中;或者,在上述第四方面或者第四方面任意一种可选的实现方式中,如果PRACH时隙足够长,则多个前导序列可以在一个PRACH时隙内发送完。即,多级前导序列分布在同一个PRACH时隙内。
或者,可选的,在上述第一方面或者第一方面任意一种可选的实现方式中;或者,在上述第二方面或者第二方面任意一种可选的实现方式中;或者,在上述第三方面或者第三方面任意一种可选的实现方式中;或者,在上述第四方面或者第四方面任意一种可选的实现方式中,如果系统配置的一个PRACH时隙内只能发送一个前导序列,则多级前导序列需要通过多个PRACH时隙发送。即,多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
可选的,本专利申请实施例中,UE可以在UE的PRACH时隙的开始点采用定时器进行计时,该定时器的定时时间配置为上述的随机退避时间。进而,当定时器时间为0时,UE发送编码的多级前导序列或者编码的多级前导序列中的一级前导序列;或者,UE可以采用计时器进行计时,初始时间配置为0,当计时器的计时时间为上述的随机退避时间时,UE发送编码的多级前导序列或者编码的多级前导序列中的一级前导序列。本专利申请实施例对UE计时的方式不作具体限定。
可选的,在上述第一方面或者第一方面任意一种可选的实现方式中;或者,在上述第二方面或者第二方面任意一种可选的实现方式中;或者,在上述第三方面或者第三方面任意一种可选的实现方式中;或者,在上述第四方面或者第四方面任意一种可选的实现方式中,该多级前导序列中的每个前导序列可以通过如下第四公式生成:
Zu=function(u),其中,Zu表示编号为u的前导序列,u为前导序列的编号,function()表示函数。
示例性的,UE可以使用网络选定且广播的ZC(zadoff-chu)根序列标识产生ZC序列,并按照左移N(N由系统指定)位的方式生成一组前导序列,根据前导序列产生的次序对其进行编号。由于根序列标识和移位方式相同,基站和所有UE都知道前导序列的编号信息。
第五方面,提供一种用户设备UE,该UE包括:发送器;存储器和处理器。存储器用于存储指令;处理器与发送器和存储器分别连接,用于执行存储器存储的指令,以生成随机退避时间;在UE的物理随机接入信道PRACH时隙的开始点经所述随机退避时间后,指示发送器发送编码的多级前导序列。
可选的,结合第五方面,在第五方面第一种可能的实现方式中,所述随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
可选的,结合第五方面第一种可能的实现方式,在第五方面第二种可能的实现方式中,所述生成随机退避时间,具体可以包括:
根据如下第一公式生成随机退避时间:
T1=(Cimodni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod() 表示取余。
可选的,结合第五方面或者第五方面第一种可能的实现方式或者第五方面第二种可能的实现方式,在第五方面第三种可能的实现方式中,该多级前导序列分布在同一个PRACH时隙内;或者,该多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
可选的,结合第五方面至第五方面第三种可能的实现方式中的任意一种可能的实现方式,在第五方面第四种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征所述UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
在指示发送器发送编码的多级前导序列之前,还可以包括:根据该UE的状态信息确定信息前导序列,以及随机选择获得冲突避免前导序列。
可选的,结合第五方面第四种可能的实现方式,在第五方面第五种可能的实现方式中,该状态信息包括第一状态的信息。
该UE中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
根据该UE的状态信息确定所述信息前导序列,具体可以包括:根据该UE的第一状态的信息和该映射关系,从该UE的第一状态的信息对应的信息前导序列子集中确定信息前导序列。
可选的,结合第五方面第五种可能的实现方式,在第五方面第六种可能的实现方式中,若该第一状态包括缓存状态,则该多个信息前导序列的子集中子集Si中前导序列的个数通过如下第二公式配置:
|Si|=round(|S|×Pr{Bi-1<b<Bi}),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入;
或者,若该第一状态包括用户等级,则该多个信息前导序列的子集中子集Si中前导序列的个数通过如下第三公式配置:
|Si|=round(|S|×Pi),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
可选的,结合第五方面第五种可能的实现方式,在第五方面第七种可能的实现方式中,该多个信息前导序列的子集中,每个信息前导序列的子 集中前导序列的个数相同。
或者,该多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数是根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置的。
可选的,结合第五方面至第五方面第七种可能的实现方式中的任意一种可能的实现方式,在第五方面第八种可能的实现方式中,该多级前导序列中的每个前导序列通过如下第四公式生成:
Zu=function(u),其中,Zu表示编号为u的前导序列,u为前导序列的编号,function()表示函数。
由于本专利申请实施例中的UE可以用于执行上述第一方面或者第一方面任意一种可选的实现方式中所述的前导序列的发送方法,因此其所能获得的技术效果可以参考上述第一方面或者第一方面任意一种可选的实现方式中UE执行前导序列的发送方法时的技术效果,此处不再赘述。
第六方面,提供一种基站,该基站包括:处理器、存储器和接收器。存储器用于存储指令;处理器与发送器和存储器分别连接,用于执行存储器存储的指令,以通过接收器接收并解调物理随机接入信道PRACH时隙上的信号;处理器若检测到前导序列,获取该前导序列的到达时刻与该基站的PRACH时隙的开始点的时间偏差,并组合具有该时间偏差的前导序列,获得用户设备UE发送的编码的多级前导序列,该时间偏差等于随机退避时间加上由用户设备UE和该基站间的距离决定的传播时间的和。
可选的,结合第六方面,在第六方面第一种可能的实现方式中,该随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
可选的,结合第六方面第一种可能的实现方式,在第六方面第二种可能的实现方式中,该随机退避时间通过如下第一公式生成:
T1=(Cimodni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
可选的,结合第六方面或者第六方面第一种可能的实现方式或者第六方面第二种可能的实现方式,在第六方面第三种可能的实现方式中,该多级前导序列分布在同一个PRACH时隙内;或者,该多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
可选的,结合第六方面至第六方面第三种可能的实现方式中的任意一种可能的实现方式,在第六方面第四种可能的实现方式中,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征该UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
在处理器组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,还可以包括:处理器根据系统配置的码本,解码该多级前导序列对应的码字,获得信息前导序列和冲突退避前导序列;根据该信息前导序列,确定该UE的状态信息。
可选的,结合第六方面第四种可能的实现方式,在第六方面第五种可能的实现方式中,该状态信息包括第一状态的信息。
基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
处理器根据该信息前导序列,确定该UE的状态信息,具体可以包括:处理器根据该信息前导序列和该映射关系,确定该信息前导序列所在的信息前导序列子集对应的第一状态的信息为该UE的第一状态的信息。
可选的,结合第六方面第五种可能的实现方式,在第六方面第六种可能的实现方式中,若该第一状态包括缓存状态,则该多个信息前导序列的子集中子集Si中前导序列的个数通过如下第二公式配置:
|Si|=round(|S|×Pr{Bi-1<b<Bi}),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入;
或者,若所述第一状态包括用户等级,则所述多个信息前导序列的子集中子集Si中前导序列的个数通过如下第三公式配置:
|Si|=round(|S|×Pi),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
可选的,结合第六方面第五种可能的实现方式,在第六方面第七种可能的实现方式中,该多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同。
或者,该多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数是根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置的。
可选的,结合第六方面至第六方面第七种可能的实现方式中的任意一种可能的实现方式,在第五六面第八种可能的实现方式中,该多级前导序列中的每个前导序列通过如下第四公式生成:
Zu=function(u),其中,Zu表示编号为u的前导序列,u为前导序列的编号,function()表示函数。
由于本专利申请实施例中的基站可以用于执行上述第二方面或者第二方面任意一种可选的实现方式中所述的前导序列的接收方法,因此其所能获得的技术效果可以参考上述第二方面或者第二方面任意一种可选的实现方式中基站执行前导序列的接收方法时的技术效果,此处不再赘述。
第七方面,提供一种前导序列的发送和接收系统,包括如第四方面或者第四方面任意一种可选的实现方式中所述的基站,以及,多个如第三方面或者第三方面任意一种可选的实现方式中所述的UE;或者包括如第六方面或者第六方面任意一种可选的实现方式中所述的基站,以及,多个如第五方面或者第五方面任意一种可选的实现方式中所述的UE。
在该前导序列的发送和接收系统中,UE在UE的PRACH时隙的开始点经UE生成的随机退避时间后发送编码的多级前导序列,基站解调PRACH时隙上的信号时,若检测到该多级前导序列中的前导序列,获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差,进而组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
第八方面,提供一种可读介质,包括计算机执行指令,当UE的处理器执行该计算机执行指令时,该UE执行如上述第一方面或者第一方面任意一种可选的实现方式中所述的前导序列的发送方法。
第九方面,提供一种可读介质,包括计算机执行指令,当基站的处理器执行该计算机执行指令时,该基站执行如上述第二方面或者第二方面任 意一种可选的实现方式中所述的前导序列的接收方法。
其中,本专利申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本专利申请实施例中的技术方案,下面将对本专利申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种LTE或LTE-A系统中的随机接入过程流程示意图;
图2为本专利申请实施例提供的前导序列的发送和接收系统;
图3为本专利申请实施例提供的前导序列的发送和接收方法流程示意图一;
图4为本专利申请实施例提供的前导序列的发送时刻示意图;
图5为本专利申请实施例提供的基站侧前导序列到达时刻示意图;
图6为本专利申请实施例提供的多级前导序列的构成示意图;
图7为本专利申请实施例提供的前导序列的发送和接收方法流程示意图二;
图8为本专利申请实施例提供的PRACH资源的配置方式一;
图9为本专利申请实施例提供的PRACH资源的配置方式二;
图10为本专利申请实施例提供的UE的结构示意图一;
图11为本专利申请实施例提供的基站的结构示意图一;
图12为本专利申请实施例提供的UE的结构示意图二;
图13为本专利申请实施例提供的基站的结构示意图二。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
图1为一种LTE或高级的长期演进(LTE advanced,LTE-A)系统中的随机接入过程流程示意图,该随机接入过程具体包括步骤101-104:
101、消息1:UE通过PRACH向基站发送随机接入前导序列。
102、消息2:基站向UE回复随机接入响应(random access  response,RAR)。
103、消息3:UE通过物理上行共享信道(physical uplink shared channel,PUSCH)向基站发送随机接入过程中的初始上行传输。
104、消息4:基站向UE回复竞争解决消息。
具体的,步骤101中:
该随机接入前导序列是多种前导序列格式中的一种,每种前导序列格式包括循环前缀和序列两部分。在频域上,PRACH占用1.08MHZ,即6个物理资源块(physical random block,PRB)。
UE在预先定义好的时间资源、频率资源上发送随机接入前导序列。在一个小区内共有64个随机接入前导序列,在这64个随机接入前导序列中,保留部分专用的随机接入前导序列用于基于非竞争的随机接入,只有54个随机接入前导序列用于基于竞争的随机接入。
对于基于竞争的随机接入,UE从用于基于竞争的随机接入前导序列集合中随机选取一个进行发送,因此存在多个UE同时选取相同的随机接入前导序列的可能性,这就需要后续的竞争方案。对于基于非竞争的随机接入,基站通过专有信令配置一个专用的随机接入前导序列,UE用该专用的随机接入前导序列进行随机接入。
具体的,步骤102中:
UE在发送了随机接入前导序列之后,会在随机接入响应窗口内检测每个子帧上的物理下行控制信道(physical downlink control channel,PDCCH)。PDCCH承载的下行控制信息(downlink control information,DCI)用于调度物理下行共享信道(physical downlink shared channel,PDSCH),RAR通过PDSCH来承载。为了标识PDCCH承载的DCI调度的PDSCH承载的RAR是针对在哪个时间资源和频率资源上发送的随机接入前导序列的回复,基站会使用随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)计算扰码序列,对PDCCH进行加扰。其中,对PDCCH进行加扰是指对PDCCH承载的DCI的循环冗余校验(cyclic redundancy check,CRC)进行加扰,RA-RNTI由基站根据承载检测出来的随机接入前导序列的PRACH结合公式(1)获得:
RA-RNTI=1+t_id+10*f_id          公式(1)
其中,t_id表示基站检测出来的承载随机接入前导序列的PRACH所在的第一个子帧的序号,0≤t_id<10。f_id表示承载随机接入前导序列的PRACH所在的第一个子帧的PRACH第二索引,0≤f_id<6。由公式(1)可以看出,如果不同UE发送的随机接入前导序列采用了相同的时间资源和频率资源,则RA-RNTI也相同,进而对应的承载RAR的PDSCH会由相同的PDCCH的DCI调度,RAR在同一个PDSCH上传输。
UE根据承载其发送的随机接入前导序列的PRACH结合公式(1)获得RA-RNTI,当检测到用RA-RNTI计算出来的扰码序列加扰的PDCCH后,UE继续检测该PDCCH承载的DCI调度的PDSCH,在PDSCH承载的介质访问控制(media access contro,MAC)协议数据单元(protocol data unit,PDU)中的MAC头(英文:MAC header)部分,UE寻找包含自己所选随机接入前导序列的随机接入前导索引(random access preamble index,RAPID)的MAC子头(英文:MAC subheader),RAPID用于指示基站检测出来的随机接入前导序列,含6比特,用于指示64个前导序列。如果包含该MAC subheader,则说明该MAC PDU中包含针对该UE的RAR。如果UE没有在随机接入响应窗口内收到针对自己的RAR,它将重传随机接入前导,当重传到达一定次数时,随机接入失败。RAR中还包含定时对齐指令、消息3准许传输的初始上行资源、临时小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)等信息。
具体的,步骤103中:
UE在随机接入响应窗口内成功接收到自己的RAR后,会在收到该RAR后的一个确定的子帧通过PUSCH向基站传送随机接入过程中的初始上行传输,如无线资源控制(radio resource control,RRC)链接请求、跟踪区域更新或调度请求等。消息3根据RAR中包含的临时C-RNTI进行加扰,并包含UE在本小区中的标识,用于竞争解决。
如步骤101所述,在竞争的随机接入过程中,会存在多个UE同时发送相同的前导序列的情况。在该情况下,不同的UE会接收到相同的RAR,从而获得相同的临时C-RNTI,因而根据相同的临时C-RNTI在相同的时 间资源和频率资源上发送消息3,从而造成消息3传输的冲突,若基站不能对消息3成功解码,则UE需要对消息3进行重传,当UE达到最大重传次数后会开始新的随机接入过程。若基站能对消息3成功解码,则执行步骤104。
具体的,步骤104中:
若UE接收到根据UE在本小区中的标识进行加扰或者包含UE在本小区中的标识的竞争解决消息,则认为随机接入成功;否则当定时器超时,认为本次随机接入失败。
其中,基于非竞争的随机接入过程包含上述随机接入过程的前2个步骤,基于竞争的随机接入过程包含上述随机接入过程的全部4个步骤。
如背景技术中所述,若在海量连接的场景下进行随机接入,随机接入用户数较多,而目前的LTE系统中,一个LTE小区仅有64个前导序列,前导序列数量相对较少,从而导致随机接入的冲突概率较大。
为解决前导序列数量不足的问题,现有技术提出了前导序列编码发送的解决方案。该方案将PRACH时频资源的多个时隙组合。UE在组合时隙的每个时隙上发送一个前导序列。多个时隙上发送的前导序列形成编码效应,增加了等效前导序列的数量。
以两个时隙发送两个前导序列为例。假设前导序列集中有A、B两个可选的用于基于竞争的随机接入的前导序列。通过两个时隙的编码发送可以产生如表一所示的4种组合。总的组合数目随前导序列集合的大小的二次方增长。当前导序列数量增加时,编码发送后可得到的等效前导数量将更多。
表一
序号 时隙1 时隙2
1 A A
2 B B
3 A B
4 B A
然而,这种前导序列编码发送的方法将带来基站检测的伪用户问题。例如,前导序列集有A、B、C、D四个用于基于竞争的随机接入前导序 列。用户1在两个时隙上发送(A,B),用户2在两个时隙上发送(C,D)。基站在第1个时隙上解码得到前导序列A和C,在第2个时隙解码得到B和D,则可能认为是(A,B)、(C,D)、(A,D)和(C,B)四个用户发送的前导序列,为四个用户分配上行资源,从而造成资源浪费。
为降低前导序列编码发送的伪用户概率,本专利申请实施例提供一种前导序列的发送和接收方法、装置及系统,核心思想在于:UE经一个随机退避时间后发送编码的多级前导序列,基站根据接收到前导序列与基站的PRACH时隙的开始点的时间偏差,组合具有相同时间偏差的前导序列来区分不同的UE。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,而同一UE发送的不同前导序列的随机退避时间相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
下面将结合本专利申请实施例中的附图,对本专利申请实施例中的技术方案进行清楚、完整地描述。
需要说明的是,为了便于清楚描述本专利申请实施例的技术方案,在本专利申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本文中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或多于两个。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组 件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
本申请中的无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(carrier sense multiple access with collision avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络或者4G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(wireless local area networks,WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展,本专利申请实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本专利申请实施例有时会将无线通信网络英文缩写为网络。
UE是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在WLAN中,提供基站功能的设备为接入点(access point,AP)。
此外,本申请结合无线网络设备来描述各个方面,该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线网络设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如设备到设备(device-to-device,D2D)通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop,英文简称:WLL)站、个人数字助理(personal digital assistant,PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B或某种其它网络实体, 并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(internet protocol,IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
此外,本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本专利申请实施例中,“示例的”、或者“比如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”或“比如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例的”、或者“比如”等词旨在以具体方式呈现概念。
本专利申请实施例中,“的(英文:of)”,“相应的(英文:corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本专利申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本专利申请实施例的技术方案,并不构成对于本专利申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本专利申请实施例提供的技术方案对于类似的技术问题,同样适用。
本专利申请实施例依托无线通信网络中4G网络的场景进行说明,应当指出的是,本专利申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
如图2所述,为本专利申请实施例提供的前导序列的发送和接收系统架构示意图,该前导序列的发送和接收系统包括基站,以及该基站管理的小区内的多个UE。其中,基站可以与这多个UE中的每个UE分别进行通信。
基于图2所示的前导序列的发送和接收系统,本专利申请实施例提供一种前导序列的发送和接收方法,以基站与该基站管理的小区内的任意一个UE交互为例进行说明,如图3所示,包括步骤S301-S305:
S301、UE生成随机退避时间。
S302、在UE的PRACH时隙的开始点经该随机退避时间后,UE发送编码的多级前导序列。
S303、基站解调PRACH时隙上的信号。
S304、若检测到该多级前导序列中的前导序列,基站获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差。
其中,该时间偏差等于该随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。
S305、基站组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。
具体的,本专利申请实施例步骤S301中:
UE可以采用任何方式生成一个服从约定分布的0到niTs之间的随机退避时间,本专利申请实施例对此不作具体限定。
其中,优选的,该约定分布可以是均匀分布。
示例性的,UE可通过如下第一公式(公式(2))生成随机退避时间:
T1=(Cimodni)×Ts                  公式(2)
其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余,ni为整数,Ts表示采样周期。
由公式(2)容易得出,随机退避时间T1在[0,niTs]区间之内。
具体的,表二列出了包含随机退避参数值的随机接入前导参数,这些参数的使用取决于帧结构和随机接入配置。其中,随机接入配置由高层控制。比如,随机退避参数值由小区覆盖范围和/或系统负载确定,以提高基站对不同退避时间用户的分辨率,同时保证前导序列的传输在PRACH时隙内。
表二
Figure PCTCN2016111269-appb-000001
Figure PCTCN2016111269-appb-000002
具体的,本专利申请实施例步骤S302中:
多级前导序列中的每个前导序列具体可以通过如下第四公式(公式(3))生成:
Zu=function(u)                       公式(3)
其中,Zu表示编号为u的前导序列,u为前导序列的编号,function()表示函数。
示例性的,UE可以使用网络选定且广播的ZC(zadoff-chu)根序列标识产生ZC序列,并按照左移N(N由系统指定)位的方式生成一组前导序列,根据前导序列产生的次序对其进行编号。由于根序列标识和移位方式相同,基站和所有UE都知道前导序列的编号信息。
具体的,UE可采用现有的编码前导序列的方式编码多级前导序列,本专利申请实施例对此不作具体限定。
具体的,UE在基站指定的PRACH时隙上发送前导序列。发送前导序列所需时间Tp小于PRACH时隙时长T。
如图4所示,UE发送前导序列的起始时间为PRACH时隙的开始点加上一个随机退避时间,即UE经一个随机退避时间后开始发送前导序列。由于随机退避时间为一个随机值,也就是UE随机选择开始发送时间,连同用户和基站的距离不同,使得每个UE发送的前导序列到达基站的时刻各不相同。
具体的,本专利申请实施例步骤S304和S305中:
该前导序列的到达时刻与该基站的PRACH时隙的开始点的时间偏差等于上述第一公式(公式(2))中的随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。
如图5所示,假设同一UE在多个PRACH时隙的每个时隙发送前导序列,则同一UE的多个前导序列到达基站时与该基站的PRACH时隙的开始点具有相同的偏差;由于发送前导序列时随机选择了随机退避时间,且到基站距离不同,因此不同UE发送的前导序列具有不同的定时偏差。
基于本专利申请实施例提供的前导序列的发送和接收方法,UE在UE 的PRACH时隙的开始点经UE生成的随机退避时间后发送编码的多级前导序列,基站解调该PRACH时隙上的信号时,若检测到该多级前导序列中的前导序列,获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差,进而组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。也就是说,基站根据接收到前导序列与该基站的PRACH时隙的开始点的时间偏差,组合具有相同时间偏差的前导序列来区分不同的UE。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
可选的,如图6所示,在图3所示的实施例中,步骤S302中的多级前导序列具体可以包括信息前导序列和冲突避免前导序列,其中,信息前导序列用于表征UE的状态信息,冲突避免前导序列用于区分状态信息相同的UE。
需要说明的是,图6仅是示例性的给出了多级前导序列的构成示意图,其中,该多级前导序列中的信息前导序列中包含1个前导序列,冲突避免前导序列中包含2个前导序列。当然,信息前导序列中不限于1个前导序列,冲突避免前导序列中也不限于2个前导序列,信息前导序列和冲突避免前导序列中前导序列的个数可以是任意数值,本专利申请实施例对此不作具体限定。
另外,该多级前导序列的构成方式并不限定仅适用于本专利申请实施例,可以作为单独的方案应用于其它包含多级前导序列的方案中,本专利申请实施例对此不作具体限定。
进而,如图7所示,在PRACH时隙的开始点经该随机退避时间后,UE发送编码的多级前导序列(步骤S302)之前,还可以包括步骤S306:
S306、UE根据UE的状态信息确定信息前导序列,以及UE随机选择获得冲突避免前导序列。
在基站组合具有该时间偏差的前导序列,获得UE发送的编码的多级 前导序列(步骤S305)之后,还可以包括步骤S307和步骤S308:
S307、基站根据系统配置的码本,解码多级前导序列对应的码字,获得信息前导序列和冲突退避前导序列。
S308、基站根据信息前导序列,确定UE的状态信息。
具体的,系统的码本配置通常由高层控制。表三中列出了所有可用的前导码本集合。
表三
Figure PCTCN2016111269-appb-000003
由表三可以看出,本专利申请实施例中,一个码字对应至少两个前导序列。
具体的,通过在系统信息块(System Information Block,SIB)2中PRACH配置(英文:PRACH-ConfigInfo)中增加prach-Code Book Index字段,可以指定前导序列码本。其中,SIB2的格式可以如下:
SystemInformationBlockType2::=SEQUENCE{
……
RadioResourceConfigCommonSIB,
……
}
RadioResourceConfigCommonSIB::=SEQUENCE{
……
RACH-ConfigCommon,
PRACH-ConfigSIB,
……
}
PRACH-ConfigSIB::=SEQUENCE{
……
PRACH-ConfigInfo,
……
}
PRACH-ConfigInfo::=SEQUENCE{
……
prach-CodeBookIndex,
……
}
由于本专利申请实施例中的信息前导序列可用于表征UE的状态信息,也就是说可以隐式携带UE的状态信息,因此可以减少海量连接场景下状态信息上报的信令开销,节省了系统资源。同时,由于本专利申请实施例中的冲突避免前导序列用于区分状态信息相同的UE(即选择了相同信息前导序列的用户),而该冲突避免前导序列是随机选择的,因此也降低了不同UE随机接入的冲突概率。
可选的,图7所示的实施例中的状态信息具体可以包含第一状态的信息。该第一状态具体可以是缓存状态,也可以是用户等级等各种UE的状态,本专利申请实施例对此不作具体限定。
其中,UE和基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
这样,步骤S306中,UE根据UE的状态信息确定信息前导序列,具体可以包括:
UE根据UE的第一状态的信息和映射关系,从UE的第一状态的信息对应的信息前导序列子集中确定信息前导序列。
基站根据信息前导序列,确定UE的状态信息(步骤S308)具体可以包括:
基站根据信息前导序列和映射关系,确定信息前导序列所在的信息前导序列子集对应的第一状态的信息为UE的第一状态的信息。
示例性的,当第一状态具体为缓存状态时,根据历史信息积累,可以得到UE的缓存大小的概率分布。将缓存大小的取值空间划分为多个部分,每个部分代表一种缓存状态,同时将前导序列集合分为多个子集。其中,缓存状态的数量和前导序列子集的个数相等,且一一对应。则信息前导序列子集Si与缓存状态的信息的映射关系列表可以如表四所示。
表四
缓存状态的信息 信息前导序列子集
[B0,B1] S1={Zj}
[B1,B2] S2={Zi}
  ……
[Bn-1,Bn] Sn={Zm}
这样,假设UE的缓存状态的信息在[B1,B2]区间之内,则根据该缓存状态的信息,UE可以确定UE的信息前导序列为信息前导序列子集S2中的前导序列,而基站在接收到UE发送的信息前导序列(假设为Zi0)之后,可以根据该信息前导序列和表四,确定UE的缓存状态的信息在[B1,B2]区间之内。这样,通过信息前导序列携带UE的缓存状态的信息,可以减少海量连接场景下状态信息上报的信令开销,节省系统资源。
示例性的,当第一状态具体为用户等级时,可以将前导序列集合分为多个子集。其中,用户等级的数量和前导序列子集的个数相等,且一一对应。则信息前导序列子集Si与用户等级的信息的映射关系列表可以如表五所示。
表五
用户等级的信息 信息前导序列子集
1 S1={Zj}
2 S2={Zi}
…… ……
n Sn={Zm}
这样,假设UE的用户等级的信息为2,则根据该用户等级的信息,UE可以确定UE的信息前导序列为信息前导序列子集S2中的前导序列,而基站在接收到UE发送的信息前导序列(假设为Zi0)之后,可以根据该 信息前导序列和表五,确定UE的用户等级的信息为2。这样,通过信息前导序列携带UE的用户等级的信息,可以减少海量连接场景下状态信息上报的信令开销,节省系统资源。
具体的,本专利申请实施例中的信息前导序列的子集中子集Si中前导序列的个数可以有多种配置方式,下面将示例性的给出三种配置方式:
方式一、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同。
即,该实现方式中,所有的信息前导序列均匀地分布在各子集内,即各信息前导序列子集内的前导序列数目相同。UE和基站只需要根据信息前导序列的数目和子集的数目即可确定各子集内的前导序列编号。该方法最简单,信令开销最小。
方式二、具体的,若上述的第一状态包括缓存状态,则多个信息前导序列的子集中子集Si中前导序列的个数可通过如下第二公式(公式(4))配置:
|Si|=round(|S|×Pr{Bi-1<b<Bi})           公式(4)
其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入。
若上述的第一状态包括用户等级,则多个信息前导序列的子集中子集Si中前导序列的个数可通过如下第三公式(公式(5))配置:
|Si|=round(|S|×Pi)             公式(5)
其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
即,该实现方式中,信息前导序列以所需携带状态的概率分布划分到各子集中。该方法可以更有效地利用有限的前导序列。
方式三、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数可根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置。
示例性的,若子集Si中的信息前导序列相对于其它子集的冲突次数明显增大,则可以增加该子集的信息前导序列个数;若子集Si中的信息前导序列相对于其它子集的冲突次数明显减小,则相应减少该子集的信息 前导序列个数。该方法能够最有效地跟踪系统状态,使前导序列的利用率最大化,但是动态调整需要基站广播,需要额外的信令开销。
需要说明的是,上述仅是示例性的给出了三种信息前导序列的子集中子集Si中前导序列的个数的配置方式,当然,信息前导序列的子集中子集Si中前导序列的个数的配置方式不限于上述列举的三种,还可以为通过其它方式配置信息前导序列的子集中子集Si中前导序列的个数,本专利申请实施例对此不作具体限定。
可选的,本专利申请实施例提供的前导序列的接收和发送方法中,如果PRACH时隙足够长,则多个前导序列可以在一个PRACH时隙内发送完,即多级前导序列分布在同一个PRACH时隙内。其中,图8以在一个PRACH时隙发送两个前导序列为例给出了PRACH资源的配置方式。
该场景下,在PRACH时隙的开始点经该随机退避时间后,UE发送编码的多级前导序列(步骤S302),具体可以包括:
若通过一个PRACH时隙发送多级前导序列,则UE在该PRACH时隙的开始点开始计时;当计时时间为随机退避时间时,UE发送编码的多级前导序列。
可选的,UE可以采用定时器进行计时,该定时器的定时时间配置为上述的随机退避时间。进而,当定时器时间为0时,UE发送编码的多级前导序列;或者,UE可以采用计时器进行计时,初始时间配置为0,当计时器的计时时间为上述的随机退避时间时,UE发送编码的多级前导序列。本专利申请实施例对UE计时的方式不作具体限定。
示例性的,在图8中,UE生成随机退避时间tRA之后,可以在最近可用的PRACH时隙的开始点启动定时器。定时器到0时连续发送所选择的多个前导序列。基站通过解调PRACH资源上的信号,检测到两个前导序列,进而可以把到达时刻相差一个前导序列传输时间的前导序列组合在一起。
可选的,本专利申请实施例提供的前导序列的接收和发送方法中,如果系统配置的一个PRACH时隙内只能发送一个前导序列,则多级前导序列需要通过多个PRACH时隙发送,即多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。其中,图9以在两个PRACH时隙发送 两个前导序列为例给出了PRACH资源的配置方式。
该场景下,在PRACH时隙的开始点经该随机退避时间后,UE发送编码的多级前导序列(步骤S302),具体可以包括:
若通过一个PRACH时隙发送一级前导序列,则UE在多个可用的PRACH时隙的开始点分别开始计时,当计时时间为随机退避时间时,UE分别发送编码的多级前导序列中的一级前导序列。
可选的,UE可以采用定时器进行计时,该定时器的定时时间配置为上述的随机退避时间。进而,当定时器时间为0时,UE发送编码的多级前导序列中的一级前导序列;或者,UE可以采用计时器进行计时,初始时间配置为0,当计时器的计时时间为上述的随机退避时间时,UE发送编码的多级前导序列中的一级前导序列。本专利申请实施例对UE计时的方式不作具体限定。
示例性的,在图9中,UE生成随机退避时间tRA之后,可以在最近可用的PRACH时隙的开始点启动定时器,在定时器到0时发送第一个前导序列;在下一个可用的PRACH时隙的开始点重新启动定时器,定时时间仍然是tRA,在定时结束时发送第二个前导序列。基站通过解调PRACH资源上的信号,分别检测到各时隙的前导序列,进而可以把到达时刻与PRACH时隙开始点具有相关偏差的前导序列组合在一起。
如图10所示,本专利申请实施例提供一种UE100,用于执行以上图3或图7所示的前导序列的发送和接收方法中UE所执行的步骤。该UE100可以包括相应步骤所对应的单元,示例的,可以包括:处理单元1001和发送单元1002。
其中,处理单元1001,用于生成随机退避时间。
发送单元1002,用于在UE的PRACH时隙的开始点经随机退避时间后,发送编码的多级前导序列。
可选的,本专利申请实施例中,多级前导序列中的每个前导序列可以通过上述公式(3)生成,本专利申请实施例在此不再赘述。
可选的,本专利申请实施例中,UE可以采用任何方式生成一个服从约定分布的0到niTs之间的随机退避时间,本专利申请实施例对此不作具体限定。
其中,优选的,该约定分布可以是均匀分布。
示例性的,处理单元1001可通过上述公式(2)生成随机退避时间,本专利申请实施例在此不再赘述。
可选的,本专利申请实施例中,如果PRACH时隙足够长,则该多个前导序列可以在一个PRACH时隙内发送完。即,该多级前导序列分布在同一个PRACH时隙内。
或者,可选的,本专利申请实施例中,如果系统配置的一个PRACH时隙内只能发送一个前导序列,则该多级前导序列需要通过多个PRACH时隙发送。即,该多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
本专利申请实施例对上述两种情况不作具体限定。
可选的,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE100的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
处理单元1001,还用于在发送单元1002发送编码的多级前导序列之前,根据UE100的状态信息确定信息前导序列,以及随机选择获得冲突避免前导序列。
可选的,该状态信息包括第一状态的信息。
UE100中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
处理单元1001具体用于:
根据UE100的第一状态的信息和该映射关系,从UE100的第一状态的信息对应的信息前导序列子集中确定信息前导序列。
具体的,本专利申请实施例中的信息前导序列的子集中子集Si中前导序列的个数可以有多种配置方式,下面将示例性的给出三种配置方式:
方式一、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同。
即,该实现方式中,所有的信息前导序列均匀地分布在各子集内,即各信息前导序列子集内的前导序列数目相同。UE100和基站只需要根据信息前导序列的数目和子集的数目即可确定各子集内的前导序列编号。该 方法最简单,信令开销最小。
方式二、具体的,若第一状态包括缓存状态,则多个信息前导序列的子集中子集Si中前导序列的个数通过上述公式(4)配置,本专利申请实施例在此不再赘述。
若第一状态包括用户等级,则多个信息前导序列的子集中子集Si中前导序列的个数通过上述公式(5)配置,本专利申请实施例在此不再赘述。
即,该实现方式中,信息前导序列以所需携带状态的概率分布划分到各子集中。该方法可以更有效地利用有限的前导序列。
方式三、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数可根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置。
示例性的,若子集Si中的信息前导序列相对于其它子集的冲突次数明显增大,则可以增加该子集的信息前导序列个数;若子集Si中的信息前导序列相对于其它子集的冲突次数明显减小,则相应减少该子集的信息前导序列个数。该方法能够最有效地跟踪系统状态,使前导序列的利用率最大化,但是动态调整需要基站广播,需要额外的信令开销。
需要说明的是,本专利申请实施例中的发送单元1002可以为UE100上具备接收功能的接口电路,如发送机或发送器;处理单元1001可以为单独设立的处理器,也可以集成在UE100的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE100的存储器中,由UE100的某一个处理器调用并执行以上处理单元1001的功能。这里所述的处理器可以是一个中央处理器(central processing unit,CPU),还可以为其他通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,该处理器还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有UE100其他专用处 理功能的芯片。
可以理解,本专利申请实施例中的UE100可对应于上述图3或图7所示的前导序列的发送和接收方法中的UE,并且本专利申请实施例中的UE100中的各个单元的划分和/或功能等均是为了实现上述图3或图7所示的前导序列的发送和接收方法流程,为了简洁,在此不再赘述。
基于本专利申请实施例提供的UE,该UE在该UE的PRACH时隙的开始点经UE生成的随机退避时间后发送编码的多级前导序列,由基站根据接收到前导序列与该基站的PRACH时隙的开始点的时间偏差,组合具有相同时间偏差的前导序列来区分不同的UE。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
如图11所示,本专利申请实施例提供一种基站110,用于执行以上图3或图7所示的前导序列的发送和接收方法中基站所执行的步骤。该基站110可以包括相应步骤所对应的单元,示例的,可以包括:接收单元1102和处理单元1101。
接收单元1102,用于接收PRACH时隙上的信号。
处理单元1101,用于解调PRACH时隙上的信号。
处理单元1101,还用于若检测到前导序列,获取前导序列的到达时刻与该基站110的PRACH时隙的开始点的时间偏差,其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。
处理单元1101,还用于组合具有所述时间偏差的前导序列,获得UE发送的编码的多级前导序列。
可选的,本专利申请实施例中,多级前导序列中的每个前导序列可以通过上述公式(3)生成,本专利申请实施例在此不再赘述。
可选的,本专利申请实施例中,可以采用任何方式生成一个服从约定分布的0到niTs之间的随机退避时间,本专利申请实施例对此不作具体限定。
其中,优选的,该约定分布可以是均匀分布。
示例性的,可通过上述公式(2)生成随机退避时间,本专利申请实施例在此不再赘述。
可选的,该多级前导序列包括信息前导序列和冲突避免前导序列,该信息前导序列用于表征UE的状态信息,该冲突避免前导序列用于区分状态信息相同的UE。
处理单元1101,还用于在组合具有所述时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,根据系统配置的码本,解码多级前导序列对应的码字,获得信息前导序列和冲突退避前导序列。
处理单元1101,还用于根据信息前导序列,确定UE的状态信息。
可选的,该状态信息包括第一状态的信息。
基站110中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系。
处理单元1101具体用于:
根据信息前导序列和该映射关系,确定信息前导序列所在的信息前导序列子集对应的第一状态的信息为UE的第一状态的信息。
具体的,本专利申请实施例中的信息前导序列的子集中子集Si中前导序列的个数可以有多种配置方式,下面将示例性的给出三种配置方式:
方式一、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同。
即,该实现方式中,所有的信息前导序列均匀地分布在各子集内,即各信息前导序列子集内的前导序列数目相同。UE和基站110只需要根据信息前导序列的数目和子集的数目即可确定各子集内的前导序列编号。该方法最简单,信令开销最小。
方式二、具体的,若第一状态包括缓存状态,则多个信息前导序列的子集中子集Si中前导序列的个数通过上述公式(4)配置,本专利申请实施例在此不再赘述。
若第一状态包括用户等级,则多个信息前导序列的子集中子集Si中前导序列的个数通过上述公式(5)配置,本专利申请实施例在此不再赘述。
即,该实现方式中,信息前导序列以所需携带状态的概率分布划分到各子集中。该方法可以更有效地利用有限的前导序列。
方式三、多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数可根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置。
示例性的,若子集Si中的信息前导序列相对于其它子集的冲突次数明显增大,则可以增加该子集的信息前导序列个数;若子集Si中的信息前导序列相对于其它子集的冲突次数明显减小,则相应减少该子集的信息前导序列个数。该方法能够最有效地跟踪系统状态,使前导序列的利用率最大化,但是动态调整需要基站110广播,需要额外的信令开销。
需要说明的是,本专利实施例中的接收单元1002可以为基站110上具备接收功能的接口电路,如接收机或接收器;处理单元1101可以为单独设立的处理器,也可以集成在基站110的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站110的存储器中,由基站110的某一个处理器调用并执行以上处理单元1101的功能。这里所述的处理器可以是一个CPU,还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,该处理器还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站110其他专用处理功能的芯片。
可以理解,本专利申请实施例中的基站110可对应于上述图3或图7所示的前导序列的发送和接收方法中的基站,并且本专利申请实施例中的基站110中的各个单元的划分和/或功能等均是为了实现上述图3或图7所示的前导序列的发送和接收方法流程,为了简洁,在此不再赘述。
基于本专利申请实施例提供的基站,该基站解调PRACH时隙上的信号时,若检测到该多级前导序列中的前导序列,获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差,进而组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。其中,其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时 间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
如图12所示,本专利申请实施例提供一种UE120,用于执行以上图3或图7所示的前导序列的发送和接收方法中UE所执行的步骤,该UE120包括:处理器1201、存储器1202、总线1203和发送器1204。
存储器1202用于存储指令,处理器1201与发送器1204和存储器1202分别通过总线1203连接,用于执行存储器1202存储的指令,以执行上述图3或图7所述的前导序列的发送方法。
具体的,本专利申请中的处理器1201可以是一个CPU,还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
另外,该处理器1201还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有UE120其他专用处理功能的芯片。
存储器1202可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1202也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(英文:flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);另外,存储器1202还可以包括上述种类的存储器的组合。
总线1203可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图12中将各种总线都示意为总线1203。
在具体实现过程中,上述图3或图7所示的前导序列的发送和接收方法中UE所执行的各步骤均可以通过硬件形式的处理器1301执行存储器1302中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
基于本专利申请实施例提供的UE,该UE在该UE的PRACH时隙的开始点经UE生成的随机退避时间后发送编码的多级前导序列,由基站根据接收到前导序列与该基站的PRACH时隙的开始点的时间偏差,组合具有相同时间偏差的前导序列来区分不同的UE。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
如图13所示,本专利申请实施例提供一种基站130,用于执行以上图3或图7所示的前导序列的发送和接收方法中基站所执行的步骤,该基站130包括:处理器1301、存储器1302、总线1303和接收器1304。
存储器1302用于存储指令,处理器1301与接收器1304和存储器1302分别通过总线1303连接,用于执行存储器1302存储的指令,以执行上述图3或图7所述的前导序列的接收方法。
具体的,本专利申请中的处理器1301可以是一个CPU,还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
另外,该处理器1301还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站130其他专用处理功能的芯片。
存储器1302可以包括易失性存储器(英文:volatile memory),例如RAM;存储器1302也可以包括非易失性存储器(英文:non-volatile memory),例如ROM,快闪存储器(英文:flash memory),HDD或SSD;另外,存储器1302还可以包括上述种类的存储器的组合。
总线1303可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图13中将各种总线都示意为总线1303。
在具体实现过程中,上述图3或图7所示的前导序列的发送和接收方法中基站所执行的各步骤均可以通过硬件形式的处理器1301执行存储 器1302中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
基于本专利申请实施例提供的基站,该基站解调PRACH时隙上的信号时,若检测到该多级前导序列中的前导序列,获取该前导序列的到达时间与该基站的PRACH时隙的开始点的时间偏差,进而组合具有该时间偏差的前导序列,获得UE发送的编码的多级前导序列。其中,该时间偏差等于随机退避时间加上由该UE和该基站间的距离决定的传播时间的和。由于随机退避时间是随机生成的,不同UE选择相同随机退避时间的概率较小,且到基站距离不同,而同一UE发送的不同前导序列的随机退避时间相同,且到基站距离相同,因此具有相同时间偏差的前导序列可认为是同一UE发送的前导序列,从而可以降低前导序列编码发送的伪用户概率。
可选的,本专利申请实施例还提供一种可读介质,包括计算机执行指令,当UE的处理器执行该计算机执行指令时,UE可以执行上述图3或图7所示的前导序列的发送和接收方法中UE所执行的各步骤。具体的前导序列的发送和接收方法可参见上述如图3或图7所示的实施例中的相关描述,此处不再赘述。
可选的,本专利申请实施例还提供一种可读介质,包括计算机执行指令,当基站的处理器执行该计算机执行指令时,基站可以执行上述图3或图7所示的前导序列的发送和接收方法中基站所执行的各步骤。具体的前导序列的发送和接收方法可参见上述如图3或图7所示的实施例中的相关描述,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅 是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本专利申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本专利申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本专利申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本专利申请的具体实施方式,但本专利申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本专利申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本专利申请的保护范围之内。因此,本专利申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种前导序列的发送方法,其特征在于,所述方法包括:
    用户设备UE生成随机退避时间;
    在所述UE的物理随机接入信道PRACH时隙的开始点经所述随机退避时间后,所述UE发送编码的多级前导序列。
  2. 根据权利要求1所述的方法,其特征在于,所述随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
  3. 根据权利要求2所述的方法,其特征在于,所述UE生成随机退避时间,包括:
    所述UE根据如下第一公式生成随机退避时间:
    T1=(Cimod ni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述多级前导序列分布在同一个PRACH时隙内;或者,
    所述多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述多级前导序列包括信息前导序列和冲突避免前导序列,所述信息前导序列用于表征所述UE的状态信息,所述冲突避免前导序列用于区分状态信息相同的UE;
    在所述UE发送编码的多级前导序列之前,还包括:
    所述UE根据所述UE的状态信息确定所述信息前导序列,以及所述UE随机选择获得所述冲突避免前导序列。
  6. 根据权利要求5所述的方法,其特征在于,所述状态信息包括第一状态的信息;
    所述UE中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系;
    所述UE根据所述UE的状态信息确定所述信息前导序列,包括:
    所述UE根据所述UE的第一状态的信息和所述映射关系,从所述UE的第一状态的信息对应的信息前导序列子集中确定所述信息前导序列。
  7. 根据权利要求6所述的方法,其特征在于,若所述第一状态包括缓 存状态,则所述多个信息前导序列的子集中子集Si中前导序列的个数通过如下第二公式配置:
    |Si|=round(|S|×Pr{Bi-1<b<Bi}),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入;
    或者,若所述第一状态包括用户等级,则所述多个信息前导序列的子集中子集Si中前导序列的个数通过如下第三公式配置:
    |Si|=round(|S|×Pi),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
  8. 根据权利要求6所述的方法,其特征在于,所述多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同;
    或者,所述多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数是根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置的。
  9. 一种前导序列的接收方法,其特征在于,所述方法包括:
    基站接收并解调物理随机接入信道PRACH时隙上的信号;
    若检测到前导序列,所述基站获取所述前导序列的到达时刻与所述基站的所述PRACH时隙的开始点的时间偏差,其中,所述时间偏差等于随机退避时间加上由用户设备UE和所述基站间的距离决定的传播时间的和;
    所述基站组合具有所述时间偏差的前导序列,获得所述UE发送的编码的多级前导序列。
  10. 根据权利要求9所述的方法,其特征在于,所述随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
  11. 根据权利要求9或10所述的方法,其特征在于,所述多级前导序列包括信息前导序列和冲突避免前导序列,所述信息前导序列用于表征所述UE的状态信息,所述冲突避免前导序列用于区分状态信息相同的UE;
    在所述基站组合具有所述时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,还包括:
    所述基站根据系统配置的码本,解码所述多级前导序列对应的码字, 获得所述信息前导序列和所述冲突退避前导序列;
    所述基站根据所述信息前导序列,确定所述UE的状态信息。
  12. 根据权利要求11所述的方法,其特征在于,所述状态信息包括第一状态的信息;
    所述基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系;
    所述基站根据所述信息前导序列,确定所述UE的状态信息,包括:
    所述基站根据所述信息前导序列和所述映射关系,确定所述信息前导序列所在的信息前导序列子集对应的第一状态的信息为所述UE的第一状态的信息。
  13. 一种用户设备UE,其特征在于,所述UE包括:
    发送器;
    存储器,用于存储指令;
    处理器,所述处理器与所述发送器和所述存储器分别连接,用于执行所述指令,
    以生成随机退避时间;
    在所述UE的物理随机接入信道PRACH时隙的开始点经所述随机退避时间后,指示所述发送器发送编码的多级前导序列。
  14. 根据权利要求13所述的UE,其特征在于,所述随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
  15. 根据权利要求14所述的UE,其特征在于,所述生成随机退避时间,包括:
    根据如下第一公式生成随机退避时间:
    T1=(Cimod ni)×Ts,其中,T1表示随机退避时间,Ci为伪随机数,mod()表示取余。
  16. 根据权利要求13-15任一项所述的UE,其特征在于,所述多级前导序列分布在同一个PRACH时隙内;或者,
    所述多级前导序列中的每个前导序列分别分布在不同的PRACH时隙内。
  17. 根据权利要求13-16任一项所述的UE,其特征在于,所述多级 前导序列包括信息前导序列和冲突避免前导序列,所述信息前导序列用于表征所述UE的状态信息,所述冲突避免前导序列用于区分状态信息相同的UE;
    在所述指示所述发送器发送编码的多级前导序列之前,还包括:
    根据所述UE的状态信息确定所述信息前导序列,以及随机选择获得所述冲突避免前导序列。
  18. 根据权利要求17所述的UE,其特征在于,所述状态信息包括第一状态的信息;
    所述UE中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系;
    所述根据所述UE的状态信息确定所述信息前导序列,包括:
    根据所述UE的第一状态的信息和所述映射关系,从所述UE的第一状态的信息对应的信息前导序列子集中确定所述信息前导序列。
  19. 根据权利要求18所述的UE,其特征在于,若所述第一状态包括缓存状态,则所述多个信息前导序列的子集中子集Si中前导序列的个数通过如下第二公式配置:
    |Si|=round(|S|×Pr{Bi-1<b<Bi}),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pr{Bi-1<b<Bi}表示缓存大小介于Bi-1和Bi之间的概率,round(·)表示四舍五入;
    或者,若所述第一状态包括用户等级,则所述多个信息前导序列的子集中子集Si中前导序列的个数通过如下第三公式配置:
    |Si|=round(|S|×Pi),其中,|·|表示集合元素的个数,S是所有信息前导序列的集合,Pi表示用户等级为i的用户的比例,round(·)表示四舍五入。
  20. 根据权利要求18所述的UE,其特征在于,所述多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数相同;
    或者,所述多个信息前导序列的子集中,每个信息前导序列的子集中前导序列的个数是根据该信息前导序列子集相对于其它子集的随机接入冲突次数动态配置的。
  21. 一种基站,其特征在于,所述基站包括:处理器、存储器和接收器;
    接收器;
    存储器,用于存储指令;
    处理器,所述处理器与所述发送器和所述存储器分别连接,用于执行所述指令,
    以通过所述接收器接收并解调物理随机接入信道PRACH时隙上的信号;
    所述处理器若检测到前导序列,获取所述前导序列的到达时刻与所述基站的所述PRACH时隙的开始点的时间偏差,其中,所述时间偏差等于随机退避时间加上由用户设备UE和所述基站间的距离决定的传播时间的和;
    所述处理器组合具有所述时间偏差的前导序列,获得所述UE发送的编码的多级前导序列。
  22. 根据权利要求21所述的基站,其特征在于,所述随机退避时间在0到niTs之间,其中,ni为整数,Ts表示系统设定的采样周期。
  23. 根据权利要求21或22所述的基站,其特征在于,所述多级前导序列包括信息前导序列和冲突避免前导序列,所述信息前导序列用于表征所述UE的状态信息,所述冲突避免前导序列用于区分状态信息相同的UE;
    在所述处理器组合具有所述时间偏差的前导序列,获得UE发送的编码的多级前导序列之后,还包括:
    所述处理器根据系统配置的码本,解码所述多级前导序列对应的码字,获得所述信息前导序列和所述冲突退避前导序列;
    所述处理器根据所述信息前导序列,确定所述UE的状态信息。
  24. 根据权利要求23所述的基站,其特征在于,所述状态信息包括第一状态的信息;
    所述基站中预先存储了多个第一状态的信息与多个信息前导序列的子集的映射关系;
    所述处理器根据所述信息前导序列,确定所述UE的状态信息,包括:
    所述处理器根据所述信息前导序列和所述映射关系,确定所述信息前导序列所在的信息前导序列子集对应的第一状态的信息为所述UE的第一状态的信息。
PCT/CN2016/111269 2016-01-29 2016-12-21 前导序列的发送和接收方法、装置及系统 WO2017128889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610067908.3A CN107026721B (zh) 2016-01-29 2016-01-29 前导序列的发送和接收方法、装置及系统
CN201610067908.3 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017128889A1 true WO2017128889A1 (zh) 2017-08-03

Family

ID=59397450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111269 WO2017128889A1 (zh) 2016-01-29 2016-12-21 前导序列的发送和接收方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107026721B (zh)
WO (1) WO2017128889A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676993A (zh) * 2020-05-14 2021-11-19 大唐移动通信设备有限公司 随机接入信号的接收方法、装置、接收端和存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061074A1 (zh) * 2017-09-27 2019-04-04 富士通株式会社 信息传输方法以及装置、随机接入方法以及装置、通信系统
CN109803444B (zh) * 2017-11-17 2021-01-15 中国移动通信有限公司研究院 一种物理随机接入信道的传输方法及终端
CN110062473B (zh) * 2018-01-19 2023-02-24 华为技术有限公司 随机接入方法、终端设备和网络设备
EP3874622A1 (en) 2018-10-30 2021-09-08 IDAC Holdings, Inc. Methods, apparatus, systems and procedures for distance dependent random access channel (rach) preamble selection in non-terrestrial networks (ntns)
WO2022082603A1 (en) * 2020-10-22 2022-04-28 Lenovo (Beijing) Limited Methods and apparatuses for small data transmission in random access

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163257A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving in mobile wireless network
CN103947282A (zh) * 2011-11-11 2014-07-23 英特尔公司 扩展接入禁止的随机后退
EP2903349A1 (en) * 2014-01-31 2015-08-05 Fujitsu Limited Access method of wireless communication network
CN104885395A (zh) * 2013-06-06 2015-09-02 华为技术有限公司 用于冲突解决的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972269A (zh) * 2005-11-24 2007-05-30 松下电器产业株式会社 多天线通信系统中的多种导频的联合生成和检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163257A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving in mobile wireless network
CN103947282A (zh) * 2011-11-11 2014-07-23 英特尔公司 扩展接入禁止的随机后退
CN104885395A (zh) * 2013-06-06 2015-09-02 华为技术有限公司 用于冲突解决的系统和方法
EP2903349A1 (en) * 2014-01-31 2015-08-05 Fujitsu Limited Access method of wireless communication network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676993A (zh) * 2020-05-14 2021-11-19 大唐移动通信设备有限公司 随机接入信号的接收方法、装置、接收端和存储介质
CN113676993B (zh) * 2020-05-14 2022-11-04 大唐移动通信设备有限公司 随机接入信号的接收方法、装置、接收端和存储介质

Also Published As

Publication number Publication date
CN107026721A (zh) 2017-08-08
CN107026721B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
US20230102793A1 (en) Methods providing ul grants including time domain configuration and related wireless terminals and network nodes
EP3286970B1 (en) Random access response position indication for coverage enhanced low complexity machine type communication
WO2017128889A1 (zh) 前导序列的发送和接收方法、装置及系统
WO2020221264A1 (zh) 一种随机接入方法、装置及存储介质
US11039479B2 (en) Information transmission method and apparatus, random access method and apparatus, and communication system
US11438923B2 (en) Method and apparatus for transmitting data in random access process
US20100322096A1 (en) Method of improving component carrier identification in a random access procedure in a wireless communication system and related communication device
CN113905453B (zh) 随机接入的方法和设备
WO2015101041A1 (zh) 随机接入方法及装置
WO2020030087A1 (zh) 随机接入方法、装置、设备及存储介质
US20220053576A1 (en) Random access method and device and communication system
WO2014110805A1 (en) Random access for coverage improvement
CN109672506B (zh) 数据传输的确认方法及设备
WO2020124763A1 (zh) 随机接入的方法和设备
CN114928872A (zh) 增强型随机接入过程的系统和方法
CN111770584B (zh) 用于竞争随机接入的方法、网络设备和终端设备
WO2020252633A1 (zh) 随机接入前导码退避的方法、装置和系统
WO2017208768A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US20220022262A1 (en) Signal transmission method and apparatus and communication system
WO2019158096A1 (zh) 随机接入过程中传输数据的方法和装置
WO2020186468A1 (zh) 随机接入的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887760

Country of ref document: EP

Kind code of ref document: A1