WO2024017049A1 - Bsc设备的识别方法、装置及通信设备 - Google Patents

Bsc设备的识别方法、装置及通信设备 Download PDF

Info

Publication number
WO2024017049A1
WO2024017049A1 PCT/CN2023/105392 CN2023105392W WO2024017049A1 WO 2024017049 A1 WO2024017049 A1 WO 2024017049A1 CN 2023105392 W CN2023105392 W CN 2023105392W WO 2024017049 A1 WO2024017049 A1 WO 2024017049A1
Authority
WO
WIPO (PCT)
Prior art keywords
bsc
information
signal
identification
node
Prior art date
Application number
PCT/CN2023/105392
Other languages
English (en)
French (fr)
Inventor
谭俊杰
黄伟
简荣灵
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024017049A1 publication Critical patent/WO2024017049A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a BSC equipment identification method, device and communication equipment.
  • the reader/writer realizes the identification and data transmission of the Backscatter Communication (BSC) device (i.e. electronic tag Tag) through the inventory process.
  • BSC Backscatter Communication
  • BSC devices need to obtain a unique opportunity to send data on each orthogonal resource (such as time resource) through competitive random access to complete identification.
  • this access method is extremely inefficient, and it takes a lot of time to complete the identification of all BSC devices.
  • Embodiments of the present application provide a BSC equipment identification method, device and communication equipment, which can solve the problem of low BSC equipment identification efficiency.
  • a BSC device identification method is provided, which is applied to the first node.
  • the method includes:
  • the first node sends first information, the first information is used to trigger the BSC device to send the first backscatter signal according to the first configuration information;
  • the first node determines the identity of the BSC device that sent the first backscatter signal.
  • a method for identifying BSC equipment is provided, which is applied to BSC equipment.
  • the method includes:
  • the BSC device receives the first information, the first information is used to trigger the BSC device to send the first backscatter signal;
  • the BSC device sends a first backscattered signal according to the first configuration information.
  • a BSC device identification method is provided, which is applied to the third node.
  • the method includes:
  • the third node receives the first backscattered signal and/or the second backscattered signal
  • the final result includes the identification of the BSC device that sent the first backscatter signal or the verified identification of the BSC device that sent the first backscatter signal.
  • the fourth aspect provides a method for identifying BSC equipment, which is applied to the second node.
  • the method includes:
  • the second node receives the second information sent by the first node, and the second information is used to instruct the second node to send an excitation signal to the BSC device; or, the second node monitors the first information and obtains the configuration related to sending the excitation signal. ;
  • the second node sends an excitation signal to the BSC device.
  • a BSC equipment identification device including:
  • a first sending unit configured to send first information, the first information being used to trigger the BSC device to send the first backscatter signal according to the first configuration information;
  • the first identification unit is used to determine the identity of the BSC device that sends the first backscatter signal.
  • a device for identifying BSC equipment including:
  • a third receiving unit configured to receive first information, the first information being used to trigger the BSC device to send the first backscatter signal;
  • the eighth sending unit is configured to send the first backscattered signal according to the first configuration information.
  • an identification device for BSC equipment including:
  • a ninth receiving unit configured to receive the first backscattered signal and/or the second backscattered signal
  • a first feedback unit configured to determine a final result based on the first backscattered signal and/or the second backscattered signal, and feedback the final result to the first node through fifth information; or, according to the The first backscattered signal and/or the second backscattered signal determine intermediate information, and the intermediate information is fed back to the first node through the sixth information;
  • the final result includes the identification of the BSC device that sent the first backscatter signal or the verified identification of the BSC device that sent the first backscatter signal.
  • an identification device for BSC equipment including:
  • the tenth receiving unit is configured to receive the second information sent by the first node, where the second information is used to instruct the second node to send an excitation signal to the BSC device; or, the second node monitors the first information to obtain the sending excitation.
  • Signal related configuration
  • the fourteenth sending unit is used to send excitation signals to the BSC equipment.
  • a first node in a ninth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a first node including a processor and a communication interface, wherein the communication interface is used to send first information, and the first information is used to trigger the BSC device to send the first information according to the first configuration information.
  • the processor is configured to determine the identity of the BSC device that sent the first backscatter signal.
  • a BSC device in an eleventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, The steps of implementing the BSC device identification method described in the second aspect.
  • a BSC device including a processor and a communication interface, wherein the communication interface is used to receive first information, and the first information is used to trigger the BSC device to send a first backscatter signal,
  • the processor is configured to send a first backscatter signal according to the first configuration information.
  • a third node in a thirteenth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor. When executed, the steps of the BSC device identification method described in the third aspect are implemented.
  • a third node including a processor and a communication interface, wherein the communication interface is used to receive the first backscattered signal and/or the second backscattered signal; the processor is used to Determine the final result according to the first backscattered signal and/or the second backscattered signal, and feed the final result back to the first node through fifth information; or, according to the first backscattered signal and /or the second backscatter signal, determine the intermediate information, and feed the intermediate information to the first node through the sixth information; wherein the final result includes the identification of the BSC device that sent the first backscatter signal or The verified identity of the BSC device that sent the first backscattered signal.
  • a second node in a fifteenth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor. When executed, the steps of the BSC device identification method described in the fourth aspect are implemented.
  • a second node including a processor and a communication interface, wherein the communication interface is used to receive second information sent by the first node, and the second information is used to indicate the second
  • the node sends an excitation signal to the BSC device; or, monitors the first information to obtain configuration related to sending the excitation signal; the communication interface is also used to send an excitation signal to the BSC device.
  • a communication system including: a first node, a BSC device, a third node and a second node.
  • the first node can be used to perform the identification method of the BSC device as described in the first aspect.
  • the BSC device can be used to perform the steps of the BSC device identification method as described in the second aspect
  • the third node can be used to perform the steps of the BSC device identification method as described in the third aspect
  • the third node can be used to perform the steps of the BSC device identification method as described in the third aspect.
  • the four nodes may be used to perform the steps of the BSC device identification method described in the fourth aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the identification method of BSC equipment as described in the first aspect is implemented. Steps, or steps to implement the identification method of BSC equipment as described in the second aspect, or steps to implement the identification method of BSC equipment as described in the third aspect, or implement the identification method of BSC equipment as described in the fourth aspect A step of.
  • a chip in a nineteenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect.
  • the identification method of a BSC device or implements the identification method of a BSC device as described in the second aspect, or implements the identification method of a BSC device as described in the third aspect, or implements the identification method of a BSC device as described in the fourth aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect
  • the steps of the identification method of BSC equipment, or the steps of implementing the identification method of BSC equipment as described in the second aspect Either implement the steps of the BSC equipment identification method as described in the third aspect, or implement the steps of the BSC equipment identification method as described in the fourth aspect.
  • the receiving end by triggering the BSC device to send the first backscattered signal according to the first configuration information, the receiving end can determine the identity of the BSC device that sent the first backscattered signal by analyzing the first backscattered signal. , which enables parallel identification of a large number of BSC devices, effectively improves the identification efficiency of BSC devices, and greatly reduces the overall time overhead.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a single-base backscatter communication system
  • Figure 3 is a schematic diagram of a bistatic backscatter communication system
  • Figure 4 is a schematic diagram of a typical architecture of backscatter communication under cellular networking
  • Figure 5 is a schematic diagram of the inventory process combined with the competitive access mechanism
  • Figure 6 is one of the flow diagrams of the identification method of BSC equipment provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart 2 of the BSC device identification method provided by the embodiment of the present application.
  • FIG. 8 is the third schematic flowchart of the BSC device identification method provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart No. 4 of the BSC device identification method provided by the embodiment of the present application.
  • Figure 10 is one of the structural schematic diagrams of the identification device of BSC equipment provided by the embodiment of the present application.
  • Figure 11 is the second structural schematic diagram of the identification device of BSC equipment provided by the embodiment of the present application.
  • Figure 12 is the third structural schematic diagram of the identification device of BSC equipment provided by the embodiment of the present application.
  • Figure 13 is the fourth structural schematic diagram of the BSC equipment identification device provided by the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • Figure 16 is a schematic diagram of the hardware structure of a network-side device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base stations may be called Node B, Evolved Node B (eNB), Access Point, Base Transceiver Station (BTS), Radio Base Station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Open Function (Network Exposure Function (NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • BSC Backscatter Communication
  • Backscatter communication means that backscatter communication equipment uses radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information.
  • Backscatter communication equipment (hereinafter referred to as BSC equipment) can be:
  • the BSC device in traditional RFID is usually a Tag and is a passive IoT device (Passive-IoT);
  • a simple implementation method is that when the Tag needs to send '1', the Tag reflects the incident carrier signal, and when the Tag needs to send '0', it does not reflect.
  • Backscatter communication equipment controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • Z 0 is the antenna characteristic impedance
  • Z 1 is the load impedance.
  • the incident signal is S in (t)
  • the output signal is Therefore, corresponding amplitude modulation, frequency modulation or phase modulation can be achieved by reasonably controlling the reflection coefficient.
  • Typical backscatter communication architectures can be divided into single-base systems and dual-base systems.
  • FIG 2 is a schematic diagram of a single-base backscatter communication system.
  • the typical representative is the traditional RFID system, which includes BSC equipment (such as Tag) and readers.
  • the reader/writer contains an RF radio frequency source and a BSC receiving end.
  • the RF radio frequency source is used to generate an excitation signal (also called an RF radio frequency signal, usually a continuous carrier wave (Continuous Wave, CW)) to power the BSC equipment and provide a carrier wave.
  • the BSC device modulates and backscatters CW.
  • the BSC receiving end in the reader receives the backscattered signal and then demodulates the signal. Since the RF source and BSC receiver are in the same device, such as the reader/writer here, it is called a single-base backscatter communication system.
  • the single-base system is generally used for short-distance backscatter communication. , such as traditional RFID applications.
  • the RF radio frequency source and BSC receiver in the dual-base system are separated, as shown in Figure 3, a schematic diagram of the dual-base backscatter communication system. Therefore, the dual-base system avoids the problem of large round-trip signal attenuation. In addition, the performance of the backscatter communication system can be further improved by reasonably placing the RF source.
  • backscatter communication systems can be divided into eight architectures as shown in Table 1 and Figure 4 based on differences in RF sources, uplinks, and downlinks.
  • Figure 4 is a schematic diagram of a typical architecture of backscatter communication under cellular networking.
  • the base station is the RF radio frequency source, and is also the downlink transmitter of the BSC device (ie, the control command sender) and the uplink receiver of the BSC device (ie, the BSC receiver). That is, the base station is directly connected to BSC device communication.
  • This deployment architecture requires high receiving sensitivity of base stations and BSC equipment, but it is simple to deploy).
  • the base station is also an RF radio frequency source, but at this time there is a Relay for relaying the uplink from the BSC device to the base station; of course, the Relay can also relay the downlink from the base station to the BSC device, which is not listed here. .
  • the UE is used as an RF radio frequency source and forwards the downlink and uplink of the BSC equipment to the base station.
  • the base station is an RF radio frequency source, and the base station directly transmits downlink data to the BSC device; in the uplink, the BSC device first sends the backscattered signal to the UE, and then the UE forwards it to the base station.
  • UE is the RF radio frequency source, and the base station directly transmits downlink data to the BSC device; in the uplink, the BSC device first sends the backscatter signal to the UE, and then the UE forwards it to the base station.
  • the base station is an RF radio frequency source.
  • the base station first sends downlink data to the UE, and then the UE forwards it to the BSC device.
  • the BSC device In the uplink, the BSC device directly sends backscattered signals to the base station.
  • UE is the RF radio frequency source.
  • the base station first sends downlink data to the UE, and then the UE forwards it to the BSC device.
  • the BSC device In the uplink, the BSC device directly sends backscattered signals to the base station.
  • the base station is an RF radio frequency source.
  • the base station first sends downlink data to the UE, and then the UE forwards it to the BSC device.
  • the BSC device sends backscattered signals to the UE, and then the UE forwards it to the base station.
  • UE is the RF radio frequency source.
  • the base station first sends downlink data to the UE, and then the UE forwards it to the BSC device; in the uplink, the BSC device sends backscattered signals to the UE, and then the UE forwards it to the base station.
  • Table 1 Typical architecture of backscatter communication under cellular network
  • RFID is a traditional backscatter communication system. Its main design goal is to identify and read data from BSC devices (i.e. Tags) within the coverage of the reader. Since RFID was initially used in the automated inventory of large quantities of goods, the process of tag identification and data reading is also called inventory.
  • BSC devices i.e. Tags
  • the Tag After the reader sends a query command (Query), the Tag responds (Reply). Taking Reply as RN16 as an example, the Tag generates a 16-bit random number and sends it to Reader/writer. Then the reader/writer sends the sequence to the Tag through the ACK command. After the Tag successfully verifies the RN16 in the ACK, it sends the subsequent data (such as Protocol Control bits (Protocol Control, PC), Extended Protocol Control bits (eXtended Protocol Control, XPC), Electronic Product Code (Electronic Product Code, EPC), etc.) are sent to the reader.
  • Protocol Control bits Protocol Control, PC
  • Extended Protocol Control bits eXtended Protocol Control
  • XPC Extended Protocol Control bits
  • EPC Electronic Product Code
  • the reader/writer sends the Select command to select the Tag that needs to be inventoried;
  • the reader/writer sends a Query command to start a round of inventory, and Query indicates a Q value;
  • All Tags generate a random integer in the range [0, 2 Q -1] as the initial value of the counter;
  • Tag receives the ACK and checks whether the RN16 contained in the ACK is the previously sent RN16;
  • the Tag that receives the QueryRep command will reduce its own counter by 1;
  • the reader can send the QueryAdjust command to reconfigure a Q value
  • the Tag that has received the QueryAdjust command and has not completed the inventory will randomly select an integer in the range [0, 2 Q -1] as the counter;
  • the Tag needs to wait for the counter to reach 0; before the Tag sends valid data, it needs to repeatedly send RN16 until the RN16 is read. The writer is correctly and uniquely identified.
  • embodiments of the present application provide a BSC device identification method, device and communication device.
  • the BSC equipment identification method, device and communication equipment provided by the embodiments of the present application will be described in detail below through some embodiments and application scenarios with reference to the accompanying drawings.
  • the BSC device identification method provided in this application can be applied to backscatter communication systems, including RFID, LTE, Narrow Band Internet of Things (NB-IoT), NR, IEEE 802.11 evolution system, etc.
  • backscatter communication systems including RFID, LTE, Narrow Band Internet of Things (NB-IoT), NR, IEEE 802.11 evolution system, etc.
  • FIG 6 is one of the schematic flowcharts of the BSC device identification method provided by the embodiment of the present application. As shown in Figure 6, the identification method of BSC equipment includes the following steps:
  • Step 100 The first node sends first information, the first information is used to trigger the BSC device to send the first backscatter signal according to the first configuration information;
  • the first node may be a base station, a UE or a dedicated reader/writer.
  • the BSC device can be a traditional RFID tag, a passive/semi-passive/active Internet of Things (IoT) device, etc.
  • IoT Internet of Things
  • Step 200 The first node determines the identity of the BSC device that sends the first backscatter signal.
  • the BSC device receives the first information sent by the first node and sends the first backscattered signal according to the first configuration information.
  • the first node receives the first backscattered signal and determines the identity of the BSC device that sent the first backscattered signal.
  • the BSC device identification method triggers the BSC device to send the first backscattered signal according to the first configuration information by sending the first information, so that the receiving end determines to send the first backscattered signal by analyzing the first backscattered signal.
  • the identification of BSC equipment with backscattered signals enables parallel identification of a large number of BSC equipment, effectively improving the identification efficiency of BSC equipment and greatly reducing the overall time overhead.
  • the identification of the BSC device is information that characterizes the identity of the BSC device, which can uniquely determine the BSC device.
  • the expression includes but is not limited to factory serial number, device ID, user ID, IP address, Media Access Control (MAC) Address, wireless network temporary identification (Radio Network Temporary Identity, RNTI), temporary identification, etc.
  • the first configuration information is indicated by the first information.
  • part of the information in the first configuration information is indicated by the first information, and the remaining information is pre/default configuration.
  • the first information may directly indicate specific parameters of the configuration, or may indicate one group of preset multiple groups of configurations.
  • the first configuration information is pre-configured.
  • the first configuration information includes at least one of the following 1) to 4):
  • the information used to determine the resource carrying the first backscattered signal is mandatory for the first configuration information.
  • the information used to determine the resource carrying the first backscattered signal includes at least one of the following:
  • the field in which the hash function is input and/or, the position of the field in which the hash function is input, and/or, the length of the field in which the hash function is input;
  • mapping rule between the hash function output value and the bearer resource or the mapping rule between the modified hash function output value and the bearer resource;
  • the hash function is a function that maps BSC device information (such as ID, specific fields) to a limited integer range.
  • BSC device information such as ID, specific fields
  • the result range of the hash function is 1-10, and the BSC device ID is 2222, then after hash After the hash function, the result is any number from 1 to 10, such as 5.
  • the preset value refers to configuring the output value of the hash function directly to the BSC device.
  • time domain and/or frequency domain resources are defined in a manner that includes at least one of the following: definition of time slots, length of time slots, intervals between adjacent frequency points, and time domain and/or frequency domain resources. Definition of starting position, total amount of time domain and/or frequency domain resources, total number of time slots, total number of frequency points, time domain and/or frequency domain resource grid, resource serial number or location.
  • a time slot can be a fixed length of time; it can also be a non-fixed length of time, such as corresponding to one transmission opportunity.
  • level impedance
  • reflection coefficient etc.
  • sequence For example, sequence, length, duration, etc.
  • the first configuration information is used for the BSC device to determine parameters for sending the first backscatter signal.
  • the first information also carries at least one of the following synchronization information:
  • Agreed sequence such as Barker sequence, ZC sequence, etc.
  • System time information such as system frame number (System frame number, SFN), timeslot counter, timeslot number, etc.
  • Delimiters such as start delimiter, end delimiter, etc.
  • the above synchronization information is used to maintain synchronization between the first node and the BSC device.
  • the method also includes:
  • the first node sends an excitation signal to the BSC device; or,
  • the first node sends second information to the second node, where the second information is used to instruct the second node to send an excitation signal to the BSC device.
  • the second node is an RF radio frequency source.
  • the second node may be a base station, a UE, a relay or a dedicated reader/writer.
  • the second node may also obtain the configuration related to sending the excitation signal by listening to the first information, and send the excitation signal to the BSC device.
  • the BSC device determines parameters of the first backscattered signal according to the first configuration information, such as time domain and/or frequency domain resources carrying the first backscattered signal, using the resources provided by the first node or the second node.
  • the excitation signal sends a backscattered signal.
  • the method also includes:
  • the first node sends third information to the BSC device, where the third information is used to indicate the start of the time slot.
  • the BSC device can autonomously determine the start of each time slot; or, the first node sends third information, and the third information is used to indicate the start of the time slot.
  • the step 200 includes step 201 and step 202, wherein,
  • Step 201 The first node receives the first backscattered signal and determines the time domain and/or frequency domain resources occupied by the first backscattered signal;
  • receiving the first backscattered signal and determining the time domain and/or frequency domain resources occupied by the first backscattered signal includes:
  • time domain and/or frequency domain resources occupied by the first backscattered signal are determined.
  • candidate time domain and/or frequency domain resources whose signal quality is greater than or equal to the first threshold are determined as time domain and/or frequency domain resources occupied by the first backscattered signal.
  • the candidate time domain and/or frequency domain resources may be configured in the first configuration information or default.
  • Receive the first backscattered signal on candidate time domain and/or frequency domain resources and measure the signal quality on each candidate time domain and/or frequency domain resource, such as Reference Signal Receiving Power (RSRP), Reference Signal Received Quality (RSRQ), etc.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Received Quality
  • Candidate time domain and/or frequency domain resources whose signal quality is greater than or equal to the first threshold are determined as time domain and/or frequency domain resources occupied by the first backscattered signal.
  • the first threshold is determined using at least one of the following:
  • the base station instructs the BSC equipment not to send signals
  • the base station sends CW
  • the base station measures the channel received signal power at the frequency at which the BSC device sends the first backscattered signal, and can take the instantaneous value or the statistical value (such as the average) of multiple instantaneous values as the first threshold;
  • the base station needs to measure the channel received signal power at each frequency point as the first threshold to determine whether there is a first backscattered signal at each frequency point.
  • Case 2 Cellular networking architecture (including base station, UE, relay)
  • the base station instructs the BSC equipment not to send signals
  • the base station instructs the UE to send CW
  • the base station instructs the relay to measure the channel received signal power at the frequency at which the BSC device sends the first backscatter signal.
  • the instantaneous value or the statistical value (such as the average) of multiple instantaneous values can be taken as the first threshold;
  • the relay needs to measure the channel received signal power at each frequency point as the first threshold to determine whether there is a first backscattered signal at each frequency point.
  • the relay indicates the first threshold determined in step 6 to the base station.
  • Step 202 The first node determines the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal.
  • the first node can identify the identity of the BSC device by analyzing the time domain and/or frequency domain resources occupied by the first backscattered signal, so that a large number of BSC devices can be identified in parallel, which can effectively improve the BSC
  • the identification efficiency of the device greatly reduces the overall time overhead.
  • step 202 includes:
  • Step 2021a map the time domain and/or frequency domain resources occupied by the first backscattered signal into the output value and/or the modified output value of the hash function to obtain the first output value;
  • Step 2022a input the identifier of the existing BSC device into the hash function, and obtain the output value and/or the modified output value of the hash function corresponding to the identifier of the existing BSC device; or, determine the existing BSC
  • the output value of the hash function corresponding to the identification of the existing BSC device and/or the modified output value, or the preset value is recorded as the second output value.
  • Step 2023a For each identifier of the existing BSC device, perform the following steps: the output value of the hash function corresponding to the current identifier and/or the modified output value or the preset value is completely included in In the case of the first output value, determine the current identification as the identification of the BSC device that sent the first backscatter signal; or, determine the output value and/or the modified output value of the hash function corresponding to the current identification. Or if the preset value is not completely included in the first output value, it is determined that the current identifier does not belong to the identifier of the BSC device that sent the first backscatter signal.
  • the embodiment of the present application refers to the idea of a Bloom filter.
  • a Bloom filter When a Bloom filter is set to 1 by a hash function of more than one object, the corresponding bit is also 1. In other words, each bit can only be "not set to 1 by any object” or “set to 1 by at least 1 object".
  • the current identification is to send the first backscatter signal Identification of the BSC device.
  • the output value of the hash function corresponding to the current identification and/or the modified output value or the preset value is not completely included in the first output value, it can be determined that the current identification does not belong to the sending of the first inverse value. Identification of the BSC device that is scattering the signal.
  • the above determination process is performed on each identification of the existing BSC equipment, thereby determining the identification of at least one BSC equipment that sends the first backscattered signal.
  • step 202 includes:
  • Step 2021b Determine the backscattered signal bearing resources corresponding to the identification of the existing BSC equipment, where the identification of the existing BSC equipment is the pre-stored identification of the BSC equipment;
  • Step 2022b For each identifier of the existing BSC equipment, perform the following steps: when the bearer resource of the backscattered signal corresponding to the current identifier is completely occupied by the first backscattered signal.
  • the current identification is determined to be the identification of the BSC device that sends the first backscattered signal; or, the bearer resource of the backscattered signal corresponding to the current identification is not completely included in the If the time domain and/or frequency domain resources occupied by the first backscattered signal are determined, it is determined that the current identity does not belong to the identity of the BSC device that sent the first backscattered signal.
  • the bearer resources of the backscattered signal corresponding to the current identification are completely included in the time domain and/or frequency domain resources occupied by the first backscattered signal, it is determined that the current identification is to send the first backscattered signal.
  • Signal BSC settings Equipment identification
  • the bearer resources of the backscattered signal corresponding to the current identification are not completely included in the time domain and/or frequency domain resources occupied by the first backscattered signal, it is determined that the current identification does not belong to the transmission of the first backscattered signal. Identification of the BSC device that is scattering the signal.
  • the above determination process is performed on each identification of the existing BSC equipment, thereby determining the identification of at least one BSC equipment that sends the first backscattered signal.
  • the time domain and/or frequency domain resources occupied by the first backscattered signal are analyzed through hash operation or resource mapping, and the identity of the BSC device can be effectively identified, thereby enabling parallel identification of a large number of BSC devices. , which can effectively improve the identification efficiency of BSC devices and significantly reduce the overall time overhead.
  • each of the identities of the existing BSC devices is Identify, after performing the following steps, that is, after step 2023a or step 2022b, the method further includes:
  • the first node sends fourth information to the BSC equipment corresponding to each identification in the first identification set, and the fourth information is used to trigger the BSC equipment corresponding to each identification in the first identification set to send a second reverse direction.
  • Scattered signals wherein the first identification set includes an identification of at least one BSC device that sends the first backscattered signal;
  • the first node receives the second backscattered signal, and determines at least one BSC that sends the second backscattered signal according to the resources and/or content and/or format occupied by the second backscattered signal. identification of the device;
  • the first node uses the identity of at least one BSC device that sends the second backscatter signal as the verified identity of the BSC device that sends the first backscatter signal.
  • the first identification set is the result obtained in step 2023a or step 2022b.
  • the first node sends the fourth information to the BSC device corresponding to each identifier in the first identifier set to trigger each of the BSC devices to send the second backscatter signal, thereby receiving the first Second, backscattered signals can be further verified on the first identification set, which can improve the accuracy of BSC equipment identification.
  • the first node After receiving the second backscattered signal, the first node determines the identity of at least one BSC device that sends the second backscattered signal based on the resources and/or content and/or format occupied by the second backscattered signal, It is recorded as a second identification set, and the identification in the second identification set is the identification of the BSC device that has passed the verification and sent the first backscatter signal.
  • the fourth information includes at least one of the following:
  • Send the content and/or format of the second backscatter signal such as the carried fields, sequence, length, duration, etc.
  • the first node sends fourth information to the BSC, so that the BSC device determines parameters related to sending the second backscattered signal based on the fourth information, and sends the second backscattered signal based on the determined parameters.
  • the step 200 includes:
  • the first node receives the final result fed back by the third node through the fifth information.
  • the final result is the identification of the BSC device that sends the first backscatter signal determined by the third node or the transmission through verification.
  • the identification of the BSC device of the first backscattered signal is the identification of the BSC device that sends the first backscatter signal determined by the third node or the transmission through verification.
  • the above steps 201 and 202 may be performed by a third node.
  • the third node may be a base station, a UE or a dedicated reader/writer, which is separate from the first node.
  • the final result includes the identification of the BSC device of the first backscattered signal or the verification of the sending result.
  • the identification of the BSC device of the first backscattered signal is used to feed back the final result to the first node through fifth information.
  • the method further includes:
  • the first node sends seventh information to the third node, where the seventh information is used to indicate relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal.
  • the relevant configuration information includes at least one of the following: all or part of the first configuration information, an identification of an existing BSC device, and fourth information.
  • the third node needs to know the relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal.
  • the third node obtains relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal through at least one of the following methods:
  • the first node indicates to the third node through the seventh information
  • the third node monitors the first information and/or the fourth information
  • step 200 includes:
  • the first node receives intermediate information fed back by the third node through sixth information, where the intermediate information is determined by the third node based on the received first backscattered signal and/or the second backscattered signal;
  • the first node determines the identity of the BSC device that sends the first backscatter signal based on the intermediate information.
  • the third node determines the intermediate information based on the received first backscattered signal and/or the second backscattered signal, and the first node determines to send the third node based on the intermediate information determined by the third node. Identification of the BSC device that backscattered the signal.
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, time domain and/or frequency domain resources occupied by the first backscattered signal, An output value, resources and/or content and/or format occupied by the second backscattered signal.
  • the method further includes:
  • the first node sends seventh information to the third node, the seventh information is used to indicate receiving and processing the first reverse Related configuration information of the scattered signal or/or the second backscattered signal.
  • the relevant configuration information includes at least one of the following: all or part of the first configuration information, the identification of the existing BSC device, and the fourth information.
  • the third node obtains relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal through at least one of the following methods:
  • the first node indicates to the third node through the seventh information
  • the third node monitors the first information and/or the fourth information
  • the first information is also used to indicate information of BSC devices participating in the identification.
  • the information of the BSC device participating in the identification includes: a mask and/or length and/or field used to match at least one of ID, EPC, PC/XPC, internal memory specific location content, and sensor results. .
  • the method also includes:
  • the first node sends eighth information to the BSC device, where the eighth information is used to trigger the BSC device to register or deregister;
  • the first node receives ninth information sent by the BSC device, where the ninth information is used to indicate registration information or deregistration information of the BSC device.
  • the method further includes: when the BSC device is triggered to register or deregister by an excitation signal sent by the first node or the second node, the first node receives the ninth information sent by the BSC device, so The ninth information is used to indicate registration information or de-registration information of the BSC device.
  • the BSC device receives the eighth information sent by the first node and registers or deregisters. In another implementation, the BSC device receives the eighth information sent by the first node or the second node.
  • the excitation signal triggers registration or de-registration, and the BSC device registers or de-registers by sending the ninth information to the first node.
  • the ninth information includes at least one of the following:
  • Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment are Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment;
  • the time range and/or selectable set of times during which the BSC device sends backscattered signals are the time range and/or selectable set of times during which the BSC device sends backscattered signals
  • the time domain and/or frequency domain resource definition method supported by the BSC device is as defined as the time domain and/or frequency domain resource definition method in the aforementioned first configuration information;
  • the BSC device receives the signal quality measurement value of the stimulus signal or seventh information, such as RSRP, RSRQ, signal and interference Scramble to noise ratio (Signal to Interference plus Noise Ratio, SINR), etc.
  • seventh information such as RSRP, RSRQ, signal and interference Scramble to noise ratio (Signal to Interference plus Noise Ratio, SINR), etc.
  • the method further includes:
  • mapping method of the hash function output value and the bearer resource and/or the mapping method of the modified hash function output value and the bearer resource.
  • the BSC device After acquiring the first configuration information, the BSC device negotiates the content of the above-mentioned tenth information with the first node.
  • the method also includes:
  • the first node During the process of the BSC device sending the first backscatter signal, the first node sends updated first configuration information to the BSC device.
  • the BSC device then uses the updated first configuration information to send the first backscattered signal.
  • the first, third, eighth and fourth information may be included in dedicated control commands, radio resource control (Radio Resource Control, RRC) signaling, media access control layer control unit (Media Access Control Control Unit, At least one signaling such as MAC CE), downlink control information (Downlink Control Information, DCI), sidelink control information (SCI), physical frame preamble sequence preamble, etc., can be used by dedicated wireless signal waveforms (such as PIE encoded ASK modulated signal), Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Sidelink Control Channel (PSCCH), Physical Bypass Shared Channel (Physical Sidelink Shared Channel, PSSCH), physical frames are carried in at least one way.
  • RRC Radio Resource Control
  • Media Access Control Control Unit Media Access Control Unit
  • At least one signaling such as MAC CE
  • downlink Control Information Downlink Control Information
  • SCI sidelink control information
  • physical frame preamble sequence preamble etc.
  • dedicated wireless signal waveforms such as PIE encoded ASK modulated signal
  • the ninth and tenth information may be included in at least one signaling such as dedicated control command, RRC signaling, MAC CE, uplink control information (Uplink Control Information, UCI), SCI, physical frame preamble, etc., and may be Dedicated wireless signal waveform (such as OOK modulated backscatter signal), physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), physical uplink control channel (Physical Uplink Control Channel, PUCCH), PSCCH, PSSCH, and at least one physical frame way to carry
  • the second, fifth to seventh information may be included in at least one signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc., and may be included in at least one of PDSCH, PUSCH, PDCCH, PUCCH, PSCCH, and PSSCH.
  • signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc.
  • FIG. 7 is a second schematic flowchart of a BSC device identification method provided by an embodiment of the present application. As shown in Figure 7, the execution subject of this method is the BSC device, including the following steps:
  • Step 300 The BSC device receives the first information, and the first information is used to trigger the BSC device to send the first backscatter signal;
  • Step 400 The BSC device sends a first backscatter signal according to the first configuration information.
  • the BSC device can be a traditional RFID tag, passive/semi-passive/active IoT device, etc.
  • the BSC device receives the first information and sends the first backscattered signal according to the first configuration information.
  • the first configuration information is indicated by the first information.
  • part of the information in the first configuration information is indicated by the first information, and the remaining information is pre/default configuration.
  • the first information may directly indicate specific parameters of the configuration, or may indicate one group of preset multiple groups of configurations.
  • the first configuration information is pre-configured.
  • the first configuration information includes at least one of the following 1) to 4):
  • the information used to determine the resource carrying the first backscattered signal is mandatory for the first configuration information.
  • the information used to determine the resource carrying the first backscattered signal includes at least one of the following:
  • the field in which the hash function is input and/or, the position of the field in which the hash function is input, and/or, the length of the field in which the hash function is input;
  • mapping rule between the hash function output value and the bearer resource or the mapping rule between the modified hash function output value and the bearer resource;
  • the hash function is a function that maps BSC device information (such as ID, specific fields) to a limited integer range.
  • BSC device information such as ID, specific fields
  • the result range of the hash function is 1-10, and the BSC device ID is 2222, then after hash After the hash function, the result is any number from 1 to 10, such as 5.
  • the preset value refers to configuring the output value of the hash function directly to the BSC device.
  • time domain and/or frequency domain resources are defined in a manner that includes at least one of the following: definition of time slots, length of time slots, intervals between adjacent frequency points, and time domain and/or frequency domain resources. Definition of starting position, total amount of time domain and/or frequency domain resources, total number of time slots, total number of frequency points, time domain and/or frequency domain resource grid, resource serial number or location.
  • a time slot can be a fixed length of time; it can also be a non-fixed length of time, such as corresponding to one transmission opportunity.
  • level impedance
  • reflection coefficient etc.
  • sequence For example, sequence, length, duration, etc.
  • the first configuration information is used for the BSC device to determine parameters for sending the first backscatter signal.
  • the first information also carries at least one of the following synchronization information:
  • Agreed sequence such as Barker sequence, ZC sequence, etc.
  • System time information such as system frame number SFN, time slot counter, time slot number, etc.
  • Delimiters such as start delimiter, end delimiter, etc.
  • the above synchronization information is used to maintain synchronization between the first node and the BSC device.
  • the BSC device sends the first backscatter signal according to the first configuration information, including:
  • the BSC device determines parameters of the first backscattered signal according to the first configuration information
  • the first backscattered signal is sent according to the parameters of the first backscattered signal.
  • the method also includes:
  • the second node is an RF radio frequency source.
  • the second node may be a base station, a UE, a relay or a dedicated reader/writer.
  • the first node sends an excitation signal to the BSC device; or,
  • the first node sends second information to the second node, where the second information is used to instruct the second node to send an excitation signal to the BSC device.
  • the second node may also obtain the configuration related to sending the excitation signal by listening to the first information, and send the excitation signal to the BSC device.
  • the BSC device determines parameters of the first backscattered signal according to the first configuration information, such as time domain and/or frequency domain resources carrying the first backscattered signal, using the resources provided by the first node or the second node.
  • the excitation signal sends a backscattered signal.
  • the method also includes:
  • the BSC device determines the start of the time slot; or,
  • the BSC device can autonomously determine the start of each time slot; or, the first node sends third information, and the third information is used to indicate the start of the time slot.
  • the method further includes:
  • Receive fourth information the fourth information being used to trigger the BSC device corresponding to each identifier in the first identifier set to send a second backscatter signal, wherein the first identifier set includes sending the first backscatter signal The identification of at least one BSC device of the signal;
  • the fourth information can be sent to the BSC equipment corresponding to each identification in the first identification set to trigger each of the BSC equipments to send the second backscattering signal, so that the received second backscattering signal can be signal to further verify the first identification set.
  • the first node sends the fourth information to the BSC equipment corresponding to each identification in the first identification set to trigger each of the BSC equipments to send the second backscattering signal, so that the first node can send the second backscattering signal according to the received second backscattering signal.
  • the scattered signal is further verified on the first identification set.
  • the fourth information includes at least one of the following:
  • Send the content and/or format of the second backscatter signal such as the carried fields, sequence, length, duration, etc.
  • the BSC device determines parameters related to sending the second backscattered signal based on the fourth information, and sends the second backscattered signal based on the determined parameters.
  • the method also includes:
  • the BSC device receives a trigger from the first node to register or deregister.
  • the method also includes:
  • the BSC device When the BSC device is triggered to register or deregister by an excitation signal sent by the first node or the second node, send ninth information to the first node, where the ninth information is used to indicate the registration of the BSC device. information or go to register information.
  • the BSC device is triggered by an excitation signal sent by the first node or the second node to register or deregister, and the BSC device registers or deregisters by sending ninth information to the first node.
  • the ninth information includes at least one of the following:
  • Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment are Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment;
  • the time range and/or selectable set of times during which the BSC device sends backscattered signals are the time range and/or selectable set of times during which the BSC device sends backscattered signals
  • the time domain and/or frequency domain resource definition method supported by the BSC device is as defined as the time domain and/or frequency domain resource definition method in the aforementioned first configuration information;
  • the BSC device receives the signal quality measurement value of the excitation signal or seventh information, such as RSRP, RSRQ, SINR, etc.
  • the method further includes:
  • the tenth information is used to indicate at least one of the following:
  • mapping method of the hash function output value and the bearer resource and/or the mapping method of the modified hash function output value and the bearer resource.
  • the BSC device After acquiring the first configuration information, the BSC device negotiates the content of the above-mentioned tenth information with the first node.
  • the method also includes:
  • the BSC device then uses the updated first configuration information to send the first backscattered signal.
  • the first, third, eighth and fourth information may be included in at least one signaling such as dedicated control command, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and may be included in the dedicated wireless signal Waveform (such as PIE encoded ASK modulated signal), PDSCH, PDCCH, PSCCH, PSSCH, physical frame is carried in at least one way
  • the ninth and tenth information may be included in at least one signaling such as dedicated control command, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc., and may be used by a dedicated wireless signal waveform (such as OOK modulated Backscatter signal), PUSCH, PUCCH, PSCCH, PSSCH, physical frame is carried in at least one way
  • the second, fifth to seventh information may be included in at least one signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc., and may be included in at least one of PDSCH, PUSCH, PDCCH, PUCCH, PSCCH, and PSSCH.
  • signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc.
  • the embodiment of this application proposes a method for identifying BSC equipment, and defines a backscattered signal transmission method that allows overlap in time domain and/or frequency domain resources, so that the receiving end can analyze the space occupied by the backscattered signal.
  • Time domain and/or frequency domain resources can identify the identification of BSC equipment, thereby enabling parallel identification of a large number of BSC equipment, effectively improving the identification efficiency of BSC equipment, and significantly reducing the overall time overhead.
  • FIG. 8 is a schematic flow chart of the third method for identifying a BSC device provided by an embodiment of the present application. As shown in Figure 8, the execution subject of this method is the third node. As shown in Figure 8, this method includes:
  • Step 500 The third node receives the first backscattered signal and/or the second backscattered signal
  • the third node may be a base station, a UE or a dedicated reader/writer, which is separate from the first node.
  • Step 600 Determine the final result according to the first backscattered signal and/or the second backscattered signal, and feed back the final result to the first node through the fifth information; or, according to the first backscattered signal, Scattered signal and/or second reflection
  • the scattered signal is directed to determine intermediate information, and the intermediate information is fed back to the first node through sixth information.
  • the third node performs receiving the first backscattered signal and/or the second backscattered signal, and performs the processing according to the first backscattered signal and/or the second backscattered signal. backscatter signal, and determine the final result.
  • the final result is the identification of the BSC device that sends the first backscatter signal determined by the third node or the BSC that sends the first backscatter signal through verification. The identification of the device.
  • the third node feeds back the final result to the first node through the fifth information
  • the first node and the third node cooperate to identify the identity of the BSC device.
  • the third node determines intermediate information based on the first backscattered signal and/or the second backscattered signal, and feeds the intermediate information back to the first node through sixth information.
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, time domain and/or frequency domain resources occupied by the first backscattered signal, first output value, the resources and/or content and/or format occupied by the second backscattered signal; wherein the first output value is mapping the time domain and/or frequency domain resources occupied by the first backscattered signal to The output value and/or the modified output value of the hash function.
  • determining the final result based on the first backscattered signal and/or the second backscattered signal includes;
  • the identity of the BSC device that sends the first backscatter signal is determined according to the time domain and/or frequency domain resources occupied by the first backscatter signal.
  • the third node of this application can identify the identification of BSC equipment by analyzing the time domain and/or frequency domain resources occupied by the first backscattered signal, thereby enabling parallel identification of a large number of BSC equipment, which can effectively improve the identification efficiency of BSC equipment. , significantly reducing the overall time overhead.
  • the receiving the first backscattered signal and determining the time domain and/or frequency domain resources occupied by the first backscattered signal include;
  • the time domain and/or frequency domain resources occupied by the first backscattered signal are determined based on the signal quality.
  • the candidate time domain and/or frequency domain resources may be configured in the first configuration information or default.
  • the first backscattered signal is received on the candidate time domain and/or frequency domain resources, and the signal quality, such as RSRP and RSRQ, on each candidate time domain and/or frequency domain resource is measured.
  • the signal quality such as RSRP and RSRQ
  • Candidate time domain and/or frequency domain resources whose signal quality is greater than or equal to the first threshold are determined as time domain and/or frequency domain resources occupied by the first backscattered signal.
  • the third node of this application can identify the identification of BSC equipment by analyzing the time domain and/or frequency domain resources occupied by the first backscattered signal, thereby enabling parallel identification of a large number of BSC equipment, which can effectively improve the identification efficiency of BSC equipment. , significantly reducing the overall time overhead.
  • the first threshold is determined using at least one of the following:
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the corresponding preset value; the identification of the existing BSC equipment is the pre-stored identification of the BSC equipment;
  • the output value of the hash function corresponding to the current identification and/or the modified output value or the preset value is completely included in the first In the case of an output value, determine the current identification as the identification of the BSC device that sent the first backscatter signal; or, determine the output value of the hash function corresponding to the current identification and/or the modified output value or the preset If the value is not completely included in the first output value, it is determined that the current identifier does not belong to the identifier of the BSC device that sent the first backscatter signal.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes at least one of the following:
  • the bearer resource of the backscattered signal corresponding to the current identification is completely included in the time domain occupied by the first backscattered signal and/or
  • the current identification is determined to be the identification of the BSC device that sends the first backscattered signal; or, the bearer resource of the backscattered signal corresponding to the current identification is not completely included in the first backscattered signal.
  • time domain and/or frequency domain resources occupied by the backscattered signal it is determined that the current identity does not belong to the identity of the BSC device that sent the first backscattered signal.
  • the final BSC device is determined based on the first backscattered signal and/or the second backscattered signal.
  • the results also include:
  • the third node sends fourth information to the BSC equipment corresponding to each identification in the first identification set, and the fourth information is used to trigger the BSC equipment corresponding to each identification in the first identification set to send a second reverse direction.
  • Scattered signals wherein the first identification set includes an identification of at least one BSC device that sends the first backscattered signal;
  • the identity of at least one BSC device that sends the second backscatter signal is used as the identity of the BSC device that passes the verification and sends the first backscatter signal.
  • the method also includes:
  • the third node obtains relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal in at least one of the following ways:
  • Receive seventh information sent by the first node the seventh information being used to indicate relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal;
  • the relevant configuration information includes at least one of the following: all or part of the first configuration information, the identification of the existing BSC device, and the fourth information.
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, time domain and/or frequency domain resources occupied by the first backscattered signal, An output value, resources and/or content and/or format occupied by the second backscattered signal.
  • the fourth information may be included in at least one signaling such as dedicated control command, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and may be used in a dedicated wireless signal waveform (such as a PIE encoded ASK modulated signal ), PDSCH, PDCCH, PSCCH, PSSCH, physical frames are carried in at least one way.
  • signaling such as dedicated control command, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc.
  • a dedicated wireless signal waveform such as a PIE encoded ASK modulated signal
  • PDSCH PDCCH
  • PSCCH PSCCH
  • PSSCH physical frames are carried in at least one way.
  • the fifth to seventh information can be included in at least one signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc., and can be used in at least one way of PDSCH, PUSCH, PDCCH, PUCCH, PSCCH, PSSCH carry.
  • signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc.
  • FIG 9 is a schematic flowchart No. 4 of the BSC device identification method provided by the embodiment of the present application. As shown in Figure 9, the execution subject of this method is the second node. As shown in Figure 9, this method includes:
  • Step 700 The second node receives the second information sent by the first node, and the second information is used to instruct the second node to send an excitation signal to the BSC device; or, the second node monitors the first information and obtains the sending excitation signal.
  • the second node monitors the first information and obtains the sending excitation signal.
  • Step 800 The second node sends an excitation signal to the BSC device.
  • the second node is an RF radio frequency source.
  • the second node may be a base station, a UE, a relay or a dedicated reader/writer.
  • the second node receives second information sent by the first node, where the second information is used to instruct the second node to send an excitation signal to the BSC device.
  • the second node may also obtain the configuration related to sending the excitation signal by listening to the first information, and send the excitation signal to the BSC device.
  • the method also includes:
  • the second node sends an excitation signal to the BSC device for triggering the BSC device to perform device registration or de-registration.
  • the method also includes:
  • the second node sends updated first configuration information to the BSC device.
  • the BSC device uses the updated first configuration information to send the first backscattered signal.
  • the second information may be included in at least one signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc., and may be carried in at least one manner of PDSCH, PUSCH, PDCCH, PUCCH, PSCCH, and PSSCH.
  • signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc.
  • the excitation signal is provided through the second node, causing the BSC device to send the backscattered signal, so that the control command sender and/or the backscattered signal receiving end analyzes the time domain occupied by the first backscattered signal. and/or frequency domain resources, the identification of BSC equipment can be identified, so that a large number of BSC equipment can be identified in parallel, which can effectively improve the identification efficiency of BSC equipment and significantly reduce the overall time overhead.
  • This application decouples the control command sender (first node), RF source (second node), backscatter signal receiver (third node) and BSC equipment, and can be used in the aforementioned single and dual base systems. and all architectures under cellular networking.
  • the BSC device identification method provided by this application is further described below through several specific embodiments.
  • the first, second and third nodes are all the same RFID reader/writer (hereinafter referred to as the reader/writer), and the BSC device is RFID Tag (hereinafter referred to as Tag).
  • the specific process of this embodiment is as follows:
  • Step 1 Preset K fields in the storage of all Tags within the coverage of the reader and writer, with values of m 1 , m 2 ,...m K respectively.
  • the values of m 1 , m 2 ,...m K of each Tag are different, and m k ⁇ 1,...,M ⁇ ,
  • Step 2 The reader/writer stores the K fields of all Tags and their corresponding relationship with the Tag identification.
  • Step 3 The reader and writer construct a bitmap of length M, denoted as B.
  • B(m) represents the value of the m-th bit of the bitmap, and the initial value is 0.
  • Step 4 The reader/writer sends K Select commands to all Tags, and selects Tags with at least one field equal to m in the K fields in the storage to participate in the current mth inventory process.
  • Step 5 The reader/writer sends the Query command to all Tags and sets the Q value to 0.
  • Step 6 The reader/writer sends CW to all Tags.
  • Step 7 After the Query command ends, the Tag selected in Step 4 uses the CW described in Step 6 to send a backscatter signal, including a 16-bit random number (i.e. RN16).
  • RN16 16-bit random number
  • Step 8 The reader receives the backscattered signal and attempts to decode RN16; or, measures the RSRP of the backscattered signal.
  • Step 10 The reader/writer sends the Select command to clear the Tag status change caused by Step 4.
  • Step 11 repeat steps 4-10 until M times of inventory process are completed.
  • Step 12 For each Tag, the reader/writer matches its K fields and whether the corresponding bitmap positions are all 1. If so, the tag's identifier is put into the identifier set D.
  • Step 13 The identifier in set D is the identifier of the Tag that sent the backscatter signal, and the process ends.
  • the command sent by the reader to the Tag can be included in at least one signaling such as dedicated control command, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and can be used by the dedicated wireless Signal waveforms (such as PIE-encoded ASK modulated signals), PDSCH, PDCCH, PSCCH, PSSCH, and physical frames are carried in at least one way.
  • signaling such as dedicated control command, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc.
  • dedicated wireless Signal waveforms such as PIE-encoded ASK modulated signals
  • Embodiment 1 is similar to Embodiment 2, but the difference is that there is no need to implement the inventory process based on RFID.
  • this embodiment considers a single frequency point (that is, resources can only be divided from the time domain). The specific process is as follows:
  • Step 1 The base station sends a command to instruct the BSC device that enters the coverage area of the base station to register/deregister the device, and provide at least one of the following contents to the base station:
  • Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment are Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment;
  • the time range and/or selectable set of times during which the BSC device sends backscattered signals are the time range and/or selectable set of times during which the BSC device sends backscattered signals
  • Receive signal quality measurements from CW or base station commands such as RSRP, RSRQ, SINR, etc.
  • Step 2 The base station sends a command to select the BSC equipment participating in the identification:
  • the command indicates a matching field and/or a matching condition.
  • the BSC device that receives the command will match its own information with the matching field according to the given conditions, and the BSC device that meets the conditions will continue to participate in the remaining processes.
  • Step 3 The base station sends a command to instruct the BSC device to send all or part of the configuration of the first backscattered signal, including the contents a)-d):
  • time domain resources definition of time slot (can be a fixed length of time; it can also be a time of variable length, such as corresponding to one transmission opportunity), the length of the time slot, and the starting position of the time domain resource , the total time domain resources Definition of quantity, total number of time slots, resource serial number or location;
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • the BSC device adopts the agreed default configuration.
  • the command indicates synchronization information such as preamble sequence, system time information, delimiter, etc.
  • the serial numbers of the bearer resources (the bearer resources in this embodiment are time domain resources) that are finally mapped to the hash function output value or the modified output value are m 1 and m respectively. 2 ,...m K .
  • the values of m 1 , m 2 ,...m K of each BSC equipment are different, and m k ⁇ 1,...,M ⁇ , Where M is the total number of time slots.
  • Step 4 Optionally, depending on the terminal capabilities of the BSC device, the BSC device negotiates a hash function, or a hash function output value, or a bearer resource with the base station.
  • the base station obtains the information about the BSC equipment described in step 1;
  • Option 1 Configure a set of hash functions and/or modification rules that meet the BSC device terminal capabilities
  • Option 2 Configure a set of preset hash function output values and/or modification rules that meet the BSC device terminal capabilities
  • Option 3 Configure a set of preset bearer resources and/or modify rules that meet the terminal capabilities of the BSC equipment.
  • the base station configures the hash function and/or the preset hash function output value and/or the preset bearer resource when the BSC equipment terminal capability is unknown;
  • the BSC device instructs the base station to discard or retain the hash function and/or hash function output value and/or bearer resources;
  • the base station and BSC equipment have pre-agreed default rules for discarding or retaining, or the base station indicates the default discarding or retaining rules and discards or retains the hash function output value and/or bearer resources on its own, respectively;
  • the BSC device indicates the modification rules for the base station hash function output value, or the modification rules for the bearer resources
  • Option 4 The base station and BSC equipment have pre-agreed default modification rules, or the base station instructs the default modification rules to modify the hash function output value and/or bearer resources on its own;
  • the terminal capability of the BSC device mainly refers to the time range and/or selectable time set for sending backscatter signals described in step 1. For example, in which time slots, BSC equipment can send signals; or, the number of time slots in which BSC can continuously send signals.
  • Step 5 The base station stores and maintains identification information of all BSC devices, which can be obtained through step 1; or obtained in advance through historical records and other means.
  • Step 6 The base station stores and maintains the identification of all BSC devices and the fields and/or positions and/or lengths of the input hash functions, and/or, modifies the hash function output values and/or modification rules, and/or, hashes The correspondence between the hash function output value or the modified output value and the mapping method of the resource.
  • Step 7 The base station constructs a bitmap of length M, denoted as B.
  • B(m) represents the value of the m-th bit of the bitmap, and the initial value is 0.
  • Step 8 The base station sends a command to indicate the sequence number m of the current time slot; or, indicates entering the next time slot, and the BSC device determines the sequence number; or, only sends the command once, and the subsequent time slots and their sequence numbers are determined by the BSC device.
  • Step 9 The base station sends CW to all BSC devices.
  • Step 10 The BSC device matches whether the bearer resource mapped from the hash function output value or the modified output value contains the time slot with serial number m; or, matches whether the preset bearer resource contains the time slot with serial number m.
  • Step 11 The BSC device that is successfully matched in step 10 uses the CW described in step 9 to send backscattered signals according to the parameters described in a)-b) in step 3.
  • Step 12 The base station receives the backscattered signal and attempts to decode it; or, measures the RSRP of the backscattered signal.
  • Step 14 Repeat steps 8-13 until the first backscattered signal is sent.
  • Step 15 For each BSC device, the base station matches whether the bitmap positions corresponding to the serial numbers of the K time slots mapped from the hash function output value or the modified output value or the preset serial numbers of the K time slots are all 1. , if so, put the identifier of the BSC device into the identifier set D.
  • Step 16 The identifier in set D is the identifier of the BSC device that sent the backscatter signal, and the process ends.
  • the commands or information sent by the base station to the BSC equipment can be included in dedicated control commands, RRC signals
  • At least one signaling such as command, MAC CE, DCI, SCI, physical frame preamble, etc. can be carried by at least one way of dedicated wireless signal waveform (such as PIE encoded ASK modulated signal), PDSCH, PDCCH, PSCCH, PSSCH, physical frame
  • the commands or information sent by the BSC device to the base station can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as OOK modulated backscatter signal), PUSCH, PUCCH, PSCCH, PSSCH, physical frame are carried in at least one way.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as OOK modulated backscatter signal
  • Embodiment 3 is similar to Embodiment 2, except that this embodiment considers dynamic hash function indication and bitmap construction, where "dynamic” refers to activating a new hash function during the identification process.
  • dynamic refers to activating a new hash function during the identification process.
  • the specific process is as follows:
  • Steps 1 and 2 are the same as steps 1 and 2 in Embodiment 2.
  • Step 3 The base station sends a command to instruct the BSC device to send all or part of the configuration of the first backscattered signal.
  • time domain resources definition of time slot (can be a fixed length of time; it can also be a time of variable length, such as corresponding to one transmission opportunity), the length of the time slot, and the starting position of the time domain resource , the definition of the total amount of time domain resources, the total number of time slots, resource serial numbers or locations;
  • a set of hash functions or, selecting the activated hash function from a preset or historically indicated set of hash functions.
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • the BSC device adopts the agreed default configuration.
  • the command indicates synchronization information such as preamble sequence, system time information, delimiter, etc.
  • the hash function can be divided into G groups.
  • the hash function output value or modified output value of each group is ultimately mapped to a different range of bearer resource sequence numbers.
  • the range of the g-th group can be expressed as M g-1 +1,...,M g .
  • the number of hash functions in each group can also be different.
  • the number of hash functions in the g-th group is K g . Therefore, the total number of time slots can be one of M 1 ,..., MG .
  • the hash function output value or modified output value preset in method 3, or the bearer resource preset in method 4 can also be divided into G groups, and each group is ultimately mapped to the bearer resource.
  • the serial number range is different and is similar to the previous description, so no details will be given.
  • the base station can determine the number of groups to use based on the number of registered BSC devices, starting from the first group. For example, if it is instructed to use group g, then use the first to gth groups.
  • Step 4 Optionally, depending on the terminal capabilities of the BSC device, the BSC device negotiates a hash function, or a hash function output value, or a bearer resource with the base station.
  • the base station obtains the information about the BSC equipment described in step 1;
  • Option 1 Configure a set of hash functions and/or modification rules that meet the BSC device terminal capabilities
  • Option 2 Configure a set of preset hash function output values and/or modification rules that meet the BSC device terminal capabilities
  • Option 3 Configure a set of preset bearer resources and/or modify rules that meet the terminal capabilities of the BSC equipment.
  • the base station configures the hash function and/or the preset hash function output value and/or the preset bearer resource when the BSC equipment terminal capability is unknown;
  • the BSC device instructs the base station to discard or retain the hash function and/or hash function output value and/or bearer resources;
  • the base station and BSC equipment have pre-agreed default rules for discarding or retaining, or the base station indicates the default discarding or retaining rules and discards or retains the hash function output value and/or bearer resources on its own, respectively;
  • the BSC device indicates the modification rules for the base station hash function output value, or the modification rules for the bearer resources
  • Option 4 The base station and BSC equipment have pre-agreed default modification rules, or the base station instructs the default modification rules to modify the hash function output value and/or bearer resources on its own;
  • the terminal capability of the BSC device mainly refers to the time range and/or selectable time set for sending backscatter signals described in step 1. For example, in which time slots, BSC equipment can send signals; or, the number of time slots in which BSC can continuously send signals.
  • Step 5 The base station stores and maintains identification information of all BSC devices, which can be obtained through step 1; or through historical Obtain in advance through historical records and other means.
  • Step 6 The base station stores and maintains the identification of all BSC devices and the fields and/or positions and/or lengths of the input hash functions, and/or, modifies the hash function output values and/or modification rules, and/or, hashes The correspondence between the hash function output value or the modified output value and the mapping method of the resource.
  • Step 7 The base station constructs a bitmap with a length of M g , denoted as B.
  • B(m) represents the value of the m-th bit of the bitmap, and the initial value is 0.
  • the first backscattered signal is sent multiple times, taking the mth time as an example for illustration.
  • the number of times is variable and can be one of the values of M 1 , M 2 ,..M G ):
  • Steps 8-13 are the same as steps 8-13 in Embodiment 2.
  • Step 14 The base station determines whether it needs to activate a new hash function (corresponding to methods 1 and 2) or a preset hash function output value (corresponding to method 3) or a preset bearer resource (corresponding to method 4).
  • a determined method The method is: does the number of bits with a bitmap of 1 exceed a specific threshold? If so, it needs to be activated.
  • Step 15 If the judgment condition in step 14 is true, the base station sends a command to instruct the BSC device to activate a new set of hash functions or preset hash function output values or preset bearer resources.
  • the current group is g, then Indicate group g+1; and instruct the BSC equipment to update the total number of resources and update the total number of time slots from M g to M g+1 ; at the same time, the base station extends the length of the bitmap to M g+1 , and the new bit position is initially taken The value is 0. It should be noted that the BSC device does not need to be instructed to update the total resource quantity, because activating a new group means a new total resource quantity, which is determined and updated by the BSC device itself.
  • Step 16 Repeat steps 8-15 until the first backscattered signal is sent.
  • Step 17 assuming that the activated group at the end of the first backscatter signal transmission is g, for each BSC device, the base station matches the hash function output value or the modified output value mapped to The serial number of the time slot or the preset Whether the bitmap positions corresponding to the serial numbers of each time slot are all 1, if so, put the identifier of the BSC device into the identifier set D.
  • Step 18 For each BSC device, the base station matches whether the bitmap positions corresponding to the serial numbers of the K time slots mapped from the hash function output value or the modified output value or the preset serial numbers of the K time slots are all 1. , if so, put the identifier of the BSC device into the identifier set D.
  • Step 19 The identifier in set D is the identifier of the BSC device that sent the backscatter signal, and the process ends.
  • the commands or information sent by the base station to the BSC device can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as PIE encoded ASK modulated signal), PDSCH, PDCCH, PSCCH, PSSCH, physical frame is carried in at least one way
  • the commands or information sent by the BSC device to the base station can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as OOK modulated backscatter signal), PUSCH, PUCCH, PSCCH, PSSCH, physical frame at least one way carry.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as OOK modulated backscatter signal
  • Embodiment 4 considers implementing the solution of the present application in a cellular system, considering that the first, second and third nodes are the same device, and the base station is taken as an example for description here.
  • Embodiment 4 is similar to Embodiment 2, except that multiple frequency points are considered (that is, the resource grid is expanded from only time domain resources (one dimension) of a single frequency point to time and frequency domain resources (two dimensions)). The difference lies in step 3:
  • Step 3 The base station sends a command to instruct the BSC device to send all or part of the configuration of the first backscattered signal, including:
  • time domain resources the definition of time slot (can be a fixed length of time; it can also be a time of variable length, such as corresponding to one transmission opportunity), the length of the time slot, the interval between adjacent frequency points, The starting position of time domain and/or frequency domain resources, the total amount of time domain and/or frequency domain resources, the total number of time slots, the total number of frequency points, time domain and/or frequency domain resource grid, resource serial number or location Definition;
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • mapping method between the hash function output value or the modified output value and the carrying resource
  • the BSC device adopts the agreed default configuration.
  • the command indicates synchronization information such as preamble sequence, system time information, delimiter, etc.
  • the bearer resource serial numbers are m 1 , m 2 ,...m K respectively.
  • m K can be a one-dimensional number, which means that the two-dimensional resource grid is converted into a one-dimensional coordinate position; m K can also be a two-dimensional coordinate, which means that the two-dimensional resource grid is converted into a one-dimensional coordinate position. position in the time domain and frequency domain.
  • Steps 1, 2, 4 to 10 are the same as those in Embodiment 2 and will not be described again.
  • Step 11 The BSC device that is successfully matched in step 10 uses the CW described in step 9 to send backscatter signals on the bearer resources (including time domain resources and frequency domain resources) determined in step 10 according to the parameters described in 3a-3b.
  • Step 12 The base station receives the backscattered signals at all frequency points defined in step 3c and attempts to decode them; or, measures the RSRP of the backscattered signals at each frequency point.
  • Embodiment 3 can also be combined with the dynamic hash function indication and bitmap construction of Embodiment 3. Reference can be made to Embodiment 3, which will not be described again here.
  • Embodiment 5 takes Embodiment 2 as an example. Describes how to apply the proposed solution to a decoupled cellular network architecture (the first, second, and third nodes are all different devices), but it is also applicable to Embodiments 3 and 4, and can also be extended to dual-base system architecture and As mentioned above in all cellular networking architectures.
  • Embodiment 2 extends Embodiment 2 to a decoupled cellular system architecture, considering that the first, second and third nodes are different devices.
  • the first node is the base station
  • the second node is the UE
  • the third node is the central station.
  • the specific process of this embodiment is as follows:
  • Steps 1-7 are the same as steps 1-7 in Embodiment 2.
  • Step 8 The base station sends a command to indicate the sequence number m of the current time slot; or to indicate entering the next time slot, and the BSC device determines the sequence number; or it only sends the command once, and the subsequent time slots and their sequence numbers are determined by the BSC device.
  • Step 9 The UE listens to the command described in Step 8 or the base station instructs the UE, and sends the CW to the BSC device.
  • Step 10 the UE instructs the relay to relay part or all of the configurations described in steps 3 and 4; or, the relay listens to the commands described in steps 3 and 4 to obtain relevant configurations; or, the relay adopts the agreed configuration.
  • Step 11 The BSC device matches whether the bearer resource mapped from the hash function output value or the modified output value contains the time slot with serial number m; or, matches whether the preset bearer resource contains the time slot with serial number m.
  • Step 12 The successfully matched BSC device in step 11 uses the parameters described in steps 3a)-3b) and uses the parameters obtained in step 9.
  • the CW sends a backscattered signal.
  • Step 13 The relay receives the backscattered signal and attempts to decode it; or, measures the RSRP of the backscattered signal.
  • Step 14 the relay and the base station cooperate to record the bitmap:
  • Step 15 Repeat steps 8-14 until the first backscattered signal is sent.
  • Steps 16-17 are consistent with steps 15-16 of Embodiment 2.
  • the commands or information sent by the base station to the BSC device can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as PIE encoded ASK modulated signal), PDSCH, PDCCH, PSCCH, PSSCH, physical frame is carried in at least one way.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as PIE encoded ASK modulated signal
  • the commands or information sent by the BSC device to the base station can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as OOK modulated backscatter signal), PUSCH, PUCCH, PSCCH, PSSCH, physical frame is carried in at least one way.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as OOK modulated backscatter signal
  • the information or commands exchanged between the base station, UE and relay can be included in at least one signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc., and can be used by PDSCH, PUSCH, PDCCH, PUCCH, PSCCH and PSSCH are carried in at least one way.
  • signaling such as RRC signaling, MAC CE, DCI, UCI, SCI, etc.
  • Embodiment 2 This embodiment is based on Embodiment 2 and explains the steps of further verifying the identity of at least one BSC device that sends the first backscatter signal.
  • Steps 1-16 are consistent with steps 1-16 of Example 2
  • Step 17 The base station sends a command to instruct the BSC device whose identity is in set D to send the second backscatter signal.
  • the command includes at least one of the following:
  • the BSC device adopts the agreed default configuration.
  • the command indicates synchronization information such as preamble sequence, system time information, delimiter, etc.
  • Step 18 The BSC device instructed by the command in step 17 sends the second backscatter signal on the specified resource with the specified content and format.
  • Step 19 The base station receives the second backscattered signal on the designated resource indicated by the command in step 17. If it is successfully decoded and the content or format passes verification, the base station puts the identification of the corresponding BSC device into the set D'.
  • Step 20 Set D' is the verified identity of the BSC device that sent the first backscattered signal.
  • the command described in step 17 may indicate resources reserved for the BSC device for reporting content, or resources for receiving downlink data, or establishing connection-related signaling.
  • Step 22 The BSC device receives the command described in step 17, and performs uplink and/or downlink data transmission on the corresponding reserved resources, or establishes a connection.
  • the commands or information sent by the base station to the BSC device can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as PIE encoded ASK modulated signal), PDSCH, PDCCH, PSCCH, PSSCH, physical frame is carried in at least one way.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, DCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as PIE encoded ASK modulated signal
  • the commands or information sent by the BSC device to the base station can be included in at least one signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc., and can be included in dedicated wireless signal waveforms (such as OOK modulated backscatter signal), PUSCH, PUCCH, PSCCH, PSSCH, physical frame is carried in at least one way.
  • signaling such as dedicated control commands, RRC signaling, MAC CE, UCI, SCI, physical frame preamble, etc.
  • dedicated wireless signal waveforms such as OOK modulated backscatter signal
  • the execution subject of the BSC equipment identification method provided by the embodiment of the present application may be an identification device of the BSC equipment.
  • the identification device of the BSC equipment performing the identification method of the BSC equipment is used as an example to illustrate the identification device of the BSC equipment provided by the embodiment of the present application.
  • FIG 10 is one of the structural schematic diagrams of the identification device of the BSC equipment provided by the embodiment of the present application.
  • the identification device 1000 of the BSC equipment includes:
  • the first sending unit 1010 is configured to send first information, where the first information is used to trigger the BSC device to send the first backscatter signal according to the first configuration information;
  • the first identification unit 1020 is used to determine the identity of the BSC device that sends the first backscatter signal.
  • the first configuration information is indicated by the first information, or part of the information in the first configuration information is indicated by the first information, or the first configuration information is pre-configured. .
  • the first configuration information includes at least one of the following:
  • the content and/or format of the first backscattered signal is transmitted.
  • the information used to determine the resource carrying the first backscattered signal includes at least one of the following:
  • the field in which the hash function is input and/or, the position of the field in which the hash function is input, and/or, the length of the field in which the hash function is input;
  • mapping rule between the hash function output value and the bearer resource or the mapping rule between the modified hash function output value and the bearer resource;
  • time domain and/or frequency domain resources are defined in a manner that includes at least one of the following: definition of time slots, length of time slots, intervals between adjacent frequency points, and time domain and/or frequency domain resources. Definition of starting position, total amount of time domain and/or frequency domain resources, total number of time slots, total number of frequency points, time domain and/or frequency domain resource grid, resource serial number or location.
  • the first information also carries at least one of the following synchronization information: agreed sequence, system time information, and separator.
  • the device further includes a second sending unit for
  • the device also includes:
  • the third sending unit is configured to send third information to the BSC device, where the third information is used to indicate the start of the time slot.
  • the first identification unit is used for:
  • the identity of the BSC device that sends the first backscatter signal is determined according to the time domain and/or frequency domain resources occupied by the first backscatter signal.
  • receiving the first backscattered signal and determining the time domain and/or frequency domain resources occupied by the first backscattered signal includes:
  • time domain and/or frequency domain resources occupied by the first backscattered signal are determined.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the corresponding preset value; the identification of the existing BSC equipment is the pre-stored identification of the BSC equipment;
  • the output value of the hash function corresponding to the current identification and/or the modified output value or the preset value is completely included in the first In the case of an output value, determine the current identification as the identification of the BSC device that sent the first backscatter signal; or, determine the output value of the hash function corresponding to the current identification and/or the modified output value or the preset If the value is not completely included in the first output value, it is determined that the current identifier does not belong to the identifier of the BSC device that sent the first backscatter signal.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the bearer resource of the backscattered signal corresponding to the current identification is completely included in the time domain occupied by the first backscattered signal and/or
  • the current identification is determined to be the identification of the BSC device that sends the first backscattered signal; or, the bearer resource of the backscattered signal corresponding to the current identification is not completely included in the first backscattered signal.
  • time domain and/or frequency domain resources occupied by the backscattered signal it is determined that the current identity does not belong to the identity of the BSC device that sent the first backscattered signal.
  • the device also includes:
  • the fourth sending unit is configured to send fourth information to the BSC equipment corresponding to each identification in the first identification set, where the fourth information is used to trigger the BSC equipment corresponding to each identification in the first identification set to send the second Backscatter signal, wherein the first set of identifiers includes an identifier of at least one BSC device that sends the first backscatter signal;
  • a second identification unit configured to receive the second backscattered signal, and determine at least one source for sending the second backscattered signal based on the resources and/or content and/or format occupied by the second backscattered signal.
  • the first determining unit is configured to use the identity of at least one BSC device that sends the second backscatter signal as the verified identity of the BSC device that sends the first backscatter signal.
  • the fourth information includes at least one of the following:
  • the first identification unit is used for:
  • the final result is the identification of the BSC device that sends the first backscatter signal determined by the third node or the verification of the BSC device that sends the first backscatter signal. Identification of the BSC device that is scattering the signal.
  • the first identification unit is used for:
  • the identity of the BSC device that sent the first backscatter signal is determined.
  • the device also includes:
  • the fifth sending unit is configured to send seventh information to the third node, where the seventh information is used to indicate relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal.
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, time domain and/or frequency domain resources occupied by the first backscattered signal, An output value, resources and/or content and/or format occupied by the second backscattered signal.
  • the relevant configuration information includes at least one of the following: all or part of the first configuration information, the identification of the existing BSC device, and the fourth information.
  • the first information is also used to indicate information of BSC devices participating in the identification.
  • the information of the BSC device participating in the identification includes: a mask and/or length and/or field used to match at least one of ID, EPC, PC/XPC, internal memory specific location content, and sensor results. .
  • the method also includes:
  • the sixth sending unit is used to send eighth information to the BSC device, where the eighth information is used to trigger the BSC device to register or deregister;
  • the first receiving unit is configured to receive ninth information sent by the BSC device, where the ninth information is used to indicate registration information or deregistration information of the BSC device.
  • the method further includes a second receiving unit, configured to:
  • the BSC device When the BSC device is triggered to register or deregister by an excitation signal sent by the first node or the second node, receive ninth information sent by the BSC device, where the ninth information is used to indicate registration of the BSC device. information or go to register information.
  • the ninth information includes at least one of the following:
  • Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment are Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment;
  • the time range and/or selectable set of times during which the BSC device sends backscattered signals are the time range and/or selectable set of times during which the BSC device sends backscattered signals
  • the BSC device receives signal quality measurements of the excitation signal or seventh information.
  • the device also includes:
  • the second receiving unit is configured to receive the tenth information sent by the BSC device, where the tenth information is used to indicate at least one of the following:
  • mapping method of the hash function output value and the bearer resource and/or the mapping method of the modified hash function output value and the bearer resource.
  • the device also includes:
  • the seventh sending unit is configured to send the first node updated first configuration information to the BSC device during the process of the BSC device sending the first backscatter signal.
  • the identification device of the BSC device triggers the BSC device to send the first backscattered signal according to the first configuration information by sending the first information, so that the receiving end determines to send the first backscattered signal by analyzing the first backscattered signal.
  • the identification of BSC equipment with backscattered signals enables parallel identification of a large number of BSC equipment, effectively improving the identification efficiency of BSC equipment and greatly reducing the overall time overhead.
  • the identification device of the BSC device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the BSC equipment identification device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, it will not be described again here.
  • FIG 11 is the second structural schematic diagram of the identification device of the BSC equipment provided by the embodiment of the present application. As shown in Figure 11, the identification device 1100 of the BSC equipment includes:
  • the third receiving unit 1110 is used to receive the first information, the first information is used to trigger the BSC device to send the first backscatter signal;
  • the eighth sending unit 1120 is configured to send the first backscattered signal according to the first configuration information.
  • the first configuration information is indicated by the first information, or part of the information in the first configuration information is indicated by the first information, or the first configuration information is pre-configured. .
  • the first configuration information includes at least one of the following:
  • the content and/or format of the first backscattered signal is transmitted.
  • the information used to determine the resource carrying the first backscattered signal includes at least one of the following:
  • the field in which the hash function is input and/or, the position of the field in which the hash function is input, and/or, the length of the field in which the hash function is input;
  • mapping rule between the hash function output value and the bearer resource or the mapping rule between the modified hash function output value and the bearer resource;
  • time domain and/or frequency domain resources are defined in a manner that includes at least one of the following: definition of time slots, length of time slots, intervals between adjacent frequency points, and time domain and/or frequency domain resources. Definition of starting position, total amount of time domain and/or frequency domain resources, total number of time slots, total number of frequency points, time domain and/or frequency domain resource grid, resource serial number or location.
  • the first information also carries at least one of the following synchronization information: agreed sequence, system time information, and delimiter.
  • the eighth sending unit is used for:
  • the first backscattered signal is sent according to the parameters of the first backscattered signal.
  • the device also includes:
  • the fourth receiving unit is used to receive the excitation signal sent by the first node or the second node.
  • the device also includes:
  • the second determination unit is used to determine the start of the time slot; or,
  • the fifth receiving unit is configured to receive third information sent by the first node, where the third information is used to indicate the start of the time slot.
  • the device also includes:
  • the sixth receiving unit is configured to receive fourth information.
  • the fourth information is used to trigger the BSC device corresponding to each identifier in the first identifier set to send a second backscatter signal, wherein the first identifier set includes sending The identification of at least one BSC device of the first backscattered signal;
  • the ninth sending unit is used to send the second backscattered signal.
  • the fourth information includes at least one of the following:
  • the device also includes:
  • a seventh receiving unit configured to receive the eighth information sent by the first node, where the eighth information is used to trigger the BSC device to register or deregister;
  • the tenth sending unit is configured to send ninth information to the first node, where the ninth information is used to indicate registration information or deregistration information of the BSC device.
  • the device also includes:
  • An eleventh sending unit configured to send ninth information to the first node when the BSC device is triggered to register or deregister by an excitation signal sent by the first node or the second node, where the ninth information is To indicate the registration information or de-registration information of the BSC device.
  • the ninth information includes at least one of the following:
  • Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment are Frequencies and/or ranges and/or sets of frequencies that can be used by BSC equipment;
  • the time range and/or selectable set of times during which the BSC device sends backscattered signals are the time range and/or selectable set of times during which the BSC device sends backscattered signals
  • the BSC device receives signal quality measurements of the excitation signal or seventh information.
  • the device also includes:
  • a twelfth sending unit configured to send tenth information to the first node
  • the tenth information is used to indicate at least one of the following:
  • mapping method of the hash function output value and the bearer resource and/or the mapping method of the modified hash function output value and the bearer resource.
  • the device also includes:
  • the eighth receiving unit is configured to receive updated first configuration information sent by the first node or the second node during the process of the BSC device sending the first backscatter signal.
  • a backscattered signal transmission method is defined that allows overlap in time domain and/or frequency domain resources, so that the receiving end can analyze the time domain and/or frequency domain occupied by the backscattered signal.
  • the resources can identify the identification of BSC equipment, so that a large number of BSC equipment can be identified in parallel, effectively improving the identification efficiency of BSC equipment and greatly reducing the overall time overhead.
  • the identification device of the BSC device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the BSC equipment identification device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG 12 is the third structural schematic diagram of the identification device of BSC equipment provided by the embodiment of the present application. As shown in Figure 12, the identification device 1200 of the BSC equipment includes:
  • the ninth receiving unit 1210 is used to receive the first backscattered signal and/or the second backscattered signal
  • the first feedback unit 1220 is configured to determine a final result based on the first backscattered signal and/or the second backscattered signal, and feedback the final result to the first node through fifth information; or, based on the The first backscattered signal and/or the second backscattered signal determine intermediate information, and the intermediate information is fed back to the first node through sixth information;
  • the final result includes the identity of the BSC device that sent the first backscatter signal or the identity of the BSC device that passed the verification and sent the first backscatter signal;
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, the time domain and/or frequency domain resource occupied by the first backscattered signal, the first output value, The resources and/or content and/or format occupied by the second backscattered signal; wherein the first output value is mapping the time domain and/or frequency domain resources occupied by the first backscattered signal into a hash The function's output value and/or modified output value.
  • determining the final result based on the first backscattered signal and/or the second backscattered signal includes:
  • the identity of the BSC device that sends the first backscatter signal is determined according to the time domain and/or frequency domain resources occupied by the first backscatter signal.
  • the receiving the first backscattered signal and determining the time domain and/or frequency domain resources occupied by the first backscattered signal include;
  • time domain and/or frequency domain resources occupied by the first backscattered signal are determined.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the corresponding preset value; the identification of the existing BSC equipment is the pre-stored identification of the BSC equipment;
  • the output value of the hash function corresponding to the current identification and/or the modified output value or the preset value is completely included in the first In the case of an output value, determine the current identification as the identification of the BSC device that sent the first backscatter signal; or, determine the output value of the hash function corresponding to the current identification and/or the modified output value or the preset If the value is not completely included in the first output value, it is determined that the current identifier does not belong to the identifier of the BSC device that sent the first backscatter signal.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes at least one of the following:
  • the bearer resource of the backscattered signal corresponding to the current identification is completely included in the time domain occupied by the first backscattered signal and/or
  • the current identification is determined to be the identification of the BSC device that sends the first backscattered signal; or, the bearer resource of the backscattered signal corresponding to the current identification is not completely included in the first backscattered signal.
  • time domain and/or frequency domain resources occupied by the backscattered signal it is determined that the current identity does not belong to the identity of the BSC device that sent the first backscattered signal.
  • the apparatus further includes:
  • the thirteenth sending unit is configured to send fourth information to the BSC equipment corresponding to each identification in the first identification set, and the fourth information is used to trigger the BSC equipment corresponding to each identification in the first identification set to send the third information.
  • Two backscattered signals wherein the first identification set includes the identification of at least one BSC device that sends the first backscattered signal;
  • a third identification unit configured to receive the second backscattered signal, and determine at least one source for sending the second backscattered signal based on the resources and/or content and/or format occupied by the second backscattered signal.
  • the second confirmation unit is configured to use the identity of at least one BSC device that sends the second backscatter signal as the verified identity of the BSC device that sends the first backscatter signal.
  • the device also includes:
  • a first obtaining unit configured to obtain relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal in at least one of the following ways:
  • Receive seventh information sent by the first node the seventh information being used to indicate relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal;
  • the relevant configuration information includes at least one of the following: all or part of the first configuration information, the identification of the existing BSC device, and the fourth information.
  • the intermediate information includes at least one of the following: signal quality on each candidate time domain and/or frequency domain resource, time domain and/or frequency domain resources occupied by the first backscattered signal, An output value, resources and/or content and/or format occupied by the second backscattered signal.
  • the identity of the BSC device can be identified, so that a large number of BSC devices can be identified in parallel, which can effectively improve the identification of BSC devices. Efficiency, significantly reducing overall time overhead.
  • the BSC equipment identification device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 8 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG 13 is the fourth structural schematic diagram of the BSC equipment identification device provided by the embodiment of the present application. As shown in Figure 13, the BSC equipment identification device 1300 includes:
  • the tenth receiving unit 1310 is configured to receive the second information sent by the first node, where the second information is used to instruct the second node to send an excitation signal to the BSC device; or, the second node monitors the first information and obtains the sending excitation signal.
  • the fourteenth sending unit 1320 is used to send an excitation signal to the BSC device.
  • the device also includes:
  • the fifteenth sending unit is configured to send an excitation signal to the BSC device for triggering the BSC device to perform device registration or de-registration.
  • the device also includes:
  • the sixteenth sending unit is configured to send the second node updated first configuration information to the BSC device during the process of the BSC device sending the first backscatter signal.
  • the BSC device by providing an excitation signal, the BSC device sends a backscattering signal, so that the control
  • the control command sender and/or the backscattered signal receiving end can identify the identity of the BSC device by analyzing the time domain and/or frequency domain resources occupied by the first backscattered signal, thereby enabling parallel identification of a large number of BSC devices. It can effectively improve the identification efficiency of BSC equipment and significantly reduce the overall time overhead.
  • the BSC equipment identification device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1400, which includes a processor 1401 and a memory 1402.
  • the memory 1402 stores programs or instructions that can be run on the processor 1401, such as , when the communication device 1400 is the first node, the second node, the third node or a BSC device, when the program or instruction is executed by the processor 1401, the steps of the above BSC device identification method embodiment are implemented, and the same can be achieved. technical effects.
  • the embodiment of the present application provides a first node.
  • the first node includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • An embodiment of the present application provides a first node, including a processor and a communication interface, wherein the communication interface is used to send first information, and the first information is used to trigger the BSC device to send the first configuration information according to the first configuration information.
  • a backscattered signal; the processor is configured to determine the identity of the BSC device that sent the first backscattered signal.
  • An embodiment of the present application provides a BSC device.
  • the BSC device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, The steps of implementing the identification method of the BSC device on the BSC device side.
  • An embodiment of the present application provides a BSC device, including a processor and a communication interface, wherein the communication interface is used to receive first information, and the first information is used to trigger the BSC device to send a first backscatter signal,
  • the processor is configured to send a first backscatter signal according to the first configuration information.
  • the embodiment of the present application provides a third node.
  • the first node includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor. When executed, the steps of the identification method of the BSC device on the third node side are implemented.
  • An embodiment of the present application provides a third node, including a processor and a communication interface, wherein the communication interface is configured to receive a first backscattered signal and/or a second backscattered signal; and the processor is configured to Determine the final result according to the first backscattered signal and/or the second backscattered signal, and feed the final result back to the first node through fifth information; or, according to the first backscattered signal and /or the second backscatter signal, determine the intermediate information, and feed the intermediate information to the first node through the sixth information; wherein the final result includes the identification of the BSC device that sent the first backscatter signal or The verified identity of the BSC device that sent the first backscattered signal.
  • the second node includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor. When executed, the steps of the identification method of the BSC device on the second node side are implemented.
  • This embodiment of the present application provides a second node, including a processor and a communication interface, wherein the communication interface Used to receive the second information sent by the first node, the second information is used to instruct the second node to send an excitation signal to the BSC device; or, monitor the first information to obtain the configuration related to sending the excitation signal; the communication The interface is also used to send excitation signals to BSC equipment.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • This terminal embodiment corresponds to the above-mentioned first node side, third node side, or second node side method embodiment.
  • Each implementation process and implementation manner of the above method embodiment can be applied to this terminal embodiment, and can achieve the same technical effects.
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1500 includes but is not limited to: a radio frequency unit 1501, a network module 1502, an audio output unit 1503, an input unit 1504, a sensor 1505, a display unit 1506, a user input unit 1507, an interface unit 1508, a memory 1509, a processor 1510, etc. At least some parts.
  • the terminal 1500 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1510 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 15 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1504 may include a graphics processing unit (Graphics Processing Unit, GPU) 15041 and a microphone 15042.
  • the graphics processor 15041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1506 may include a display panel 15061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1507 includes a touch panel 15071 and at least one of other input devices 15072 .
  • Touch panel 15071 also known as touch screen.
  • the touch panel 15071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 15072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1501 can transmit it to the processor 1510 for processing; in addition, the radio frequency unit 1501 can send uplink data to the network side device.
  • the radio frequency unit 1501 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1509 may be used to store software programs or instructions as well as various data.
  • the memory 1509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1509 may include volatile memory or nonvolatile memory, or memory 1509 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory.
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous dynamic random access memory.
  • Memory 1509 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
  • the processor 1510 may include one or more processing units; optionally, the processor 1510 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1510.
  • the radio frequency unit 1501 is used to send the first information, and the first information is used to trigger the BSC device to send the first backscatter signal according to the first configuration information.
  • Processor 1510 configured to determine the identity of the BSC device that sent the first backscatter signal.
  • the radio frequency unit 1501 is also used to send excitation signals to the BSC equipment; or,
  • the radio frequency unit 1501 is also configured to send third information to the BSC device, where the third information is used to indicate the start of the time slot.
  • the processor 1510 is configured to receive the first backscattered signal, determine the time domain and/or frequency domain resources occupied by the first backscattered signal; and determine the time domain and/or frequency domain resources occupied by the first backscattered signal.
  • the time domain and/or frequency domain resources are used to determine the identity of the BSC device that sends the first backscatter signal.
  • receiving the first backscattered signal and determining the time domain and/or frequency domain resources occupied by the first backscattered signal includes:
  • time domain and/or frequency domain resources occupied by the first backscattered signal are determined.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the corresponding preset value; the identification of the existing BSC equipment is the pre-stored identification of the BSC equipment;
  • the output value of the hash function corresponding to the current identification and/or the modified output value or the preset value is completely included in the first
  • determine that the current identification is the identification of the BSC device that sent the first backscatter signal; or, when the current identification corresponds to
  • the output value of the hash function and/or the modified output value or the preset value is not completely included in the first output value, it is determined that the current identification does not belong to the BSC that sent the first backscatter signal.
  • the identification of the device determines that the current identification is the identification of the BSC device that sent the first backscatter signal.
  • determining the identity of the BSC device that sends the first backscatter signal based on the time domain and/or frequency domain resources occupied by the first backscatter signal includes:
  • the bearer resource of the backscattered signal corresponding to the current identification is completely included in the time domain occupied by the first backscattered signal and/or
  • the current identification is determined to be the identification of the BSC device that sends the first backscattered signal; or, the bearer resource of the backscattered signal corresponding to the current identification is not completely included in the first backscattered signal.
  • time domain and/or frequency domain resources occupied by the backscattered signal it is determined that the current identity does not belong to the identity of the BSC device that sent the first backscattered signal.
  • the radio frequency unit 1501 is also configured to send fourth information to the BSC equipment corresponding to each identification in the first identification set, where the fourth information is used to trigger the BSC equipment corresponding to each identification in the first identification set.
  • the radio frequency unit 1501 is also configured to receive the second backscattered signal, and determine at least one method for sending the second backscattered signal according to the resources and/or content and/or format occupied by the second backscattered signal. Identification of BSC equipment;
  • the processor 1510 is configured to use the identity of at least one BSC device that sends the second backscatter signal as the verified identity of the BSC device that sends the first backscatter signal.
  • the processor 1510 is also configured to receive the final result fed back by the third node through the fifth information, where the final result is the BSC device that sends the first backscatter signal determined by the third node. Identifies or passes the verification of the BSC device that sent the first backscattered signal.
  • the processor 1510 is also configured to receive intermediate information fed back by the third node through the sixth information, where the intermediate information is based on the received first backscattered signal and/or the second backscattered signal.
  • the scattered signal is determined; according to the intermediate information, the identity of the BSC device that sent the first backscattered signal is determined.
  • the radio frequency unit 1501 is also configured to send seventh information to the third node, where the seventh information is used to indicate relevant configuration information for receiving and processing the first backscattered signal and/or the second backscattered signal. .
  • the radio frequency unit 1501 is also used to send eighth information to the BSC device, the eighth information is used to trigger the BSC device to register or deregister; receive the ninth information sent by the BSC device, the ninth information Used to indicate the registration information or de-registration information of the BSC device.
  • the radio frequency unit 1501 is also configured to, when the BSC device is triggered to register or deregister by an excitation signal sent by the first node or the second node, the first node receives the ninth information sent by the BSC device, so The ninth information is used to indicate registration information or de-registration information of the BSC device.
  • the radio frequency unit 1501 is also used to receive the tenth information sent by the BSC device, where the tenth information is used to indicate Indicate at least one of the following:
  • mapping method of the hash function output value and the bearer resource and/or the mapping method of the modified hash function output value and the bearer resource.
  • the radio frequency unit 1501 is also configured to send updated first configuration information to the BSC device during the process of the BSC device sending the first backscatter signal.
  • the receiving end by sending the first information, triggering the BSC device to send the first backscattered signal according to the first configuration information, the receiving end can determine the method of sending the first backscattered signal by analyzing the first backscattered signal.
  • the identification of BSC equipment enables parallel identification of a large number of BSC equipment, effectively improving the identification efficiency of BSC equipment and greatly reducing the overall time overhead.
  • the terminal embodiment may also correspond to the third node side or the second node side method embodiment.
  • Each implementation process and implementation manner of the above method embodiment can be applied to this terminal embodiment, and can To achieve the same technical effect, we will not go into details here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the network side device embodiment corresponds to the above-mentioned first node, second node or third node-side method embodiment.
  • Each of the above method embodiments Both the implementation process and the implementation manner can be applied to this network side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1600 includes: an antenna 1601, a radio frequency device 1602, a baseband device 1603, a processor 1604 and a memory 1605.
  • the antenna 1601 is connected to the radio frequency device 1602.
  • the radio frequency device 1602 receives information through the antenna 1601 and sends the received information to the baseband device 1603 for processing.
  • the baseband device 1603 processes the information to be sent and sends it to the radio frequency device 1602.
  • the radio frequency device 1602 processes the received information and then sends it out through the antenna 1601.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1603, which includes a baseband processor.
  • the baseband device 1603 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1606, which is, for example, a common public radio interface (CPRI).
  • a network interface 1606 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1600 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1605 and executable on the processor 1604.
  • the processor 1604 calls the instructions or programs in the memory 1605 to execute Figure 10 or Figure 12 Or the method of executing each module shown in Figure 13, and achieve the same technical effect. To avoid repetition, it will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above BSC device identification method embodiment is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above BSC device identification method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above BSC device identification method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a first node, a second node, a third node and a BSC device.
  • the first node can be used to perform the steps of the BSC device identification method as described above.
  • the second node may be used to perform the steps of the identification method of the BSC device as described above, and the third node may be used to perform the steps of the identification method of the BSC device as described above.
  • the BSC device may be used to perform the identification of the BSC device as described above. Method steps.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种BSC设备的识别方法、装置及通信设备,属于通信技术领域,本申请实施例的BSC设备的识别方法包括:第一节点发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;所述第一节点确定发送所述第一反向散射信号的BSC设备的标识。

Description

BSC设备的识别方法、装置及通信设备
相关申请的交叉引用
本申请要求于2022年07月18日提交的申请号为202210844139.9,发明名称为“BSC设备的识别方法、装置及通信设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种BSC设备的识别方法、装置及通信设备。
背景技术
在传统的射频识别(Radio Frequency Identification,RFID)反向散射通信系统中,读写器通过盘存过程来实现对反向散射通信(Backscatter Communication,BSC)设备(即电子标签Tag)的识别和数据传输。为了避免BSC设备之间的相互干扰和信号冲突,BSC设备需要通过竞争式的随机接入来获得在每个正交资源(如时间资源)上发送数据的唯一机会,从而完成识别。当BSC设备数量较多时,这种接入方式是极其低效的,使得完成对所有BSC设备的识别需要耗费大量的时间。
发明内容
本申请实施例提供一种BSC设备的识别方法、装置及通信设备,能够解决BSC设备识别效率较低的问题。
第一方面,提供了一种BSC设备的识别方法,应用于第一节点,该方法包括:
第一节点发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
所述第一节点确定发送所述第一反向散射信号的BSC设备的标识。
第二方面,提供了一种BSC设备的识别方法,应用于BSC设备,该方法包括:
BSC设备接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
所述BSC设备根据第一配置信息,发送第一反向散射信号。
第三方面,提供了一种BSC设备的识别方法,应用于第三节点,该方法包括:
第三节点接收第一反向散射信号和/或第二反向散射信号;
根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;
其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
第四方面,提供了一种BSC设备的识别方法,应用于第二节点,该方法包括:
第二节点接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
所述第二节点向BSC设备发送激励信号。
第五方面,提供了一种BSC设备的识别装置,包括:
第一发送单元,用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
第一识别单元,用于确定发送所述第一反向散射信号的BSC设备的标识。
第六方面,提供了一种BSC设备的识别装置,包括:
第三接收单元,用于接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
第八发送单元,用于根据第一配置信息,发送第一反向散射信号。
第七方面,提供了一种BSC设备的识别装置,包括:
第九接收单元,用于接收第一反向散射信号和/或第二反向散射信号;
第一反馈单元,用于根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;
其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
第八方面,提供了一种BSC设备的识别装置,包括:
第十接收单元,用于接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
第十四发送单元,用于向BSC设备发送激励信号。
第九方面,提供了一种第一节点,该第一节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的BSC设备的识别方法的步骤。
第十方面,提供了一种第一节点,包括处理器及通信接口,其中,所述通信接口用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;所述处理器用于确定发送所述第一反向散射信号的BSC设备的标识。
第十一方面,提供了一种BSC设备,该BSC设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的BSC设备的识别方法的步骤。
第十二方面,提供了一种BSC设备,包括处理器及通信接口,其中,所述通信接口用于接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号,所述处理器用于根据第一配置信息,发送第一反向散射信号。
第十三方面,提供了一种第三节点,该第一节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的BSC设备的识别方法的步骤。
第十四方面,提供了一种第三节点,包括处理器及通信接口,其中,所述通信接口用于接收第一反向散射信号和/或第二反向散射信号;所述处理器用于根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
第十五方面,提供了一种第二节点,该第二节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第四方面所述的BSC设备的识别方法的步骤。
第十六方面,提供了一种第二节点,包括处理器及通信接口,其中,所述通信接口用于接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,监听第一信息,获取发送激励信号相关的配置;所述通信接口还用于向BSC设备发送激励信号。
第十七方面,提供了一种通信系统,包括:第一节点,BSC设备,第三节点及第二节点,所述第一节点可用于执行如第一方面所述的BSC设备的识别方法的步骤,所述BSC设备可用于执行如第二方面所述的BSC设备的识别方法的步骤,所述第三节点可用于执行如第三方面所述的BSC设备的识别方法的步骤,所述第四节点可用于执行如第四方面所述的BSC设备的识别方法的步骤。
第十八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的BSC设备的识别方法的步骤,或者实现如第二方面所述的BSC设备的识别方法的步骤,或者实现如第三方面所述的BSC设备的识别方法的步骤,或者实现如第四方面所述的BSC设备的识别方法的步骤。
第十九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的BSC设备的识别方法,或者实现如第二方面所述的BSC设备的识别方法,或者实现如第三方面所述的BSC设备的识别方法,或者实现如第四方面所述的BSC设备的识别方法。
第二十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的BSC设备的识别方法的步骤,或者实现如第二方面所述的BSC设备的识别方法的步骤, 或者实现如第三方面所述的BSC设备的识别方法的步骤,或者实现如第四方面所述的BSC设备的识别方法的步骤。
在本申请实施例中,通过触发BSC设备根据第一配置信息发送第一反向散射信号,可以使得接收端通过分析第一反向散射信号,确定发送第一反向散射信号的BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为单基地反向散射通信系统示意图;
图3为双基地反向散射通信系统示意图;
图4为蜂窝组网下的反向散射通信典型架构示意图;
图5为结合竞争接入机制的盘存流程示意图;
图6为本申请实施例提供的BSC设备的识别方法的流程示意图之一;
图7为本申请实施例提供的BSC设备的识别方法的流程示意图之二;
图8为本申请实施例提供的BSC设备的识别方法的流程示意图之三;
图9为本申请实施例提供的BSC设备的识别方法的流程示意图之四;
图10为本申请实施例提供的BSC设备的识别装置的结构示意图之一;
图11为本申请实施例提供的BSC设备的识别装置的结构示意图之二;
图12为本申请实施例提供的BSC设备的识别装置的结构示意图之三;
图13为本申请实施例提供的BSC设备的识别装置的结构示意图之四;
图14为本申请实施例提供的通信设备的结构示意图;
图15为实现本申请实施例的一种终端的硬件结构示意图;
图16为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM), 统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
首先对本发明涉及的相关技术进行介绍。
一、反向散射通信(Backscatter Communication,BSC)
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。反向散射通信设备(下称BSC设备),可以是:
a)传统RFID中的BSC设备,一般是一个Tag,属于无源IoT设备(Passive-IoT);
b)半无源(semi-passive)的Tag,这类Tag的下行接收或者上行反射具备一定的放大能力;
c)具备主动发送能力的Tag(Active Tag),这类终端可以不依赖对入射信号的反射向读写器(Reader)发送信息。
一种简单的实现方式为,Tag需要发送‘1’时,Tag对入射载波信号进行反射,Tag需要发送‘0’时不进行反射。
反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。典型的反向散射通信的架构可以分成单基地系统和双基地系统。
图2为单基地反向散射通信系统示意图,其中的典型代表是传统的RFID系统,系统中包含BSC设备(如Tag)和读写器。读写器包含RF射频源和BSC接收端,其中RF射频源用于产生激励信号(也可以称为RF射频信号,通常为连续载波(Continuous Wave,CW))来给BSC设备供能和提供载波。BSC设备调制并反向散射CW,读写器中的BSC接收端接收到该反向散射信号后进行信号解调。由于RF射频源和BSC接收端是在同一个设备中,比如这里的读写器,因此被称为单基地反向散射通信系统。在该系统中,由于从BSC设备发送出去的RF射频信号会经过往返信号的信号衰减引起的双倍远近效应,因而信号的能量衰减大,因而单基地系统一般用于短距离的反向散射通信,比如传统的RFID应用。
不同于单基地系统,双基地系统中的RF射频源和BSC接收端是分开的,如图3所示的双基地反向散射通信系统示意图。因而,双基地系统避免了往返信号衰减大的问题,另外通过合理的放置RF射频源的位置可以进一步提高反向散射通信系统的性能。
二、蜂窝组网下的反向散射通信系统
在蜂窝网中,反向散射通信系统具体可以从RF射频源、上行链路、下行链路的不同分为如表1和图4所示的8种架构。其中,图4为蜂窝组网下的反向散射通信典型架构示意图。
架构1中,此时基站是RF射频源,也是BSC设备的下行链路发送端(即控制命令发送端)以及BSC设备的上行链路接收端(即BSC接收端),即此时基站直接与BSC设备通信。(注:这种部署架构对基站和BSC设备的接收灵敏度要求很高,但部署简单)。
架构2中,基站同样是RF射频源,但此时存在一个Relay,用于中继BSC设备到基站的上行链路;当然Relay也可以中继基站给BSC设备的下行链路,此处没有列举。
架构3中,UE用于RF射频源、转发BSC设备到基站的下行和上行链路。
架构3-1a:基站为RF射频源,并且基站直接传输下行数据给BSC设备;而上行链路中,BSC设备先发反向散射信号给UE,再由UE转发给基站。
架构3-1b:UE为RF射频源,并且基站直接传输下行数据给BSC设备;而上行链路中,BSC设备先发反向散射信号给UE,再由UE转发给基站。
架构3-2a:基站为RF射频源,基站先发送下行数据给UE,再由UE转发给BSC设备;而上行链路中,BSC设备直接发反向散射信号给基站。
架构3-2b:UE为RF射频源,基站先发送下行数据给UE,再由UE转发给BSC设备;而上行链路中,BSC设备直接发反向散射信号给基站。
架构3-3a:基站为RF射频源,基站先发送下行数据给UE,再由UE转发给BSC设备;而上行链路中,BSC设备发反向散射信号给UE,再由UE转发给基站。
架构3-3b:UE为RF射频源,基站先发送下行数据给UE,再由UE转发给BSC设备;而上行链路中,BSC设备发反向散射信号给UE,再由UE转发给基站。
表1:蜂窝组网下的反向散射通信典型架构

三、RFID Tag盘存流程
RFID是一种传统的反向散射通信系统,其主要设计目标就是对读写器覆盖范围内的BSC设备(即Tag)进行ID识别以及数据读取。由于RFID最初应用于大量货物的自动化盘点中,对Tag进行识别和数据读取的过程也被称为盘存。
以ISO 18000-6c定义的EPC C1G2 RFID系统为例,在读写器发送查询指令(Query)后Tag响应回应(Reply),以Reply为RN16为例,Tag产生一个16-bit的随机数发送给读写器。然后读写器将该序列通过ACK指令发给Tag后,Tag对ACK中的RN16验证成功后,将后续的数据(如协议控制位(Protocol Control,PC)、扩展协议控制位(eXtended Protocol Control,XPC)、电子产品码(Electronic Product Code,EPC)等)发送给读写器。
显然,在读写器的覆盖范围内可以存在多个甚至大量的Tag,如果直接将单个Tag的盘存流程应用于多个Tag的场景中,将会出现因为多个Tag同时发送反向散射信号导致信号冲突、无法解码的情况。因此,为了适应多个Tag的场景,RFID系统通常存在管理冲突的竞争接入机制。同样地,以EPC C1G2 RFID系统为例,图5展示了结合竞争接入机制的盘存流程示意图,其具体流程如下:
1.读写器发送选择Select命令选中需要盘存的Tag;
2.读写器发送问询Query命令开启一轮盘存,Query指示一个Q值;
3.所有Tag产生一个[0,2Q-1]范围内的随机整数作为计数器的初始值;
4.Tag检查计数器是否为0;
5a.[若有Tag的计数器为0]计数器为0的Tag发送Reply,包含一个随机生成的16位随机数,记作RN16;
6a.[若读写器解码RN16成功]读写器发送一个确认ACK命令,包含该RN16以及2bits的命令字段;
7.Tag接收ACK,并检查ACK中包含的RN16是否为此前发送的RN16;
8a.[若RN16正确]检验RN16正确的Tag向读写器发送需要上报的数据,如PC、XPC、EPC或者其他数据,该Tag盘存完成;
8b.[若RN16错误]检验RN16错误的Tag将自身计数器设置为最大值;
6b.[若读写器解码RN16失败]读写器发送一个否定确认NAK命令;
9.若接收到NAK命令的Tag在上一相邻时序发送了Reply,则将自身计数器设置为最大值;
5b.[若无Tag的计数器为0]读写器发送QueryRep命令;
10.接收到QueryRep命令的Tag将自身计数器-1;
11.[可选]读写器可以发送QueryAdjust命令,重新配置一个Q值;
12.接收到QueryAdjust命令且未完成盘存的Tag重新在[0,2Q-1]范围内随机选择一个整数作为计数器;
13.重复步骤4-12直至所有Tag盘存完成。
可以知晓,为了解决冲突问题,对所有Tag完成一次盘存需要产生大量额外的信令和时间开销,例如,Tag需要等待计数器为0;Tag发送有效数据之前需要不断重复发送RN16,直到该RN16被读写器正确且唯一地识别。
为了解决当BSC设备数量较多时,采用竞争接入方式是极其低效的,使得完成对所有BSC设备的识别需要耗费大量的时间的问题,本申请实施例提供了BSC设备的识别方法、装置及通信设备。下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的BSC设备的识别方法、装置及通信设备进行详细地说明。
本申请提供的BSC设备的识别方法可应用在反向散射通信系统,包括RFID、LTE、窄带物联网(Narrow Band Internet of Things,NB-IoT)、NR、IEEE 802.11演进系统等。
图6为本申请实施例提供的BSC设备的识别方法的流程示意图之一。如图6所示,BSC设备的识别方法包括以下步骤:
步骤100、第一节点发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
需要说明的是,第一节点可以是基站、UE或专用读写器。
所述BSC设备可以是传统RFID Tag、无源/半无源/有源物联网(Internet of Things,IoT)设备等。
步骤200、所述第一节点确定发送所述第一反向散射信号的BSC设备的标识。
BSC设备接收第一节点发送的第一信息,根据第一配置信息发送第一反向散射信号,第一节点接收第一反向散射信号,确定发送第一反向散射信号的BSC设备的标识。
本申请实施例提供的BSC设备的识别方法,通过发送第一信息,触发BSC设备根据第一配置信息发送第一反向散射信号,可以使得接收端通过分析第一反向散射信号,确定发送第一反向散射信号的BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
其中,BSC设备的标识是表征BSC设备身份的信息,可以唯一地确定BSC设备,表现形式包括但不限于出厂序列号、设备ID、用户ID、IP地址、媒体访问控制(Media Access Control,MAC)地址、无线网络临时标识(Radio Network Temporary Identity,RNTI)、临时标识等。
可选地,所述第一配置信息通过所述第一信息指示。
或者,所述第一配置信息中的部分信息通过所述第一信息指示,剩余信息为预先/默认 配置。
其中,第一信息可以直接指示所述配置的具体参数,也可以指示预设的多组配置中的一组。
或者,所述第一配置信息是预先配置的。
可选地,所述第一配置信息包括以下1)~4)中的至少一项:
1)用于确定承载第一反向散射信号的资源的信息;
用于确定承载第一反向散射信号的资源的信息是第一配置信息必选的。
可选地,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
哈希函数集合;
从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
预设的值;
预设的承载资源。
其中,哈希函数是一种将BSC设备的信息(如ID,特定字段)映射到有限整数范围的函数,示例:哈希函数的结果范围是1-10,BSC设备ID是2222,那么经过哈希函数后,结果是1-10中的任意一个数,比如5。
预设的值是指将哈希函数的输出值直接配置给BSC设备。
2)时域和/或频域资源的定义方式;
可选地,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
其中,时隙的定义可以是一段固定长度的时间;也可以是不固定长度的时间,如对应一次传输机会。
3)发送第一反向散射信号的功率或与所述功率相关的参数;
例如,电平、阻抗、反射系数等。
4)发送第一反向散射信号的内容和/或格式。
例如,序列、长度、持续时间等。
可以理解,所述第一配置信息用于供所述BSC设备确定发送第一反向散射信号的参数。
可选地,所述第一信息还携带以下至少一项同步信息:
a)约定的序列,如Barker序列、ZC序列等。
b)系统时间信息,如系统帧序号(System frame number,SFN)、时隙计数器、时隙序号等。
c)分隔符,如开始分隔符、结束分隔符等。
上述同步信息用于使第一节点与BSC设备之间保持同步。
可选地,所述方法还包括:
第一节点向BSC设备发送激励信号;或者,
第一节点向第二节点发送第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号。
可以理解的是,第二节点为RF射频源。可选地,所述第二节点可以是基站、UE、中继或专用读写器。
可选地,第二节点还可以通过侦听第一信息获取发送激励信号相关的配置,向BSC设备发送激励信号。
可以理解的是,BSC设备根据第一配置信息确定第一反向散射信号的参数,如承载第一反向散射信号的时域和/或频域资源,使用第一节点或第二节点提供的激励信号发送反向散射信号。
可选地,所述方法还包括:
第一节点向BSC设备发送第三信息,所述第三信息用于指示时隙的开始。
可选地,BSC设备可自主确定每个时隙的开始;或,由第一节点发送第三信息,第三信息用于指示时隙的开始。
可选地,所述步骤200,包括步骤201和步骤202,其中,
步骤201、所述第一节点接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
可选地,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括:
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
基于所述信号质量,确定所述第一反向散射信号占用的时域和/或频域资源。
可选地,将信号质量大于或等于第一阈值的候选时域和/或频域资源确定为所述第一反向散射信号占用的时域和/或频域资源。
其中,候选时域和/或频域资源可以是第一配置信息里面配置的或默认的。
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量,如参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)等。
将每个候选时域和/或频域资源上的信号质量与第一阈值进行比较,确定各候选时域和/或频域资源上是否存在反向散射信号。将信号质量大于或等于第一阈值的候选时域和/或频域资源确定为所述第一反向散射信号占用的时域和/或频域资源。
可选地,所述第一阈值采用以下至少一项确定:
基于历史记录确定;
占用额外的时域和/或频域资源确定。
下面阐述确定所述第一阈值的几种方法,具体流程如下:
Case 1:单基地架构(只有基站)
1.基站指示BSC设备不发送信号;
2.基站发送CW;
3.基站在BSC设备发送第一反向散射信号的频率上测量信道接收信号功率,可以取瞬时值或多个瞬时值的统计值(如平均值)作为第一阈值;
对于多频点的情况,基站需在每个频点上测量信道接收信号功率,作为确定各个频点上是否存在第一反向散射信号的第一阈值。
Case 2:蜂窝组网架构(包含基站、UE、中继)
4.基站指示BSC设备不发送信号;
5.基站指示UE发送CW;
6.基站指示中继在BSC设备发送第一反向散射信号的频率上测量信道接收信号功率,可以取瞬时值或多个瞬时值的统计值(如平均值)作为第一阈值;
对于多频点的情况,中继需在每个频点上测量信道接收信号功率,作为确定各个频点上是否存在第一反向散射信号的第一阈值
7.中继向基站指示步骤6所确定的第一阈值。
步骤202、所述第一节点根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
本申请实施例中,第一节点通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
一种可选的实施方式中,所述步骤202,包括:
步骤2021a,将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
得到第一输出值之后,根据所述第一输出值从已有的BSC设备的标识中匹配并确定发送第一反向散射信号的BSC设备的标识。
步骤2022a,将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
将已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值,或,预设值记为第二输出值。
步骤2023a,针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
本申请实施例参考了布隆滤波器的思想,布隆滤波器在被大于1个对象的哈希函数置1时,对应的比特位也为1。也就是说,每个比特位只有“没有被任何对象置过1”或者“至少被1个对象置过1”。
需要说明的是,在本方案考虑的BSC场景中,若在同一时域和/或频域资源上,有大于或等于1个BSC设备(也就是上述的对象)发送了反向散射信号,虽然该信号可能无法被成功解码,但是容易知道信号是否存在(比如测量RSRP),从而将这个资源所对应的比特位置为1,天然形成了一种布隆滤波器。
在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识。
在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,可以确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
对已有的BSC设备的标识中的每个标识均执行上述判断过程,从而确定发送第一反向散射信号的至少一个BSC设备的标识。
在另一种可选的实施方式中,所述步骤202,包括:
步骤2021b,确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
可选地,将已有的BSC设备的标识中的每个标识对应的第二输出值映射到第一反向散射信号的承载资源;或,确定已有的BSC设备的标识中的每个标识对应的第一反向散射信号的承载资源。
步骤2022b,针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设 备的标识。
在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
对已有的BSC设备的标识中的每个标识均执行上述判断过程,从而确定发送第一反向散射信号的至少一个BSC设备的标识。
本申请实施例中,通过哈希运算或资源映射的方式分析第一反向散射信号占用的时域和/或频域资源,可以有效识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
可选地,为了更准确地识别发送第一反向散射信号的至少一个BSC设备的标识,在上述两种实施方式的基础上,所述针对所述已有的BSC设备的标识中的每个标识,执行以下步骤之后,即在步骤2023a或步骤2022b之后,所述方法还包括:
所述第一节点向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
所述第一节点接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
所述第一节点将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可以理解的是,第一标识集合即步骤2023a或步骤2022b得到的结果。
在本申请实施例中,第一节点通过向第一标识集合中的各标识对应的BSC设备发送第四信息,以触发各所述BSC设备发送第二反向散射信号,从而根据接收到的第二反向散射信号,对第一标识集合进行进一步的核验,可提升BSC设备识别的准确率。
第一节点接收到第二反向散射信号后,根据第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识,记为第二标识集合,第二标识集合中的标识即为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,所述第四信息包括以下至少一项:
第一标识集合中的至少一个标识;
发送第二反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
发送第二反向散射信号的内容和/或格式,如携带的字段、序列、长度、持续时间等;
发送第二反向散射信号的资源;
为BSC设备保留的用于上行和/或下行数据传输的资源。
可选地,第一节点向BSC发送第四信息,使得BSC设备根据第四信息,确定发送第二反向散射信号相关的参数,根据确定的参数发送第二反向散射信号。
在另一种可选的实施方式中,所述步骤200包括:
所述第一节点接收第三节点通过第五信息反馈的最终结果,所述最终结果是由所述第三节点确定的发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,上述步骤201和步骤202可以由第三节点来执行。所述第三节点可以是基站、UE或专用读写器,分离于第一节点。
若上述步骤201和步骤202均由第三节点来执行,则在第三节点得到发送最终结果之后,其中,最终结果包括所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识,通过第五信息向第一节点反馈该最终结果。
需要说明的是,可选地,所述步骤200之前,所述方法还包括:
所述第一节点向第三节点发送第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息。
可选地,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
可以理解,在第三节点执行步骤201和步骤202获得最终结果之前,第三节点需要知道接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息。
第三节点通过以下至少一种方式获得接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息:
第一节点通过第七信息向第三节点指示;
第三节点监听第一信息和/或第四信息;
预先约定的默认配置。
可选地,上述步骤201和步骤202可以由第一节点和第三节点协作执行。在另一种可选的实施方式中,所述步骤200,包括:
所述第一节点接收第三节点通过第六信息反馈的中间信息,所述中间信息是所述第三节点基于接收的第一反向散射信号和/或第二反向散射信号确定的;
所述第一节点根据所述中间信息,确定发送所述第一反向散射信号的BSC设备的标识。
在本实施例中,第三节点基于接收的第一反向散射信号和/或第二反向散射信号,确定中间信息,第一节点则根据第三节点确定的中间信息,确定发送所述第一反向散射信号的BSC设备的标识。
可选地,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
可选地,所述步骤200之前,所述方法还包括:
所述第一节点向第三节点发送第七信息,所述第七信息用于指示接收和处理第一反向 散射信号或和/或第二反向散射信号的相关配置信息。
可选地,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
第三节点通过以下至少一种方式获得接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息:
第一节点通过第七信息向第三节点指示;
第三节点监听第一信息和/或第四信息;
预先约定的默认配置。
可选地,所述第一信息还用于指示参与识别的BSC设备的信息。
可选地,所述参与识别的BSC设备的信息包括:用于匹配ID、EPC、PC/XPC、内部存储器特定位置内容和传感器结果中的至少一项的掩码和/或长度和/或字段。
可选地,所述方法还包括:
第一节点向BSC设备发送第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
第一节点接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选地,所述方法还包括:在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,第一节点接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可以理解的是,在一种实施方式中,BSC设备接收第一节点发送的第八信息,进行注册或去注册,在另一种实施方式中,BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册,BSC设备通过向第一节点发送第九信息进行注册或非注册。
可选地,所述第九信息包括以下至少一项:
BSC设备注册或驻留的指示信息;
BSC设备去注册或离开的指示信息;
BSC设备型号;
BSC设备的标识;
BSC设备可使用的频率和/或范围和/或频率集合;
BSC设备可同时使用的频率数量和/或范围和/或组合;
BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
BSC设备支持的时域和/或频域资源定义方式,如前述第一配置信息中的时域和/或频域资源的定义方式;
BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
BSC设备的可用阻抗集合和/或反射系数集合;
BSC设备接收激励信号或第七信息的信号质量测量值,如RSRP、RSRQ、信号与干 扰加噪声比(Signal to Interference plus Noise Ratio,SINR)等。
可选地,所述步骤200之前,所述方法还包括:
接收BSC设备发送的第十信息,所述第十信息用于指示以下至少一项:
保留或丢弃的哈希函数集合或哈希函数序号集合;
哈希函数输出值的修改规则;
修改的哈希函数输出值;
哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
可以理解,BSC设备获取第一配置信息之后,与第一节点协商上述第十信息的内容。
可选地,所述方法还包括:
在BSC设备发送第一反向散射信号的过程中,第一节点向BSC设备发送更新的第一配置信息。
BSC设备随后采用更新的第一配置信息发送第一反向散射信号。
可选地,第一、第三、第八和第四信息可被包含于专用控制命令、无线资源控制(Radio Resource Control,RRC)信令、媒介访问控制层控制单元(Media Access Control Control Unit,MAC CE)、下行控制信息(Downlink Control Information,DCI)、旁路控制信息(Sidelink control information,SCI)、物理帧前导序列preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理旁路控制信道(Physical Sidelink Control Channel,PSCCH)、物理旁路共享信道(Physical Sidelink Shared Channel,PSSCH)、物理帧至少一种方式承载。
可选地,第九、第十信息可被包含于专用控制命令、RRC信令、MAC CE、上行控制信息(Uplink Control Information,UCI)、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、PSCCH、PSSCH、物理帧至少一种方式承载
可选地,第二、第五至第七信息可被包含于RRC信令、MAC CE、DCI、UCI、SCI等至少一种信令,可被PDSCH、PUSCH、PDCCH、PUCCH、PSCCH、PSSCH至少一种方式承载。
图7为本申请实施例提供的BSC设备的识别方法的流程示意图之二。如图7所示,该方法的执行主体为BSC设备,包括以下步骤:
步骤300、BSC设备接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
步骤400、所述BSC设备根据第一配置信息,发送第一反向散射信号。
所述BSC设备可以是传统RFID Tag、无源/半无源/有源IoT设备等。BSC设备接收第一信息,根据第一配置信息,发送第一反向散射信号。
可选地,所述第一配置信息通过所述第一信息指示。
或者,所述第一配置信息中的部分信息通过所述第一信息指示,剩余信息为预先/默认配置。
其中,第一信息可以直接指示所述配置的具体参数,也可以指示预设的多组配置中的一组。
或者,所述第一配置信息是预先配置的。
可选地,所述第一配置信息包括以下1)~4)中的至少一项:
1)用于确定承载第一反向散射信号的资源的信息;
用于确定承载第一反向散射信号的资源的信息是第一配置信息必选的。
可选地,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
哈希函数集合;
从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
预设的值;
预设的承载资源。
其中,哈希函数是一种将BSC设备的信息(如ID,特定字段)映射到有限整数范围的函数,示例:哈希函数的结果范围是1-10,BSC设备ID是2222,那么经过哈希函数后,结果是1-10中的任意一个数,比如5。
预设的值是指将哈希函数的输出值直接配置给BSC设备。
2)时域和/或频域资源的定义方式;
可选地,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
其中,时隙的定义可以是一段固定长度的时间;也可以是不固定长度的时间,如对应一次传输机会。
3)发送第一反向散射信号的功率或与所述功率相关的参数;
例如,电平、阻抗、反射系数等。
4)发送第一反向散射信号的内容和/或格式。
例如,序列、长度、持续时间等。
可以理解,所述第一配置信息用于供所述BSC设备确定发送第一反向散射信号的参数。
可选地,所述第一信息还携带以下至少一项同步信息:
a)约定的序列,如Barker序列、ZC序列等。
b)系统时间信息,如系统帧序号SFN、时隙计数器、时隙序号等。
c)分隔符,如开始分隔符、结束分隔符等。
上述同步信息用于使第一节点与BSC设备之间保持同步。
可选地,所述BSC设备根据第一配置信息,发送第一反向散射信号,包括:
所述BSC设备根据第一配置信息,确定第一反向散射信号的参数;
使用第一节点或第二节点发送的激励信号,按照所述第一反向散射信号的参数,发送第一反向散射信号。
可选地,所述方法还包括:
接收第一节点或第二节点发送的激励信号。
可以理解的是,第二节点为RF射频源。可选地,所述第二节点可以是基站、UE、中继或专用读写器。
可选地,第一节点向BSC设备发送激励信号;或者,
第一节点向第二节点发送第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号
可选地,第二节点还可以通过侦听第一信息获取发送激励信号相关的配置,向BSC设备发送激励信号。
可以理解的是,BSC设备根据第一配置信息确定第一反向散射信号的参数,如承载第一反向散射信号的时域和/或频域资源,使用第一节点或第二节点提供的激励信号发送反向散射信号。
可选地,所述方法还包括:
所述BSC设备确定时隙的开始;或者,
接收第一节点发送的第三信息,所述第三信息用于指示时隙的开始。
可选地,BSC设备可自主确定每个时隙的开始;或,由第一节点发送第三信息,第三信息用于指示时隙的开始。
可选地,为了更准确地识别发送第一反向散射信号的至少一个BSC设备的标识,所述方法还包括:
接收第四信息,所述第四信息用于触发第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
发送第二反向散射信号。
可以理解的是,通过向第一标识集合中的各标识对应的BSC设备发送第四信息,以触发各所述BSC设备发送第二反向散射信号,从而可根据接收到的第二反向散射信号,对第一标识集合进行进一步的核验。第一节点通过向第一标识集合中的各标识对应的BSC设备发送第四信息,以触发各所述BSC设备发送第二反向散射信号,从而第一节点可以根据接收到的第二反向散射信号,对第一标识集合进行进一步的核验。
可选地,所述第四信息包括以下至少一项:
第一标识集合中的至少一个标识;
发送第二反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
发送第二反向散射信号的内容和/或格式,如携带的字段、序列、长度、持续时间等;
发送第二反向散射信号的资源;
为BSC设备保留的用于上行和/或下行数据传输的资源。
可选地,BSC设备根据第四信息,确定发送第二反向散射信号相关的参数,根据确定的参数发送第二反向散射信号。
可选地,所述方法还包括:
接收第一节点发送的第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可以理解的是,在一种实施方式中,BSC设备接收第一节点的触发进行注册或去注册。
可选地,所述方法还包括:
在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
在另一种实施方式中,BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册,BSC设备通过向第一节点发送第九信息进行注册或非注册。
可选地,所述第九信息包括以下至少一项:
BSC设备注册或驻留的指示信息;
BSC设备去注册或离开的指示信息;
BSC设备型号;
BSC设备的标识;
BSC设备可使用的频率和/或范围和/或频率集合;
BSC设备可同时使用的频率数量和/或范围和/或组合;
BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
BSC设备支持的时域和/或频域资源定义方式,如前述第一配置信息中的时域和/或频域资源的定义方式;
BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
BSC设备的可用阻抗集合和/或反射系数集合;
BSC设备接收激励信号或第七信息的信号质量测量值,如RSRP、RSRQ、SINR等。
可选地,所述BSC设备接收第一信息之后,所述方法还包括:
向所述第一节点发送第十信息;
其中,所述第十信息用于指示以下至少一项:
保留或丢弃的哈希函数集合或哈希函数序号集合;
哈希函数输出值的修改规则;
修改的哈希函数输出值;
哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
可以理解,BSC设备获取第一配置信息之后,与第一节点协商上述第十信息的内容。
可选地,所述方法还包括:
在所述BSC设备发送第一反向散射信号的过程中,接收第一节点或第二节点发送的更新的第一配置信息。
BSC设备随后采用更新的第一配置信息发送第一反向散射信号。
可选地,第一、第三、第八和第四信息可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载
可选地,第九、第十信息可被包含于专用控制命令、RRC信令、MAC CE、UCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、PUSCH、PUCCH、PSCCH、PSSCH、物理帧至少一种方式承载
可选地,第二、第五至第七信息可被包含于RRC信令、MAC CE、DCI、UCI、SCI等至少一种信令,可被PDSCH、PUSCH、PDCCH、PUCCH、PSCCH、PSSCH至少一种方式承载。
本申请实施例提出了一种BSC设备的识别方法,定义了一种允许在时域和/或频域资源上有重叠的反向散射信号发送方式,使得接收端通过分析反向散射信号占用的时域和/或频域资源便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
图8为本申请实施例提供的BSC设备的识别方法的流程示意图之三。如图8所示,该方法的执行主体为第三节点,如图8所示,该方法包括:
步骤500、第三节点接收第一反向散射信号和/或第二反向散射信号;
第三节点可以是基站、UE或专用读写器,分离于第一节点。
步骤600、根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反 向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点。
可以理解的是,一种可选的实施方式中,第三节点执行接收第一反向散射信号和/或第二反向散射信号,根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,所述最终结果是由所述第三节点确定的发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。并且,第三节点将所述最终结果通过第五信息反馈给第一节点
在另一种可选的实施例中,第一节点和第三节点协作实现对BSC设备的标识的识别。第三节点根据第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点。
其中,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式;其中,所述第一输出值为将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值。
可选地,所述根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,包括;
接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
本申请第三节点通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
可选地,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括;
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
基于所述信号质量确定所述第一反向散射信号占用的时域和/或频域资源。
其中,候选时域和/或频域资源可以是第一配置信息里面配置的或默认的。
可选地,在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量,如RSRP、RSRQ。
将每个候选时域和/或频域资源上的信号质量与第一阈值进行比较,确定各候选时域和/或频域资源上是否存在反向散射信号。将信号质量大于或等于第一阈值的候选时域和/或频域资源确定为所述第一反向散射信号占用的时域和/或频域资源。
本申请第三节点通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
可选地,所述第一阈值采用以下至少一项确定:
基于历史记录确定;
占用额外的时域和/或频域资源确定。
第一阈值的确定方法可以参考前述实施例中的描述,在此不再赘述。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括以下至少一项:
确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述针对所述已有的BSC设备的标识中的每个标识,执行以下步骤之后,所述根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,还包括:
所述第三节点向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,所述方法还包括:
所述第三节点通过以下至少一种方式获得用于接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息:
接收第一节点发送的第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息;
监听第一信息和/或第三信息;
预先约定的方式。
可选地,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
可选地,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
可选地,第四信息可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
可选地,第五至第七信息可被包含于RRC信令、MAC CE、DCI、UCI、SCI等至少一种信令,可被PDSCH、PUSCH、PDCCH、PUCCH、PSCCH、PSSCH至少一种方式承载。
图9为本申请实施例提供的BSC设备的识别方法的流程示意图之四。如图9所示,该方法的执行主体为第二节点,如图9所示,该方法包括:
步骤700、第二节点接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
步骤800、所述第二节点向BSC设备发送激励信号。
可以理解的是,第二节点为RF射频源。可选地,所述第二节点可以是基站、UE、中继或专用读写器。
可选地,第二节点接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号。
可选地,第二节点还可以通过侦听第一信息获取发送激励信号相关的配置,向BSC设备发送激励信号。
可选地,所述方法还包括:
所述第二节点向所述BSC设备发送用于触发所述BSC设备进行设备注册或去注册的激励信号。
可选地,所述方法还包括:
在所述BSC设备发送第一反向散射信号的过程中,所述第二节点向所述BSC设备发送更新的第一配置信息。BSC设备随后采用更新的第一配置信息发送第一反向散射信号。
可选地,第二信息可被包含于RRC信令、MAC CE、DCI、UCI、SCI等至少一种信令,可被PDSCH、PUSCH、PDCCH、PUCCH、PSCCH、PSSCH至少一种方式承载。
在本申请实施例中,通过第二节点提供激励信号,使得BSC设备发送反向散射信号,使得控制命令发送方和/或反向散射信号接收端通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
本申请将控制命令发送方(第一节点)、RF射频源(第二节点)、反向散射信号接收端(第三节点)以及BSC设备进行了解耦,可以用在前述单、双基地系统以及蜂窝组网下的所有架构。
下面通过几个具体的实施例进一步描述本申请提供的BSC设备的识别方法。
实施例一
考虑在现有ISO 18000-6c定义的EPC C1G2 RFID系统中实施本申请的方案,因此第一、第二和第三节点均为相同的RFID读写器(下称读写器),BSC设备为RFID Tag(下称Tag)。本实施例的具体流程如下:
初始化流程:
步骤1,读写器覆盖范围内的所有Tag的储存器中预设K个字段,取值分别为m1,m2,…mK。每个Tag的m1,m2,…mK取值不同,且mk∈{1,...,M},
步骤2,读写器储存有所有Tag的K个字段,及其与Tag的标识的对应关系。
步骤3,读写器构建长度为M的bitmap,记为B。其中,B(m)表示bitmap第m位比特的取值,初始取值为0。
识别流程(需进行M次盘存过程,以第m次为例进行说明):
步骤4,读写器向所有Tag发送K个Select命令,分别选中储存器中K个字段有至少一个字段等于m的Tag参与当前第m次盘存过程。
步骤5,读写器向所有Tag发送Query命令,设置Q值为0。
步骤6,读写器向所有Tag发送CW。
步骤7,被步骤4选中的Tag在Query命令结束后,利用步骤6所述CW发送反向散射信号,包含一个16-bit的随机数(即RN16)。
步骤8,读写器接收反向散射信号并尝试解码RN16;或,测量反向散射信号的RSRP。
步骤9,若读写器成功解码出RN16;或,测量的反向散射信号的RSRP大于特定阈值,则将bitmap的第m位比特B(m)=1;否则,保持B(m)=0。
步骤10,读写器发送Select命令,清除因步骤4导致的Tag状态改变。
步骤11,重复步骤4-10直至完成M次盘存过程。
确定发送了反向散射信号的Tag的标识:
步骤12,针对每一个Tag,读写器匹配其K个字段,对应的bitmap位置是否均为1,若是,则将该Tag的标识放入标识集合D中。
步骤13,集合D中的标识就是发送了反向散射信号的Tag的标识,流程结束。
需要说明的是,以上步骤中,读写器向Tag发送的命令可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
实施例二
考虑在蜂窝系统中实施本申请方案,考虑第一、第二和第三节点为相同设备,此处以基站为例展开描述。实施例一与实施例二比较相似,但不同在于,无需基于RFID已定义的盘存流程实施。此外,本实施例考虑单频点(即资源只能从时域划分),具体流程如下:
初始化流程:
步骤1,(可选)基站发送命令,指示进入基站覆盖范围内的BSC设备进行设备注册/去注册,向基站提供以下至少一项内容:
BSC设备注册或驻留的指示信息;
BSC设备去注册或离开的指示信息;
BSC设备型号;
BSC设备的标识;
BSC设备可使用的频率和/或范围和/或频率集合;
BSC设备可同时使用的频率数量和/或范围和/或组合;
BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
BSC设备支持的时域和/或频域资源定义方式;
BSC设备发送反向散射信号的最大和/或最小功率;和/或可选择的功率集合;
BSC设备的可用阻抗集合和/或反射系数集合;
接收CW或基站命令的信号质量测量值,如RSRP、RSRQ、SINR等。
步骤2,基站发送命令,选择参与识别的BSC设备:
默认选择基站覆盖范围内的全部BSC设备;
可选地,命令指示匹配字段和/或匹配条件,收到命令的BSC设备根据给定的条件将自身信息与匹配字段进行匹配,满足条件的BSC设备将继续参与余下流程。
步骤3,基站发送命令,向BSC设备指示发送第一反向散射信号的全部或部分配置,包括a)-d)所述内容:
a)发送第一反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
b)发送第一反向散射信号的内容和格式,如序列、长度、持续时间等;
c)时域资源的定义方式:时隙的定义(可以是一段固定长度的时间;也可以是不固定长度的时间,如对应一次传输机会)、时隙的长度、时域资源的起始位置、时域资源的总 量、时隙总数量、资源序号或位置的定义;
d)承载第一反向散射信号的资源确定方式,下述几种示例指示方式:
[方式1]
1.哈希函数的集合,或,从预设或历史指示的哈希函数集合中选择激活的哈希函数的序号集合;
2.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或部分数据;
3.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式2]
1.哈希函数的集合;
2.从哈希函数集合中选择激活的哈希函数的序号集合;
3.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或部分数据;
4.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式3]
1.直接配置预设的哈希函数输出值;
2.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式4]
直接配置预设的承载资源。
可选地,若命令仅指示部分配置,或未有指示配置,则BSC设备采用约定的默认配置。
可选地,命令指示同步信息,如前导序列、系统时间信息、分隔符等。
若(激活的)哈希函数的个数为K,由哈希函数输出值或修改的输出值最终映射到的承载资源(本实施例的承载资源是时域资源)序号分别为m1,m2,…mK。每个BSC设备的m1,m2,…mK取值不同,且mk∈{1,...,M},其中M为时隙总数量。
步骤4,可选地,取决于BSC设备的终端能力,BSC设备与基站协商哈希函数,或哈希函数输出值,或承载资源。
[方式1]
基站获取步骤1所述的关于BSC设备的信息;
选项1:配置一组满足BSC设备终端能力的哈希函数和/或修改规则;
选项2:配置一组满足BSC设备终端能力的预设的哈希函数输出值和/或修改规则;
选项3:配置一组满足BSC设备终端能力的预设的承载资源和/或修改规则。
[方式2]
基站在未知BSC设备终端能力的情况下配置哈希函数和/或预设的哈希函数输出值和/或预设的承载资源;
选项1:BSC设备指示基站丢弃或保留的哈希函数和/或哈希函数输出值和/或承载资源;
选项2:基站和BSC设备有预先约定的丢弃或保留默认规则,或基站指示默认丢弃或保留规则,分别自行丢弃或保留哈希函数输出值和/或承载资源;
选项3:BSC设备指示基站哈希函数输出值的修改规则,或承载资源的修改规则;
选项4:基站和BSC设备有预先约定的默认修改规则,或基站指示默认修改规则,分别自行修改哈希函数输出值和/或承载资源;
需要说明的是,在本实施例中,BSC设备的终端能力主要是指步骤1所述的发送反向散射信号的时间范围和/或可选择的时间集合。比如,在哪些时隙,BSC设备可以发送信号;或者,BSC连续发送信号的时隙个数。
步骤5,基站储存并维护所有BSC设备的标识的信息,可通过步骤1获得;或通过历史记录等手段预先获得。
步骤6,基站储存并维护所有BSC设备的标识与其输入哈希函数的字段和/或位置和/或长度,和/或,哈希函数输出值进行修改和/或修改规则,和/或,哈希函数输出值或修改的输出值与承载资源的映射方式的对应关系。
步骤7,基站构建长度为M的bitmap,记为B。其中,B(m)表示bitmap第m位比特的取值,初始取值为0。
识别流程(第一反向散射信号分M次发送,以第m次为例进行说明):
步骤8,基站发送命令,指示当前时隙的序号m;或,指示进入下一时隙,由BSC设备自行确定序号;或者,仅发送一次命令,后续时隙及其序号由BSC设备自行确定。
步骤9,基站向所有BSC设备发送CW。
步骤10,BSC设备匹配从哈希函数输出值或修改的输出值映射到的承载资源是否包含序号为m的时隙;或,匹配预设的承载资源中是否包含序号为m的时隙。
步骤11,步骤10匹配成功的BSC设备根据步骤3中a)-b)所述参数利用步骤9所述CW发送反向散射信号。
步骤12,基站接收反向散射信号并尝试解码;或,测量反向散射信号的RSRP。
步骤13,若基站成功解码反向散射信号并通过验证;或,测量的反向散射信号的RSRP大于特定阈值,则将bitmap的第m位比特B(m)=1;否则,保持B(m)=0
步骤14,重复步骤8-13直至完成发送第一反向散射信号。
确定发送了反向散射信号的BSC设备的标识:
步骤15,针对每一个BSC设备,基站匹配其从哈希函数输出值或修改的输出值映射到的K个时隙的序号或预设的K个时隙的序号对应的bitmap位置是否均为1,若是,则将该BSC设备的标识放入标识集合D中。
步骤16,集合D中的标识就是发送了反向散射信号的BSC设备的标识,流程结束。
以上步骤中,基站向BSC设备发送的命令或信息可被包含于专用控制命令、RRC信 令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载
以上步骤中,BSC设备向基站发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、UCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、PUSCH、PUCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
实施例三
实施例三与实施例二类似,不同之处在于,本实施例考虑动态的哈希函数指示与bitmap构建,其中,“动态的”是指在识别过程中激活新的哈希函数。具体流程如下:
初始化流程:
步骤1、2与实施例二的步骤1、2相同。
步骤3,基站发送命令,向BSC设备指示发送第一反向散射信号的全部或部分配置,
包括a)-d)所述内容:
a)发送第一反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
b)发送第一反向散射信号的内容和格式,如序列、长度、持续时间等;
c)时域资源的定义方式:时隙的定义(可以是一段固定长度的时间;也可以是不固定长度的时间,如对应一次传输机会)、时隙的长度、时域资源的起始位置、时域资源的总量、时隙总数量、资源序号或位置的定义;
d)承载第一反向散射信号的资源确定方式,下述几种示例指示方式:
[方式1]
1.哈希函数的集合,或,从预设或历史指示的哈希函数集合中选择激活的哈希函数
的序号集合;
2.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或
部分数据;
3.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式2]
1.哈希函数的集合;
2.从哈希函数集合中选择激活的哈希函数的序号集合;
3.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或
部分数据;
4.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式3]
1.直接配置预设的哈希函数输出值;
2.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式4]
直接配置预设的承载资源。
可选地,若命令仅指示部分配置,或未有指示配置,则BSC设备采用约定的默认配置。
可选地,命令指示同步信息,如前导序列、系统时间信息、分隔符等。
对于方式1和方式2,哈希函数可以被划分为G组,每组的哈希函数输出值或修改的输出值最终映射到的承载资源序号范围不同,比如第g组的范围可以表示为Mg-1+1,...,Mg。此外,每一组的哈希函数个数也可以不同,比如第g组的哈希函数个数为Kg。因此,时隙总数量可以是M1,...,MG中的其中一个。
对于方式3和方式4,类似地,方式3预设的哈希函数输出值或修改的输出值,或方式4预设的承载资源也可以被划分为G组,每组最终映射到的承载资源序号范围不同,与上一条说明类似,不赘述。
初始化时,基站可依据注册的BSC设备数量决定使用的组数量,且从第一组开始,比如指示使用g组,则使用第1组~第g组。
步骤4,可选地,取决于BSC设备的终端能力,BSC设备与基站协商哈希函数,或哈希函数输出值,或承载资源。
[方式1]
基站获取步骤1所述的关于BSC设备的信息;
选项1:配置一组满足BSC设备终端能力的哈希函数和/或修改规则;
选项2:配置一组满足BSC设备终端能力的预设的哈希函数输出值和/或修改规则;
选项3:配置一组满足BSC设备终端能力的预设的承载资源和/或修改规则。
[方式2]
基站在未知BSC设备终端能力的情况下配置哈希函数和/或预设的哈希函数输出值和/或预设的承载资源;
选项1:BSC设备指示基站丢弃或保留的哈希函数和/或哈希函数输出值和/或承载资源;
选项2:基站和BSC设备有预先约定的丢弃或保留默认规则,或基站指示默认丢弃或保留规则,分别自行丢弃或保留哈希函数输出值和/或承载资源;
选项3:BSC设备指示基站哈希函数输出值的修改规则,或承载资源的修改规则;
选项4:基站和BSC设备有预先约定的默认修改规则,或基站指示默认修改规则,分别自行修改哈希函数输出值和/或承载资源;
需要说明的是,在本实施例中,BSC设备的终端能力主要是指步骤1所述的发送反向散射信号的时间范围和/或可选择的时间集合。比如,在哪些时隙,BSC设备可以发送信号;或者,BSC连续发送信号的时隙个数。
步骤5,基站储存并维护所有BSC设备的标识的信息,可通过步骤1获得;或通过历 史记录等手段预先获得。
步骤6,基站储存并维护所有BSC设备的标识与其输入哈希函数的字段和/或位置和/或长度,和/或,哈希函数输出值进行修改和/或修改规则,和/或,哈希函数输出值或修改的输出值与承载资源的映射方式的对应关系。
步骤7,基站构建长度为Mg的bitmap,记为B。其中,B(m)表示bitmap的第m位比特的取值,初始取值为0。
识别流程(第一反向散射信号分多次发送,以第m次为例进行说明,次数可变,可以是M1,M2,..MG的其中一个值):
步骤8-13,与实施例二的步骤8-13相同。
步骤14,基站确定是否需要激活新的哈希函数(对应方式1、2)或预设的哈希函数输出值(对应方式3)或预设的承载资源(对应方式4),确定的一种方法是:bitmap为1的比特数量是否超过特定阈值,若是,则需要激活。
步骤15,若步骤14的判断条件为真,则基站发送命令指示BSC设备激活新的一组哈希函数或预设的哈希函数输出值或预设的承载资源,比如当前组为g,则指示g+1组;并指示BSC设备更新总资源数量,将时隙总数量从Mg更新为Mg+1;同时,基站将bitmap的长度延长至Mg+1,新的比特位置初始取值为0。需要说明的是,也可以不指示BSC设备更新总资源数量,因为激活新的一组意味着新的总资源数量,由BSC设备自行确定和更新。
步骤16,重复步骤8-15直至完成发送第一反向散射信号。
确定发送了反向散射信号的BSC设备的标识:
步骤17,假设第一反向散射信号发送结束时激活的组为g,针对每一个BSC设备,基站匹配其从哈希函数输出值或修改的输出值映射到的个时隙的序号或预设的个时隙的序号对应的bitmap位置是否均为1,若是,则将该BSC设备的标识放入标识集合D中。
步骤18,针对每一个BSC设备,基站匹配其从哈希函数输出值或修改的输出值映射到的K个时隙的序号或预设的K个时隙的序号对应的bitmap位置是否均为1,若是,则将该BSC设备的标识放入标识集合D中。
步骤19,集合D中的标识就是发送了反向散射信号的BSC设备的标识,流程结束。
以上步骤中,基站向BSC设备发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载
以上步骤中,BSC设备向基站发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、UCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、PUSCH、PUCCH、PSCCH、PSSCH、物理帧至少一种方式 承载。
实施例四
实施例四考虑在蜂窝系统中实施本申请方案,考虑第一、第二和第三节点为相同设备,此处以基站为例展开描述。实施例四与实施例二类似,不同在于考虑多频点(即资源网格从单频点的仅时域资源(一维)拓展到时频域资源(二维)),不同在于步骤3:
步骤3,基站发送命令,向BSC设备指示发送第一反向散射信号的全部或部分配置,包括:
a)发送第一反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
b)发送第一反向散射信号的内容和格式,如序列、长度、持续时间等;
c)时域资源的定义方式:时隙的定义(可以是一段固定长度的时间;也可以是不固定长度的时间,如对应一次传输机会)、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义;
d)承载第一反向散射信号的资源确定方式,下述几种示例指示方式:
[方式1]
1.哈希函数的集合,或,从预设或历史指示的哈希函数集合中选择激活的哈希函数的序号集合;
2.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或部分数据;
3.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式2]
1.哈希函数的集合;
2.从哈希函数集合中选择激活的哈希函数的序号集合;
3.输入哈希函数的字段和/或位置和/或长度,比如从BSC设备的标识中选择全部或部分数据;
4.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式3]
1.直接配置预设的哈希函数输出值;
2.哈希函数输出值或修改的输出值与承载资源的映射方式;
[方式4]
直接配置预设的承载资源。
可选地,若命令仅指示部分配置,或未有指示配置,则BSC设备采用约定的默认配置。
可选地,命令指示同步信息,如前导序列、系统时间信息、分隔符等。
若(激活的)哈希函数的个数为K,由哈希函数输出值或修改的输出值最终映射到的 承载资源序号分别为m1,m2,…mK。其中,mK可以是一个一维的数字,意味着将二维的资源网格折算成一个一维的坐标位置;mK也可以也可以是一个二维的坐标,表示在二维资源网格中的时域和频域位置。
每个BSC设备的m1,m2,…mK取值不同,且mk∈{1,...,M},其中M=F*T,F为频点总数量,T为时隙总数量。
步骤1、2、4~10均与实施例二相同,在此不再赘述。
步骤11,步骤10匹配成功的BSC设备根据3a-3b所述参数利用步骤9所述CW在步骤10确定的承载资源(包括时域资源和频域资源)上发送反向散射信号。
步骤12,基站在步骤3c定义的所有频点上接收反向散射信号并尝试解码;或,测量各个频点上的反向散射信号的RSRP。
步骤13,若基站在序号为m’的资源上成功解码反向散射信号并通过验证;或,在序号为m’的资源测量的反向散射信号的RSRP大于特定阈值,则将bitmap的第m’位比特B(m’)=1;否则,保持B(m’)=0;其中,m’属于时隙序号为m的时隙对应的所有时间-频率资源块。
本实施例还可以和实施例三的动态的哈希函数指示与bitmap构建结合,可以参考实施例三,在此不再赘述。
需要说明的是,上述四个实施例都是以单基地架构(包括传统RFID读写器场景以及只有基站的蜂窝组网架构)为例进行撰写,下面的实施例五以实施例二为例,阐述如何将所提方案用于解耦的蜂窝组网架构(第一、第二、第三节点均为不同设备),但同样适用于实施例三和四,也可以拓展到双基地系统架构和如前所述的所有蜂窝组网架构中。
实施例五
本实施例将实施例二拓展到解耦的蜂窝系统架构中,考虑第一、第二和第三节点为不同设备,此处以第一节点是基站、第二节点是UE、第三节点是中继为例。本实施例的具体流程如下:
初始化流程:
步骤1-7与实施例二步骤1-7相同。
识别流程(第一反向散射信号分M次发送,以第m次为例进行说明):
步骤8,基站发送命令,指示当前本时隙的序号m;或,指示进入下一时隙,由BSC设备自行确定序号;或者仅发送一次命令,后续时隙及其序号由BSC设备自行确定。
步骤9,UE监听步骤8所述命令或基站指示UE,向BSC设备发送CW。
步骤10,可选地,UE指示中继步骤3和4所述的部分或全部配置;或,中继监听步骤3和4所述命令获得相关配置;或,中继采用约定的配置。
步骤11,BSC设备匹配从哈希函数输出值或修改的输出值映射到的承载资源是否包含序号为m的时隙;或,匹配预设的承载资源中是否包含序号为m的时隙。
步骤12,步骤11匹配成功的BSC设备根据步骤3a)-3b)所述参数并利用步骤9所 述CW发送反向散射信号。
步骤13,中继接收反向散射信号并尝试解码;或,测量反向散射信号的RSRP。
步骤14,中继与基站协作记录bitmap:
选项1:若中继成功解码反向散射信号并通过验证;或,测量的反向散射信号的RSRP大于特定阈值,则指示基站将bitmap的第m位比特B(m)=1;否则,保持B(m)=0;
选项2:中继构建一个和步骤7所述bitmap一致的bitmap,若中继成功解码反向散射信号并通过验证;或,测量的反向散射信号的RSRP大于特定阈值,则将bitmap的第m位比特B(m)=1;否则,保持B(m)=0。当完成发送第一反向散射信号(即识别流程结束)时,中继将本地bitmap上报基站;
选项3:中继将反向散射信号或反向散射信号的RSRP上报基站,若基站成功解码反向散射信号并通过验证或RSRP大于特定阈值,则基站将bitmap的第m位比特B(m)=1;否则,保持B(m)=0。
步骤15,重复步骤8-14直至完成发送第一反向散射信号。
确定发送了反向散射信号的BSC设备的标识:
步骤16-17与实施例二的步骤15-16一致。
以上步骤中,基站向BSC设备发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
以上步骤中,BSC设备向基站发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、UCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、PUSCH、PUCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
以上步骤中,基站、UE及中继之间交互的信息或命令可被包含于RRC信令、MAC CE、DCI、UCI、SCI等至少一种信令,可被PDSCH、PUSCH、PDCCH、PUCCH、PSCCH、PSSCH至少一种方式承载。
实施例六
本实施例以实施例二为基础,阐述对发送第一反向散射信号的至少一个BSC设备的标识进一步核验的步骤。
步骤1-16和实施例二的步骤1-16一致
核验流程:
步骤17,基站发送命令,指示标识位于集合D中的BSC设备发送第二反向散射信号,命令包含以下至少一项内容:
a)BSC设备的标识;
b)发送第二反向散射信号的功率或与功率相关的参数,如电平、阻抗、反射系数等;
c)发送第二反向散射信号的内容和格式,如携带的字段、序列、长度、持续时间等;
d)发送第二反向散射信号的资源,如正交的时域、频域或者码域资源;
可选地,若命令仅指示部分配置,或未有指示配置,则BSC设备采用约定的默认配置。
可选地,命令指示同步信息,如前导序列、系统时间信息、分隔符等。
步骤18,被步骤17所述命令指示的BSC设备在指定的资源上以指定的内容和格式发送第二反向散射信号。
步骤19,基站在步骤17所述命令指示的指定资源上接收第二反向散射信号,若成功解码且内容或格式通过验证,则将对应的BSC设备的标识放入集合D’中。
步骤20,集合D’即为通过核验的发送第一反向散射信号的BSC设备的标识。
辅助数据传输或建立连接:
步骤21,可选地,步骤17所述命令可指示为BSC设备保留的用于上报内容的资源,或接收下行数据的资源,或建立连接相关信令。
步骤22,BSC设备接收步骤17所述命令,在相应的保留资源进行上行和/或下行数据传输,或建立连接。
以上步骤中,基站向BSC设备发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、DCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如PIE编码的ASK调制信号)、PDSCH、PDCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
以上步骤中,BSC设备向基站发送的命令或信息可被包含于专用控制命令、RRC信令、MAC CE、UCI、SCI、物理帧preamble等至少一种信令,可被专用无线信号波形(如OOK调制的反向散射信号)、PUSCH、PUCCH、PSCCH、PSSCH、物理帧至少一种方式承载。
本申请实施例提供的BSC设备的识别方法,执行主体可以为BSC设备的识别装置。本申请实施例中以BSC设备的识别装置执行BSC设备的识别方法为例,说明本申请实施例提供的BSC设备的识别装置。
图10为本申请实施例提供的BSC设备的识别装置的结构示意图之一。如图10所示,该BSC设备的识别装置1000包括:
第一发送单元1010,用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
第一识别单元1020,用于确定发送所述第一反向散射信号的BSC设备的标识。
可选地,所述第一配置信息通过所述第一信息指示,或者,所述第一配置信息中的部分信息通过所述第一信息指示,或者,所述第一配置信息是预先配置的。
可选地,所述第一配置信息包括以下至少一项:
用于确定承载第一反向散射信号的资源的信息;
时域和/或频域资源的定义方式;
发送第一反向散射信号的功率或与所述功率相关的参数;
发送第一反向散射信号的内容和/或格式。
可选地,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
哈希函数集合;
从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
预设的值;
预设的承载资源。
可选地,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
可选地,所述第一信息还携带以下至少一项同步信息:约定的序列、系统时间信息、分隔符。
可选地,所述装置还包括第二发送单元,用于
向BSC设备发送激励信号;或者,
向第二节点发送第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号。
可选地,所述装置还包括:
第三发送单元,用于向BSC设备发送第三信息,所述第三信息用于指示时隙的开始。
可选地,所述第一识别单元,用于:
接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
可选地,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括:
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
基于所述信号质量,确定所述第一反向散射信号占用的时域和/或频域资源。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述装置还包括:
第四发送单元,用于向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
第二识别单元,用于接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
第一确定单元,用于将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,所述第四信息包括以下至少一项:
第一标识集合中的至少一个标识;
发送第二反向散射信号的功率或与功率相关的参数;
发送第二反向散射信号的内容和/或格式;
发送第二反向散射信号的资源;
为BSC设备保留的用于上行和/或下行数据传输的资源。
可选地,所述第一识别单元,用于:
接收第三节点通过第五信息反馈的最终结果,所述最终结果是由所述第三节点确定的发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,所述第一识别单元,用于:
接收第三节点通过第六信息反馈的中间信息,所述中间信息是所述第三节点基于接收的第一反向散射信号和/或第二反向散射信号确定的;
根据所述中间信息,确定发送所述第一反向散射信号的BSC设备的标识。
可选地,所述装置还包括:
第五发送单元,用于向第三节点发送第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息。
可选地,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
可选地,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
可选地,所述第一信息还用于指示参与识别的BSC设备的信息。
可选地,所述参与识别的BSC设备的信息包括:用于匹配ID、EPC、PC/XPC、内部存储器特定位置内容和传感器结果中的至少一项的掩码和/或长度和/或字段。
可选地,所述方法还包括:
第六发送单元,用于向BSC设备发送第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
第一接收单元,用于接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选地,所述方法还包括第二接收单元,用于:
在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选地,所述第九信息包括以下至少一项:
BSC设备注册或驻留的指示信息;
BSC设备去注册或离开的指示信息;
BSC设备型号;
BSC设备的标识;
BSC设备可使用的频率和/或范围和/或频率集合;
BSC设备可同时使用的频率数量和/或范围和/或组合;
BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
BSC设备支持的时域和/或频域资源定义方式;
BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
BSC设备的可用阻抗集合和/或反射系数集合;
BSC设备接收激励信号或第七信息的信号质量测量值。
可选地,所述装置还包括:
第二接收单元,用于接收BSC设备发送的第十信息,所述第十信息用于指示以下至少一项:
保留或丢弃的哈希函数集合或哈希函数序号集合;
哈希函数输出值的修改规则;
修改的哈希函数输出值;
哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
可选地,所述装置还包括:
第七发送单元,用于在BSC设备发送第一反向散射信号的过程中,第一节点向BSC设备发送更新的第一配置信息。
本申请实施例提供的BSC设备的识别装置,通过发送第一信息,触发BSC设备根据第一配置信息发送第一反向散射信号,可以使得接收端通过分析第一反向散射信号,确定发送第一反向散射信号的BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
本申请实施例中的BSC设备的识别装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的BSC设备的识别装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11为本申请实施例提供的BSC设备的识别装置的结构示意图之二。如图11所示,所述BSC设备的识别装置1100包括:
第三接收单元1110,用于接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
第八发送单元1120,用于根据第一配置信息,发送第一反向散射信号。
可选地,所述第一配置信息通过所述第一信息指示,或者,所述第一配置信息中的部分信息通过所述第一信息指示,或者,所述第一配置信息是预先配置的。
可选地,所述第一配置信息包括以下至少一项:
用于确定承载第一反向散射信号的资源的信息;
时域和/或频域资源的定义方式;
发送第一反向散射信号的功率或与所述功率相关的参数;
发送第一反向散射信号的内容和/或格式。
可选地,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
哈希函数集合;
从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
预设的值;
预设的承载资源。
可选地,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
可选地,所述第一信息还携带以下至少一项同步信息:约定的序列、系统时间信息、分隔符。
可选地,所述第八发送单元,用于:
根据第一配置信息,确定第一反向散射信号的参数;
使用第一节点或第二节点发送的激励信号,按照所述第一反向散射信号的参数,发送第一反向散射信号。
可选地,所述装置还包括:
第四接收单元,用于接收第一节点或第二节点发送的激励信号。
可选地,所述装置还包括:
第二确定单元,用于确定时隙的开始;或者,
第五接收单元,用于接收第一节点发送的第三信息,所述第三信息用于指示时隙的开始。
可选地,所述装置还包括:
第六接收单元,用于接收第四信息,所述第四信息用于触发第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
第九发送单元,用于发送第二反向散射信号。
可选地,所述第四信息包括以下至少一项:
第一标识集合中的至少一个标识;
发送第二反向散射信号的功率或与功率相关的参数;
发送第二反向散射信号的内容和/或格式;
发送第二反向散射信号的资源;
为BSC设备保留的用于上行和/或下行数据传输的资源。
可选地,所述装置还包括:
第七接收单元,用于接收第一节点发送的第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
第十发送单元,用于向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选地,所述装置还包括:
第十一发送单元,用于在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选地,所述第九信息包括以下至少一项:
BSC设备注册或驻留的指示信息;
BSC设备去注册或离开的指示信息;
BSC设备型号;
BSC设备的标识;
BSC设备可使用的频率和/或范围和/或频率集合;
BSC设备可同时使用的频率数量和/或范围和/或组合;
BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
BSC设备支持的时域和/或频域资源定义方式;
BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
BSC设备的可用阻抗集合和/或反射系数集合;
BSC设备接收激励信号或第七信息的信号质量测量值。
可选地,所述装置还包括:
第十二发送单元,用于向所述第一节点发送第十信息;
其中,所述第十信息用于指示以下至少一项:
保留或丢弃的哈希函数集合或哈希函数序号集合;
哈希函数输出值的修改规则;
修改的哈希函数输出值;
哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
可选地,所述装置还包括:
第八接收单元,用于在所述BSC设备发送第一反向散射信号的过程中,接收第一节点或第二节点发送的更新的第一配置信息。
在本申请实施例中,定义了一种允许在时域和/或频域资源上有重叠的反向散射信号发送方式,使得接收端通过分析反向散射信号占用的时域和/或频域资源便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
本申请实施例中的BSC设备的识别装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的BSC设备的识别装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12为本申请实施例提供的BSC设备的识别装置的结构示意图之三。如图12所示,该BSC设备的识别装置1200包括:
第九接收单元1210,用于接收第一反向散射信号和/或第二反向散射信号;
第一反馈单元1220,用于根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;
其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识;
所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式;其中,所述第一输出值为将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值。
可选地,所述根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,包括:
接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
可选地,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括;
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
基于所述信号质量,确定所述第一反向散射信号占用的时域和/或频域资源。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括以下至少一项:
确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选地,所述针对所述已有的BSC设备的标识中的每个标识,执行以下步骤之后,所述装置还包括:
第十三发送单元,用于向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
第三识别单元,用于接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
第二确认单元,用于将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选地,所述装置还包括:
第一获得单元,用于通过以下至少一种方式获得用于接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息:
接收第一节点发送的第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息;
监听第一信息和/或第三信息;
预先约定的方式。
可选地,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
可选地,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
本申请实施例中,通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
本申请实施例提供的BSC设备的识别装置能够实现图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图13为本申请实施例提供的BSC设备的识别装置的结构示意图之四,如图13所示,该BSC设备的识别装置1300包括:
第十接收单元1310,用于接收第一节点发送的第二信息,所述第二信息用于指示第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
第十四发送单元1320,用于向BSC设备发送激励信号。
可选地,所述装置还包括:
第十五发送单元,用于向所述BSC设备发送用于触发所述BSC设备进行设备注册或去注册的激励信号。
可选地,所述装置还包括:
第十六发送单元,用于在所述BSC设备发送第一反向散射信号的过程中,所述第二节点向所述BSC设备发送更新的第一配置信息。
在本申请实施例中,通过提供激励信号,使得BSC设备发送反向散射信号,使得控 制命令发送方和/或反向散射信号接收端通过分析第一反向散射信号占用的时域和/或频域资源,便可识别BSC设备的标识,从而能够对大量BSC设备进行并行识别,可以有效提高BSC设备的识别效率,大幅降低整体时间开销。
本申请实施例提供的BSC设备的识别装置能够实现图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为第一节点或第二节点或第三节点或BSC设备时,该程序或指令被处理器1401执行时实现上述BSC设备的识别方法实施例的各个步骤,且能达到相同的技术效果。
本申请实施例提供了一种第一节点,该第一节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的BSC设备的识别方法的步骤。
本申请实施例,提供了一种第一节点,包括处理器及通信接口,其中,所述通信接口用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;所述处理器用于确定发送所述第一反向散射信号的BSC设备的标识。
本申请实施例,提供了一种BSC设备,该BSC设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如BSC设备侧的BSC设备的识别方法的步骤。
本申请实施例,提供了一种BSC设备,包括处理器及通信接口,其中,所述通信接口用于接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号,所述处理器用于根据第一配置信息,发送第一反向散射信号。
本申请实施例,提供了一种第三节点,该第一节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三节点侧的BSC设备的识别方法的步骤。
本申请实施例,提供了一种第三节点,包括处理器及通信接口,其中,所述通信接口用于接收第一反向散射信号和/或第二反向散射信号;所述处理器用于根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
本申请实施例,提供了一种第二节点,该第二节点包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二节点侧的BSC设备的识别方法的步骤。
本申请实施例,提供了一种第二节点,包括处理器及通信接口,其中,所述通信接口 用于接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,监听第一信息,获取发送激励信号相关的配置;所述通信接口还用于向BSC设备发送激励信号。
本申请实施例还提供一种终端,包括处理器和通信接口。该终端实施例与上述第一节点侧或第三节点侧或第二节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端1500包括但不限于:射频单元1501、网络模块1502、音频输出单元1503、输入单元1504、传感器1505、显示单元1506、用户输入单元1507、接口单元1508、存储器1509以及处理器1510等中的至少部分部件。
本领域技术人员可以理解,终端1500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1504可以包括图形处理单元(Graphics Processing Unit,GPU)15041和麦克风15042,图形处理器15041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1506可包括显示面板15061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板15061。用户输入单元1507包括触控面板15071以及其他输入设备15072中的至少一种。触控面板15071,也称为触摸屏。触控面板15071可包括触摸检测装置和触摸控制器两个部分。其他输入设备15072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1501接收来自网络侧设备的下行数据后,可以传输给处理器1510进行处理;另外,射频单元1501可以向网络侧设备发送上行数据。通常,射频单元1501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1509可用于存储软件程序或指令以及各种数据。存储器1509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1509可以包括易失性存储器或非易失性存储器,或者,存储器1509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存 取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1509包括但不限于这些和任意其它适合类型的存储器。
处理器1510可包括一个或多个处理单元;可选的,处理器1510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1510中。
其中,射频单元1501,用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号
处理器1510,用于确定发送所述第一反向散射信号的BSC设备的标识。
可选的,射频单元1501,还用于向BSC设备发送激励信号;或者,
向第二节点发送第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号。
可选的,射频单元1501,还用于向BSC设备发送第三信息,所述第三信息用于指示时隙的开始。
可选的,处理器1510,用于接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
可选的,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括:
在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
基于所述信号质量,确定所述第一反向散射信号占用的时域和/或频域资源。
可选的,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应 的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选的,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
可选的,射频单元1501还用于向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
射频单元1501还用于接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
处理器1510,用于将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选的,处理器1510,还用于接收第三节点通过第五信息反馈的最终结果,所述最终结果是由所述第三节点确定的发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
可选的,处理器1510,还用于接收第三节点通过第六信息反馈的中间信息,所述中间信息是所述第三节点基于接收的第一反向散射信号和/或第二反向散射信号确定的;根据所述中间信息,确定发送所述第一反向散射信号的BSC设备的标识。
可选的,射频单元1501还用于向第三节点发送第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息。
可选的,射频单元1501还用于向BSC设备发送第八信息,所述第八信息用于触发BSC设备进行注册或去注册;接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选的,射频单元1501还用于在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,第一节点接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
可选的,射频单元1501还用于接收BSC设备发送的第十信息,所述第十信息用于指 示以下至少一项:
保留或丢弃的哈希函数集合或哈希函数序号集合;
哈希函数输出值的修改规则;
修改的哈希函数输出值;
哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
可选的,射频单元1501还用于在BSC设备发送第一反向散射信号的过程中,向BSC设备发送更新的第一配置信息。
在本申请实施例,通过发送第一信息,触发BSC设备根据第一配置信息发送第一反向散射信号,可以使得接收端通过分析第一反向散射信号,确定发送第一反向散射信号的BSC设备的标识,从而能够对大量BSC设备进行并行识别,有效提高BSC设备的识别效率,大幅降低整体时间开销。
在另一实施例中,终端实施例还可与第三节点侧或第二节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果,在此不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,该网络侧设备实施例与上述第一节点,第二节点或第三节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备1600包括:天线1601、射频装置1602、基带装置1603、处理器1604和存储器1605。天线1601与射频装置1602连接。在上行方向上,射频装置1602通过天线1601接收信息,将接收的信息发送给基带装置1603进行处理。在下行方向上,基带装置1603对要发送的信息进行处理,并发送给射频装置1602,射频装置1602对收到的信息进行处理后经过天线1601发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1603中实现,该基带装置1603包括基带处理器。
基带装置1603例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1605连接,以调用存储器1605中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1606,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1600还包括:存储在存储器1605上并可在处理器1604上运行的指令或程序,处理器1604调用存储器1605中的指令或程序执行图10或图12或图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述BSC设备的识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述BSC设备的识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述BSC设备的识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一节点,第二节点,第三节点及BSC设备,所述第一节点可用于执行如上所述的BSC设备的识别方法的步骤,第二节点可用于执行如上所述的BSC设备的识别方法的步骤,第三节点可用于执行如上所述的BSC设备的识别方法的步骤,所述BSC设备可用于执行如上所述的BSC设备的识别方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在 本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (60)

  1. 一种BSC设备的识别方法,包括:
    第一节点发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
    所述第一节点确定发送所述第一反向散射信号的BSC设备的标识。
  2. 根据权利要求1所述的方法,其中,所述第一配置信息通过所述第一信息指示,或者,所述第一配置信息中的部分信息通过所述第一信息指示,或者,所述第一配置信息是预先配置的。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息包括以下至少一项:
    用于确定承载第一反向散射信号的资源的信息;
    时域和/或频域资源的定义方式;
    发送第一反向散射信号的功率或与所述功率相关的参数;
    发送第一反向散射信号的内容和/或格式。
  4. 根据权利要求3所述的方法,其中,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
    哈希函数集合;
    从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
    输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
    是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
    丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
    哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
    预设的值;
    预设的承载资源。
  5. 根据权利要求3所述的方法,其中,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
  6. 根据权利要求1或2所述的方法,其中,所述第一信息还携带以下至少一项同步信息:约定的序列、系统时间信息、分隔符。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述方法还包括:
    第一节点向BSC设备发送激励信号;或者,
    第一节点向第二节点发送第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    第一节点向BSC设备发送第三信息,所述第三信息用于指示时隙的开始。
  9. 根据权利要求1所述的方法,其中,所述第一节点确定发送所述第一反向散射信号的BSC设备的标识,包括:
    所述第一节点接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
    所述第一节点根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
  10. 根据权利要求9所述的方法,其中,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括:
    在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
    基于所述信号质量,确定所述第一反向散射信号占用的时域和/或频域资源。
  11. 根据权利要求9所述的方法,其中,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
    将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
    将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
    针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
  12. 根据权利要求9所述的方法,其中,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
    确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
    针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时 域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
  13. 根据权利要求11或12所述的方法,其中,所述针对所述已有的BSC设备的标识中的每个标识,执行以下步骤之后,所述方法还包括:
    所述第一节点向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
    所述第一节点接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
    所述第一节点将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
  14. 根据权利要求13所述的方法,其中,所述第四信息包括以下至少一项:
    第一标识集合中的至少一个标识;
    发送第二反向散射信号的功率或与功率相关的参数;
    发送第二反向散射信号的内容和/或格式;
    发送第二反向散射信号的资源;
    为BSC设备保留的用于上行和/或下行数据传输的资源。
  15. 根据权利要求1所述的方法,其中,所述第一节点确定发送所述第一反向散射信号的BSC设备的标识,包括:
    所述第一节点接收第三节点通过第五信息反馈的最终结果,所述最终结果是由所述第三节点确定的发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
  16. 根据权利要求1所的方法,其中,所述第一节点确定发送所述第一反向散射信号的BSC设备的标识,包括:
    所述第一节点接收第三节点通过第六信息反馈的中间信息,所述中间信息是所述第三节点基于接收的第一反向散射信号和/或第二反向散射信号确定的;
    所述第一节点根据所述中间信息,确定发送所述第一反向散射信号的BSC设备的标识。
  17. 根据权利要求15或16所述的方法,其中,所述第一节点确定发送所述第一反向散射信号的BSC设备的标识之前,所述方法还包括:
    所述第一节点向第三节点发送第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息。
  18. 根据权利要求16所述的方法,其中,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
  19. 根据权利要求17所述的方法,其中,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
  20. 根据权利要求1所述的方法,其中,所述第一信息还用于指示参与识别的BSC设备的信息。
  21. 根据权利要求20所述的方法,其中,所述参与识别的BSC设备的信息包括:用于匹配标识ID、电子产品码EPC、协议控制位PC/扩展协议控制位XPC、内部存储器特定位置内容和传感器结果中的至少一项的掩码和/或长度和/或字段。
  22. 根据权利要求1-21中任一项所述的方法,其中,所述方法还包括:
    第一节点向BSC设备发送第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
    第一节点接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
  23. 根据权利要求1-21中任一项所述的方法,其中,所述方法还包括:在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,第一节点接收所述BSC设备发送的第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
  24. 根据权利要求22或23所述的方法,其中,所述第九信息包括以下至少一项:
    BSC设备注册或驻留的指示信息;
    BSC设备去注册或离开的指示信息;
    BSC设备型号;
    BSC设备的标识;
    BSC设备可使用的频率和/或范围和/或频率集合;
    BSC设备可同时使用的频率数量和/或范围和/或组合;
    BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
    BSC设备支持的时域和/或频域资源定义方式;
    BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
    BSC设备的可用阻抗集合和/或反射系数集合;
    BSC设备接收激励信号或第七信息的信号质量测量值。
  25. 根据权利要求1所述的方法,其中,所述第一节点确定发送所述第一反向散射信号的BSC设备的标识之前,所述方法还包括:
    接收BSC设备发送的第十信息,所述第十信息用于指示以下至少一项:
    保留或丢弃的哈希函数集合或哈希函数序号集合;
    哈希函数输出值的修改规则;
    修改的哈希函数输出值;
    哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的 映射方式。
  26. 根据权利要求2-5中任一项所述的方法,其中,所述方法还包括:
    在BSC设备发送第一反向散射信号的过程中,第一节点向BSC设备发送更新的第一配置信息。
  27. 一种BSC设备的识别方法,包括:
    BSC设备接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
    所述BSC设备根据第一配置信息,发送第一反向散射信号。
  28. 根据权利要求27所述的方法,其中,所述第一配置信息通过所述第一信息指示,或者,所述第一配置信息中的部分信息通过所述第一信息指示,或者,所述第一配置信息是预先配置的。
  29. 根据权利要求28所述的方法,其中,所述第一配置信息包括以下至少一项:
    用于确定承载第一反向散射信号的资源的信息;
    时域和/或频域资源的定义方式;
    发送第一反向散射信号的功率或与所述功率相关的参数;
    发送第一反向散射信号的内容和/或格式。
  30. 根据权利要求29所述的方法,其中,所述用于确定承载第一反向散射信号的资源的信息,包括以下至少一项:
    哈希函数集合;
    从预设或指示的哈希函数集合中选择激活的哈希函数的序号集合;
    输入哈希函数的字段,和/或,输入哈希函数的字段的位置,和/或,输入哈希函数的字段的长度;
    是否需要对哈希函数输出值进行修改和/或对哈希函数输出值进行修改的规则;
    丢弃或保留哈希函数的规则,和/或,丢弃或保留哈希函数输出值的规则,和/或,丢弃或保留承载资源的规则;
    哈希函数输出值与承载资源的映射规则,或,修改的哈希函数输出值与承载资源的映射规则;
    预设的值;
    预设的承载资源。
  31. 根据权利要求29所述的方法,其中,所述时域和/或频域资源的定义方式,包括以下至少一项:时隙的定义、时隙的长度、相邻频点的间隔、时域和/或频域资源的起始位置、时域和/或频域资源的总量、时隙总数量、频点总数量、时域和/或频域资源网格、资源序号或位置的定义。
  32. 根据权利要求27或28所述的方法,其中,所述第一信息还携带以下至少一项同步信息:约定的序列、系统时间信息、分隔符。
  33. 根据权利要求27所述的方法,其中,所述BSC设备根据第一配置信息,发送第一反向散射信号,包括:
    所述BSC设备根据第一配置信息,确定第一反向散射信号的参数;
    使用第一节点或第二节点发送的激励信号,按照所述第一反向散射信号的参数,发送第一反向散射信号。
  34. 根据权利要求33所述的方法,其中,所述方法还包括:
    接收第一节点或第二节点发送的激励信号。
  35. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述BSC设备确定时隙的开始;或者,
    接收第一节点发送的第三信息,所述第三信息用于指示时隙的开始。
  36. 根据权利要求27-35中任一项所述的方法,其中,所述方法还包括:
    接收第四信息,所述第四信息用于触发第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
    发送第二反向散射信号。
  37. 根据权利要求36所述的方法,其中,所述第四信息包括以下至少一项:
    第一标识集合中的至少一个标识;
    发送第二反向散射信号的功率或与功率相关的参数;
    发送第二反向散射信号的内容和/或格式;
    发送第二反向散射信号的资源;
    为BSC设备保留的用于上行和/或下行数据传输的资源。
  38. 根据权利要求27-37中任一项所述的方法,其中,所述方法还包括:
    接收第一节点发送的第八信息,所述第八信息用于触发BSC设备进行注册或去注册;
    向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
  39. 根据权利要求27-37中任一项所述的方法,其中,所述方法还包括:
    在BSC设备被第一节点或第二节点发送的激励信号触发进行注册或去注册的情况下,向所述第一节点发送第九信息,所述第九信息用于指示所述BSC设备的注册信息或去注册信息。
  40. 根据权利要求38或39所述的方法,其中,所述第九信息包括以下至少一项:
    BSC设备注册或驻留的指示信息;
    BSC设备去注册或离开的指示信息;
    BSC设备型号;
    BSC设备的标识;
    BSC设备可使用的频率和/或范围和/或频率集合;
    BSC设备可同时使用的频率数量和/或范围和/或组合;
    BSC设备发送反向散射信号的时间范围和/或可选择的时间集合;
    BSC设备支持的时域和/或频域资源定义方式;
    BSC设备发送反向散射信号的最大和/或最小功率,和/或,可选择的功率集合;
    BSC设备的可用阻抗集合和/或反射系数集合;
    BSC设备接收激励信号或第七信息的信号质量测量值。
  41. 根据权利要求27-40中任一项所述的方法,其中,所述BSC设备接收第一信息之后,所述方法还包括:
    向所述第一节点发送第十信息;
    其中,所述第十信息用于指示以下至少一项:
    保留或丢弃的哈希函数集合或哈希函数序号集合;
    哈希函数输出值的修改规则;
    修改的哈希函数输出值;
    哈希函数输出值与承载资源的映射方式,和/或,修改的哈希函数输出值与承载资源的映射方式。
  42. 根据权利要求27-41中任一项所述的方法,其中,所述方法还包括:
    在所述BSC设备发送第一反向散射信号的过程中,接收第一节点或第二节点发送的更新的第一配置信息。
  43. 一种BSC设备的识别方法,包括:
    第三节点接收第一反向散射信号和/或第二反向散射信号;
    根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;
    其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
  44. 根据权利要求43所述的方法,其中,所述根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,包括;
    接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源;
    根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识。
  45. 根据权利要求44所述的方法,其中,所述接收所述第一反向散射信号,确定所述第一反向散射信号占用的时域和/或频域资源,包括;
    在候选时域和/或频域资源上接收第一反向散射信号,测量每个候选时域和/或频域资源上的信号质量;
    基于所述信号质量确定所述第一反向散射信号占用的时域和/或频域资源。
  46. 根据权利要求44所述的方法,其中,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括:
    将所述第一反向散射信号占用的时域和/或频域资源映射为哈希函数的输出值和/或修改过的输出值,得到第一输出值;
    将已有的BSC设备的标识输入哈希函数,得到所述已有的BSC设备的标识对应的哈希函数的输出值和/或修改过的输出值;或者,确定已有的BSC设备的标识对应的预设值;所述已有的BSC设备的标识为预先存储的BSC设备的标识;
    针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值完全被包含于所述第一输出值的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的哈希函数的输出值和/或修改过的输出值或预设值未完全被包含于所述第一输出值的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
  47. 根据权利要求44所述的方法,其中,所述根据所述第一反向散射信号占用的时域和/或频域资源,确定发送所述第一反向散射信号的BSC设备的标识,包括以下至少一项:
    确定已有的BSC设备的标识对应的反向散射信号的承载资源,所述已有的BSC设备的标识为预先存储的BSC设备的标识;
    针对所述已有的BSC设备的标识中的每个标识,执行以下步骤:在当前标识对应的反向散射信号的承载资源完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识为发送所述第一反向散射信号的BSC设备的标识;或者,在当前标识对应的反向散射信号的承载资源未完全被包含于所述第一反向散射信号占用的时域和/或频域资源的情况下,确定当前标识不属于发送所述第一反向散射信号的BSC设备的标识。
  48. 根据权利要求46或47所述的方法,其中,所述针对所述已有的BSC设备的标识中的每个标识,执行以下步骤之后,所述方法还包括:
    所述第三节点向第一标识集合中的各标识对应的BSC设备发送第四信息,所述第四信息用于触发所述第一标识集合中的各标识对应的BSC设备发送第二反向散射信号,其中,所述第一标识集合包括发送所述第一反向散射信号的至少一个BSC设备的标识;
    接收所述第二反向散射信号,根据所述第二反向散射信号占用的资源和/或内容和/或格式,确定发送所述第二反向散射信号的至少一个BSC设备的标识;
    将发送所述第二反向散射信号的至少一个BSC设备的标识作为通过核验的发送所述第一反向散射信号的BSC设备的标识。
  49. 根据权利要求43所述的方法,其中,所述方法还包括:
    所述第三节点通过以下至少一种方式获得用于接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息:
    接收第一节点发送的第七信息,所述第七信息用于指示接收和处理第一反向散射信号或和/或第二反向散射信号的相关配置信息;
    监听第一信息和/或第三信息;
    预先约定的方式。
  50. 根据权利要求49所述的方法,其中,所述相关配置信息包括以下至少一项:第一配置信息的全部或部分信息,已有的BSC设备的标识,第四信息。
  51. 根据权利要求45、46或48所述的方法,其中,所述中间信息包括以下至少一项:每个候选时域和/或频域资源上的信号质量,所述第一反向散射信号占用的时域和/或频域资源,第一输出值,第二反向散射信号占用的资源和/或内容和/或格式。
  52. 一种BSC设备的识别方法,包括:
    第二节点接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
    所述第二节点向BSC设备发送激励信号。
  53. 根据权利要求52所述的方法,其中,所述方法还包括:
    所述第二节点向所述BSC设备发送用于触发所述BSC设备进行设备注册或去注册的激励信号。
  54. 根据权利要求52所述的方法,其中,所述方法还包括:
    在所述BSC设备发送第一反向散射信号的过程中,所述第二节点向所述BSC设备发送更新的第一配置信息。
  55. 一种BSC设备的识别装置,包括:
    第一发送单元,用于发送第一信息,所述第一信息用于触发BSC设备根据第一配置信息发送第一反向散射信号;
    第一识别单元,用于确定发送所述第一反向散射信号的BSC设备的标识。
  56. 一种BSC设备的识别装置,包括:
    第三接收单元,用于接收第一信息,所述第一信息用于触发BSC设备发送第一反向散射信号;
    第八发送单元,用于根据第一配置信息,发送第一反向散射信号。
  57. 一种BSC设备的识别装置,包括:
    第九接收单元,用于接收第一反向散射信号和/或第二反向散射信号;
    第一反馈单元,用于根据所述第一反向散射信号和/或第二反向散射信号,确定最终结果,将所述最终结果通过第五信息反馈给第一节点;或者,根据所述第一反向散射信号和/或第二反向散射信号,确定中间信息,将所述中间信息通过第六信息反馈给第一节点;
    其中,所述最终结果包括发送所述第一反向散射信号的BSC设备的标识或通过核验的发送所述第一反向散射信号的BSC设备的标识。
  58. 一种BSC设备的识别装置,其中,包括:
    第十接收单元,用于接收第一节点发送的第二信息,所述第二信息用于指示所述第二节点向BSC设备发送激励信号;或者,第二节点监听第一信息,获取发送激励信号相关的配置;
    第十四发送单元,用于向BSC设备发送激励信号。
  59. 一种通信设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求27至42任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求43至51任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求52至54任一项所述的BSC设备的识别方法的步骤。
  60. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至26任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求27至42任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求43至51任一项所述的BSC设备的识别方法的步骤,或者,实现如权利要求52至54任一项所述的BSC设备的识别方法的步骤。
PCT/CN2023/105392 2022-07-18 2023-06-30 Bsc设备的识别方法、装置及通信设备 WO2024017049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210844139.9A CN117478210A (zh) 2022-07-18 2022-07-18 Bsc设备的识别方法、装置及通信设备
CN202210844139.9 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024017049A1 true WO2024017049A1 (zh) 2024-01-25

Family

ID=89617025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105392 WO2024017049A1 (zh) 2022-07-18 2023-06-30 Bsc设备的识别方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117478210A (zh)
WO (1) WO2024017049A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
WO2021032147A1 (zh) * 2019-08-21 2021-02-25 华为技术有限公司 用于反射通信的方法和装置
WO2021169586A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 一种通信方法及装置
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
WO2021032147A1 (zh) * 2019-08-21 2021-02-25 华为技术有限公司 用于反射通信的方法和装置
WO2021169586A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 一种通信方法及装置
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering

Also Published As

Publication number Publication date
CN117478210A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2018041001A1 (zh) 一种与射频设备通信的方法、装置及系统
US20170055305A1 (en) Neighbor Awareness Networking Multi-hop
WO2023179790A1 (zh) 反向散射通信的方法、设备及网络侧设备
CN112399498B (zh) 用于小区测量的方法和装置
WO2023093609A1 (zh) 物联网设备的会话建立方法及装置
WO2023025017A1 (zh) 传输处理方法、装置及设备
WO2024017049A1 (zh) Bsc设备的识别方法、装置及通信设备
WO2024007980A1 (zh) 设备数量确定方法、装置及电子设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2023179792A1 (zh) 反向散射通信的方法、装置及设备
WO2023241448A1 (zh) 测量处理方法、终端及网络侧设备
WO2023241449A1 (zh) 测量处理方法、装置及设备
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024032496A1 (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
WO2023236868A1 (zh) 反向散射通信配置方法、装置、网络侧设备和终端
WO2023185756A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023232104A1 (zh) 信息上报方法、接收方法、装置、终端及网络侧设备
WO2024008001A1 (zh) 设备数量确定方法、装置及电子设备
WO2024125390A1 (zh) 传输方法、装置、网络侧设备及终端
WO2023236962A1 (zh) 资源分配方法、装置、通信设备、系统及存储介质
US20240155542A1 (en) Positioning method and apparatus, and communication device
WO2024022168A1 (zh) 协商方法、终端及网络侧设备
WO2024140732A1 (zh) 数据传输方法、装置、设备、通信系统及介质
WO2024027746A1 (zh) 信息传输方法、装置、接收端及发送端
WO2024099141A1 (zh) Gap信息上报方法、装置、通信设备、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842114

Country of ref document: EP

Kind code of ref document: A1