WO2024067191A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067191A1
WO2024067191A1 PCT/CN2023/119308 CN2023119308W WO2024067191A1 WO 2024067191 A1 WO2024067191 A1 WO 2024067191A1 CN 2023119308 W CN2023119308 W CN 2023119308W WO 2024067191 A1 WO2024067191 A1 WO 2024067191A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation symbol
symbol length
terminal device
sequence
Prior art date
Application number
PCT/CN2023/119308
Other languages
English (en)
French (fr)
Inventor
曲韦霖
吴毅凌
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067191A1 publication Critical patent/WO2024067191A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • NR new radio
  • MTC machine-type communication
  • IoT internet of things
  • NB-IoT narrowband IoT
  • 3GPP introduced the narrowband IoT (NB-IoT) system.
  • NB-IoT terminals also require overall external (battery) power supply and have the ability to generate local high-frequency local oscillator carriers, so this type of terminal equipment can only consume milliwatts of power.
  • 5G IoT whether terminal devices can be enabled to access the 5G network without external power supply, passively accept external RF signals as local energy supply, or cooperate with other energy harvesting methods to power passive or semi-passive terminal devices and communicate effectively in the 5G network is the focus of current research, which can also be defined as the research direction of passive IoT or backscatter communication.
  • the power consumption of such terminal devices may be limited to a target power consumption of hundreds of microwatts ( ⁇ W) or less than 100 ⁇ W.
  • ⁇ W microwatts
  • such terminal devices may not have the ability to generate a local high-frequency local oscillator, that is, they do not have the ability to generate a local carrier corresponding to the transmitted RF signal.
  • such terminal devices can rely on non-coherent demodulation methods to demodulate the signal.
  • the more commonly used non-coherent demodulation method is the envelope detection method.
  • the modulation symbols that enable envelope detection demodulation may lead to low downlink transmission efficiency.
  • the present application provides a communication method and device for achieving optimized transmission with required downlink signal transmission rate and coverage performance.
  • the present application provides a communication method, which can be applied to a network device, a functional module in a network device, a processor or a chip in a network device, etc.
  • the method may include: the network device determines a first signal, and determines a modulation symbol length of a second signal according to the first signal, and then sends the first signal and the second signal to a terminal device.
  • the modulation symbol length of the first signal may be one of a plurality of modulation symbol lengths, the first signal is a preamble signal or a signal for synchronization of the terminal device; the second signal is a data signal after the first signal; and the modulation symbol of the second signal is an amplitude shift keying modulation symbol or a frequency shift keying modulation symbol.
  • the modulation symbol length of the downlink transmission can be adjusted by associating the first signal with the modulation symbol length of the second signal, thereby realizing flexible adjustment of the modulation symbol length of the downlink signal and achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the multiple modulation symbol lengths include a first modulation symbol length and a second modulation symbol length, and the second modulation symbol length is twice the first modulation symbol length. This can make the rate of the downlink signal adjustable and improve the downlink transmission efficiency.
  • the modulation symbol length of the first signal is determined according to the coverage level of the terminal device. In this way, the network device can determine the modulation symbol length that meets the coverage level of the terminal device, thereby achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the network device determines the modulation symbol length of the first signal according to the coverage level of the terminal device.
  • the method may be: when the coverage level of the terminal device is greater than a coverage level threshold, the network device may determine that the modulation symbol length of the first signal is a third modulation symbol length; when the coverage level of the terminal device is less than or equal to the coverage level threshold, the network device may determine that the modulation symbol length of the first signal is a fourth modulation symbol length; wherein the fourth modulation symbol length
  • a suitable modulation symbol length can be selected based on the coverage level of the terminal device, thereby achieving optimized transmission under the balance of downlink signal transmission rate and coverage while ensuring the first signal transmission performance.
  • the modulation symbol length of the second signal may be the same as the modulation symbol length of the first signal.
  • the terminal device does not need to re-determine the modulation symbol length of the second signal, and can demodulate the data signal (i.e., the second signal) with the same modulation symbol length, which is conducive to reducing the complexity of demodulating the data signal of the terminal device and the design overhead and complexity of the first signal.
  • the first signal may be used to indicate the modulation symbol length of the second signal.
  • the modulation symbol length of the second signal may be flexibly adjusted, thereby ensuring a balance between the transmission performance and the transmission rate of the second signal.
  • the first signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the first signal may carry first indication information, the first indication information may include a first modulation and coding scheme (MCS) index, the first MCS index may indicate the modulation symbol length of the second signal, or the first MCS index may indicate the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • MCS modulation and coding scheme
  • the modulation symbol length of the second signal can be dynamically determined through the first signal indication, and in addition, when combined with the coding rate and the number of repetitions, the downlink transmission mode of the terminal device under different coverage can be more effectively and dynamically and flexibly adjusted to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the first signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the first signal may carry a first sequence, and one of the following information of the first sequence indicates the modulation symbol length of the second signal: the length of the first sequence, the type of the first sequence, the mask superimposed by the first sequence, or the number of repetitions of the second sequence included in the first sequence, wherein the second sequence is a subsequence of the first sequence.
  • the first signal directly indicates the modulation symbol of the second signal, can flexibly indicate the modulation symbol length of the second signal, and simplifies the signal frame structure design of downlink transmission.
  • the network device determines the modulation symbol length of the second signal according to the first signal
  • the method may be: the network device may determine the modulation symbol length of the third signal according to the first signal, the modulation symbol length of the third signal may be the same as the modulation symbol length of the first signal, and the third signal may be used to indicate the modulation symbol length of the second signal; the third signal is a downlink signal after the first signal, and the third signal is a downlink signal before the second signal; the third signal is a signal carrying downlink control information (DCI) or the third signal is a specific signal for indicating the modulation symbol length of the second signal or the third signal is a specific signal for indicating the MCS of the second signal.
  • the network device may also send the third signal to the terminal device. In this way, the network device can dynamically adjust the modulation symbol length of the transmitted data signal to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the third signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the third signal may carry second indication information, the second indication information includes a second MCS index, the second MCS index indicates the modulation symbol length of the second signal, or the second MCS index indicates the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • the third signal is used alone to indicate the modulation coding information of the second signal.
  • more bits can be carried to dynamically and flexibly adjust the downlink transmission mode of the terminal device under different coverage, so as to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the network device may also send a first message to the terminal device, the first message may be used to indicate the modulation symbol length of the downlink signal after the first signal, and the first message may also be used to carry a paging message, a group paging message, or one of message 2 or message 4 in a random access process. Because the paging message and messages such as message 2 or message 4 already have certain prior information about the coverage level of the terminal device, the coverage level of the terminal device will be at a stable level in a short period of time.
  • the semi-static indication can be combined with the coverage capability of the terminal device to indicate that all subsequent signals use the same modulation symbol length, thereby saving the signaling overhead of frequently and dynamically indicating the modulation symbol length.
  • the present application provides a communication method, which can be applied to a terminal device, a functional module in a terminal device, a processor or a chip in a terminal device, etc.
  • the method may include: the terminal device receives a first signal and a second signal from a network device, and determines the modulation symbol length of the second signal according to the first signal; and then the terminal device demodulates the second signal according to the modulation symbol length of the second signal.
  • the modulation symbol length of the first signal may be one of a plurality of modulation symbol lengths, the first signal is a preamble signal or a signal for synchronization of the terminal device; the second signal is a data signal after the first signal; and the modulation symbol of the second signal is an amplitude shift keying modulation symbol or a frequency shift keying modulation symbol.
  • the modulation symbol length of the downlink transmission can be adjusted by associating the first signal with the modulation symbol length of the second signal, thereby realizing flexible adjustment of the modulation symbol length of the downlink signal and achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the multiple modulation symbol lengths may include a first modulation symbol length and a second modulation symbol length, and the second modulation symbol length may be twice the first modulation symbol length. This makes the rate of the downlink signal adjustable and improves the downlink transmission efficiency.
  • the modulation symbol length of the second signal may be the same as the modulation symbol length of the first signal.
  • the terminal device does not need to re-determine the modulation symbol length of the second signal, and can demodulate the data signal (i.e., the second signal) with the same modulation symbol length, which is conducive to reducing the complexity of demodulating the data signal of the terminal device and the design overhead and complexity of the first signal.
  • the first signal may be used to indicate the modulation symbol length of the second signal.
  • the modulation symbol length of the second signal may be dynamically adjusted, thereby ensuring a balance between the transmission performance and the transmission rate of the second signal.
  • the first signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the first signal may carry first indication information, the first indication information may include a first MCS index, the first MCS index may indicate the modulation symbol length of the second signal, or the first MCS index indicates the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • the modulation symbol length of the second signal can be dynamically determined through the first signal indication.
  • the downlink transmission mode of the terminal device under different coverage can be more effectively and dynamically and flexibly adjusted to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the first signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the first signal may carry a first sequence, and one of the following information of the first sequence may indicate the modulation symbol length of the second signal: the length of the first sequence, the type of the first sequence, the mask superimposed by the first sequence, or the number of repetitions of the second sequence included in the first sequence, wherein the second sequence is a subsequence of the first sequence.
  • the first signal directly indicates the modulation symbol of the second signal, can flexibly indicate the modulation symbol length of the second signal, and simplifies the signal frame structure design of downlink transmission.
  • the terminal device determines the modulation symbol length of the second signal according to the first signal
  • the method may be: the terminal device may receive a third signal from the network device according to the first signal, the modulation symbol length of the third signal may be the same as the modulation symbol length of the first signal, and the third signal is used to indicate the modulation symbol length of the second signal; the third signal is a downlink signal after the first signal, and the third signal is a downlink signal before the second signal; the third signal is a signal carrying DCI or the third signal is a specific signal used to indicate the modulation symbol length of the second signal.
  • the network device can dynamically adjust the modulation symbol length of the sent data signal to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the third signal is used to indicate the modulation symbol length of the second signal
  • the method may include: the third signal may carry second indication information, the second indication information includes a second MCS index, the second MCS index indicates the modulation symbol length of the second signal, or the second MCS index indicates the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • the third signal is used alone to indicate the modulation coding information of the second signal.
  • more bits can be carried to dynamically and flexibly adjust the downlink transmission mode of the terminal device under different coverage, so as to achieve the optimal transmission under the balance of downlink signal transmission rate and coverage.
  • the terminal device may also receive a first message from the network device, the first message may be used to indicate a modulation symbol length of a downlink signal following the first signal, and the first message may be used to carry a paging message, a group paging message, or one of message 2 or message 4 in a random access process. Because the paging message and messages such as message 2 or message 4 already have certain prior information about the coverage level of the terminal device, the coverage level of the terminal device will be at a stable level in a short period of time, and the semi-static indication may be combined with the coverage capability of the terminal device to indicate that all subsequent signals use the same modulation symbol length, thereby saving the signaling overhead of frequently and dynamically indicating the modulation symbol length.
  • the present application provides a communication method, which can be applied to a network device, a functional module in a network device, a processor or a chip in a network device, etc.
  • the method may include: the network device determines a first message and sends the first message to a terminal device, wherein the first message may be used to indicate a modulation symbol length of a downlink signal after the first message.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific message, a message 2 or a message 4 in a random access process.
  • all subsequent downlink signals can be indicated by the first message to use the same modulation symbol length, thereby saving the signaling overhead of dynamically indicating the modulation symbol length.
  • the present application provides a communication method, which can be applied to a terminal device, a functional module in a terminal device, a processor or a chip in a terminal device, etc.
  • the method may include: the terminal device receives a first message from a network device, and the first message may be used to indicate the modulation symbol length of a downlink signal after the first message. Furthermore, the terminal device may determine the modulation symbol length of the downlink signal after the first message according to the first message.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific message, a message 2 or a message 4 in a random access process.
  • all subsequent downlink signals can be indicated by the first message to use the same modulation symbol length, thereby saving the signaling overhead of dynamically indicating the modulation symbol length.
  • the present application further provides a communication device, which may be a network device, and which has the function of implementing the method of the first aspect or each possible design example of the first aspect, or the third aspect.
  • the function may be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can perform the corresponding functions in the above-mentioned first aspect or various possible design examples of the first aspect, or the above-mentioned third aspect. Please refer to the detailed description in the method example for details, which will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive signals or data, and to communicate and interact with other devices in the communication system
  • the processor is configured to support the communication device to perform the above-mentioned first aspect or each possible design example of the first aspect, or the corresponding function of the above-mentioned third aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • the present application further provides a communication device, which may be a terminal device, and which has the function of implementing the method in the second aspect or each possible design example of the second aspect, or the fourth aspect.
  • the function may be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, which can perform the corresponding functions in the above-mentioned second aspect or various possible design examples of the second aspect, or in the above-mentioned fourth aspect. Please refer to the detailed description in the method example for details, which will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory, wherein the transceiver is used to send and receive signals or data, and to communicate and interact with other devices in the communication system, and the processor is configured to support the communication device to perform the corresponding functions in the above second aspect or each possible design example of the second aspect, or in the above fourth aspect.
  • the memory is coupled to the processor, and stores the necessary program instructions and data for the communication device.
  • an embodiment of the present application provides a communication system, which may include the network device of the first aspect or the third aspect mentioned above, and the terminal device of the second aspect or the fourth aspect mentioned above, etc.
  • a computer-readable storage medium in an embodiment of the present application, and the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are executed on a computer, the computer executes the method described in the first aspect of the embodiment of the present application and any possible design thereof, or in the second aspect and any possible design thereof, or in the third aspect, or in the fourth aspect.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer.
  • the computer-readable medium may include a non-transient computer-readable medium, a random-access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), a CD-ROM or other optical disk storage, a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM or other optical disk storage a CD-ROM or other optical disk storage
  • disk storage medium or other magnetic storage device or any other medium that can be used to carry or store the desired program code in the form of an instruction or data structure and can be accessed by a computer.
  • an embodiment of the present application provides a computer program product, including computer program codes or instructions.
  • the computer program codes or instructions are run on a computer, the method described in the first aspect or any possible design of the first aspect, or the second aspect or any possible design of the second aspect, or the third aspect, or the fourth aspect is executed.
  • the present application also provides a chip, including a processor, which is coupled to a memory and is used to read and execute program instructions stored in the memory so that the chip implements the method described in the above-mentioned first aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect, or the above-mentioned third aspect, or the above-mentioned fourth aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by the present application.
  • FIG2 is a flow chart of a communication method provided by the present application.
  • FIG3 is a waveform diagram of a first OOK modulation symbol provided by the present application.
  • FIG4 is a schematic diagram of a waveform of a second OOK modulation symbol provided by the present application.
  • FIG5 is a flow chart of another communication method provided by the present application.
  • FIG6 is a schematic diagram of the structure of a communication device provided by the present application.
  • FIG. 7 is a structural diagram of a communication device provided in the present application.
  • the embodiments of the present application provide a communication method and device for achieving optimized transmission with required downlink signal transmission rate and coverage performance.
  • the method and device described in the present application are based on the same technical concept. Since the principles of solving problems by the method and device are similar, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • amplitude shift keying modulation also known as digital amplitude modulation.
  • the simplest form is binary amplitude shift keying (2ASK).
  • 2ASK modulation can be implemented by a multiplier and a switch circuit.
  • the carrier is turned on or off under the control of a digital signal 1 or 0.
  • the digital signal is 1, the carrier with amplitude A is turned on, and at this time, a carrier with amplitude A is sent on the transmission channel;
  • the digital signal is 0, the carrier with amplitude B is turned on, and at this time, a carrier with amplitude B is sent on the transmission channel. Therefore, the receiving end can determine whether the digital signal is 1 or 0 based on the amplitude of the detected carrier.
  • OOK modulation is an on-off amplitude shift keying modulation.
  • OOK is a special case of 2ASK modulation.
  • OOK modulation can be implemented by a multiplier and a switch circuit.
  • the carrier is turned on or off under the control of a digital signal 1 or 0.
  • the digital signal is 1, the carrier is turned on, and a carrier is sent on the transmission channel; when the digital signal is 0, no carrier is turned on, and no carrier is sent on the transmission channel. Therefore, the receiving end can determine whether the digital signal is 1 or 0 by detecting whether there is a carrier.
  • the amplitude (or envelope, level or energy, etc.) with high amplitude is called OOK modulation symbol ⁇ 1 ⁇ , or OOK modulation symbol on (ON), or OOK modulation symbol on;
  • the amplitude (or envelope, level or energy, etc.) with low amplitude is called OOK modulation symbol ⁇ 0 ⁇ , or OOK modulation symbol off (OFF), or OOK modulation symbol off.
  • the amplitude is defined relative to the amplitude demodulation threshold of the receiver. Amplitude greater than the demodulation threshold is called high amplitude, and amplitude less than the demodulation threshold is called low amplitude.
  • the modulation method that controls the frequency change of the carrier with a baseband digital signal is called frequency shift keying modulation.
  • the simplest form is binary frequency shift keying (2FSK).
  • the carrier sends a carrier signal at one of the two frequencies under the control of a digital signal of 1 or 0.
  • the digital signal is 1, the carrier of frequency f1 is connected, and at this time, there is a carrier sent on the f1 transmission channel; when the digital signal is 0, the carrier of frequency f2 is connected, and at this time, there is a carrier sent on the f2 transmission channel. Therefore, the receiving end can compare which channel on the f1 and f2 transmission channels has a carrier to determine whether the digital signal 1 or 0 is sent.
  • the transmitted baseband digital signal is similar to the OOK modulation signal.
  • the signal amplitude (or envelope, level or energy, etc.) of the frequency point f1 is higher than the signal amplitude (or envelope, level or energy, etc.) of the frequency point f2, which is called 2FSK modulation symbol ⁇ 1 ⁇ ; on the contrary, the signal amplitude (or envelope, level or energy, etc.) of the frequency point f1 is lower than the signal amplitude (or envelope, level or energy, etc.) of the frequency point f2, which is called 2FSK modulation symbol ⁇ 1 ⁇ .
  • the amplitude of a single frequency signal is defined relative to the amplitude of another frequency signal. A signal with a larger amplitude than another frequency signal is called a high amplitude, and a signal with a lower amplitude than another frequency signal is called a low amplitude.
  • Coherent demodulation requires the recovery of the coherent carrier, and the use of the coherent carrier and the modulated signal to obtain the original digital baseband signal, where the coherent carrier and the carrier of the digital baseband signal modulated by the transmitter are of the same frequency and phase.
  • Incoherent demodulation does not need to recover the coherent carrier, and the original digital baseband signal is recovered according to the amplitude envelope of the modulated signal.
  • non-coherent demodulation is simpler, but there is a loss in performance.
  • Envelope detection is a signal detection method that uses a high-frequency signal as input and obtains the envelope or amplitude line of the low-frequency original signal through a half-wave or full-wave rectifier circuit.
  • the receiver digitally samples the envelope of the original signal and compares it with the amplitude or energy threshold set by the receiver to determine whether the transmitted signal is 1 or 0, that is, whether the signal is on or off (ON/OFF).
  • This type of amplitude modulation is an effective modulation method that enables envelope detection demodulation without the need for a local high-frequency local oscillator.
  • OOK/ASK has only one modulation channel. Taking OOK/2ASK modulation as an example, the transmitter modulates the 0/1 information bit into two signal amplitudes, such as information bits 0 and 1 are modulated into rectangular square wave signals with amplitudes of 0 and 1, respectively, or signal waveforms close to rectangular or square waves.
  • OOK/ASK modulation has a common problem. Because there is only one real signal channel, the spectrum function of the OOK/ASK modulated signal is conjugate symmetrical about the center 0 frequency, and the power spectrum function is symmetrical about the center 0 frequency axis.
  • the communication principle considers retaining the OOK/ASK baseband signal information while eliminating the upper half sideband or lower half sideband frequency domain signal of the double sideband axisymmetric.
  • the spectrum efficiency of the signal is 100%, and the symbol rate is doubled compared to the double sideband signal.
  • At least one means one or more, and more means two or more.
  • At least one of the following or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or plural.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • "/" means “or", for example, a/b means a or b.
  • the communication method provided in the present application can be applied to various communication systems.
  • the embodiments of the present application can be applied to Internet of Things (IoT) networks, backscatter communication systems (also known as passive communication systems) or semi-passive communication systems.
  • IoT Internet of Things
  • backscatter communication systems also known as passive communication systems
  • semi-passive communication systems can also be applied to other possible communication systems, such as long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, LTE time division duplex (TDD) systems, advanced long term evolution (LTE-A) systems, universal mobile telecommunication systems (UMTS), worldwide interoperability for microwave access (WiMAX) communication systems, fifth generation (5G) communication systems (such as new radio (NR) systems), and future sixth generation (6G) communication systems or other future communication systems or networks.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication
  • FIG1 shows the architecture of a possible communication system to which the communication method provided by the present application is applicable, and the structure of the communication system may include at least one network device and at least one terminal device.
  • the communication system may include two network devices, network device 1 and network device 2, and eight terminal devices, terminal device 1 to terminal device 8.
  • the network device 1 can send information to one or more terminal devices among the terminal devices 1 to 6.
  • Device 1 can send information to one or more terminal devices among terminal devices 7 and terminal devices 8 through network device 2.
  • terminal devices 4 to 6 can also form a sub-communication system, in which terminal device 5 can send information to one or more terminal devices among terminal devices 4 and terminal devices 6.
  • Network device 2, terminal device 7 and terminal device 8 can also form a sub-communication system, in which network device 2 can send information to one or more terminal devices among terminal devices 7 and terminal devices 8.
  • FIG. 1 is only a schematic diagram, and the present application does not specifically limit the type of communication system, and the number and type of devices included in the communication system.
  • the network device can be a device with wireless transceiver function or a chip that can be set in the network device.
  • the network device includes but is not limited to: LTE base station (eNodeB), NR base station (generation node B, gNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, Wi-Fi) system, wireless relay node, wireless backhaul node, transmission point receiving point (transmission and reception point, TRP), transmission point (transmission point, TP), reader, helper, etc., and can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a transmission
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a passive terminal device, a passive IoT terminal device, a semi-passive terminal device, a semi-passive IoT terminal device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid (smart grid), a wireless terminal in transportation safety (transportation safety), a wireless terminal in smart city (smart city), a smart wearable device (smart glasses, smart watches, smart headphones, etc.), a wireless terminal in a smart home (smart home), a terminal
  • the terminal device may be a terminal device that supports reflective communication, such as a tag.
  • the terminal device may also be a chip or chip module (or chip system) that can be set in the above device.
  • the embodiments of the present application do not limit the application scenario.
  • the terminal device with wireless transceiver function and the chip that can be set in the above terminal device are collectively referred to as the terminal device.
  • the downlink signal transmission in IoT only uses a fixed OOK modulation symbol length.
  • the length of the OOK modulation symbol with a fixed granularity makes the terminal devices with different downlink coverage levels can only communicate with one OOK modulation symbol length, and cannot use the symbol granularity of the shorter OOK modulation symbol length for downlink communication. Therefore, for terminal devices with better coverage above a certain coverage level, the length of the OOK modulation symbol with a fixed granularity is always used, which may not achieve the optimal downlink OOK modulation information transmission rate, making the downlink transmission time domain resource allocation inflexible, which may lead to the problem of low downlink transmission efficiency.
  • the embodiment of the present application proposes a communication method that can dynamically adjust the length of the modulation symbol of the downlink transmission, thereby improving the downlink transmission efficiency.
  • the communication method provided in the present application is described in detail using terminal devices and network devices as examples. It should be understood that the operations performed by the terminal device can also be implemented through a processor in the terminal device, or a chip or chip system, or a functional module, etc., and the operations performed by the network device can also be implemented through a processor in the network device, or a chip or chip system, or a functional module, etc., and the present application does not limit this.
  • a communication method provided in an embodiment of the present application is applicable to the communication system shown in Figure 1.
  • the process of the method may include:
  • Step 201 A network device determines a first signal, wherein a modulation symbol length of the first signal may be one of a plurality of modulation symbol lengths.
  • the first signal may be a preamble signal or a signal used for terminal equipment synchronization, or a signal used for terminal equipment time or symbol synchronization, such as a reference signal, a calibration signal, a delimiter signal, etc.
  • the modulation symbol length may also be expressed as symbol length, modulation symbol rate, symbol rate, etc., where the symbol rate or modulation symbol rate is the reciprocal of the symbol length or the modulation symbol length, etc.
  • the modulation symbol in the present application can be an amplitude shift keying modulation symbol or a frequency shift keying modulation symbol, such as an ASK modulation symbol, an OOK modulation symbol, an FSK modulation symbol, a 2FSK modulation symbol, etc.
  • OOK modulation symbols are used as an example, but this is not a limitation of the present application.
  • the multiple modulation symbol lengths may include a first modulation symbol length and a second modulation symbol length, and the second modulation symbol length may be twice the first modulation symbol length.
  • the first modulation symbol length and the second modulation symbol length can be respectively associated with at least one of the following two states: State 1: The downlink signal bandwidth is fixed, and the transmitted signal is a single-sideband modulation signal and a double-sideband modulation signal. State 2: The downlink signal is fixed as a double-sideband modulation signal, and the bandwidth of the transmitted signal is bandwidth (bandwidth, BW) 1 and BW2, where BW1 and BW2 differ by one times.
  • the first OOK modulation symbol length and the second modulation symbol length are twice the second OOK modulation symbol length.
  • the first OOK modulation symbol carries ⁇ 111010111010 ⁇
  • the waveform diagram of the first OOK modulation symbol in the downlink signal can be shown in Figure 3
  • the second OOK modulation symbol carries ⁇ 111010 ⁇
  • the waveform diagram of the second OOK modulation symbol can be shown in Figure 4.
  • the first OOK symbol length is twice the second OOK symbol length
  • the downlink signal can be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) signal.
  • the first OOK modulation symbol length may be equal to the duration length of 1 OFDM symbol, and the second OOK modulation symbol length may be equal to the duration length of 1/2 OFDM symbol; the first OOK modulation symbol length may be equal to the duration length of 1/2 OFDM symbol, and the second OOK modulation symbol length may be equal to the duration length of 1/4 OFDM symbol; the first OOK modulation symbol length may be equal to the duration length of 1/6 OFDM symbol, and the second OOK modulation symbol length may be equal to the duration length of 1/12 OFDM symbol;
  • the first OOK modulation symbol rate is twice the second OOK modulation symbol rate.
  • a downlink signal carries multiple first OOK modulation symbols or second modulation symbols, and the bandwidth of the downlink signal is 1RB, as shown in Figures 3 and 4, if the downlink signal is a signal corresponding to one OFDM symbol, the first OOK modulation symbol rate of the double-sideband modulation signal is 66.7us/6, and the second OOK modulation symbol rate of the single-sideband modulation signal is 66.7us/12.
  • the horizontal axis is time and the vertical axis is amplitude.
  • multiple modulation symbol lengths may be predefined, for example, each modulation symbol length may be defined individually, or may be defined in combination with an MCS table, an MCS index, or an MCS index set indication.
  • an MCS table may be predefined, and the MCS table may indicate a first OOK modulation symbol length and a second OOK modulation symbol length.
  • the MCS table may also indicate state information associated with the OOK modulation symbol length.
  • example a1 may be implemented by the following methods b1 and b2:
  • the MCS table may indicate OOK modulation (such as modulation order) and state information of OOK modulation (such as spectral efficiency).
  • OOK modulation such as modulation order
  • state information of OOK modulation such as spectral efficiency
  • MCS index set 1 may be associated with a first OOK modulation symbol length
  • MCS index set 2 may be associated with a second OOK modulation symbol length.
  • Table 1 an exemplary MCS table may be shown in Table 1:
  • the first OOK modulation symbol length corresponds to a first OOK modulation symbol rate of 90kbps
  • the second OOK modulation symbol length corresponds to a second OOK modulation symbol rate of 180kbps
  • the first modulation symbol length and the second modulation symbol length are not limited to 90kbps and 180kbps.
  • the symbol rates are 15kbps and 30kbps, and the corresponding frequency
  • the spectral efficiency is 0.083 and 0.167.
  • the first modulation symbol length and the second modulation symbol length are not limited to 180kbps and 360kbps.
  • the symbol rate is 30kbps and 60kbps, and the corresponding spectral efficiency is 0.083 and 0.167.
  • the MCS table can indicate the status information such as the line code rate, repetition number, channel coding rate, etc. associated with OOK modulation and OOK modulation symbol length.
  • MCS index set 1 is associated with the first OOK modulation symbol length and one or more of the multiple line code rates, repetition numbers, and channel coding rates associated with the first OOK modulation symbol length
  • MCS index set 2 is associated with the second OOK modulation symbol length and one or more of the multiple line code rates, repetition numbers, and channel coding rates associated with the second OOK modulation symbol length.
  • Table 2 an exemplary MCS table can be shown in Table 2:
  • two MCS tables may be predefined, a first MCS table and a second MCS table, that is, the first MCS table is associated with the first OOK modulation symbol length, and the second MCS table is associated with the second OOK modulation symbol length.
  • each MCS table describes an OOK modulation symbol length, and may also be associated with one or more of a plurality of line code rates, repetition times, and channel coding rates associated with the corresponding OOK modulation symbol length.
  • the MCS table associated with the first OOK modulation symbol length may be as shown in Table 3:
  • the symbol rate at which network devices send downlink signals can be adjusted.
  • the downlink transmission mode of terminal devices under different coverage can be effectively and dynamically adjusted flexibly, achieving optimized transmission while balancing the downlink signal transmission rate and coverage.
  • the network device may determine the modulation symbol length of the first signal according to the coverage level of the terminal device, wherein the coverage level of the terminal device may be recorded as CE0, CE1, CE2, ..., CEx.
  • the coverage level may also be the received power strength of the measurement signal reported by the terminal device, such as reference signal received power (RSRP), reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), etc.
  • RSRP reference signal received power
  • RSS reference signal received quality
  • SINR signal to interference plus noise ratio
  • the network device determines the modulation symbol length of the first signal according to the coverage level of the terminal device.
  • the method may be: when the coverage level of the terminal device is greater than a coverage level threshold (also referred to as a reference coverage level), the network device determines the modulation symbol length of the first signal according to the coverage level of the terminal device.
  • the device determines that the modulation symbol length of the first signal can be the third modulation symbol length; when the coverage level of the terminal device is less than or equal to the coverage level threshold, the network device determines that the modulation symbol length of the first signal can be the fourth modulation symbol length; wherein the fourth modulation symbol length is greater than the third modulation symbol length.
  • a suitable modulation symbol length can be selected based on the coverage level of the terminal device, thereby achieving optimized transmission under the balance of downlink signal transmission rate and coverage while ensuring the transmission performance of the first signal.
  • the fourth modulation symbol length may be the second modulation symbol length
  • the third modulation symbol length may be the first modulation symbol length
  • the network device can send preamble signals with different modulation symbol lengths, or signals for time-frequency synchronization, or broadcast signals, or calibration signals, or reference signals, etc. to terminal devices with different coverage levels.
  • preamble signals with short modulation symbol lengths i.e., high modulation symbol rate
  • preamble signals with short modulation symbol lengths can be sent, which can effectively improve the synchronization efficiency between the terminal device and the network device.
  • Step 202 The network device determines the modulation symbol length of the second signal according to the first signal, where the second signal is a data signal following the first signal.
  • the modulation symbol of the second signal may be an OOK modulation symbol, and details may refer to the above description of the OOK modulation symbol.
  • the modulation symbol length of the second signal is related to the first signal.
  • the modulation symbol length of the second signal is the same as the modulation symbol length of the first signal.
  • the network device determines that in a data transmission, the modulation symbol length of the second signal is the same as the modulation symbol length of the first signal, that is, the network device can determine the modulation symbol length of the second signal based on the modulation symbol length of the first signal. In this way, after the terminal device determines the modulation symbol length of the first signal, it implicitly determines the modulation symbol length of the second signal, which can effectively reduce the information overhead carried by the first signal, reduce the complexity of the terminal device detecting the first signal, and is more conducive to the implementation of the terminal device and the reduction of network device overhead.
  • the first signal may be used to indicate the modulation symbol length of the second signal.
  • the first signal may flexibly adjust the modulation symbol length of the second signal, and under the condition of meeting the communication coverage requirement, the time resource overhead of the second signal sent by the network device may be reduced, thereby achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the first signal may indicate the modulation symbol length of the second signal by the following method:
  • the first signal may carry first indication information, and the modulation symbol length of the second signal may be indicated by the first indication information.
  • the first indication information may include a first MCS index
  • the first MCS index may indicate the modulation symbol length of the second signal
  • the first MCS index may indicate the modulation symbol length of the second signal and one or more of the following associated with the modulation symbol of the second signal: the line code rate, spread spectrum code rate, or channel coding rate associated with the modulation symbol length of the second signal.
  • the modulation symbol length of the second signal can be dynamically determined through the first signal indication.
  • the downlink transmission mode of the terminal device under different coverage can be more effectively and dynamically adjusted flexibly, so as to achieve optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the first MCS index may be any index in Table 1-Table 3 above, and reference may be made to the above description.
  • first MCS index is only an exemplary description and is not intended to be a limitation of the present application. It should be understood that it can also be replaced by other names, such as any name of the modulation symbol length of at least the second signal.
  • the first signal may carry a first sequence, and one of the following information of the first sequence may indicate the modulation symbol length of the second signal: the length of the first sequence, the type of the first sequence, the mask superimposed by the first sequence, or the number of repetitions of the second sequence included in the first sequence, wherein the second sequence is a subsequence of the first sequence.
  • the first signal directly indicates the modulation symbol of the second signal, can flexibly indicate the modulation symbol length of the second signal, and simplifies the signal frame structure design of downlink transmission.
  • first sequences with different generation methods can indicate different modulation symbol lengths of the second signal.
  • first generation method of the first sequence indicates that the modulation symbol length of the second signal is the first modulation symbol length
  • second generation method indicates that the modulation symbol length of the second signal is the second modulation symbol length.
  • a first implementation method of the first sequence may be to use a second sequence (such as a base sequence [S]) as the first sequence, and a second generation method of the first sequence may be to use N repeated second sequence base sequences as the first sequence, such as [S S].
  • N is an integer greater than or equal to 2.
  • a first generation method of the first sequence may be to use a base sequence [S] as the first sequence
  • a second generation method of the first sequence may be to use a sequence consisting of N base sequences and/or base sequence inversion sequences as the first sequence, such as [S S*] or [S*S*], where * is a sequence inversion
  • inverting a base sequence means reversing the 0 and 1 bits in the base sequence to obtain a sequence in which 0 is converted to 1 and 1 is converted to 0.
  • the lengths of the first sequences are different, so the modulation symbol length of the second signal can be indicated by the length of the first sequence.
  • the two ways of generating the first sequence may be to use two different sequences as the first sequence respectively, for example, the first way of generating the first sequence is sequence [S1], and the second way of generating the first sequence is sequence [S2].
  • the modulation symbol length of the second signal can be indicated by different types of first sequences.
  • the method described above in which the first signal indicates the modulation symbol length of the second signal is only an example, and there may be many other ways to generate it, which is not limited in the present application.
  • the network device can determine the modulation symbol length of the third signal based on the first signal, wherein the modulation symbol length of the third signal is the same as the modulation symbol length of the first signal, and the third signal can be used to indicate the modulation symbol length of the second signal; the third signal is a downlink signal after the first signal, and the third signal is a downlink signal before the second signal.
  • the third signal may be a signal carrying downlink control information (DCI).
  • DCI may have a dedicated field, the dedicated field carries the second indication information, and the second indication information is used to indicate the modulation symbol length of the second signal.
  • the third signal may be other specific signals indicating the modulation symbol length of the second signal or the MCS of the second signal.
  • the network device sends a third signal having the same modulation symbol length as the modulation symbol length of the first signal to the terminal device.
  • the third signal may indicate the modulation symbol length of the second signal by the following method: the third signal may carry second indication information, and indicate the modulation symbol length of the second signal by the second indication information.
  • the second indication information may include a second MCS index, which can be used to indicate the modulation symbol length of the second signal, or the second MCS index can be used to indicate the modulation symbol length of the second signal and one or more of the following associated with the modulation symbol length of the second signal: a line code rate, a spread spectrum code rate, or a channel coding rate associated with the modulation symbol length of the second signal.
  • a second MCS index can be used to indicate the modulation symbol length of the second signal
  • the second MCS index can be used to indicate the modulation symbol length of the second signal and one or more of the following associated with the modulation symbol length of the second signal: a line code rate, a spread spectrum code rate, or a channel coding rate associated with the modulation symbol length of the second signal.
  • the second MCS index can be any index in Table 1-Table 3 above, and please refer to the above description.
  • the above-mentioned second MCS index is only an exemplary description and is not intended to be a limitation of the present application. It should be understood that it can also be replaced by other names, such as any name of at least the modulation symbol length of the second signal.
  • the network equipment can dynamically adjust the modulation symbol length of the sent data signal. Because the data signal transmission time involves different coding rates, repetition times, etc., the transmission time may be very long. Therefore, this dynamic adjustment method is conducive to adjusting the time of a data transmission and achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • Step 203 The network device sends the first signal and the second signal to the terminal device.
  • the terminal device receives the first signal and the second signal from the network device.
  • the network device may first send the first signal to the terminal device, and then send the second signal to the terminal device.
  • the network device may also send the first signal and the second signal to the terminal device at the same time, which is not limited in this application.
  • Step 204 The terminal device determines the modulation symbol length of the second signal according to the first signal.
  • the terminal device after receiving the first signal, the terminal device first determines the modulation symbol length of the first signal, and then demodulates the first signal according to the determined modulation symbol length of the first signal.
  • the terminal device when the coverage level of the terminal device is greater than the coverage level threshold, after receiving the first signal, the terminal device can directly determine the boundary of the modulation symbol of the first signal and the modulation symbol length of the first signal based on the periodic rising edge or falling edge of the first signal.
  • the terminal device can perform correlation detection on the received first signal, and determine the boundary of the modulation symbol of the first signal and the modulation symbol length of the first signal based on the maximum correlation value of the correlation detection.
  • the terminal device determines the modulation symbol length of the second signal according to the first signal, it may be specifically determined based on the situations in implementation mode c1, implementation mode c2 or implementation mode c3 described above.
  • the terminal device determines the modulation symbol length of the second signal and the modulation symbol length of the first signal.
  • the terminal device determines the modulation symbol length of the first signal, that is, determines the modulation symbol length of the second signal.
  • the terminal device does not need to re-determine the modulation symbol length of the second signal, and can demodulate the data signal (i.e., the second signal) with the same modulation symbol length, which is conducive to reducing the complexity of demodulating the data signal of the terminal device, and can also reduce the design overhead and complexity of the first signal.
  • the terminal device after receiving the first signal, can determine the modulation symbol length of the second signal according to the indication of the first signal.
  • the first signal indicates the modulation symbol length of the second signal.
  • the terminal device can receive a third signal from the network device, and then determine that the modulation symbol length of the third signal is the same as the modulation symbol length of the first signal. After the terminal device demodulates the third signal according to the modulation symbol length of the first signal, the modulation symbol length of the second signal can be determined according to the indication information in the third signal.
  • the third signal indicates the modulation symbol length of the second signal, please refer to the above description, which will not be described in detail here.
  • Step 205 The terminal device demodulates the second signal according to the modulation symbol length of the second signal.
  • the network device may send a first message to the terminal device, where the first message is used to indicate a modulation symbol length of a downlink signal following the first signal.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific (UE-specific) message, a message 2 (message2, msg2) or a message 4 (messag4, msg4) in a random access process.
  • the first message carries a paging message, a group paging message, a terminal device specific message, a message 2 or a message 4 in a random access process.
  • the first message may be used to carry a paging message but is not limited to downlink common signaling selection (Select), query (Query), repeated query (QueryRep) and other signaling included in the paging message in the passive (Passive) IoT or the ambient (Ambient) IoT.
  • Message 2 or message 4 in the random access process may be, but is not limited to, downlink acknowledgment character (ACK) signaling in the Passive IoT or the ambient (Ambient) IoT.
  • ACK downlink acknowledgment character
  • the downlink signal following the first signal may be, but is not limited to, one or more of a pilot signal, a reference signal, a calibration signal, a signal carrying DCI information, a data signal, etc.
  • the method in which the first message indicates the modulation symbol length of the downlink signal after the first signal is similar to the method in which the first signal indicates the modulation symbol length of the second signal, and they can refer to each other, for example, combined with the method indicated by the MCS table, and will not be described in detail here.
  • the coverage level of the terminal device will be at a stable level in a short period of time.
  • the semi-static indication can be combined with the coverage capability of the terminal device to indicate that all subsequent signals use the same modulation symbol length, thereby saving the signaling overhead of frequently dynamically indicating the modulation symbol length.
  • the length of the modulation symbol of the downlink transmission can be adjusted, thereby realizing flexible adjustment of the modulation symbol length of the downlink signal and achieving optimized transmission under the balance of downlink signal transmission rate and coverage.
  • the embodiment of the present application further provides another communication method.
  • the process of the method may include:
  • Step 501 The network device determines a first message, where the first message is used to indicate a modulation symbol length of a downlink signal following the first message.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific message, a message 2 in a random access process, or a message 4.
  • the first message carries a paging message, a group paging message, a terminal device specific message, a message 2 in a random access process, or a message 4.
  • the paging message may be, but is not limited to, downlink common signaling selection, query repetition query, etc. of the passive IoT.
  • Message 2 or message 4 in the random access process may be, but is not limited to, downlink ACK signaling in the passive IoT.
  • the downlink signal following the first message may be, but is not limited to, one or more of a pilot signal, a reference signal, a calibration signal, a signal carrying DCI information, and a data signal.
  • the modulation symbol length may be one of a plurality of modulation symbol lengths. Specifically, for the description of the plurality of modulation symbol lengths, reference may be made to the relevant description involved in the embodiment shown in FIG2 , which will not be described in detail here.
  • the method in which the first message indicates the modulation symbol length of the downlink signal after the first message is similar to the method in which the first signal indicates the modulation symbol length of the second signal, and they can refer to each other, for example, combined with the method of MCS table indication, and will not be described in detail here.
  • Step 502 The network device sends the first message to the terminal device.
  • Step 503 The terminal device determines the modulation symbol length of the downlink signal after the first message according to the first message.
  • the terminal device can determine that the modulation symbol lengths of all subsequent downlink signals are the same.
  • all subsequent downlink signals can be indicated by the first message to use the same modulation symbol length, thereby saving the signaling overhead of dynamically indicating the modulation symbol length.
  • the embodiments of the present application further provide a communication device, as shown in FIG6 , the communication device 600 may include a transceiver unit 601 and a processing unit 602.
  • the transceiver unit 601 is used for the communication device 600 to receive signals (messages or data) or send information (messages or data), and the processing unit 602 is used to control and manage the actions of the communication device 600.
  • the processing unit 602 may also control the steps performed by the transceiver unit 601.
  • the communication device 600 may specifically be the network device in the above-mentioned embodiments, the processor in the network device, or a chip, or a chip system, or a functional module, etc.; or, the communication device 600 may specifically be the terminal device in the above-mentioned embodiments, the processor in the terminal device, or a chip, or a chip system, or a functional module, etc.
  • the communication device 600 when used to implement the function of the network device in the embodiment described in Figure 2 above, it may include: the processing unit 602 may be used to determine a first signal, and determine the modulation symbol length of the second signal based on the first signal, the modulation symbol length of the first signal may be one of multiple modulation symbol lengths, the first signal is a preamble signal or a signal for synchronization of a terminal device; the second signal is a data signal following the first signal; the modulation symbol of the second signal is an amplitude shift keying modulation symbol or a frequency shift keying modulation symbol; the transceiver unit 601 may be used to send the first signal and the second signal to the terminal device.
  • the processing unit 602 may be used to determine a first signal, and determine the modulation symbol length of the second signal based on the first signal, the modulation symbol length of the first signal may be one of multiple modulation symbol lengths, the first signal is a preamble signal or a signal for synchronization of a terminal device; the second signal
  • the multiple modulation symbol lengths may include a first modulation symbol length and a second modulation symbol length, and the second modulation symbol length may be twice the first modulation symbol length.
  • the processing unit 602 may also be configured to: determine a modulation symbol length of the first signal according to a coverage level of the terminal device before the transceiver unit 601 sends the first signal to the terminal device.
  • the processing unit 602 can be used to: when the coverage level of the terminal device is greater than the coverage level threshold, determine the modulation symbol length of the first signal to be a third modulation symbol length; when the coverage level of the terminal device is less than or equal to the coverage level threshold, determine the modulation symbol length of the first signal to be a fourth modulation symbol length; wherein the fourth modulation symbol length is greater than the third modulation symbol length.
  • the modulation symbol length of the second signal may be the same as the modulation symbol length of the first signal.
  • the first signal may be used to indicate a modulation symbol length of the second signal.
  • the first signal is used to indicate the modulation symbol length of the second signal, which may include: the first signal may carry first indication information, the first indication information includes a first MCS index, the first MCS index indicates the modulation symbol length of the second signal, or the first MCS index indicates the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • the first signal is used to indicate the modulation symbol length of the second signal, which may include: the first signal may carry a first sequence, and one of the following information of the first sequence indicates the modulation symbol length of the second signal: the length of the first sequence, the type of the first sequence, the mask superimposed on the first sequence, or the number of repetitions of the second sequence included in the first sequence, wherein the second sequence is a subsequence of the first sequence.
  • the processing unit 602 when the processing unit 602 determines the modulation symbol length of the second signal according to the first signal, it can be specifically used to determine the modulation symbol length of the third signal according to the first signal, the modulation symbol length of the third signal can be the same as the modulation symbol length of the first signal, and the third signal can be used to indicate the modulation symbol length of the second signal; the third signal is a downlink signal after the first signal, and the third signal is a downlink signal before the second signal; the third signal can be a signal carrying downlink control information DCI, or can be a specific signal used to indicate the modulation symbol length of the second signal, or can be a specific signal used to indicate the MCS of the second signal; the transceiver unit 601 can also be used to send the third signal to the terminal device.
  • the processing unit 602 when the processing unit 602 determines the modulation symbol length of the second signal according to the first signal, it can be specifically used to determine the modulation symbol length of the third signal according to the first signal, the modulation symbol
  • the third signal is used to indicate the modulation symbol length of the second signal, and may include: the third signal carries second indication information, the second indication information includes a second MCS index, the second MCS index indicates the modulation symbol length of the second signal, or the second MCS index indicates the modulation symbol length of the second signal and one or more of the following: a line code rate, a spread spectrum code rate or a channel coding rate associated with the modulation symbol length of the second signal.
  • the transceiver unit 601 may also be configured to send a first message to the terminal device, wherein the first message It can be used to indicate the modulation symbol length of the downlink signal after the first signal.
  • the first message is also used to carry a paging message, a group paging message, or one of message 2 or message 4 in a random access process.
  • the communication device 600 when used to implement the function of the terminal device in the embodiment described in FIG. 2 above, it may include: the transceiver unit 601 may be used to receive a first signal and a second signal from a network device, the modulation symbol length of the first signal is one of a plurality of modulation symbol lengths, and the first signal is a pilot signal or a signal used for synchronization of the terminal device; the processing unit 602 may be used to determine the modulation symbol length of the second signal according to the first signal; and demodulate the second signal according to the modulation symbol length of the second signal.
  • the second signal is a data signal following the first signal; the modulation symbol of the second signal is an amplitude shift keying modulation symbol or a frequency shift keying modulation symbol.
  • the multiple modulation symbol lengths may include a first modulation symbol length and a second modulation symbol length, and the second modulation symbol length may be twice the first modulation symbol length.
  • the modulation symbol length of the second signal may be the same as the modulation symbol length of the first signal.
  • the first signal can be used to indicate the modulation symbol length of the second signal.
  • the first signal is used to indicate the modulation symbol length of the second signal, which may include: the first signal may carry first indication information, the first indication information includes a first MCS index, the first MCS index indicates the modulation symbol length of the second signal, or the first MCS index indicates the modulation symbol length of the second signal and one or more of the following: the line code rate, spread spectrum code rate or channel coding rate associated with the modulation symbol length of the second signal.
  • the first signal may include: the first signal may carry a first sequence, and one of the following information of the first sequence indicates the modulation symbol length of the second signal: the length of the first sequence, the type of the first sequence, the mask superimposed on the first sequence, or the number of repetitions of a second sequence included in the first sequence, wherein the second sequence is a subsequence of the first sequence.
  • the processing unit 602 determines the modulation symbol length of the second signal according to the first signal, it can be specifically used to: control the transceiver unit 601 to receive a third signal from the network device according to the first signal, the modulation symbol length of the third signal can be the same as the modulation symbol length of the first signal, and the third signal can be used to indicate the modulation symbol length of the second signal; the third signal is a downlink signal after the first signal, and the third signal is a downlink signal before the second signal; the third signal is a signal carrying downlink control information DCI, or the third signal is a specific signal for indicating the modulation symbol length of the second signal, or the third signal is a specific signal for indicating the MCS of the second signal.
  • the third signal is used to indicate the modulation symbol length of the second signal, and may include: the third signal may carry second indication information, the second indication information includes a second MCS index, the second MCS index indicates the modulation symbol length of the second signal, or the second MCS index indicates the modulation symbol length of the second signal and one or more of the following: a line code rate, a spread spectrum code rate or a channel coding rate associated with the modulation symbol length of the second signal.
  • the transceiver unit 601 can also be used to receive a first message from the network device, where the first message is used to indicate the modulation symbol length of the downlink signal after the first signal, and the first message is also used to carry a paging message, a group paging message, or one of message 2 or message 4 in a random access process.
  • the communication device 600 when used to implement the function of the network device in the embodiment described in FIG. 4, it may include: the processing unit 602 may be used to determine a first message, and the first message may be used to indicate the modulation symbol length of the downlink signal after the first message.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific message, a message 2 or a message 4 in a random access process.
  • the transceiver unit 601 may be used to send the first message to the terminal device.
  • the communication device 600 when used to implement the functions of the terminal device in the embodiment described in FIG. 4, it may include: the transceiver unit 601 may be used to receive a first message from a network device, and the first message may be used to indicate the modulation symbol length of the downlink signal after the first message.
  • the first message may also be used to carry a paging message, a group paging message, a terminal device specific message, a message 2 or a message 4 in a random access process.
  • the processing unit 602 may be used to determine the modulation symbol length of the downlink signal after the first message according to the first message.
  • each functional unit in the embodiments of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the whole or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for enabling a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • the embodiments of the present application further provide a communication device.
  • the communication device 700 may include a transceiver 701 and a processor 702.
  • the communication device 700 may further include a memory 703.
  • the memory 703 may be disposed inside the communication device 700 or outside the communication device 700.
  • the processor 702 may control the transceiver 701 to receive and send information, messages or data.
  • the processor 702 may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and a NP.
  • the processor 702 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the transceiver 701, the processor 702 and the memory 703 are interconnected.
  • the transceiver 701, the processor 702 and the memory 703 are interconnected via a bus 704;
  • the bus 704 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may be divided into an address bus, a data bus, a control bus and the like.
  • FIG7 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 703 is used to store programs, etc.
  • the program may include a program code, and the program code includes a computer operation instruction.
  • the memory 703 may include a RAM, and may also include a non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 702 executes the application stored in the memory 703 to implement the above functions, thereby realizing the functions of the communication device 700.
  • the communication device 700 may be the network device in the above embodiment; or may be the terminal device in the above embodiment.
  • the transceiver 701 can implement the transceiver operation performed by the network device in the embodiment shown in FIG. 2 or FIG. 5; the processor 702 can implement other operations except the transceiver operation performed by the network device in the embodiment shown in FIG. 2 or FIG. 5.
  • the processor 702 can implement other operations except the transceiver operation performed by the network device in the embodiment shown in FIG. 2 or FIG. 5.
  • the transceiver 701 can implement the transceiver operation performed by the terminal device in the embodiment shown in FIG. 2 or FIG. 5; the processor 702 can implement other operations except the transceiver operation performed by the terminal device in the embodiment shown in FIG. 2 or FIG. 5.
  • the processor 702 can implement other operations except the transceiver operation performed by the terminal device in the embodiment shown in FIG. 2 or FIG. 5.
  • an embodiment of the present application provides a communication system, which may include the terminal device and network device involved in the above embodiments.
  • An embodiment of the present application also provides a computer-readable storage medium, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the method embodiment shown in Figure 2 or Figure 5 above.
  • An embodiment of the present application also provides a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the method embodiment shown in Figure 2 or Figure 5 above.
  • An embodiment of the present application also provides a chip, including a processor, which is coupled to a memory and is used to call a program in the memory so that the chip implements the communication method provided by the method embodiment shown in Figure 2 or Figure 5 above.
  • An embodiment of the present application further provides a chip, which is coupled to a memory and is used to implement the communication method provided by the method embodiment shown in FIG. 2 or FIG. 5 .
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以达到下行信号传输速率和覆盖平衡下的优化传输。网络设备确定第一信号,并根据第一信号确定第二信号的调制符号长度,向终端设备发送第一信号和第二信号,进而终端设备根据第一信号确定第二信号的调制符号长度,并根据第二信号的调制符号长度解调第二信号。其中,第一信号的调制符号长度可以为多个调制符号长度中的一个,第一信号为前导信号或者为用于终端设备进行同步的信号;第二信号为第一信号之后的数据信号;第二信号的调制符号为幅移键控调制符号或频移键控调制符号。通过第一信号关联第二信号的调制符号长度,可以调整下行传输的调制符号的长度,达到下行信号传输速率和覆盖的平衡下的优化传输。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211209168.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着新无线(new radio,NR)接入技术通信机器型通信(machine-type communication,MTC)和物联(internet of things,IoT)通信的应用越来越广泛,IoT设备的连接数在逐日增长。业界对IoT设备的成本和功耗降低的诉求越来越强烈。
在4G时期,3GPP引入了窄带IoT(narrow-band IoT,NB-IoT)系统。但NB-IoT终端还需要整体的外界(电池)供能,并且具有本地高频本振载波的产生能力,因此该类终端设备仅可以到毫瓦级的功耗。而对于5G IoT万物物联的宗旨,能否使能终端设备无需外界一直供能,被动接受外界射频信号作为本地能量供应,或者配合其他能量收割的方式的无源或半无源终端设备供电方式的终端设备接入5G网络并在5G网络中进行有效通信,是当前研究的重点方向,也可以定义为无源物联或者反向散射通信的研究方向。
由于无源物联终端设备或反向通信终端设备的功耗和复杂度的限制,该类终端设备的功耗可能限制在百微瓦(μW)或者小于100μW的目标功耗。在此目标功耗的限制下,该类终端设备很可能不具有产生本地高频本振的能力,即没有产生与发射射频信号对应的本地载波能力,此时该类终端设备对信号的解调可以依靠非相干解调的方法进行。较常用的非相干解调的方法是包络检波(envelope detection)的方式。然而,目前在下行传输中,使能包络检波方式解调的调制符号,可能会导致下行传输效率较低的问题。
发明内容
本申请提供一种通信方法及装置,用以实现下行信号传输速率和覆盖性能达到要求的优化传输。
第一方面,本申请提供了一种通信方法,该方法可以应用于网络设备、网络设备中的一个功能模块、网络设备中的处理器或芯片等。该方法可以包括:网络设备确定第一信号,并根据所述第一信号确定第二信号的调制符号长度,进而向终端设备发送所述第一信号和所述第二信号。其中,所述第一信号的调制符号长度可以为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于所述终端设备进行同步的信号;所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或者频移键控调制符号。
通过上述方法,通过第一信号关联第二信号的调制符号长度,可以调整下行传输的调制符号的长度,实现下行信号的调制符号长度的灵活调整,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述多个调制符号长度包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度为所述第一调制符号长度的2倍。这样可以使得下行信号的速率可调,提升下行传输效率。
在一个可能的设计中,所述网络设备向所述终端设备发送所述第一信号之前,根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度。这样所述网络设备可以确定符合终端设备覆盖等级的调制符号长度,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述网络设备根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度,方法可以:当所述终端设备的覆盖等级大于覆盖等级阈值时,所述网络设备可以确定所述第一信号的调制符号长度为第三调制符号长度;当所述终端设备的覆盖等级小于或等于所述覆盖等级阈值时,所述网络设备可以确定所述第一信号的调制符号长度为第四调制符号长度;其中,所述第四调制符号长度 大于所述第三调制符号长度。这样可以基于终端设备的覆盖等级选择合适的调制符号长度,从而在保证第一信号传输性能的同时,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述第二信号的调制符号长度可以与所述第一信号的调制符号长度相同。这样,可以使终端设备在确定了第一信号的调制符号长度后,不需要再重新判断第二信号的调制符号长度,进而可以以相同的调制符号长度解调数据信号(即第二信号),有利于降低终端设备解调数据信号的复杂度和第一信号的设计开销及复杂度。
在一个可能的设计中,所述第一信号可以用于指示所述第二信号的调制符号长度。这样可以灵活调整第二信号的调制符号的长度,进而保证第二信号传输性能和传输速率的平衡。
在一个可能的设计中,所述第一信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第一信号可以承载第一指示信息,所述第一指示信息可以包括第一调制和编码方案(modulation and coding scheme,MCS)索引,所述第一MCS索引可以指示所述第二信号的调制符号长度,或者,所述第一MCS索引可以指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。这样通过第一信号指示可以动态确定第二信号的调制符号长度,另外结合编码码率,重复次数联合指示的方式时,可以更加有效地动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述第一信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第一信号可以承载第一序列,所述第一序列的以下其中一种信息指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。这样第一信号直接指示第二信号的调制符号,可以灵活地指示第二信号的调制符号长度,且简化下行传输的信号帧结构设计。
在一个可能的设计中,所述网络设备根据所述第一信号确定第二信号的调制符号长度,方法可以为:所述网络设备可以根据所述第一信号确定第三信号的调制符号长度,所述第三信号的调制符号长度可以与所述第一信号的调制符号长度相同,所述第三信号可以用于指示所述第二信号的调制符号长度;所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号为承载下行控制信息(downlink control information,DCI)的信号或者所述第三信号为用于指示所述第二信号调制符号长度的特定信号或者所述第三信号为用于指示所述第二信号MCS的特定信号。所述网络设备还可以向所述终端设备发送所述第三信号。这样网络设备可以动态调整发送数据信号的调制符号长度,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述第三信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第三信号可以承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。这样使用第三信号指示第二信号的调制符号长度,并结合编码码率,重复次数联合指示的方式时,可以有效降低发送第一信号的网络开销和第一信号的设计复杂度,从而降低终端设备检测第一信号的复杂度和功耗。另外单独使用第三信号指示第二信号的调制编码信息,在简单的设计复杂度下,可以携带更多的比特动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖平衡下的优化传输。
在一个可能的设计中,所述网络设备还可以向所述终端设备发送第一消息,所述第一消息可以用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还可以用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。因为寻呼消息以及消息2或消息4等消息对终端设备的覆盖等级水平已经有一定先验信息,短时间内终端设备的覆盖水平会处于稳定的水平,通过半静态指示可以结合终端设备的覆盖能力指示所有的后续信号使用相同的调制符号长度,进而可节约频繁动态指示调制符号长度的信令开销。
第二方面,本申请提供了一种通信方法,该方法可以应用于终端设备、终端设备中的一个功能模块、终端设备中的处理器或芯片等。该方法可以包括:终端设备从网络设备接收第一信号和第二信号,并根据所述第一信号确定所述第二信号的调制符号长度;进而所述终端设备根据所述第二信号的调制符号长度解调所述第二信号。所述第一信号的调制符号长度可以为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于所述终端设备进行同步的信号;所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或者频移键控调制符号。
通过上述方法,通过第一信号关联第二信号的调制符号长度,可以调整下行传输的调制符号的长度,实现下行信号的调制符号长度的灵活调整,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述多个调制符号长度可以包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度可以为所述第一调制符号长度的2倍。这样可以使得下行信号的速率可调,提升下行传输效率。
在一个可能的设计中,所述第二信号的调制符号长度可以与所述第一信号的调制符号长度相同。这样,可以使终端设备在确定了第一信号的调制符号长度后,不需要再重新判断第二信号的调制符号长度,进而可以以相同的调制符号长度解调数据信号(即第二信号),有利于降低终端设备解调数据信号的复杂度和第一信号的设计开销及复杂度。
在一个可能的设计中,所述第一信号可以用于指示所述第二信号的调制符号长度。这样可以动态调整第二信号的调制符号的长度,进而保证第二信号传输性能和传输速率的平衡。
在一个可能的设计中,所述第一信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第一信号可以承载第一指示信息,所述第一指示信息可以包括第一MCS索引,所述第一MCS索引可以指示所述第二信号的调制符号长度,或者,所述第一MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。这样通过第一信号指示可以动态确定第二信号的调制符号长度,另外结合编码码率,重复次数联合指示的方式时,可以更加有效地动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述第一信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第一信号可以承载第一序列,所述第一序列的以下其中一种信息可以指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。这样第一信号直接指示第二信号的调制符号,可以灵活地指示第二信号的调制符号长度,且简化下行传输的信号帧结构设计。
在一个可能的设计中,所述终端设备根据所述第一信号确定所述第二信号的调制符号长度,方法可以为:所述终端设备可以根据所述第一信号从所述网络设备接收第三信号,所述第三信号的调制符号长度可以与所述第一信号的调制符号长度相同,所述第三信号用于指示所述第二信号的调制符号长度;所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号为承载DCI的信号或者所述第三信号为用于指示所述第二信号调制符号长度的特定信号。这样网络设备可以动态调整发送数据信号的调制符号长度,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一个可能的设计中,所述第三信号用于指示所述第二信号的调制符号长度,方法可以包括:所述第三信号可以承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。这样使用第三信号指示第二信号的调制符号长度,并结合编码码率,重复次数联合指示的方式时,可以有效降低发送第一信号的网络开销和第一信号的设计复杂度,从而降低终端设备检测第一信号的复杂度和功耗。另外单独使用第三信号指示第二信号的调制编码信息,在简单的设计复杂度下,可以携带更多的比特动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖平衡下的最优化传输。
在一个可能的设计中,所述终端设备还可以从所述网络设备接收第一消息,所述第一消息可以用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。因为寻呼消息以及消息2或消息4等消息对终端设备的覆盖等级水平已经有一定先验信息,短时间内终端设备的覆盖水平会处于稳定的水平,通过半静态指示可以结合终端设备的覆盖能力指示所有的后续信号使用相同的调制符号长度,进而可节约频繁动态指示调制符号长度的信令开销。
第三方面,本申请提供了一种通信方法,该方法可以应用于网络设备、网络设备中的一个功能模块、网络设备中的处理器或芯片等。该方法可以包括:网络设备确定第一消息,并向终端设备发送所述第一消息,所述第一消息可以用于指示所述第一消息之后的下行信号的调制符号长度。其中,所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。
通过上述方法,可以通过第一消息指示所有的后续下行信号使用相同的调制符号长度,进而可节约动态指示调制符号长度的信令开销。
第四方面,本申请提供了一种通信方法,该方法可以应用于终端设备、终端设备中的一个功能模块、终端设备中的处理器或芯片等。该方法可以包括:终端设备从网络设备接收第一消息,所述第一消息可以用于指示所述第一消息之后的下行信号的调制符号长度。进而,所述终端设备可以根据所述第一消息确定所述第一消息之后的下行信号的调制符号长度。其中,所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。
通过上述方法,可以通过第一消息指示所有的后续下行信号使用相同的调制符号长度,进而可节约动态指示调制符号长度的信令开销。
第五方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中,或者上述第三方面的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中,或者上述第三方面中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中,或者上述第三方面的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第六方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中,或上述第四方面的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中,或上述第四方面中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中,或上述第四方面中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,可以包括上述第一方面或第三方面的网络设备,以及上述第二方面或第四方面的终端设备等。
第八方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中,或上述第三方面,或上述第四方面所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或上述第三方面,或上述第四方面所述的方法被执行。
第十方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面,或者上述第四方面所述的方法。
上述第五方面至第十方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方 面或第一方面中的各种可能方案,或者上述第二方面或第二方面中的各种可能方案,或第三方面中的方案,或第四方面中的方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种通信方法的流程示意图;
图3为本申请提供的一种第一OOK调制符号的波形示意图;
图4为本申请提供的一种第二OOK调制符号的波形示意图;
图5为本申请提供的另一种通信方法的流程示意图;
图6为本申请提供的一种通信装置的结构示意图;
图7为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以实现下行信号传输速率和覆盖性能达到要求的优化传输。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
为便于理解,以下先对本申请实施例涉及的部分用语进行解释说明。
1)幅移键控(amplitude shift keying,ASK)
以基带数字信号控制载波的幅度变化的调制方式称为幅移键控调制,又称数字调幅。最简单的形式是,二进制幅移键控(2ASK)。
示例性地,2ASK调制中可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在数字信号为1的状态下,幅度A的载波接通,此时传输信道上有幅度A的载波发送;在数字信号为0的状态下,幅度B的载波接通,此时传输信道上有幅度B的载波发送。因此,接收端可以根据检测载波的幅度判断数字信号1或0。
2)通断键控(On-Off Keying,OOK)调制
OOK调制是通断幅移键控调制。OOK是2ASK调制的一个特例。
示例性地,OOK调制中可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在数字信号为1的状态下,载波接通,此时传输信道上有载波发送;在数字信号为0的状态下,无载波接通,此时传输信道上无载波发送。因此,接收端可以根据检测有无载波判断数字信号1或0。
将OOK调制应用在新空口(new radio,NR)或者长期演进(long term evolution,LTE)系统中,则幅度(或者说包络、电平或能量等)高(如,高于某个阈值,或者为非0)的称为OOK调制符号{1},或者称为OOK调制符号开(ON),或者称为OOK调制符号通;幅度(或者说包络、电平或能量等)低(如,低于某个阈值,或者为0)的称为OOK调制符号{0},或者称为OOK调制符号关(OFF),或者称为OOK调制符号断。其中,幅度的高低相对于接收机的幅度解调门限去定义的,大于解调门限称为幅度高,低于解调门限称为幅度低。
3)频移键控(frequency shift keying,FSK)调制
以基带数字信号控制载波的频率变化的调制方式称为频移键控调制。最简单的形式是,二进制频移键控(2FSK)。
示例性地,2FSK调制中,载波在数字信号1或0的控制下在2个频点中的1个发送载波信号,在数字信号为1的状态下,频率f1的载波接通,此时f1传输信道上有载波发送;在数字信号为0的状态下,频率f2的载波接通,此时f2传输信道上有载波发送。因此,接收端可以比较f1和f2传输通道上哪一路有载波来判断发送的是数字信号1或0。对于每一个频率的传输通道上,传输的基带数字信号和OOK调制信号类似。
将2FSK调制应用在新空口(new radio,NR)或者长期演进(long term evolution,LTE)系统中,则频点f1信号幅度(或者说包络、电平或能量等)高于频点f2信号幅度(或者说包络、电平或能量等)的称为2FSK调制符号{1};反之频点f1信号幅度(或者说包络、电平或能量等)低于频点f2信号幅度(或 者说包络、电平或能量等)的称为2FSK调制符号{0}。其中,单个频点信号幅度的高低相对于另外一个频点信号幅度的高低比较去定义的,大于另外一个频点信号幅度称为幅度高,低于另外一个频点信号幅度称为幅度低。
4)相干解调和非相干解调
相干解调需要恢复出相干载波,利用相干载波和已调信号作用,得到原始数字基带信号,其中,相干载波与发送端调制数字基带信号的载波是同频同相的。
非相干解调不需要恢复出相干载波,根据已调信号的幅度包络恢复出原始数字基带信号。
因此,相比于相干解调,非相关解调更为简便,但性能有损失。
5)包络检波(envelope detection)
包络检波是以高频信号为输入信号,经过半波或者全波整流电路得到低频原始信号的包络或者幅度线的一种信号检测方法。接收机根据得到的原始信号的包络,将原始信号的包络经过数字采样后,和接收机设置的幅度或者能量门限进行比较,判决发射的信号为1还是0,也就是信号为开还是关(ON/OFF)。
6)双边带OOK/ASK调制信号
这类幅度调制是使能此类无需本地高频本振的包络检波解调的有效的调制方式,OOK/ASK只有一路调制,以OOK/2ASK调制为例,发射机将0/1信息比特调制成两种信号幅度,如信息比特0和1分别调制成幅度0和幅度1的矩形方波信号,或者接近于矩形或者方波的信号波形。但是OOK/ASK调制存在普遍的问题,因为只有一路实信号的原因,OOK/ASK调制信号的频谱函数是关于中心0频共轭对称的,功率谱函数是关于中心0频轴对称的,以OOK/ASK信号符号速率为R为例,信号频域主瓣带宽为2R。所以传统的OOK/ASK调制可称为双边带调制信号,即关于中心轴对称,且有效的频谱效率仅为50%(有效信号带宽/信号实际带宽=R/2R=50%)。
7)单边带OOK/ASK调制信号
通信原理中考虑保留OOK/ASK基带信号信息的同时,消除双边带轴对称的上半边带或者下半边带频域信号。信号的频谱效率为100%,符号速率相比于双边带信号提升一倍。
8)在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。“以下至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的至少一项,可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中,a,b,c可以是单个,也可以是多个。
本申请的描述中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。“/”表示“或”,例如a/b表示a或b。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请提供的通信方法可以应用于各类通信系统中,例如,本申请实施例可以适用于物联网(internet of things,IoT)网络、反向散射通信系统(也称无源通信系统)或半无源通信系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、高级的长期演进(LTE advanced,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统(如新空口(new radio,NR)系统),以及未来的第六代(6th generation,6G)通信系统或未来的其他通信系统或网络等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
示例性的,图1示出了本申请提供的通信方法适用的一种可能的通信系统的架构,该通信系统的结构中可以包括至少一个网络设备和至少一个终端设备。例如,图1所示,该通信系统中可以包括网络设备1和网络设备2两个网络设备,以及终端设备1到终端设备8八个终端设备。
在该通信系统中,网络设备1可以发送信息给终端设备1~终端设备6中的一个或多个终端设备。网络 设备1可以通过网络设备2发送信息给终端设备7和终端设备8中的一个或多个终端设备。此外,终端设备4到终端设备6也可以组成一个子通信系统,在该子通信系统中,终端设备5可以发送信息给终端设备4和终端设备6中的一个或多个终端设备。网络设备2,终端设备7和终端设备8也可以组成一个子通信系统,该子通信系统中,网络设备2可以发送信息给终端设备7和终端设备8中的一个或多个终端设备。应理解,图1仅是一种示意图,本申请并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
其中,网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:LTE的基站(eNodeB),NR的基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点接收点(transmission and reception point,TRP)、传输点(transmission point,TP)、读写器(Reader)、助手(Helper)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。网络设备是基站时,可以是宏基站,也可以微基站,小基站,或者杆站。网络设备可以是支持接收通过反射通信传输的数据的网络设备。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、无源终端设备、无源IoT终端设备、半无源终端设备、半无源IoT终端设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端、机器类通信的终端设备等等。终端设备可以是支持反射通信的终端设备,比如标签。终端设备也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例描述的通信系统的架构以及场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前IoT中下行信号发送仅仅使用一种固定的OOK调制符号长度,固定一种粒度的OOK调制符号的长度使得下行不同覆盖水平的终端设备只能以一种OOK调制符号的长度进行通信,而不能使用更短的OOK调制符号长度的符号粒度进行下行通信,因此对于在一定覆盖水平以上的覆盖较好的终端设备一直使用固定粒度的OOK调制符号的长度,可能达不到下行OOK调制信息传输速率的较优,使得下行传输时域资源分配不灵活,可能会导致下行传输效率较低的问题。基于此,本申请实施例提出一种通信方法,可以动态调整下行传输的调制符号的长度,从而提升下行传输效率。
需要说明的是,在以下的实施例中,以终端设备和网络设备为例对本申请提供的通信方法进行详细说明,应理解终端设备执行的操作也可以通过终端设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等实现,网络设备执行的操作也可以通过网络设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等实现,对本申请对此不作限定。
基于以上描述,本申请实施例提供的一种通信方法,适用于图1所示的通信系统。参阅图2所示,该方法的流程可以包括:
步骤201:网络设备确定第一信号,所述第一信号的调制符号长度可以为多个调制符号长度中的一个。
其中,所述第一信号可以为前导信号(preamble)或者为用于终端设备进行同步的信号,或者为用于终端设备进行时间或符号同步的信号。例如参考信号、校准信号、定界符(delimiter)信号等。
可选的,调制符号长度也可以表述为符号长度、调制符号速率、符号速率等,其中符号速率或调制符号速率为符号长度或调制符号长度的倒数等。
其中,本申请中调制符号可以为幅移键控调制符号或者频移键控调制符号,例如ASK调制符号、OOK调制符号、FSK调制符号、2FSK调制符号等,在以下的举例中以OOK调制符号为例说明,但不作为对本申请的限定。
在一种可选的实施方式中,所述多个调制符号长度可以包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度可以为所述第一调制符号长度的2倍。
作为一种示例,第一调制符号长度和第二调制符号长度分别可以关联以下两种状态中的至少一个:状态1:下行信号带宽固定,发送信号为单边带调制信号和双边带调制信号。状态2:下行信号固定为双边带调制信号,发送信号的带宽为带宽(bandwidth,BW)1和BW2,其中BW1和BW2相差一倍。通过不同的调制符号长度对应到两种状态,状态1下可以节省频域资源,两种长度的调制符号可以使用相同的带宽,状态2下可以节省网络设备复杂度,无需设计特定的(specific)单边带调制信号,用频域带宽调节调制符号长度即可。
以第一调制符号长度和第二调制符号长度为第一OOK调制符号长度和第二OOK调制符号长度为例,第一OOK调制符号长度是第二OOK调制符号长度的2倍。例如,一个下行信号中第一OOK调制符号承载{111010111010},该下行信号中第一OOK调制符号的波形示意图可以如图3所示,第二OOK调制符号承载{111010},第二OOK调制符号的波形示意图可以如图4所示,由此可以知第一OOK符号长度是第二OOK符号长度的2倍,其中该下行信号可为正交频分复用(orthogonal frequency division multiplexing,OFDM)信号。
可选地,第一OOK调制符号长度可以等于1个OFDM符号的持续时间长度,第二OOK调制符号长度可以等于1/2个OFDM符号的持续时间长度;第一OOK调制符号长度可以等于1/2个OFDM符号的持续时间长度,第二OOK调制符号长度可以等于1/4个OFDM符号的持续时间长度;第一OOK调制符号长度可以等于1/6个OFDM符号的持续时间长度,第二OOK调制符号长度可以等于1/12个OFDM符号的持续时间长度;
相应地,也可以理解为第一OOK调制符号速率是第二OOK调制符号速率的2倍。例如,如果一个下行信号承载多个第一OOK调制符号或者第二调制符号,该下行信号的带宽为1RB,则图3和图4所示,如果该下行信号为1个OFDM符号对应的信号,采用双边带调制信号的第一OOK调制符号速率为66.7us/6,单边带调制信号的第二OOK调制符号速率为66.7us/12。
其中,上述图3和图4中,横坐标为时间,纵坐标为幅度。
在一种可选的实施方式中,多个调制符号长度可以是预先定义好的,例如可以单独定义每个调制符号长度,也可以结合MCS表或者MCS索引或者MCS索引集合指示的方式进行定义。
下面,以预先定义第一OOK调制符号长度和第二OOK调制符号长度为例说明。
一种示例a1,可以预先定义一个MCS表格,该MCS表格可以指示第一OOK调制符号长度和第二OOK调制符号长度。可选的,MCS表格还可以指示OOK调制符号长度关联的状态信息。例如,示例a1可以通过以下方式b1和方式b2实现:
方式b1:MCS表格可以指示OOK调制(如调制阶数)以及OOK调制的状态信息(如频谱效率),如MCS索引集合1可以关联第一OOK调制符号长度,MCS索引集合2可以关联第二OOK调制符号长度,例如,一种示例性的MCS表格可以如表1所示:
表1
由表1可知,当下行信号的子载波间隔为15kHz的条件下,第一OOK调制符号长度对应第一OOK调制符号速率90kbps,第二OOK调制符号长度对应第二OOK调制符号速率180kbps;当下行信号的子载波间隔为30kHz的条件下,第一OOK调制符号长度对应第一OOK调制符号速率180kbps,第二OOK调制符号长度对应第二OOK调制符号速率360kbps。这里在子载波间隔为15kHz的条件下,第一调制符号长度和第二调制符号长度不限定为90kbps和180kbps,比如上述第一调制符号长度和第二调制符号长度分别为1个OFDM符号的持续时间和1/2个OFDM符号的持续时间时,符号速率为15kbps和30kbps,对应的频 谱效率为0.083和0.167。在子载波间隔为30kHz的条件下,第一调制符号长度和第二调制符号长度不限定为180kbps和360kbps,比如上述第一调制符号长度和第二调制符号长度分别为1个OFDM符号的持续时间和1/2个OFDM符号的持续时间时,符号速率为30kbps和60kbps,对应的频谱效率为0.083和0.167。
方式b2:MCS表格可以指示OOK调制以及OOK调制符号长度关联的线路码码率(line code rate)、重复次数(repetition number)、信道编码码率等状态信息。如MCS索引集合1关联第一OOK调制符号长度及第一OOK调制符号长度关联的多个线路码码率、重复次数、信道编码码率的一种或者多种,MCS索引集合2关联第二OOK调制符号长度及第二OOK调制符号长度关联的多个线路码码率、重复次数、信道编码码率的一种或者多种。例如,一种示例性的MCS表格可以如表2所示:
表2
一种示例a2,可以预先定义两个MCS表格,第一MCS表格和第二MCS表格,即第一MCS表格关联第一OOK调制符号长度,第二MCS表格关联第二OOK调制符号长度,此时每个MCS表格描述一种OOK调制符号长度,还可以关联对应的OOK调制符号长度关联的多个线路码码率,重复次数,信道编码码率的一种或者多种。例如,与第一OOK调制符号长度关联的MCS表格可以如表3所示:
表3
通过定义不同的OOK调制符号长度,使得网络设备发送下行信号的符号速率可调,另外结合编码码率,重复次数联合指示的方式,可以有效地动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖的平衡下的优化传输。
在一种可选的实施方式中,网络设备可以根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度。其中,终端设备的覆盖等级可以记为CE0,CE1,CE2,……,CEx。
示例性的,覆盖等级也可以为终端设备上报的测量信号的接收功率强度,例如参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、信号噪声干扰比(signal to interference plus noise ratio,SINR)等。
一种可能的设计中,所述网络设备根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度,方法可以为:当所述终端设备的覆盖等级大于覆盖等级阈值(也可以称为参考覆盖等级)时,所述网络 设备确定所述第一信号的调制符号长度可以为第三调制符号长度;当所述终端设备的覆盖等级小于或等于所述覆盖等级阈值时,所述网络设备确定所述第一信号的调制符号长度可以为第四调制符号长度;其中,所述第四调制符号长度大于所述第三调制符号长度。这样可以基于终端设备的覆盖等级选择合适的调制符号长度,从而在保证第一信号传输性能的同时,达到下行信号传输速率和覆盖的平衡下的优化传输。
可选的,所述第四调制符号长度可以为上述第二调制符号长度,所述第三调制符号长度可以为上述第一调制符号长度。
可选的,网络设备可以针对不同覆盖等级的终端设备发送不同调制符号长度的前导信号或者用于时频同步的信号或者广播信号或者校准信号或者参考信号等,通过上述方法,对于覆盖性能较好的终端设备,可以发送调制符号长度短(即调制符号速率高)的前导信号,可以有效的提升终端设备和网络设备之间的同步效率。
步骤202:所述网络设备根据所述第一信号确定第二信号的调制符号长度,所述第二信号为所述第一信号之后的数据信号。所述第二信号的调制符号可以为OOK调制符号,具体可以参见上述对OOK调制符号的描述。
可以理解为,所述第二信号的调制符号长度与所述第一信号相关。
在一种可选的实施方式c1中,所述第二信号的调制符号长度与所述第一信号的调制符号长度相同。
在该实施方式c1中,网络设备确定一次数据传输中,第二信号的调制符号长度与所述第一信号的调制符号长度相同,也即所述网络设备可以基于所述第一信号的调制符号长度确定所述第二信号的调制符号长度。这种方式中,终端设备在确定第一信号的调制符号长度之后,就隐式地确定了第二信号的调制符号长度,可以有效地降低第一信号携带的信息开销,降低终端设备检测第一信号的复杂度,更有利于终端设备实现,和网络设备开销的降低。
在一种可选的实施方式c2中,所述第一信号可以用于指示所述第二信号的调制符号长度。这种指示的方式中,第一信号可灵活地调整第二信号的调制符号长度,在达到通信覆盖的要求下,可能会降低网络设备发送的第二信号时间资源开销,达到下行信号传输速率和覆盖的平衡下的优化传输。
示例性的,所述第一信号可以通过如下方法指示所述第二信号的调制符号长度:
方法d1:所述第一信号可以承载第一指示信息,通过所述第一指示信息来指示所述第二信号的调制符号长度。
例如,所述第一指示信息可以包括第一MCS索引,所述第一MCS索引可以指示所述第二信号的调制符号长度,或者,所述第一MCS索引可以指示所述第二信号的调制符号长度以及第二信号的调制符号关联的以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。这样通过第一信号指示可以动态确定第二信号的调制符号长度,另外结合编码码率,重复次数联合指示的方式时,可以更加有效地动态灵活地调整不同覆盖下终端设备的下行传输方式,达到下行信号传输速率和覆盖的平衡下的优化传输。
可选的,所述第一MCS索引可以是上述表1-表3中的任一索引,可以参见上述描述。
需要说明的是,上述第一MCS索引仅是示例性描述,不作为对本申请的限定,应理解也可以通过其它名称替换,例如可以至少所述第二信号的调制符号长度的任意名称。
方法d2:所述第一信号可以承载第一序列,所述第一序列的以下其中一种信息可以指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。这样第一信号直接指示第二信号的调制符号,可以灵活地指示第二信号的调制符号长度,且简化下行传输的信号帧结构设计。
例如,第一序列有多种生成方式,不同生成方式的第一序列可以指示第二信号的不同调制符号长度,以第一序列有两种可能的生成方式为例说明,例如第一序列的第一种生成方式指示第二信号的调制符号长度为第一调制符号长度,第二种生成方式指示第二信号的调制符号长度为第二调制符号长度。
一种可能的示例中,所述第一序列的第一种实现方式可以为将第二序列(如基序列[S])作为第一序列,第一序列的第二种生成方式可以为将N个重复的第二序列基序列作为第一序列,如[S S]。这两种第一序列的生成方式中,第一序列中包括的第二序列的重复次数不同,因此可以通过所述第一序列中包括的第二序列的重复次数来指示所述第二信号的调制符号长度。N为大于或者等于2的整数。
另一种可能的示例中,第一序列的第一种生成方式可以为将基序列[S]作为第一序列,第一序列的第二种生成方式可以为将N个基序列和/或基序列取反序列组成的序列作为所述第一序列,如[S S*]或者[S*S*],其中*为序列取反,对基序列取反序列是指对基序列中的0和1比特反转,得到0转换成1,1转换成0的序列。这两种第一序列的实现方式中,第一序列的长度不同,因此可以通过第一序列的长度来指示所述第二信号的调制符号长度。
又一种可能的示例中,第一序列的两种生成方式可以是分别将两个不同序列作为所述第一序列,例如,第一序列的第一种生成方式为序列[S1],第二种生成方式为序列[S2]。这样可以通过不同种类的第一序列来指示所述第二信号的调制符号长度。
应理解,上述介绍的第一信号指示第二信号的调制符号长度的方法仅为示例,还可以有其它多种方式生成,本申请对此不作限定。
在一种可选的实施方式c3中,网络设备可以根据所述第一信号确定第三信号的调制符号长度,其中所述第三信号的调制符号长度与所述第一信号的调制符号长度相同,所述第三信号可以用于指示所述第二信号的调制符号长度;所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号。
可选的,所述第三信号可以为承载下行控制信息(downlink control information,DCI)的信号。其中,DCI中可以有一个专有的字段,专有的字段承载第二指示信息,第二指示信息用于指示第二信号的调制符号长度。或者第三信号可以为其他指示第二信号调制符号长度或者第二信号MCS的特定信号。
在该实施方式c3中,网络设备向终端设备发送与第一信号的调制符号长度相同的调制符号长度的第三信号。
示例性的,所述第三信号可以通过如下方法指示所述第二信号的调制符号长度:所述第三信号可以承载第二指示信息,通过所述第二指示信息来指示所述第二信号的调制符号长度。
例如,所述第二指示信息可以包括第二MCS索引,所述第二MCS索引可以用于指示所述第二信号的调制符号长度,或者,所述第二MCS索引可以用于指示所述第二信号的调制符号长度以及所述第二信号的调制符号长度关联的以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。
可选的,所述第二MCS索引可以是上述表1-表3中的任一索引,可以参见上述描述。
需要说明的是,上述第二MCS索引仅是示例性描述,不作为对本申请的限定,应理解也可以通过其它名称替换,例如可以至少所述第二信号的调制符号长度的任意名称。
通过该实施方式c3的方法,针对处于不同覆盖等级的终端设备,网络设备可以动态调整发送数据信号的调制符号长度,因为数据信号传输时间涉及到不同的编码码率,重复次数等,可能传输的时间很长,因此这种动态调整的方式有利于调整一次数据传输的时间,达到下行信号传输速率和覆盖的平衡下的优化传输。
步骤203:所述网络设备向所述终端设备发送所述第一信号和所述第二信号。相应地,所述终端设备从所述网络设备接收所述第一信号和所述第二信号。
可选的,所述网络设备可以先向所述终端设备发送所述第一信号,再向所述终端设备发送所述第二信号。或者,所述网络设备也可以同时向所述终端设备发送所述第一信号和所述第二信号,本申请对此不作限定。
步骤204:所述终端设备根据所述第一信号确定所述第二信号的调制符号长度。
在一种可选的实施方式中,所述终端设备在接收到所述第一信号后,先确定所述第一信号的调制符号长度,进而根据确定的所述第一信号的调制符号长度解调所述第一信号。
一种可能的示例中,在所述终端设备的覆盖等级大于覆盖等级阈值的情况下,所述终端设备接收到所述第一信号后,可以直接根据所述第一信号的周期性的上升沿或者下降沿确定所述第一信号的调制符号的边界以及所述第一信号的调制符号长度。
在另一种可能的示例中,在所述终端设备的覆盖等级小于或者等于覆盖等级阈值的情况下,所述终端设备可以对接收到所述第一信号进行信号的相关检测,根据相关检测的最大相关值判断第一信号的调制符号的边界以及第一信号的调制符号长度。
可选的,所述终端设备根据所述第一信号确定所述第二信号的调制符号长度时,可以基于上述描述的实施方式c1、实施方式c2或实施方式c3中的情况具体确定。
例如,在上述实施方式c1中,终端设备确定第二信号的调制符号长度与所述第一信号的调制符号长度。在这种实施方式下,终端设备在确定了第一信号的调制符号长度后,即确定了第二信号的调制符号长度,可以使终端设备不需要再重新判断第二信号的调制符号长度,进而可以以相同的调制符号长度解调数据信号(即第二信号),有利于降低终端设备解调数据信号的复杂度,同时可以降低第一信号的设计开销及复杂度。
又例如,在上述实施方式c2中,终端设备在接收到第一信号后,即可以根据所述第一信号的指示确定所述第二信号的调制符号长度。第一信号如何指示所述第二信号的调制符号长度具体可以参见上述描述,此处不再详细介绍。
又例如,在上述实施方式c3中,终端设备可以从网络设备接收第三信号,进而确定所述第三信号的调制符号长度与所述第一信号的调制符号长度相同,终端设备按照第一信号的调制符号长度解调出第三信号后,根据所述第三信号中的指示信息可以确定所述第二信号的调制符号长度。第三信号如何指示所述第二信号的调制符号长度具体可以参见上述描述,此处不再详细介绍。
步骤205:所述终端设备根据所述第二信号的调制符号长度解调所述第二信号。
在一种可选的实施方式中,所述网络设备可以向所述终端设备发送第一消息,所述第一消息用于指示所述第一信号之后的下行信号的调制符号长度。
示例性的,所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定(UE-specific)消息、随机接入过程中的消息2(message2,msg2)或者消息4(messag4,msg4)中的一个。或者,可以理解为所述第一消息为承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。
示例性的,第一消息可以用于承载寻呼消息但不限于为被动(Passive)IoT或者环境(Ambient)IoT中寻呼消息中包括的下行公共信令选择(Select)、查询(Query)、重复查询(QueryRep)等信令。随机接入过程中的消息2或者消息4可以但不限于为Passive IoT或Ambient IoT中的下行确认(acknowledgement character,ACK)信令。
可选的,所述第一信号之后的下行信号可以但不限于为前导信号、参考信号、校准信号、承载DCI信息的信号、数据信号等中的一种或者多种。
其中,第一消息指示所述第一信号之后的下行信号的调制符号长度的方法,与上述第一信号指示第二信号的调制符号长度的方法类似,可以相互参见,例如结合MCS表格指示的方法,此处不再详细描述。
通过上述方法,因为寻呼消息以及消息2或消息4等消息对终端设备的覆盖等级水平已经有一定先验信息,短时间内终端设备的覆盖水平会处于稳定的水平,通过半静态指示可以结合终端设备的覆盖能力指示所有的后续信号使用相同的调制符号长度,进而可节约频繁动态指示调制符号长度的信令开销。
基于上述通信方法,通过第一信号关联第二信号的调制符号长度,可以调整下行传输的调制符号的长度,实现下行信号的调制符号长度的灵活调整,达到下行信号传输速率和覆盖的平衡下的优化传输。
基于上述描述,本申请实施例还提供了另一种通信方法,参阅图5所示,该方法的流程可以包括:
步骤501:网络设备确定第一消息,所述第一消息用于指示所述第一消息之后的下行信号的调制符号长度。
示例性的,所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。或者,可以理解为所述第一消息为承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。
示例性的,寻呼消息可以但不限于为无源IoT的下行公共信令选择、查询重复查询等信令。随机接入过程中的消息2或者消息4可以但不限于为无源IoT中的下行ACK信令。
可选的,所述第一消息之后的下行信号可以但不限于为前导信号、参考信号、校准信号、承载DCI信息的信号、数据信号中的一种或者多种。
在一种可选的实施方式中,该调制符号长度可以是多个调制符号长度中的一个。具体的,针对多个调制符号长度的描述可以参见图2所示的实施例中涉及的相关描述,此处不再详细介绍。
其中,第一消息指示所述第一消息之后的下行信号的调制符号长度的方法,与上述第一信号指示第二信号的调制符号长度的方法类似,可以相互参见,例如结合MCS表格指示的方法,此处不再详细描述。
步骤502:所述网络设备向终端设备发送所述第一消息。
步骤503:所述终端设备根据所述第一消息确定所述第一消息之后的下行信号的调制符号长度。
这样,所述终端设备可以确定后续的所有下行信号的调制符号长度相同。
通过上述方法,可以通过第一消息指示所有的后续下行信号使用相同的调制符号长度,进而可节约动态指示调制符号长度的信令开销。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图6所示,通信装置600可以包括收发单元601和处理单元602。其中,所述收发单元601用于所述通信装置600接收信号(消息或数据)或发送信息(消息或数据),所述处理单元602用于对所述通信装置600的动作进行控制管理。所述处理单元602还可以控制所述收发单元601执行的步骤。
示例性地,该通信装置600具体可以是上述实施例中的网络设备、所述网络设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置600具体可以是上述实施例中的终端设备、所述终端设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置600用于实现上述图2所述的实施例中网络设备的功能时,可以包括:所述处理单元602可以用于确定第一信号,以及根据所述第一信号确定所述第二信号的调制符号长度,所述第一信号的调制符号长度可以为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于终端设备进行同步的信号;所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或者频移键控调制符号;所述收发单元601可以用于向所述终端设备发送所述第一信号和所述第二信号。
在一种可选的实施方式中,所述多个调制符号长度可以包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度可以为所述第一调制符号长度的2倍。
示例性的,所述处理单元602还可以用于:在所述收发单元601向所述终端设备发送所述第一信号之前,根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度。
可选的,所述处理单元602在根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度时,可以用于:当所述终端设备的覆盖等级大于覆盖等级阈值时,确定所述第一信号的调制符号长度为第三调制符号长度;当所述终端设备的覆盖等级小于或等于所述覆盖等级阈值时,确定所述第一信号的调制符号长度为第四调制符号长度;其中,所述第四调制符号长度大于所述第三调制符号长度。
在一种示例中,所述第二信号的调制符号长度可以与所述第一信号的调制符号长度相同。
在另一种示例中,所述第一信号可以用于指示所述第二信号的调制符号长度。
一种可能的方式中,所述第一信号用于指示所述第二信号的调制符号长度,可以包括:所述第一信号可以承载第一指示信息,所述第一指示信息包括第一MCS索引,所述第一MCS索引指示所述第二信号的调制符号长度,或者,所述第一MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。
另一种可能的方式中,所述第一信号用于指示所述第二信号的调制符号长度,可以包括:所述第一信号可以承载第一序列,所述第一序列的以下其中一种信息指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。
又一种示例中,所述处理单元602在根据所述第一信号确定第二信号的调制符号长度时,具体可以用于根据所述第一信号确定第三信号的调制符号长度,所述第三信号的调制符号长度可以与所述第一信号的调制符号长度相同,所述第三信号可以用于指示所述第二信号的调制符号长度;所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号可以为承载下行控制信息DCI的信号或者可以为用于指示所述第二信号调制符号长度的特定信号或者可以为用于指示所述第二信号MCS的特定信号;所述收发单元601还可以用于向所述终端设备发送所述第三信号。
可选的,所述第三信号用于指示所述第二信号的调制符号长度,可以包括:所述第三信号承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。
作为一种可能的示例,所述收发单元601还可以用于向所述终端设备发送第一消息,所述第一消息 可以用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。
在一个实施例中,所述通信装置600用于实现上述图2所述的实施例中终端设备的功能时,可以包括:所述收发单元601可以用于从网络设备接收第一信号和第二信号,所述第一信号的调制符号长度为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于所述终端设备进行同步的信号;所述处理单元602可以用于根据所述第一信号确定所述第二信号的调制符号长度;并根据所述第二信号的调制符号长度解调所述第二信号。所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或者频移键控调制符号。
可选的,所述多个调制符号长度可以包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度可以为所述第一调制符号长度的2倍。
一种示例中,所述第二信号的调制符号长度可以与所述第一信号的调制符号长度相同。
另一种示例中,所述第一信号可以用于指示所述第二信号的调制符号长度。
一种可能的方式中,所述第一信号用于指示所述第二信号的调制符号长度,可以包括:所述第一信号可以承载第一指示信息,所述第一指示信息包括第一MCS索引,所述第一MCS索引指示所述第二信号的调制符号长度,或者,所述第一MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。
另一种可能的方式,所述第一信号用于指示所述第二信号的调制符号长度,可以包括:所述第一信号可以承载第一序列,所述第一序列的以下其中一种信息指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。
又一种示例中,所述处理单元602在根据所述第一信号确定所述第二信号的调制符号长度时,具体可以用于:根据所述第一信号控制所述收发单元601从所述网络设备接收第三信号,所述第三信号的调制符号长度可以与所述第一信号的调制符号长度相同,所述第三信号可以用于指示所述第二信号的调制符号长度;所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号为承载下行控制信息DCI的信号或者所述第三信号为用于指示所述第二信号调制符号长度的特定信号或者所述第三信号为用于指示所述第二信号MCS的特定信号。
可选的,所述第三信号用于指示所述第二信号的调制符号长度,可以包括:所述第三信号可以承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。
作为一种可能的示例,所述收发单元601还可以用于从所述网络设备接收第一消息,所述第一消息用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。
在一个实施例中,所述通信装置600用于实现上述图4所述的实施例中网络设备的功能时,可以包括:所述处理单元602可以用于确定第一消息,所述第一消息可以用于指示所述第一消息之后的下行信号的调制符号长度。所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。所述收发单元601可以用于向所述终端设备发送所述第一消息。
在一个实施例中,所述通信装置600用于实现上述图4所述的实施例中终端设备的功能时,可以包括:所述收发单元601可以用于从网络设备接收第一消息,所述第一消息可以用于指示所述第一消息之后的下行信号的调制符号长度。所述第一消息还可以用于承载寻呼消息、组寻呼消息、终端设备特定消息、随机接入过程中的消息2或者消息4中的一个。所述处理单元602可以用于根据所述第一消息确定所述第一消息之后的下行信号的调制符号长度。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部 分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图7所示,通信装置700可以包括收发器701和处理器702。可选的,所述通信装置700中还可以包括存储器703。其中,所述存储器703可以设置于所述通信装置700内部,还可以设置于所述通信装置700外部。其中,所述处理器702可以控制所述收发器701接收和发送信息、消息或数据等。
具体地,所述处理器702可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器701、所述处理器702和所述存储器703之间相互连接。可选的,所述收发器701、所述处理器702和所述存储器703通过总线704相互连接;所述总线704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器703,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器703可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器702执行所述存储器703所存放的应用程序,实现上述功能,从而实现通信装置700的功能。
示例性地,该通信装置700可以是上述实施例中的网络设备;还可以是上述实施例中的终端设备。
在一个实施例中,所述通信装置700在实现图2或图5所示的实施例中网络设备的功能时,收发器701可以实现图2或图5所示的实施例中的由网络设备执行的收发操作;处理器702可以实现图2或图5所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2或图5所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置700在实现图2或图5所示的实施例中终端设备的功能时,收发器701可以实现图2或图5所示的实施例中的由终端设备执行的收发操作;处理器702可以实现图2或图5所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2或图5所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述图2或图5所示的方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述图2或图5所示的方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述图2或图5所示的方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述图2或图5所示的方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述 的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种通信方法,其特征在于,包括:
    网络设备确定第一信号,所述第一信号的调制符号长度为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于终端设备进行同步的信号;
    所述网络设备根据所述第一信号确定第二信号的调制符号长度,所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或频移键控调制符号;
    所述网络设备向所述终端设备发送所述第一信号和所述第二信号。
  2. 如权利要求1所述的方法,其特征在于,所述多个调制符号长度包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度为所述第一调制符号长度的2倍。
  3. 如权利要求1或2所述的方法,其特征在于,所述网络设备向所述终端设备发送所述第一信号之前,所述方法还包括:
    所述网络设备根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度。
  4. 如权利要求3所述的方法,其特征在于,所述网络设备根据所述终端设备的覆盖等级确定所述第一信号的调制符号长度,包括:
    当所述终端设备的覆盖等级大于覆盖等级阈值时,所述网络设备确定所述第一信号的调制符号长度为第三调制符号长度;
    当所述终端设备的覆盖等级小于或等于所述覆盖等级阈值时,所述网络设备确定所述第一信号的调制符号长度为第四调制符号长度;
    其中,所述第四调制符号长度大于所述第三调制符号长度。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第二信号的调制符号长度与所述第一信号的调制符号长度相同。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度。
  7. 如权利要求6所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度,包括:
    所述第一信号承载第一指示信息,所述第一指示信息包括第一MCS索引,所述第一MCS索引指示所述第二信号的调制符号长度,或者,所述第一MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。
  8. 如权利要求6所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度,包括:
    所述第一信号承载第一序列,所述第一序列的以下其中一种信息指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。
  9. 如权利要求1-4任一项所述的方法,其特征在于,所述网络设备根据所述第一信号确定第二信号的调制符号长度,包括:
    所述网络设备根据所述第一信号确定第三信号的调制符号长度,所述第三信号的调制符号长度与所述第一信号的调制符号长度相同,所述第三信号用于指示所述第二信号的调制符号长度;
    所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号为承载下行控制信息DCI的信号;
    所述方法还包括:
    所述网络设备向所述终端设备发送所述第三信号。
  10. 如权利要求9所述的方法,其特征在于,所述第三信号用于指示所述第二信号的调制符号长度,包括:
    所述第三信号承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一消息,所述第一消息用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。
  12. 一种通信方法,其特征在于,包括:
    终端设备从网络设备接收第一信号和第二信号,所述第一信号的调制符号长度为多个调制符号长度中的一个,所述第一信号为前导信号或者为用于所述终端设备进行同步的信号;
    所述终端设备根据所述第一信号确定所述第二信号的调制符号长度;所述第二信号为所述第一信号之后的数据信号;所述第二信号的调制符号为幅移键控调制符号或频移键控调制符号;
    所述终端设备根据所述第二信号的调制符号长度解调所述第二信号。
  13. 如权利要求12所述的方法,其特征在于,所述多个调制符号长度包括第一调制符号长度和第二调制符号长度,所述第二调制符号长度为所述第一调制符号长度的2倍。
  14. 如权利要求12或13所述的方法,其特征在于,所述第二信号的调制符号长度与所述第一信号的调制符号长度相同。
  15. 如权利要求12或13所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度。
  16. 如权利要求15所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度,包括:
    所述第一信号承载第一指示信息,所述第一指示信息包括第一MCS索引,所述第一MCS索引指示所述第二信号的调制符号长度,或者,所述第一MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或者信道编码码率。
  17. 如权利要求15所述的方法,其特征在于,所述第一信号用于指示所述第二信号的调制符号长度,包括:
    所述第一信号承载第一序列,所述第一序列的以下其中一种信息指示所述第二信号的调制符号长度:所述第一序列的长度、所述第一序列的种类、所述第一序列叠加的掩码或者所述第一序列中包括的第二序列的重复次数,其中所述第二序列为所述第一序列的子序列。
  18. 如权利要求12或13所述的方法,其特征在于,所述终端设备根据所述第一信号确定所述第二信号的调制符号长度,包括:
    所述终端设备根据所述第一信号从所述网络设备接收第三信号,所述第三信号的调制符号长度与所述第一信号的调制符号长度相同,所述第三信号用于指示所述第二信号的调制符号长度;
    所述第三信号为所述第一信号之后的下行信号,且所述第三信号为所述第二信号之前的下行信号;所述第三信号为承载下行控制信息DCI的信号。
  19. 如权利要求18所述的方法,其特征在于,所述第三信号用于指示所述第二信号的调制符号长度,包括:
    所述第三信号承载第二指示信息,所述第二指示信息包括第二MCS索引,所述第二MCS索引指示所述第二信号的调制符号长度,或者,所述第二MCS索引指示所述第二信号的调制符号长度以及以下一项或多项:所述第二信号的调制符号长度关联的线路码码率、扩频码码率或信道编码码率。
  20. 如权利要求12-19任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第一消息,所述第一消息用于指示所述第一信号之后的下行信号的调制符号长度,所述第一消息还用于承载寻呼消息、组寻呼消息、随机接入过程中的消息2或者消息4中的一个。
  21. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器用于接收和发送信息;
    所述处理器与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-11任一项所述的方法。
  22. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求12-20任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-11中任一项所述的方法,或者执行如权利要求12-20中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-11中任一项所述的方法,或如权利要求12-20中任一项所述的方法被执行。
  25. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-11中任一项所述的方法,或者实现如述权利要求12-20中任一项所述的方法。
PCT/CN2023/119308 2022-09-30 2023-09-18 一种通信方法及装置 WO2024067191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211209168.4 2022-09-30
CN202211209168.4A CN117811695A (zh) 2022-09-30 2022-09-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024067191A1 true WO2024067191A1 (zh) 2024-04-04

Family

ID=90428593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119308 WO2024067191A1 (zh) 2022-09-30 2023-09-18 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117811695A (zh)
WO (1) WO2024067191A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999421A (zh) * 2011-12-16 2014-08-20 三星电子株式会社 用于在无线通信系统中传送信号的装置和方法
CN105812107A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 Ofdma系统中数据包处理方法及装置
WO2018108906A1 (en) * 2016-12-15 2018-06-21 Alcatel Lucent Combining different ofdm numerologies in one band
CN109981241A (zh) * 2015-04-29 2019-07-05 上海朗帛通信技术有限公司 一种下行多用户叠加的传输方法和装置
WO2021213553A2 (zh) * 2020-04-20 2021-10-28 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999421A (zh) * 2011-12-16 2014-08-20 三星电子株式会社 用于在无线通信系统中传送信号的装置和方法
CN105812107A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 Ofdma系统中数据包处理方法及装置
CN109981241A (zh) * 2015-04-29 2019-07-05 上海朗帛通信技术有限公司 一种下行多用户叠加的传输方法和装置
WO2018108906A1 (en) * 2016-12-15 2018-06-21 Alcatel Lucent Combining different ofdm numerologies in one band
WO2021213553A2 (zh) * 2020-04-20 2021-10-28 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Also Published As

Publication number Publication date
CN117811695A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
RU2732508C1 (ru) Способ и устройство для передачи сигналов
US11323973B2 (en) Information sending and receiving method and related device
US11533150B2 (en) Feedback information transmission method and communication device
US20210050970A1 (en) Method and apparatus for obtaining resource indication value
WO2018210243A1 (zh) 一种通信方法和装置
CN109831827B (zh) 数据传输方法、终端和基站
CN112042160B (zh) 多载波开关键控码元随机化器
WO2020001607A1 (zh) 数据加扰方法及相关设备
US20230047000A1 (en) Method and apparatus for determining transport block size
CN112868200A (zh) 用于前传接口的控制消息的传送的装置
TW201919427A (zh) 無線通訊方法、終端和網路設備
US10693696B2 (en) Apparatus and method for transmitting and receiving signals in wireless communication system
CN108282294B (zh) 一种参考信号传输方法及装置
WO2024067191A1 (zh) 一种通信方法及装置
US20210195568A1 (en) Communication method and apparatus
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2021184140A1 (zh) 一种信息处理方法及装置
WO2021088069A1 (zh) 信息传输方法及相关产品
TWI684375B (zh) 通訊方法、終端設備和網路設備
WO2020132988A1 (zh) 一种通信方法及装置
CN114698110A (zh) 资源映射方法、装置及设备
CN108811095B (zh) 一种参数配置方法和装置
WO2024114313A1 (zh) 一种通信方法及装置
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2024093634A1 (zh) 信息传输的方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870425

Country of ref document: EP

Kind code of ref document: A1