WO2024055953A1 - 调制方法、装置及通信设备 - Google Patents

调制方法、装置及通信设备 Download PDF

Info

Publication number
WO2024055953A1
WO2024055953A1 PCT/CN2023/118193 CN2023118193W WO2024055953A1 WO 2024055953 A1 WO2024055953 A1 WO 2024055953A1 CN 2023118193 W CN2023118193 W CN 2023118193W WO 2024055953 A1 WO2024055953 A1 WO 2024055953A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
modulation
symbol
bit information
bit
Prior art date
Application number
PCT/CN2023/118193
Other languages
English (en)
French (fr)
Inventor
黄伟
谭俊杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024055953A1 publication Critical patent/WO2024055953A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a modulation method, device and communication equipment.
  • modulation can be divided into single-dimensional modulation and two-dimensional modulation.
  • Typical single-dimensional modulation includes: binary amplitude keying (Amplitude Shift Keying, ASK), frequency shift keying (Frequency-shift keying, FSK) ), phase-shift keying (PSK) modulation, etc.; while two-dimensional modulation includes quadrature amplitude modulation (QAM, Quadrature Amplitude Modulation), amplitude phase shift keying (Amplitude Phase Shift Keying, APSK) and other modulations .
  • Embodiments of the present application provide a modulation method, device and communication equipment, which can solve the problem of how to obtain higher frequency band utilization or reliability based on modulation while reducing system SNR requirements and simplifying the implementation complexity of the transceiver end.
  • a modulation method which method includes:
  • the first device modulates the bit information to obtain a first symbol, wherein a first part of the bit information in the bit information is mapped to a symbol, and a second part of the bit information in the bit information is mapped to the position of the symbol. or interval.
  • a modulation method which method includes:
  • the second device obtains a first symbol, where the first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • the second device demodulates the first symbol to obtain the first partial bit information and/or the second partial bit information.
  • a modulation method which method includes:
  • the third device receives the capability information of the first device and/or the second device, wherein the first device is the modulation end of the first symbol, the second device is the demodulation end of the first symbol, and the first symbol is A modulation symbol containing a first part of bit information and a second part of bit information;
  • the third device performs the first operation
  • the first operation includes at least one of the following:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • a modulation device which device includes:
  • the first modulation unit is used to modulate bit information to obtain a first symbol, wherein the first part of the bit information is mapped to a symbol, and the second part of the bit information is mapped to the symbol.
  • the position or spacing of the above symbols is used to modulate bit information to obtain a first symbol, wherein the first part of the bit information is mapped to a symbol, and the second part of the bit information is mapped to the symbol.
  • a modulation device which device includes:
  • a first obtaining unit configured to obtain a first symbol, where the first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • a first demodulation unit configured to demodulate the first symbol to obtain the first part of bit information and/or the second part of bit information.
  • a modulation device which device includes:
  • a first receiving unit configured to receive capability information of a first device and/or a second device, wherein the first device is the modulation end of the first symbol, and the second device is the demodulation end of the first symbol, and the The first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • the first execution unit is used to perform the first operation
  • the first operation includes:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • a communication device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor.
  • An eighth aspect provides a communication system, including: a communication device, the communication device can be used to perform the steps of the modulation method as described in the first aspect, or implement the steps of the modulation method as described in the second aspect, or The steps of implementing the modulation method as described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the modulation method as described in the first aspect are implemented, or the steps of the modulation method are implemented. The steps of the modulation method as described in the second aspect, or the steps of implementing the modulation method as described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the modulation as described in the first aspect. The steps of the method, or the steps of implementing the modulation method as described in the second aspect, or the steps of implementing the modulation method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect
  • the frequency band utilization can be effectively improved, and the implementation is simple.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of second-order PAM modulation in related technologies
  • Figure 3 is a schematic diagram of fourth-order PAM modulation in related technology
  • Figure 4 is a schematic diagram of 8-PPM modulation in related technologies
  • FIG. 5 is a schematic diagram of 2-pulse 8-PPM modulation in related technologies
  • Figure 6 is a schematic diagram of the fourth-order PAM-(8,2)-MPPM modulation in the related art
  • Figure 7 is a schematic diagram of DPPM modulation in related technologies
  • Figure 8 is a schematic diagram of DPIM modulation without protection time slots in related technologies
  • Figure 9 shows DPIM modulation with guard time slots in related technologies
  • Figure 10 is one of the flow diagrams of the modulation method provided by the embodiment of the present application.
  • Figure 11 is a schematic diagram of 16-DAPM formed by 2DASK+8PPM joint modulation provided by the embodiment of the present application;
  • Figure 12 is a schematic diagram of 8-DAPM formed by 2DASK+4DPIM (protected time slot) joint modulation provided by the embodiment of the present application;
  • Figure 13 is a schematic diagram of 32DAPM formed by 2DASK+16DHPIM joint modulation provided by the embodiment of the present application;
  • Figure 14 is the second schematic flow chart of the modulation method provided by the embodiment of the present application.
  • Figure 15 is a schematic diagram of a single demodulation terminal demodulation scenario provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a multi-demodulation terminal demodulation scenario provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a multi-demodulation terminal-assisted joint demodulation scenario provided by an embodiment of the present application.
  • Figure 18 is the third schematic flowchart of the modulation method provided by the embodiment of the present application.
  • Figure 19 is one of the structural schematic diagrams of the modulation device provided by the embodiment of the present application.
  • Figure 20 is the second structural schematic diagram of the modulation device provided by the embodiment of the present application.
  • Figure 21 is the third structural schematic diagram of the modulation device provided by the embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • Figure 24 is a schematic diagram of the hardware structure of a network-side device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein. Shi, and the objects distinguished by “first” and “second” are usually of the same category, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • modulation can be divided into single-dimensional modulation and two-dimensional modulation.
  • Single-dimensional modulation modulates information in only one of the dimensions such as amplitude, phase, and frequency of electromagnetic waves.
  • Typical single-dimensional modulations include: ASK modulation, PSK modulation, FSK modulation, etc.
  • Two-dimensional modulation is joint modulation in two of the dimensions of electromagnetic waves such as amplitude, phase, and frequency.
  • Typical two-dimensional modulations include: QAM modulation, Carrierless Amplitude-Phase (CAP) modulation , APSK modulation, etc.
  • CAP Carrierless Amplitude-Phase
  • Pulse position modulation refers to pulse position modulation (Pulse Position Modulation, PPM), differential pulse position modulation (Differential Pulse Position Modulation, DPPM), digital pulse interval modulation (Digital Pulse Interval Modulation, DPIM) and various combinations thereof.
  • PPM Pulse Position Modulation
  • DPPM differential pulse position modulation
  • DPIM Digital Pulse Interval Modulation
  • Various pulse position modulation methods evolved. Generally speaking, pulse-type position modulation can achieve relatively high power efficiency, simple modulation method, and easy hardware circuit implementation. However, the disadvantages are poor performance against channel interference and low frequency band utilization. The following takes several typical pulse-type position modulations as examples to illustrate.
  • PAM is a modulation method in which the amplitude of the pulse carrier changes with the baseband signal.
  • This modulation system is simple to implement and can be demodulated based on a non-coherent demodulator.
  • Figure 2 shows a schematic diagram of second-order PAM modulation. High level is used to represent "1" and low level is used to represent "0". This modulation method can also be called on-off keying (On- off Keying (OOK) or binary amplitude keying (Amplitude Shift Keying (ASK)).
  • OOK On- off Keying
  • ASK Binary amplitude Shift Keying
  • Figure 3 shows a schematic diagram of fourth-order PAM modulation.
  • a fourth-order amplitude pulse signal is used to carry information bits. Each pulse signal can carry two information bits.
  • PPM is a modulation method with simple coding and high power efficiency.
  • PPM modulation modulates the relative position (i.e. phase) of a pulse in a signal pulse sequence, so that the relative position of the pulse changes with the baseband signal, but the amplitude and width of each pulse in the sequence remain unchanged.
  • Figure 4 is a schematic diagram of 8-PPM modulation, each frame is divided into 8 time slots, and pulse signals are only sent on one time slot within a frame at a time, and the amplitudes of these pulses are the same, and by changing these
  • the relative position of the pulses on the time slot within the frame carries the information bits to achieve modulation. In the first frame, if the pulse is sent on the 5th time slot, the pulse can carry the bit "100"; in the second frame, if the pulse is sent on the 2nd time slot, the pulse can carry the bit "001".
  • MPPM Multiple Pulse Position Modulation
  • MPPM is one of the optimized modulation methods of traditional PPM modulation and has higher frequency band utilization. Unlike PPM modulation, which only sends one pulse on one time slot of each frame, MPPM modulation modulates the relative positions (i.e., phases) of multiple pulses in the signal pulse sequence, so that the relative positions of the multiple pulses change with the baseband signal. However, the amplitude and width of each pulse in the sequence remain unchanged.
  • Figure 5 shows a schematic diagram of 2-pulse 8-PPM modulation, which is denoted as (8,2)-MPPM for simplicity. Each frame is divided into 8 time slots. Different pulse signals are sent on the two time slots in the same frame each time, and the relative position arrangement and combination of the two pulses on the time slots within the frame are changed to achieve modulation.
  • log 2 28 4.8 bits can be carried in one frame, while traditional 8-PPM transmits 3 bits in one frame. Therefore, MPPM can achieve data transmission with higher frequency band utilization.
  • MPAPM Multiple Pulse Amplitude Position Modulation
  • MPAPM is one of the improved methods of MPPM modulation. Based on MPPM, information modulation is achieved by modulating the amplitude of each pulse, thereby further improving the frequency band utilization of the system.
  • Figure 6 shows a schematic diagram of the fourth-order PAM-(8,2)-MPPM modulation. The amplitude of the pulse on the time slot is one of four amplitudes. Therefore, these two pulses can add an additional 4 to the MPPM. bits, so 8.8 bits can be carried in one frame.
  • FIG. 7 is a schematic diagram of DPPM modulation. The low level before a single pulse is retained and the low level after the single pulse is removed. Therefore, compared with PPM, under the premise of the same number of time slots, DPPM modulation has a higher duty cycle; during the same information transmission process, DPPM modulation occupies less bandwidth than PPM, improving data transmission. efficiency.
  • pulse position modulation PPM in addition to the above-mentioned MPPM, MPAPM, and DPPM modulation, there are many other variants, including: Overlapping Pulse Positioning Modulation (OPPM), Double-width Pulse Position Modulation (Dual Duration) Pulse Positioning Modulation, DDPPM), Dual Amplitude Pulse Positioning Modulation, DAPPM, Shorten Pulse Position Modulation, SPPM, Separated Double Pulse Positioning Modulation, SDPPM, etc. .
  • OPPM Overlapping Pulse Positioning Modulation
  • DDPPM Double-width Pulse Position Modulation
  • DAPPM Dual Amplitude Pulse Positioning Modulation
  • SPPM Separated Double Pulse Positioning Modulation
  • SDPPM Separated Double Pulse Positioning Modulation
  • the pulse modulation discussed previously is based on pulse position, but another option is to load information by using the number of empty time slots between two adjacent pulses instead of the absolute position of the pulse.
  • the number of time slots included in the DPIM frame symbol is not fixed.
  • the DPIM symbol is represented by the starting time slot pulse and several nearby empty time slots.
  • the number of empty time slots is determined based on the decimal data corresponding to the binary source. determination.
  • L-DPIM the log 2 2L bits of each frame symbol are mapped into L possible symbol structures, and the symbol lengths are different.
  • the minimum and maximum symbol lengths are T s and L ⁇ T s respectively, where T s is Single slot size.
  • Figures 8 and 9 show 4DPIM modulation schematics.
  • Figure 8 is a DPIM modulation schematic without protected time slots
  • Figure 9 is a DPIM modulation with protected time slots.
  • DPIM modulation In addition to single-pulse DPIM modulation, there are many variants of DPIM modulation, such as Double-headed Pulse Interval Modulation (DH-PIM), Dual Pulse Pulse Interval Modulation (DPPIM), Dual-amplitude Pulse Interval Modulation (DAPIM), Fixed-length Digital Pulse Interval Modulation (FDPIM), Fixed-length Dual-amplitude Pulse Interval Modulation, FDAPIM), etc.
  • DH-PIM Double-headed Pulse Interval Modulation
  • DPPIM Dual Pulse Pulse Interval Modulation
  • DAPIM Dual-amplitude Pulse Interval Modulation
  • FDPIM Fixed-length Digital Pulse Interval Modulation
  • FDAPIM Fixed-length Dual-amplitude Pulse Interval Modulation
  • Both single-dimensional modulation and two-dimensional modulation can improve frequency band utilization based on high-order modulation, but the problem is that as the modulation order increases, the Euclidean distance of the constellation points in the Euclidean space decreases, so the probability of decision error occurs Increase. Because in order to ensure the BER performance of high-order modulation, not only the system is required to work in a high SNR scenario, but also the demodulation end needs to determine the reference constellation point based on the pilot signal sent by the transmitter. Otherwise, poor demodulation performance will occur, which requires sending The terminal sends pilot reference signals that can carry all constellation points. Therefore, the traditional method of improving spectral efficiency based on high-order modulation has high requirements on system overhead, power consumption, and implementation complexity. Pulse modulation, including pulse position modulation and pulse interval modulation, has the disadvantage of low frequency band utilization. In addition, traditional modulation rarely pays attention to transmission reliability, making the system sensitive to noise, channel attenuation, and interference.
  • FIG 10 is one of the schematic flow charts of the modulation method provided by the embodiment of the present application. As shown in Figure 10, the modulation method includes the following steps:
  • Step 1000 The first device modulates the bit information to obtain a first symbol, wherein the first part of the bit information in the bit information is mapped to the symbol, and the second part of the bit information in the bit information is mapped to the The position or spacing of symbols.
  • the first device is a modulation end, which may be a terminal device or a network side device.
  • the second part of bit information is other bit information in the bit information except the first part of bit information, that is, the first part of bit information and the second part of bit information constitute the bit information.
  • the bit information is m+n bit information
  • the first part of the bit information is m bit information
  • the second part of the bit information is n bit information.
  • the first device maps the m bit information into symbols and n bit information. Modulated to the position of the symbol mapped to the first part of the bit information or the interval dimension of the symbol.
  • the first symbol may be called a hybrid modulation symbol.
  • the frequency band utilization can be effectively improved.
  • the implementation is simple.
  • the method of modulating the first part of bit information into symbols includes one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the position of the symbol is the position of the symbol within the first time unit or a permutation and combination of the positions; the interval of the symbol is the number of second time units between two symbols.
  • the position of the symbol can be understood as the position of the symbol in the p (1 ⁇ p ⁇ P) second time unit within the first time unit.
  • the arrangement and combination of symbol positions can be understood as the relative position arrangement and combination of k (2 ⁇ k ⁇ P) symbols existing in the first time unit.
  • the first time unit is an integer multiple of the second time unit. That is, P (P ⁇ 2) second time units constitute a first time unit.
  • the length of the first time unit is 8 time slots
  • the length of the second time unit is 1 time slot
  • the length of the first time unit is 8 times the length of the second time unit.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed.
  • the multiple of the length of the first time unit relative to the length of the second time unit may or may not be fixed.
  • the multiple of the length of the first time unit relative to the length of the second time unit is Fixed or non-fixed, depends on the modulation method used by the first device.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed, which can improve the flexibility and efficiency of transmission.
  • the number of second time units between the two symbols is greater than or equal to 1.
  • the interval between the two symbols that is, the number of second time units is greater than or equal to 1.
  • the interval between symbols that is, the number Q of the second time unit between two symbols. If there is no protection time slot, then Q ⁇ 0; if there is a protection time slot, then Q ⁇ 1.
  • the length of the first symbol is the length of the first time unit.
  • the length of the first symbol is equal to the length of the first time unit.
  • the first part of bit information and the second part of bit information are different bit information; or, the first part of bit information and the second part of bit information are the same bit information.
  • the first part of bit information and the second part of bit information are different bit information, which means that the modulation mode of the bit information is a multiplexing mode, and the first symbol carries two parts of different bits. Information, higher frequency band utilization can be obtained.
  • the first part is used as bit information for differential amplitude shift keying (DASK) modulation
  • the second part of bit information is used for symbol intervals or positions
  • the modulation mode is a multiplexing mode, that is, the first part of bit information and the second part of bit information are different bit information, taking an example to explain the solution of this application.
  • the modulation symbols of the first part are mapped pulses
  • the symbol positions or intervals are expressed as pulse positions or intervals below, both of which have the same meaning in this embodiment.
  • FIG. 11 is a schematic diagram of 16-DAPM formed by 2DASK+8PPM joint modulation provided by the embodiment of the present application.
  • Each pulse has 8 possible slot positions within a symbol period, and each pulse has two possible amplitudes, 1 and ⁇ , so each pulse can carry 4 bits of information.
  • the first symbol period there is a pulse with an amplitude of 1 at the 5th time slot position in the symbol period, and the amplitude value of the previous pulse in the symbol period is 1, so it represents the bit information "0100” , the first bit "0" indicates that the amplitude value in 2DASK is 1, and the corresponding differential amplitude coefficient is 1; the remaining three bits of information are "100" indicating that the pulse is the fifth time slot position in the symbol period .
  • the first symbol period As an example, that is, there is a pulse with an amplitude of 1 at the 5th time slot position in the symbol period, but if the amplitude value of the previous pulse in the symbol period is ⁇ , Therefore, it represents bit information "1100", in which the first bit "1” indicates that the amplitude value in 2DASK is 1, and the corresponding differential amplitude coefficient is 1/ ⁇ ; the remaining three bit information is "100", indicating that the pulse is a symbol The fifth slot position in the cycle.
  • the number of time slots representing the pulse symbol period is not fixed, and there is only a single pulse in each pulse symbol time slot.
  • This type of pulse modulation is mainly based on DPPM modulation, DPIM and their variants.
  • Mainly DDPPM Taking the 8-DAPM formed by 2DASK+4DPIM (protected time slot) joint modulation as an example,
  • Figure 12 is a schematic diagram of the 8-DAPM formed by the 2DASK+4DPIM (protected time slot) joint modulation provided by the embodiment of the present application.
  • the number of time slots in each pulse symbol period is not fixed.
  • the DPIM symbol is represented by the starting time slot pulse and several empty time slots attached thereafter.
  • the number of empty time slots is determined according to the decimal data corresponding to the binary source.
  • a guard time slot is added after each DPIM symbol, so that the minimum and maximum symbol lengths are 2T s and 5T s respectively; in addition, each pulse has two possibilities The amplitudes are 1 and ⁇ , so each pulse symbol period can carry 3 bits of information.
  • the last two bits "01" in the bit information "101" in this symbol period indicate that there are three time slots in this symbol period, one of which is a protection slot, and the first The time slot is pulse, and the second time slot has no pulse; the first bit "1" in the "101" bit information indicates that the amplitude value is ⁇ (the previous symbol period is 1).
  • the specific modulation process can refer to the previous scheme and will not be described again here.
  • the number of time slots representing the pulse symbol period is not fixed, and there are only multiple (greater than or equal to 2) pulses in each pulse symbol time slot.
  • This type of pulse modulation is mainly based on double-headed pulse modulation.
  • Pulse interval modulation Double-headed pulse interval modulation, DHPIM
  • Each symbol in DHPIM modulation consists of a header time slot and subsequent empty time slots.
  • the fixed length of the header time slot is ( ⁇ +1) time slots ( ⁇ is a positive integer), which can be divided into two situations: ⁇ /2 time slots and ( ⁇ /2+1) time slots; ⁇ time slots and 1 time slot.
  • l is the decimal number corresponding to the decimal data.
  • FIG. 13 is a schematic diagram of 32DAPM formed by 2DASK+16DHPIM joint modulation provided by the embodiment of the present application.
  • modulation and demodulation processes of 2DASK and 16DHPIM please refer to the aforementioned process and will not be described again here.
  • the modulation of the first part of the bit information is realized based on DASK modulation
  • the modulation of the second part of the bit information is realized based on the fixed or non-fixed pulse position or pulse interval modulation of the time slot, thereby achieving high frequency band utilization.
  • the above embodiment solution can be easily extended to the first part based on QAM, APSK, ASK, PSK, FSK, orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplex, OFDM), orthogonal time-frequency space ( Orthogonal Time Frequency Space, OTFS), Differential phase-shift keying (DPSK) and other modulations.
  • Hybrid modulation in multiplexing mode is suitable for high-rate transmission scenarios or high-SNR communication scenarios.
  • the first part of bit information and the second part of bit information are different bit information.
  • the second part of the bit information is mapped to the position of the symbol. or spacing, which can improve band utilization.
  • the modulation mode of the bit information is the diversity mode, that is, the first symbol carries two parts of the same bit information, which provides redundancy. Obtain diversity gain and improve transmission reliability.
  • m-bit bit information can be mapped to modulation symbols respectively, and the same n-bit bit information can be mapped to the position or interval dimension of the modulated symbol to achieve hybrid modulation in diversity mode.
  • the receiving end performs demodulation according to the instructions on the symbol position or symbol interval dimension, as well as the dimension forming the modulation symbol, and performs weighted combination or other processing (decision or selection combination, maximum ratio) on the obtained two parts of m-bit information. Merging, etc.), and finally the demodulated m-bit information is obtained.
  • hybrid modulation in diversity mode cannot improve the frequency band utilization of the system, it can improve the transmission reliability of the system and enable the system to obtain diversity gain, which is suitable for communication scenarios with high transmission reliability requirements or low SNR.
  • the first part of bit information and the second part of bit information are the same bit information.
  • the second part of the bit information is mapped to the position of the symbol. or interval, which can improve the transmission reliability of the system and enable the system to obtain diversity gain.
  • the modulation of bit information includes:
  • the bit information is modulated according to the first configuration information, where the first configuration information is used to indicate modulation parameters.
  • the first configuration information includes at least one of the following:
  • the hybrid modulation type includes at least one of the following:
  • the modulation type or bit mapping rule of the first part of the bit information is the modulation type or bit mapping rule of the first part of the bit information
  • the modulation type or bit mapping rule of the second part of the bit information is the modulation type or bit mapping rule of the second part of the bit information.
  • the modulation type includes at least one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the hybrid modulation order includes one of the following:
  • the first part of the m-bit bit stream information has a modulation order M
  • the second part of the n-bit bit stream information has a modulation order N.
  • the modulation order of the first part of the bit information, and the mixed modulation order of the bit information are the modulation order of the first part of the bit information, and the mixed modulation order of the bit information
  • the modulation order M of the m-bit bit stream information of the first part and the mixed modulation order (M ⁇ N) of the m+n bit stream information.
  • the modulation order of the second part of the bit information, and the mixed modulation order of the bit information are the modulation order of the second part of the bit information, and the mixed modulation order of the bit information.
  • the second part of the n-bit bit stream information has a modulation order N
  • the m+n bit bit stream information has a mixed modulation order (M ⁇ N).
  • the length of the time unit includes one of the following:
  • the length of the first time unit, and the length of the second time unit are The length of the first time unit, and the length of the second time unit;
  • the modulation mode includes: multiplexing mode or diversity mode.
  • the multiplexing mode that is, the first part of the bit information and the second part of the bit information are different bit information
  • the first part of the bit information and the second part of the bit information are the same bit information.
  • the first configuration information may indicate the modulation mode through modulation mode indication information. For example, bit “1" indicates multiplexing mode; bit “0" indicates diversity mode.
  • the method also includes:
  • the second device is the demodulation end of the first symbol.
  • the second device includes one or more demodulation terminals.
  • the embodiments of the present application enable different receiving devices or demodulating ends to receive the first part of bit information and the second part of bit information transmitted simultaneously by the transmitting end using a unified signal.
  • different receiving devices can be satisfied.
  • the differentiated requirements of the demodulation end in terms of speed, complexity, power consumption, etc., improve the flexibility and efficiency of transmission.
  • the first indication information includes at least one of the following:
  • the first indication information is all or part of the parameters of the first configuration information.
  • the first indication information is a parameter for demodulation by one or more demodulation terminals, for the demodulation terminal, it is only necessary to obtain the demodulation parameters related to the demodulation terminal.
  • the demodulation efficiency of the demodulation end can be improved.
  • the method also includes:
  • the first device determines the first configuration information based on the first information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the demodulation end of the first symbol.
  • the first configuration information mentioned in the above embodiments may be determined by the first device, specifically determined based on the first information.
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the second device is the demodulation end of the first signal, and may be a terminal device or a network side device.
  • the first configuration information may be determined by a third device.
  • the third device determines the first configuration information based on the first information and sends the first configuration information to the first device.
  • the first device reports the capability information of the first device to the third device.
  • the first device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information information.
  • the first device reports its own UE capability information through UE Assistance Information information.
  • the third device may be a modulation end, a demodulation end, or a third-party communication device.
  • the capability information of the first device or the second device includes at least one of the following:
  • Amplitude modulation capability that is, the supported adjustable amplitude information, continuous amplitude modulation or discrete amplitude modulation and the number of states of the corresponding continuous or discrete characteristics
  • Pulse adjustment capability including adjusting the pulse slot position, slot interval, etc.
  • Demodulation capabilities such as supporting coherent demodulation or non-coherent demodulation capabilities
  • Antenna capabilities the respective antenna capabilities of the transmitter/receiver.
  • the channel status includes historical channel status information, or real-time channel status information.
  • Historical channel state information may be channel state information recorded when the device was parked.
  • Real-time channel state information may be estimated or information state information obtained through other methods.
  • the first configuration information may be default configured or factory settings.
  • the first configuration information is carried in one of the following ways:
  • MAC Control Element MAC Control Element, MAC CE
  • physical layer signaling includes but is not limited to: downlink control information (Downlink Control Information, DCI), side link control information (Sidelink Control Information, SCI), physical frame header preamble, etc.
  • DCI Downlink Control Information
  • SCI Sidelink Control Information
  • SCI Physical frame header preamble
  • a part of the bit information is symbol modulated, and the other part of the bit information is modulated to the position and interval dimensions between the modulated symbols, and the modulation and demodulation method, signaling process, and configuration parameters of the hybrid modulation are designed. etc., enabling the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements and simplifying the implementation complexity of the transceiver end.
  • the system's transmission reliability or diversity transmission gain can be improved.
  • FIG 14 is the second schematic flowchart of the modulation method provided by the embodiment of the present application. As shown in Figure 14, the method includes the following steps 1400 and 1401.
  • Step 1400 The second device obtains a first symbol, where the first symbol is a modulation symbol including a first part of bit information and a second part of bit information.
  • the second device is a demodulation end, which may be a terminal device or a network side device.
  • the second device obtains the first symbol, which is a symbol obtained by modulating the first part of the bit information and the second part of the bit information at the modulation end, and may be called a hybrid modulation symbol.
  • the modulation end modulates the first part of the bit information into a symbol, and modulates the second part of the bit information into the position or interval of the symbol, thereby forming the first symbol.
  • Step 1401 The second device demodulates the first symbol to obtain the first part of bit information and/or the second part of bit information.
  • the second device demodulates the first symbol to obtain the first part of bit information and/or the second part of bit information.
  • the second device demodulates the first symbol, and the bit information obtained is related to the demodulation capability of the second device.
  • the second device only demodulates the first part of the m-bit information, and demodulates the first part of the bit information according to the symbol demodulation rule to which the first part of the m-bit information is mapped.
  • the second device only demodulates the second part of the n-bit information, and demodulates the second part of the bit information according to the symbol demodulation rule mapped to the second part of the n-bit information.
  • the second device demodulates all (that is, m+n bits) bit information in the first symbol.
  • the first part of the bit information can be demodulated according to the symbol demodulation rules mapped to the m-bit information of the first part, and the second part of the bit information can be demodulated according to the symbol demodulation rules mapped to the n-bit information of the second part. tune.
  • the demodulating the first symbol includes:
  • the position or interval of the symbols of the first symbol is reflected as the second partial bit information.
  • frequency band utilization by reflecting the symbol of the first symbol into a first part of bit information, and reflecting the symbol position or interval of the first symbol into a second part of bit information, frequency band utilization can be effectively improved. efficient and simple to implement.
  • the position of the symbol is the position of the symbol within the first time unit or a permutation and combination of the positions; the interval of the symbol is the number of second time units between two symbols.
  • the position of the symbol can be understood as the position of the symbol in the p (1 ⁇ p ⁇ P) second time unit within the first time unit.
  • the arrangement and combination of symbol positions can be understood as the relative position arrangement and combination of k (2 ⁇ k ⁇ P) symbols existing in the first time unit.
  • the length of the first time unit is an integer multiple of the length of the second time unit. That is, P (P ⁇ 2) second time units constitute a first time unit.
  • the length of the first time unit is 8 time slots
  • the length of the second time unit is 1 time slot
  • the length of the first time unit is 8 times the length of the second time unit.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed.
  • the multiple of the length of the first time unit relative to the length of the second time unit may or may not be fixed.
  • the multiple of the length of the first time unit relative to the length of the second time unit is Fixed or non-fixed, depends on the modulation method used by the first device.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed, which can improve the flexibility and efficiency of transmission.
  • the number of second time units between the two symbols is greater than or equal to 1.
  • the interval between the two symbols that is, the number of second time units is greater than or equal to 1.
  • the interval between symbols that is, the number Q of the second time unit between two symbols. If there is no protection time slot, then Q ⁇ 0; if there is a protection time slot, then Q ⁇ 1.
  • the length of the first symbol is the length of the first time unit.
  • the length of the first symbol is equal to the length of the first time unit.
  • the first part of bit information and the second part of bit information are different bit information; or, the first part of bit information and the second part of bit information are the same bit information.
  • the first part of bit information and the second part of bit information are different bit information, which means that the modulation mode of the bit information is a multiplexing mode.
  • the first symbol carries two parts of different bit information, which can achieve higher frequency band utilization. Rate.
  • the modulation mode of the bit information is the diversity mode, that is, the first symbol carries two parts of the same bit information, providing redundancy, thereby Diversity gain can be obtained and transmission reliability is improved.
  • the demodulating the first symbol includes:
  • the second configuration information may be determined by the second device or may come from a third device.
  • the first indication information comes from the first device.
  • the second configuration information or first indication information includes at least one of the following:
  • the second configuration information and the first indication information need to include all demodulation parameters, which are divided into the following situations:
  • the second configuration information indicates all demodulation parameters
  • the first indication information indicates all demodulation parameters
  • the second configuration information and the first indication information together indicate all demodulation parameters, that is, each indicates part of the demodulation parameters.
  • the second device only demodulates the first symbol according to the second configuration information to obtain the first part of m-bit information.
  • the second configuration information indicates all or part of the demodulation parameters.
  • the second configuration information at least includes:
  • the second device only demodulates the first symbol according to the second configuration information to obtain the second part of n-bit information.
  • the second configuration information indicates all or part of the demodulation parameters.
  • the second configuration information at least includes:
  • Time unit length any one or more of which include:
  • the second device only demodulates the first symbol according to the second configuration information, and obtains the m-bit information of the first part and the n-bit information of the second part.
  • the second configuration information indicates all demodulation parameters.
  • the second configuration information at least includes:
  • the second device only demodulates the first symbol according to the first indication information to obtain the first part of m-bit information.
  • the second device only demodulates the first symbol according to the first indication information to obtain the second part of n-bit information.
  • the second device only demodulates the first symbol according to the first indication information to obtain the m-bit information of the first part and the n-bit information of the second part.
  • the content contained in the first indication information is the same as the second configuration information in the corresponding situation, and will not be described again here.
  • the second device demodulates the first symbol according to the second configuration information and the first indication information to obtain the first part of m-bit information.
  • the demodulation parameters composed of the second configuration information and the first indication information are the same as the second configuration information in the corresponding situation, and will not be described again here.
  • the second device demodulates the first symbol according to the second configuration information and the first indication information to obtain the second part of n-bit information.
  • the demodulation parameters composed of the second configuration information and the first indication information are the same as the second configuration information in the corresponding situation, and will not be described again here.
  • the second device demodulates the first symbol according to the second configuration information and the first indication information, and obtains the m-bit information of the first part and the n-bit information of the second part.
  • the second configuration information and the first indication information together indicate all demodulation parameters, which will not be described again here.
  • the second device performs demodulation according to the second configuration information and/or the first instruction information, which can improve the demodulation efficiency of the demodulation end.
  • the hybrid modulation type includes at least one of the following:
  • the modulation type or bit mapping rule of the first part of the bit information is the modulation type or bit mapping rule of the first part of the bit information
  • the modulation type or bit mapping rule of the second part of the bit information is the modulation type or bit mapping rule of the second part of the bit information.
  • the modulation type includes at least one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the hybrid modulation order includes one of the following:
  • the modulation order of the first part of the bit information, and the mixed modulation order of the bit information are the modulation order of the first part of the bit information, and the mixed modulation order of the bit information
  • the modulation order of the second part of the bit information, and the mixed modulation order of the bit information are the modulation order of the second part of the bit information, and the mixed modulation order of the bit information.
  • the length of the time unit includes one of the following:
  • the length of the first time unit, and the length of the second time unit are The length of the first time unit, and the length of the second time unit;
  • the modulation mode includes: multiplexing mode or diversity mode.
  • Hybrid modulation in multiplexing mode is suitable for high-rate transmission scenarios or high-SNR communication scenarios.
  • hybrid modulation in diversity mode cannot improve the frequency band utilization of the system, it can improve the transmission reliability of the system and enable the system to obtain diversity gain, which is suitable for communication scenarios with high transmission reliability requirements or low SNR.
  • the embodiments of the present application enable different receiving devices or demodulating ends to receive the first part of bit information and the second part of bit information transmitted simultaneously by the transmitting end using a unified signal.
  • different receiving devices can be satisfied.
  • the differentiated requirements of the demodulation end in terms of speed, complexity, power consumption, etc., improve the flexibility and efficiency of transmission.
  • the method also includes:
  • the second device determines the second configuration information based on the first information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the second configuration information mentioned in the above embodiments may be determined by the second device, specifically determined based on the first information.
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the second configuration information may be determined by a third device.
  • the third device determines the second configuration information based on the first information, and sends the second configuration information to the second device.
  • the second device reports the capability information of the second device to the third device.
  • the second device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information.
  • the second device actively report your UE capability information through the Initial UE message.
  • the third device may be a modulation end, a demodulation end, or a third-party communication device.
  • the capability information of the first device or the second device includes at least one of the following:
  • Amplitude modulation capability that is, the supported adjustable amplitude information, continuous amplitude modulation or discrete amplitude modulation and the number of states of the corresponding continuous or discrete characteristics
  • Pulse adjustment capability including adjusting the pulse slot position, slot interval, etc.
  • Demodulation capabilities such as supporting coherent demodulation or non-coherent demodulation capabilities
  • Antenna capabilities the respective antenna capabilities of the transmitter/receiver.
  • the channel status includes historical channel status information, or real-time channel status information.
  • Historical channel state information may be channel state information recorded when the device was parked.
  • Real-time channel state information may be estimated or information state information obtained through other methods.
  • the second configuration information may be default configured or factory settings.
  • the second configuration information is carried in one of the following ways:
  • physical layer signaling includes but is not limited to: DCI, SCI, physical frame header preamble, etc.
  • the first indication information is carried in one of the following ways: DCI, SCI.
  • the second device includes one or more demodulation terminals.
  • the second device If the second device is a demodulation end, it can demodulate all or part of the bit information in the first symbol
  • each demodulation terminal can demodulate all or part of the bit information in the first symbol, depending on the demodulation capability of each demodulation terminal.
  • Figure 15 is a schematic diagram of a single demodulation terminal demodulation scenario provided by an embodiment of the present application. As shown in Figure 15, in this scenario, the sending end sends mixed modulation symbols, and the system configuration or the sending end instructs the receiving end to demodulate part or all of the bit information in the mixed modulation symbols.
  • Figure 16 is a schematic diagram of a multi-demodulation terminal demodulation scenario provided by an embodiment of the present application.
  • some UEs can only demodulate hybrid modulation.
  • Some UEs can demodulate the first part of the bit information in the symbol, some UEs can demodulate the second part of the bit information in the mixed modulation symbol, and some UEs can demodulate all the bit information in the mixed modulation symbol.
  • One of the benefits of this application scenario is that the sender only needs to use a unified modulation method to provide information transmission for different users at the same time, reducing scheduling and transmission delays.
  • Figure 17 is a schematic diagram of a multi-demodulation terminal-assisted joint demodulation scenario provided by an embodiment of the present application.
  • some UEs can only demodulate Some UEs can demodulate the first part of the bit information in the mixed modulation symbols, and some UEs can demodulate the second part of the bit information in the mixed modulation symbols. Some UEs can demodulate all the bit information in the mixed modulation symbols. For example, UE1 can only demodulate the first part of the bit information, and UE2 can demodulate all or the second part of the bit information.
  • UE2 After completing the demodulation of the second part of the bit information, UE2 will transmit the demodulated information to UE1, and UE1 will demodulate it.
  • the first part of the bit information transmitted is combined with the second part of the bit information transmitted from UE2, thereby demodulating all the bit information of the mixed modulation symbol sent by the transmitting end.
  • joint demodulation is achieved. This method is suitable for scenarios where the UE has weak capabilities but has high speed requirements, but it requires sidelink-like data and signaling transmission between UEs.
  • the modulation and demodulation of the hybrid modulation are designed.
  • Methods, signaling processes, configuration parameters, etc. enable the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements and simplifying the implementation complexity of the transceiver end.
  • the system's transmission reliability or diversity transmission gain can be improved.
  • FIG 18 is the third schematic flowchart of the modulation method provided by the embodiment of the present application. As shown in Figure 18, the modulation method includes step 1800 and step 1801.
  • Step 1800 The third device receives the capability information of the first device and/or the second device, wherein the first device is the modulation end of the first symbol, the second device is the demodulation end of the first symbol, and the third device A symbol is a modulation symbol that contains a first part of bit information and a second part of bit information.
  • Step 1801. The third device performs the first operation
  • the first operation includes:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the first configuration information or the second configuration information is carried in one of the following ways:
  • the modulation end by sending the first configuration information and optionally the second configuration information, performs symbol modulation on part of the bit information, and modulates the other part of the bit information to the symbol position of the modulated symbol and the distance between the symbols.
  • the interval dimension enables the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements, while simplifying the implementation complexity of the transceiver end.
  • the system can also be improved transmission reliability or diversity transmission gain.
  • the modulation method provided by the embodiment of this application can be applied to LTE systems, 5G NR systems and NR evolution systems, 6G systems, and many wireless communication systems such as IEEE 802.11, wireless optical communication, backscatter communication, etc.
  • the execution subject may be a modulation device.
  • the modulation device performing the modulation method is taken as an example to describe the modulation device provided by the embodiment of the present application.
  • FIG 19 is a schematic structural diagram of a modulation device provided by an embodiment of the present application. As shown in Figure 19, the modulation device 1900 includes:
  • the first modulation unit 1910 is used to modulate bit information to obtain a first symbol, wherein the first part of the bit information in the bit information is mapped to a symbol, and the second part of the bit information in the bit information is mapped to The position or spacing of the symbols.
  • the frequency band utilization can be effectively improved.
  • the implementation is simple.
  • the position of the symbol is the position of the symbol within the first time unit or a permutation and combination of the positions; the interval of the symbol is the number of second time units between two symbols.
  • the length of the first time unit is an integer multiple of the length of the second time unit.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed.
  • the number of second time units between the two symbols is greater than or equal to 1.
  • the length of the first symbol is the length of the first time unit.
  • the first part of bit information and the second part of bit information are different bit information; or, the first part of bit information and the second part of bit information are the same bit information.
  • the modulation of bit information includes:
  • the bit information is modulated according to the first configuration information, where the first configuration information is used to indicate modulation parameters.
  • the device also includes:
  • a first sending unit configured to send first indication information to the second device, where the first indication information is used to indicate modulation or demodulation parameters;
  • the second device is the demodulation end of the first symbol.
  • the first configuration information or first indication information includes at least one of the following:
  • the hybrid modulation type includes at least one of the following:
  • the modulation type or bit mapping rule of the first part of the bit information is the modulation type or bit mapping rule of the first part of the bit information
  • the modulation type or bit mapping rule of the second part of the bit information is the modulation type or bit mapping rule of the second part of the bit information.
  • the modulation type includes at least one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the hybrid modulation order includes one of the following:
  • the modulation order of the first part of the bit information, and the mixed modulation order of the bit information are the modulation order of the first part of the bit information, and the mixed modulation order of the bit information
  • the modulation order of the second part of the bit information, and the mixed modulation order of the bit information are the modulation order of the second part of the bit information, and the mixed modulation order of the bit information.
  • the length of the time unit includes one of the following:
  • the length of the first time unit, and the length of the second time unit are The length of the first time unit, and the length of the second time unit;
  • the modulation mode includes: multiplexing mode or diversity mode.
  • the device further includes: a first processing unit, used for:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the demodulation end of the first symbol.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • a part of the bit information is symbol modulated, and the other part of the bit information is modulated to the position and interval dimensions between the modulated symbols, and the modulation and demodulation method, signaling process, and configuration parameters of the hybrid modulation are designed. etc., enabling the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation. a situation In this case, the system can obtain higher frequency band utilization while reducing the system SNR requirements and simplifying the implementation complexity of the transceiver end. In another case, the system's transmission reliability or diversity transmission gain can be improved.
  • the modulation device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the modulation device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 10 to 13 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG 20 is the second structural schematic diagram of the modulation device provided by the embodiment of the present application. As shown in Figure 20, the modulation device 2000 includes:
  • the first obtaining unit 2010 is configured to obtain a first symbol, where the first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • the first demodulation unit 2020 is configured to demodulate the first symbol to obtain the first part of bit information and/or the second part of bit information.
  • the demodulating the first symbol includes:
  • the position or interval of the symbols of the first symbol is reflected as the second partial bit information.
  • the position of the symbol is the position of the symbol within the first time unit or a permutation and combination of the positions; the interval of the symbol is the number of second time units between two symbols.
  • the length of the first time unit is an integer multiple of the length of the second time unit.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed.
  • the number of second time units between the two symbols is greater than or equal to 1.
  • the length of the first symbol is the length of the first time unit.
  • the first part of bit information and the second part of bit information are different bit information; or, the first part of bit information and the second part of bit information are the same bit information.
  • the demodulating the first symbol includes:
  • the second configuration information or first indication information includes at least one of the following:
  • the hybrid modulation type includes at least one of the following:
  • the modulation type or bit mapping rule of the first part of the bit information is the modulation type or bit mapping rule of the first part of the bit information
  • the modulation type or bit mapping rule of the second part of the bit information is the modulation type or bit mapping rule of the second part of the bit information.
  • the modulation type includes at least one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the hybrid modulation order includes one of the following:
  • the modulation order of the first part of the bit information, and the mixed modulation order of the bit information are the modulation order of the first part of the bit information, and the mixed modulation order of the bit information
  • the modulation order of the second part of the bit information, and the mixed modulation order of the bit information are the modulation order of the second part of the bit information, and the mixed modulation order of the bit information.
  • the length of the time unit includes one of the following:
  • the length of the first time unit, and the length of the second time unit are The length of the first time unit, and the length of the second time unit;
  • the modulation mode includes: multiplexing mode or diversity mode.
  • the device further includes: a second processing unit, used for:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second device includes one or more demodulation terminals.
  • the modulation device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the modulation and demodulation method and signaling process of hybrid modulation are designed. , configuration parameters, etc., enabling the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements and simplifying the implementation complexity of the transceiver end.
  • the system's transmission reliability or diversity transmission gain can be improved.
  • the modulation device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 14 to 17 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG 21 is the third structural schematic diagram of the modulation device provided by the embodiment of the present application. As shown in Figure 21, the modulation device 2100 includes:
  • the first receiving unit 2110 is configured to receive capability information of the first device and/or the second device, where the first device is the modulation end of the first symbol, and the second device is the demodulation end of the first symbol, so
  • the first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • the first execution unit 2120 is used to perform the first operation
  • the first operation includes:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the first configuration information or the second configuration information is carried in one of the following ways:
  • the modulation end by sending the first configuration information and optionally the second configuration information, performs symbol modulation on part of the bit information, and modulates the other part of the bit information to the symbol position of the modulated symbol and the distance between the symbols.
  • the interval dimension enables the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements, while simplifying the implementation complexity of the transceiver end.
  • the system can also be improved transmission reliability or diversity transmission gain.
  • the modulation device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the modulation device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 18 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 2200, which includes a processor 2201 and a memory 2202.
  • the memory 2202 stores programs or instructions that can be run on the processor 2201, for example.
  • the communication device 2200 is a terminal
  • the program or instruction is executed by the processor 2201
  • each step of the above modulation method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 2200 is a network-side device
  • the program or instruction is executed by the processor 2201
  • each step of the above modulation method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • Embodiments of the present application also provide a first device, including a processor and a communication interface.
  • the processor is used by the first device to modulate bit information to obtain a first symbol, wherein a first part of the bit information in the bit information is mapped is a symbol, and the second part of the bit information in the bit information is mapped to the position or interval of the symbol.
  • This first device embodiment corresponds to the above-mentioned first device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first device embodiment, and can achieve the same technical effect.
  • FIG. 23 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 2300 includes but is not limited to: a radio frequency unit 2301, a network module 2302, an audio output unit 2303, an input unit 2304, a sensor 2305, a display unit 2306, a user input unit 2307, an interface unit 2308, a memory 2309, a processor 2310, etc. At least some parts.
  • the terminal 2300 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 23 10 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the terminal structure shown in Figure 23 does not constitute a Limitation, the terminal may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here.
  • the input unit 2304 may include a graphics processing unit (Graphics Processing Unit, GPU) 23041 and a microphone 23042.
  • the graphics processor 23041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 2306 may include a display panel 23061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2307 includes at least one of a touch panel 23071 and other input devices 23072. Touch panel 23071, also known as touch screen.
  • the touch panel 23071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 23072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 2301 after receiving downlink data from the network side device, the radio frequency unit 2301 can transmit it to the processor 2310 for processing; in addition, the radio frequency unit 2301 can send uplink data to the network side device.
  • the radio frequency unit 2301 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 2309 may be used to store software programs or instructions as well as various data.
  • the memory 2309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 2309 may include volatile memory or nonvolatile memory, or memory 2309 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 2310 may include one or more processing units; optionally, the processor 2310 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 2310.
  • the processor 2310 is used to modulate the bit information to obtain the first symbol, wherein the first part of the bit information in the bit information is mapped to the symbol, and the second part of the bit information in the bit information is mapped to The position or spacing of the symbols.
  • the frequency band utilization can be effectively improved, and the implementation is simple.
  • the position of the symbol is the position of the symbol within the first time unit or a permutation and combination of the positions; the interval of the symbol is the number of second time units between two symbols.
  • the first time unit is an integer multiple of the second time unit.
  • the multiple of the length of the first time unit relative to the length of the second time unit is fixed or non-fixed.
  • the number of second time units between the two symbols is greater than or equal to 1.
  • the length of the first symbol is the length of the first time unit.
  • the first part of bit information and the second part of bit information are different bit information; or, the first part of bit information and the second part of bit information are the same bit information.
  • the modulation of bit information includes:
  • the bit information is modulated according to the first configuration information, where the first configuration information is used to indicate modulation parameters.
  • the radio frequency unit 2301 is used for:
  • the second device is the demodulation end of the first symbol.
  • the first configuration information or first indication information includes at least one of the following:
  • the hybrid modulation type includes at least one of the following:
  • the modulation type or bit mapping rule of the first part of the bit information is the modulation type or bit mapping rule of the first part of the bit information
  • the modulation type or bit mapping rule of the second part of the bit information is the modulation type or bit mapping rule of the second part of the bit information.
  • the modulation type includes at least one of the following: multi-carrier modulation; single-carrier modulation; single-dimensional modulation; two-dimensional modulation; absolute modulation; relative modulation; differential modulation.
  • the hybrid modulation order includes one of the following:
  • the modulation order of the first part of the bit information, and the mixed modulation order of the bit information are the modulation order of the first part of the bit information, and the mixed modulation order of the bit information
  • the modulation order of the second part of the bit information, and the mixed modulation order of the bit information are the modulation order of the second part of the bit information, and the mixed modulation order of the bit information.
  • the length of the time unit includes one of the following:
  • the length of the first time unit, and the length of the second time unit are The length of the first time unit, and the length of the second time unit;
  • the modulation mode includes: multiplexing mode or diversity mode.
  • processor 2310 is also used to:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the demodulation end of the first symbol.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • a part of the bit information is symbol modulated, and the other part of the bit information is modulated to the position and interval dimensions between the modulated symbols, and the modulation and demodulation method, signaling process, and configuration parameters of the hybrid modulation are designed. etc., enabling the communication system to flexibly implement hybrid multi-dimensional modulation and demodulation.
  • the system can obtain higher frequency band utilization while reducing system SNR requirements and simplifying the implementation complexity of the transceiver end.
  • the system's transmission reliability or diversity transmission gain can be improved.
  • the second device or the third device may also be a terminal.
  • the functions of each component of the terminal will not be expanded here.
  • An embodiment of the present application also provides a second device, including a processor and a communication interface.
  • the processor is configured to obtain a first symbol, where the first symbol is a modulation symbol including a first part of bit information and a second part of bit information;
  • the first symbol is demodulated to obtain the first partial bit information and/or the second partial bit information.
  • This second device embodiment corresponds to the above-mentioned second device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second device embodiment, and can achieve the same technical effect.
  • Embodiments of the present application also provide a third device, including a processor and a communication interface.
  • the communication interface is used to receive capability information of the first device and/or the second device, wherein the first device modulates the first symbol.
  • the second device is a demodulation end of the first symbol
  • the first symbol is a modulation symbol including a first part of bit information and a second part of bit information
  • the processor is configured to perform a first operation; wherein, the first operation
  • the method includes: determining the first configuration information according to the first information, and sending the first configuration information to the first device; or, determining the first configuration information and the second configuration information according to the first information, and sending the first configuration information to the first device.
  • the device sends the first configuration information and the second configuration information to the second device; wherein the first information includes at least one of the following: capability information of the first device, capability information of the second device, Channel status.
  • This third device embodiment corresponds to the above-mentioned third device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this third device embodiment, and can achieve the same technical effect.
  • the network side device 2400 includes: an antenna 2401, a radio frequency device 2402, a baseband device 2403, a processor 2404, and a memory 2405.
  • Antenna 2401 is connected to radio frequency device 2402.
  • the radio frequency device 2402 receives information through the antenna 2401 and sends the received information to the baseband device 2403 for processing.
  • the baseband device 2403 processes the information to be sent and sends it to the radio frequency device 2402.
  • the radio frequency device 2402 processes the received information and then sends it out through the antenna 2401.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 2403, which includes a baseband processor.
  • the baseband device 2403 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. 24 .
  • One of the chips is, for example, a baseband processor, which is connected to the memory 2405 through a bus interface to call the memory 2405 .
  • the network side device may also include a network interface 2406, which is, for example, a common public radio interface (CPRI).
  • a network interface 2406 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 2400 in this embodiment of the present invention also includes: instructions or programs stored in the memory 2405 and executable on the processor 2404.
  • the processor 2404 calls the instructions or programs in the memory 2405 to execute FIG. 10 or 14 or Figure 18 shows the execution method of each module and achieves the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above modulation method embodiment is implemented and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement each of the above modulation method embodiments. The process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above modulation method embodiment.
  • Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the modulation method as described above.
  • the network side device can be used to perform the steps of the modulation method as described above. step.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Abstract

本申请公开了一种调制方法、装置及通信设备,属于通信技术领域,本申请实施例的调制方法包括:第一设备对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。

Description

调制方法、装置及通信设备
相关申请的交叉引用
本申请要求享有于2022年9月16日提交的名称为“调制方法、装置及通信设备”的中国专利申请202211133192.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于通信技术领域,具体涉及一种调制方法、装置及通信设备。
背景技术
如何提高通信系统的频带利用率一直是通信领域关注的重点,高阶调制是提升频谱效率有效方式之一。按照调制在调制维度上的区别可以分为单维调制和二维调制,其中典型的单维调制包括:二进制振幅键控(Amplitude Shift Keying,ASK)、频移键控(Frequency-shift keying,FSK)、相移键控(phase-shift keying,PSK)调制等;而二维调制则有正交幅度调制(QAM,Quadrature Amplitude Modulation)、幅度相移键控(Amplitude Phase Shift Keying,APSK)等调制。单维调制和二维调制都可以基于高阶调制来提高频带利用率,但带来的问题是随着调制阶数的提高,星座点在欧式空间上的欧式距离减少,因此产生判决误差的概率增加。因为为了保证高阶调制的误比特率(Bit Error Ratio,BER)性能,不仅要求系统工作在高信噪比(Signal to Noise Ratio,SNR)场景,并且解调端需要根据发送端发送的导频信号来确定参考星座点,否则会发生解调性能差,这就需要发送端发送能够携带所有星座点的导频参考信号。因此传统基于高阶调制来提高频谱效率的方式对系统开销、功耗和实现复杂度都有较高的要求。另外传统的调制很少关注于传输可靠性,导致系统对噪声、信道衰减、干扰敏感。
因此,如何基于调制获得较高频带利用率或可靠性的同时,能够降低系统SNR的要求,同时简化收发端的实现复杂度是需要解决的。
发明内容
本申请实施例提供一种调制方法、装置及通信设备,能够解决如何基于调制获得较高频带利用率或可靠性的同时,能够降低系统SNR的要求,同时简化收发端的实现复杂度的问题。
第一方面,提供了一种调制方法,该方法包括:
第一设备对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
第二方面,提供了一种调制方法,该方法包括:
第二设备获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
所述第二设备对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
第三方面,提供了一种调制方法,该方法包括:
第三设备接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
所述第三设备执行第一操作;
其中,所述第一操作包括以下至少一项:
根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
第四方面,提供了一种调制装置,该装置包括:
第一调制单元,用于对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
第五方面,提供一种调制装置,该装置包括:
第一获得单元,用于获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
第一解调单元,用于对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
第六方面,提供一种调制装置,该装置包括:
第一接收单元,用于接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
第一执行单元,用于执行第一操作;
其中,所述第一操作包括:
根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;
或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
第七方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的调制方法的步骤,或者实现如第二方面所述的调制方法的步骤,或者实现如第三方面所述的调制方法的步骤。
第八方面,提供了一种通信系统,包括:通信设备,所述通信设备可用于执行如第一方面所述的调制方法的步骤,或者实现如第二方面所述的调制方法的步骤,或者实现如第三方面所述的调制方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的调制方法的步骤,或者实现如第二方面所述的调制方法的步骤,或者实现如第三方面所述的调制方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的调制方法的步骤,或者实现如第二方面所述的调制方法的步骤,或者实现如第三方面所述的调制方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的调制方法的步骤,或者实现如第二方面所述的调制方法的步骤,或者实现如第三方面所述的调制方法的步骤。
在本申请实施例中,通过将比特信息中的第一部分比特信息映射为符号,将比特信息中的第二部分比特信息调制到符号的位置或间隔,可以有效提升频带利用率,且实现简单。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为相关技术中2阶PAM调制的示意图;
图3为相关技术中4阶PAM调制示意图;
图4为相关技术中8-PPM调制的示意图;
图5为相关技术中2-pulse 8-PPM调制示意图;
图6为相关技术中4阶PAM-(8,2)-MPPM调制示意图;
图7为相关技术中DPPM调制示意图;
图8为相关技术中无保护时隙下的DPIM调制示意图;
图9为相关技术中有保护时隙下的DPIM调制;
图10为本申请实施例提供的调制方法的流程示意图之一;
图11为本申请实施例提供的2DASK+8PPM联合调制形成的16-DAPM示意图;
图12为本申请实施例提供的2DASK+4DPIM(有保护时隙)联合调制形成的8-DAPM示意图;
图13为本申请实施例提供的2DASK+16DHPIM联合调制形成的32DAPM示意图;
图14为本申请实施例提供的调制方法的流程示意图之二;
图15为本申请实施例提供的单解调端解调场景的示意图;
图16为本申请实施例提供的多解调端解调场景的示意图;
图17为本申请实施例提供的多解调端协助联合解调场景的示意图;
图18为本申请实施例提供的调制方法的流程示意图之三;
图19为本申请实施例提供的调制装置的结构示意图之一;
图20为本申请实施例提供的调制装置的结构示意图之二;
图21为本申请实施例提供的调制装置的结构示意图之三;
图22为本申请实施例提供的通信设备的结构示意图;
图23为实现本申请实施例的一种终端的硬件结构示意图;
图24为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实 施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并 不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
首先对本发明涉及的相关技术进行介绍。
一、单维调制和二维调制
根据调制维度的不同,调制可以分为单维调制和二维调制。单维调制即只在电磁波的幅度、相位、频率等维度上的其中一个维度进行信息调制,典型的单维调制有:ASK调制、PSK调制、FSK调制等。而二维调制即在电磁波的幅度、相位、频率等维度上的其中两个维度上进行联合调制,典型的二维调制有:QAM调制、无载波幅相调制(Carrierless Amplitude-Phase,CAP)调制、APSK调制等。
二、脉冲类位置调制
除了传统的基于电磁波的幅度、相位、频率等维度进行调制的单维调制和二维调制,脉冲类调制是无线光通信、激光通信等通信系统中应用比较广泛的调制方式。脉冲类位置调制是指脉冲位置调制(Pulse Position Modulation,PPM),差分脉冲位置调制(Differential Pulse Position Modulation,DPPM),数字脉冲间隔调制(Digital Pulse Interval Modulation,DPIM)及其各种组合以及由此演变而成的各种脉冲位置调制方式。总体来说,脉冲类位置调制可以获得比较高的功率效率、且调制方式简单、硬件电路实现方便。但缺点在于对抗信道干扰性能较差,且频带利用率较低。下面以几种比较典型的脉冲类位置调制为例进行说明。
(一)脉冲幅度调制(Pulse Amplitude Modulation,PAM)
PAM是一种脉冲载波的幅度随基带信号变化的一种调制方式。该调制方式系统实现简单,并且可以基于非相干解调器实现解调。如图2所示为2阶PAM调制的示意图,用高电平表示“1”,用低电平表示“0”,该调制方式也可以叫做开关键控(On- off Keying,OOK)或二进制振幅键控(Amplitude Shift Keying,ASK)。图3所示为4阶PAM调制示意图,用4阶幅度的脉冲信号来承载信息比特,每个脉冲信号都可以携带两个信息比特。
(二)脉冲位置调制
PPM是一种编码简单、功率效率高的调制方式。PPM调制通过调制信号脉冲序列中一个脉冲的相对位置(即相位),使该脉冲的相对位置随基带信号变化,但序列中各脉冲的幅度和宽度均不变。如图4所示为8-PPM调制的示意图,将每个帧分成8个时隙,每次只在一个帧内的一个时隙上发送脉冲信号,并且这些脉冲的幅度相同,并且通过改变这些脉冲在帧内时隙上的相对位置来携带信息比特,从而实现调制。第一帧内,脉冲在第5个时隙上发送,则该脉冲可以携带比特“100”;第二帧内,脉冲在第2个时隙上发送,则该脉冲可以携带比特“001”。
(三)多脉冲位置调制(Multiple Pulse Position Modulation,MPPM)
MPPM是传统PPM调制的优化调制方式之一,并且具有更高的频带利用率。不同于PPM调制中只在每一帧的一个时隙上发送一个脉冲,MPPM调制通过调制信号脉冲序列中多个脉冲的相对位置(即相位),使多个脉冲的相对位置随基带信号变化,但序列中各脉冲的幅度和宽度均不变。如图5所示为2-pulse 8-PPM调制示意图,为了简便记为(8,2)-MPPM。每一帧内分成8个时隙,每次同一个帧内的两个时隙上发送不同的脉冲信号,并且改变这两个脉冲在帧内时隙上的相对位置排列组合来实现调制。每一帧内8个时隙上的2个脉冲之间的相对位置排列组合个数为因此一帧内可以携带log228=4.8个比特,而传统8-PPM在一帧内则传输3比特。因此,MPPM能够实现更高频带利用率的数据传输。
(四)多脉冲位置-幅度调制(Multiple Pulse Amplitude Position Modulation,MPAPM)
MPAPM是MPPM调制的改进方式之一,在MPPM的基础上通过调制每个脉冲的幅度来实现信息调制,从而进一步提高系统的频带利用率。如图6所示为4阶PAM-(8,2)-MPPM调制示意图,时隙上脉冲的幅度为四种幅度中的一种,因此这两个脉冲可以在MPPM上的基础上额外增加4个比特,因此一帧内可以携带8.8个比特。
(五)差分脉冲位置调制
PPM在信息传输过程中占用带宽较大,造成一定程度的浪费。DPPM调制是一种改进的PPM调制方式,如图7所示为DPPM调制示意图,保留单个脉冲之前的低电平、去掉单个脉冲之后的低电平。因此相比于PPM来说,在相同的时隙数的前提下,DPPM调制方式具有更高的占空比;在相同的信息传输过程中,DPPM调制所占用带宽比PPM减少,提高了数据传输效率。
脉冲位置调制PPM中,除了上述提到的MPPM、MPAPM、DPPM调制之外,还有其它的很多变种,包括:重叠脉冲位置调制(Overlapping Pulse Positioning Modulation,OPPM)、双宽脉冲位置调制(Dual Duration Pulse Positioning Modulation,DDPPM)、双幅度脉冲位置调制(Dual Amplitude Pulse Positioning Modulation,DAPPM)、缩短脉冲位置调制(Shorten Pulse Positioning Modulation,SPPM)、分离双脉冲位置调制(Separated Double Pulse Positioning Modulation,SDPPM)等。
(六)数字脉冲间隔调制
前面讨论的脉冲调制都是基于脉冲位置的,然而通过利用两个相邻脉冲之间的空时隙数目来来取代脉冲的绝对位置来加载信息也是另外一种选择。DPIM帧符号中所包含的时隙个数不是固定的,DPIM符号由起始时隙脉冲和其后附近的若干个空时隙表示,空时隙的个数根据二进制信源对应的十进制数据来判定。在L-DPIM中,每帧符号的log22L位被映射成L种可能的符号结构,并且符号长度不同,最小及最大的符号长度分别为Ts和L·Ts,其中,Ts为单个时隙大小。为了尽可能降低数据传输过程中码间干扰的影响,在每个DPIM符号后面加上一个保护时隙,这样最小和最大符号长度分别为2Ts和(L+1)·Ts。图8和图9给出了4DPIM的调制示意图,其中,图8为无保护时隙下的DPIM调制示意图,图9为有保护时隙下的DPIM调制。
除了单脉冲的DPIM调制之外,还有很多DPIM调制的变种,比如双头脉冲间隔调制(Double-headed Pulse Interval Modulation,DH-PIM)、双脉冲间隔调制(Dual Pulse Pulse Interval Modulation,DPPIM)、双幅度脉冲间隔调制(Dual-amplitude Pulse Interval Modulation,DAPIM)、定长数字脉冲间隔调制(Fixed-length Digital Pulse Interval Modulation,FDPIM)、定长双幅度脉冲间隔调制(Fixed-length Dual-amplitude Pulse Interval Modulation,FDAPIM)等。
单维调制和二维调制都可以基于高阶调制来提高频带利用率,但带来的问题是随着调制阶数的提高,星座点在欧式空间上的欧式距离减少,因此产生判决误差的概率增加。因为为了保证高阶调制的BER性能,不仅要求系统工作在高SNR场景,并且解调端需要根据发送端发送的导频信号来确定参考星座点,否则会发生解调性能差,这就需要发送端发送能够携带所有星座点的导频参考信号。因此传统基于高阶调制来提高频谱效率的方式对系统开销、功耗和实现复杂度都有较高的要求。而脉冲类调制,包括脉冲位置调制和脉冲间隔调制存在频带利用率不高的缺点。另外传统的调制很少关注于传输可靠性,导致系统对噪声、信道衰减、干扰敏感。
因此,如何基于调制获得较高频带利用率或可靠性的同时,能够降低系统SNR的要求,同时简化收发端的实现复杂度是本申请需要解决的技术问题。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的调制方法、装置及通信设备进行详细地说明。
图10为本申请实施例提供的调制方法的流程示意图之一。如图10所示,该调制方法包括以下步骤:
步骤1000、第一设备对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
可以理解的是,第一设备为调制端,可以是终端设备或网络侧设备。
可选地,所述第二部分比特信息为所述比特信息中除了所述第一部分比特信息以外的其他比特信息,即第一部分比特信息和第二部分比特信息组成该比特信息。
例如,比特信息为m+n位比特信息,第一部分比特信息为m为比特信息,第二部分比特信息为n位比特信息,第一设备将m位比特信息映射为符号,将n为比特信息调制到第一部分比特信息映射的符号的位置或符号的间隔维度上。
第一符号可以称为混合调制符号。
在本申请实施例中,通过将比特信息中的第一部分比特信息映射为符号,将比特信息中的第二部分比特信息调制到符号的位置或符号的间隔维度上,可以有效提升频带利用率,且实现简单。
可选地,将第一部分比特信息调制成符号的方式包括以下之一:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
符号的位置可以理解为该符号在第一时间单元内的第p(1≤p≤P)个第二时间单元的位置。
符号的位置的排列组合,可以理解为在第一时间单元内存在k(2≤k≤P)个符号,这k个符号的相对位置排列组合。
可选地,所述第一时间单元为所述第二时间单元的整数倍。即P(P≥2)个第二时间单元构成一个第一时间单元。例如,第一时间单元的长度为8个时隙,第二时间单元的长度为1个时隙,所述第一时间单元的长度为所述第二时间单元长度的8倍。
可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
第一时间单元的长度相对于第二时间单元的长度的倍数,可以是固定的,也可以不是固定的,可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的,取决于第一设备所采用的调制方式。
在本申请实施例中,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的,可以提高传输的灵活性和效率。
可选地,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
可以理解,在两个符号之间存在保护时隙的情况下,所述两个符号之间的间隔,即第二时间单元的个数大于等于1。
符号之间的间隔,即两个符号之间的第二时间单元的数目Q,如果不存在保护时隙,则Q≥0;如果存在保护时隙,则Q≥1。
可选地,所述第一符号的长度为所述第一时间单元的长度。
由于第一部分比特信息被映射成符号,第二部分比特信息被映射成符号的位置或符号的间隔,因此,第一符号的长度等于第一时间单元的长度。
可选地,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
在一些可选的实施例中,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息,则说明比特信息的调制模式为复用模式,第一符号携带两部分不同的比特信息,可以获得较高的频带利用率。
下面通过几个具体的实施例对本申请提供的基于复用模式的调制方法进行介绍。
本实施例中,以第一部分为比特信息进行差分振幅键控(Differential Amplitude Shift Keying,DASK)调制,第二部分比特信息进行符号间隔或位置,且调制模式为复用模式,即第一部分比特信息和第二部分比特信息为不同的比特信息为例来解释本申请方案。在本实施例中,由于第一部分的调制符号为映射的脉冲,因此下面以脉冲位置或间隔表示符号位置或间隔,二者在本实施例中具有相同的含义。
一种可实现的方案中,以表征脉冲符号的时隙数固定,且每个脉冲符号时隙内只有单个脉冲,这一类的脉冲调制主要是以PPM调制为主。以2DASK+8PPM联合调制形成的16-DAPM(差分位置-幅度调制(Differential Amplitude Position Modulation,DAPM))为例,图11为本申请实施例提供的2DASK+8PPM联合调制形成的16-DAPM示意图。每个脉冲在一个符号周期内有8种可能的时隙位置,每个脉冲有两种可能的幅度1和α,因此每个脉冲可以携带4比特信息。比如以第一个符号周期为例,该符号周期中的第5个时隙位置上有幅度为1的脉冲,并且该符号周期的上一个脉冲的幅度值为1,因此表征比特信息“0100”,其中第一个比特“0”表示2DASK中的幅度值为1,对应的差分幅度系数为1;剩下的三个比特信息为“100”表示脉冲为符号周期中的第五个时隙位置。值得注意的是,同样以第一个符号周期为例,即该符号周期中的第5个时隙位置上有幅度为1的脉冲,但如果该符号周期的上一个脉冲的幅度值为α,因此表征比特信息“1100”,其中第一个比特“1”表示2DASK中的幅度值为1,对应的差分幅度系数为1/α;剩下的三个比特信息为“100”表示脉冲为符号周期中的第五个时隙位置。
另外一种可实现的方案中,以表征脉冲符号周期的时隙数非固定,且每个脉冲符号时隙内只有单个脉冲,这一类的脉冲调制主要是以DPPM调制、DPIM以及他们的变种DDPPM为主。以2DASK+4DPIM(有保护时隙)联合调制形成的8-DAPM为例,图12为本申请实施例提供的2DASK+4DPIM(有保护时隙)联合调制形成的8-DAPM示意图。每个脉冲符号周期的时隙数不是固定的,DPIM符号由起始时隙脉冲和其后附件的若干个空时隙表示,空时隙的个数根据二进制信源对应的十进制数据来判定,另外为了尽可能降低数据传输过程中码间干扰的影响,在每个DPIM符号后面加上一个保护时隙,这样最小和最大符号长度分别为2Ts和5Ts;另外每个脉冲有两种可能的幅度1和α,因此每个脉冲符号周期可以携带3比特信息。以图中的第二个符号周期为例,该符号周期中的比特信息“101”中的后面两个比特“01”表示该符号周期有三个时隙,其中一个为保护时隙,第一个时隙为脉冲,第二个时隙没有脉冲;“101”比特信息中的第一个比特“1”表示该幅度值为α(上一个符号周期为1)。具体的调制过程可以参考前面的方案,这里不再赘述。
另外一种可实现的方案中,以表征脉冲符号周期的时隙数非固定,且每个脉冲符号时隙内只有多个(大于等于2)脉冲,这一类的脉冲调制主要是以双头脉冲间隔调制(Double-headed pulse interval modulation,DHPIM)等。其中DHPIM调制中的每个符号由头部时隙与后续的空时隙组成。头部时隙固定长度为(β+1)个时隙(β为正整数),分两种情况:β/2个时隙和(β/2+1)个时隙;β个时隙和1个时隙。l为十进制数据对应的十进制数,当1<2L-1,头部时隙组成为前一种情况,后续的空时隙个数为l;当l≥2L-1时,头部时隙组合为后一种情况,后续的空时隙的个数为(2L-1-1-l)。图13为本申请实施例提供的2DASK+16DHPIM联合调制形成的32DAPM示意图。具体的关于2DASK与16DHPIM的调制和解调过程可以参考前述过程,这里不再赘述。
在上述实施例中,基于DASK调制来实现第一部分比特信息的调制,基于时隙固定或非固定的脉冲位置或脉冲间隔调制来实现第二部分比特信息的调制,从而能够获得高频带利用率。容易理解的是,除了DASK,上述实施例方案很容易扩展到第一部分基于QAM,APSK,ASK,PSK,FSK、正交频分复用(Orthogonal Frequency Division Multiple,OFDM)、正交时频空(Orthogonal Time Frequency Space,OTFS)、差分相移键控(Differential phase-shift keying,DPSK)等其它调制。复用模式下的混合调制适用于高速率传输场景或者高SNR通信场景。
在本申请实施例中,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息,通过将第一部分比特信息映射为符号,将第二部分比特信息映射为所述符号的位置或间隔,可以提高频带利用率。
所述第一部分比特信息和所述第二部分比特信息为相同的比特信息,则说明比特信息的调制模式为分集模式,即第一符号携带两部分相同的比特信息,提供了冗余性,可以获得分集增益,提高了传输可靠性。
调制模式为分集模式,即要求第一部分的m位比特信息与第二部分的n位比特相同,即{c0,c1,...,cm}={c0,c1,...,cn}且m=n。调制的时候,可以将m位的比特信息分别映射到调制符号上,同时将相同的n位比特信息映射到已调制符号的位置或间隔维度上,实现分集模式下的混合调制。接收端根据指示分别在符号的位置或符号的间隔维度,以及形成调制符号的维度上进行解调,将得到的两部分的m位比特信息进行加权合并或其它处理(判决或选择合并、最大比合并等),最后得到解调的m位比特信息。
分集模式下混合调制虽然不能提高系统的频带利用率,但是可以提高系统的传输可靠性,使系统获得分集增益,适用于传输可靠性要求高或低SNR通信场景。
在本申请实施例中,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息,通过将第一部分比特信息映射为符号,将第二部分比特信息映射为所述符号的位置或间隔,可以提高系统的传输可靠性,使系统获得分集增益。
可选地,所述对比特信息进行调制,包括:
根据第一配置信息,对比特信息进行调制,所述第一配置信息用于指示调制的参数。
可选地,所述第一配置信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
可选地,所述混合调制类型包括以下至少一项:
第一部分比特信息的调制类型或比特映射规则;
第二部分比特信息的调制类型或比特映射规则。
可选地,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述混合调制阶数包括以下之一:
第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
例如,第一部分的m位比特流信息的调制阶数M,第二部分的n位比特流信息的调制阶数N。
第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
例如,第一部分的m位比特流信息的调制阶数M,m+n位比特流信息的混合调制阶数(M×N)。
第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
例如,第二部分的n位比特流信息的调制阶数N,m+n位比特流信息的混合调制阶数(M×N)。
可选地,所述时间单元的长度包括以下之一:
第一时间单元的长度,以及,第二时间单元的长度;
第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
可选地,所述调制模式包括:复用模式或分集模式。
所述复用模式即第一部分比特信息与第二部分比特信息为不同的比特信息;
所述分集模式即第一部分比特信息与第二部分比特信息为相同的比特信息。
第一配置信息可以通过调制模式指示信息来指示调制模式。例如,比特“1”指示复用模式;比特“0”指示分集模式。
可选地,所述方法还包括:
向第二设备发送第一指示信息,所述第一指示信息用于指示调制或解调的参数;
其中,所述第二设备为所述第一符号的解调端。
可选地,所述第二设备包括一个或多个解调端。
本申请实施例实现了不同的接收设备或解调端接收发送端用统一的信号同时传输的第一部分比特信息和第二部分比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
可选地,所述第一指示信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
需要说明的是,第一指示信息是第一配置信息的全部或部分参数,对于第一指示信息的理解,可以参考第一配置信息,在此不再赘述。由于第一指示信息是供一个或多个解调端进行解调的参数,因此,针对解调端来说,只需要获得该解调端相关的解调参数即可。
在本申请实施例中,通过向第二设备发送第一指示信息,以供第二设备获得解调参数,根据解调参数对获得的符号进行解调,可以提升解调端的解调效率。
可选地,所述方法还包括:
所述第一设备根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一符号的解调端。
可以理解的是,上述实施例提及的第一配置信息可以是第一设备确定的,具体根据第一信息确定。第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
所述第二设备为所述第一信号的解调端,可以是终端设备或网络侧设备。
可选的,第一配置信息可以是第三设备确定的,具体地,第三设备根据第一信息确定第一配置信息,向第一设备发送第一配置信息。
可选的,第一设备向第三设备上报第一设备的能力信息。例如,进入连接态后,第一设备通过UE Capability Enquiry-UE Capability Information信令上报自己的UE能力信息,或者,通过UE Assistance Information信息上报自己的UE能力信息。或者,在初始注册或添加过程中,通过Initial UE message主动上报自己的UE能力信息。
第三设备可以是调制端,解调端,或第三方通信设备。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力,即支持的可调节的幅度信息,连续调幅或离散调幅及对应的连续或离散特征的状态数量;
调脉冲能力,包括调节脉冲的时隙位置、时隙间隔等;
解调能力,如支持相干解调或非相干解调能力;
天线能力,发送端/接收端各自的天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
历史的信道状态信息可以是曾经设备驻留时记录的信道状态信息。实时的信道状态信息可以是估计或是通过其它方式获得的信息状态信息。
在一些可选的实施例中,第一配置信息可以是默认配置好的或出厂设置的。
可选地,所述第一配置信息通过以下方式之一承载:
无线资源控制(Radio Resource Control,RRC)信令;
媒体访问控制控制单元(MAC Control Element,MAC CE);
物理层信令。
其中,物理层信令包括但不限于:下行控制信息(Downlink Control Information,DCI)、侧链路控制信息(Sidelink Control Information,SCI)、物理帧头preamble等。
在本发明实施例中,通过将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号之间的位置和间隔维度,通过设计混合调制的调制和解调方法、信令流程、配置参数等,使得通信系统能够灵活的实现混合多维调制和解调制。一种情况下,系统能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,可以提高系统的传输可靠性或分集传输增益。
图14为本申请实施例提供的调制方法的流程示意图之二。如图14所示,该方法包括以下步骤1400和步骤1401。
步骤1400、第二设备获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号。
可以理解的是,第二设备为解调端,可以是终端设备或网络侧设备。
第二设备获得第一符号,第一符号是调制端对第一部分比特信息和第二部分比特信息进行调制获得的符号,可以称为混合调制符号。具体地,调制端将第一部分比特信息调制成符号,将第二部分比特信息调制成符号的位置或间隔,从而形成第一符号。
步骤1401、所述第二设备对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
第二设备对第一符号进行解调,即可以得到第一部分比特信息和/或第二部分比特信息。
需要说明的是,第二设备对第一符号进行解调,得到的比特信息与第二设备的解调能力有关系。
一种实施方式中,第二设备只解调其中的第一部分的m位比特信息,按照第一部分的m位比特信息映射成的符号解调规则对第一部分比特信息进行解调。
一种实施方式中,第二设备只解调其中的第二部分的n位比特信息,按照第二部分的n位比特信息映射成的符号解调规则对第二部分比特信息进行解调。
一种实施方式中,第二设备解调第一符号中的全部(即m+n位)比特信息。可以按照第一部分的m位比特信息映射成的符号解调规则对第一部分比特信息进行解调,并按照第二部分的n位比特信息映射成的符号解调规则对第二部分比特信息进行解调。
在本申请实施例中,通过获得包含第一部分比特信息和第二部分比特信息的调制符号,对该调制符号进行解调,得到第一部分比特信息和/或第二部分比特信息,能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度。
可选地,所述对所述第一符号进行解调,包括:
将所述第一符号的符号反映射为第一部分比特信息;和/或,
将所述第一符号的符号的位置或间隔反映射为第二部分比特信息。
在本申请实施例中,通过将所述第一符号的符号反映射为第一部分比特信息,将所述第一符号的符号的位置或间隔反映射为第二部分比特信息,可以有效提升频带利用率,且实现简单。
可选地,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
符号的位置可以理解为该符号在第一时间单元内的第p(1≤p≤P)个第二时间单元的位置。
符号的位置的排列组合,可以理解为在第一时间单元内存在k(2≤k≤P)个符号,这k个符号的相对位置排列组合。
可选地,所述第一时间单元的长度为所述第二时间单元的长度的整数倍。即P(P≥2)个第二时间单元构成一个第一时间单元。例如,第一时间单元的长度为8个时隙,第二时间单元的长度为1个时隙,所述第一时间单元的长度为所述第二时间单元长度的8倍。
可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
第一时间单元的长度相对于第二时间单元的长度的倍数,可以是固定的,也可以不是固定的,可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的,取决于第一设备所采用的调制方式。
在本申请实施例中,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的,可以提高传输的灵活性和效率。
可选地,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
可以理解,在两个符号之间存在保护时隙的情况下,所述两个符号之间的间隔,即第二时间单元的个数大于等于1。
符号之间的间隔,即两个符号之间的第二时间单元的数目Q,如果不存在保护时隙,则Q≥0;如果存在保护时隙,则Q≥1。
可选地,所述第一符号的长度为所述第一时间单元的长度。
由于第一部分比特信息被映射成符号,第二部分比特信息被映射成符号的位置或符号的间隔维度上,因此,第一符号的长度等于第一时间单元的长度。
可选地,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
所述第一部分比特信息和所述第二部分比特信息为不同的比特信息,则说明比特信息的调制模式为复用模式,第一符号携带两部分不同的比特信息,可以获得较高的频带利用率。
所述第一部分比特信息和所述第二部分比特信息为相同的比特信息,则说明比特信息的调制模式为分集模式,即第一符号携带两部分相同的比特信息,提供了冗余性,从而可以获得分集增益,提高了传输可靠性。
可选地,所述对所述第一符号进行解调,包括:
根据第二配置信息和/或第一指示信息,对所述第一符号进行解调,其中,所述第二配置信息用于指示解调的参数,所述第一指示信息用于指示调制或解调的参数。
其中,第二配置信息可以是第二设备确定的,也可以来自第三设备。第一指示信息来自第一设备。
可选地,所述第二配置信息或第一指示信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
需要说明的是,第二配置信息和第一指示信息需要包含全部的解调制参数,分为以下几种情形:
1、第二配置信息指示全部的解调制参数;
2、第一指示信息指示全部的解调制参数;
3、第二配置信息和第一指示信息一起指示全部的解调制参数,即各自指示部分解调制参数。
一种实施方式中,第二设备只根据第二配置信息对第一符号进行解调,获得第一部分的m位比特信息。
此时,第二配置信息指示全部或部分解调参数。可选地第二配置信息中至少包括:
(I1)第一部分的m位比特流信息的调制类型,或比特映射规则;
(I2)调制阶数,其中的任一项或多项包括:
(i)第一部分的m位比特流信息的调制阶数M;
(ii)第二部分的n位比特流信息的调制阶数N;
(iii)m+n位比特流信息的混合调制阶数(M×N);
(I3)时间单元长度,其中的任一项或多项包括:
(i)第一时间单元的长度PT,第二时间单元的长度T;
(ii)第一时间单元的长度PT,第一时间单元的长度与第二时间单元的长度的倍数P;
(iii)第二时间单元的长度T,第一时间单元的长度与第二时间单元的长度的倍数P。
一种实施方式中,第二设备只根据第二配置信息对第一符号进行解调,获得第二部分的n位比特信息。
此时,第二配置信息指示全部或部分解调参数。可选地第二配置信息中至少包括:
(II1)第二部分的n位比特流信息的调制类型,或比特映射规则;
(II2)调制阶数,其中的任一项或多项包括:
(i)第一部分的m位比特流信息的调制阶数M;
(ii)第二部分的n位比特流信息的调制阶数N;
(iii)m+n位比特流信息的混合调制阶数(M×N);
(II3)时间单元长度,其中的任一项或多项包括:
(i)第一时间单元的长度PT,第二时间单元的长度T;
(ii)第一时间单元的长度PT,第一时间单元的长度与第二时间单元的长度的倍数P;
(iii)第二时间单元的长度T,第一时间单元的长度与第二时间单元的长度的倍数P。
一种实施方式中,第二设备只根据第二配置信息对第一符号进行解调,获得第一部分的m位比特信息和第二部分的n位比特信息。
此时,第二配置信息指示全部解调参数。可选地第二配置信息中至少包括:
(III1)第一部分的m位比特流信息的调制类型,或比特映射规则,以及,第二部分的n位比特流信息的调制类型,或比特映射规则;
(III2)调制阶数,其中的任一项或多项包括:
(i)第一部分的m位比特流信息的调制阶数M;
(ii)第二部分的n位比特流信息的调制阶数N;
(iii)m+n位比特流信息的混合调制阶数(M×N);
(III3)时间单元长度,其中的任一项或多项包括:
(i)第一时间单元的长度PT,第二时间单元的长度T;
(ii)第一时间单元的长度PT,第一时间单元的长度与第二时间单元的长度的倍数P;
(iii)第二时间单元的长度T,第一时间单元的长度与第二时间单元的长度的倍数P。
(III4)调制模式指示。
在一些可选的实施例中,第二设备只根据第一指示信息对第一符号进行解调,获得第一部分的m位比特信息。
在一些可选的实施例中,第二设备只根据第一指示信息对第一符号进行解调,获得第二部分的n位比特信息。
在一些可选的实施例中,第二设备只根据第一指示信息对第一符号进行解调,获得第一部分的m位比特信息和第二部分的n位比特信息。
第一指示信息包含的内容与相应情况下的第二配置信息相同,在此不再赘述。
在一些可选的实施例中,第二设备根据第二配置信息和第一指示信息对第一符号进行解调,获得第一部分的m位比特信息。此时,第二配置信息和第一指示信息构成的解调参数与相应情况下的第二配置信息相同,在此不再赘述。
在一些可选的实施例中,第二设备根据第二配置信息和第一指示信息对第一符号进行解调,获得第二部分的n位比特信息。此时,第二配置信息和第一指示信息构成的解调参数与相应情况下的第二配置信息相同,在此不再赘述。
在一些可选的实施例中,第二设备根据第二配置信息和第一指示信息对第一符号进行解调,获得第一部分的m位比特信息和第二部分的n位比特信息。此时,第二配置信息和第一指示信息一起指示全部的解调制参数,在此不再赘述。
在本申请实施例中,第二设备根据第二配置信息和/或第一指示信息进行解调,可以提升解调端的解调效率。
可选地,所述混合调制类型包括以下至少一项:
第一部分比特信息的调制类型或比特映射规则;
第二部分比特信息的调制类型或比特映射规则。
可选地,调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述混合调制阶数包括以下之一:
第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
可选地,所述时间单元的长度包括以下之一:
第一时间单元的长度,以及,第二时间单元的长度;
第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
可选地,所述调制模式包括:复用模式或分集模式。
复用模式下的混合调制适用于高速率传输场景或者高SNR通信场景。
分集模式下混合调制虽然不能提高系统的频带利用率,但是可以提高系统的传输可靠性,使系统获得分集增益,适用于传输可靠性要求高或低SNR通信场景。
本申请实施例实现了不同的接收设备或解调端接收发送端用统一的信号同时传输的第一部分比特信息和第二部分比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
可选地,所述方法还包括:
所述第二设备根据第一信息,确定所述第二配置信息;
或者,接收所述第三设备发送的所述第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可以理解的是,上述实施例提及的第二配置信息可以是第二设备确定的,具体根据第一信息确定。第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可选地,第二配置信息可以是第三设备确定的,具体地,第三设备根据第一信息确定第二配置信息,向第二设备发送第二配置信息。
可选的,第二设备向第三设备上报第二设备的能力信息。例如,进入连接态后,第二设备通过UE Capability Enquiry-UE Capability Information信令上报自己的UE能力信息,或者,通过UE Assistance Information信息上报自己的UE能力信息。或者,在初始注册或添加过程中,通过Initial UE message主动上报自己的UE能力信息。
第三设备可以是调制端,解调端,或第三方通信设备。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力,即支持的可调节的幅度信息,连续调幅或离散调幅及对应的连续或离散特征的状态数量;
调脉冲能力,包括调节脉冲的时隙位置、时隙间隔等;
解调能力,如支持相干解调或非相干解调能力;
天线能力,发送端/接收端各自的天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
历史的信道状态信息可以是曾经设备驻留时记录的信道状态信息。实时的信道状态信息可以是估计或是通过其它方式获得的信息状态信息。
在一些可选的实施例中,第二配置信息可以是默认配置好的或出厂设置的。
可选地,所述第二配置信息通过以下方式之一承载:
无线资源控制RRC信令;
媒体访问控制控制单元MAC CE;
物理层信令。
其中,物理层信令包括但不限于:DCI、SCI、物理帧头preamble等。
可选地,所述第一指示信息通过以下方式之一承载:DCI,SCI。
可选地,所述第二设备包括一个或多个解调端。
(a)如果第二设备为一个解调端,可以解调第一符号中全部或部分比特信息
(b)如果第二设备为多个解调端,每个解调端都可以解调第一符号中的全部或部分比特信息,取决于每个解调端的解调能力。
图15为本申请实施例提供的单解调端解调场景的示意图。如图15所示,在该场景下,发送端发送混合调制符号,系统配置或发送端指示接收端解调混合调制符号中的部分或全部比特信息。
图16为本申请实施例提供的多解调端解调场景的示意图,如图16所示,在该场景下,由于分布在网络中的UE的能力差异,部分的UE只能解调混合调制符号中的第一部分比特信息,部分UE能够解调混合调制符号中的第二部分比特信息,部分UE能够解调混合调制符号中的全部比特信息。这种应用场景的好处之一,发送端只需要利用统一的调制方式就可以同时为不同的用户提供信息传输,降低了调度和传输时延。
图17为本申请实施例提供的多解调端协助联合解调场景的示意图,如图17所示,在该场景下,由于分布在网络中的UE的能力差异,部分的UE只能解调混合调制符号中的第一部分比特信息,部分UE能够解调混合调制符号中的第二部分比特信息,部分UE能够解调混合调制符号中的全部比特信息。以UE1只能解调第一部分比特信息,UE2能够解调全部或第二部分比特信息为例,UE2在完成第二部分比特信息解调之后将解调出的信息传输给UE1,UE1将解调出的第一部分比特信息和来自于UE2传输的第二部分比特信息进行合并,从而解调出发送端的发送的混合调制符号的所有比特信息。通过UE之间的协作,实现联合解调。这种方式适合于UE能力弱,但对速率有要求的场景,但要求UE和UE之间能够基于类似于sidelink的数据和信令传输。
在本发明实施例中,通过将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号的符号位置和符号之间的间隔维度,通过设计混合调制的调制和解调 方法、信令流程、配置参数等,使得通信系统能够灵活的实现混合多维调制和解调制。一种情况下,系统能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,可以提高系统的传输可靠性或分集传输增益。
图18为本申请实施例提供的调制方法的流程示意图之三。如图18所示,该调制方法包括步骤1800和步骤1801。
步骤1800、第三设备接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号。
步骤1801、所述第三设备执行第一操作;
其中,所述第一操作包括:
根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;
或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息。
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调脉冲能力;
解调能力;
天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第一配置信息或第二配置信息通过以下方式之一承载:
无线资源控制RRC信令;
媒体访问控制控制单元MAC CE;
物理层信令。
关于第三设备的行为以及第三设备所执行步骤中相关描述的理解,可以参考前述实施例中的相关描述,在此不再赘述。
在本发明实施例中,通过发送第一配置信息,可选发送第二配置信息,使得调制端将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号的符号位置和符号之间的间隔维度,使得通信系统能够灵活的实现混合多维调制和解调制,系统获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,还可以提高系统的传输可靠性或分集传输增益。
本申请实施例提供的调制方法可应用在LTE系统、5G NR系统以及NR演进系统,6G系统,以及IEEE 802.11、无线光通信、反向散射通信等诸多无线通信系统等。
本申请实施例提供的调制方法,执行主体可以为调制装置。本申请实施例中以调制装置执行调制方法为例,说明本申请实施例提供的调制装置。
图19为本申请实施例提供的调制装置的结构示意图之一。如图19所示,该调制装置1900包括:
第一调制单元1910,用于对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
在本申请实施例中,通过将比特信息中的第一部分比特信息映射为符号,将比特信息中的第二部分比特信息调制到符号的位置或符号的间隔维度上,可以有效提升频带利用率,且实现简单。
可选地,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
可选地,所述第一时间单元的长度为所述第二时间单元长度的整数倍。
可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
可选地,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
可选地,所述第一符号的长度为所述第一时间单元的长度。
可选地,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
可选地,所述对比特信息进行调制,包括:
根据第一配置信息,对比特信息进行调制,所述第一配置信息用于指示调制的参数。
可选地,所述装置还包括:
第一发送单元,用于向第二设备发送第一指示信息,所述第一指示信息用于指示调制或解调的参数;
其中,所述第二设备为所述第一符号的解调端。
可选地,所述第一配置信息或第一指示信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
可选地,所述混合调制类型包括以下至少一项:
第一部分比特信息的调制类型或比特映射规则;
第二部分比特信息的调制类型或比特映射规则。
可选地,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述混合调制阶数包括以下之一:
第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
可选地,所述时间单元的长度包括以下之一:
第一时间单元的长度,以及,第二时间单元的长度;
第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
可选地,所述调制模式包括:复用模式或分集模式。
可选地,所述装置还包括:第一处理单元,用于:
根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一符号的解调端。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调脉冲能力;
解调能力;
天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
在本发明实施例中,通过将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号之间的位置和间隔维度,通过设计混合调制的调制和解调方法、信令流程、配置参数等,使得通信系统能够灵活的实现混合多维调制和解调制。一种情况 下,系统能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,可以提高系统的传输可靠性或分集传输增益。
本申请实施例中的调制装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的调制装置能够实现图10至图13的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图20为本申请实施例提供的调制装置的结构示意图之二。如图20所示,该调制装置2000包括:
第一获得单元2010,用于获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
第一解调单元2020,用于对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
在本申请实施例中,通过获得包含第一部分比特信息和第二部分比特信息的调制符号,对该调制符号进行解调,得到第一部分比特信息和/或第二部分比特信息,能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度。
可选地,所述对所述第一符号进行解调,包括:
将所述第一符号的符号反映射为第一部分比特信息;和/或,
将所述第一符号的符号的位置或间隔反映射为第二部分比特信息。
可选地,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
可选地,所述第一时间单元的长度为所述第二时间单元的长度的整数倍。
可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
可选地,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
可选地,所述第一符号的长度为所述第一时间单元的长度。
可选地,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
可选地,所述对所述第一符号进行解调,包括:
根据第二配置信息和/或第一指示信息,对所述第一符号进行解调,其中,所述第二配置信息用于指示解调的参数,所述第一指示信息用于指示调制或解调的参数。
可选地,所述第二配置信息或第一指示信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
可选地,所述混合调制类型包括以下至少一项:
第一部分比特信息的调制类型或比特映射规则;
第二部分比特信息的调制类型或比特映射规则。
可选地,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述混合调制阶数包括以下之一:
第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
可选地,所述时间单元的长度包括以下之一:
第一时间单元的长度,以及,第二时间单元的长度;
第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
可选地,所述调制模式包括:复用模式或分集模式。
可选地,所述装置还包括:第二处理单元,用于:
根据第一信息,确定所述第二配置信息;
或者,向第三设备上报所述第二设备的能力信息,接收所述第三设备发送的所述第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调脉冲能力;
解调能力;
天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第二设备包括一个或多个解调端。
本申请实施例中的调制装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
在本发明实施例中,通过将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号的符号位置和符号之间的间隔维度,通过设计混合调制的调制和解调方法、信令流程、配置参数等,使得通信系统能够灵活的实现混合多维调制和解调制。一种情况下,系统能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,可以提高系统的传输可靠性或分集传输增益。
本申请实施例提供的调制装置能够实现图14至图17的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图21为本申请实施例提供的调制装置的结构示意图之三。如图21所示,该调制装置2100包括:
第一接收单元2110,用于接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
第一执行单元2120,用于执行第一操作;
其中,所述第一操作包括:
根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;
或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调脉冲能力;
解调能力;
天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第一配置信息或第二配置信息通过以下方式之一承载:
无线资源控制RRC信令;
媒体访问控制控制单元MAC CE;
物理层信令。
在本发明实施例中,通过发送第一配置信息,可选发送第二配置信息,使得调制端将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号的符号位置和符号之间的间隔维度,使得通信系统能够灵活的实现混合多维调制和解调制,系统获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,还可以提高系统的传输可靠性或分集传输增益。
本申请实施例中的调制装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的调制装置能够实现图18的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图22所示,本申请实施例还提供一种通信设备2200,包括处理器2201和存储器2202,存储器2202上存储有可在所述处理器2201上运行的程序或指令,例如,该通信设备2200为终端时,该程序或指令被处理器2201执行时实现上述调制方法实施例的各个步骤,且能达到相同的技术效果。该通信设备2200为网络侧设备时,该程序或指令被处理器2201执行时实现上述调制方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第一设备,包括处理器和通信接口,处理器用于第一设备对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。具体地,第一设备为终端时,图23为实现本申请实施例的一种终端的硬件结构示意图。
该终端2300包括但不限于:射频单元2301、网络模块2302、音频输出单元2303、输入单元2304、传感器2305、显示单元2306、用户输入单元2307、接口单元2308、存储器2309以及处理器2310等中的至少部分部件。
本领域技术人员可以理解,终端2300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器23 10逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图23中示出的终端结构并不构成对终端的 限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元2304可以包括图形处理单元(Graphics Processing Unit,GPU)23041和麦克风23042,图形处理器23041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元2306可包括显示面板23061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板23061。用户输入单元2307包括触控面板23071以及其他输入设备23072中的至少一种。触控面板23071,也称为触摸屏。触控面板23071可包括触摸检测装置和触摸控制器两个部分。其他输入设备23072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元2301接收来自网络侧设备的下行数据后,可以传输给处理器2310进行处理;另外,射频单元2301可以向网络侧设备发送上行数据。通常,射频单元2301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器2309可用于存储软件程序或指令以及各种数据。存储器2309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器2309可以包括易失性存储器或非易失性存储器,或者,存储器2309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器2309包括但不限于这些和任意其它适合类型的存储器。
处理器2310可包括一个或多个处理单元;可选的,处理器2310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器2310中。
其中,处理器2310,用于对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
在本申请实施例中,通过将比特信息中的第一部分比特信息映射为符号,将比特信息中的第二部分比特信息调制到符号的位置或间隔,可以有效提升频带利用率,且实现简单。
可选地,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
可选地,所述第一时间单元为所述第二时间单元的整数倍。
可选地,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
可选地,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
可选地,所述第一符号的长度为所述第一时间单元的长度。
可选地,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
可选地,所述对比特信息进行调制,包括:
根据第一配置信息,对比特信息进行调制,所述第一配置信息用于指示调制的参数。
可选地,所述射频单元2301用于:
向第二设备发送第一指示信息,所述第一指示信息用于指示调制或解调的参数;
其中,所述第二设备为所述第一符号的解调端。
可选地,所述第一配置信息或第一指示信息包括以下至少一项:
混合调制类型;
混合调制阶数;
时间单元的长度;
调制模式。
可选地,所述混合调制类型包括以下至少一项:
第一部分比特信息的调制类型或比特映射规则;
第二部分比特信息的调制类型或比特映射规则。
可选地,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
可选地,所述混合调制阶数包括以下之一:
第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
可选地,所述时间单元的长度包括以下之一:
第一时间单元的长度,以及,第二时间单元的长度;
第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
可选地,所述调制模式包括:复用模式或分集模式。
可选地,所述处理器2310还用于:
根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一符号的解调端。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调脉冲能力;
解调能力;
天线能力。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
在本发明实施例中,通过将一部分比特信息进行符号调制,另一部分比特信息调制到已调制符号之间的位置和间隔维度,通过设计混合调制的调制和解调方法、信令流程、配置参数等,使得通信系统能够灵活的实现混合多维调制和解调制。一种情况下,系统能够获得较高频带利用率的同时降低系统SNR的要求,同时简化收发端的实现复杂度;另外一种情况下,可以提高系统的传输可靠性或分集传输增益。
需要说明的是,第二设备或第三设备也可能是终端。在此不再对第二设备或第三设备为终端时,终端各部件的功能进行展开。
本申请实施例还提供一种第二设备,包括处理器和通信接口,处理器用于获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。 该第二设备实施例与上述第二设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种第三设备,包括处理器和通信接口,通信接口用于接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;处理器用于执行第一操作;其中,所述第一操作包括:根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。该第三设备实施例与上述第三设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第三设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供一种网络侧设备,如图24所示,该网络侧设备2400包括:天线2401、射频装置2402、基带装置2403、处理器2404和存储器2405。天线2401与射频装置2402连接。在上行方向上,射频装置2402通过天线2401接收信息,将接收的信息发送给基带装置2403进行处理。在下行方向上,基带装置2403对要发送的信息进行处理,并发送给射频装置2402,射频装置2402对收到的信息进行处理后经过天线2401发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置2403中实现,该基带装置2403包括基带处理器。
基带装置2403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图24所示,其中一个芯片例如为基带处理器,通过总线接口与存储器2405连接,以调用存储器2405中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口2406,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备2400还包括:存储在存储器2405上并可在处理器2404上运行的指令或程序,处理器2404调用存储器2405中的指令或程序执行图10或14或图18所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述调制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述调制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述调制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的调制方法的步骤,所述网络侧设备可用于执行如上所述的调制方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技 术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (44)

  1. 一种调制方法,包括:
    第一设备对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
  2. 根据权利要求1所述的方法,其中,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
  3. 根据权利要求2所述的方法,其中,所述第一时间单元为所述第二时间单元的整数倍。
  4. 根据权利要求3所述的方法,其中,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
  5. 根据权利要求2所述的方法,其中,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
  6. 根据权利要求2所述的方法,其中,所述第一符号的长度为所述第一时间单元的长度。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述对比特信息进行调制,包括:
    根据第一配置信息,对比特信息进行调制,所述第一配置信息用于指示调制的参数。
  9. 根据权利要求1-8中任一项所述的方法,所述方法还包括:
    向第二设备发送第一指示信息,所述第一指示信息用于指示调制或解调的参数。
  10. 根据权利要求8或9所述的方法,其中,所述第一配置信息或第一指示信息包括以下至少一项:
    混合调制类型;
    混合调制阶数;
    时间单元的长度;
    调制模式。
  11. 根据权利要求10所述的方法,其中,所述混合调制类型包括以下至少一项:
    第一部分比特信息的调制类型或比特映射规则;
    第二部分比特信息的调制类型或比特映射规则。
  12. 根据权利要求11所述的方法,其中,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
  13. 根据权利要求10所述的方法,其中,所述混合调制阶数包括以下之一:
    第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
    第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
    第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
  14. 根据权利要求10所述的方法,其中,所述时间单元的长度包括以下之一:
    第一时间单元的长度,以及,第二时间单元的长度;
    第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
    第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
  15. 根据权利要求1-14中任一项所述的方法,所述方法还包括:
    所述第一设备根据第一信息,确定所述第一配置信息;
    或者,接收第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
    其中,所述第二设备为所述第一符号的解调端。
  16. 根据权利要求15所述的方法,其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调脉冲能力;
    解调能力;
    天线能力。
  17. 根据权利要求15所述的方法,其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  18. 一种调制方法,包括:
    第二设备获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
    所述第二设备对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
  19. 根据权利要求18所述的方法,其中,所述对所述第一符号进行解调,包括:
    将所述第一符号的符号反映射为第一部分比特信息;和/或,
    将所述第一符号的符号的位置或符号的间隔反映射为第二部分比特信息。
  20. 根据权利要求19所述的方法,其中,所述符号的位置为所述符号在第一时间单元内的位置或位置的排列组合;所述符号的间隔为两个符号之间的第二时间单元的个数。
  21. 根据权利要求20所述的方法,其中,所述第一时间单元的长度为所述第二时间单元的长度的整数倍。
  22. 根据权利要求21所述的方法,其中,所述第一时间单元的长度相对第二时间单元的长度的倍数是固定或非固定的。
  23. 根据权利要求20所述的方法,其中,在两个符号之间存在保护时隙的情况下,所述两个符号之间的第二时间单元的个数大于等于1。
  24. 根据权利要求20所述的方法,其中,所述第一符号的长度为所述第一时间单元的长度。
  25. 根据权利要求18-24中任一项所述的方法,其中,所述第一部分比特信息和所述第二部分比特信息为不同的比特信息;或者,所述第一部分比特信息和所述第二部分比特信息为相同的比特信息。
  26. 根据权利要求18-25中任一项所述的方法,其中,所述对所述第一符号进行解调,包括:
    根据第二配置信息和/或第一指示信息,对所述第一符号进行解调,其中,所述第二配置信息用于指示解调的参数,所述第一指示信息用于指示调制或解调的参数。
  27. 根据权利要求26所述的方法,其中,所述第二配置信息或第一指示信息包括以下至少一项:
    混合调制类型;
    混合调制阶数;
    时间单元的长度;
    调制模式。
  28. 根据权利要求27所述的方法,其中,所述混合调制类型包括以下至少一项:
    第一部分比特信息的调制类型或比特映射规则;
    第二部分比特信息的调制类型或比特映射规则。
  29. 根据权利要求28所述的方法,其中,所述调制类型包括以下至少一项:多载波调制;单载波调制;单维调制;二维调制;绝对调制;相对调制;差分调制。
  30. 根据权利要求27所述的方法,其中,所述混合调制阶数包括以下之一:
    第一部分比特信息的调制阶数,以及,第二部分比特信息的调制阶数;
    第一部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数;
    第二部分比特信息的调制阶数,以及,所述比特信息的混合调制阶数。
  31. 根据权利要求27所述的方法,其中,所述时间单元的长度包括以下之一:
    第一时间单元的长度,以及,第二时间单元的长度;
    第一时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数;
    第二时间单元的长度,以及,第一时间单元的长度与第二时间单元的长度之间的倍数。
  32. 根据权利要求26-31中任一项所述的方法,所述方法还包括:
    所述第二设备根据第一信息,确定所述第二配置信息;
    或者,接收第三设备发送的所述第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
  33. 根据权利要求32所述的方法,其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调脉冲能力;
    解调能力;
    天线能力。
  34. 根据权利要求32所述的方法,其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  35. 根据权利要求18-34中任一项所述的方法,其中,所述第二设备包括一个或多个解调端。
  36. 一种调制方法,包括:
    第三设备接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
    所述第三设备执行第一操作;
    其中,所述第一操作包括:
    根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;
    或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
  37. 根据权利要求36所述的方法,其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调脉冲能力;
    解调能力;
    天线能力。
  38. 根据权利要求36所述的方法,其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  39. 根据权利要求36所述的方法,其中,所述第一配置信息或第二配置信息通过以下方式之一承载:
    无线资源控制RRC信令;
    媒体访问控制控制单元MAC CE;
    物理层信令。
  40. 一种调制装置,包括:
    第一调制单元,用于对比特信息进行调制,得到第一符号,其中,所述比特信息中的第一部分比特信息被映射为符号,所述比特信息中的第二部分比特信息被映射为所述符号的位置或间隔。
  41. 一种调制装置,包括:
    第一获得单元,用于获得第一符号,其中,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
    第一解调单元,用于对所述第一符号进行解调,得到所述第一部分比特信息和/或第二部分比特信息。
  42. 一种调制装置,包括:
    第一接收单元,用于接收第一设备和/或第二设备的能力信息,其中,所述第一设备为第一符号的调制端,第二设备为第一符号的解调端,所述第一符号为包含第一部分比特信息和第二部分比特信息的调制符号;
    第一执行单元,用于执行第一操作;
    其中,所述第一操作包括:
    根据第一信息,确定第一配置信息,向所述第一设备发送所述第一配置信息;
    或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向所述第二设备发送所述第二配置信息;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
  43. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述的调制方法的步骤,或者实现如权利要求18至35任一项所述的调制方法的步骤,或者实现如权利要求36至39任一项所述的调制方法的步骤。
  44. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17任一项所述的调制方法的步骤,或者实现如权利要求18至35任一项所述的调制方法的步骤,或者实现如权利要求36至39任一项所述的调制方法的步骤。
PCT/CN2023/118193 2022-09-16 2023-09-12 调制方法、装置及通信设备 WO2024055953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211133192.4A CN117768276A (zh) 2022-09-16 2022-09-16 调制方法、装置及通信设备
CN202211133192.4 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055953A1 true WO2024055953A1 (zh) 2024-03-21

Family

ID=90274251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118193 WO2024055953A1 (zh) 2022-09-16 2023-09-12 调制方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117768276A (zh)
WO (1) WO2024055953A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125003A1 (zh) * 2016-01-18 2017-07-27 株式会社Ntt都科摩 比特到符号的映射方法和基站
CN109962763A (zh) * 2017-12-26 2019-07-02 中国移动通信有限公司研究院 一种多用户数据的传输方法及装置、设备
WO2021259177A1 (zh) * 2020-06-22 2021-12-30 中兴通讯股份有限公司 数据调制方法、装置、设备及存储介质
CN113924792A (zh) * 2019-06-14 2022-01-11 高通股份有限公司 侧链路能力信令和配置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125003A1 (zh) * 2016-01-18 2017-07-27 株式会社Ntt都科摩 比特到符号的映射方法和基站
CN109962763A (zh) * 2017-12-26 2019-07-02 中国移动通信有限公司研究院 一种多用户数据的传输方法及装置、设备
CN113924792A (zh) * 2019-06-14 2022-01-11 高通股份有限公司 侧链路能力信令和配置
WO2021259177A1 (zh) * 2020-06-22 2021-12-30 中兴通讯股份有限公司 数据调制方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mapping of bits onto signal point constellation for LCR TDD 64QAM modulation", 3GPP DRAFT; R1-080161(MAPPING OF BITS ONTO SIGNAL POINT CONSTELLATION FOR LCR TDD 64QAM), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sevilla, Spain; 20080108, 8 January 2008 (2008-01-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050108690 *

Also Published As

Publication number Publication date
CN117768276A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
JP6062564B2 (ja) ワイヤレスlan送信における重複フレームを位相回転させるためのシステムおよび方法
TWI710241B (zh) 聚合方法和用戶設備
WO2020181441A1 (zh) 通信方法、装置及系统
WO2021097597A1 (zh) 信号传输的方法和装置、反射器以及接收器
CN109952805A (zh) 非授权频段上的随机接入方法、装置和存储介质
JP6227790B2 (ja) ワイヤレスネットワーク上の改善された通信のためのシステムおよび方法
WO2024055953A1 (zh) 调制方法、装置及通信设备
TWI684375B (zh) 通訊方法、終端設備和網路設備
WO2024055947A1 (zh) 基于混合调制的通信方法、装置及通信设备
WO2020020330A1 (zh) 一种数据调制方法、装置及计算机存储介质
WO2023169563A1 (zh) 延迟多普勒域dd域的控制信道资源的指示方法及装置
WO2024067191A1 (zh) 一种通信方法及装置
WO2021105546A1 (en) Reducing peak to average power ratio in wireless communication systems
WO2024067598A1 (zh) 调制、解调方法、装置、设备、系统及存储介质
WO2023066112A1 (zh) 信息比特调制方法、解调制方法、设备和存储介质
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2018137219A1 (zh) 一种信息传输方法及装置
WO2023078453A1 (zh) 传输方法、装置、设备及存储介质
WO2024041504A1 (zh) 一种通信方法及装置
WO2024041522A1 (zh) 信号处理的方法和装置
WO2024088065A1 (zh) 一种通信方法及装置
WO2024093634A1 (zh) 信息传输的方法与装置
WO2024051628A1 (zh) 资源映射方法、装置和通信设备
WO2024055878A1 (zh) 通信方法和通信装置
US20210328845A1 (en) Transmission method and first communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864685

Country of ref document: EP

Kind code of ref document: A1