WO2023078453A1 - 传输方法、装置、设备及存储介质 - Google Patents

传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023078453A1
WO2023078453A1 PCT/CN2022/130506 CN2022130506W WO2023078453A1 WO 2023078453 A1 WO2023078453 A1 WO 2023078453A1 CN 2022130506 W CN2022130506 W CN 2022130506W WO 2023078453 A1 WO2023078453 A1 WO 2023078453A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission scheme
target
communication device
channel
information
Prior art date
Application number
PCT/CN2022/130506
Other languages
English (en)
French (fr)
Inventor
孙布勒
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023078453A1 publication Critical patent/WO2023078453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a transmission method, device, equipment and storage medium.
  • Information can be transmitted in different dimensions and sent out using different waveforms.
  • Orthogonal Frequency Division Multiplexing In current wireless communication systems, Orthogonal Frequency Division Multiplexing (OFDM) is the mainstream waveform. For high-speed scenarios, it is expected to use the Orthogonal Time Frequency Space (OTFS) scheme in the future to achieve efficient transmission in Doppler and delay-rich environments. However, the coexistence, switching and mode selection of OFDM and OTFS schemes have not yet had a good solution.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Embodiments of the present application provide a transmission method, device, device, and storage medium, which can solve the problems of coexistence, switching, and mode selection of OFDM and OTFS schemes.
  • a transmission method includes:
  • the communication device determines a target transmission scheme of the target signal, where the target transmission scheme is a first transmission scheme or a second transmission scheme;
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • a transmission device comprising:
  • a first determining module configured to determine a target transmission scheme of a target signal, where the target transmission scheme is a first transmission scheme or a second transmission scheme;
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • a communication device which includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor During execution, the steps of the transmission method as described in the first aspect are realized.
  • a communication device in a fourth aspect, includes a processor and a communication interface, wherein the processor is used for:
  • the target transmission scheme is a first transmission scheme or a second transmission scheme
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect A step of.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the program described in the first aspect The steps of the method.
  • the wireless environment and transmission conditions can be better matched, and efficient communication transmission can be realized.
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application is applicable
  • Fig. 2 is a schematic diagram of the processing flow of the transceiver end of the OTFS system provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of a delay-Doppler domain channel provided by an embodiment of the present application.
  • Fig. 4 is one of the schematic flow charts of the transmission method provided by the embodiment of the present application.
  • FIG. 5 is the second schematic flow diagram of the transmission method provided by the embodiment of the present application.
  • Fig. 6 is the third schematic flow diagram of the transmission method provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a flexible selection of a transmission scheme provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a transmission device provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture etc.) and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • OTFS Orthogonal Time Frequency Space
  • the channel impulse response (Channel Impulse Response, CIR) is time-invariant or has a long coherence time.
  • CIR Channel Impulse Response
  • the channel will shift in frequency due to the Doppler effect, resulting in a spectrally ambiguous version of the transmitted signal, ie, frequency dispersion.
  • the transmitted signal in high mobility scenarios is double-dispersed in time domain and frequency domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the channel is time-varying rapidly in the time-frequency domain, in the delay-Doppler domain, the channel represents the delay in the scattering environment and the strength of the Doppler shift, which directly characterizes the signal propagation characteristics.
  • the delay-Doppler domain channel has the characteristics of sparsity and stability, which is of great help to channel estimation and symbol detection.
  • the Orthogonal Time Frequency Space directly modulates the symbols in the delay Doppler domain, so it can take advantage of the wireless delay in the delay Doppler domain. channel response characteristics.
  • OTFS modulation logically maps the information in a data packet with a size of M ⁇ N to an M ⁇ N grid point on a two-dimensional delay-Doppler plane, that is, the information in each grid point Pulse modulates one symbol in the data packet.
  • the data set on the M ⁇ N delay Doppler domain plane is transformed into the N ⁇ M time-frequency domain plane by Inverse Sympletic Fourier Transform (ISFFT). Then, after a symbol-level one-dimensional inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) and serial-to-parallel conversion, it becomes a time-domain sampling point and sends it out.
  • ISFFT Inverse Sympletic Fourier Transform
  • Fig. 2 is a schematic diagram of the processing flow of the receiving end of the OTFS system provided by the embodiment of the present application, wherein the receiving end of the OTFS system is roughly a reverse process of the sending end: after the time domain sampling point is received by the receiver, it undergoes parallel-to-serial conversion and symbol-level
  • the one-dimensional fast Fourier transform (Fast Fourier Transform, FFT) first transforms to the waveform on the time-frequency domain plane, and then converts it into a delayed Dopp
  • the waveform of the Doppler domain plane, and then the symbols carried by the delayed Doppler domain waveform are processed by the receiver: including channel estimation and equalization, demodulation and decoding, etc.
  • FFT fast Fourier Transform
  • the channel experienced by the symbols can be regarded as a time-invariant two-dimensional delay-Doppler domain channel, which directly reflects the relative reflector between the transceivers in the wireless link.
  • Doppler response characteristics of channel delay due to location geometry Compared with traditional schemes that model delay and Doppler spread as damage to time-domain waveforms, OTFS directly utilizes the diversity characteristics in delay and Doppler spread, which can reduce the impact of channel fading on performance.
  • FIG. 3 is a schematic diagram of a delayed Doppler domain channel provided by an embodiment of the present application.
  • the channel impulse response matrix characterized by the delay-Doppler domain is sparse. Using OTFS technology to analyze the sparse channel matrix in the delay-Doppler domain can simplify the receiver algorithm and reduce the complexity of traditional schemes based on minimum mean square error or zero-breaking.
  • the analysis of the delay Doppler domain in the OTFS system can be realized by using the existing communication framework in the time-frequency domain and adding additional signal processing at the transceiver end, and these additional processing do not require new hardware modules.
  • the transmitting and receiving operation in the delayed Doppler domain can be realized by using the existing hardware equipment.
  • the additional signal processing at the transmitting end requires only one Fourier transform
  • the additional signal processing at the receiving end is inverse Fourier transform and corresponding channel estimation and detection decoding in the delayed Doppler domain.
  • OTFS technology can be easily implemented as a pre- and post-processing module of a filtered OFDM system, so it has good compatibility with the multi-carrier system under the existing NR technology architecture.
  • OTFS has various advantages mentioned above. But there are also some disadvantages. For example, because the way the signal goes through the channel is to perform two-dimensional convolution with the delayed Doppler channel, the receiver either performs linear detection based on a large-dimensional matrix or iterative nonlinear detection when performing signal detection, which eventually leads to other Signal detection complexity is much higher than OFDM. Furthermore, the signal processing of OTFS is performed based on the frame composed of multiple delay indexes and multiple Doppler indexes as the minimum granularity, and the channel estimation can only be performed at the granularity of one frame at the fastest, and the channel estimation results are used for the following A frame is prone to mismatch problems.
  • the embodiment of the present application can dynamically select OFDM or OTFS in an actual system, and carry information in different domains to achieve the most efficient communication transmission.
  • Fig. 4 is one of the flow diagrams of the transmission method provided by the embodiment of the present application. As shown in Fig. 4, the flow includes:
  • Step 400 the communication device determines a target transmission scheme of a target signal, where the target transmission scheme is a first transmission scheme or a second transmission scheme;
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • the communication device may be the sending side of the target signal, the sending side of the target signal may be a terminal device, and the communication peer of the communication device (ie, the receiving side of the target signal) may be a terminal device or a network side device;
  • the communication device may be the sending side of the target signal, the sending side of the target signal may be a network side device, and the communication peer of the communication device (ie, the receiving side of the target signal) may be a terminal device;
  • the communication device may be the receiving side of the target signal, the receiving side of the target signal may be a terminal device, and the communication peer of the communication device (ie, the sending side of the target signal) may be a terminal device or a network side device;
  • the communication device may be the receiving side of the target signal, the receiving side of the target signal may be a network side device, and the communication peer of the communication device (ie, the sending side of the target signal) may be a terminal device;
  • the embodiment of the present application can determine the target transmission scheme of the target signal, and switch the transmission scheme of the target signal to the target transmission scheme, that is, switch the target signal to the target transmission scheme
  • the corresponding domain is transmitted to realize the transmission of the target signal, and an appropriate transmission scheme can be flexibly adopted to realize the efficient transmission of the target signal.
  • the default transmission scheme is the first transmission scheme.
  • the target signal may be The transmission scheme is switched from the default transmission scheme to the second transmission scheme, and the default transmission scheme may be used at other times except when the communication device determines that the target transmission scheme of the target signal is the second transmission scheme.
  • the default transmission scheme is the second transmission scheme.
  • the target signal may be The transmission scheme is switched from the default transmission scheme to the first transmission scheme, and the default transmission scheme may be adopted at other times except when the communication device determines that the target transmission scheme of the target signal is the second transmission scheme.
  • the first transmission scheme may be a transmission scheme based on an OFDM communication system
  • the second transmission scheme may be a transmission scheme based on an OTFS communication system.
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the method further includes:
  • the communication device maps the target signal in the frequency domain or the time-frequency domain and then converts it to the time domain to send the target signal;
  • the communication device converts the target signal into a frequency domain or a time-frequency domain for demodulation after receiving the target signal.
  • the transmitting side of the target signal may transmit the modulated target signal Mapping in the frequency domain or time-frequency domain, performing inverse Fourier transform and converting it to the time domain and sending it out
  • the receiving side of the target signal can perform Fourier transform on the received target signal and then demodulate it in the frequency domain or time-frequency domain and decode.
  • the communication device may map the target signal in the frequency domain or the time-frequency domain, and then convert the target signal in the frequency domain or the time-frequency domain into a time-frequency domain. domain to send.
  • the communication device may perform Fourier transform on the received target signal into the frequency domain or time-frequency domain, and then perform demodulation and decoding.
  • the method further includes:
  • the communication device maps the target signal in the delayed Doppler domain and then converts it to the time domain to send the target signal;
  • the communication device In a case where the communication device is the receiving side of the target signal, the communication device converts the target signal into a delay-Doppler domain for demodulation after receiving the target signal.
  • the sending side of the target signal may transmit the modulated target signal Mapped in the delayed Doppler domain, and then converted to the time-frequency domain using a specific transformation (such as Heisenberg transform), and then converted to the time domain by inverse Fourier transform and sent out, the receiving side of the target signal can convert the received target After the signal is Fourier transformed, it is transformed into the delayed Doppler domain by a specific transformation (such as Wigner transform), and then demodulated and decoded in the delayed Doppler domain.
  • a specific transformation such as Heisenberg transform
  • the communication device may map the target signal in the delay Doppler domain, and convert the target signal in the delay Doppler domain to the time-frequency domain , and then perform an inverse Fourier transform to convert to the time domain for transmission.
  • the communication device may perform Fourier transform transformation on the received target signal to the frequency domain or time-frequency domain, and then perform Wigner transform transformation to Delayed Doppler domain, then demodulation and decoding are performed in the delayed Doppler domain.
  • Fig. 5 is the second schematic flow diagram of the transmission method provided by the embodiment of the present application
  • Fig. 6 is the third schematic flow diagram of the transmission method provided by the embodiment of the present application, as shown in Fig. 5 and Fig. 6, the embodiment of the present application can be based on The selected target transmission scheme undergoes corresponding domain transformation, and finally sends and receives in the time domain.
  • IFFT means inverse Fourier transform
  • ISFFT means inverse symplectic Fourier transform
  • Heisenberg transform can generally be replaced by multiple parallel IFFTs.
  • the communication device determining a target transmission scheme of the target signal includes:
  • the communication device determines that the target transmission scheme of the first part of the target signal is the first transmission scheme, the target transmission scheme of the second part of the target signal is the second transmission scheme, and the first part and the second The two parts belong to the same time unit or the same frequency unit.
  • different parts belonging to the same time unit or the same frequency unit can flexibly select the target transmission scheme.
  • FIG. 7 is a schematic diagram of a flexible selection of a transmission scheme provided by an embodiment of the present application. As shown in Figure 7, multiple symbols in a frame or a subframe can flexibly select a transmission scheme, that is, some symbols use the first transmission scheme, and other symbols use the first transmission scheme.
  • Second transmission scheme For example, it is determined to use the second transmission scheme according to the speed of the transceiver (at high speed), but since the information to be transmitted contains the sounding reference signal, the symbol part including the sounding reference signal is transmitted using the first transmission scheme.
  • the default transmission scheme can be used for most of the time, and the target transmission scheme can be used for other times;
  • the communication device may determine the target transmission scheme of these other symbols as the second transmission scheme.
  • the communication device may determine the target transmission scheme of these other symbols as the first transmission scheme.
  • the communication device determining a target transmission scheme of the target signal includes:
  • the communication device determines that the target transmission scheme of the first channel is the first transmission scheme, the target transmission scheme of the second channel is the second transmission scheme, and both the first channel and the second channel are bearer The channel of the target signal;
  • the first channel is at least one of the following: a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH); a physical uplink control channel (Physical Uplink Control Channel, PUCCH) ; Physical Random Access Channel (Packet Random Access Channel, PRACH);
  • the second channel is at least one of the following: Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH); Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH ); Physical Random Access Channel (Packet Random Access Channel, PRACH);
  • the first channel is at least one of the following: a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH); a physical downlink control channel (Physical Downlink Control Channel, PDCCH); a physical A broadcast channel (Physical Broadcast Channel, PBCH); the second channel is at least one of the following: a physical downlink shared channel PDSCH; a physical downlink control channel PDCCH; a physical broadcast channel PBCH;
  • the first channel is at least one of the following: a physical side link control channel (Physical SideLink Control Channel, PSCCH); physical side link sharing Channel (Physical SideLink Shared Channel, PSSCH); Physical SideLink Broadcast Channel (Physical SideLink Broadcast Channel, PSBCH); Physical Sidelink Discovery Channel (Physical Sidelink Discovery Channel, PSDCH); Physical Sidelink Feedback Channel (Physical SideLink Feedback Channel, PSFCH); the second channel is at least one of the following: Physical SideLink Control Channel (Physical SideLink Control Channel, PSCCH); Physical SideLink Shared Channel (Physical SideLink Shared Channel, PSSCH); physical Physical SideLink Broadcast Channel (PSBCH); Physical SideLink Discovery Channel (PSDCH); Physical SideLink Feedback Channel (PSFCH).
  • PSCCH Physical SideLink Control Channel
  • PSSCH Physical SideLink Broadcast Channel
  • PSBCH Physical Sidelink Discovery Channel
  • PSFCH Physical SideLink Feedback Channel
  • the second channel is at least one of the following: Physical SideLink Control Channel (Physical SideLink Control Channel, PSCCH
  • a part of the target signal may be carried on the first channel and adopt the first transmission scheme
  • the first channel may include one or more channels
  • another part of the target signal may be carried on the second channel and adopt the second transmission scheme
  • the second channel may include one or more channels
  • the first channel and the second channel may include the same or partly the same or completely different channels.
  • the first channel may include at least one of the following:
  • Physical uplink control channel PUCCH Physical uplink control channel
  • the second channel may include at least one of the following:
  • Physical uplink control channel PUCCH Physical uplink control channel
  • the first channel may include at least one of the following:
  • the second channel is at least one of the following:
  • Physical broadcast channel PBCH Physical broadcast channel
  • the first channel may include at least one of the following:
  • PSDCH Physical direct link discovery channel
  • the second channel may include at least one of the following:
  • PSDCH Physical direct link discovery channel
  • the target transmission scheme is for at least one of the following channels, and the transmission modes used by different channels may be the same or different:
  • PSDCH Physical direct link discovery channel
  • the communication device determining a target transmission scheme of the target signal includes:
  • the communication device determines a target transmission scheme of the target signal based on the first information
  • the first information includes at least one of the following:
  • the communication device may determine a target transmission scheme of the target signal based on the first information
  • the first information includes at least one of the following:
  • a default transmission scheme that is, in general, the default transmission scheme can be directly adopted, once the target transmission scheme of the target signal is determined based on the first information, Then the default transmission scheme can be switched to the target transmission scheme to execute the transmission of the target signal.
  • the default transmission scheme as the first transmission scheme as an example, in general, other signals in the time unit where the target signal is located can adopt the first transmission scheme, once the target transmission scheme of the target signal is determined to be the second based on the first information transmission scheme, you can switch the transmission scheme from the default first transmission scheme to the second transmission scheme when transmitting the target signal;
  • the transmission scheme can be switched from the default second transmission scheme to the first transmission scheme when the target signal is transmitted.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the relative speed is less than or equal to a first relative speed threshold, determining that the target transmission scheme is the first transmission scheme;
  • the communication device determines that the relative speed is greater than or equal to a second relative speed threshold value, determine that the target transmission scheme is the second transmission scheme.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the relative speed is less than or equal to a first relative speed threshold value, determine that the target transmission scheme is the first transmission scheme.
  • the communication device may, based on the relative speed between the communication device and the communication peer, Determine the target transmission scheme for the target signal.
  • the communication device may determine that the relative speed is less than or equal to the first relative speed
  • the threshold value for example, the relative speed between the communication device and the communication peer is v, and v ⁇ 1 , where ⁇ 1 is preset or predefined by the protocol or indicated by the high layer or communicated If the first relative speed threshold value indicated by the peer end is used, then the target transmission scheme is determined to be the first transmission scheme.
  • the default transmission scheme as the second transmission scheme as an example
  • other signals within the time unit where the target signal is located can adopt the second transmission scheme, once the relative speed between the communication device and the communication peer is determined If it is less than or equal to the first relative speed threshold, it can be determined that the target transmission scheme of the target signal is the first transmission scheme, and then the transmission scheme can be switched from the default second transmission scheme to the first transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the relative speed is greater than or equal to a second relative speed threshold value, determine that the target transmission scheme is the second transmission scheme.
  • the communication device may, based on the relative speed between the communication device and the communication peer, Determine the target transmission scheme for the target signal.
  • the communication device may determine that the relative speed is greater than or equal to the second relative speed
  • the threshold value for example, the relative speed between the communication device and the communication peer is v, and v ⁇ 2 , where ⁇ 2 is preset or predefined by the protocol or indicated by the high layer or the communication pair If the second relative speed threshold indicated by the terminal is used, it is determined that the target transmission scheme is the second transmission scheme.
  • the default transmission scheme as the first transmission scheme as an example
  • other signals within the time unit where the target signal is located can adopt the first transmission scheme, once the relative speed between the communication device and the communication peer is determined greater than or equal to the second relative speed threshold value, it can be determined that the target transmission scheme of the target signal is the second transmission scheme, and then the transmission scheme can be switched from the default first transmission scheme to the second transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the number of paths is less than or equal to a first threshold value of the number of paths, determine that the target transmission scheme is the first transmission scheme
  • the communication device determines that the number of paths is greater than or equal to a second threshold value of the number of paths, determine that the target transmission scheme is the second transmission scheme.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the number of paths is less than or equal to a first threshold value of the number of paths, determine that the target transmission scheme is the first transmission scheme.
  • the communication device may determine the target based on the number of paths between the communication device and the communication peer.
  • the target transmission scheme for the signal may be determined.
  • the communication device may determine that the number of paths is less than or equal to the first number of paths
  • the threshold value for example, the number of paths (or the number of path clusters) between the communication device and the communication peer is p, and p ⁇ 1 , where ⁇ 1 is preset or predefined by the protocol or The first path number threshold value indicated by the high layer or indicated by the communication peer end determines that the target transmission scheme is the first transmission scheme.
  • the default transmission scheme as the second transmission scheme as an example
  • other signals within the time unit where the target signal is located can adopt the second transmission scheme, once the number of paths between the communication device and the communication peer is determined If it is less than or equal to the first path number threshold, it can be determined that the target transmission scheme of the target signal is the first transmission scheme, and then the transmission scheme can be switched from the default second transmission scheme to the first transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the number of paths is greater than or equal to a second threshold value of the number of paths, determine that the target transmission scheme is the second transmission scheme.
  • the communication device may determine the target based on the number of paths between the communication device and the communication peer.
  • the target transmission scheme for the signal may be determined.
  • the communication device may determine that the number of paths is greater than or equal to the second number of paths
  • a threshold value for example, the number of paths (or number of path clusters) between the communication device and the communication peer is p, and p ⁇ 2 , where ⁇ 2 is preset or predefined by the protocol or The second path number threshold value indicated by the high layer or indicated by the communication peer end determines that the target transmission scheme is the second transmission scheme.
  • the default transmission scheme as the first transmission scheme as an example, in general, other signals within the time unit where the target signal is located can adopt the first transmission scheme, once the number of paths between the communication device and the communication peer is determined If it is greater than or equal to the second path number threshold, it can be determined that the target transmission scheme of the target signal is the second transmission scheme, and then the transmission scheme can be switched from the default first transmission scheme to the second transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the signal type of the target signal includes a sounding reference signal, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the signal type of the target signal includes a demodulation reference signal, determine that the target transmission scheme is the second transmission scheme.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the signal type of the target signal includes a sounding reference signal, determine that the target transmission scheme is the first transmission scheme.
  • the communication device may determine a target transmission scheme of the target signal based on the signal type of the target signal.
  • the communication device may determine that the target The transmission scheme is the first transmission scheme.
  • the transmission scheme may be switched from the default second transmission scheme to the first transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the signal type of the target signal includes a demodulation reference signal, determine that the target transmission scheme is the second transmission scheme.
  • the communication device may determine a target transmission scheme of the target signal based on the signal type of the target signal.
  • the communication device may determine the The target transmission scheme is the second transmission scheme.
  • the transmission scheme may be switched from the default first transmission scheme to the second transmission scheme when transmitting the target signal.
  • the communication device determines the target signal transmission scheme based on the first information, including:
  • the communication device determines that the duration is greater than or equal to a first time threshold, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the duration is greater than or equal to a second time threshold, determine that the target transmission scheme is a second transmission scheme.
  • the communication device determines the target signal transmission scheme based on the first information, including:
  • the communication device determines that the duration is greater than or equal to a first time threshold, determine that the target transmission scheme is a first transmission scheme.
  • the communication device may determine the target based on the elapsed time from the previous adoption of the target transmission scheme.
  • the target transmission scheme for the signal may be determined.
  • the communication device may determine the time elapsed from the first transmission scheme before determining the distance
  • the duration is greater than or equal to the first time threshold, for example, the duration elapsed from the previous adoption of the first transmission scheme is greater than or equal to T 1 time, where T 1 is preset or predefined by the protocol or indicated by the high layer or If the first time threshold indicated by the communication peer is used, it is determined that the target transmission scheme is the first transmission scheme.
  • the default transmission scheme as the second transmission scheme as an example
  • other signals in the time unit where the target signal is located can use the second transmission scheme.
  • the communication device determines the target signal transmission scheme based on the first information, including:
  • the communication device determines that the duration is greater than or equal to a second time threshold, determine that the target transmission scheme is a second transmission scheme.
  • the communication device may determine the target based on the elapsed time from the previous adoption of the target transmission scheme.
  • the target transmission scheme for the signal may be determined.
  • the communication device may determine the elapsed time elapsed from the second transmission scheme before determining the distance
  • the duration is greater than or equal to the second time threshold, for example, the time elapsed from the previous second transmission scheme is greater than or equal to T 2 time, where T 2 is preset or predefined by the protocol or indicated by the high layer or If the second time threshold indicated by the communication peer is used, it is determined that the target transmission scheme is the second transmission scheme.
  • the default transmission scheme Take the default transmission scheme as the first transmission scheme as an example.
  • other signals in the time unit where the target signal is located can use the first transmission scheme. Once it is determined that the time elapsed from the previous second transmission scheme is greater than or equal to the second time threshold, then it can be determined that the target transmission scheme of the target signal is the second transmission scheme, and then the transmission scheme can be switched from the default first transmission scheme to the second transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the delay is less than or equal to a first delay threshold, determining that the target transmission scheme is a first transmission scheme
  • the communication device determines that the delay is greater than or equal to a second delay threshold, determine that the target transmission scheme is the second transmission scheme.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the delay is less than or equal to a first delay threshold, determine that the target transmission scheme is the first transmission scheme.
  • the communication device may determine the target signal based on the delay between the communication device and the communication peer. Target transfer scheme.
  • the communication device can determine the delay between the communication device and the communication peer
  • the delay between the communication device and the communication peer may refer to the maximum delay ⁇ max , and ⁇ max ⁇ 1 , where ⁇ 1 is the maximum delay threshold (first delay threshold) preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer; or, the communication device and the The delay between communication peers may refer to the RMS delay spread (RMS delay spread) ⁇ rms , and ⁇ rms ⁇ 2 , where ⁇ 2 is preset or predefined by the protocol or indicated by the high layer or the communication peer If the indicated root mean square delay extension threshold (the first delay threshold), then determine that the target transmission scheme is the first transmission scheme.
  • RMS delay spread RMS delay spread
  • the default transmission scheme as the second transmission scheme as an example
  • other signals in the time unit where the target signal is located can adopt the second transmission scheme, once it is determined that the delay between the communication device and the communication peer is less than or equal to the first delay threshold, then it can be determined that the target transmission scheme of the target signal is the first transmission scheme, and then the transmission scheme can be switched from the default second transmission scheme to the first transmission scheme when transmitting the target signal.
  • the communication device determines a target transmission scheme of the target signal based on the first information, including:
  • the communication device determines that the delay is greater than or equal to a second delay threshold, determine that the target transmission scheme is the second transmission scheme.
  • the communication device may determine the target signal based on the delay between the communication device and the communication peer. Target transfer scheme.
  • the communication device can determine the delay between the communication device and the communication peer
  • the delay between the communication device and the communication peer may refer to the maximum delay ⁇ max , and ⁇ max > ⁇ 3 , where ⁇ 3 is the maximum delay threshold (the second delay threshold) preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer.
  • the delay between the communication device and the communication peer may refer to root mean square delay spread (RMS delay spread) ⁇ rms , and ⁇ rms > ⁇ 4 , where ⁇ 4 is preset or predefined by the protocol or If the root mean square delay spread threshold (second delay threshold) indicated by the high layer or indicated by the communication peer is determined, the target transmission scheme is the second transmission scheme.
  • RMS delay spread root mean square delay spread
  • the transmission scheme can be switched from the default first transmission scheme to the second transmission scheme when transmitting the target signal; specifically, the communication The device may determine that the target transmission scheme of the target signal is the first transmission scheme when it is determined that at least one of the following conditions is met, for example, it may determine to switch from the default transmission scheme to the first transmission scheme when it is determined that at least one of the following conditions is met plan:
  • the relative speed between the communication device and the communication peer is v, and v ⁇ 1 , where ⁇ 1 is the first relative speed that is preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer. speed threshold;
  • the number of paths (or number of path clusters) between the communication device and the communication peer is p, and p ⁇ 1 , where ⁇ 1 is preset or predefined by the protocol or indicated by the high layer or the communication pair The threshold value of the first path number indicated by the terminal;
  • the signal type of the target signal includes a sounding reference signal
  • T1 is the first time threshold preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer;
  • the delay between the communication device and the communication peer is less than or equal to the first delay threshold, for example, the delay between the communication device and the communication peer may refer to a maximum delay ⁇ max , and ⁇ max ⁇ 1 , where ⁇ 1 is the maximum delay threshold threshold (first delay threshold) preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer; or, the delay between the communication device and the communication peer may refer to an average RMS delay spread (RMS delay spread) ⁇ rms , and ⁇ rms ⁇ 2 , where ⁇ 2 is the root mean square delay spread threshold threshold (first delay threshold).
  • RMS delay spread average RMS delay spread
  • the communication device may determine that the target transmission scheme of the target signal is the second transmission scheme when it determines that at least one of the following conditions is met, for example, it may determine to switch from the default transmission scheme when it determines that at least one of the following conditions is met To the second transfer scheme:
  • the relative speed between the communication device and the communication peer is v, and v ⁇ 2 , where ⁇ 2 is the second relative speed preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer. speed threshold;
  • the number of paths (or the number of path clusters) between the communication device and the communication peer is p, and p ⁇ 2 , where ⁇ 2 is preset or predefined by the protocol or indicated by the high layer or the communication pair The second path number threshold value indicated by the terminal;
  • the signal type of the target signal includes a demodulation reference signal
  • T2 is the second time threshold preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer
  • the delay between the communication device and the communication peer is greater than or equal to the second delay threshold, for example, the delay between the communication device and the communication peer may refer to a maximum delay ⁇ max , and ⁇ max > ⁇ 3 , Wherein, ⁇ 3 is a preset maximum delay threshold (second delay threshold) preset or predefined by the protocol or indicated by the high layer or indicated by the communication peer.
  • the delay between the communication device and the communication peer may refer to root mean square delay spread (RMS delay spread) ⁇ rms , and ⁇ rms > ⁇ 4 , where ⁇ 4 is preset or predefined by the protocol or The root mean square delay extension threshold (the second delay threshold) indicated by the high layer or indicated by the communication peer.
  • RMS delay spread root mean square delay spread
  • the first relative speed threshold and the second relative speed threshold may be equal or unequal.
  • the first path number threshold and the second path number threshold may be equal or unequal.
  • the first time threshold and the second time threshold may be equal or unequal.
  • the first delay threshold and the second delay threshold may be equal or unequal.
  • the method also includes:
  • Target channel coding is determined based on the number of paths between the communication device and the communication peer.
  • OTFS technology is selected as the transmission scheme, it is necessary to select the channel coding scheme with the best matching threshold according to the number of paths (number of path clusters), etc., so as to avoid always using channel coding with high complexity or low code rate, which will affect the system. transmission efficiency.
  • the communication device may further determine the target channel coding based on the number of paths between the communication device and the communication peer.
  • the determining target channel coding based on the number of paths between the communication device and the communication peer includes at least one of the following:
  • the target channel coding is a channel coding with a code rate proportional to the number of paths
  • the target channel code is a convolutional code whose constraint length is inversely proportional to the number of paths;
  • the channel coding includes channel coding with a code rate greater than or equal to C;
  • the channel coding includes a convolutional code with a constraint length less than L;
  • the channel coding includes channel coding with a code rate less than or equal to C;
  • the channel coding includes a convolutional code with a constraint length greater than or equal to L;
  • C is a positive number greater than 0 and less than 1
  • L is a positive integer greater than or equal to 1.
  • the communication device may determine that the target channel coding is a channel coding whose code rate is proportional to the number of paths;
  • the communication device can determine that the code rate of the channel coding used is proportional to the number of paths (or the number of path clusters), and is suitable for any kind of channel coding, such as block codes, convolutional codes, and low-density parity checks.
  • code Low Density Parity Check, LDPC
  • Turbo code Polar code
  • the communication device may determine that the target channel code is a convolutional code whose constraint length is inversely proportional to the number of paths;
  • the constraint length can also be used as a description, that is, the communication device can determine that the constraint length of the convolutional code used is inversely proportional to the number of paths (or the number of path clusters).
  • the communication device may determine that the channel coding includes channel coding with a code rate greater than or equal to C when the number of paths is greater than or equal to a third threshold of the number of paths;
  • the communication device may determine that the channel coding includes a convolutional code with a constraint length less than L when the path number is greater than or equal to the fourth path number threshold;
  • the communication device may determine that the channel coding includes channel coding with a code rate less than or equal to C when the number of paths is less than the fifth path number threshold;
  • the communication device may determine that the channel coding includes a convolutional code with a constraint length greater than or equal to L when the number of paths is less than the sixth threshold number of paths;
  • C is a positive number greater than 0 and less than 1
  • L is a positive integer greater than or equal to 1.
  • the diversity gain is large and the coding gain is small, so a simple code with small coding gain but low complexity is used, such as a convolutional code with a shorter constraint length or an LDPC with a higher code rate code, Turbo code, Polar code.
  • a simple code with small coding gain but low complexity such as a convolutional code with a shorter constraint length or an LDPC with a higher code rate code, Turbo code, Polar code.
  • the number of paths (or number of path clusters) is small, the diversity gain is small, and the coding gain is large, and the coding scheme with high complexity and large coding gain is used, such as a convolutional code with a long constraint length, a low code rate LDPC code, Turbo code, Polar code).
  • the third path number threshold, the fourth path number threshold, the fifth path number threshold, and the sixth path number threshold may all be equal or partially equal or not all equal;
  • the fifth path number threshold can be less than the third path number threshold or slightly larger than the third path number threshold;
  • the fifth path number threshold may be smaller than the third path number threshold or slightly larger than the fourth path number threshold;
  • the sixth path number threshold may be smaller than the third path number threshold or slightly larger than the third path number threshold;
  • the sixth path number threshold may be smaller than the third path number threshold or slightly larger than the fourth path number threshold;
  • the following encoding schemes (a)-(b) can be selected for use:
  • a channel code with a code rate greater than or equal to C can be any kind of channel code, such as block codes, convolutional codes, LDPC codes, Turbo codes, and Polar codes;
  • L is a positive integer greater than 1
  • C is a positive number greater than 0 and less than 1.
  • Channel coding with code rate less than or equal to C this channel coding can be any kind of channel coding, common such as block code, convolutional code, LDPC code, Turbo code, Polar code; or
  • any of the coding schemes (a)-(d) can be randomly selected or determined based on the predefined one item.
  • the method also includes:
  • the communication device After determining the target transmission scheme of the target signal, the communication device sends first indication information to the communication peer, where the first indication information is used to indicate at least one of the following:
  • the transmission plan information includes at least one of the following:
  • the target delivery scheme used (either the first delivery scheme or the second delivery scheme); or
  • Transmission parameters of the target transmission scheme used such as number of subcarriers, number of symbols, number of delay indices, number of Doppler indices; or
  • Channel coding-related parameters of the target transmission scheme (such as coding scheme, code rate, constraint length, etc.);
  • the communication device After determining the target transmission scheme of the target signal, the communication device sends first indication information to the communication peer, where the first indication information is used to indicate at least one of the following:
  • the The first indication information is specifically used to indicate at least one of the following:
  • multiple parts within a time unit can flexibly select a transmission scheme, that is, some use the first transmission scheme, and other parts use the second transmission scheme.
  • the target transmission scheme or the transmission parameters of the target transmission scheme; or the Channel coding related parameters of the target transmission scheme.
  • the first indication information may specifically be used to indicate at least one of the following:
  • the first part and at least one of the following: the target transmission scheme of the first part is the first transmission scheme; or the transmission parameters of the first transmission scheme; or the channel coding related parameters of the first transmission scheme;
  • the second part and at least one of the following: the target transmission scheme of the second part is the second transmission scheme; or the transmission parameters of the second transmission scheme; or the channel coding related parameters of the second transmission scheme.
  • the first indication information is downlink information
  • the first indication information is carried in at least one of the following:
  • DCI Downlink Control Information
  • Radio Resource Control (RRC);
  • MAC Medium Access Control
  • SIB System Information Block
  • the first indication information is uplink information
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in Xn interface signaling
  • the first indication information is carried in at least one of the following:
  • the first indication information is downlink information
  • the first indication information is carried in at least one of the following:
  • SIB system information block
  • the first indication information is uplink information
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in Xn interface signaling
  • the first indication information is carried in at least one of the following:
  • the first indication information may include at least one of the following:
  • RRC radio resource control
  • PDSCH Physical Downlink Shared Channel
  • MAC media access control layer control element
  • SIB System Information Block
  • PUSCH Physical Uplink Shared Channel
  • the first indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • a dedicated physical channel can be defined, that is, a dedicated physical channel, and the communication device notifies the peer of at least one of the following:
  • the method also includes:
  • the communication device receives second indication information sent by the communication peer, and the second indication information includes at least one of the following:
  • the target communication peer Before the target communication peer determines the target transmission scheme based on the first information, it needs to know the specific content of the first information. Therefore, it can receive the second indication information sent by the communication peer in advance, and the second indication information includes at least the following: one item:
  • the receiving end needs to report its speed v' and the number of paths (or number of path clusters) p of the channel to the communication device.
  • the second indication information is downlink information
  • the second indication information is carried in at least one of the following:
  • SIB system information block
  • the second indication information is uplink information
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in Xn interface signaling
  • the second indication information is carried in at least one of the following:
  • the second indication information is downlink information
  • the second indication information is carried in at least one of the following:
  • SIB system information block
  • the second indication information is uplink information
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in Xn interface signaling
  • the second indication information is carried in at least one of the following:
  • the second indication information may include at least one of the following:
  • RRC radio resource control
  • PDSCH Physical Downlink Shared Channel
  • MAC media access control layer control element
  • SIB System Information Block
  • PUSCH Physical Uplink Shared Channel
  • the second indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • a dedicated physical channel can be defined, that is, a dedicated physical channel, and the communication peer notifies the communication device of at least one of the following:
  • the communication device determining a target transmission scheme of the target signal includes:
  • the communication device receives third indication information sent by the communication peer
  • the communication device determines at least one of the following based on the third indication information:
  • the target transmission scheme of the target signal is the target transmission scheme of the target signal
  • the target transmission scheme may also be notified to the communication device by the communication peer after determining based on the manners of the foregoing embodiments; therefore, the communication device may determine at least one of the following based on the third indication information:
  • a target transmission scheme of the target signal wherein the target transmission scheme of the target signal may be determined by the communication peer;
  • the transmission parameters of the target transmission scheme wherein the transmission parameters of the target transmission scheme may be determined by the communication peer; or
  • the channel coding-related parameters of the target transmission scheme wherein the channel coding-related parameters of the target transmission scheme may be determined by the communication peer.
  • the communication device determines at least one of the following based on the third indication information: a target transmission scheme of the target signal; transmission parameters of the target transmission scheme; channel coding related parameters of the target transmission scheme, including :
  • the communication device determines at least one of the following based on the third indication information:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, the transmission parameters of the first transmission scheme, and the first channel coding related parameters;
  • the target transmission scheme may also be determined by the communication peer end based on the methods of the foregoing embodiments and then notified to the communication device; and the communication peer end may also determine that after multiple parts within a time unit adopt different transmission schemes, At least one of the following is indicated through the third indication information:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, or the transmission parameters of the first transmission scheme, or the first channel coding related parameters; or
  • the communication device determines at least one of the following based on the third indication information:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, or the transmission parameters of the first transmission scheme, or the first channel coding related parameters; or
  • the third indication information is downlink information
  • the third indication information is carried in at least one of the following:
  • SIB system information block
  • the third indication information is uplink information
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in Xn interface signaling
  • the third indication information is carried in at least one of the following:
  • the third indication information is downlink information
  • the third indication information is carried in at least one of the following:
  • SIB system information block
  • the third indication information is uplink information
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in Xn interface signaling
  • the third indication information is carried in at least one of the following:
  • the third indication information may include at least one of the following:
  • RRC radio resource control
  • PDSCH Physical Downlink Shared Channel
  • MAC media access control layer control element
  • SIB System Information Block
  • PUSCH Physical Uplink Shared Channel
  • the third indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • a dedicated physical channel can be defined, that is, a dedicated physical channel, and the communication peer notifies the communication device of at least one of the following:
  • a target transmission scheme of the target signal wherein the target transmission scheme of the target signal may be determined by the communication peer;
  • the transmission parameters of the target transmission scheme wherein the transmission parameters of the target transmission scheme may be determined by the communication peer; or
  • the channel coding-related parameters of the target transmission scheme wherein the channel coding-related parameters of the target transmission scheme may be determined by the communication peer.
  • the method also includes:
  • the communication device determines the target transmission scheme of the target signal, at least one of the following is determined based on protocol pre-definition:
  • the transmission parameters of the target transmission scheme may be determined based on the predefined protocol by the sending side and the receiving side of the target signal;
  • the channel coding-related parameters of the target transmission scheme may be determined based on protocol pre-definition by the sending side and the receiving side of the target signal;
  • the default transmission scheme may be determined by the sending side and the receiving side of the target signal based on the predefined protocol
  • the transmission parameters of the default transmission scheme may be determined based on the protocol predefined by the sending side and the receiving side of the target signal;
  • the channel coding of the default transmission scheme may be determined by the sending side and the receiving side of the target signal based on protocol pre-definition.
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the execution subject may be a transmission device, or a control module in the transmission device for executing the transmission method.
  • the transmission device provided in the embodiment of the present application is described by taking the transmission device executing the transmission method as an example.
  • Fig. 8 is a schematic structural diagram of a transmission device provided by an embodiment of the present application. As shown in Fig. 8, the device 800 includes: a first determination module 810; wherein:
  • the first determination module 810 determine the target transmission scheme of the target signal, the target transmission scheme is the first transmission scheme or the second transmission scheme;
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the apparatus further includes:
  • a first mapping module configured to map the target signal in the frequency domain or the time-frequency domain and then convert to the time domain to send the target signal when the communication device is the sending side of the target signal;
  • the first conversion module is configured to convert the target signal into a frequency domain or a time-frequency domain for demodulation after receiving the target signal when the communication device is the receiving side of the target signal.
  • the apparatus further includes:
  • the second mapping module is configured to map the target signal in the delayed Doppler domain and then convert it to the time domain to send the target signal when the communication device is the sending side of the target signal;
  • the second conversion module is configured to convert the target signal into a delayed Doppler domain for demodulation after receiving the target signal when the communication device is the receiving side of the target signal.
  • the first determining module is specifically configured to:
  • the target transmission scheme of the first part of the target signal is the first transmission scheme
  • the target transmission scheme of the second part of the target signal is the second transmission scheme
  • the first part and the second part belong to the same A time unit or the same frequency unit.
  • the first determining module is specifically configured to:
  • the target transmission scheme of the first channel is the first transmission scheme
  • the target transmission scheme of the second channel is the second transmission scheme
  • both the first channel and the second channel carry the target signal channel
  • the first channel is at least one of the following: a physical uplink shared channel PUSCH; a physical uplink control channel PUCCH; a physical random access channel PRACH;
  • the second channel is At least one of the following: physical uplink shared channel PUSCH; physical uplink control channel PUCCH; physical random access channel PRACH;
  • the first channel is at least one of the following: physical downlink shared channel PDSCH; physical downlink control channel PDCCH; physical broadcast channel PBCH;
  • the second channel is at least one of the following : Physical Downlink Shared Channel PDSCH; Physical Downlink Control Channel PDCCH; Physical Broadcast Channel PBCH;
  • the first channel is at least one of the following: Physical Side Link Control Channel PSCCH; Physical Side Link Shared Channel PSSCH; Physical Side Chain Road broadcast channel PSBCH; Physical direct link discovery channel PSDCH; Physical direct link feedback channel PSFCH;
  • the second channel is at least one of the following: Physical side link control channel PSCCH; Physical side link shared channel PSSCH; Physical side link broadcast channel PSBCH; physical through link discovery channel PSDCH; physical through link feedback channel PSFCH.
  • the first determining module is specifically configured to:
  • the first information includes at least one of the following:
  • the first determining module is specifically configured to:
  • the communication device determines that the relative speed is less than or equal to a first relative speed threshold, determining that the target transmission scheme is the first transmission scheme;
  • the communication device determines that the relative speed is greater than or equal to a second relative speed threshold value, determine that the target transmission scheme is the second transmission scheme.
  • the first determination module is specifically configured to:
  • the communication device determines that the number of paths is less than or equal to a first threshold value of the number of paths, determine that the target transmission scheme is the first transmission scheme
  • the communication device determines that the number of paths is greater than or equal to a second threshold value of the number of paths, determine that the target transmission scheme is the second transmission scheme.
  • the first determining module is specifically configured to:
  • the communication device determines that the signal type of the target signal includes a sounding reference signal, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the signal type of the target signal includes a demodulation reference signal, determine that the target transmission scheme is the second transmission scheme.
  • the first determining module is specifically configured to:
  • the communication device determines that the duration is greater than or equal to a first time threshold, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the duration is greater than or equal to a second time threshold, determine that the target transmission scheme is a second transmission scheme.
  • the first determination module is specifically configured to:
  • the communication device determines that the delay is less than or equal to a first delay threshold, determining that the target transmission scheme is a first transmission scheme
  • the communication device determines that the delay is greater than or equal to a second delay threshold, determine that the target transmission scheme is the second transmission scheme.
  • the device also includes:
  • the second determining module is configured to determine the target channel code based on the number of paths between the communication device and the communication peer when the target transmission scheme is determined to be the second transmission scheme.
  • the second determination module is specifically used for at least one of the following:
  • the target channel coding is a channel coding with a code rate proportional to the number of paths
  • the target channel code is a convolutional code whose constraint length is inversely proportional to the number of paths;
  • the channel coding includes channel coding with a code rate greater than or equal to C;
  • the channel coding includes a convolutional code with a constraint length less than L;
  • the channel coding includes channel coding with a code rate less than or equal to C;
  • the channel coding includes a convolutional code with a constraint length greater than or equal to L;
  • C is a positive number greater than 0 and less than 1
  • L is a positive integer greater than or equal to 1.
  • the device also includes:
  • the first sending module is configured to send first indication information to the communication peer after the determination of the target transmission scheme of the target signal, where the first indication information is used to indicate at least one of the following:
  • the The first indication information is specifically used to indicate at least one of the following:
  • the first indication information is downlink information
  • the first indication information is carried in at least one of the following:
  • SIB system information block
  • the first indication information is uplink information
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in Xn interface signaling
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • the device also includes:
  • the first receiving module is configured to receive second indication information sent by the communication peer, and the second indication information includes at least one of the following:
  • the second indication information is downlink information
  • the second indication information is carried in at least one of the following:
  • SIB system information block
  • the second indication information is uplink information
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in Xn interface signaling
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • the first determining module is specifically configured to:
  • At least one of the following is determined:
  • the target transmission scheme of the target signal is the target transmission scheme of the target signal
  • the first determining module is specifically configured to:
  • At least one of the following is determined:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, the transmission parameters of the first transmission scheme, and the first channel coding related parameters;
  • the third indication information is downlink information
  • the third indication information is carried in at least one of the following:
  • SIB system information block
  • the third indication information is uplink information
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in Xn interface signaling
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • the device also includes:
  • the third determination module is configured to determine at least one of the following based on protocol pre-definition after the communication device determines the target transmission scheme of the target signal:
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the transmission device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the transmission device provided in the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 2 to FIG. 7 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the programs or instructions that can run on the processor 901 for example, when the communication device 900 is a terminal, the programs or instructions are executed by the processor 901 to implement the various processes of the above transmission method embodiments, and can achieve the same technical effect.
  • the communication device 900 is a network-side device, when the program or instruction is executed by the processor 901, each process of the above transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the communication device may be a terminal device, and its communication peer may be a network side device or a terminal device;
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface,
  • the processor is used to:
  • the target transmission scheme is a first transmission scheme or a second transmission scheme
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. at least some of the components.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and processes it to the processor 1010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, at least one application program or instruction required by a function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • processor 1010 is used for:
  • the target transmission scheme is a first transmission scheme or a second transmission scheme
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the processor 1010 is further configured to:
  • the communication device is the receiving side of the target signal, after receiving the target signal, convert the target signal into a frequency domain or a time-frequency domain for demodulation.
  • the processor 1010 is further configured to:
  • the communication device is the sending side of the target signal, after mapping the target signal in the delayed Doppler domain, converting to the time domain and sending the target signal;
  • the target signal is converted into a delayed Doppler domain for demodulation.
  • processor 1010 is also used for:
  • the target transmission scheme of the first part of the target signal is the first transmission scheme
  • the target transmission scheme of the second part of the target signal is the second transmission scheme
  • the first part and the second part belong to the same A time unit or the same frequency unit.
  • processor 1010 is also used for:
  • the target transmission scheme of the first channel is the first transmission scheme
  • the target transmission scheme of the second channel is the second transmission scheme
  • both the first channel and the second channel carry the target signal channel
  • the first channel is at least one of the following: a physical uplink shared channel PUSCH; a physical uplink control channel PUCCH; a physical random access channel PRACH;
  • the second channel is At least one of the following: physical uplink shared channel PUSCH; physical uplink control channel PUCCH; physical random access channel PRACH;
  • the first channel is at least one of the following: physical downlink shared channel PDSCH; physical downlink control channel PDCCH; physical broadcast channel PBCH;
  • the second channel is at least one of the following : Physical Downlink Shared Channel PDSCH; Physical Downlink Control Channel PDCCH; Physical Broadcast Channel PBCH;
  • the first channel is at least one of the following: Physical Side Link Control Channel PSCCH; Physical Side Link Shared Channel PSSCH; Physical Side Chain Road broadcast channel PSBCH; Physical direct link discovery channel PSDCH; Physical direct link feedback channel PSFCH;
  • the second channel is at least one of the following: Physical side link control channel PSCCH; Physical side link shared channel PSSCH; Physical side link broadcast channel PSBCH; physical through link discovery channel PSDCH; physical through link feedback channel PSFCH.
  • processor 1010 is also used for:
  • the first information includes at least one of the following:
  • the processor 1010 is further configured to:
  • the communication device determines that the relative speed is less than or equal to a first relative speed threshold, determining that the target transmission scheme is the first transmission scheme;
  • the communication device determines that the relative speed is greater than or equal to a second relative speed threshold value, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1010 is further configured to:
  • the communication device determines that the number of paths is less than or equal to a first threshold value of the number of paths, determine that the target transmission scheme is the first transmission scheme
  • the communication device determines that the number of paths is greater than or equal to a second threshold value of the number of paths, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1010 is further configured to:
  • the communication device determines that the signal type of the target signal includes a sounding reference signal, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the signal type of the target signal includes a demodulation reference signal, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1010 is further configured to:
  • the communication device determines that the duration is greater than or equal to a first time threshold, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the duration is greater than or equal to a second time threshold, determine that the target transmission scheme is a second transmission scheme.
  • the processor 1010 is further configured to:
  • the communication device determines that the delay is less than or equal to a first delay threshold, determining that the target transmission scheme is a first transmission scheme
  • the communication device determines that the delay is greater than or equal to a second delay threshold, determine that the target transmission scheme is the second transmission scheme.
  • processor 1010 is also used for:
  • the target channel coding is determined based on the number of paths between the communication device and the communication peer.
  • processor 1010 is also used for at least one of the following:
  • the target channel coding is a channel coding with a code rate proportional to the number of paths
  • the target channel code is a convolutional code whose constraint length is inversely proportional to the number of paths;
  • the channel coding includes channel coding with a code rate greater than or equal to C;
  • the channel coding includes a convolutional code with a constraint length less than L;
  • the channel coding includes channel coding with a code rate less than or equal to C;
  • the channel coding includes a convolutional code with a constraint length greater than or equal to L;
  • C is a positive number greater than 0 and less than 1
  • L is a positive integer greater than or equal to 1.
  • processor 1010 is used for:
  • the communication device After determining the target transmission scheme of the target signal, the communication device sends first indication information to the communication peer, where the first indication information is used to indicate at least one of the following:
  • the The first indication information is specifically used to indicate at least one of the following:
  • the first indication information is downlink information
  • the first indication information is carried in at least one of the following:
  • SIB system information block
  • the first indication information is uplink information
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in Xn interface signaling
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • processor 1010 is also used for:
  • the receiving communication peer sends second indication information, where the second indication information includes at least one of the following:
  • the second indication information is downlink information
  • the second indication information is carried in at least one of the following:
  • SIB system information block
  • the second indication information is uplink information
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in Xn interface signaling
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • processor 1010 is also used for:
  • At least one of the following is determined:
  • the target transmission scheme of the target signal is the target transmission scheme of the target signal
  • processor 1010 is also used for:
  • the communication device determines at least one of the following based on the third indication information:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, the transmission parameters of the first transmission scheme, and the first channel coding related parameters;
  • the third indication information is downlink information
  • the third indication information is carried in at least one of the following:
  • SIB system information block
  • the third indication information is uplink information
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in Xn interface signaling
  • the third indication information is carried in at least one of the following:
  • the third indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • processor 1010 is also used for:
  • the communication device determines the target transmission scheme of the target signal, at least one of the following is determined based on protocol pre-definition:
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the communication device may be a network side device, and its communication peer may be a terminal device.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface,
  • the processor is used to:
  • the target transmission scheme is a first transmission scheme or a second transmission scheme
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • the network-side device embodiment corresponds to the method embodiment of the communication device above, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the network-side device embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • the network device 1100 includes: an antenna 1101 , a radio frequency device 1102 , and a baseband device 1103 .
  • the antenna 1101 is connected to the radio frequency device 1102 .
  • the radio frequency device 1102 receives information through the antenna 1101, and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101 .
  • the foregoing frequency band processing device may be located in the baseband device 1103 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1103 , and the baseband device 1103 includes a processor 1104 and a memory 1105 .
  • the baseband device 1103 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1103 may also include a network interface 1106 for exchanging information with the radio frequency device 1102, such as a common public radio interface (CPRI for short).
  • a network interface 1106 for exchanging information with the radio frequency device 1102, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention also includes: instructions or programs stored in the memory 1105 and operable on the processor 1104, and the processor 1104 calls the instructions or programs in the memory 1105 to execute the modules shown in FIG. 8 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • processor 1104 is used for:
  • the target transmission scheme is a first transmission scheme or a second transmission scheme
  • the first transmission scheme is a transmission scheme based on an OFDM communication system
  • the second transmission scheme is a transmission scheme based on an OTFS communication system.
  • the target signal is dynamically carried in different domains, which can better match the wireless environment and transmission conditions to achieve efficient communication transmission.
  • the processor 1104 is further configured to:
  • the communication device is the receiving side of the target signal, after receiving the target signal, convert the target signal into a frequency domain or a time-frequency domain for demodulation.
  • the processor 1104 is further configured to:
  • the communication device is the sending side of the target signal, after mapping the target signal in the delayed Doppler domain, converting to the time domain and sending the target signal;
  • the target signal is converted into a delayed Doppler domain for demodulation.
  • processor 1104 is also used for:
  • the target transmission scheme of the first part of the target signal is the first transmission scheme
  • the target transmission scheme of the second part of the target signal is the second transmission scheme
  • the first part and the second part belong to the same A time unit or the same frequency unit.
  • processor 1104 is also used for:
  • the target transmission scheme of the first channel is the first transmission scheme
  • the target transmission scheme of the second channel is the second transmission scheme
  • both the first channel and the second channel carry the target signal channel
  • the first channel is at least one of the following: a physical uplink shared channel PUSCH; a physical uplink control channel PUCCH; a physical random access channel PRACH; the second channel is At least one of the following: Physical uplink
  • the first channel is at least one of the following: physical downlink shared channel PDSCH; physical downlink control channel PDCCH; physical broadcast channel PBCH;
  • the second channel is at least one of the following : Physical Downlink Shared Channel PDSCH; Physical Downlink Control Channel PDCCH; Physical Broadcast Channel PBCH;
  • the first channel is at least one of the following: Physical Side Link Control Channel PSCCH; Physical Side Link Shared Channel PSSCH; Physical Side Chain Road broadcast channel PSBCH; Physical direct link discovery channel PSDCH; Physical direct link feedback channel PSFCH;
  • the second channel is at least one of the following: Physical side link control channel PSCCH; Physical side link shared channel PSSCH; Physical side link broadcast channel PSBCH; physical through link discovery channel PSDCH; physical through link feedback channel PSFCH.
  • processor 1104 is also used for:
  • the first information includes at least one of the following:
  • the processor 1104 is further configured to:
  • the communication device determines that the relative speed is less than or equal to a first relative speed threshold, determining that the target transmission scheme is the first transmission scheme;
  • the communication device determines that the relative speed is greater than or equal to a second relative speed threshold value, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1104 is further configured to:
  • the communication device determines that the number of paths is less than or equal to a first threshold value of the number of paths, determine that the target transmission scheme is the first transmission scheme
  • the communication device determines that the number of paths is greater than or equal to a second threshold value of the number of paths, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1104 is further configured to:
  • the communication device determines that the signal type of the target signal includes a sounding reference signal, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the signal type of the target signal includes a demodulation reference signal, determine that the target transmission scheme is the second transmission scheme.
  • the processor 1104 is further configured to:
  • the communication device determines that the duration is greater than or equal to a first time threshold, determine that the target transmission scheme is a first transmission scheme
  • the communication device determines that the duration is greater than or equal to a second time threshold, determine that the target transmission scheme is a second transmission scheme.
  • the processor 1104 is further configured to:
  • the communication device determines that the delay is less than or equal to a first delay threshold, determining that the target transmission scheme is a first transmission scheme
  • the communication device determines that the delay is greater than or equal to a second delay threshold, determine that the target transmission scheme is the second transmission scheme.
  • processor 1104 is also used for:
  • the target channel coding is determined based on the number of paths between the communication device and the communication peer.
  • processor 1104 is also used for at least one of the following:
  • the target channel coding is a channel coding with a code rate proportional to the number of paths
  • the target channel code is a convolutional code whose constraint length is inversely proportional to the number of paths;
  • the channel coding includes channel coding with a code rate greater than or equal to C;
  • the channel coding includes a convolutional code with a constraint length less than L;
  • the channel coding includes channel coding with a code rate less than or equal to C;
  • the channel coding includes a convolutional code with a constraint length greater than or equal to L;
  • C is a positive number greater than 0 and less than 1
  • L is a positive integer greater than or equal to 1.
  • processor 1104 is also used for:
  • the communication device After determining the target transmission scheme of the target signal, the communication device sends first indication information to the communication peer, where the first indication information is used to indicate at least one of the following:
  • the The first indication information is specifically used to indicate at least one of the following:
  • the first indication information is downlink information
  • the first indication information is carried in at least one of the following:
  • SIB system information block
  • the first indication information is uplink information
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in Xn interface signaling
  • the first indication information is carried in at least one of the following:
  • the first indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • processor 1104 is also used for:
  • the receiving communication peer sends second indication information, where the second indication information includes at least one of the following:
  • the second indication information is downlink information
  • the second indication information is carried in at least one of the following:
  • SIB system information block
  • the second indication information is uplink information
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in Xn interface signaling
  • the second indication information is carried in at least one of the following:
  • the second indication information is carried in a dedicated physical channel, and the dedicated physical channel is dedicated to transmission of indication messages between the communication device and the communication peer.
  • processor 1104 is also used for:
  • At least one of the following is determined:
  • the target transmission scheme of the target signal is the target transmission scheme of the target signal
  • processor 1104 is also used for:
  • the communication device determines at least one of the following based on the third indication information:
  • the first part in the target signal and at least one of the following: the target transmission scheme of the first part is the first transmission scheme, the transmission parameters of the first transmission scheme, and the first channel coding related parameters;
  • the second part in the target signal and at least one of the following: the target transmission scheme of the second part is the second transmission scheme, the transmission parameters of the second transmission scheme, and the second channel coding related parameters.
  • the third indication information is downlink information
  • the third indication information is carried in at least one of the following:
  • SIB system information block
  • the third indication information is uplink information
  • the third indication information is carried in at least one of the following:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、装置、设备及存储介质,属于通信技术领域,本申请实施例的传输方法包括:通信设备确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。

Description

传输方法、装置、设备及存储介质
相关申请的交叉引用
本申请要求于2021年11月08日提交的申请号为202111316435.3,发明名称为“传输方法、装置、设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种传输方法、装置、设备及存储介质。
背景技术
信息可以传输在不同的维度,使用不同的波形发送出去。
目前的无线通信系统中,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是主流波形。面向高速场景,未来有望使用正交时频空域(Orthogonal Time Frequency Space,OTFS)方案来实现在多普勒和延迟丰富的环境下的高效传输。但OFDM和OTFS方案的共存、切换,模式选择问题还未有较好的解决方案。
发明内容
本申请实施例提供一种传输方法、装置、设备及存储介质,能够解决OFDM和OTFS方案的共存、切换、和模式选择问题。
第一方面,提供了一种传输方法,该方法包括:
通信设备确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述 第二传输方案为基于OTFS通信系统的传输方案。
第二方面,提供了一种传输装置,该装置包括:
第一确定模块,用于确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。第三方面,提供了一种通信设备,该通信设备包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的传输方法的步骤。
第四方面,提供了一种通信设备,该通信设备包括处理器及通信接口,其中,所述处理器用于:
确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,可以更 好地匹配无线环境和传输条件,实现高效的通信传输。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的结构图;
图2是本申请实施例提供的OTFS系统的收发端处理流程的示意图;
图3是本申请实施例提供的延迟多普勒域信道的示意图;
图4是本申请实施例提供的传输方法的流程示意图之一;
图5是本申请实施例提供的传输方法的流程示意图之二;
图6是本申请实施例提供的传输方法的流程示意图之三;
图7是本申请实施例提供的传输方案灵活选择示意图;
图8是本申请实施例提供的传输装置的结构示意图;
图9是本申请实施例提供的通信设备的结构示意图;
图10为实现本申请实施例的一种终端的硬件结构示意图;
图11为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一 个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗 衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输方法、装置、设备及存储介质进行详细地说明。
首先对以下内容进行介绍:
(1)正交时频空域(Orthogonal Time Frequency Space,OTFS);
在时不变系统中,信道脉冲响应(Channel Impulse Response,CIR)是时不变的或具有较长的相干时间。但随着用户移动性增加或载波频率的提高,信道由于多普勒效应而引起频移,从而产生传输信号的频谱模糊版本,即频率色散。由于多径传播和多普勒效应的共同存在,高移动性场景下的传输信号在时域和频域是双重色散的。传统的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制技术将符号调制在时间频率域,已广泛应用,但在高移动性场景中,OFDM波形受到严重的载波间干扰,使得性能严重下降。值得注意的是,虽然信道时间频率域中是快速时变的,但在延迟多普勒域中,信道表征散射环境中 的延迟和多普勒频移的强度,即直接刻画了高速移动环境中的信号传播特性。相比于时间频率域信道,延迟多普勒域信道具有稀疏性,稳定性等特性,对信道估计,符号检测等有很大的帮助。
相比于OFDM中将符号调制在时间频率域中,正交时频空域(Orthogonal Time Frequency Space,OTFS)直接将符号调制在延迟多普勒域中,因而可以利用延迟多普勒域上的无线信道响应特性。具体的来讲,OTFS调制将一个大小为M×N的数据包中的信息,在逻辑上映射到二维延迟多普勒平面上的一个M×N格点中,即每个格点内的脉冲调制了数据包中的一个符号。进一步,通过逆辛傅里叶变换(Inverse Sympletic Fourier Transform,ISFFT),将M×N的延迟多普勒域平面上的数据集变换到N×M的时频域平面上。然后再经过符号级的一维逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)和串并转换,变成时域采样点发送出去。
图2是本申请实施例提供的OTFS系统的收发端处理流程的示意图,其中OTFS系统的收端大致是一个发端的逆过程:时域采样点经接收机接收后,经过并串转换和符号级的一维快速傅里叶变换(Fast Fourier Transform,FFT),先变换到时频域平面上的波形,然后经过二维辛傅里叶变换(Sympletic Fast Fourier Transform,SFFT),转换为延迟多普勒域平面的波形,然后对由延迟多普勒域波形承载的符号进行接收机的处理:包括信道估计和均衡,解调和译码等。
由于OTFS技术将符号调制在延迟多普勒域中,符号经历的信道可以视为时不变二维延迟多普勒域信道,从而直接体现了无线链路中由于收发机之间的反射体相对位置的几何特性造成的信道延迟多普勒响应特性。相比于传统方案中将延迟和多普勒扩展建模为对时域波形的破坏,OTFS直接利用延迟和多普勒扩展中的分集特性,可降低信道衰落对性能的影响。此外在无线信道中,信道最大延迟τ max和最大多普勒扩展v max满足 4τ maxv max≤1,因此延迟域[0,τ max]和多普勒域[-v max,v max]内即可表征信道h(τ,v)的全部信息。并且在实际系统中,由于信道的延迟径和多普勒频移的数量远远小于信道的时域和频域响应数量,图3是本申请实施例提供的延迟多普勒域信道的示意图,如图3所示,用延迟多普勒域表征的信道冲激响应矩阵具有稀疏性。利用OTFS技术在延迟多普勒域对稀疏信道矩阵进行分析,可以简化接收机算法,降低传统基于最小均方误差或者破零方案中的复杂度。
在OTFS系统进行延迟多普勒域的分析,可以借助现有的时频域上的通信框架,在收发端加上额外的信号处理过程来实现,并且这些额外的处理,无需新增硬件模块,利用现有硬件设备即可实现延迟多普勒域的收发操作。具体来讲,发端额外的信号处理仅需要一次傅里叶变换,收端额外的信号处理为逆傅里叶变换和相应的延迟多普勒域的信道估计与检测译码。实际系统中,OTFS技术可以很方便的被实现为一个滤波OFDM系统的前置和后置处理模块,因此与现有的NR技术架构下的多载波系统有着很好的兼容性。
虽然,OTFS具有上述多种优势。但也存在一些劣势。比如,由于其信号经历信道的方式是与延迟多普勒信道进行二维卷积,因此接收端做信号检测时要么做基于大维矩阵的线性检测,要么做迭代式非线性检测,最终导致其信号检测复杂度比OFDM高很多。再者,OTFS的信号处理是基于多个延迟索引和多个多普勒索引组成的帧为最小粒度执行的,信道估计最快也只能以一个帧为粒度进行,将信道估计结果用于下一个帧时会容易产生失配的问题。
为了克服上述缺陷,本申请实施例在实际系统中可以动态地选择OFDM或OTFS,将信息承载在不同的域实现最高效的通信传输。
图4是本申请实施例提供的传输方法的流程示意图之一,如图4所示,该流程包括:
步骤400,通信设备确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
可选地,通信设备可以是目标信号的发送侧,目标信号的发送侧可以是终端设备,通信设备的通信对端(即目标信号的接收侧)可以是终端设备或者是网络侧设备;
可选地,通信设备可以是目标信号的发送侧,目标信号的发送侧可以是网络侧设备,通信设备的通信对端(即目标信号的接收侧)可以是终端设备;
可选地,通信设备可以是目标信号的接收侧,目标信号的接收侧可以是终端设备,通信设备的通信对端(即目标信号的发送侧)可以是终端设备或者是网络侧设备;
可选地,通信设备可以是目标信号的接收侧,目标信号的接收侧可以是网络侧设备,通信设备的通信对端(即目标信号的发送侧)可以是终端设备;
具体地,为了实现OFDM和OTFS方案的共存和适时切换,本申请实施例可以通过确定目标信号的目标传输方案,并将目标信号的传输方案切换至目标传输方案,即将目标信号切换至目标传输方案对应的域进行传输,实现目标信号的传输可以灵活采用合适的传输方案,实现目标信号的高效传输。
可选地,本申请实施例中,可以存在一个默认传输方案,比如默认传输方案为第一传输方案,在通信设备确定目标信号的目标传输方案为第二传输方案的情况下,可以将目标信号的传输方案从默认传输方案切换至第二传输方案,除了通信设备确定目标信号的目标传输方案为第二传输方案的情况以外的其他时间可以均采用默认传输方案。
可选地,本申请实施例中,可以存在一个默认传输方案,比如默认传输方案为第二传输方案,在通信设备确定目标信号的目标传输方案为第一传输方案的情况下,可以将目标信号的传输方案从默认传输方案切换至第一传输方案,除了通信设备确定目标信号的目标传输方案为第二传输方案的情况以外的其他时间可以均采用默认传输方案。
具体地,第一传输方案可以为基于OFDM通信系统的传输方案,所述第二传输方案可以为基于OTFS通信系统的传输方案。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,所述方法还包括:
在所述通信设备为所述目标信号的发送侧的情况下,所述通信设备将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,所述通信设备在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,即针对采用第一传输方案的时间单元,目标信号的发送侧可以将调制后的目标信号映射在频率域或时间频率域,进行逆傅里叶变换转换到时域发送出去,目标信号的接收侧可以将接收到的目标信号进行傅里叶变换后在频域或时频域进行解调和译码。
具体地,若所述通信设备为所述目标信号的发送侧,则通信设备可以将所述目标信号映射在频率域或时间频率域后,将在频率域或时间频 率域的目标信号转换到时域进行发送。
具体地,若所述通信设备为所述目标信号的接收侧,则通信设备可以将接收到的目标信号进行傅里叶变换转换到频域或时频域后进行解调和译码。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,所述方法还包括:
在所述通信设备为所述目标信号的发送侧的情况下,所述通信设备将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,所述通信设备在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,即针对采用第二传输方案的时间单元,目标信号的发送侧可以将调制后的目标信号映射在延迟多普勒域,再使用特定变换(比如海森堡变换)转换到时间频率域,再进行逆傅里叶变换转换到时域发送出去,目标信号的接收侧可以将接收到的目标信号进行傅里叶变换后,再进行特定变换(比如魏格纳变换)转换至延迟多普勒域,然后在延迟多普勒域进行解调和译码。
具体地,若所述通信设备为所述目标信号的发送侧,则通信设备可以将所述目标信号映射在延迟多普勒域后,将在延迟多普勒域的目标信号转换到时间频率域,再进行逆傅里叶变换转换到时域进行发送。
具体地,若所述通信设备为所述目标信号的接收侧,则通信设备可以将接收到的目标信号进行傅里叶变换转换到频域或时频域,然后再进行魏格纳变换转换至延迟多普勒域,然后在延迟多普勒域进行解调和译码。
图5是本申请实施例提供的传输方法的流程示意图之二,图6是本 申请实施例提供的传输方法的流程示意图之三,如图5和图6所示,本申请实施例中可以根据选择的目标传输方案进行对应域变换,最终都是在时域发送与接收。其中,IFFT表示逆傅里叶变换,ISFFT表示逆辛傅里叶变换,海森堡变换一般可用并行的多个IFFT替换。
可选地,所述通信设备确定目标信号的目标传输方案,包括:
所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
可选地,属于同一个时间单元或同一个频率单元的不同部分可以灵活选择目标传输方案。
具体地,以一个时间单元为一个帧或一个子帧为例,一个帧或一个子帧的多个符号可以灵活选择目标传输方案,即一部分符号用第一传输方案,其他部分符号用第二传输方案。图7是本申请实施例提供的传输方案灵活选择示意图,如图7所示,一个帧或一个子帧的多个符号可以灵活选择传输方案,即一部分符号用第一传输方案,其他部分符号用第二传输方案。比如根据收发端速度(高速时)确定使用第二传输方案,但是由于要传输的信息中包含了探测参考信号,因此将包含探测参考信号的符号部分用第一传输方案传输。
可选地,对于一个时间单元来说,其中大部分时间可以采用默认的传输方案,其他时间可以采用目标传输方案;
以默认的传输方案为第一传输方案为例,一个帧内的大部分符号默认采用第一传输方案,即该大部分符号的目标传输方案为第一传输方案,该帧内除了采用默认的传输方案的符号以外的其他符号,通信设备可以确定这些其他符号的目标传输方案为第二传输方案。
以默认的传输方案为第二传输方案为例,一个帧内的大部分符号默 认采用第二传输方案,即该大部分符号的目标传输方案为第二传输方案,该帧内除了采用默认的传输方案的符号以外的其他符号,通信设备可以确定这些其他符号的目标传输方案为第一传输方案。
可选地,所述通信设备确定目标信号的目标传输方案,包括:
所述通信设备确定第一信道的目标传输方案为所述第一传输方案,第二信道的目标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道(Physical Uplink Shared Channel,PUSCH);物理上行控制信道(Physical Uplink Control Channel,PUCCH);物理随机接入信道(Packet Random Access Channel,PRACH);所述第二信道为以下至少一项:物理上行共享信道(Physical Uplink Shared Channel,PUSCH);物理上行控制信道(Physical Uplink Control Channel,PUCCH);物理随机接入信道(Packet Random Access Channel,PRACH);
或者,
在所述目标信号为下行信号的情况下,所述第一信道为以下至少一项:物理下行共享信道(Physical Downlink Shared Channel,PDSCH);物理下行控制信道(Physical Downlink Control Channel,PDCCH);物理广播信道(Physical Broadcast Channel,PBCH);所述第二信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道(Physical SideLink Control Channel,PSCCH);物理侧边链路共享信道(Physical SideLink Shared  Channel,PSSCH);物理侧边链路广播信道(Physical SideLink Broadcast Channel,PSBCH);物理直通链路发现信道(Physical Sidelink Discovery Channel,PSDCH);物理直通链路反馈信道(Physical SideLink Feedback Channel,PSFCH);所述第二信道为以下至少一项:物理侧边链路控制信道(Physical SideLink Control Channel,PSCCH);物理侧边链路共享信道(Physical SideLink Shared Channel,PSSCH);物理侧边链路广播信道(Physical SideLink Broadcast Channel,PSBCH);物理直通链路发现信道(Physical Sidelink Discovery Channel,PSDCH);物理直通链路反馈信道(Physical SideLink Feedback Channel,PSFCH)。
可选地,目标信号中可以有一部分承载在第一信道并采用第一传输方案,第一信道可以包括一个或多个信道,目标信号中的另一部分可以承载在第二信道并采用第二传输方案,第二信道可以包括一个或多个信道,第一信道和第二信道可以包括相同或部分相同或完全不同的信道。
可选地,若目标信号为上行信号,则第一信道可以包括以下至少一项:
物理上行共享信道PUSCH;或
物理上行控制信道PUCCH;或
物理随机接入信道PRACH;
所述第二信道可以包括以下至少一项:
物理上行共享信道PUSCH;或
物理上行控制信道PUCCH;或
物理随机接入信道PRACH。
可选地,若目标信号为下行信号,则第一信道可以包括以下至少一项:
物理下行共享信道PDSCH;或
物理下行控制信道PDCCH;或
物理广播信道PBCH;
所述第二信道为以下至少一项:
物理下行共享信道PDSCH;或
物理下行控制信道PDCCH;或
物理广播信道PBCH。
可选地,若所述通信设备和通信对端均为终端设备,则第一信道可以包括以下至少一项:
物理侧边链路控制信道PSCCH;
物理侧边链路共享信道PSSCH;
物理侧边链路广播信道PSBCH;
物理直通链路发现信道PSDCH;
物理直通链路反馈信道PSFCH;
第二信道可以包括以下至少一项:
物理侧边链路控制信道PSCCH;
物理侧边链路共享信道PSSCH;
物理侧边链路广播信道PSBCH;
物理直通链路发现信道PSDCH;
物理直通链路反馈信道PSFCH。
可选地,目标传输方案是针对以下信道的至少一个,且不同信道使用的传输模式可以相同,也可以不同:
物理上行共享信道PUSCH;
物理上行控制信道PUCCH;
物理下行共享信道PDSCH;
物理下行控制信道PDCCH;
物理广播信道PBCH;
物理随机接入信道PRACH;
物理侧边链路控制信道PSCCH;
物理侧边链路共享信道PSSCH;
物理侧边链路广播信道PSBCH;
物理直通链路发现信道PSDCH;
物理直通链路反馈信道PSFCH。
可选地,所述通信设备确定目标信号的目标传输方案,包括:
所述通信设备基于第一信息,确定目标信号的目标传输方案;
其中,所述第一信息包括以下至少一项:
所述通信设备和所述通信设备的通信对端之间的相对速度;
所述通信设备和所述通信对端之间的径数;
所述目标信号的信号类型;
距离前一次采用所述目标传输方案所经过的时长;
所述通信设备和所述通信对端之间的延迟。
可选地,通信设备可以基于第一信息,确定目标信号的目标传输方案;
具体地,所述第一信息包括以下至少一项:
所述通信设备和所述通信设备的通信对端之间的相对速度;或
所述通信设备和所述通信对端之间的径数;或
所述目标信号的信号类型;或
距离前一次采用所述目标传输方案所经过的时长;或
所述通信设备和所述通信对端之间的延迟。
可选地,对于目标信号或目标信号所在的时间单元,可以存在默认的传输方案,即在一般情况下均可以直接采用默认的传输方案,一旦基于第一信息确定了目标信号的目标传输方案,则可以将默认的传输方案切换至目标传输方案执行目标信号的传输。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所 在的时间单元内的其他信号均可以采用第一传输方案,一旦基于第一信息确定目标信号的目标传输方案为第二传输方案,则可以在传输目标信号时将传输方案从默认的第一传输方案切换至第二传输方案;
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦基于第一信息确定目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备可以基于通信设备和所述通信对端之间的相对速度,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的相对速度,确定目标信号的目标传输方案,则通信设备可以在确定所述相对速度小于或等于第一相对速度门限值的情况下,比如,通信设备和 所述通信对端之间的相对速度为v,且v<Γ 1,其中Γ 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一相对速度门限值,则确定所述目标传输方案为第一传输方案。
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦确定通信设备和所述通信对端之间的相对速度小于或等于第一相对速度门限值,则可以确定目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备可以基于通信设备和所述通信对端之间的相对速度,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的相对速度,确定目标信号的目标传输方案,则通信设备可以在确定所述相对速度大于或等于第二相对速度门限值的情况下,比如通信设备和所述通信对端之间的相对速度为v,且v≥Γ 2,其中Γ 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二相对速度门限值,则确定所述目标传输方案为第二传输方案。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第一传输方案,一旦确定通信设备和所述通信对端之间的相对速度大于或等于第二相对速度门限值,则可以确定目标信号的目标传输方案为第二传输方案,则可以在传输目标 信号时将传输方案从默认的第一传输方案切换至第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案。
可选地,在所述第一信息包括通信设备和所述通信对端之间的径数的情况下,所述通信设备可以基于通信设备和所述通信对端之间的径数,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的径数,确定目标信号的目标传输方案,则通信设备可以在确定所述径数小于或等于第一径数门限值的情况下,比如通信设备和所述通信对端之间的径数(或径簇数)为p,且p≥Λ 1,其中Λ 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一径数门限值,则确定所述目标传输方案为第一传输方案。
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦确定通信设备和所述通信对端之间的径数小于或等于第一径数门限值,则可以确定 目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括通信设备和所述通信对端之间的径数的情况下,所述通信设备可以基于通信设备和所述通信对端之间的径数,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的径数,确定目标信号的目标传输方案,则通信设备可以在确定所述径数大于或等于第二径数门限值的情况下,比如通信设备和所述通信对端之间的径数(或径簇数)为p,且p≥Λ 2,其中Λ 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二径数门限值,则确定所述目标传输方案为第二传输方案。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第一传输方案,一旦确定通信设备和所述通信对端之间的径数大于或等于第二径数门限值,则可以确定目标信号的目标传输方案为第二传输方案,则可以在传输目标信号时将传输方案从默认的第一传输方案切换至第二传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案。
可选地,在所述第一信息包括目标信号的信号类型的情况下,所述通信设备可以基于目标信号的信号类型,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于目标信号的信号类型,确定目标信号的目标传输方案,则通信设备可以在确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案。
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦确定目标信号的信号类型包括探测参考信号,则可以确定目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括目标信号的信号类型的情况下,所述通信设备可以基于目标信号的信号类型,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于目标信号的信号类型,确定目标信号的目标传输方案,则通信设备可以在确定所述目标信号的信号类型 包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第一传输方案,一旦确定目标信号的信号类型包括解调参考信号,则可以确定目标信号的目标传输方案为第二传输方案,则可以在传输目标信号时将传输方案从默认的第一传输方案切换至第二传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述时长大于或等于第二时间阈值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案。
可选地,在所述第一信息包括距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备可以基于距离前一次采用所述目标传输方案所经过的时长,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于距离前一次采用所述目标传输方案所经过的时长,确定目标信号的目标传输方案,则通信设备可以在确定距离前一次采用第一传输方案所经过的时长大于或等于第一时间阈值的情况下,比如距离前一次采用第一传输方案所经过的时长大于或等于T 1 时间,其中T 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一时间阈值,则确定所述目标传输方案为第一传输方案。
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦确定距离前一次采用第一传输方案所经过的时长大于或等于第一时间阈值,则可以确定目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述时长大于或等于第二时间阈值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备可以基于距离前一次采用所述目标传输方案所经过的时长,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于距离前一次采用所述目标传输方案所经过的时长,确定目标信号的目标传输方案,则通信设备可以在确定距离前一次采用第二传输方案所经过的时长大于或等于第二时间阈值的情况下,比如距离前一次采用第二传输方案所经过的时长大于或等于T 2时间,其中T 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二时间阈值,则确定所述目标传输方案为第二传输方案。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第一传输方案,一旦确定距离前一次采用第二传输方案所经过的时长大于或等于第二时间阈值,则可以确定目标信号的目标传输方案为第二传输方案,则可以在传输目标信号时将传输方案从默认的第一传输方案切换至第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案。
可选地,在所述第一信息包括通信设备和所述通信对端之间的延迟的情况下,所述通信设备可以基于通信设备和所述通信对端之间的延迟,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的延迟,确定目标信号的目标传输方案,则通信设备可以在确定通信设备和所述通信对端之间的延迟小于或等于第一延迟门限的情况下,比如通信设备和所述通信对端之间的延迟小于或等于第一延迟门限,例如通信设备和所述通信对端之间的延迟可以指最大延迟τ max,且τ max1,其中Δ 1是预设定的或协议预定义的或高层指示的或通信对端指示的最大延迟阈值门限(第一延迟门限);或者,通信设备和所述通信对端之间的延迟可以指均方根延迟扩展(RMS delay spread)τ rms,且τ rms2,其中Δ 2是预设定的或协议预定义的或高层指示的或通信对端指示的均方根延迟扩展阈值门限(第一延迟门限),则确定所述目标传输方案为第一 传输方案。
以默认的传输方案为第二传输方案为例,在一般情况下目标信号所在的时间单元内的其他信号均可以采用第二传输方案,一旦确定通信设备和所述通信对端之间的延迟小于或等于第一延迟门限,则可以确定目标信号的目标传输方案为第一传输方案,则可以在传输目标信号时将传输方案从默认的第二传输方案切换至第一传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括通信设备和所述通信对端之间的延迟的情况下,所述通信设备可以基于通信设备和所述通信对端之间的延迟,确定目标信号的目标传输方案。
可选地,若所述通信设备可以基于通信设备和所述通信对端之间的延迟,确定目标信号的目标传输方案,则通信设备可以在确定通信设备和所述通信对端之间的延迟大于或等于第二延迟门限的情况下,比如通信设备和所述通信对端之间的延迟大于或等于第二延迟门限,例例如通信设备和所述通信对端之间的延迟可以指最大延迟τ max,且τ max3,其中Δ 3是预设定的或协议预定义的或高层指示的或通信对端指示的最大延迟阈值门限(第二延迟门限)。或者,通信设备和所述通信对端之间的延迟可以指均方根延迟扩展(RMS delay spread)τ rms,且τ rms4,其中Δ 4是预设定的或协议预定义的或高层指示的或通信对端指示的均方根延迟扩展阈值门限(第二延迟门限),则确定所述目标传输方案为第二传输方案。
以默认的传输方案为第一传输方案为例,在一般情况下目标信号所 在的时间单元内的其他信号均可以采用第一传输方案,一旦确定通信设备和所述通信对端之间的延迟大于或等于第二延迟门限,则可以确定目标信号的目标传输方案为第二传输方案,则可以在传输目标信号时将传输方案从默认的第一传输方案切换至第二传输方案;具体地,通信设备可以在确定满足以下条件中的至少一个时,确定目标信号的目标传输方案为第一传输方案,比如可以在确定满足以下条件中的至少一个时,确定从默认的传输方案切换至第一传输方案:
1)通信设备和所述通信对端之间的相对速度为v,且v<Γ 1,其中Γ 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一相对速度门限值;
2)通信设备和所述通信对端之间的径数(或径簇数)为p,且p≥Λ 1,其中Λ 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一径数门限值;
3)目标信号的信号类型包括探测参考信号;
4)距离前一次采用第一传输方案所经过的时长大于或等于T 1时间,其中T 1是预设定的或协议预定义的或高层指示的或通信对端指示的第一时间阈值;
5)通信设备和所述通信对端之间的延迟小于或等于第一延迟门限,例如通信设备和所述通信对端之间的延迟可以指最大延迟τ max,且τ max1,其中Δ 1是预设定的或协议预定义的或高层指示的或通信对端指示的最大延迟阈值门限(第一延迟门限);或者,通信设备和所述通信对端之间的延迟可以指均方根延迟扩展(RMS delay spread)τ rms,且τ rms2,其中Δ 2是预设定的或协议预定义的或高层指示的或通信对端指示的均方根延迟扩展阈值门限(第一延迟门限)。
具体地,通信设备可以在确定满足以下条件中的至少一个时,确定目标信号的目标传输方案为第二传输方案,比如可以在确定满足以下条 件中的至少一个时,确定从默认的传输方案切换至第二传输方案:
1)通信设备和所述通信对端之间的相对速度为v,且v≥Γ 2,其中Γ 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二相对速度门限值;
2)通信设备和所述通信对端之间的径数(或径簇数)为p,且p≥Λ 2,其中Λ 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二径数门限值;
3)目标信号的信号类型包括解调参考信号;
4)距离前一次采用第二传输方案所经过的时长大于或等于T 2时间,其中T 2是预设定的或协议预定义的或高层指示的或通信对端指示的第二时间阈值;
5)通信设备和所述通信对端之间的延迟大于或等于第二延迟门限,例例如通信设备和所述通信对端之间的延迟可以指最大延迟τ max,且τ max3,其中Δ 3是预设定的或协议预定义的或高层指示的或通信对端指示的最大延迟阈值门限(第二延迟门限)。或者,通信设备和所述通信对端之间的延迟可以指均方根延迟扩展(RMS delay spread)τ rms,且τ rms4,其中Δ 4是预设定的或协议预定义的或高层指示的或通信对端指示的均方根延迟扩展阈值门限(第二延迟门限)。
可选地,第一相对速度门限值和第二相对速度门限值可以相等或不相等。
可选地,第一径数门限值和第二径数门限值可以相等或不相等。
可选地,第一时间阈值和第二时间阈值可以相等或不相等。
可选地,第一延迟门限和第二延迟门限可以相等或不相等。
可选地,所述方法还包括:
基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
具体地,OTFS系统中还有一个特殊的分集增益和编码增益的tradeoff问题。当收发端中的径数(径簇数)较少时,OTFS系统中延迟多普勒分集增益较小,进行信道编码后可获得的编码增益较高。反之,若收发端中的径数(径簇数)较多时,OTFS系统中延迟多普勒分集增益较大,而进行信道编码后可获得的编码增益较低。该现象是OFDM系统中不存在的。因此,若选用OTFS技术作为传输方案,还需根据径数(径簇数)等选择阈值最佳匹配的信道编码方案,避免总是使用复杂度较高或码率较低的信道编码,影响系统的传输效率。
因此,通信设备在确定目标传输方案为第二传输方案后,还可以基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
可选地,所述基于所述通信设备和所述通信对端之间的径数,确定目标信道编码,包括以下至少一项:
确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
可选地,通信设备可以确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
具体地,通信设备可以确定采用的信道编码的码率与径数(或径簇数)成正比关系,适用于任意一种信道编码,常见的比如分组码、卷积码、低密度奇偶校验码(Low Density Parity Check,LDPC)、Turbo码、Polar码;
可选地,通信设备可以确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
具体地,若使用的信道编码是卷积码时,也可以用约束长度作为描述,即通信设备可以确定采用的卷积码的约束长度与径数(或径簇数)成反比关系。
可选地,通信设备可以在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
可选地,通信设备可以在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
可选地,通信设备可以在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
可选地,通信设备可以在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
具体地,径数(或径簇数)大时分集增益大,编码增益小,因此使用编码增益小但复杂度低的简单编码,如约束长度较短的卷积码或码率较高的LDPC码、Turbo码、Polar码。反过来,径数(或径簇数)小时分集增益小,编码增益大,使用复杂度高,编码增益大的编码方案,如约束长度较长的卷积码,低码率的LDPC码、Turbo码、Polar码)。
可选地,第三径数门限、第四径数门限、第五径数门限、和第六径数门限可以全部相等或者部分相等或者全部不相等;
可选地,第五径数门限可以小于第三径数门限或稍大于第三径数门 限;
可选地,第五径数门限可以小于第三径数门限或稍大于第四径数门限;
可选地,第六径数门限可以小于第三径数门限或稍大于第三径数门限;
可选地,第六径数门限可以小于第三径数门限或稍大于第四径数门限;
例如,在第三径数门限等于第四径数门限等于A的情况下,当径数大于或等于A时,可以从以下编码方案(a)-(b)中选择使用:
(a)码率大于或等于C的信道编码,此信道编码可以是任意一种信道编码,常见的比如分组码、卷积码、LDPC码、Turbo码、Polar码;
(b)约束长度小于或等于L的卷积码;
其中,L是大于1的正整数,C是大于0且小于1的正数。
例如,在第五径数门限等于第六径数门限等于B的情况下,当径数小于或等于B时,从以下编码方案(c)-(d)中选择使用:
(c)码率小于或等于C的信道编码,此信道编码可以是任意一种信道编码,常见的比如分组码、卷积码、LDPC码、Turbo码、Polar码;或
(d)约束长度大于或等于L的卷积码。
例如,在第三径数门限等于第四径数门限等于第五径数门限等于第六径数门限的情况下,可以随机选择或基于预定义确定编码方案(a)-(d)中的任一项。
可选地,所述方法还包括:
在所述确定目标信号的目标传输方案之后,所述通信设备向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
所述目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
具体地,目标信号的接收侧和发送侧之间需要共享所使用的传输方案信息。所述传输方案信息包括以下至少一项:
所采用的目标传输方案(第一传输方案还是第二传输方案);或
使用的目标传输方案的传输参数,如子载波数,符号数,延迟索引数,多普勒索引数;或
目标传输方案的信道编码相关参数(如编码方案、码率、约束长度等);
因此,在确定目标信号的目标传输方案之后,通信设备向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
所述目标信号的目标传输方案;或
所述目标传输方案的传输参数;或
所述目标传输方案的信道编码相关参数。
可选地,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案的情况下,所述第一指示信息具体用于指示以下至少一项:
所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
可选地,一个时间单元内的多个部分可以灵活选择传输方案,即一部分用第一传输方案,其他部分用第二传输方案。
可选地,若在一个时间单元内的多个部分采用了不同的传输方案, 则需要共享每个部分的以下至少一项:目标传输方案;或所述目标传输方案的传输参数;或所述目标传输方案的信道编码相关参数。
因此,第一指示信息具体可以用于指示以下至少一项:
所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;或所述第一传输方案的传输参数;或所述第一传输方案的信道编码相关参数;
所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;或所述第二传输方案的传输参数;或所述第二传输方案的信道编码相关参数。
可选地,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
下行链路控制信息(Downlink Control Information,DCI);
无线资源控制(Radio Resource Control,RRC);
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元(Medium Access Control,MAC)的信令;
系统信息块(System Information Block,SIB);
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
具体地,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
DCI信息;或
无线资源控制RRC信令;或
物理下行控制信道PDCCH的层1信令;或
物理下行共享信道PDSCH的信息;或
媒体接入控制层控制单元MAC的信令;或
系统信息块SIB;或
物理随机接入信道PRACH的MSG 2信息;或
物理随机接入信道PRACH的MSG 4信息;或
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;或
物理随机接入信道PRACH的MSG 1信息;或
物理随机接入信道PRACH的MSG 3信息;或
物理随机接入信道PRACH的MSG A信息;或
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
PC5接口信令;或
侧边链路Sidelink接口信令。
具体地,所述第一指示信息可以包括以下至少一项:
DCI信息;或
无线资源控制(RRC)信令;或
物理下行控制信道(PDCCH)的层1信令;或
物理下行共享信道(PDSCH)的信息;或
媒体接入控制层控制单元(MAC)的信令;或
系统信息块(SIB);或
物理上行控制信道(PUCCH)的层1信令;或
物理随机接入信道(PRACH)的MSG 1信息;或
物理随机接入信道(PRACH)的MSG 2信息;或
物理随机接入信道(PRACH)的MSG 3信息;或
物理随机接入信道(PRACH)的MSG 4信息;或
物理随机接入信道(PRACH)的MSG A信息;或
物理随机接入信道(PRACH)的MSG B信息;或
物理上行共享信道(PUSCH)的信息;或
Xn接口信令;或
PC5接口信令;或
侧边链路(Sidelink)接口信令。
可选地,所述第一指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
具体地,可以定义一个专门的物理信道,即专用物理信道,由通信设备通知对端以下至少一项:
所述目标信号的目标传输方案;或
所述目标传输方案的传输参数;或
所述目标传输方案的信道编码相关参数。
可选地,所述方法还包括:
通信设备接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
具体地,目标通信对端在基于第一信息确定目标传输方案之前,需要获知第一信息的具体内容,因此,可以提前接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
具体地,收端需要将其速度v',信道的径数(或径簇数)p报给通信设备。
可选地,在所述第二指示信息是下行信息的情况下,所述第二指示 信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,在所述第二指示信息是下行信息的情况下,所述第二指示信息承载在以下至少一项中:
DCI信息;或
无线资源控制RRC信令;或
物理下行控制信道PDCCH的层1信令;或
物理下行共享信道PDSCH的信息;或
媒体接入控制层控制单元MAC的信令;或
系统信息块SIB;或
物理随机接入信道PRACH的MSG 2信息;或
物理随机接入信道PRACH的MSG 4信息;或
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;或
物理随机接入信道PRACH的MSG 1信息;或
物理随机接入信道PRACH的MSG 3信息;或
物理随机接入信道PRACH的MSG A信息;或
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
PC5接口信令;或
侧边链路Sidelink接口信令。
具体地,所述第二指示信息可以包括以下至少一项:
DCI信息;或
无线资源控制(RRC)信令;或
物理下行控制信道(PDCCH)的层1信令;或
物理下行共享信道(PDSCH)的信息;或
媒体接入控制层控制单元(MAC)的信令;或
系统信息块(SIB);或
物理上行控制信道(PUCCH)的层1信令;或
物理随机接入信道(PRACH)的MSG 1信息;或
物理随机接入信道(PRACH)的MSG 2信息;或
物理随机接入信道(PRACH)的MSG 3信息;或
物理随机接入信道(PRACH)的MSG 4信息;或
物理随机接入信道(PRACH)的MSG A信息;或
物理随机接入信道(PRACH)的MSG B信息;或
物理上行共享信道(PUSCH)的信息;或
Xn接口信令;或
PC5接口信令;或
侧边链路(Sidelink)接口信令。
可选地,所述第二指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
具体地,可以定义一个专门的物理信道,即专用物理信道,由通信对端通知通信设备以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
可选地,所述通信设备确定目标信号的目标传输方案,包括:
所述通信设备接收通信对端发送的第三指示信息;
所述通信设备基于所述第三指示信息,确定以下至少一项:
目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
具体地,目标传输方案也可以是通信对端基于前述各实施例的方式确定后告知通信设备的;因此,通信设备可以基于所述第三指示信息,确定以下至少一项:
目标信号的目标传输方案,其中所述目标信号的目标传输方案可以是所述通信对端确定的;或
所述目标传输方案的传输参数,其中所述目标传输方案的传输参数可以是所述通信对端确定的;或
所述目标传输方案的信道编码相关参数,其中所述目标传输方案的信道编码相关参数可以是所述通信对端确定的。
可选地,所述通信设备基于所述第三指示信息,确定以下至少一项:目标信号的目标传输方案;所述目标传输方案的传输参数;所述目标传输方案的信道编码相关参数,包括:
所述通信设备基于所述第三指示信息,确定以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
具体地,目标传输方案也可以是通信对端基于前述各实施例的方式 确定后告知通信设备的;且通信对端也可以确定在一个时间单元内的多个部分采用了不同的传输方案后,通过第三指示信息指示以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,或所述第一传输方案的传输参数,或所述第一的信道编码相关参数;或
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,或所述第二传输方案的传输参数,或所述第二的信道编码相关参数。
具体地,所述通信设备基于所述第三指示信息,确定以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,或所述第一传输方案的传输参数,或所述第一的信道编码相关参数;或
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,或所述第二传输方案的传输参数或所述第二的信道编码相关参数。
可选地,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
DCI信息;或
无线资源控制RRC信令;或
物理下行控制信道PDCCH的层1信令;或
物理下行共享信道PDSCH的信息;或
媒体接入控制层控制单元MAC的信令;或
系统信息块SIB;或
物理随机接入信道PRACH的MSG 2信息;或
物理随机接入信道PRACH的MSG 4信息;或
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;或
物理随机接入信道PRACH的MSG 1信息;或
物理随机接入信道PRACH的MSG 3信息;或
物理随机接入信道PRACH的MSG A信息;或
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
PC5接口信令;或
侧边链路Sidelink接口信令。
具体地,所述第三指示信息可以包括以下至少一项:
DCI信息;或
无线资源控制(RRC)信令;或
物理下行控制信道(PDCCH)的层1信令;或
物理下行共享信道(PDSCH)的信息;或
媒体接入控制层控制单元(MAC)的信令;或
系统信息块(SIB);或
物理上行控制信道(PUCCH)的层1信令;或
物理随机接入信道(PRACH)的MSG 1信息;或
物理随机接入信道(PRACH)的MSG 2信息;或
物理随机接入信道(PRACH)的MSG 3信息;或
物理随机接入信道(PRACH)的MSG 4信息;或
物理随机接入信道(PRACH)的MSG A信息;或
物理随机接入信道(PRACH)的MSG B信息;或
物理上行共享信道(PUSCH)的信息;或
Xn接口信令;或
PC5接口信令;或
侧边链路(Sidelink)接口信令。
可选地,所述第三指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
具体地,可以定义一个专门的物理信道,即专用物理信道,由通信对端通知通信设备以下至少一项:
目标信号的目标传输方案,其中所述目标信号的目标传输方案可以是所述通信对端确定的;或
所述目标传输方案的传输参数,其中所述目标传输方案的传输参数可以是所述通信对端确定的;或
所述目标传输方案的信道编码相关参数,其中所述目标传输方案的信道编码相关参数可以是所述通信对端确定的。
可选地,所述方法还包括:
在所述通信设备确定目标信号的目标传输方案之后,基于协议预定义确定以下至少一项:
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
具体地,目标传输方案的传输参数可以是目标信号的发送侧和接收侧基于协议预定义确定的;
具体地,目标传输方案的信道编码相关参数可以是目标信号的发送侧和接收侧基于协议预定义确定的;
具体地,默认的传输方案可以是目标信号的发送侧和接收侧基于协议预定义确定的;
具体地,默认的传输方案的传输参数可以是目标信号的发送侧和接收侧基于协议预定义确定的;
具体地,默认的传输方案的信道编码可以是目标信号的发送侧和接收侧基于协议预定义确定的。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
需要说明的是,本申请实施例提供的传输方法,执行主体可以为传输装置,或者,该传输装置中的用于执行传输方法的控制模块。本申请实施例中以传输装置执行传输方法为例,说明本申请实施例提供的传输装置。
图8是本申请实施例提供的传输装置的结构示意图,如图8所示,该装置800包括:第一确定模块810;其中:
第一确定模块810;确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标 信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,所述装置还包括:
第一映射模块,用于在所述通信设备为所述目标信号的发送侧的情况下,将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
第一转换模块,用于在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,所述装置还包括:
第二映射模块,用于在所述通信设备为所述目标信号的发送侧的情况下,将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
第二转换模块,用于在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
可选地,所述第一确定模块,具体用于:
确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
可选地,所述第一确定模块,具体用于:
确定第一信道的目标传输方案为所述第一传输方案,第二信道的目标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;所述第二信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;
或者,
在所述目标信号为下行信号的情况下,所述第一信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;所述第二信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH;所述第二信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH。
可选地,所述第一确定模块,具体用于:
基于第一信息,确定目标信号的目标传输方案;
其中,所述第一信息包括以下至少一项:
所述通信设备和所述通信设备的通信对端之间的相对速度;
所述通信设备和所述通信对端之间的径数;
所述目标信号的信号类型;
距离前一次采用所述目标传输方案所经过的时长;
所述通信设备和所述通信对端之间的延迟。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的 相对速度的情况下,所述第一确定模块,具体用于:
在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述第一确定模块,具体用于:
在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,所述第一确定模块,具体用于:
在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述第一确定模块,具体用于:
在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述时长大于或等于第二时间阈值的情况下, 确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述第一确定模块,具体用于:
在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
可选地,所述装置还包括:
第二确定模块,用于在所述确定所述目标传输方案为第二传输方案的情况下,基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
可选地,所述第二确定模块,具体用于以下至少一项:
确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
可选地,所述装置还包括:
第一发送模块,用于在所述确定目标信号的目标传输方案之后,向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
所述目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案的情况下,所述第一指示信息具体用于指示以下至少一项:
所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
可选地,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第一指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,所述装置还包括:
第一接收模块,用于接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
可选地,在所述第二指示信息是下行信息的情况下,所述第二指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第二指示信息承载在专用物理信道中,所述专用物理 信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,所述第一确定模块,具体用于:
接收通信对端发送的第三指示信息;
基于所述第三指示信息,确定以下至少一项:
目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,所述第一确定模块,具体用于:
基于所述第三指示信息,确定以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
可选地,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第三指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,所述装置还包括:
第三确定模块,用于在所述通信设备确定目标信号的目标传输方案之后,基于协议预定义确定以下至少一项:
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实 现高效的通信传输。
本申请实施例中的传输装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的传输装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图9是本申请实施例提供的通信设备的结构示意图,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选地,通信设备可以为终端设备,其通信对端可以为网络侧设备或者终端设备;
本申请实施例还提供一种终端,包括处理器和通信接口,
所述处理器用于:
确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
该终端实施例是与上述通信设备的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给网络侧设备。通 常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于:
确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,处理器1010还用于:
在所述通信设备为所述目标信号的发送侧的情况下,将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,处理器1010还用于:
在所述通信设备为所述目标信号的发送侧的情况下,将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
可选地,处理器1010还用于:
确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
可选地,处理器1010还用于:
确定第一信道的目标传输方案为所述第一传输方案,第二信道的目标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;所述第二信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;
或者,
在所述目标信号为下行信号的情况下,所述第一信道为以下至少一 项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;所述第二信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH;所述第二信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH。
可选地,处理器1010还用于:
基于第一信息,确定目标信号的目标传输方案;
其中,所述第一信息包括以下至少一项:
所述通信设备和所述通信设备的通信对端之间的相对速度;
所述通信设备和所述通信对端之间的径数;
所述目标信号的信号类型;
距离前一次采用所述目标传输方案所经过的时长;
所述通信设备和所述通信对端之间的延迟。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,处理器1010还用于:
在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,处理器1010还用于:
在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,处理器1010还用于:
在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,处理器1010还用于:
在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述时长大于或等于第二时间阈值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,处理器1010还用于:
在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
可选地,处理器1010还用于:
在所述确定所述目标传输方案为第二传输方案的情况下,基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
可选地,处理器1010还用于以下至少一项:
确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
可选地,处理器1010用于:
在所述确定目标信号的目标传输方案之后,所述通信设备向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
所述目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第 二传输方案的情况下,所述第一指示信息具体用于指示以下至少一项:
所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
可选地,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第一指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1010还用于:
接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
可选地,在所述第二指示信息是下行信息的情况下,所述第二指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第二指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1010还用于:
接收通信对端发送的第三指示信息;
基于所述第三指示信息,确定以下至少一项:
目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,处理器1010还用于:
所述通信设备基于所述第三指示信息,确定以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
可选地,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第三指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1010还用于:
在所述通信设备确定目标信号的目标传输方案之后,基于协议预定义确定以下至少一项:
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
可选地,通信设备可以为网络侧设备,其通信对端可以为终端设备。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,
所述处理器用于:
确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述 第二传输方案为基于OTFS通信系统的传输方案。
该网络侧设备实施例是与上述通信设备的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。图11为实现本申请实施例的一种网络侧设备的硬件结构示意图,如图11所示,该网络设备1100包括:天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
上述频带处理装置可以位于基带装置1103中,以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103包括处理器1104和存储器1105。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器1104,与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1103还可以包括网络接口1106,用于与射频装置1102交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,处理器1104用于:
确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,处理器1104还用于:
在所述通信设备为所述目标信号的发送侧的情况下,将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
可选地,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,处理器1104还用于:
在所述通信设备为所述目标信号的发送侧的情况下,将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
可选地,处理器1104还用于:
确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
可选地,处理器1104还用于:
确定第一信道的目标传输方案为所述第一传输方案,第二信道的目 标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;所述第二信道为以下至少一项:物理上行
或者,
在所述目标信号为下行信号的情况下,所述第一信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;所述第二信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH;所述第二信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH。
可选地,处理器1104还用于:
基于第一信息,确定目标信号的目标传输方案;
其中,所述第一信息包括以下至少一项:
所述通信设备和所述通信设备的通信对端之间的相对速度;
所述通信设备和所述通信对端之间的径数;
所述目标信号的信号类型;
距离前一次采用所述目标传输方案所经过的时长;
所述通信设备和所述通信对端之间的延迟。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,处理器1104还用于:
在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,处理器1104还用于:
在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述目标信号的信号类型的情况下,处理器1104还用于:
在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,处理器1104还用于:
在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述时长大于或等于第二时间阈值的情况下,确定所述目标传输方案为第二传输方案。
可选地,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,处理器1104还用于:
在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
或者,
在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
可选地,处理器1104还用于:
在所述确定所述目标传输方案为第二传输方案的情况下,基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
可选地,处理器1104还用于以下至少一项:
确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
可选地,处理器1104还用于:
在所述确定目标信号的目标传输方案之后,所述通信设备向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
所述目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案的情况下,所述第一指示信息具体用于指示以下至少一项:
所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
可选地,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第一指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1104还用于:
接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
所述通信对端的速度;
所述通信设备和所述通信对端之间的相对速度;
所述径数。
可选地,在所述第二指示信息是下行信息的情况下,所述第二指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第二指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1104还用于:
接收通信对端发送的第三指示信息;
基于所述第三指示信息,确定以下至少一项:
目标信号的目标传输方案;
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
可选地,处理器1104还用于:
所述通信设备基于所述第三指示信息,确定以下至少一项:
目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
可选地,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
DCI信息;
无线资源控制RRC信令;
物理下行控制信道PDCCH的层1信令;
物理下行共享信道PDSCH的信息;
媒体接入控制层控制单元MAC的信令;
系统信息块SIB;
物理随机接入信道PRACH的MSG 2信息;
物理随机接入信道PRACH的MSG 4信息;
物理随机接入信道PRACH的MSG B信息;
或者,
在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
物理上行控制信道PUCCH的层1信令;
物理随机接入信道PRACH的MSG 1信息;
物理随机接入信道PRACH的MSG 3信息;
物理随机接入信道PRACH的MSG A信息;
物理上行共享信道PUSCH的信息;
或者,
在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
或者,
在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
PC5接口信令;
侧边链路Sidelink接口信令。
可选地,所述第三指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
可选地,处理器1104还用于:
在所述通信设备确定目标信号的目标传输方案之后,基于协议预定义确定以下至少一项:
所述目标传输方案的传输参数;
所述目标传输方案的信道编码相关参数。
在本申请实施例中,通过确定目标信号的目标传输方案为基于OFDM通信系统的传输方案或基于OTFS通信系统的传输方案,将目标信号动态地承载在不同的域,可以更好地匹配无线环境和传输条件,实现高效的通信传输。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现上述系统消息报告的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次 序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (46)

  1. 一种传输方法,包括:
    通信设备确定目标信号的目标传输方案,所述目标传输方案为第一传输方案或第二传输方案;
    其中,所述第一传输方案为基于正交频分复用OFDM通信系统的传输方案,所述第二传输方案为基于正交时频空域OTFS通信系统的传输方案。
  2. 根据权利要求1所述的传输方法,其中,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,所述方法还包括:
    在所述通信设备为所述目标信号的发送侧的情况下,所述通信设备将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
    在所述通信设备为所述目标信号的接收侧的情况下,所述通信设备在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
  3. 根据权利要求1所述的传输方法,其中,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,所述方法还包括:
    在所述通信设备为所述目标信号的发送侧的情况下,所述通信设备将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
    在所述通信设备为所述目标信号的接收侧的情况下,所述通信设备在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
  4. 根据权利要求1所述的传输方法,其中,所述通信设备确定目标信号的目标传输方案,包括:
    所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
  5. 根据权利要求1所述的传输方法,其中,所述通信设备确定目标信号的目标传输方案,包括:
    所述通信设备确定第一信道的目标传输方案为所述第一传输方案,第二信道的目标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
    其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;所述第二信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;
    或者,
    在所述目标信号为下行信号的情况下,所述第一信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;所述第二信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
    或者,
    在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH;所述第二信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH。
  6. 根据权利要求1-5任一项所述的传输方法,其中,所述通信设备确定目标信号的目标传输方案,包括:
    所述通信设备基于第一信息,确定目标信号的目标传输方案;
    其中,所述第一信息包括以下至少一项:
    所述通信设备和所述通信设备的通信对端之间的相对速度;
    所述通信设备和所述通信对端之间的径数;
    所述目标信号的信号类型;
    距离前一次采用所述目标传输方案所经过的时长;
    所述通信设备和所述通信对端之间的延迟。
  7. 根据权利要求6所述的传输方法,其中,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
    在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
  8. 根据权利要求6所述的传输方法,其中,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
    在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
  9. 根据权利要求6所述的传输方法,其中,在所述第一信息包括所 述目标信号的信号类型的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
    在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
  10. 根据权利要求6所述的传输方法,其中,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
    在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述时长大于或等于第二时间阈值的情况下,确定所述目标传输方案为第二传输方案。
  11. 根据权利要求6所述的传输方法,其中,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述通信设备基于第一信息,确定目标信号的目标传输方案,包括:
    在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
  12. 根据权利要求7-11任一项所述的传输方法,其中,在所述确定所述目标传输方案为第二传输方案的情况下,所述方法还包括:
    基于所述通信设备和所述通信对端之间的径数,确定目标信道编 码。
  13. 根据权利要求12所述的传输方法,其中,所述基于所述通信设备和所述通信对端之间的径数,确定目标信道编码,包括以下至少一项:
    确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
    确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
    在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
    在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
    在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
    在所述径数小于所述第六径数门限的情况下,确定所述信道编码包括约束长度大于或等于L的卷积码;
    其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
  14. 根据权利要求7-11任一项或13所述的传输方法,其中,所述方法还包括:
    在所述确定目标信号的目标传输方案之后,所述通信设备向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
    所述目标信号的目标传输方案;
    所述目标传输方案的传输参数;
    所述目标传输方案的信道编码相关参数。
  15. 根据权利要求14所述的传输方法,其中,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案的情况下,所述第一指 示信息具体用于指示以下至少一项:
    所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
    所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
  16. 根据权利要求14所述的传输方法,其中,在所述第一指示信息是下行信息的情况下,所述第一指示信息承载在以下至少一项中:
    DCI信息;
    无线资源控制RRC信令;
    物理下行控制信道PDCCH的层1信令;
    物理下行共享信道PDSCH的信息;
    媒体接入控制层控制单元MAC的信令;
    系统信息块SIB;
    物理随机接入信道PRACH的MSG 2信息;
    物理随机接入信道PRACH的MSG 4信息;
    物理随机接入信道PRACH的MSG B信息;
    或者,
    在所述第一指示信息是上行信息的情况下,所述第一指示信息承载在以下至少一项中:
    物理上行控制信道PUCCH的层1信令;
    物理随机接入信道PRACH的MSG 1信息;
    物理随机接入信道PRACH的MSG 3信息;
    物理随机接入信道PRACH的MSG A信息;
    物理上行共享信道PUSCH的信息;
    或者,
    在所述通信设备和通信对端均为网络侧设备的情况下,所述第一指示信息承载在Xn接口信令中;
    或者,
    在所述通信设备和通信对端均为终端设备的情况下,所述第一指示信息承载在以下至少一项中:
    PC5接口信令;
    侧边链路Sidelink接口信令。
  17. 根据权利要求14所述的传输方法,其中,所述第一指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
  18. 根据权利要求7-11任一项或13所述的传输方法,其中,所述方法还包括:
    通信设备接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
    所述通信对端的速度;
    所述通信设备和所述通信对端之间的相对速度;
    所述径数。
  19. 根据权利要求18所述的传输方法,其中,在所述第二指示信息是下行信息的情况下,所述第二指示信息承载在以下至少一项中:
    DCI信息;
    无线资源控制RRC信令;
    物理下行控制信道PDCCH的层1信令;
    物理下行共享信道PDSCH的信息;
    媒体接入控制层控制单元MAC的信令;
    系统信息块SIB;
    物理随机接入信道PRACH的MSG 2信息;
    物理随机接入信道PRACH的MSG 4信息;
    物理随机接入信道PRACH的MSG B信息;
    或者,
    在所述第二指示信息是上行信息的情况下,所述第二指示信息承载在以下至少一项中:
    物理上行控制信道PUCCH的层1信令;
    物理随机接入信道PRACH的MSG 1信息;
    物理随机接入信道PRACH的MSG 3信息;
    物理随机接入信道PRACH的MSG A信息;
    物理上行共享信道PUSCH的信息;
    或者,
    在所述通信设备和通信对端均为网络侧设备的情况下,所述第二指示信息承载在Xn接口信令中;
    或者,
    在所述通信设备和通信对端均为终端设备的情况下,所述第二指示信息承载在以下至少一项中:
    PC5接口信令;
    侧边链路Sidelink接口信令。
  20. 根据权利要求18所述的传输方法,其中,所述第二指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
  21. 根据权利要求1-5任一项所述的传输方法,其中,所述通信设备确定目标信号的目标传输方案,包括:
    所述通信设备接收通信对端发送的第三指示信息;
    所述通信设备基于所述第三指示信息,确定以下至少一项:
    目标信号的目标传输方案;
    所述目标传输方案的传输参数;
    所述目标传输方案的信道编码相关参数。
  22. 根据权利要求21所述的传输方法,其中,所述通信设备基于所述第三指示信息,确定以下至少一项:目标信号的目标传输方案;所述目标传输方案的传输参数;所述目标传输方案的信道编码相关参数,包括:
    所述通信设备基于所述第三指示信息,确定以下至少一项:
    目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
    目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
  23. 根据权利要求21所述的传输方法,其中,在所述第三指示信息是下行信息的情况下,所述第三指示信息承载在以下至少一项中:
    DCI信息;
    无线资源控制RRC信令;
    物理下行控制信道PDCCH的层1信令;
    物理下行共享信道PDSCH的信息;
    媒体接入控制层控制单元MAC的信令;
    系统信息块SIB;
    物理随机接入信道PRACH的MSG 2信息;
    物理随机接入信道PRACH的MSG 4信息;
    物理随机接入信道PRACH的MSG B信息;
    或者,
    在所述第三指示信息是上行信息的情况下,所述第三指示信息承载在以下至少一项中:
    物理上行控制信道PUCCH的层1信令;
    物理随机接入信道PRACH的MSG 1信息;
    物理随机接入信道PRACH的MSG 3信息;
    物理随机接入信道PRACH的MSG A信息;
    物理上行共享信道PUSCH的信息;
    或者,
    在所述通信设备和通信对端均为网络侧设备的情况下,所述第三指示信息承载在Xn接口信令中;
    或者,
    在所述通信设备和通信对端均为终端设备的情况下,所述第三指示信息承载在以下至少一项中:
    PC5接口信令;
    侧边链路Sidelink接口信令。
  24. 根据权利要求21所述的传输方法,其中,所述第三指示信息承载在专用物理信道中,所述专用物理信道专用于所述通信设备和通信对端之间的指示消息的传输。
  25. 根据权利要求1-5任一项所述的传输方法,其中,所述方法还包括:
    在所述通信设备确定目标信号的目标传输方案之后,基于协议预定义确定以下至少一项:
    所述目标传输方案的传输参数;
    所述目标传输方案的信道编码相关参数。
  26. 一种传输装置,包括:
    第一确定模块,用于确定目标信号的目标传输方案,所述目标传输 方案为第一传输方案或第二传输方案;
    其中,所述第一传输方案为基于OFDM通信系统的传输方案,所述第二传输方案为基于OTFS通信系统的传输方案。
  27. 根据权利要求26所述的传输装置,其中,在所述通信设备确定目标信号的目标传输方案为所述第一传输方案的情况下,所述装置还包括:
    第一映射模块,用于在所述通信设备为所述目标信号的发送侧的情况下,将所述目标信号映射在频率域或时间频率域后转换到时域发送所述目标信号;
    第一转换模块,用于在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到频率域或时间频率域进行解调。
  28. 根据权利要求26所述的传输装置,其中,在所述通信设备确定目标信号的目标传输方案为所述第二传输方案的情况下,所述装置还包括:
    第二映射模块,用于在所述通信设备为所述目标信号的发送侧的情况下,将目标信号映射在延迟多普勒域后转换到时域发送所述目标信号;
    第二转换模块,用于在所述通信设备为所述目标信号的接收侧的情况下,在接收到所述目标信号后将所述目标信号转换到延迟多普勒域进行解调。
  29. 根据权利要求26所述的传输装置,其中,所述第一确定模块,具体用于:
    确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案,所述第一部分和所述第二部分属于同一个时间单元或同一个频率单元。
  30. 根据权利要求26所述的传输装置,其中,所述第一确定模块,具体用于:
    确定第一信道的目标传输方案为所述第一传输方案,第二信道的目标传输方案为所述第二传输方案,所述第一信道和所述第二信道均为承载所述目标信号的信道;
    其中,在所述目标信号为上行信号的情况下,所述第一信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;所述第二信道为以下至少一项:物理上行共享信道PUSCH;物理上行控制信道PUCCH;物理随机接入信道PRACH;
    或者,
    在所述目标信号为下行信号的情况下,所述第一信道为以下至少一项:物理下行共享信道PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;所述第二信道为以下至少一项:物理下行共享信道
    PDSCH;物理下行控制信道PDCCH;物理广播信道PBCH;
    或者,
    在所述通信设备和通信对端均为终端设备的情况下,所述第一信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH;所述第二信道为以下至少一项:物理侧边链路控制信道PSCCH;物理侧边链路共享信道PSSCH;物理侧边链路广播信道PSBCH;物理直通链路发现信道PSDCH;物理直通链路反馈信道PSFCH。
  31. 根据权利要求26-30任一项所述的传输装置,其中,所述第一确定模块,具体用于:
    基于第一信息,确定目标信号的目标传输方案;
    其中,所述第一信息包括以下至少一项:
    所述通信设备和所述通信设备的通信对端之间的相对速度;
    所述通信设备和所述通信对端之间的径数;
    所述目标信号的信号类型;
    距离前一次采用所述目标传输方案所经过的时长;
    所述通信设备和所述通信对端之间的延迟。
  32. 根据权利要求31所述的传输装置,其中,所述第一确定模块,具体用于以下至少一项:
    在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,且在所述通信设备确定所述相对速度小于或等于第一相对速度门限值的情况下,确定所述目标传输方案为第一传输方案;
    在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,且在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
    在所述第一信息包括所述目标信号的信号类型的情况下,且在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
    在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,且在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
    在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,且在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案。
  33. 根据权利要求31所述的传输装置,其中,在所述第一信息包括所述通信设备和所述通信对端之间的相对速度的情况下,所述第一确定模块,具体用于:
    在所述通信设备确定所述相对速度小于或等于第一相对速度门限值 的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述相对速度大于或等于第二相对速度门限值的情况下,确定所述目标传输方案为第二传输方案。
  34. 根据权利要求31所述的传输装置,其中,在所述第一信息包括所述通信设备和所述通信对端之间的径数的情况下,所述第一确定模块,具体用于:
    在所述通信设备确定所述径数小于或等于第一径数门限值的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述径数大于或等于第二径数门限值的情况下,确定所述目标传输方案为第二传输方案。
  35. 根据权利要求31所述的传输装置,其中,在所述第一信息包括所述目标信号的信号类型的情况下,所述第一确定模块,具体用于:
    在所述通信设备确定所述目标信号的信号类型包括探测参考信号的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述目标信号的信号类型包括解调参考信号的情况下,确定所述目标传输方案为第二传输方案。
  36. 根据权利要求31所述的传输装置,其中,在所述第一信息包括所述距离前一次采用所述目标传输方案所经过的时长的情况下,所述第一确定模块,具体用于:
    在所述通信设备确定所述时长大于或等于第一时间阈值的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述时长大于或等于第二时间阈值的情况下, 确定所述目标传输方案为第二传输方案。
  37. 根据权利要求31所述的传输装置,其中,在所述第一信息包括所述通信设备和所述通信对端之间的延迟的情况下,所述第一确定模块,具体用于:
    在所述通信设备确定所述延迟小于或等于第一延迟门限的情况下,确定所述目标传输方案为第一传输方案;
    或者,
    在所述通信设备确定所述延迟大于或等于第二延迟门限的情况下,确定所述目标传输方案为第二传输方案。
  38. 根据权利要求33-37任一项所述的传输装置,其中,所述装置还包括:
    第二确定模块,用于在所述确定所述目标传输方案为第二传输方案的情况下,基于所述通信设备和所述通信对端之间的径数,确定目标信道编码。
  39. 根据权利要求38所述的传输装置,其中,所述第二确定模块,具体用于以下至少一项:
    确定所述目标信道编码为码率与所述径数成正比关系的信道编码;
    确定所述目标信道编码为约束长度与所述径数成反比关系的卷积码;
    在所述径数大于或等于第三径数门限的情况下,确定所述信道编码包括码率大于或等于C的信道编码;
    在所述径数大于或等于所述第四径数门限的情况下,确定所述信道编码包括约束长度小于L的卷积码;
    在所述径数小于所述第五径数门限的情况下,确定所述信道编码包括码率小于或等于C的信道编码;
    在所述径数小于所述第六径数门限的情况下,确定所述信道编码包 括约束长度大于或等于L的卷积码;
    其中,C是大于0且小于1的正数,L是大于或等于1的正整数。
  40. 根据权利要求33-37任一项或39所述的传输装置,其中,所述装置还包括:
    第一发送模块,用于在所述确定目标信号的目标传输方案之后,向所述通信对端发送第一指示信息,所述第一指示信息用于指示以下至少一项:
    所述目标信号的目标传输方案;
    所述目标传输方案的传输参数;
    所述目标传输方案的信道编码相关参数。
  41. 根据权利要求40所述的传输装置,其中,所述通信设备确定目标信号中的第一部分的目标传输方案为所述第一传输方案,目标信号中的第二部分的目标传输方案为所述第二传输方案的情况下,所述第一指示信息具体用于指示以下至少一项:
    所述第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案;所述第一传输方案的传输参数;所述第一传输方案的信道编码相关参数;
    所述第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案;所述第二传输方案的传输参数;所述第二传输方案的信道编码相关参数。
  42. 根据权利要求33-37任一项或39所述的传输装置,其中,所述装置还包括:
    第一接收模块,用于接收通信对端发送第二指示信息,所述第二指示信息包括以下至少一项:
    所述通信对端的速度;
    所述通信设备和所述通信对端之间的相对速度;
    所述径数。
  43. 根据权利要求26-30任一项所述的传输装置,其中,所述第一确定模块,具体用于:
    接收通信对端发送的第三指示信息;
    基于所述第三指示信息,确定以下至少一项:
    目标信号的目标传输方案;
    所述目标传输方案的传输参数;
    所述目标传输方案的信道编码相关参数。
  44. 根据权利要求43所述的传输装置,其中,所述第一确定模块,具体用于:
    基于所述第三指示信息,确定以下至少一项:
    目标信号中的第一部分和以下至少一项:所述第一部分的目标传输方案为第一传输方案,所述第一传输方案的传输参数,所述第一的信道编码相关参数;
    目标信号中的第二部分和以下至少一项:所述第二部分的目标传输方案为第二传输方案,所述第二传输方案的传输参数,所述第二的信道编码相关参数。
  45. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至25任一项所述的传输方法的步骤。
  46. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至25任一项所述的传输方法的步骤。
PCT/CN2022/130506 2021-11-08 2022-11-08 传输方法、装置、设备及存储介质 WO2023078453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111316435.3 2021-11-08
CN202111316435.3A CN116094650A (zh) 2021-11-08 2021-11-08 传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023078453A1 true WO2023078453A1 (zh) 2023-05-11

Family

ID=86205110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130506 WO2023078453A1 (zh) 2021-11-08 2022-11-08 传输方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116094650A (zh)
WO (1) WO2023078453A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095101A1 (en) * 2018-11-06 2020-05-14 Indian Institute Of Technology, Delhi Multiple access method in wireless telecommunications system
US20200204309A1 (en) * 2017-09-11 2020-06-25 Cohere Technologies, Inc. Wireless local area networks using orthogonal time frequency space modulation
US20200259697A1 (en) * 2017-11-01 2020-08-13 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2021099362A1 (en) * 2019-11-20 2021-05-27 Volkswagen Aktiengesellschaft Access node, user equipment, and corresponding apparatuses, methods and computer programs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411843B2 (en) * 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
WO2016176642A1 (en) * 2015-04-30 2016-11-03 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
US10090973B2 (en) * 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
CN108353052B (zh) * 2015-06-27 2021-12-03 凝聚技术股份有限公司 与ofdm兼容的正交时频空间通信系统
EP3378187B1 (en) * 2015-11-18 2022-03-30 Cohere Technologies, Inc. Orthogonal time frequency space modulation techniques
US11190307B2 (en) * 2016-04-29 2021-11-30 Lg Electronics Inc. Method for receiving data by using 2D channel-based transmission scheme, and apparatus therefor
WO2020102947A1 (zh) * 2018-11-19 2020-05-28 华为技术有限公司 接收信息的方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200204309A1 (en) * 2017-09-11 2020-06-25 Cohere Technologies, Inc. Wireless local area networks using orthogonal time frequency space modulation
US20200259697A1 (en) * 2017-11-01 2020-08-13 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2020095101A1 (en) * 2018-11-06 2020-05-14 Indian Institute Of Technology, Delhi Multiple access method in wireless telecommunications system
WO2021099362A1 (en) * 2019-11-20 2021-05-27 Volkswagen Aktiengesellschaft Access node, user equipment, and corresponding apparatuses, methods and computer programs

Also Published As

Publication number Publication date
CN116094650A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US20200396684A1 (en) Operation with power saving in connected mode discontinuous reception (c-drx)
WO2018219011A1 (zh) 一种数据传输方法及通信设备
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
WO2022152271A1 (zh) Pusch传输方法、装置、设备及存储介质
WO2020181441A1 (zh) 通信方法、装置及系统
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022199664A1 (zh) 信息发送方法和设备
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2023078453A1 (zh) 传输方法、装置、设备及存储介质
CN111327346B (zh) 一种信道跳频的确定方法及装置、计算机存储介质
US10917210B2 (en) User terminal and wireless communication method
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2021052068A1 (zh) 一种背反射通信中的数据传输方法和装置
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022171155A1 (zh) 数据发送处理方法、接收处理方法、装置及设备
WO2023066112A1 (zh) 信息比特调制方法、解调制方法、设备和存储介质
WO2022012632A1 (zh) 信息发送方法、接收方法和通信设备
WO2024051628A1 (zh) 资源映射方法、装置和通信设备
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2022257858A1 (zh) 信号传输方法、装置、网络侧设备和终端设备
WO2022242541A1 (zh) 信道估计方法、装置、设备及可读存储介质
WO2022206754A1 (zh) Srs的发送方法、接收方法、配置方法及装置
WO2022166880A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889474

Country of ref document: EP

Kind code of ref document: A1